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Abstract

Kinetic energy spectra of the horiszontal wind vector were estimated
from time series measured along the Ris# 123 m meteorological tower
throughout ten years. Also measurements from other localities (Station
Nord, Greenland, sndKarlstrup, Zealand) were used. Spectra and methods
are presented and discussed. Emphasis is laid on the guin in information
which is achieved when the components of the wind vector are considered
rather than just the wind speed.

Spectral equations in the frequency domain are derived from the equa-
tions of motion. R is shown how a ratio including the Coriolis parameter,
the quadratvre spectrum of the components, the energy spectrum, and the
frequency can be used to determine the explicit effect of the rotating of the
earth on the kinetic energy sjectrum,

The wind structure inthe houndary layer, as measured at the Riss site,
and its relation to the diurnal cycle and horisontal inhomogeneities of sur-
facetemperature areinvestigated. The data revesl an exceptionally large
turning of the wind with the height abovs the ground, R is shown that this
fommbom:mmmmmbym'mnmhg
to the thermal- wind sffect,
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PREFACE

The source of virtually all the energy of the atmosphere is solar energy.
When radiation is absorbed at the surface of the earth and in the atmosphere,
it appears as internal energy which is converted into other atmospheric
forms such as potential, kinetic, and latent energy.

One of the major tasks in the atmospheric sciences is to determine how
tr £ ion, hange and transportation of different forms of energy
are carried out in the atmosphere. The ultimate goal is the complete under-
standing of the mechanisms responsible for the way in which the atmosphere
organizes itself, This understanding is essential for successful weather
forecasting and modelling of our at pheric envirol t

It is the purpose of this report to provide information on the structure
of the atmospheric kinetic energy through analysis of measured time series
of atmospheric parameters.




LIST OF SYMBOLS

Brackets denote ensemble averaging, e.g. (u)
An overbar denotes time averaging, e.g. u
An underbar denotes a vector, e.g. u

The Fourier transform of u can be denoted by a

If not otherwise indicated, the coordinate system is a right-handed
Cartesian coordinate system rotating with the earth, and arranged so
that the xa—ax:is is antiparallel to the acceleration due to gravity.

The notations x,, Xx,, and x4 are used alternatively with x, y, and z in
order to obtain the convenience which Einstein's summation convention
affords, but still to retain the possibility of being in accordance with
ordinary micrometeorological usage where convenient.

Einstein's summation convention implies summation over repeated indices,

€.g., U = uuy + Uy, + Ugls.

ii unit vector in the ilh direction
u velocity vector, u = Ly, + Agu, + igug
u, it component of velocity

uv,w (x', Xy, "3) and (x, y, z) components of velocity

Vv, v magnitude of the horizontal wind vector
P pressure
[ density
T temperature; absolute when indicated
v kinematic viscosity
€ acceleration due to gravity
b4 the Coriolis parameter = 2 Gging, where G is the angular
frequency of the earth's rotation and ¢ is the latitude
[ average dissipation rate of turbulent kinetic energy per unit mass
€ ijk alternating tensor:
e < 1 L3 = 0,2,3), (2,3,1), or (3,1,2)
®1ik = 0, it i,j, and k are not all different
'ijk = o1, if (i, 5,k = (3,2,1), (2,1,3), or (1,3,2)

Other symbols are used in this report; their meaning is given in the text
where they occur.
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t. INTRODUCTION

Many of the parameters describing the state of the atmosphere such as
wind speed, pressure, and temperature are functions of positions in space
and of time. At a given time their values vary from point to point, and, at
a given point in space, their values vary in time.

To undertake our task ideally, observations of all relevant parameters
should be available every millimeter all around the globe at all times. Such
observations are not available. For the first, we cannot measure all the
relevant parameters known to us, and those we can measure, we cannot
measure with such a density; secondly, we are not sure that we know all
the relevant parameters to measure; and thirdly, all measurements are
bound to be within certain time and space limits.

The obgervations of meteorological elements often prove to be so irre-
gular that any attempt to give them a precise analytical description is quite
hopeless; therefore it is expedient to use a statistical description, consider-
ing the physical processes as random (stochastic) processes and the obser-
vations as random (stochastic) functions.

In the analysis of random functions some of the most useful tools are
orthogonal decompositions, the reason being that orthogonal decomposition
corresponds to the introduction of a general form of cartesian frames of
reference which allow the use of a general form of Pythagorean relation,

In physics, the most important orthogonal decomposition is the harmonic
one because the amount of explained variance ie plotted versus frequency
or wavenumber, and hence makes direct reference to time or length scales
in the process being studied. Another important aspect of the harmonic
(Fourler) decomposition is that it is the only decomposition that does not
tie the process under consideration to any origin or epoch, but is invariant
under a displacement of time in the limit where the memory of the process
becomes small compared to the time over which the process is considered.

As said by Wiener in 1949, "This mode of invariance under a trans-
lation of the origin of time simply asserts the repeatability of the method
and is indeed a necewsary condition for the existence of any scientific theory
whatever, A scientific theory bound to an origin in time, and not freed from
it by some mathematical technigue, is a theory in which there is no legit-
imate inference from the pazt to the future”,

Thus, we are inevitably led to the thoory of stationary random processes
and their lpcetrni decompoﬁtion, This theory requires a fairly elaborate
mathemitical uehn!qm, which is now amply described in the literature




(N. Wiener, 1949, M. Loeve, 1955, A.M. Yaglom, 1962, 1.5. Bendat and
A.G. Piersol, 1966, E.1. Hannan, 1970, H. Cramer and M. R. Leadbetter,
1960, J.L. Lumley and H. A. Panofsky, 1964, J. L. Lumley, 1970). In the
next chapter (2) we establish a frame of references but emphasize that even
an explanation of the fundamentals of the theory is beyond the scope of this
report. Further, chapter 2 contains discussions of the relations between
time spectra, space spectra, and eddy sizea of turbulent motions.

In chapter 3 information is given concerning how, when, and where the
analysed time series were obtained, Chapter 4 d2scribes the practical
implications of digital spectral analysis, and in chapter 5 the measured
energy spectra of the horizontal wind vector are presented and discussed.
The equations governing atmospheric motions are used in chapter 6 to
derive a spectral equation in the frequency domain in the hope of unfolding
more of the information contained in the shapes of measured time spectra
of kinetic energy.

Finally, chapter 7 is devoted to the thermally introduced perioricities
found in time series of the horizontal wind vector in the planetary boundary
layer,

2, ANALYSIS OF ATMOSPHERIC VARIABLES, THEORY

2.1. Random Functions

Defining 2 random function, we can think of a series of measurements

of a given random process

44 &) 24y GOt LGEY L F L @Y+

under identical curcumstances. In this report we shall always think of
h’.‘(g, t) as a wind vector if not otherwise indicated (i = 1,2,3). If i and
the index i are removed, we speak of scalars such as temperature and wind
speed; t is time (- = (t(®) and x = (x,, %y, %3) is a point in the three-
dimensional Euclidean sp Each meas
function

t correspondt to a different

60w 4 P @, ., 48 6,

and we say that the measurements are realizations of the random process
i (‘1‘5 t). The collection of functions }_‘l‘“‘) (z, 1) is called an ensemble.

A random function, whose whole family of finite-dimensional distribu-
tions of probability are invariant under a displacement of time, is called a
stationary random function (H. Cramer and M. R. Leadbetter, 1967). Ran-
dom functions poesessing the corresponding iavariaice in space are called
homogeneous random functions.

The ensemble average, or the expectation of a random function, is
defined as the integral of the product of this function with its finite~-dimen-
sional distributions of probability densities extended over the whole range
of variations of the arguments of the function.

If the statistical characteristics of a stationary random process obtained
by averaging a set of the realizations of this random process at a given time
are, with a probability arbitrarily near unity, equal to the characteristics
obtained by averaging a single realization for a sufficiertly long interval of
time, the process is said to be ergodic.

In practice, usually one realization is available and only the assumed
ergodic characteristic allows the theoretical and experimental results to be
compared, inasmuch as, in theory, ensemble averages are used, whiie, in
practice, averages are determined in time. We shall denote ensemble
averages by brackets () and ime averages by overbars.

2,1.1. Second Order Moments

In general, covariances, being the second order moments of random
functions, are defined as

Ryl 5,47 = (U545, 1) - (G DINGEr s, 1) - CEitavr, v,

i. e. all correiations are defined with respect to different space-time points.
Random functions posessing covariances are called second order random
functions, and the properties which can be defined or determined by means
of covariances are callad second order properties. We shall always assume
our random functions to be of second crder and homogeneous in space and
time, which is often called second order stationarity in the wide sense, For
these functions the covariances have the form

Ry, 2 4,7) = Rylov).
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2.1.2. Spectral Representation in Wave Number Space If the Rjjlz) falls off sufficiently rapidiy at infinity, this three-dimen-

sional Fourier-Stieltjes integral can be written as an ordinary three-dimen-
The above definition of R is nften too general to be used in atmos-~ . P R
sional Fourier integral of the spectral density tensor
pheric physics. Either the cuvanances ave defined with respect to different 3
space points, the same time being used at both paints, or the covariances ( ) ? Fi (‘] .'2.'3)
3 » » = 4
are defined at « fixed space point and the time varies. The first case leads M TR R BLF o, "2 o,
10 a spectral decomposition of the corresponding random function in wave
RN and we have the Fourier transform pairs
number space, the seccnd case to a decomposition ir frequency space.
Let us deal with a second order random function, i.%.{x), which is
L- _ - ) 1;8x) r‘ij(!)'fffe! Lo . mian and
hommogeneous in three spatial directions, and let us only conslder corre- P 3= "=
lations at the same time. The following theorem, the Wiener-Khintchine - 2.3)
theorem, or rather an exteisior. of the theorem vstavlished by H, Cramer ’ - 1 rﬂ' i Ip 0 d
e = = r
(1940), is fundamental for the theory of spectral representation of random ij (2%) "- 1j
processes. The theorem may b¢ stated as foliows: to every homogeneous
£;{x) there can be  signed u random process, z;{x), with orthogonal Putting r equal 10 Zerq, we have
increments, so that for each fixed . we have the speciral representation -
Ry 0= (q @t @) = [f] oy @en. 2.9
- -
3 (_).Jrhre“‘ Xdz, (. 2.1
) Hence #&, (s} is the contribution to the variance (oc kinetic energy) in the
where % - x dencies the inner product of the three-dimensional vectors % wave numberrangey tox + dx.
and x, i.e. % - %= % X, + %,%, + ¥,X,, The random process z,(x) is a Splitting R‘j up into an even and an odd part glves
process with orthogonal increments in the sensc that .
Ay () = Egy (o) - Oy (), (2.5}
z (l)) 0 for any three-dimensional  interval
and taking the cosineand sine transformsg, respectively, gives
and
#50)=Coygy @I +iQg. (2.6)
0 for any twn disjoint three-dimen-
(dz, ) dz () ) = § Bional intervils Aw' and Aw where the right-hand side contains the cospectral tensor and the quadrature
it =

‘4 Fu(l) otherwise, epectral tensor respectivaly.

Putting r equal to zero we have
Here zj.(l) denotes thz: complex conjugate of z,(:), ard Fu(:) is called
the speciral distribution tensor,
Tire theorem f{urther states that Ea, {2.1) holds good i, and only if, the
correlation tensor can be repyesented i

Ryy &) = fff 2 LaFy, ). {2.2)

Ru(o)' Ey;(0) = (’1()_‘) g x)) -_Uf Co‘j (x)dx, 2.7

which shows that the cospectral imor mesasures the corntribution to the
covariance tensor in the wave munber rangey to 8 + dx.
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From the above, the following relations are valid

Rij(ﬁ’ = Rji(-g)
'3"-.3(1) = Coij(--_) = Coji(l) (2.8)
Qle)  =- Q;f-m) =-Qule).

2.1.3. Spectral Representation in Frequency Space

However, the concepts in the foregoing section are still too general to
be used in practice. Space spectra measured in the atmosphere are usually
measured along a line, for instance a straight line parallel to the mean
wind direction, or a circle of latitude, To obtain spectra that correspond
to measurements, line-space spectra as well as time spectra, it should
first be noted that the resulls we have given above are not restricted to a
three-dimensional space; formally it ig quite easy to extent the results to
an n-dimensional random field in an n-dimensional space. While we still
keep our random field three-dimensional, we now let x be a point in four-
dimensional space.

x = x),x5, 24,8
Iex-x=(x) - X' xy- X' Xg-Xg', ), T =t = U
Ry (x.2)= Ry; (x) .

From Eq. (2.3) we generalize

Rij (5 ffff e Loylnyax o

o (g..(#.ffff il IRywdx.
Let £, (x) be meagured along the t-axis

Ry (0,0,0,7) = ffffe“l' 4 dn

. Lei *4" dn, f'ij ®) dx, duydn, .

-13.

Defining

fff & (=) dw, du, du, = S;;(n,) say, we obtein

Ryy (v) = fe‘ 6% 5y (xg) d g

Sy la) = gg f{“‘f Ryj(madx .

S ‘(14) is the time spectral tensor and By is usually called the

frequency and the wavelength is called the period T. Just as before we can

split the complex Sij (*) up into a sum of a cospectral tensor Coij {u) and

a quadrature spectral tensor Qij (¢) and with relations similar to those of
Eq (2.8):

Coij(u) ] Co“(-u) = Coj‘(u),

Qu(“) = ‘Q“('“) = ‘Qj‘(“) .

2.1.4. The One-Dimensional Wave Number Spectrum-Tensor

Let 1, l‘(y be me:lured along the x, -axis

Fu (r;,0,0,0) -ffff el M .U (x)dn

-f.illr] d:,f{f L 20 (!)d'z"'ad'r

-’If ®45@) dn; dug dug = Gy (x;) , we obtain

Ry (r)) = f."'u"mu ) dn,,

;G“‘.('l‘) -‘ﬁ:[.c'iflrl R“(r‘)drl .

0u (ny) u‘ the one-dimensions] wave m spectral tansor,

{2.10)
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2.2. The Eddy Concept

Turbulent flow is normally thought of as a superposition of many eddies
of varying sizes and orientations occurring more or less at random through-
out the fluid. In describing an eddy, we think of a circulating region of
fluid of some characteristic size, isolated or closely connected wath a
number of other eddies. It is obvicus that the relation between kinetic energy
and eddy size is most precisely defined by the spatial Fourier transform
.ij (x), Eq. (2.3).

Introducing spherical coordinates in x -space and {ntegrating over the
angle variables, we obtain the integrated spectrum ¥ ij (x) averaged over

directions:
u, = u8ind cosé ,

'23 u5in9 sin @ ,

ng T wCO89,

% 2=
2 .
'ij )= f j 1 'ij (k,8,9) sin® d® dO,
o o
Furthermore, it is convenient to consider only a scalar quantity rather
than a tensor quantity. The most natural scalar to consider is the trace of
v 1j(u). Thus, in speaking of eddy size and kinetic energy, attention is often
confine to the so-called three-dimensional scalar energy-spectrum
L
1y k)= f f"z'u (c,0,#) sin® ded e,
o o

and from Eq. (2.4} the relation between kinetic energy density o <"i @ g, ®))

and !ﬂ (w) im:

4wy ) - v man
o

Having estimated Tu(u) {rom data, is it then possible from ¥ “(-) to
estimate the distribution of the eddy size in the flow? To shed some light
on this problem let ug follow an example given by Townsend (1956), and
think of an isolated eddy as represented by the velocity field

- 15 -

u, = nz x, exp{- énz (x'2 + xi + xg)) ,

2 12,2 2 2
u, = -a°x, exp(- wa (xy + x, + xs)),

u3=0.

The form of the velocity field indicates thai the eddy has a character-
istic size ) /a.

Assuming the eddies to be hormogeneously superimposed at random with
average separation between centres )) 1/a, Townsend found

v () = 20 Ant exp-n%/a?),

where A i8 a constant, 'ﬁtl) bas maximum at % = o¥ 2 and most of 'ﬂ(‘)
i3 concentrated near this valuc. We shall assume that we can neglect the
spread in !ﬁ(-) around ®»= a¥2, and say that when many different eddy
sizes are present, the number of eddies with sizes equal to 1 /u is simply
proportional to ¥ ij(')' Still, what we arc able to measure are one-dimen-
sional wave number tensors, for instance G .(-' ), and only when strong
symmetry conditions are imposed on the flow is there a simple relation
between 'ﬁ(-) and Gii(’!)' Despite this, we shall discuss measured
Gii('l) in terms of characteristic eddy dimensions.

2.3, Taylor's Hypothesis

As to the manner of observation, data covering different scales near
the ground generally exist in the form of time series, so usually we have no
direct knowledge of the spatial structure of the velocity field. To estimate
spatial structure from temporal data, a hypothesis advanced by Taylor
(1938) is normally used. He suggested that when the turbulence level is
low enough, the e¢volution in spatial pattern of a lump of fluid during its
transit past a fixed point may be 80 slight that the pattern is effectively
'frozen' during passage, Then the changes at the point with time are due
only to spatial non-uniformities being convected past the point at mean
wind speed,

In spectral space we can use Taylor's hypothesis to give an approxi-
mative relation betweon & frequency specirum, for instance 8, {w) and a
one-dimensional wave number spectrum 'i', 1 (-I ), consisting of replacing
the messured Irequency » by =, &i, where © » {4, (1), so that w §,,(v) *
(o) Fy, (o/i).
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Experimental evidence, Monin and Yaglom (1971), shows that Taylor's
hypothesis holds fur scales up to ~1 km in the planetary boundary layer.
On larger scales the speed of the eddies is not constant but depends on the
size of the eddies, and a relation between frequency and space spectra
requires a knowledge of the dependence of energy propagation on scale.
Since waves in the atmosphere in general are dispersive, individual waves
in the system move at a speed (C) different from that of the energy. The
energy -carrying velocity or the group velocity (C g) can be related to wave
velocities and scales by

Cg = C*+n LIS

In order to compare frequency and spatial spectra for large scales, C
rather than C should be used in Taylor's hypothesis. Some evidence of
this has been given by Vinnichenko (1970). Unfortunately direct measure-
ments of C_ are not available, and we have to use the mean wind spred in
Taylor's hypothesis knowing the results to be rather dubious as we approach
small wave numbers, For instance, it takes a synoptic pressure system
with radius ~ 3000 km several days to pass a fixed point, a period com-
parable with the lifetime of the system.

2.4. The Limits of Atmogpheric Spectra

Space spectra are bounded both in the direction of large wave numbers
and in the direction of small wave numbers.

A inimum ™ (v3/¢ ) /4, the micro-scale of turbulence

% 0,1 cm (Batchelor, 1950)
where v and & are the viscosity and dissipation parameters.
xmarim\lm {40, 000 km, the length of the equator.

The corresponding periods in the frequency spectrum, using Taylor's
hypothesis, are

~4
Tﬂ min) ~ 10" sec

Tﬂmﬂ) ~ ) month ,

17-

which shows that the frequency spectrum must be bounded in the direction
of high frequencies, and for periods greater than ~1 month it is impossible
to associate time spectra with space spectra. Frequency spectra are not
bounded in the low frequency end, indeed oscillations of meteorological
parameters are found with periods ranging from a fraction of a second to
thousands of years, as indicated on figs. 1 and 2: The frequency spectra of
the two atmospheric scalars, temperature and horizontal wind speed.

2.5, The Graphical Representation of Spectra

The wind speed spectrum, fig, 2, is presented in an invariant form often
used in metrorology where a range of frequencies extending over several

decades im not uncommon, We have
-

(&) = 2 fs(u)do= 2 ‘[-smdm .,
o

i.e.,we plot @ S (w) versus In &. The invariance can be derived from the
following reasoning, (Dutton,]1971);

3P = swrdes [as@man,
o

[+]

where g is a new variable w = an, du= adn and a is a constant. The energy
density associated with variable g is

S'n)=as(ag),
which gives
" S'y) e na S (m) = WS (W),

20 that the spectral form s 8' (w) is identical with @ S (w). In the region where
Taylor's hypothesis applies we have

uS (w) = x8'(s)
and w= Gix

Fig. 2 shows a log-linear version where w8(w) is plotted versus
108, 0 v ie,

”» -
348 +f B@amue1aio [ wrdioggu .
0 ' o '
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Fig. 1. Top. Power spectrum of temperature (from an investigation by

E.L. Petersen and S. E. Larsen, 1973, To be published), = Yearly averages

of the 07206 ratio in precipitstion 1174-1366, The data arv from an ice-

core from Greenland (5.J. Johnaen, ot al., (1972)) and calibrated against

a two hundred years' temperature record from Southern Germany. - Hourly
of ten-mi averages taken st Risg 1958-1987 st & m height.

‘The high frequency parts sre based on measurements from Kansas 48

(N.E. Busch and S.E. Larsen, 1972} {or three different cases of atmospheric

stablity, — , ~. - z/L=-0,5; ....... $fL=-0,03 ~~— 2/L=0.5,

Fig. 2. Bottom. Fower spectra of the horizontal wind speed st 7 m sbove
the ground, — Hourly of tan. gos tahed ot Kisy
1958.1987; — ~ ~ One-minuts averages messursd at two-misuts imervals st
Ris# during iive weeks in 1971. The high frequency parts of the two specira
are infl d by ali spectrum messused in Ksasas
1968 {N.E. Basch and S.E. Larsen, 1972}, basad on snalogwe analysis of
twenty-five hourly records,
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The temperaturs spectra fig. 1 is presented in a log-log plot, a repre-
sentation used when both the range of frequencies and the range of spectral
values extend over several decades. This representation has the advantage
of presenting constant powers of frequency as straight lines with a slope
corresponding to the powers, but 't is not area preserving as is the log-
linear representation,

2.6. Reynold's Convention

The most important, and at the same tinue the simplest statistical
characteristics of random fields of atmospheric parameters are their mean
values (i_il;i(i)). The differences Lil'i (x) = i;8;(x) - (i_i g;(x)) between
individual values of the field x_l Li(_x_), and its mean values are called the
Nuctuations of the field. This decompousition of the parameters into mean
values and fluctuations is called the Reynold's convention and plays a funda-
mental role in all investigations of random fields in fluid dynamics,

Time series of meterological parameters often prove to include some
periodic funclions of time, commonly with periods of a day and a year, and
we shall thus consider our meteorological parameters measured in the time
domain as consisting of a climatological mean and one or more periodic
components of {ixed phase angles, and a deviation which is considered to
be a stationary random function, Unfortunately, the last point is a crude
approximation, since in most cases with non-stationary means, the fluctu-
ations are not stationary functions, but no really feasible methods are
available in spectral analysis of periodic random functions so one.must
draw heavily on the assumption of stationarity.

The daily and yearly periodicities in the parameters will be subject to
a thorough analysis in chapter 7, and although we shall not deal much with
the concept of climate and climate oscillations, it is worth noting from fig, !
that there are oscillations of temperature with periods of many tens of years.

Summing up we write:

¢, (x4.x0,%3,1) = { U, (xp.xp.x3.1) ) + "1 (x1: %5, X3, 1)
(6 xpuxp,xg,t) ) o (U (xy.20.x5) ) + (8] (x,%5,%5,) )
(“ ()., x9) ) = l';_ (x,,35,X4) the climatological mean

(l."' (’1"2“3' )= t‘;_ "l"!’ xg, 1) the periodic mean
Ly (%),39,x5,1) - the fluctuating component where

(%) (2,25, 1) ) W O
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3. THE DATA RECORDS An analysis of the wind profiles (H. A. Panofsky and E. L. Petersen
1972) revealed a characteristic variation of wind with height depending o.n
3.1. Introduction wind directions, i.e. on the character of the up-stream surface, Thus a
The spectra presented in this report a'-e, with minor exceptions, based single discontinuity in surface roughness shows up as a single "kink" in
on measurements of meteorological parameters at Ris3, Karlstrup and the wind profile and a double discontinuity as a double kink (see fig. 3).
Station Nord, the two first on Zealand and the last in northern Greenland,
All the parameters are measured as functions of time. Tables 1a - 1d

contain information about the stations, the records, and the calculated

spectra,

3.2. The Riso Records

The Risg 125 m meteorological tcwer is situated on a narrow peninsula,
surrounded by bays of varying size (see fig. 3). The foundation of the tower
is on a slope at a height of 6.5 m above mean sea level. The tower i8 com-
poged of fifteen 8 m-long sections bolted together. In cross section the
sections present an equilateral triangle with 1,76 m-long sides. The three

sides face north, south-west, and south-east. The instruments were
mounted on triangular booms extending from the south-west side of the
tower and were positioned 2, 35 m from the lattice work of the tower.

Wind speeds were measured at 7 heights above the base of the tower:
7, 23, 39, 56, 72, 96, and 123 m; temperatures at the same heights and
at 2 m; wind directions at 7, 56, and 123 m; moisture at 2 and 123 m.
Wind speeds and directions were obtained from cup anemometers and vanes,

2z 313 em
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Fig, 3. Mean wind profiles for hydrostatically neutral air, measured at
Risg with the wind coming from different angulsr sectors as shown on the
map of Ris#, The surface roughness changes are clearly reflscted by "kinks"

temperatures were sensed by platinum resistance thermometers, and
in the profiles, the charscteristics of which depend on the wind direction.

humidity by lithium chloride humidiometers. All measurements were
recorded on strip-charts, The types of instruments have been subject to
changes throughout the years, and instruments have been interchanged
between heights. Great care has been taken by the Risg personnel in daily
maintenance to keep the measurements at their best. Further information
on the site, the instruments, and recording system is given elsewhere.
From the strip-charts ten-minute average winds, wind directions,

It was shown that the height of a single kink and the height of the lowest
kink were in good agreement with theory. It was demonstrated that the
roughness lengths computed for the immediate surrounding of the tower vary
with wind directions in a manner consistent with terrain features, and further
that the mean profile obtained when the trajectory passes over relatively
homogeneous terrain is represented quite well by wind profile expressions
that are usually only applied to the surface layer,

E,L. Petersen and P, A, Taylor (1973) compared the profiles observed
in near-neutral gond.iﬁonl and those predicted using models based on mixing-
length theory (P, A, Taylor, 1969) and the turbulent energy equation (E. W,
Peterson, 1969), The comparisons appeared to be moderately good, but some
features of the observed profiies were miswing from the theoretical predictions
(seo fig, 4),

temperatures and humidities centred on every hour were evaluated, punched
on cards, and transferred to magnetic tape for the 10-year period 1958-
1967, The wind speeds were evaluated to the nearest half metre per second
for the period 1958-19863, thereafter to the nearest tenth of a metre per
second, The wind directions were evaluated in sectors of 10 degrees

(0-360 degrees are used), and temperature to the nearest tenth of a degree
centigrade,

-
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Fig. 4. Computed and obeerved wind profiles for hydrostatically nevtral air
with a single discontinuity in the surface roughness. The roughness length
for the water 'z; . determined from the obeerved profile, is wnrealistically
amall, therefore two reasonahle values are used for comparison purposes.

In addition to the tower measurements, a record of wind speed was ob-
tained during the month of December 1871, Here use was made of a fast
responding cup anemometer placed at a height of 6 m on top of a building
close to the tower. The data were automatically compiled by a digital
magnetic tape recorder after some low pass filtering, and the final record
consists essent’~lly of one-minute average wind epeed block averaged over
the last half of ¢ ;nsecutive two-minute periods.

3.3. The Karlsirup Record

During the summer of 1972 the meteorology section participated in a
diffusion experiment managed by the Environmental Technology Division of

the Danish company, F.L. Smidth and Co, A/S. The experiment was c-rr!qd
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out near one of the company's large concrete manufacturing plants, Karl-
strupverket, 3 kin west of the Oresund coast in a very flat area. The section
measured wind speed, wind direction, and temperature. The sensors were
mounted on top of a 2 m mast, and for practical reasons the mast was
placed on top of a small hill; the total height of the scnsors was 12 m above
mean sea ievel,

Wind speeds and wind directionz were abtained with fast responding cup
anemometers and vanes, and lemperalures were seansed by platinum re-
sistance thermometers. For consecutive 2-minute periods nine point
measurements were taken with non-equidistant time spacing: viz. four wind
speeds, three wind directions, and two temperatures, The data were auto-
matically compiles by a digital magnetic tape recorder,

3.4. The Station Nord Record

In the summer of 1972 an automatic climatological recording system
was installed at the Danish airport Nord in north-east Greenland by staff
of the Danish Meteorological Institute together with staff of the Meteorology
Section of the Danish AEC (L. Kristensen and J. Taagholl, 1973). The
Stlation is silvated at an elevation of 36 m in a flat, homogeneous terrain,
Wind speed and wind direction were obtained from a cup anemometer and
a wind vane both located 5.3 m above the ground on top of a steel pipe.
Other parameters measured were air temperature and pressure. The re-
cording takes place every hour, the sampling system being the same as for
the two other records. The wind speed recorded is a plock average over
an hour, whereas the direction is an instantaneous measurement,
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Table 1

Station Ele- |Speed Date lFampling Geograph. | Averaging
vation} U-comp duration § position time
{m) |V-comp
3 10 min.
7 U 1 Feb, 1958 centered
Riso 1 v 55Y 41'N | every
31 Dec. 13967 hour
23 s 12905’ E
39 S
S
56 U 10 years
v
72 S
96 K]
S
123 u
v
21 Dec. 19714
6 s |27 Dec, 1971 |8 9%® | 55°41* N | 1 min,
Rise 2 ° every
6 27 Dec. 19714 12°05' E 2nd in,
3 Jan. 1972 |7 98Y8
°
Karlstrup 27 May 1972~ 55 33’ N
" v | 8 July 1972 |42 980 . 2 min.
v 12713 E
Station s 12 June 1972~ 81936’ N
Nord 6 U 19 Aug. 1972 |69 days ° 1 hour
v 167 40" W

Table 1 b
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Table 1 ¢

Station Fig. | Page | Typeof| Period|No. of | No. of data- | No. of esti- {Con- M P o¢ Smoothing
soarles specu, realiz- | points inone | mates after |fid. | m/sec. {m"/sec parameters
ations | realization smoothing !'lim. a 3
Rise 1 14 S 5 16384 3505 + 7. 12,1 0.3 |0.02] 10
56 m 22 s 10 years 5 16384 56 7.1 12,1 j0.2 {0.5 | 15
i 22 u ' 1.2 33.5
22 v ; 1.0 24,0
! i 20 | 4096 55 0.2 [o.s | s
22 U+ Vv ; 1.6 57.5
23 el +
29 2Q/u s 20 4096 23 0.5 {0.5 {10
. Rise 1 11 ) 5 16384 3505 8,2 12.6 Jo.1 {o0,02] 10
122 m s l0years 4 16384 56 8.2 12.6 |o0.2 |o.5 | 15
u 0.5 40.5
v 20 4096 55 1,25 26.9 0.2 }0.5 5
U+v 1.3 67.4
|

Table 1 d
Statian Fig.| Page|Type of| Period ]| No. of |No, of data- |No, of es “
: . . - . ti- {Con- o Smoothi
aeries fpectr, realiz-{points in one { mates after |fid. , 2 3 pnramet:rgl
ations |realization |smoothing |lim, | M/9€¢ [m"/sec b
a L4
Riee 2 7 1) 1 week 1 4096 1862 + 5.0 5.5 0.1 6. 04 10
€¢m Al ) 1 40986 1862 + 5.2 6.1 0.1 0.0y 10
Karlstrop 9 U+V |42 days 1 32768 647 0.6 4,2 0.1 0.1 ]
:‘t::;u 10 S 243 + 4.3 7.8 0.05; 0.0 2
b 1] v 198 -0.3 9.1 0.1 0.1 2
24 v 198 -1,0 1
69 days s 512 . 5.9 0.1 0.1 2
24 GV 198 1.0 25,0 0.1 0.1 2
N 26 Q 243 + 0.05| 0.0 2
28 20Q/ uS 198 0.1{o01] 2

- 92 -

-2 -
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4. PRACTICAL SPECTRAL ANALYSIS

4.1, The FFT

The time series considered in this report are all discretely sampled
hence digital analysis techniques are to be applied. An algorithm for the
computation of Fourier transforms, that requires much less computational
effort than former conventional methods has heen reported by Cooley and
Tukey (1965)., A whole issue of the IEEE Transactions on Audio and Electro-
acoustics (1967) was devoted to the method and today it is almost the only
method used to calculate discrete Fourier transforms.

The algorithms, commonly called Fast Fourier Transforms, are avail-
able in computer software packages and are all very fast and accurate and

can operate in just the space required to store the original data,

4.2, The Discrete Fourjer Transform

The mathen’latical basis of the method are the formulas
n-
y; ) - z 'y‘i (k) exp (-2silk/n) (4. 1)

n-l
¥i (1) exp (2%ilk/n)
120
~ .
Flj (k)= yi (k) yj &
where
¥y (h = M (11)

are discretely sampled time series,

EACK

> o=

A A
¥y (k) = y; (k4 )
the discrete Fourier transforms of y i (1), and

Fyj (k)= Fy; (k8 w)

the digital estimate of the true spectrum, 1 and k being respectively a dis-
crete measure of time and a discrete measure of frequency # (cyclee per
unit time).

Let ’I'o denote the record length, n the total number of data points,
At the sampling interval, and 1 an integer bound to the interval 0¢len.1,
Then we have the relations;

recording time t - 14¢
record length To = nat
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frequency LI k
el tary freq ¥ tw = 1/T,
lowest possible frequency = Aw = 1/‘[‘0

highest possible frequency (the Nyquist frequency) = 1/(2A t)

A complex FFT-procedure implemented on Risg's Burroughs B6700
was used for all our spectral calculations, The procedure has the effect of
transforming a complex vector y(l), the dimension of which must be a
power of two, into its Fourier transform. It can be shown (see e. g C
Bingham et al., (1967), L. Kristensen and C. Paulson, (1970)) that it is
possible to use this procedure to calculate the power spectra, the cospec-
trum, and the quadrature spectrum of two parallel time series yi(l) and
yj(l), if y(1) is stored as

YW = oy o+ iy

4.3. Problems in Digital Spectral Analysis

In practical spectral analysis certain problems arise as 1o how to deter-
mine the degree of r blance of the P

An exhaustive treatment of these problems, such as aliasing, effects of non-

ted spectra to the true spectra,

stationarity, choice of record length and sampling interval, and the statisti-
cal reliability of the vesults, can be found ln the literature {(J. L. Lumley
and H. A. Panofsky, 1964, E.J. Hannan, 1970, L. Kristensen, 1971).

A number of decisions must be made, and it is of extreme importance
that these decisions reflect some prior knowledge of the nature of i.he spectra
i, e. it should be possible from the physical process under consideration to
estimate special bandwidths (freq y-intervals) where it is expected to
find a high concentration of spectral mass, to estimate lines in the spectrum
connected with true periodicities, and to estimate the rate of decrease of
the spectrum for increasing w and for w being greater than some u'.

The choice of 4t and To reflects a compromise between a demand for
a representative record, a high degree of time and epectral resolution
meaning T  large and At small, and the limits set up by the measuring
and recording devices,

1if the record length, T, exceéds the working store of the computer it
is necessary to divide the roeord into N pieces of length T and the average
the spectral estimates over thess pieces. But nothing is gained by sub-
dividing fhe recefd, sxeapt s saving of computer time; on the contrary,

s
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the longer T is compared to the integral scale, i. e. the memory of the
process, the better justified is the assumption of ergodicity.

Increasing T means narrowing Aae and a higher spectral resolution is
thus given, but this is paid for bya lower statistical confidence.

4.4, Smoothing

In order to improve the statistical confidence of the spectral estimates,
it is necessary to smooth the raw spectral estimates, Flj('k)‘ over fre-
quency intervals:

», tae /2
Gyylvg) = ."_. f Fylade, 4.2)
., -2
where G (- ) are the smoothed spectral estimates.

The smoothmg procedure we have used is essentially smoothing by running
block averaging over bands of constant relative bandwidth, i. e. the spectral
egtimates and corresponding frequencies are averaged over frequency inter-
vals , A w, where the relative bandwidth

4.8)
b = s/ LR
equals a constant. Adjacent frequency intervals have a non -overlapping
interval, aaw, where a {(1is a constant, i.e,
v “ o

» 1

T O Rl
g o o2

0'2 = el' (1+Db)

@] = U" + a(u' -U') = @} (14 ab)
-'2' =« (14D),
hence
ol ] 2 (wy * e ) vy (2+D) . u{ {1+ab)
¥E 920 * ) «j 2tb) %
“o usy

—— s 1+ ab = constant
Yo

Because the spectra are discrete it 18 not possible to sstisfy Eue. 4. 9).
(4. 4) at the low frequency end. We have chosen to demand & minimum number
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C ) 1, of estimates to be contained in one interval, and to let A e/ v = b
asymptotically in a hyperbolic faghion

V—&:/T)r+ (w, S

The standard deviation divided by the square root of the total number of
estimates used in computing each smoothed estimate j8 taken as a measure
of confidence, The justification of this is that the distribution of the spectral
estimates is the distribution of a variance, hence a chi-square distribution.
Choosing the smoothing parameters so that the number of smoothed estimates
in each interval is large, we can replace the chi-square distribution by a
normal distribution, the error performed being largest for low frequency
estimates.

In this report spectra with confidence limits are represented in the form

1 {w) t the standard deviation ¢f Gij(.)) versus log' 0"

This interval is then a 68% confidence interval for w greater than some
-
M

4.5. Missing Observations

Abortive attempts were made to investigate how cifferent methods for
replacing missing data affect the spectra, Thc vaperience we gained
showed that the spectra exhibit a remarkable indifference to the different
methods, a feature commonly observed, see e.g. R. Thompson (1971).

Thus in the calculations of scalar spectra we have simply replaced mis-
sing observations by estimated mean values, and in the calculations of vec-
tor component spectra we let the components retain their last calculated
values through the periods without measurements of either magnitude or
direction. The influence of missing observations is of course greatest for
the component spectra; in the Rise tower series, 15% of the combined )
measurements. of speed and rdirection lacks at the top, 13% at 56 m, and 12%
at 7 m, Despite tliis there is an almost curiously good agreement between
the specira from the three- hd;m-, 80 we have pod confidence in them for
an order of magnitude, -

-A technique 1o replace misving observations 18 indicated by N, E. Busch
and E, L.«idllln {1971 )i, The: technigue isfounded on the Karhunen- Losve
theorem {Lowye;: $960) and usiy.a. mm&uumﬂoﬂ one realiz-
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action e.g. being one day's measurement of temperature, in terms of su-
called proper or empirical orthogonal expansions,

Although the method was found to be very promi...g, lack of time
prevented us from using it in this study.

5. SPECTRA OF THE HORIZONTAL WIND VECTOR

5.1. Introduction

All our data records pertain to the lowest 100 m of the atmosphere.
But since large-scale motion is essentially two-dimernsional, no basic d:f-
ference in the horizontal scales of perturbations in the wind field will appear
in the lowest 5000 m, except that the >mplitudes may change with height
and that smaller scales connected with the prevailing three-dimensional
motion are superimposed near the ground. Fig. 5 shows schematically
the main groups of scales of the atmospheric system: microscale, meso-

scale, and synoptic scale.

5.2. Composite Spectra

Up till now the only feasible method 10 estimate spectra over large
ranges of periods is to patch together individual spectra computed separately
over smaller ranges,

A composite spectrum of the horizontal wind speed as estimated from
three different time series was given in fig. 2, It is of course a very
dubious precedure to patch together individual spectra so that different portions
of the combined spectra do not refer to the same record and, as far as fig. 2
is concerned, not even to the same geographical location. Interpretation is in
fact difficult, Fortunately, all published spectra of wind speed cuvering long
ranges of periods substantiate the same features: a large contribution to the
variance at macroscale, a deep minimum at mesoscale, and a more or less
weak maximum in the microscale, Fig. 6 shows three composite spectra,
The top one is the now classic Van der Hoven Spectrum, calculated in 8 over-
lapping frequency intervals using data from the three levels 31, 108, and
125 m at the meteorological tower of Brookhaven National Laboratory (Van
der Hoven, 1957). The spectrum at the bottom is calculated by F, Fiedler
(1971) using data obtained at a height of 50 m near Munich covering 3
{requency intervals. The Ris¢ spectrum from fig. 2 is shown here for com-
parison purposes. These three spectra, in contrast to all other specira in
this report, have been multiplied by a factor of two in order to let the

CHARACTERISTIC LENGTH - SCALE <+
S ———
SCALES OF T4
ATMOSPHERIC MOTION < Y

MICROSCALE

CONVECTIVE SCALE MACROSCALE

Y g -

* L L g L4
fem 10 m 10 100 wm W w0 w0 0
Fig. 5. Scale of atmosphcric motion {after H. Fortak, 1971). Macroscale
or optic scale 1 all scales of motion that can be analyx
on the basis of westher maps. These moti are quasi-two-di 1
In microscale systems the vertical and horizontal velocitiss are of the same
order of magnitude. M 1 b microscale and synoptic
scale; it includes systems with strong diurnel varistions such as sea breeszes,
mountsin-valley flow and the low-level jet. It alsc includes frontal structures,
squall ines and Jong gravity waves (F. Fiedler and H.A. Panolsky, 1970).
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Fig. 6, Three site sp of the hor 1 wind spend measured
from top to bottom at: Brockhaven, U.8.A. (Van der Hoven, 1987); Ries,
Denmark; Munich, Germany (F. Fiedler, 1071). The heights are 100, §,
and 50 m respectively.
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variance of the corresponding time series be given by the area under the
spectrum,
5.,2.1. The Spectral Gap

The firat important feature of the three spectra to be noticed is that
they all have a wide mesometeorological minimum region with periods from
one day to about 10 minutes. A general existence of this gap is very important
to prove, if possible, in the discussion of the predictability of the atmos-
pheric motions and of the parameterization of small scale motions in terms
of the characteristics of large scale motions on the other side of such a gap
(F, Fiedler and H.A. Panofsky, 1970). Parameterization means a simplifi-
cation introduced into a dynamical model by preassigning the magnitude of 2
physical effect rather than by allowing the effect to be realist.cally deter-
mined internally as a consequence of the dynamics of the system.

Of course,the problem of the interaction between synoptic and microscale
motions can be viewed in another way. One might seek a complete physical
understanding of the mechanisme by which the scale interactions take place
{recommended by F. P. Bretherton et al. 1969: --.' it appeara that the
existence or non-existence of a spectral gap is of small importance for many
processes, A search for the detailed physics of atmospheric processes is
more important than, and to a great extent independent of, a search for a
spectral gap"). This is the approach of the physical scientist who is interested
in turbulence for its own sake, but if one wanis to study the interactions on
all scales {n the atmosphere, and no gap exists then it would be necessary to
study all these scales simultaneously. Fortunately, from various studies
(H. A. Panofsky znd Van Jder Hoven, 1956, Van der Hoven, 1857, Byzova
et al., 1967, Kolesnlkuva and Monin, 1965} it is reasonable to conclude
that spectra obtained over land contain gaps at mesoscale. Figs, 7, 8,
and 9 all extend through the gap showing the existence of it under widely
different conditions; fige. 7 and 8 were obtained in winter time under average
weather conditions. Fig. 9, wlkich is a component spectrum (see later), was
obtained under summer conditions with light winds and strong convection
during daytime, also here a definite but narrow gap is displayed, The lifting
in the high-frequency ends of the spectra is the combined effect of the spectra
penetrating into the region near the mieroscale maximum and of aliasing,

The fact that the lpoctra from Station Nord, fig. 10, and the spectra from
all the hlightlo!the mn'l'owar, ﬂp 11, 12, 13, 14, 18, 18, and 17, all
fall upldh cll Lu Iln mduede region, llthon‘h they do not extend through
the pp. u cmlutm \m-h [ pp. ‘l'ln cmmnud cﬂocu of aliasing on the
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Ris¢ Tower data can be seen on fig. 2.

In section 5.4 it will be shown to what extent a spectrum calculated
from speed data resembles Sﬁ(u) (trom eq. 2,9), where the spectral analysis
is performed o1 the component of the wind vector after two orthogonal hori-
zontal axes and the resulting two spectra have been added (in the following
Sn(ﬂ) will be called the component sp ectrum or the U+ v spectrum). From
figs. 21, 22, 23, and 24 we note that the component spectra calcuiated for
the heights 7, 56, and 123 m at the Risg Tower and that from Station Nord
all fall off in the mesoscale region even more rapidly than the speed spectra,
This is fortunate because, as we shall see in section 5,4, the component
spectrum gives a much better representationof energies on scales than does
the speed spectrum.

Millard (1 968) measured a composite spectrum over the sea which
shows an extremely high amount of energy in the high-frequency end and a
deep gap through the whole mesoscale region. However, because micro-
scale turbulence is generally weak over the ocean, one would suspect the
high frequency energy to originate from buoy motions,

Using the hypothesis that a spectral gap occurs in time spectra of the
wind over land, it i8 possible to design experiments that will provide in-
formation of significance for the understanding of the behaviour of the at-
mosphere, Such experiments should be carried out giving simultaneous
measurements of the synoptic scale fields, of the internal structure of en-
sembles of microturbulence, and of the bulk propertiex of microturbulence
ensembles. Using these three sets of measurements, the internal structure
of the microturbulence ensembles should be related to the synoptic scale
environment, the bulk properties of the microturbulence ensembles should
be explained in terms of their internal structure, and finally the bulk proper-
ties of the turbulence ensembles should be used to parameterize the effects
of microturbulence on the synoptic scale fields in terms of synoptic scale
variables,

The internal structure of atmospheric microturbulence in the lowest
thirty metres of the planetary boundary layer has been explored in greatest
detail over the last decades and it seems it can be predicted, to a fair degree
of accuracy, when a not too complicated synoptic-scale field is specified (see
e.g. N.E, Busch, 1873), Also othz: forms of microturbulence, as for ex-
ample Clear-Air-Turbulence, have been studied with success {J. A. Dution
and H, A. Panofsky, 1970), Stili, much more needs to be known about the

physical structure of the regions of turbulence snd thedr dependence upon the _:'

large scale variables, and even with very detailed kndwlod.o ot hand, &
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crucial point in using this information in weather prediction models is the
prodiction of the future distridution of turbulence activity on the basis of
synoptic scale information,

5.2,2, An Explanatiou of the Spectral Gap

Seeking a physical understanding of the mechanisms in the atmosphere
ieading to a gap in the mesoscale region, we note that the atmosphere is
relatively thin; its effective depth, approximately 10 km, is small com-
pared to its bhorizontal extent, which is 40,000 km. Hence the main groups
of scales could be classified as follows: the synoptic region with scales
large compared to depth, the motions being almost two-dimensional; the
micrometeorological region with scales less than the depth and with three-

nS{m, meec?

dimensional motions; the mesometeorologiral region with scales from a few
km up to hundreds »f km and with both two- and three-dimensional motions.

The equal shapes of the spectra on fig, 6 indicate that it should be easy
to explain why the motions on the synoptic and micro scales are so energetic
compared to the motions on mesoscales. On the other hand, the atmospheric

:otions are fueled on many different scales, such as large scale differential
heating between pole and equator, differential heating between land and sea,
latitudinal heating received on the rotating spherical earth, latent heat and
potential energy associated with cyclones or local thunderstorms,. Thus, the
manner in which solar energy is converted into atmospheric motion is indeed
very complicated, and no complete theory is available for the development
of this motion on all scales. However for the present purpose it is sufficient
to observe that kinetic energy is mainly fed on two different scales and by
two different processes. The large-scale differential heating resuilts in the
birth of hltmlong waves with wavelengths of the order of thousands of km.
Through baroclinic processes, the energy thus made available is trans-
formed into kinetic energy of the waves at the higher harmonics reaching
into the region with baroclinically unstable waves which tend to grow at the
expense of potential and internal energy.

At the other end of the spectrum an instability due to vertical wind shear
produces kinetic energy. If the Richardson number (Ri = (-g/p)(dp /Oz)(lvﬁz)'z)
is somewhat less than 0, 23, eddies with wavelengths of the order of km are
produced. When the Richardson number becomes negative, hydrostatic
instability is released, which produces eddies of the same size as those
produced by. wind shear, Thus, we find fwo main wavelength-domains,
widely separated, where instabilities and kinetic energy are produced,
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Fig. 16, Spectrum of the horizontal wind epeed. Measured at & height of 96 m, Rise 1352-87.
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For the sake of completeness it should be mentioned that there are
processes occurring in the atmosphere which produce kinetic energy in the
mesoscale range such as gravity waves, land-sea-breeze systems and
diurnal variations. We may suspect that these systems narrow the gap and
fill it up under certain conditions, Fig. 9 displays how under light wind and
frequent convection conditions the spectral gap can be narrowed, especially
from the low frequency end; probably some land-sea-breeze systems oc-
curred during the 42 days of measurements,

There are two customary approaches for the mathematical treatment
of the develcpment of fluid motions on various scales:either to consider the
stability properties of disturbances in the flow or to extend the Reynolds
formulation of the turbulence problem into the domain of scale, using
Fourier analysis.

Stability studies can indicate wavelength regions into which energy is
fed, but the method has at least one serious drawback: no information is
given as to the transfer and transformation of energies among various
scales of eddy motion. Because of these interactions, it is not possible to
determine the shape of the spectrum from a specification of the energy input
to the spectrum; in fact the exchange mechanisms may occasionally tend to
concentrate the spectral energy in certain bainds,

The interaction between scales is usually studied using spectral equations
of the atmospheric motions, either in wave number space (B, Saltzman, 1957;
J. A. Dutton, 1963; Kao, 1968) or in frequency space (Kao, 1968; W.C.
Chiu, 1970). In the next chapter we shall derive the spectral equations in
frequency space to see if important implications can be revealed by these
equations concerning the shape of the spectrum,

5.3. The True Periodicities in the Spectrum

The most significant discrepancy between the three spectra on tig, 6 is
found at the frequency 1,16 10'5 Hz, which is easily identified a® the diur-
nal cycle of the wind velocity, Tne Ris¢ spectra display a very prominent
peak at this frequency, Fiedler's spectrum has a noticeable peak but in
Van der Hoven's epectrum the dirpal peak is non-existent,

A.H. Oort and A, Taylor (1969) made a very comprehensive analysis of
the diurnal peaks in spectra calculated for six stations in the north-eastern
parts of the United States using 10 years’ hourly, one-minute average, ob-
servations of surface wind speed, All their specira substantiated the lutun',?
of the Ris@ spectrum with very large peaks at the dirunaul frequency, Oort '§

%

i

and Taylor explained the difference between their own and Van der Hoven's 2
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results ccncerning the diurnal cycle from the difference in heights, approxi-
mately 10 and 100 m, in which the measurements were taken, (in fact also
Van der Hoven attributed the lack of a one-day spectral peak in his spectrum
to the height of observation). The series of figs. 11 to 17 depicts this ex-
planation very nicely. However, from the former chapters we know that
true periodicities should be removed from the records before performing
the Bpectral analysis; the reason for not doing this is that no feasible
method exists (although the method worked out by N, E, Busch and E. L. Pe-
tersen (1970), mentioned in chapter 4, has shown to be promising; however,
it requires an enormous amount of labour). We have adopted the attitude
not to subtract any suspected periodicity from the series but rather keep
check on its possible influence on the spectrum. The smoothing procedure
and the plotting convention used are tuned to treat a continuous spectrum
and no special treatment is given to spectral Unes. This means for example
that the spectral peak in fig. 11 is averaged over a number of estimates
determined by the filter width used in the smoothing. Becuase only one or
two estimates give the gpectral line, the width of the diurnal peak as given
by the spectrum is about equal to the constant relative bandwidth used in

the smoothing,

To give a more representative picture of the daily and yearly variations
of the wind speed as revealed by the spectral analysis we selected the raw
an:plitudes before smoothing and plotted them in fig, 18. Taking the yearly
variations first, we plotted the mean wind epeed calculated for every month
in fig. 19, and found good agreement between the two ligures, both, however,
giving evidence of common knowledge, The curve in fig. 18 exhibits. the
variation of the diurnal oscillation with height and shows a tendency towards
a minfmum !t ween 96 and 123 m, which indicates a further growth in the
amplitude with height. This 1s in sgreement with an investigation by Byzova
et al, (1968), where a daily cycle was found up to a height of 300 m, Even
the spectrum given by N. K. Vinnichenko (1970} for heights of 3 to %0 km
showe a daily peak.

However, fig, 18 gives only a very rough picture of how the diurnal
variation takes place in the lowest 120 m of the atmosphere, We shall return
to the question in chapter 7, but let us note from the figures in that chapter
(fig. 31): the .evel with minimum daily variation varies throughout the year
from 50 m in December to several hundred m in the summer. When we
consider a single hefght not only the amplitude is subject to variation from
month to month, but also the form along the time axis is, figuratively,
streiched in the summer and compressed in the winter, To investigate how
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this may affect the spectrum, the hourly average wind speed curves for
every month, as given by fiy, 3f, were expanded into Fourier series. The
result of this analysis is depicted in table 3, where the percentage of the
variance explained by the first and the second harmonics, (i.e. with periods
of 24 and Y2 hrs) is given. It is obvious that a deformation of the daily cycle
mainly results in an increase of the amount of variance explained by the
second harmonic, This is revealad by tigs. 12 to 17 showing how the mag-
nitude of the variance caused by the daily variation becomes comparable to
the variance in the adjacent frequency intervals.
that the distortion of the daily cycle causes an am

The figures also show

ount of variance to he
given by the second harmonie, which is large compared to the variance of

the surrounding frequencies. From the figures we see that whereas we

cannot distinguish the daily peak at a height of 123 m, we can easily dis-
tinguish the t 2-hour peak at all heights.

Many speculative arguments have been propounded in the literature to
explain the semidiurnal Peak as being caused by one single physical effect;
for instance atmospheric tides and inertia] osciliztions,
the daily cycle in the planetary flow field (over land), set up by the daily
cycle in the insolation, that causes the occurrence at spectral lines at the
diurnal period and the corresponding higher harmonics, The distribution
of the energies on the different {requencies depends on how the flow field
reacts to the cycle in the solar radiation,

We feel that it is

Many effects have to be taken
into account, such as preasure forces, Coriolis forces, and the distribution
of microturbulence, Introducing the periodicity in the radiation into the set
of equations governing atmospheric motions also means (in the simplified
cases where the equations can be solved) the introduction of a similar
periodicity into the flow field, but not a clean periodicity of half the period,

In the next section we shall see quite a different effect that may add to
the size of the d har ic in speed spectra in the case where the

diurnal cycle in the speed is accompanied by a large daily turning of the
wind vector,
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Height 7 23 39 s6 12 9 123
Month

24 31 44 12 11 19 82
! 50 38 26 13 n R 9
20 714 7 65 56 62
2 22 15 ge 4 1+ 18 27
88 88 88 8 84 83 31

3 1 10 10 n 1 7 14e
92 92 90 85 82 10 78
4 5 1 9 13 16 20 18
94 93 90 8¢ 76 52 37
5 3 4 7 13 20 4 51
%5 94 92 88 80 65 43
6 3 4 6 1 18 30 49
g 84 92 89 83 65 33
7 3 4 6 10 16 32 53
8 93 91 90 88 88 72 58
5 7 8 0 12 20 28
%0 88 & 85 82 78 8

8 s 10 1 13 14 10 3
g2 8l 80 80 16 18 74
10 13 14 13 g* 1% 3% 14
81 84 87 80 22 24 34
n 1 H 3s 18 56 65 58
72 55 52 20 28 49 a2
12 1= 3% 9 a3 55 40 4

Table 3. Results of a Fourier decomposition of the 84 wind speed curves
in fig. 31, For each of the twelve months in the year, these curves reveal
the average dally variation, both in time and with height, of the wind speed
as measured at the Risg Tower during the ten years ] 958-67. The numbers
in the table are, for each height and month, the percentages of variance
explained by the first and second harmonics, i.e, one and two cycles per
day, respectively. An asterisk indicates that the third harmonic is greater
than the second harmonic,
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5.4. Speed Spectra versus Component Spectra

Up to this point we have mainly presented speed spectra, i.e. spectra
of the magnitude of the horizontal wind vector.

In an analysis earlier mentioned, Oort and Taylor {1969) presented the
separate energy spectra of the south-to-north (v) and the west-to-east {u)
components of the horizontal wind vector. A comparison between the speed
spectra and the added u+v spectra revealed two interesting features for which
they were unable to find adequate explanations. First, there was a signifi-
cant increase of almost a factor of three in the total variance going from
speed spectra to u+V spectra. Second, important diurnal cycles in the zonal
and in the meridional wind components were lacking.

Several conventional meteorological wind sensing devices measure the
wind in terms of horizontal speed and direction. Some, such as cup anemo-
meters, measure speed only. Thus an analysis of the wind in ter:ns of speed
alone is not only convenient, but is sometimes all that is possible; there-
fore it is important to know the effects causing the differences between
speed spectra and component spectra.

From the Reynolds convention u; =( u; ) + uj,where u

i 1
LetV » " u! + v2

=, “2 =Y,

Cupu e Cp+ Cud) Cop +Qu )y =€ u?ye Cupd)’,
i. e, total kinetic energy = mean kinetic energy + eddy kinetic energy

.2
= Kud? s uPy=l 4+ -
L]

. (.ui)2 +_£ Sy(w)de.
For the #peed we have {Yfu® + v el 4 )y =< u2) + (v2 Y, 8o the
total kinetic energy is the same whether we use component measuremems
or speed measurements.

To understand how the differences between speed spectra and component

spectra originate, let us first consider an example with small fluctuations
in the wind f{eld. [}
We have ‘

Vi s|yit) |
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Using Taylor expansion, we can write for a function 1(x)

{(t(x)) x(r((x) +(x-(x))) y 3

CEOExY) Y + €1 ((x)) - (x) D)+ é:;, ((x)) - (x N2 )=

(((x)) + it;i ((x) )02

(here f’x (x) denotes the derivatives of f(x) with respect to x).

And for a function of two variables f (x,y)

2
(Hty) ) m LG () + S0 (D))

FIR ) ey %y Oy SR D G.
where Pxy ®x%y = ((x-{(x)) y-<y)))-
Using Eq. (5.2) : (and u, and u, instead of u and v)

(Y= { Veonwym (V) cox(#)- £ (VIcon) v -sinle) dvy o, 74
()= Vsin®)=(V) aind® -1 (Vsin(e) oF +coke} pvy v ®y -

Without losing generality the coordinate system can be chosen so that (#)=0
U.
()= (N o-2y,
= e .0 ,
(“2 ) ’v. v [

AR TR O LN B NI L LR C

(VY 4 -3 B IR LT A T A

2
~e:

0, * (o €y N7 (G- () 2 = (VP wale) - ()
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2
R 2 2 2 2.2 2 2 2 ®
= (V)" % "v,.v'v- (V)Tsg 1 '“v.-(ﬁ)

In the approximations we have used the assumption of small fluctuations
(comparedto (V) ) and Fv.((l .

. . 2, 2 o, .2 2 2
We have: 'u‘ +o“2 o +{v) L

which shows that the
difference between the areas of the component spectrum and the speed
spectrum is o{ the order (V) 2 "2 {for the case considered). For a
fixed { V), the difference is determined by the fluctuations in the wind
direction.

To shed some more light on the differences between the two types of
analysis, we will use a simple numerical model with large fluctuations in the
wind field and thereby show that if fluctuations un certain Irequencies resu-t
in high spectral values in the component spectrum,and at the same time cause
gignificant variations in the wind direction, then most of their contribution
will be lost in the speed spectrum.

The model is:

u, (t) = A‘ cos { wt) + Azcos (8ut) + B
uz(‘) =0,

i. e, two wind fields are superposed upon a steady flow from west to east,
each field oscillating in this direction but with different periods,

LetAl IAZ'I
® = 29/T,

The flow field is sampled at 64 equidistant time intervals through the
time 0 st 4T, and the experiment is carried out 16 times with B varying
from 0 to 1.5 in steps of 0. 1.

Regurdless of the value of B, a component analysis will always result
in a spectrum consisting of two lines, one at the first harmonic and the other
at the eighth harmonic, each accounting for 50 % of the variance. (C“l- 1
and 1“' = B).
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The speed 1aeasurvd by a cup anemometez will be:

V(Y = [u ()| = A cos(ut) + A,cos(Bu) + Bl .

IfBa .—\‘ cos (wt) + A2 cos (8wt) for all t there will be no difference
between the speed spectrum and the component spectrum. If B does not
fulfil this condition the effect can be rather drastic as showr in fig. 20 with
eight speed spectra. Tte vaiues of B, (. and u‘zi are given on every figure;
only 17 of the possible 32 harmonics are shown because no noticesble vari-
ance is given by the harmonics higher than the 16th,

We see quite a different division of kinetic energy into mean kinetic
energy (uz) aud eddy kinetic energy (02). In th.e example where B = 0 there
is no energy in the mean flow and the eddy energy =1, whereas in the
analysis of speed cata 64% of the energy appears oS energy of the mean
flow. Further in the speed spectrum practically no energy is found at the
first harmouiic, Lut some of it can be found on the second harmonic; the
energy of the eight harmonic is spread to adjacent harmonics and to the 1 6th
harmonic. The changes caused by the growth of B are clearly revealed by
the picture, hence let us apply ourselves to the measurements again,

In figs. 21, 22, and 23 for cach of the heights 7, 56, and 123 m at the
Risg Tower the four spectra are plotted on the same figure: speed, u, v,
and u+ v. A small scheme inserted in the ligures indicates how the total
kinetic energy, Kt' is distributed between mean kinetic energy, K m* and
eddy kinetic ¢nergy, K e The overall loss in eddy energy going from u+ v
to speed spectra is 73% of the total energy at 7m, 77% at 56 m, and 83%

&t 123 m.

The !ack of correspondence between Kt as calculated for the u+ v and
for the speed spectra is due to the different ways of estimating missing ob-
servations for the two spectral calculations,

All the frequency bands in the speed gpectra have energies leus than
those of the corresponding component spectra, but the regions worst affec-
ted are those on the synoptic scale that sre assoclated with migratory
cyclones and anticyclones, i.e. systems with large fluctuations in the wind
direction,

In his re-analvses of Oort and Taylor's data, L. L. Wendell (1970) found
the same features in the spectra and he further pointed out that rather than
lack of an important diurnal cycle in the zonal and meridional wind com-
ponents, as found by Oort ard Taylor, the contribution to the variance by
the synoptic scale disturbances is far more significant than revealed by the
speed spectrum, This iz cleurly thown by figs. 21, 22, and 23,
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The conclusion of this section is that an analysis of speed data alone
does not realistically represent the diversion of the total energy into eddy
energy and energy of the mean flow; neither does the analysis give any
realisiic distribution of the eddy energy over the appropriate range of
frequencies,

5.5. The Effects on the Component Spectira Caused by a
Rotation of the Coordinate System

In his analysis, Wendell further investigated the effect of a rotation of
tihc component axes, Recomputing the spectra for many orientations of the
axes he found that with a 49° clockwise rotation practically all the eddy
energy was in the v component. His measurements for this analysis were
obtained at the National Reactor Testing Station, Idaho, located on the
Upper Snake River Plain, This plain is approximately 69 miles wide and
bounded on both sides by mountains oriented NE-SW. He concluded that
the mountain barriers t>nd to channel the flow over the plain in a north-
easterly south-westerly orientation, and this indicates that a component
analysis performed as a rotation-of-the-axis-analysis might reveal signifi-
cant surface effects on the flow,

The Risg Tower data were subjected to a '"rotation-analysis'’ but instead
of calculating the Fourier transforms for small intervals of degrees around
the compass card, we dia the following:

The u-v coordinate system, where we performed the one-component
analysis, is rotated clockwise through the angle 6:

v

Yy

and here v, v, iy, and Ve denote deviations from the mean values,
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ug = uwcos® - vsiné,
Ve = veos® + usin@

(9 vg )= {fucos 8- vsin®) (vcos®+ usin®) )

(uv)(cosze - sir’e + ((uz)-(vz))(cosﬁ 8in )

1t

(uv Ycos28 + -;-((uz)-(vz))elnz..

(ul ) =(lucos®-vsin8) (ucos®-vuing) )

2

= (u2) cos“@ + ( vz)sinzﬁ -{uv)sin28,

(vze) = ((vcos®+ usin®) (vcos®+ uagin &) )

29 +{ uz)sinze+ (uv)sin20,

=(vz)cos
7= = (v¥)- (u®)) sin2e- 2 (uv) cos |
_‘&_@) = ({v%) - (u®) ) sin%+ 2 (uv Ycos26 ,

We assume {v2) $ { u2) and (uv)# 0 and then have:

2 ]
vy
(Y Vo ) = '(::) = ?: " Ofortimzo-(z):"(“).

A discussion of signs shows that vzo ) is maximum, uzo ) minimum
and (ugvg) = 0for the following combinations:

Py )y 2 -0 (e( 3
(uv)) 0 .

XL I E S G-

By ey ¢ 20 0
Cuv) (o0

BHd 0 Jec-g .

Table 4 gives the calculated values for @ , { u% ), and (vb for three
heights, and the result of the analysis is shown in the three figures. The
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magnitudes of the wind vectors, 1.0 mfsec, 1,6 mfsec and 1.3 m/sec, are
2, 57 mZ/
secz, and 67 m2/sec2, so we do not assign tco much significance to their

very small compared to the total fluctuating energies, 31 mzlsec

directions, For the top level the direction of maximum eddy energy is
west-east, which we explaln to be connected with the west-to-east move-
ment of the cyclones, but we note that the distribution on maximum and
minimum axes is 60% and 40%, respectively, of the totai eddy energy. Thus
in contrast to Wendell's analyses, there is no totally lopsided division of
energy on components as a result of a rotation of the coordinate system.
The same arguments can be used for the two lower levels, and we conclude
that there are no channel effects, The fact that the u and v spectra nearly
coincide from periods of time of the order of 4 days down to small periods
makes us suspect that the flow exhibits some properties of {sotropy in this

range.
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6. SPECTRAL EQUATION IN FREQUENCY DOMAIN

": ° - o 6. 1. The Governing Equation
©~ -~ )
~>° s : - S The four basic variables describing a dry atmosphere without changes
€ - in composition are pressure p, temperature T, density p, and the three-
- © .’s dimensicnal wind vector u, Four equations relate these variables to each
v © 4
° - ~ = : "g' F other: the Navier-Stokes equation for a rotating fluid, a continuity equation,
Y o
3 'E 2 o~ o ¢ : the equation of state and the first 'aw of thermodynamics. The same
B % equations apply to all scales from microturbulence to motions on global
H 5 ; scales. If we want to consider all scales simultaneously the full set of
)3 i : - : . : g equations must be used, but il we concentrate on small scale motions,
-4 I ! ' . :l_i u effects such as the rotations of the earth can be neglected; on large scales
2 3 ﬁ we can neglect vertical accelerations, on mesoscales we are back ic the
L]
[ ] © "3 e § . ?; full set of equations again because here no important simplifications are
™
gil: 2 = = E w é 9 % possible,
»
- ¥> - /’ 4 £ E We shall not make a sophisticated analysis of the governing equations
. , § e § © and their analogues in Fourier-space {8ee e. g. J. A. Dutton, 1963). Keeping
° - el 4 g H g E in mind what kind of observations we are analysing, we shall only use the
> - .
5 X 'l‘ w ? ) 5 o Navier-Stokes equation for a horizontal wind vector u, 6=1,2)
€ : HE RS
a g & -l i -
A - e a £da uj g Uy gt . pi - fgqu, + F; 6.1
L - ~- - [ ] E 8
- 8l =18 % g 393¥
13 5 39 ';' inwhich i=1,2; §j=1,2,3; k=1, 2 3; and Fl is accelerations due to
/ H 3 é S viscous forces. In these equations we ignore the terms resulting from the
~ .
H : Lod g g E § @ : curvature of the earth and make the usual meteorological approximation in
> * @ bl S é’ CI ] g H the Coriolis force. The coordinate system is tangent to the surface of the
€ 4 fé i A ; earth at some latitude .
w °
o‘s- - \ .; 3 E _: g The quantities in the equations (6. 1) are all instantanecus values and,
¢ sl o [ " E ﬂ ; 2[: H B3 ax described in chapter 2, we ider each of them as consisting of a
s< ‘E“:' ] Py - € : Eé E 5_:_: climatological mean, a periodic component, and a deviation from these.
£28¢ = se v 1 2% That is
- » ..% H > $
: - - / £s + 1 3% Wty yzt) - “: x,y,z) + \lf ®y.7.1) + u x,y,z,0) (6.2
c f 2: > ~ - z —
S aEw P~ (-] ’ ¢
$8s¢ % . P ynt) et (nyn) ¢ PP ny. ) 4 0 (ny,20)
!
[
[
z ~ o - ﬂ E P *pxyst) = P (X,,,I) + PP(S.Y:!J) + P, (!.y.z.t)
g = : &
'g ’

F" l"(x,y,l,‘l) - F‘c “r,n‘) + Fr x,y,21 + F; (R-Y.z,!)

Henceforward we do not write out the arguments x, y, and 2.
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6.2. The Spectral Equations

Let us multiply Eq(6. 1) at the time t by the velocity deviation at
the time t':

u’ (t'ii u (1)i'1 + u (t )iu(t)j ““)i,j =

- . W 6.3
—u ), p(‘t) Pl - fegg ult') uly + u' () Fo. (6.3

Because we have chosen t’ andt as two independent variations we

can write:
M (t,t") = u (t )i u(t)i . {u' (1')i “(t)i ].‘ .

Using the following transformaticns:

n = gty =t

T o= ) = t-t

t =t (g,9) = g+3

t = t° m,%) = 9 '
we have

M,t') = M(l’ (n,f),t(q,t))'l\'(l-") = N(g(t’-t). 1(1'.3))

and
J_n_m.t_zl oN on , N B _ N
at | 2y 3t 3t at 87 |y = constant
t" = constant
i.e.

[v(r), uiy),, * {v; (n); u(nﬂ)!] " [“1 {t'), ultws )J‘.,-

1

Let "i be u’ (t‘)1 , u; be u(t'+1)1 ,» and Py be T pl’ +7),,
Eq. (6.3) becomes: '+
(vul, * w uyuy 4" -up Py ofe g wiu + uF . (6. 4)
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Applying the operation of ensemble averaging to Eq. (6.4), using Eq.
{6.2), and letting u be the deviation u; {ts 1), P, be P; {t' +7), and Fy
be F; (t’ +t), we obtain:

' € P ' P < P =
[<“i fug + ub + ui)>]'1+<“i(uj *+ ) +“j)(“i + b+ ui)’j)

" S+ PP . .
S U B PE P - T8 ol + P 4 u))+ Cuy (FF +FD 4 ),

k

Using the facts that during ensemble averaging the climatological
mean and the periodic component are constants and that the ensemble
averages of the deviations are zero, we have:

[ Quudl. o+ Cujupu 5 o (u;ui‘j)(ujc + uP)

. c p
+ uiuj) (i + uy ).j -

S uP) - fe g (uludr (U F) (6. 5)

We assume all the functions in Eq. (6.5) to be second order stationary,
Then the following covariances exist

Rij (V) » Ry (1) = {u (t')uj W+v)),

i
R“i“i,j (") = (u(t) u g t+7))y,
Ru;Pi_ (0 = (WP )
R“in (v = (W UIF L))

R“i'“j Y4 (v = (e’ Dy 4T ).

Eq. (6,5) may then be expressed in the form

H‘ﬂj

(3
Ry(%,, + R, “‘.j(v) + Wi+ ) nuiu“ L)) (6.6)
+ fuf+of)R *R,p (1) - feg B, Rop (1),
fug i) j M(" ) (x) s535 By (v) + "11"1("

_ Further we asbume the existence of the following transform pairs
(see e.g. Eg (2.9)



(6.7)
~-19
Su. (o) = 7= Rij(t)e ds
-
-
- iwty
R“;"Hjh) :. S"‘i“ij(.)e de
’ ) (6.8)
N -1 wt
8, (w) =‘—jR 1’)ex de,
YUYy 2r g YUY
1aT
R“;Pi (x) I S“i.Pi (w) e d
? 6. 9)
S, (@ _ 1 R - lot
u/P; ol TP (t)e T
o
R“{Fi = ‘( Syp. (we® de
6. 100
I -
x _L R ies
Syr, (¥ Z,J' Ryp (917" ar,
-
R, (1)’j s () e ®T ¢4
%Y, - Yi%Y, ‘ (6.11)
-
Swuu (w* 2—' f Ry, . (9 e—i.”'“.
17574, ol 195, 5
PR e s el g
o - i (6.12)
R, (v)
= —' 1 -1
n.s“(u) 3= —.!——e ' o4,

where Eq.(6. 12) {s obtained from Eq. (8. 7) and we assume the operation to
be valid.
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Now we multiply Eq,(6.6) by L

-y .
75 © and integrate with respect to t:
TSy (w) + S\ (%) + w + WP) Sy (@
i, ) ! L &
¢4 uP 2 .S -
+ i+ ul); S s“iPi (u) - fe o

. sij (W) + S o (w)
Using the equations analogous to Eq. (2.6), i.e.

Sij (w) = Cou(-) + i Qij {w),

we can split Eq.(6. 13) up into two equations

0 = -Co. (o) - € +uP) Co.
" %% L

(w)
-+ u;’).,. Coy; lv) - Cou-Pl(u)

(6. 14)
- l'iSj Coij (@) + ('.'o“;.];.i (w)
o5 ()= -Quy . ) - (f +df) Q. (@
1%%. L A
(J
-l + 9P Qe - Qi p, (9
-“i3j Qu (w) + Q“;Fl () {6.15)

Using the relations from Fq. (2. 10), for the Coriolis term in Eq, (6.14) we find

- “13j Cou (@) = -f(-Cc:b12 (o) + Coy, (w)) = 0

and in Eq. (6, 15):

- fag Qe = A1Q (W + Qi) = 21Q), (v)

From Eq.(6. 15) we see that the average spectral density of kinetic energy
multiplied by frequency is given by a sum of quadrature spectra, Because
% quadrature spectrum gives a measurs of & 90° out-of-phase relation-

ship between the variables concerned, such an out-of-phase relationship
must be essential for the shape of 'u {w).
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From the previously quoted publications we know that a similar analysis
in wave number space leads to a spectral equation relating the time rate of
changes of the kinetic energy spectrum to a sum of cospectra, whereas we
sev that in the frequency domain the cospectral equation gives a balance
among various cospectra.

Qur interest is centered on the shape of Sii(u), for which reason only
Eq. {6.15) will be further treated (for discussion of the implications uf the
cospectral equations see W, C. Chiu (1970)).

T 1e signs of the quadrature terms are dependent on the convention used
in the definitivn of the quadrature spectral tensor Eq. (2,6). If the spectral
caleutations are performed in the former traditional way using the covari-
ances, the signs depend on which function is "leading” and which function is
"lagging", because in general Rijh) # R;(-3). Using the Fast Fourier
Transform procedure, Qu‘i uj(u) is calculated with the right sign if y(1), in

Fa. (4.1a), is defitied as
y(l) = ui(l) + i "j(l) .

Chus the placing of the marks *," in Eq. (6.15) is significant for the
signs - n the right-hand side. Interchanging ihe marks causes all the quadra-
ture spectra to change sign, but it is not obvicus from the equation itself
why we algo have ‘o change the sign on the left-hand side. This comes from
Eq. (6.6) and from the fact that Rﬁ('t ).‘ is an odd function because Ru(‘)

is an even function.

6,3, Discussion of the Spectral Equation

To make the meaning of Eq, (6.15) clear let us repeat our main assump-
tion; The atmospheric motions are stationary and because of the stationarity
we must requirc stationary boundary conditions, hence there must be a
balance between energy fed into the system and energy extracted from the
system. Undertaking to find out how the flow field organizes its kinetic
energy, we perform, with the same boundary conditions (8ame in a statisti-
cal se..ve), an infinite number of experimente, each carried out in the
infinite four-dimensional space-time space, and measured along the time
axis, Making the ensemble average of the spectral density of the kinetic
energy, we find that this can be expressed as a sum of quadrature spectral
densities, i, e, the shape of Su(u) multiplied by @ is determined by a 20°
out-of-phase reiationship between various pairs of the variables,
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For vbvious reasons we have no information about the time rate of
change of the spectrum, as is the case when the three-dimensional wave
number space is considered where time is kept fixed during the Fourier
transformation. The difficulues encountered in the interpretation of tte
various terms in Eq. (6.15) are perhaps even greater than those experienced
in wave number space, and the reason for going through the whole math-
ematical exercise is that our measurements apply to one of the interesting
terms in the equation: ZfQ'z(U). But iet us first shortly consider the viher

terms:

Qufu.u. (@) is the effect of un out-of-phase relationship between the
[luctuatlinjg l;njz;umenmm, u;, and the advection of fluctuating moraentum by
the fluctuating motion uj "i, i

(uic + uf),j Qu(o) and (uJ? + u? ) Q“l“'i.j( w) arise from the inter-
action between the fluctuating motion and the mean motion. The first term
depende on the product of the shear of the mean motion and an out-of -phase
relation between the components of the fluctuating motion. The second term
is the product of the mean motion and an out-of-phase relation between the
fluctuation motion and the shear of the fluctuating motion,

Qu. P_(c-) and Q,, F (@) originate froin out-of-phase relations between
the nuclt'uahon motion ‘a‘m} the fluctuating density-pressure gradient terms
and the accelerations cuused by viscosity respectively. For further infor-

mation on the implications of these five terms we refer to W. C. Chiu (1870).

§.3.1. The Influence of the Rotating of the Earth

The term zle 2(n.) Bhows that the rotation of the earth influences the
shape of the kinetic energy spectrum. However, the term originates from
the Coriolis force which can neither destroy nor create energy, 8o the
average total kinetic energy of the atmosphere, i.e. the average sum of
the kinetic energy of the mean motions and the kinetic energy of the eddy
motions, is independent of the rotation of the earth.

To get the energy of the mean motion, we multiply Eq. (6, 1) by u and
ensemble average. The contribution from the Coriolis term is ( f{s l:!k“k“l)
8 0, and from this follows that the energy of the eddy motions also is inde-
pendent of the Coriolis forces, From Eq. (6.15) we have:

1 L P
'L'B“M - J R AR A e T

-G+ P QL) - Qg (9) +2Rp(w) + Qg (9 1 de,
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Hence, from the discussion above

J“. I;Q,Z(u) de = Ql 2(‘.:) dlnw
o

4]

"
=]

(6.16)

Q' 2(m) is an antisymmetric function which gives Q' 2(») ~0forw=~0
and from the theory and measurements of microturbulence we know Q' 2(|.|)~-0
for w) ~ 1073 Ha, Figs. 25 and 26 show Q,(s} for Station Nord and the
Risg Tower at 36m respectively. On both figures the tendency for the quadra-
ture spectrum to go to zero for high frequencies is evident. Also to be
noticed from both figures is the large widening of the confidence limits as
low frequencies are approached., The Risy quadrature spectrum is positive
for frequencies larger than '0-6 Hz and has a tendency to go towards nega-
tive values at lower frequencies. The fulfilment cf Eq. (6.16) requires in
this case that QI 2(4 must be negative somewhere in the interval 0 ¢ & (IO'
Hz, but from our measurements we cannot say how and where, It is inter-
esting to note that the high quadrature spectral densities are concentrated
in the interval IO'G( w ( 10-1
this is not surprising; we know that this scale is connected with large
rotating systems and further that rotating a wind vector creates and out-of-
phase relation between the vector components, The really interesting point
in this investigation lies in the comparison between the Risg and tke Station
Nord data. The quadrature spect-um from Station Nord (QSN) is quite
different from the Risg quadrature spectrum (QR) on the synoptic scale
where the tendency for QSN is to be either zero or negative, whercas the
energy spectra for the two series are very similar,

Because of the deflecting nature of the Coriolis force we must expect
it to exert a strong influence on the types of motion which the atmosphere
follows and on the distribution of kinetic energy. How this force, arising
from the rotation of the earth, influences Sﬂ(u) is given by the product of
the Coriolis parameter, {, and the quadrature spectrum, Q' 2(m), and this
product is to be divided by the frequency w. A naturai way to estimate the
explicit effects of the rotating of the earth on the kinetic energy distribution
is then to plot the ratio ZIQ1 2(n--)/(msﬁ(«n)) versus @ (or Inw). The kinetic
energy spectrum, Sﬂ(u), and the quadrature spectrum, Q1 2(m), are, in
contrast to the cospectrum, Co' 2( ), independent of the orientation of the
coordinate system; hence a rotation of the coordinate system as described
in chapter 5 will not affect the ratio 21Q, 2(0)/ (B (o).

, i.e. on the cyclonic scale. However,
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Severe problems arise as w~0 because of the great uncertainty of the
quadrature spectral estimates, Keeping this in mind and also the fact that
the QR is evaluated from 10 years' of data whereas the QSN only covers a
summer period, we have taken the single spectral estimates, formed the
ratios and smoothed them with the usual smoothing procedure, The results
are -diaplayed in figs. 27 and 28, 1t is evident that the Coriolis effects are
of extreme importance for the Risg energy spectrum, especially on the
synoptic scale, whereas the plotted ratio for Station Nord fluctuates greatly
showing a slight tendency as indicated by the broken line. Much cannot be
deduced from this graph; the point to be made here is that whereas the
energy spectra show much the same distribution of kinetic energy for the
two stations, we must, from the plots on figs. 27 and 28, expect the various
terms in Eq. (6.15) to exert quite different influences on the two spectra.
More data are needed from Station Nord to get statistically reliable results,
fortunately such data will be available in the future from the previously
mentioned automatic atation,

We feel that an analysis along the lines indicated here may be advan-
tageous; thus in addition to our recommendation for calculating when
possible the component spectra rather than the speed spectra, we re-
commend the calculation of the ratio investigated above. Using a complex
Fast Fourier Transform, no additional work is required because, in
cddition to the u and the v spectra, also the co and the quadrature spectra
are calculated,

With the component spectra, the quadrature spectra and the ratio from
sufficiently long time series from various locations on earth, much more
knowledge can be acquired about the structure and causes of large scale
atmospheric turbulence than is the case when just speed spectra are cal-
culated.
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7. DAILY VARIATION OF METEOROLOGICAL ELEMENTS

This chapter concerns the response of the lowest hundreds of metres
of the planetary boundary layer to the diurnal variation uf insolation, The
reason for this discussion is two-fold: firstly, the daily ¢ycle introduced in
the wind field causes lines in spectra which otherwise are considered con-
tinuous, hence a special investigation is necessary, Secondly, there is no
general agreement about the description of the dynamics of this layer and
we believe that the Risp Tower data may add to the knowledge of the be-
haviour of this layer., The measured daily variations of the meleorulogical
elements, such as wind speed, wind directivn, and temperature, exhibit
characteristics which in general are consistent with those found elsewhere
over quite different terrain, However, in many circumstances the data
reveal an exceptionally and unexpectedly large turning of the wind with
height above the ground,

Because of the importance of wind direction shear in many applications,
e, g. the evaluation of diffusion from stacks, an attemp. is made to model
the phenomenon numerically, The final formulation of the model and the
problems encountered in the numerical treatment of the equations have not
yet been fully solved, and although preliminary results show agreement
between model and observation we have decided to present the subject in a
future report, Instead, phenomenological descriptions are attempted here
by means of solutions to equilibrium problems.

7.1, The Planetary Boundary Layer

Solar energy arrives at the top of the atmosphere at an average rate of
0.5 cal cmz min, -1 . 8,L. Hess (1 930) estimates for the Northern Hemisphere
that the average solar radiation absorbud at the ground is approximately 50%
of this amount, 35% is reflected and the rest is absorbed in the tropusphere,
mostly by water vapour and dust, Thus the air of the troposphere receives
practically no direct heat from solar radiation whereas the temperature of
the soil surface may vary greatly due to fluctuations in the solar radiation
flux, the most significant reason for variations being the rotation of the earth,

When the ground becomes warmer than the adjacent air, heat moves
from ground to air, No air velocities exist right at ground level and the
transfex of heat must take place by molecular conduction down a very strong
temperature gradient, Higher up transfer takes place through forced-con-
vection where heat is trmpdrted by almost mechnical turbulence. Further
up the amount of turbulence induced by buoyancy is increased and less turbu-
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lence is mechanically induced. The temperature variation at the ground
then gives 1i6e to variations of the intensity of the exchange of heat and
momentum between adjacent air layers causing variations in the vertical
wind velocity and temperature profiles.

Thus a layer of the atmosphere is exposed to both a thermal and a
dynamical influence from the ground, the latter being caused by the
adhering of the air to the surface, This layer is called the planetary
boundary layer and its height varies from approximately 1 km to 2 km,
What especially characterizes the planetary boundary layer is that the
profiles of the met logical el ts are tually dependent. For obvi
reasons, despite the complex nature of even the simplest problems, it has
become one of the most important goals in atmospheric physics to clarify
the spatial and time-variation laws of the fields of the meteorological
elements in the planetary boundary layer.

7.2. The Boundary Layer Equations

A complete representation of the daily variation of the parameters
characterizing the boundary layer could be obtained from the solution of the
entire system of governing equations, which contains three equations for
radiative energy transfer - in addition to the d law of hani the
conservation law of the mass of air and water vapour, the ion law
for transformation of energy, and the equation of state. A discussion of
this system of ten equations is given in D, L, Laikhtman {1 984) which shows
that even a formulation of the problem proves very difficult and one has to
rely heavily on qualitative and phenomenological descriptions.

In our further discussions we shall focus our attention on the momentum
equation for the horizontal wind vector Eq. (6.1) and neglect the viscous term:

- 1
Ut U T Pep m e gy - a.n

Further the Reynolds convention is used, Let (u) denote the sum of the
steady mean and the periodic mean. Averaging Eq. (6.1), we obtain the
equations for the mean motions

Cahy # Cup) Cupday = = (0D, - Cafud g - feggy G

Neglecting the horizontal variation of the turbulent fluxes, as compared
to the vertical variation, and neglecting the horizontal variation in the mean
flow we have (dropping the uveraging signs); ’

- §2 -

by _ 1 dp 22 "un) + fu
o y Tn T dx, i) 2
. {7.2)
Sy, 1 ep _ 3 'y - fu, -
at p ¥x; o x3 tuyug) "
Introducing the geostrophic wind
. = (- L 2 1 ap )
G (ug. vg) ( To 3%, * Tp ax (7.8)

~

and the stress vector T = (*_ t )
,
(using the u, v, and z notation):

-9 (u'l “E& . u’zua),we get

KT T
t 2z 4

(1.4)
2y L 2%/e

f{u-u).
at a1z ¢ g)

To proceed further it is necessary to establish a relation between the
shear stress vector, t .and the velocity field, Unfortunately such a relation-
ship cannot be found from first principles and must be established in an
empirical manner. By analogy to Newton's formula for a laminar flow

L (R L
8z

the Boussinesq eddy viscoslty is used for turbulent flows

du
'x = 'KM;‘—Z’ (7.5)
. ax
'y 'KMY oz

Ky 18 algo called the austausch coefficient, the eddy exchange coefficient for
momentum, or just the eddy diffusivity. D KMx and K., are not necessarily
equal, but almost without exception this is always assumed. There are two
possibilities for proceeding from this definition. Either K can be prescribed
by some empirical function of height and time, or it can be expressed in
terms of other unknowns which relate K in some way to the mean flow. The
second possibility is commaly connected with Prandtl's mixing length theory
and the Monin-Obukhow similarity theory; K is then given as a function of
height and stability, The variation of the mixing length has to be given before-

Because the introduction of a K-profils is tially ta t to para-
meterization of the effects of small scale atmospheric turbulence on large
scale fields, the usefulness of the K-theory is very closely connected to
the existence of @ spectral gap as discussed in chapter 3.,
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hand,and a formula suggested by Blackadar (1962) has been used quite
successfully in modelling stationary wind fields. Another characteristic
length, which can be related to eddy viscosity, has been suggested by N.E.
Busch and H. A. Panafsky (1968), This length is the wavelength where the
energy spectrum of the vertical velocity component has its maximum in a
n F (u) versus Inu representation. The behaviour of this length appears
to be consistent with that of the mixing length.

The predicted profiles on fig. 4 have esscntially been obtained by uging
these two lengths.

Here we do not wish to proceed further with the mixing length theory,
and we turn our attention to the first of the possibilities mentioned above,
a prescription of the K profile.

Introduction of Eq. (7.5) into Eq. (7. 4) yields

-H = T‘-;(K-‘%) + !(v-vg)

(7. 6)
v [ v
T T TR KD - e,

whereu, v, k, u e and v g are functions of time and height, and the boundary
conditions are

u(zo,t) = v(zo‘t) = 0 ]
u(z)zg, t) = u‘(z)zg. t),
v(z)zg,, t) = vg(Z)Z'. 1,

When the wind field is considered to contain a daily cycle, the conditions
of periodicity are:

u(z,t) » u(z,t+£‘l-)
- z_'
v (z,t) v(z,t+ 2 )

(:o is roughness length, @ is the angular velocity of the earth's rotation,
and 2 g is a height of the same order as that of the planetary boundary layer).

7.3. Analytical Solution to the Equations

In the simplest case with stationary conditions, constant eddy diffusivity
and height-independent geostrophic wind, the solution to Eq. (7. 6) can be
found analytically, ylelding the we!l-knuwn FEkman's spiral. Under the
same assumptions but with K given as simple analytic functivns, uther
mathematical spirals have been found, e.g. the Russby spiral (see e. g.

H. Lettau, 1970). ln the non-stationary case, still with constant geostrophic
wind with height, an analytical solution has been given by D. L. Laikhtman
{1964) for a K-variation of the form

Ki(z,t}) = k{z)(1+ Bcos g t)
(7.7
k {(z) = k,+kz forz4h
k°+ kh forzah,
where B, k o’ k‘, and h are constants. Even for such a simple K profile,the
mathematical calculations b
of the solution, in this case infinite summations of products of expansions

rather cumbersome and an interpretation

in Bessel and Neuman functions, le difficult to carry out.

C. M. Sheih (1972) presents & solution for the same case except that K
is not a function of height. Although his solution seems usable, the assump-
tions necessary for the mathematical treatment {u and v constant and a
step discontinuity in the K profile for z = 0) considerably reduce the use-

fulness of the solution for our purpose,

7.4. Numerical Modelling of the Planete.ry Boundary Layer

From the discussion above, and a survey of the relevant literature, one
is led to the generally accepted fact that at present the most rewarding
method to be used in the investigation of the relative importance of the
different external factors and internal processes in determining the behaviour
of the planetary boundary layer, is numerical integration of the governing
equations by finite~difference methods and deductions from the results of
the integration.

However, not many of the external and internal factors have to be
specified before one gets hopelessly stuck in the complexities of boundary
layer phenomena, and only through recourse to parameterization can use-
ful deductions be made,
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Omne of the commonest applications of numerical modelling is the study
of a single effect, for instance a transient in the geostrophic wind. After a
first molding of the numerical model, experiments have to be carried out
on the basic of deductions from the model. The model lg then adjusted to
the experience gained from the experiments being used, new experiments
are made and so on. Indeed, comparisons between models and experimental
data are the only way to justify models in atmospheric science.

The problem we are facing differs only slightly from what we ha'.e men-
tioned above; we wish to study and explain some characteristic features
found in the data from an experiment that has been carried out during ten
years.

At this point we advise the reader to look at fig. 31 (actually 36 figures)
and its explanation.

Since our aim is 1o investigate diurnal variations of meteorological ele-
ments, an obvious handling of the data is to separate irregular MNuctuations
from the daily ones by grouping the records according to the time of day and
by averaging each hour separately. Because of the yearly variations, the
significance of which is indicated on figs. 1 and 19, the procedure above
is far 100 crude, the data at least must be grouped separately for each
month as in fig. 31. This grouping is then a compromise between the desire
for statistical reliability and the desire to distinguish different features in
the daily variations with the possibility of explaining these features through
their yearly variations. Although confidence limits ate not shown on fig. 31,
the statistics are quite good; to every hourly point plotted there pertain
about 300 observations.

The following six points display a simple strategy which should make it
possible to achieve our aim:

1) Grouping and averaging the data {explained above)
2) Close study of the results of the grouping and averaging. Single features

are picked out and it is investigated to what an extent they can be explained

through the use of solutions to equilibrium problems. If such an investi-
gation is carried out with success, the considered external factors or
internal processes are subjected to a quantitative description by ihe
use of the data, ’

3) A numerical model is set up based on the boundary layer squations
Eq. (7.6) with the appropriate approximations, parameterizations, ]
and closure chosen With respect to the evidence obtained under (2).
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4) Comparison between model and vbservations. Adjustment of the model

and pe-haps also of the grouping and averaging procedure.

3) Performance of, if possible, short-duration experiments to verify
crucial points in the miodel such as the paramerization of snall-
scale turbulence and of radiation,

6) Documentation of the applicability of the model,

It is clear that feedback occurs between various points,
As previously mentioned, the numerical model will not be investigated
here, and only point (2) is investigated in the rest of this report.

7.5. Deductions from Measured Mean Profiles Using the

Principle of Equilibrium Motion

The most obvivus feature to be observed from fig. 31 is the increase
in wind speed near the ground in the daytime. To be specific, let us follow
the displayed variations in the month of October,

Early in the morning befure sunrise the temperature increases with
height and decreases with time because heat is conducted to the cool ground,
which in turn loses heat through outgoing longwave radiation; the time rate
of change in temperature is almost constant from midnight till sunrise, The
sun rises between 6. 30 and 7,30 a. m,, the ground is heated, and heat moves
from it to the adjacent air, thus creating an unstable air layer. Because of
the significant vertical uplift velocities of the warm thermals, the whole of
the layer considered registers the heating in the course of a few minutes,

The convection the wind speed to increase at all heights because
the ascending bodies of air originating at low levels are replaced by descend-
ing air parcels from higher levels which tend to bring down with them the
higher speeds prevalent at those levels, At 8. 00 the mixing becomes so ef-
fective in thelowest 90 m that the momentum transport {rom the layer above
123 m lagse behind the used to speed up the ower layers and the
momentum lost through the surface frictional drag. The result is a decrease
of speed in the layer above 96 m. At 10, 00 the momentum transport through
the top becomes sufficient to support the increase of speed at all heights; at
13,00 the temperature difference between top and bottom, the mixing, and
the speed in the layer up to 72 m reach their maxima during the diurnal
cycle, From then on the heat lost from the ground owing to longwave radi-
ation end conduction exceeds the heat gained through the incoming shortwave
radiation; the ground cools and reaches a temperature lower than the ad-
jacent air. This causes the heat flux to reverse and a stably stratified air
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layer near the grour? i3 thus created. The Rynolds stresses weaken, re-
sulting in a decoupling of the layers from above, which now start to speed
up almost entirely under the influence of the pressure and the Coriolis
forces.

The velocity of the air moving in equilibrium with the pres3ure gradi-
ent and the Corinlis force is called the geostrophic wind. This was intror
duced in Eq. 1%.3) and can be found from Eq. (7.2) putting the derivative,
with respect to time, and the frictional term equal to zero.

Hence the wind described above may be considered as a wind which
during the day is disturbed by frictional retardation from its geostrophic
equilibrium value, With the rapid diminishing of the eddy viscosity about
sunset, the decoupled air layer begins to move towards a state of equilib-
rium. The result is a wind oscill: ting around its geostrophic value with a
period of half a pendulum day (14 1/2 hours at 57°), a movement sometimes
called initia) inertial oscillations. This can be found from Eq. (7.4} if the
frictional term i- omitted, and if the wind is considered as constant with
height, which allows the partial derivative to be replaced by a substantial
derivative. The solution reveals that a vector must be added to the actual
wind vector at the initial time. While maintaining a constant magnitude,
this vector rotates in the clockwise direction with a period of half a pendu-
lum day.

It is now obvlous how the increase in wind speed at 123 m at 16, 00 and
at 7 m at 18, 00 should be explained. Further evidence is given by the dis-
played turning of the wind vector with height: at 16,00 the angle Fztween
1"+e wind vectors at 7 m and at 123 m is almost zero, but the angle is in-
creasing and reaches a value of 12 degrees around midnight, The increase
of the wind speed with height and with time is continued up to heights around
300 to 1000 m where a local maximum on the wind speed profile may occur
sometimes. Actually this maximum may be so large that it bears resem-
blance to a jet; thus it has been called the low-level jet, As Blackadar (I 950)
explains: "Unlike the jet stream which is eituated at greater heights (10.000
1o 15,000 metres) this low-level jet stream usually covere a wide horizontal
area, Rather than looking like a river, it is as if a sheet of raptdly moving
air was sandwiched between slower layers above and below".

The strong wind shear L. 8 generated occasionally causes turbulence,
ard hereby 1 weak but significant downward loss of momentum, which tends
to smooth out the oscillations. This is demonstrated on the figure where the
wind speeds are almost constant at all heights from midnight to sunsst.

In the introduction to this chapter it was mentioned that the measured
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daily variations of the wind speed, wind direction, and temperature exhibit
characteristics which in general are consistent with those found at other
locations over quite different terrain (see e.g. F. Fiedler, 1971, where
two figures are given which show the daily variation of the wind velocity at
2, 5, 10, 20, and 50 m in January and June, near Munich). The large turn-
ing. of the wind with height above the ground is very exceptional, but we
find that the whole collection of 36 figures gives an outstanding portrait of
boundary layer behaviour, The above treatment is, of course, not restricted
to the month of October; on the contrary, the amplification or diminishing
of the various effects throughout the year give support to the theories ad-
vanced,

To get an idea of the causes of the large wrning, we note that around
noon in the monthg with large insolation the mixing is so strong in the low-
est hundred metres that no turning is to be expected. Fig. 31 reveals that
in the months from March to October the turning is actually negative. We
have good reasons to believe that this is not caused by instrument or align-
ment errors. Quite naturally our thoughts are directed towards an expla-
natin by horizontal inhomogeneities in the pressure field, these again be-
-ing caused by horizontal inhomogeneitizs in the thermal properties of the
surface. Fig. 3 demonstrates that in a section of approximately 270° the
wind has travelled over water before reaching the Risg Tower, and to this
can be added that the most common wind direction is west-southwest. From
March to October the surface temperature of the ground will be higher
around noon than the temperature of the water. For the rest of the day the
opposite is the case {unfortunately only a one-year record of water temper?
ature is nvnllgble, but close inspection of this record makes us feel sure
on this point).

On figs. 29 and 30 are displayed for every month the minimum and the
maximum angle between the wind vectors at 123 m and 7 m, and the tem-
perature difference between these two heights at the time when the angles
were measured, It is obvious from the two figures that both angles contain
a pronounced yearly cycle, The maximum negative turning occurs together
with the maximum lapse rate in the month where the sun has maximum
declination at culmination,

The maximum positive turning occurs in the same month, and at night
when the temperature of the surface goes below the temperature of the
water.

From elementary mateorological textbooks it is kncwn that in a baro-
climic atmosphere a horizontal temperature gradient causes a shear in

/
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the geostrophic wind with height and this shear is given by the thermal wind A?.. EDOQ] E
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which are easily found from the geostrophic wind equations, the hydrostatic B h
equation and the ejuation of state (T is the absolute temperature), Ai 009 c 1
In the case considered the second terms on the right-hand side of both r' N
equations are an order of magnitude smaller than the first term and can bhe of 7
neglected, Let the wind blow from west to east and let 9T/3y ~ 0. At 2 \/_/ E
night aTf/ax (0 and the wind will turn to the right with height; in the day -2 N N X A X > N . . N . L]
¢T/dx ) 0 and the turning will be to the left, exactly what is observed, J F M A M J J A S 0 N DMONTH
The description above does not take frictional forces into account and Fig. 29. Curves displaying for every month the minimum angle @ ;1
therefore there is no need to further attempt to make quantitative argu- between the wind vectors at 123 m and 7 m, and the temperature difference
ments, What our analogy to the thermal wind has shown is the importance : between theae two heights at the time when Oy cccurs.
of including variations in the pressure field in the model, if that is to de-
scribe nhserved features properly. T T T T T T T d T T
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Eq. (7. 6) can be written in the form A?mu loﬂl

[ ) ]
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These equations,which have to be solved numerically, and the appro- B 1
priate boundary conditions are the base of the model; u_(z,t), v_(z,t) and utk )

K(z, t) have to be described beforehand, After comparisons between fields L
predicted by the model and observed flelds, these three functions should AE D‘g c {
be altered until comparisons are worked out satlsfactorily, For instance,

the model should yield significant information, such as that in the daytime wm
of the months April to August a local maximum occurs in the wind profile [ )
somewhere between 72 and 123 m, Through this process much can be L A ! L L i i I Il I 1 i P
learned about phenomena on all scales in the boundary layer, J F M A M J J A S5 O N DMONTH

Pig. 30, As fig 29 but with L.e miaximum angle ®,0, o -
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Fig. 31

For each month of the year the following 36 figures (called fig. 31) show
the average daily variation, both in time and with height, of the tempera-
ture, the horizontal wind speed, and the turning of the horizontal wind
vector as measured at the Riso Tower during the ten years 1958-67, Tem-
perature, wind speed, and turning are shown in that sequence from top to
bottomn. The measure is the same on all axes through the year, but the
placing of the zero point of the vertical axes for temperature and wind
speed is changed {rom month to munth,

Temperature: Curves for the 8 heights 2, 7, 23, 38, 56, 72, 96, and

123 m are shown. 2 m is indicated by ¥ and 123 m by -B—8-. It may
be difficult to distinguish the curves of the intermediute heights especially
at night. From April to October the temperature decreases through the
whole 123 m layer by day wiich fact can be used to pick out a single height
and follow it through the day. It is easy to distinguish stable from unstable
situations on all figures.

Wind speed: Curves for the same heights as for temperature, except for
2 m where wind speed was not measured. 7 m is indicated by ¥—% and
123 m by 8~8-. With minor exceptions the curves can easily be distin-
guished because in general the wind spzed increates Irom bottom to top.

Turning: ¥—-3% indicates the angle between the horizontal wind vectors at
123 m and 7 m. -B—B- gives the angle between the vectors at 56 m and

T m, Slgns are used sc that the angle is said to be positive if the vector

turns clockwise with height, The curves should be visually smoothed be-
fore use - pome of the peaks are due to the uncertainties in the calcula-

tions when A® :s around 180°.

The following small sceme is inserted to facilitate the use of fig. 31:

The first day in Sunrise Culmina- Declination at Sunset
the month of tion culmination

Jan. 8.42 12,13 -23.03 15.45
Feb. 8.0% 12.23 -17.17 16. 40
Mar. 7.03 12,22 - .27 17.43
Apr. 5.43 12,14 4.1 18. 46
May 4.29 12,07 15.11 19,46
June 3.36 12,07 22, 06 20.40
July 3,33 . 12,13 23,06 20.54
Aug. 4.17 12,16 17.56 20.13
Sep. 5.186 12.10 8.10 19.02
Oct. 6.14 11.59 - 3.19 17.43
Nov. 7.18 11,53 -14,32 16. 28
Dec. 8.17 11,59 -21.51 15,40

"The time i8 Central European Time, i.e. Green'rich Mean Time plus one

hour. To get the appropriate times for Rise 10 minutes should be added to
the numbers above.



- 86 -

(2]

P

: 74
, ‘ FEBRUARY
JANUARY




- 88 -

&
3
2
]
(13
at E
-2 h—i
[} & ] ” L] 20 MNowr
9} M‘\v’,‘fﬂw*‘w
e NG T
8t~ a ~. ~~
s \,/"’"\// - N ]
P .
[2 S N
- ,‘—‘\ R
\___/”‘/ S
s} p ]
3 /’
s} \,—/J NN 4
o & [ ] 12 "® 20 Hour
aet
» ]
L
— \‘v t‘., -
nt -’ 4 ’
\\ ’
s p—"‘\/‘ \ " ‘.

U S W S S T

[ & ’ N, 2 Hour
MARCH

L ]

ry ) ] ] D Howr
s ]
t ]
3 ]
E ™\ =]
! \"\.\ ’ 1
[ N ’ ]
T , s
: \'\ : ]
[ \

oF



u..v'-v--v-rv..y.-vvvv ‘ervv-vvvllerYrv"vv_v

8 "

P
e

> - =
. T
oA
»
-~
h NN
! 7
- . 8
I
A
-
piig
»
“‘ .
-

-4 ]




- 93 -

T T

Owpt

-92 -

=TT

T

solDeg)

ny




o -95-

- - Ty T L e vy

ol

PO SN Y s A b iy

e ———
. 0 Howr

o
»
-

Sehemdnchomhehrrbenbndend bbb b A L

e
/

-k




. »
/\A\"w . "y
& ';.4"
'y ’
-
-4
O s ® [ »

97 .

° & L 2 How
I.%
of Yoy v v
.
2
4 N . l‘ . -~ .
[ ] -— 4 N \q Y » . .
- ~
X -'\ AN - a r
6 — e ® . ? \ L N
-

"‘L: .




- 98 -
SUMMARY AND CONCLUSIONS

Time series of wind speeds and wind directions measured along the Riss
123 m meteorological tower throughout ten years were analysed by spectral
techniques. It was shown that the speed spectra are in good agreement with
those obtained by others. However, it was further shown that an analysis of
speed data alone does not realistically represent the division of the total
energy into eddy energy and energy of the mean flow, and neither does such
an analysis give any realistic distribution of the eddy energy over the appro-
priate range of freq ies. It is r ded that when kinetic energy
spectra covering a huge range of periods are to be calculated, the component
spectra, rather than the speed spectra should be calculated whenever pose-
ible.

Evid and lanations were given of an almost general existence of

a spectral gap between large-scale and small-scale atmospheric motions.

The diurnal and the semidiurnal peaks in the spectra were congidered
and it was argued that whereas the diurnal peak can easily be given a physical
explanation, the semidiurnal peak may be the effect of physical processes
and/or the methods of analysis.

The coordinate system was rotated in order to find the variations thus
duced in the p t spectra. A simple method was worked out and the
results showed, in explainable contrast to other works, that the rotating of
the coordinate system did not yield a totally lopsided division of energy on
components.

Spectral equetions in the frequency domain were derived, showing that
the average spectral density of kinetic energy multiplied by frequency is
given by a sum of quadrature spectra. It was shown how one of the terms in
the equations could be used to determine the explicit effect of the rotating of
the earth on the kinetic energy spectrum, A preliminary investigution using
data from Ris¢ and Station Nord indicated that such a type of analysis may
be advantageous.

Finally, using the Risp Tower data an analysis was performed of the
response of the lowest hundreds of metres of the planetary boundary layer
to the diurnal variations of insolation, It was argued that several of the
features observed in the measured wind profiles could be explained by hori-
zontal inhomogeneities in the thermal properties of the surface. Thus, in
order to model wind fields and other fislds of atmospheric parameters over
mesoscale areas, s, g. cities, the possibility of significant pressurs vari-
ations should be taken into account.
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