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Abstract

The LINCOM model for neutrally stable flow over complex terrain, developed in
1986 by Troen and de Bass [13], has been extended to also respond to variations
in surface roughness. The extension is based on the assumption that close to the
ground the flow is in equilibrium with the local surface roughness, and on a model
for the vertical extent of this equilibrium zone.

LINCOM is based on an analytical solution in Fourier space to a set of linear
equations derived from the normal nonlinear mass and momentum equations for
fluid flow. The linear equations describe the perturbations in velocity and pressure
that the real terrain induces in an equilibrium flow corresponding to a flat terrain
with uniform surface roughness. The perturbations caused by gradients in ground
elevation and surface roughness are determined separately and summed as a first
order approximation to the combined perturbation.
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ZINETRTSAQ S0 QS

]

S e R A I R

=

U.o

N e g A Qe

R

S

+1 (=sign[kU + mV])

function

constant

function

area [m?]

fitting parameter of order 1

fitting parameter of order 1

helping parameter

unit vector, (cosd,sin,0)

correction factor

Fourier transform

gravity [m/s?

surface elevation

wavenumber in z-direction [rad/m]

effective kinematic viscosity [m?/s]

inner scale length [m]

natural logarithm

outer scale length [m]

wavenumber in y-direction [rad/m)]

number of nodes in z-direction

pressure [N/m?]

Fourier space pressure perturbation [m?/s?]

real space pressure perturbation [m?/s?]

mean pressure [N/m?]

background pressure field [N/m?]

time [s]

Fourier space velocity perturbation component [m3/s]
real space velocity perturbation component [m/s]
friction velocity perturbation [m/s]

background velocity component [m/s]

local friction velocity [m/s]

friction velocity corresponding to background flow [m/s]
Fourier space velocity perturbation component [m3/s]
real space velocity perturbation component [m/s]
real space velocity field [m/s]

real space mean velocity field [m/s]

real space velocity perturbation field [m/s]
background velocity component [m/s]
background velocity field [m/s]

Fourier space velocity perturbation component [m3/s]
real space velocity perturbation component [m/s]
coordinate [m]

z-direction size of modelled area [m]

coordinate [m]

coordinate, height [m]

mean surface roughness height {m]

local surface roughness height [m]
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upper limit for local equilibrium [m)]
zero vector
zero tensor

exponent

EVED

angle between z-axis and background velocity vector
von Karman constant = 0.4

wavenumber {m™!]

dynamic viscosity [kgm™*s™?]

kinematic viscosity [m?s™?)

density [kg/m?]

at height 0
outer solution
inner solution
at height [
at height L
at height 2

transposed

turbulent fluctuation

real space mean value

real space perturbation parameter
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1 Introduction

For the last decade wind flow models have been developed and evaluated within
Risg’s Department of Meteorology and Wind Energy, partly for use with wind
energy applications, and partly to generate flow fields as input to dispersion cal-
culations with our puff dispersion model Rimpuff [8].

Within the concept of linearized flow models Troen and de Baas [13] in 1986
developed a model for neutrally stable flow over complex terrain - later named
LINCOM — and in 1994 Santabirbara et al [10] extended this model to include
the gravitational forces caused by departure from neutral stability.

In the present work the neutrally stable model is extended to respond to surface
roughness variations.

The linear equations ~ derived from the normal nonlinear mass and momentum
equations for fluid flow — describe the perturbations in velocity and pressure,
which the real terrain induces in a background flow in equilibrium with a flat
terrain with uniform surface roughness.

Taking the Fourier transform over the two horizontal coordinates, the differen-
tial = and y dependencies reduce to scalar dependencies in the corresponding
wavenumbers k and m, leaving a differential dependence in the z coordinate only.
With proper approximations the resulting equations have analytical solutions,
and the LINCOM models are all based on these.

Solving for perturbations the final solution can to first order be taken as the
sum of perturbations caused by different mechanisms, and the inclusion of sur-
face roughness is the inclusion of a solution fulfilling a set of boundary conditions
derived from the hypothesis that the near ground flow is in equilibrium with the
local surface roughness.

The final flow field is obtained by adding the sum of perturbations to the back-
ground flow.

While only the roughness model is new, described in chapter 6, all the basics of
the LINCOM model are for consistency reasons given in the following, chapters
2 to 5, here based upon Troen and de Baas [13], Troen [12] and Santabarbara et
al [10],

2 The background flow

The background flow is the equilibrium flow over a flat terrain with a uniform
roughness height z,. Using mixing length closure, the effective diffusivity K in-
creases linearly with height and the velocity profile is logarithmic:

K = kUwpz (1)
vV = eU*o InZ (2)
Kk 2p
Here
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e = (cosf,sinb,0) 3)

is the unit vector in the direction of the background flow.

3 Basic equations

The starting point is the differential form of the mass and momentum equations,
the latter in the form of the Navier-Stokes equation. Temperature is not solved
for in neutral LINCOM so the energy equation is omitted. In vector notation it
can be written [1]:

%%-i-v-(pv) =0 (4)

0
5 (P0) + V- (pvv) = pg—Vp+V:[u(Vv+ Vo )] - FV(uV-v) (5)
Assuming steady state and incompressibility it reduces to
Viw = 0 (6)
Vp
v-Vo = g—7—+V-(uV'v) ()

Introducing Reynolds decomposition, overbar ~ designating mean and ’ fluctua-
tion, this becomes

V-g = 0 (8)
— o= Vp _ —
3-Vo = g——p—-{-V-(VV'v)——V-'v"v’ 9)
In normal turbulent flow the Reynolds stress —V - v'v’ is much larger than the
molecular stress V- (¢vV?) and the sum is here modelled as
V-(vV9) - V-2 = V-(KV7) (10)

where K is the effective turbulent kinematic viscosity.
Now splitting both of T and P into a ’constant’ field and a perturbation field

p = P+ 'ﬁ (12)
where the ’constant’ fields obey

V-V =0 (13)

VvV =0 (14)

VP = pg (15)

one gets from the mass and momentum equations

Vo =0 (16)
(V+3)-V5 = _%Jrv.(zcvz) (17)

Now the real hard assumption is that V' >> ¥ so that eq.17 can be reduced to

8 Risg-R-900(EN)




V.V = —Ypﬁ+v-(1fw) (18)

whereby eqs. 16 and 18 forms a set of linear equations in % and p. This set is further
reduced by assuming K constant and by assuming the horizontal diffusion to be
negligible as compared to the convection. Having (U,V,0) designating the z,y, 2
components of the ‘constant’ velocity field V', and (¥, 7, @) the components of the
velocity perturbation vector ¥, we arrive at the following set of linear equations

Ug%+Vg—z = —%guf%i—‘z (19)
U%ervg—z = —%%+K%§ (20)
g0y 08 D, 2O -
7oyt e = 0 @)

where the mass equation is now the bottom one.

4 Solution method

The solution method is spectral ie the dependent variables are Fourier trans-
formed and the mass and momentum equations expressed for these. A Fourier
transform pair is normally defined as

o) = / * d() e do = Fla(z)) (23)

i(z) = /_ Za()\)e'z"""\ dx = F[a(N)] (24)

where ) is a wavenumber ie the number of waves per unit length. By the variable
transformation

E = -2 A (25)
dk = —2rd\ (26)
A(R) = a()) = a(~k/27) (27)

where then k is an angular wavenumber measured in radians per unit length, the
transform can be written

A(k) = /_ ” d(z) e do (28)
i(z) = % [:A(k)e“‘:dk (29)

Risp-R~900(EN) 9




Letting u,v,w,p be the 2D Fourier space equivalents to u,7,w,p/p we get the
transformation pair eg for u(z,y, 2), u(k, m, 2):

u(k,m,z) = // u(z,y,2) e+ dz dy

= Flu(z,y,2)] (30)

o0
Uz,y,2) = #// u(k,m, z) e*=H™Y dk dm
)

= FYu(k,m,z)] (31)
Thereby
g F ik u(k,m, z)] (32)
az - ’ )
g _ F ' imu(k,m,2)] (33)
ay - ? ?
ou  OF 'u(k,m,2)]  __,[0u(k,m,z)
0z 0z = F 0z (34)
The z-momentum equation eq. 19 can then be written
—1r: =17 —1re —1 62U
UF~iku] + VF™[imu] = —F '[ikp]+ KF ) (35)
With U,V, K being constant insertion of F"1, eq. 31, gives
° - . . 32u ikz+im.
(ku+sz)u+zkp—Kﬁ er M dkdm = 0 (36)

which is only generally valid for the integrand being zero. As e*=+im¥ £ ( the
expression inside the parentheses must equal zero. The equations in Fourier space
corresponding to egs. 19 to 22 then become

0%u

. . . 0%
(kU + imV) v+ imp — K 3 = 0 (38)
. . d o*w
(ku+sz)w+a—Zz)—K5z—2 = 0 (39)
. . ow
tku + imv + % - 0 (40)

4.1 Generic Fourier space solution

The solutions to such linear differential equations with constant coefficients are
functions of the form

a = gge™ (41)

10 Risg-R-900(EN)




Introducing this into egs.37 to 40 reduces these to the scalar equations

(kU +imV — Ko®)u+ikp = 0 (42)
(kU +imV — Ko*)v+imp = 0 (43)
(ikU +imV — Ko’)w+ap = 0 (44)
tku +imv+ow = 0 (45)
or in matrix form with

C = ikU +imV — Ko® (46)

c 0 0 ik % 0

0 C 0 wm v 0
00 C a|lw] T o (47)

tk im a 0 P 0

This obviously has the uninteresting solution (u,v,w,p) = 0, so interesting solu-
tions is only found when the matrix has zero determinant. This is obtained for

C*(K+m?—0a?) = 0 ' (48)
from where the applicable a’s are found:

£k + m?

a = [i(kU + mV) (49)
e

For the solutions to stay limited for increasing z only o’s with a negative real
part have reason. This limits a to

_,/k2+m2
a = [|kU +mV| 14+4 for kU+mV 20 (50)
—_ %
2K 1—%¢ for kU+mV <0

Defining two length scales and the number a as

1
L = —/—)m 1
VEE + m? (51)
K
L= AT =2
a = sign[kU + mV] (53)

the a’s are expressed

1 =
"fl—' 1

4
14 az o (54)
Wz
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The solution corresponding to ¢ is called the outer solution and that correspond-
ing to o, is called the inner solution. As the equation system is linear the final
solution is found as the sum of the outer and inner solutions.

U ( Uy uz\
L) _ 0 n Uy
w wy Wa
P \P1 D2 /
/ulo /uzo
= | Yo | e E 4 | V2 AT (55)
Wio Wao
\Pm \on

The length scales L and ! correspond to the scales defined by Jackson and Hunt
[4] for their outer and inner layers and relate to each other exactly as those. Thus
L is a horizontal scale of the perturbation and [ is a scale for the height below
which the perturbation is viscous.

For the outer solution eq. 47 gives the following relations between the elements of
the arbitrary constants vector:

-C

Pio = L CLuno ‘ (56)
a
—ik

Uig = M = —?:k'L’wlo (57)
C

Vig = _zgplo = _imeIO (58)

The inner solution corresponds to C' = 0 and eq.47 gives the relations
1+ ai
/2
po =0 (60)

So the outer solution needs one boundary condition to fix its arbitrary constants
and the inner solution needs two.

ikta0 + imvsy — wy = 0 (59)

The outer solution is inviscous and gives the pressure distribution while the inner
solution is viscous and doesn’t add to the pressure.

4.1.1 Determination of [

Despite the assumptions VV'=0 and K constant used in the derivation of the final
set of equations, U, V and K, as they enter the solution through the expression
for [, eq. 52, are taken from the background flow values at the scaled heights lc;
and lc, where ¢; and c, are fitting parameters of the order of 1, Troen and de
Baas [13].

U*o lCl

- In— (61)

20

U = cosé
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Uso lnlc—1 (62)
K

20

sin @

|4

K = &rUsxles (63)
A transcendent equation for [ emerges which in the form

ley | ley C1C2 K2
okt 1 P T .
2p In 2y 2y |kcosf + msinf| (64)

is easily solved by Newton-Raphson iteration in the variable lc; /zp when starting
at

lCl

20

. K2 1 1z (65)
ot L 20 |kcosf+msind|1.78

4.2 Specific solution

The perturbations for a specific problem are obtained by applying the boundary
conditions for the problem — one for the outer and two for the inner solution —
thereby obtaining the specific values for the arbitrary constants vectors, inserting
these in eq. 55 and Fourier transforming to real space according to eq.31.

The final flow is then found by adding the perturbation to the background flow.

5 Flow over hills

For flow over hills the boundary condition is based upon the fact that close to the
ground the flow is parallel to this. Troen and de Baas [13] use scale arguments
to reduce this to a condition for the outer solution only, a “full slip” condition
reading:
'&;l,z=0 = V- VE
dh | _dh
U iz + Vd—y" (66)

where B is the ground surface elevation as function of z,y. Thereby the actual
height is disregarded, only the slope counts, and z becomes a kind of height above
ground, although no real coordinate transformation is carried out.
Transforming to Fourier space applying the normal assumptions for this step,
eq. 66 becomes

The U and V used here are taken from the background flow at a height cor-
responding to the outer length scale as given by eq.51. This models that low
wavenumber perturbations are influenced from larger heights and penetrates to
larger heights, than small wavenumber perturbations. %0, 10, and p,, follow from
eqs. 56 to 58.

Risg-R-900(EN) 13




The inner solution is used to force the u and v perturbations to zero at the ground
by setting

Uzo = —Uypo (68)
—v50 (69)

V20

wyo follows from eq. 59.

5.1 Simpler approach

In a somewhat simpler approach Troen [12] and Troen and Petersen [14] skips
the inner solution and applies a correction factor to the perturbation velocity of
the outer solution reading:

Il“;}‘ll forz>1
f= ; (70)
WellVal 2 <
V1|2 -

Here V is again the background flow, eq. 2, and the subscripts indicate the heights
at which it is determined. And in stead of the iterative procedure of chapter 4.1.1
the length scale [ is taken from Jensen et al [5]:

I = 033 L% (71)

The reason for the factor is due to Troen and Petersen [14] that the outer solution
underpredicts the speedup at heights around [/, where it is maximum. Although
explained somewhat differently, Troen [12] arrives at the factor used for z > ! by
neglecting the diffusivity term of the parameter C, eq.46, and by basing this on
velocities at different heights when used in eq. 56 and in eqgs. 57 and 58. In eq. 56
it is based on the velocity at height L and in eqs.57 and 58 it is based on the
velocity at the actual height z. Thereby eg for u;q:

. L
Uyg = —ZkL’Ullo -

C:

: Vil
= —ZkLwlo'—‘—‘ (72)
V2|
For z <[ the factor is proportional to |V;|, matching that at z = [, and thus
making the perturbation a continuous function approaching zero for z— z.

6 Surface roughness

Boundary equation

Many models make use of a constant-flux layer close to the ground for describing
the influence of the ground on the conditions away from the ground, [15]. In line
with this the boundary condition describing the influence of surface roughness is
based upon the assumption, that close to the ground the flow is in equilibrium
with the local surface roughness, ie below some height 2, the flux of momen-
tum is invariant with height and the vertical profile of the horizontal velocity is
logarithmic:

14 Risg-R-900(EN)



Ui, 2z
7 = e—ln— 73
C P (73)
Here U, and z, are the local values of friction velocity and roughness height.
As explained in chapter 2 the background flow is in equilibrium with the rough-
ness height 2o, which in the present context has to equal the mean logarithmic

roughness height of the area of interest and gets defined as:

Inzy, = —i;/ Inz dA (74)
A
Specifying
_a

n = Zo (75)
we find

1

Z/AlnndA =0 (76)

Subtraction of the background flow, eq. 2, from the actual flow, eq. 73, gives the
perturbation velocity ¥ which is then expressed

~ U* - U*() zZ U*

v =e ( - lnz0 - lnn) (77)
By defining

'u,* = U* - U*o (78)
eq. 77 becomes

~ U z U*O + Ux

v = e (E lnzo — lnn) (79)

The only z-dependent right side term is the logarithm for which reason the vertical
profile of ¥ is also logarithmic. The z-derivative becomes

v u

'a—z' = e -ﬁ‘,—; ) (80)
As the boundary condition is needed in Fourier space, eq.79 has to be Fourier
transformed. The second term on the right hand side, however, includes a product
of two z,y-dependent properties ie u. and 7, and the Fourier transform of a
product is not a simple analytical function of the Fourier transforms of the factors.
We therefore have to avoid the product. This is obtained by limiting also the
stress perturbation to 1st order, ie by assuming u. < U.o and eq.79 can thereby
be approximated as

~ e . 2 Uso
v = e (n lnz0 - 1n17> (81)
Insertion of eq.80 and application of the Fourier transform gives
ov ., =z U.o
— 22 . lp= — ; 2
v 2 lnzo e— Fllnn) (82)

and this describes the perturbation velocity in Fourier space and close to the
ground, ie up to the above mentioned height z, below which equilibrium is as-
sumed. So eq. 82 forms a boundary condition at z =z, for the velocity perturbation
solution.

Risg-R-900(EN) 15




Velocity perturbation
Insertion of z. into eq.82 and splitting the vectors into their components gives
two of the three sought boundary conditions:

__0Ou 2 Uso '
U =z . lnzo cos 0 = Flln 7] (83)
av zr . U*O
v o= age . lnzo —sind - Fllnn (84)

An applicable third condition is w=0 at z=0, even though the real space final
solution is not valid for z< z.

The boundary conditions can be applied to the total solution egs. 55 to 60 directly
or the two conditions from eqs. 83 and 84 can be applied to the inner solution fix-
ing ugo and vy, €q. 59 then fixing w4y, followed by the application of w=0 at 2=0
to give w9 = —wyo. The latter option fixes the inner solution us,, v, rather than the
total solution u, v to the found boundary conditions and is the one preferred since
the inner solution is the viscous solution and surface stress a viscous phenomenon.

The Fourier space boundary condition for u, is then from eqs.83 and 41

U, = z,% InZ - Uso cos 8 Fllnn)
' 0z 5 20 K
= ZQoly,, I — Uso cos @ Flln 7] (85)
20 K

from where u,,, is found. With egs. 41 and 54 u2o and equivalently vy are found
as

_ Uso l+aiz . z]! 1 ai zp

U = —— cos 8 Fln 7 [1+ ol hlzo] e V2 (86)
B Uwo . ltaiz . 2]} liaize

v = —— sin @ Fln 7 [1—!— Jz 1 11120] e V2 (87)

Wy is found from eq. 59 giving

Uso .F[lnn] (kcosﬂ-{-‘msina) el_%iiln (55)
K z-—a[ +1+azz_,.1nz_,.]
W2

W =

\/i l 20

For the outer solution w;o= —ws as mentioned above, and u;q, v10, P10 are given
by egs. 56, 57, 58.

Friction velocity

The friction velocity perturbation field «, can be found from eq.80 which being
the z-derivative of the boundary condition equation is valid for z < z,. Fourier
transforming the equation gives

e Flu.) = kz— (89)

The roughness boundary condition is applied to the inner solution at height 2=z,
and introducing this solution at the right hand side of eq. 89 leads to

16 Risg~R-900(EN)



1+ at 1+aiz, 2]}
Flu,) = 2.UnF|[l 1 —In— 90
] = #UoPlan i [14 2] (90)
the inverse Fourier transform of which gives the u, field. With eq. 78 the friction
velocity field U is then obtained.

6.1 Determination of z,

As seen from egs. 86 to 90 the solution depends upon z, the height below which
equilibrium is assumed. 7 cannot be determined analytically, it has to be found
from sound reasoning combined with tests against data and for this purpose we
have used the data of Bradley [3] and those of Peterson et al [9].

Bradley measured velocity profiles and surface friction as function of fetch down-
stream a smooth to rough transition and downstream a following rough to smooth
transition. In the latter case the upstream fetch over rough surface was 22 m. The
roughness heights corresponding to smooth and rough were 0.002 and 2.5 mm re-
spectively. The calculations are correspondingly performed for a smooth/rough-
/smooth surface the rough part being 22 m long.

Peterson et al measured velocity profiles as function of fetch downstream a smooth
to rough transition, the smooth surface being water and the rough marshland.
The fetch for the most downstream mast was 160 m and the roughness heights
corresponding to smooth and rough were 0.35 and 6 inm respectively. The calcu-
lations are performed for a smooth/rough/smooth surface the rough part being
250 m long.

As used here 2. can have one of two forms: it can be a constant or it can be a
function of the wavenumber.

Constant =z,

Walmsley et al [15] mention that z, ought to be small compared to the inner
scale length [ and large compared to the mean friction height z, but they do get
reasonable results for both velocity and stress perturbations using 2, =z in their
code MS3DJH/3R.

Choosing 2z =z, in LINCOM results in an overprediction of the velocity pertur-
bations and zero stress perturbation. A bigger z gives more realistic results, but
where z, = 10 2y max gives reasonable results for the Bradley test, z. = 100 21 max
is needed for the Peterson test. And numerical problems arise furthermore when
2.z doesn’t stay low, z being the level for which the flow field is calculated.

Wavenumber dependent z,

Several different dependencies of z, upon wavenumber have been tried. To fulfill
the condition of being small compared to ! and large compared to z, the number
/7ol has been proposed by Belcher et al [2]. But in LINCOM this was found to
overpredict the velocity perturbations. The best fit to the velocity data was found
using the length scale originally proposed by Jensen et al [5] as a scale for I:

z = 0.32333 L% (91)

Figure 1 shows the relations between [, L, and this z for both the Bradley and
the Peterson test cases. As they all go towards infinity for the wavenumber going
to zero, this point has been omitted. Zero wavenumber, however, is treated in the
calculations and with 2./l — 0 for k;m — 0,0 it is seen from egs. 86 to 88 to give

Risg-~R-900(EN) 17




Bradley 1968. 2 um < z; < 2.5 mm. Peterson. 0.35 mm < z; < 6 mm.
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Figure 1. z., [, and L. a) Bradley case b) Peterson case.

non vanishing terms. Minimum and maximum wavenumbers in the plots depend
upon the number of nodes used, N, and the actual distance modelled, X:

Emin = F21/X (92)
= *N,7/X (93)

km ax

and equivalently for the y direction, which is absent, however, in these one di-
mensional test cases. For the Bradley case N = 2048 and X = 409.6m giving
Emin=0.0153m™! and kp.=15.7m™}, while for the Peterson case N =2048 and
X =2048m giving kpin =0.003m™! and k=7 m™1.

For the Bradley case it is seen that z.>> 2y, remark that the length scales are
shown in meter while z; is given in millimeter, but z. < is not fulfilled. For more
normal cases with a larger z, the ratio 2./l shall be even larger as 2, x zél % and
l oczé/ ® approximately. This is clearly seen for the Peterson case.

In figures 2, 3, and 4, LINCOM calculations are compared to surface friction and
velocity data of Bradley [3] and to velocity data of Peterson et al [9], all for each
of the three models: a) z, = 29, b) 2z, = @ 2 max, and ¢) z. = 0.323-33 L% with
a =10 for the Bradley case and 100 for the Peterson case. For all cases the fitting
parameters ¢, and c, have been kept equal to 1.

It is quite clear from the figures that with z. =z, the velocity perturbations are
overpredicted and the friction velocity unperturbed. z, = 0.3 2323 L%57 is good
in both tests. In the Bradley test both the friction and the velocities at low
heights indicate that z. = 0.3 2033 L%7 is better than z. = 10 2] jax- The calcu-
lated velocity profiles better follow the abrupt trends of the data points and don’t
start changing so much in advance of the roughness change and U, approaches
the data better although it is still somewhat underpredicted after the smooth to
rough transition. The delay — or downstream offset — of the calculated minimum
velocity for the Bradley casé is increasing with increasing height. It is smallest
with z, =2z and a little larger with the other two z,’s.
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Figure 2. LINCOM calculations compared to friction data of Bradley [3].
a)z =2 b)2z =102 me=25mm c)z =03 2833 [0-67
Marks indicate measurements, solid lines calculations.

Not presented here are calculations in which the fitting parameter c, has been
varied. While the ¢; parameter has been set to unity for all calculations, we have
tried to combine z, = 2, with a value of ¢, less than one. c;=0.3 gives reasonable
results close to the ground but higher up the horizontal velocity profiles get too
flat, ie the perturbations are underpredicted, and the delay in the calculated min-
imum velocity in the Bradley case gets much larger than for the cases presented
in the figures.

7 Applications

7.1 'The Askervein hill

The Askervein hill project is described in detail by Taylor and Teunissen [11],
Mickle et al [7] and Salmon et al [6]. For the present 1D calculations the hill profile
is taken as the Gaussian profile with which Zeman and Jensen [16] approximated
the main profile of the real hill ie that perpendicular to the ridge line and through
the hill top. With all units of lengths in [m] we have:

~ T 2

h = 115 exp [— (ﬁ) 1n2]
Based upon the measurements at the reference station a few miles upstream of the
hill Zeman and Jensen found the surface roughness height there to be zo = 0.03 m.
At the hill top it was clearly smaller and they found best correspondence between
their model calculations and the data using the following roughness height profile:

(94)

0.03 for = <-225
7 = z \? (95)
. - —_— — <z<
0.01 <1+2exp[ 4(1+225) D for —225< 2 <0
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Figure 5. Left: Horizontal profiles of relative wind speedup 10 m above ground
plus hill profile. Right: Vertical profiles of wind speed. Squares indicate measure-
ments. RS: Reference station. Calculations: Full line: varying roughness. Dashed
line: constant roughness. Short dashed line: constant roughness and simpler ap-
proach of chapter 5.1.

where again all units of lengths are in [m]. The used wind data are from 3rd
October 1983, 1430 to 1530 British summer time, where the mean wind direction
was 210° ie almost in the main profile direction of roughly 43/223°. At the ref-
erence station the wind profile was then nearly logarithmic, the friction velocity
being 0.66 m/s. That is used for the background flow in the LINCOM calculations.

Figure 5 compares the calculations to the measured data, which are here be-
ing reproduced from Zeman and Jensen [16]. Horizontal profiles of relative wind
speedup at 10 m above the surface and vertical wind profiles at the hill top are
presented for three different calculations: 1) the roughness height follows eq. 95,
solid line, 2) constant roughness height z, = 0.03 m, dashed line, and 3) constant
roughness height and application of the so called simpler approach described in
chapter 5.1, short dashed line. The bottom curve in the horizontal profiles plot is
the modelled hill profile, eq. 94.

At 10 m height the calculated velocities don’t vary as much as measured except for
the simpler approach (described in chapter 5.1) which overpredicts the variation
slightly, and the hill top vertical profiles don’t show the almost constant velocity
above 4 m. But with the 1st order model concept of LINCOM in mind the results
are all together surprisingly good.

7.2 North-Eastern Zealand

As a demonstration of the 2D capability, the velocity perturbation due to the
surface roughness distribution has been calculated for an area covering the north-
eastern part of Zealand, Denmark. The perturbations caused by the hills are not
taken into account here.

The roughness pattern is described by four roughness categories: 1) sea and lakes
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with 2; =0.005 m, 2) agricultural land with z; =0.05 m, 3) urban ares with z; =1.0
m, and 4) forests with z; = 1.5 m. With a resolution of 500 m the distribution
of the four roughness elements are shown in figure 6. Some of the ‘lakes’ at that
figure are actually part of a fjord.

The background wind is set to be in equilibrium with a surface roughness height
of 0.005 m — the specified sea roughness height — when given a speed of 10 m/s
at 20 m height. The wind direction is 300° ie 30° north of west.

Figures 7 and 8 are vector plots of the calculated perturbation velocities and
of the total velocities, both at 1 m height. The contours of land and lakes are
also shown. Held together with figure 6 the plots show the expected trends: large
perturbations over urban and forest areas and no or next to no perturbations over
sea and lakes.

When the wind close to the ground is slowed down at the high roughness spots
the excess air has to raise or to escape sideways to areas with lower roughness. It
does both but the perturbation component perpendicular to the background wind
direction is small compared to the aligned component so the sideways escaping
effect can not be seen on the plots.

Figure 9 shows a map of the surface friction velocity distribution, darker shade
meaning higher friction. It is seen how U, spikes positively at the smooth to rough
transitions at the western edges of the high roughness regions and negatively at
the rough to smooth transitions at the eastern edges, all in correspondence with
the behaviour presented in figure 2c.

8 Conclusion

Within the basic linearized concept of the LINCOM model for flow over complex
terrain, this model has been successfully extended with a feature for including the
influence of heterogeneous surface roughness. The main assumption of the new
feature is that up to a certain reference height z, the flow is in equilibrium with
the underlying local surface roughness. The value of z, has a marked influence on
the calculated perturbations, and not being analytically determinable it has had
to be determined from scale arguments and comparisons to experiments. Operat-
ing in Fourier space, a formula for z, as function of wavenumber has been found
which makes calculated and measured velocity data correspond well for two well
defined test cases, and which makes the calculated surface friction velocity follow
the measured trends although the actual values are somewhat underpredicted at
a smooth to rough transition.
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Figure 6. Distribution of roughness elements in north eastern Zealand.
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A Boundary Conditions

The solution for the Fourier transform of a perturbation is found analytically
and consists of the sum of an outer and an inner solution as explained in chap-
ter 4. The ‘arbitrary’ constants vectors for the inner and outer solutions contain
together three independent parameters which have to be determined from three
applicable boundary conditions. In principle all boundary conditions should be
applied to the total solution, but when either the inner or the outer solution
dominates, little error is introduced in applying the main boundary condition to
the dominating solution and then use a secondary condition to adjust the total
solution.

For flow over hills, Troen and de Baas [13] use scale arguments to show that the
main boundary condition, which for this case states that the flow near the ground
is parallel to the ground, can be applied to the inviscous outer solution separately,
whereafter boundary conditions for the inner solution can be selected to give zero
total horizontal velocity perturbations at ground level, see table 1.

For the roughness perturbations the main boundary condition is the velocity
equilibrium with the local surface roughness in a layer close to the ground, and
as the perturbation is assumed to be aligned with the background wind this gives
two boundary conditions, one for each of the two horizontal velocity components.
In this case the inner solution is dominating and these two conditions are applied
to the inner solution only, whereafter a boundary condition for the outer solution
is selected to give zero total vertical velocity perturbation at ground level, see
table 1.

Inner solution Quter solution
Hill Uzmo = Vzo = 0 Dm0 = Vp- VA
- ov z U.
Roughness Vpmzp = 2 — =T —e2ng Wymp = 0
0z|,., % K

Table 1. Applied boundary conditions.

Applying the boundary conditions to the inner and outer solutions separately
makes it all more simple and not less accurate. The whole model anyway relies
on first order approximations and the main boundary conditions are not well
defined physical conditions but rather conditions derived from such using scale
arguments.
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