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Abstract

A probabilistic production simulation method is presented for an energy system containing
combined heat and power plants. The method permits incorporation of stochastic failures (forced
outages) of the plants and is well suited for analysis of the dimensioning of the system, that is, for
finding the appropriate types and capacities of production plants in relation to expansion planning.

The method is in the tradition of similar approaches for the analysis of power systems, based on
the load duration curve. The present method extends on this by considering a two-dimensional
load duration curve where the two dimensions represent heat and power.

The method permits the analysis of a combined heat and power system which includes all the
basic relevant types of plants, viz., condensing plants, back pressure plants, extraction plants and
heat plants. '

The focus of the method is on the situation where the heat side has priority. This implies that on
the power side there may be imbalances between demand and production. The method permits
quantification of the expected power overflow, the expected unserved power demand, and the
expected unserved heat demand.

It is shown that a discretization method as well as the double Fourier series may be applied in
algorithms based on the method.
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1. INTRODUCTION

An important element in the planning of future heat and power production systems is the
dimensioning of the system, that is, finding the appropriate types and capacities of
production plants. The planning problem in this respect then consists of obtaining a
balance between security of supply and a seldom used reserve capacity.

Traditionally, the dimensioning problem for power-only systems has been analyzed by
using so-called probabilistic production simulation. In this method the power demand is
represented by a probability distribution, and each power plant is represented by its
capacity and forced outage rate, i.e. the probability of not being able to produce. This
information is combined in a simulation, which gives results regarding the expected
production of each power plant and the expected power demand that cannot be met
because of failures in the production system. The method is often referred to as the
Baleriaux-Booth method (see Baleriaux et al. (1967), Booth (1972)).

However, due to the large extent of combined heat and power production (CHP) already
existing or being planned in many countries, in particular in Denmark, the heat
production has to be considered as well. Therefore, work has been done to extend the
classical method (see Sendergren (1994), Sendergren and Ravn (1996)).

Similar to the ideas in the classical method of probabilistic production simulation, the
combined heat and power demand is here represented by a two-dimensional probability
distribution, where the two dimensions are power demand and heat demand. The CHP
plants are represented by their power and heat capacities and forced outage rates.

The idea of using two-dimensional probability distributions has been applied
independently within the analysis of power-only systems (see Ahsan et al. (1983), Noyes
(1983), Rau et al. (1982), Rau et al. (1983), Schenk et al. (1985)). The specific
application has been the analysis of two interconnected power systems.

While both interconnected power systems and CHP systems may be analyzed using two-
dimensional probability distribution representations, it turns out that a CHP system has
its unique features. For power-only systems there is a positive probability of unsatisfied
power demands, due to forced outages. Similarly for CHP systems there is a positive
probability of unsatisfied power and heat demands. However, in addendum, an overflow
power production may occur, assuming that the heat production is attempted satisfied.
This is due to the problem of simultaneously satisfying both heat and power demands
from the same plants.

In more general terms, there is in the CHP systems a trade-off between trying to satisfy
power and heat demands and trying to avoid overproduction of power and heat.
Therefore, in order to analyze such systems it is necessary to develop concepts and
methods that are specifically directed towards the systems’ characteristics.

In the present work we extend the results of Sendergren and Ravn in three directions:
First, we include in the analysis the important extraction type CHP unit. Second, we
eliminate the difficulty that the so-called loading order influences the results of the
analysis. Third, we introduce the application of Fourier series in the calculations.

The report is organized as follows: In Section 2 we introduce the basic concepts in the
two-dimensional analysis of CHP systems. Section 3 gives the main theoretical results.
The section confines itself mainly to an analysis of the situation where the production is
organized with the heat side having priority. Section 4 discusses implementation aspects,
describing both discretization and analysis of analytical representations, the latter in
particular by application of the double Fourier series. Finally, Section 5 brings the
conclusions of the work.
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2. THE CONCEPTS IN TWO-DIMENSIONAL
ANALYSIS

In this section we describe the main concepts that are necessary for the two-dimensional
analysis. This includes the description of the system (units and demands), the
convolutions, and the results in terms of expected unserved energies and expected
overflow energies. The exposition largely follows Sendergren (1984), Sendergren and
Ravn (1996), but includes also extraction units.

2.1 Description of the units

The system considered is a combined heat and power (CHP) system. A CHP system
consists of several units each producing power and/or heat.

The units in the system can be divided into two groups: units which only have one type
of generation, either heat or power, and those which have a combined generation, both
heat and power (CHP units). The former group consists of heat units, which generate
only heat, and condensing units, which generate only power. Within the group of CHP
units we consider back pressure units and extraction units.

Each unit is characterized by its

¢ working area

¢ forced outage rate (FOR),

e position in the loading order list of all units in the CHP systém
The relation between the possible heat and power generations for a unit is represented by
the working area. The working areas of the four types of units are sketched in Figure 1.

The shape of the working area defines the possible combinations of heat and power
generations.

Power Power

? ’r

.
y o

Heat c? Heat
a) Condensing unit b) Extraction unit

Power Power

cP

c? Heat cl Heat

¢) Back pressure unit d) Heat unit

Figure 1 : Working area for production units.

For a heat unit the working area is characterized by the capacity ¢? [MJ / 5] for heat, and
for a condensing unit the working area is characterized by the capacity ¢ [MW] for
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power. It is seen that a heat unit has zero power capacity, ¢’=0, and that a condensing
unit has zero heat capacity, c?=0.

For back pressure units, the back pressure line is defined with a slope, ¢™ =c¢? /c¢? ,
where ¢? and c¢? are capacities for heat [MJ / s] and power, [MW], respectively.

Formally, we define ¢"=0 for heat units and ¢"=o for condensing units.

For extraction units there is some freedom in the choice of possible combinations of heat
and power. This is in contrast to the back-pressure unit, where the combinations are
fixed at the back-pressure line.
The working area of the extraction unit is a polygon, defined by four lines. Two lines
limit the heat production g to the interval 0 < g <c? . The back-pressure line with slope
c¢™ =c? /c? defines the lower limit of power production to any given heat production.
The line with slope —c” (observe that ¢ is positive) defines the upper limit of power
production to any given heat production. The combinations (g, p) of heat and power
that are within the working area are therefore seen to satisfy the relations,
0<g<ct )]
c"g<p<c? -c’q 2)

The relations are seen to imply that 0 < p<c?.

As seen, the back-pressure and extraction units introduce a dependency between the
production of heat and power. This dependency is fundamental to the method presented
below since it introduces difficulties which are absent in the power-only systems. In fact,
if the system contained only condensing units and heat units, then the power-only
analysis could be readily extended to include also the heat production.

Each of the units is assigned a forced outage rate, i.e. the probability of non-availability
of the unit.

The N units are assigned to generate in the loading order. Traditionally the loading order,
or priority list, reflects the economy of the units. The generation costs of the combined
units are usually lower than the heat only and the power only units, and therefore they
might be placed first in the loading order.

For the analysis of the two-dimensional case it will be found desirable to use other
loading orders that better reflect the character of the problem (see Section 3).

In the sequel lower indexes 7 will usually indicate unit number, e.g., 7; ,¢?,c?, and ¢".

1

2.2 Load Probability Density Function, LPDF

Based on, e.g. recorded data, such as illustrated in Figure 2, the heat and power load can
be classified and represented as shown in Figure 3.
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Power production Heat production from CHP
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Figure 2 : Examples of CHP production. Upper curves : Winter. Lower curves ;: Summer.

This figure illustrates the relative frequency with which particular combinations of power
and heat occurred during the period considered (typically one year), viz., the load
probability density function, LPDF. For planning purposes the LPDF must be derived by -
forecasting.

Density function Inverted

0.012:

0.010
0.003 0.010-0.012
u0.008-0.010
0.006+ [10.006-0.008
[10.004-0.006
0.0044 00.002-0.004
0.002] 90.000-0.002
0004
8
g §°
8 g ©
Power [MW] = &8s Heat (MJ/s]
S

Figure 3 : Density function and Inverted distribution function.
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The occurrence depicted in Figure 3 will be considered as a two-dimensional stochastic
variable. Thus, the graph in Figure 3 is interpreted as representing a joint probability
density function of the two loads. Therefore, let the two loads, heat and power, be

represented as random variables X?[MJ/s] and X?[MW] , respectively. Thus,
ﬁ)(x",x” ) represents their joint load probability density function LPDF; that is,

fo(x",x" ) represents the probability that X? takes the particular value x? and X?

takes the particular value x? .

Figure 3 also shows the inverted distribution function. Observe that this function,
according to the tradition of probabilistic power planning, is inverted relative to the
statistical tradition. Thus, the inverted distribution function Fy , is defined as,

Fy(a.p)=[ | o, )ate? aixt 3)
q *p
From Figures 2 and 3 it is readily observed that the two variables are not stochastically

independent, nor are they totally correlated.

Marginal frequency functions for heat and power are shown in Figure 4. Inverted
marginal distribution functions for heat and power are shown in Figure 5.

Marginal frequency function for Heat Marginal frequency function for Power

.12 0.08

0.10 ¢

0.08 4

0.06 0.04 1

0.04

0.02 4 0.01

0.00 ++ R R SR R c g 8 8 8 3 "a @ @ @ 5 8 @ & o o
oooooo
2 8288 88¢§8% 3¢88¢g 2288 g

nnnnnnnnnnnnn

Figure 4 : Marginal frequency functions for heat and power.
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Figure 5 : Inverted marginal distribution functions for heat and power.

2.3 Equivalent Load Probability Density Function, ELPDF

Now we analyze what happens when we attempt to satisfy the load by inserting the first
unit in the priority list. Assume for a moment that the unit is not an extraction unit. This

Risg-R-968(EN)




unit has capacity (cl" 67 ) Assuming furthermore that the unit produces at full capacity

all the time (i.e., it has no outages and thus the forced outage rate is not zero, i.e., 7,=0),
we get the equivalent load probability density function, ELDPC, for the remaining load,

/f, as,

f,(xq,x")zfo(x"+clq,x”+c,”) 4
Thus, the equivalent load density function f, is obtained by figuratively "moving" all
points representing probability mass in the direction of (—c‘q,—clf’ ) when inserting unit

1. This represents the load remaining to be served by the other N-1 units. This process is
repeated for all NV units.

Now, as the units have a FOR, 7, > 0 they are not available all the time but only with
probability (1 —rn). Considering the equivalent load and the outages as independent

stochastic variables, the recursive formula for the derivation of the ELPDF is obtained
as,

fn(x",x") = (l—rn)fn_l(x" +cl xf +c,f’) +r.f _,(xq,x") 6)

If all units considered are assumed to produce at capacity (c",cp ) then for some n,

points with positive loads will move such that they may end up with either negative
equivalent power load or negative equivalent heat load (or both). Therefore, it might be

desirable to reduce the generation of a unit to a level less than (c" ,c? ) .

We can specify this by introducing a capacity reduction factor s. With this, the capacities
(c",cp ) in the convolution described in (5) are substituted by production levels other
than the capacities.

The selection of appropriate production levels is complicated. In particular it is not even

clear what production of full capacity of an extraction unit should be interpreted to
mean, cf. Figure 2. We must therefore state more explicitly what combination (g, p) of

heat and power will be applied during the convolution of the unit. We shall describe this
in more detail in Section 3.

2.4 Overflow and Trade-off

A distinctive feature of the two-dimensional analysis is that relative to the one-
dimensional case we have to introduce the concept of overflow energy. This is a direct
consequence of the dependency between power and heat production described in Section
2.1

Consider the insertion of unit » (a back-pressure unit, for simplicity) and the derivation
of the ELPDF, f,. We refer to Figure 6.
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Figure 6 : Various regions in relation to overflow.

If all points representing probability mass of f,_, are moved in the direction (—c",—c” ) ,
only one point (namely, (x",x" ) :(c",c" )) is moved to (x" ,x? ) =(0,0) . Points in
region a in Figure 6 are moved to quadrant III which implies that both heat and power
overflows are obtained. By overflow is meant that more energy is generated than
demanded. Points in region b are moved to quadrant II where heat overflow is obtained
while some unserved energy for power still remains. Points in region ¢ are moved to

quadrant IV where power overflow is obtained while some unserved energy for heat still
remains. Points in region d are moved to points in quadrant 1.

By reduction of the production level, cf. the previous subsection, it will be possible to
avoid moving to quadrants II, III or IV where overflow is obtained.

The overflow obtained is mathematically well defined through (5). Overflow is simply
represented by points (x",x" ) with x? <0 orx? <0 (or both), having f,,(x",x” ) >0,
i.e., there is a positive probability that either x? or x? (or both) are negative.

The physical and operational interpretation of overflow can vary according to the
circumstances. For instance, power overflow might imply that the surplus power is
delivered as rotational energy (implying an increase in frequency) or it might imply that
power is exported to neighboring systems. A heat overflow might imply an increasing
temperature in the water of the district heating system or the storage of heat in a storage
tank.
Now a key point in the two-dimensional system is that overflow is not necessarily
undesirable. This differs from the power-only system where the production level
adjustment is always used to attain either an exact fulfillment of the load or, if this is not
possible, to have unserved energy.
To understand why this is so, it should be noted that there is a trade-off between the
following situations: "Unserved heat and power energy" versus "power (or heat)
overflow but less unserved heat (or power) energy".
In the calculations in (5) it is therefore necessary to define a strategy for production level
adjustment. The convolution of the units can be done by choosing one of the following
criteria (possibly others):

¢ no overflow (in the sequel denoted no-overflow)

e heat overflow permitted but not power overflow (denoted g-overflow)

Risg-R-968(EN) 11




e power overflow permitted but not heat overflow (denoted p-overflow or heat
priority)
» both heat and power overflows permitted (denoted gp-overflow)
For any criterion it may be necessary to define loading orders and production
adjustments strategies in order that the results of the convolution is well defined.
Which criterion to choose depends on the system in question (e.g. economical,
operational and institutional aspects) and the purpose of the analysis.

As noted in the Introduction we shall in this paper assume that the heat-side determines
the trade-off. That is, we consider only the p-overflow case. The criterion may also be
denoted as a heat priority criterion.

We may describe this criterion in more detail. It implies a hierarchical decision structure
for production adjustment (dispatch), i.e. for choice of heat and power production. For
any given unit the heat production is first determined, so that the remaining heat demand
will be minimized, and so that there is no heat overflow. For the given heat production
on the unit the power production is then determined. On a heat unit there is no power
production. On a back-pressure unit the size of power production is implied by the size
of the heat production. Therefore, only in the case of extraction and condensing units
there is a freedom of choice of power production. In general, the size of the power
production on the two units will be chosen in order to minimize power overflow as well
as unserved power. See further below.

2.5 Energy Quantities

From knowledge of the ELPDFs, f, (x",x"), for the equivalent load density function
after unit » has been added we can derive the marginal density functions,
an(x") and f,” (x" ) for heat and power, respectively, as

£2(x7) = [T £ (x%,x7)ae? ©)
£ = [0 f (e, )b | Q

The expected energy generation of unit 7 in terms of heat and power can now be found
as

EE, = [ (f,2(x") = £,2(x?))- x%cic? 8)
EE? = z'[;(f _IP(x") —ff(x”))-x”dxp 9)
where 7 is the time interval considered.

When all N units have been loaded, the expected unserved energies for heat, EUE? and
for power, EUE? are obtained as

EUE® =] £,%(x?) x%a* (10)
EUE? =z £,7(x?) - x"dx” (11)
The expected heat and power overflow energies, EOE? and EOE? can be determined
in a way similar to the expected unserved energy. The expected heat overflow EOE? is

calculated as the integral of all negative values of the equivalent heat load, x? ,
multiplied by the probability that X9 takes the value x?. The probability that X? takes
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the value x? is expressed by the marginal probability density function, f2 (x"). The
expected power overflow FEQE? can be calculated similarly. We may write this as
0
EOE" =~z[  f,2(x")-xdx? (12)

EOE? =~z f,"(x")-x’de? (13)

Thus, for each criterion (cf. the previous section) we define four characteristic energy
quantities, EUE?, EUF?, EOE?, and EOF?.

The quantities may or may not be uniquely defined with reference to the criterion chosen.
For no-overflow, for instance, values of EUE? have to be traded against values of EUEY,
cf. Sendergren (1994). This is why in general also a loading order and a production
adjustment (dispatch) strategy need be specified in relation to a criterion. As we shall
show in Subsection 3.4, the values EOE?, EOF?, EUE?, and EUE? for the heat priority
criterion are defined in a natural way without such specification. (However, the
quantities EE,? and EE,” are not.)

Finally, observe that in addition to these energy quantities, the concept of loss of load
probability (LOLP), known from the traditional power-only analysis, may be extended to
the CHP analysis. We omit this in the present work.

Rise-R-968(EN) 13




3. THE BASIC METHOD FOR POWER AND
HEAT

In this section we present the essential elements of the method for two-dimensional
probabilistic analysis. In order to limit the extent of the discussion, we confine ourselves
to the criterion of heat priority. The main result is the demonstration of how to obtain the
values EUE and EOE.

It turns out that the concept of outage pattern will be expedient for the subsequent
analysis. The concept is defined in Subsection 3.1, and used in Subsections 3.2 and 3.3,
while it is shown in Subsection 3.4 how to come from outage patterns to ordinary
convolutions. Subsection 3.4 constitutes the main result of the theoretical development.

3.1 Outage patterns

Consider one demand point with associated probability mass on the original two-
dimensional load probability density function F;, .

Assume that units are used with given capacities (c,“’ Nl ) We observe that by the
convolutions this point will generate two points on F,, corresponding to unit number
one being on or off, respectively. Further, there will be four points on F, (disregarding
that in general two or more points may coincide). In general there will be 2° points on F,
and 2" points after convolution of all N units.

Now define an outage pattern as a sequence of N zeros and ones. For example, if N=35,
then one outage pattern is (0,1,1,0,0). This is interpreted to mean that units 1, 4 and 5 are
off, while units 2 and 3 are on. Similarly (0,0,0,0,0) and (1,1,1,1,1) correspond to ali units
being off and on, respectively.

As a motivation we make the following observation: For a specific outage pattern the
original point in relation to F, generates one point on F;. Its location is identical with

that of F, if the outage pattern specifies a zero for unit 1, and the location is shifted by

(c,-" Rord ) if the outage pattern specifies a one. Continuing this way, we see that one point
is generated on F, by one outage pattern (some of the points are possibly identical).
Finally observe that the above-mentioned 2 ¥ points with associated probability masses
may be seen as generated by the 2" possible outage patterns. We may therefore use

outage patterns to reach the same results as we do by using convolutions. As we shall
see, outage patterns will be expedient for analytical purposes.

3.2 Illustration without extraction units

As a simple illustration of the above, we now consider a system without extraction units.
We consider this case, as it is simpler than a system with extraction units. Assume a
given outage pattern so that four units are available. Recall the relation ¢, " =c, ? / ¢,*

for back pressure units, ¢;,” = e for condensing units, and ¢,” =0 for heat units.

Consider three different loading orders. One, A, in which the units are loaded in a
sequence of increasing c¢” -values. One, C, in which the units are loaded in a sequence of
decreasing ¢” - values. And one, B, with an arbitrary sequence.

14 Risg-R-968(EN)
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Figure 7 : Expansion lines for four units.

A : Increasing ¢™ - values.
B : Arbitrary sequence.

C : Decreasing ¢” - values.

As explained, the points on F), corresponding to a given outage pattern are points that

may be reached by applying the units with full capacities (c,.",c,.” ) However, the

[t B A g |

0 <s, <1. By appropriate selection of s, not only may the individual points described

above be reached, but also any point on the line which connects two consecutive units.
We call this piecewise linear line, from first to last point, the expansion line. Observe
that for any given CHP system, the expansion line depends on the loading order of the
units and on the outage pattern.

production of a unit may be reduced to (sc." s.cf ) with the capacity factor s, satisfying

In Figure 7 we illustrate the three corresponding expansion lines. Observe that the three
expansion lines start at the same point, (q° , p°), and end at the same point, (qN PV )

Further, it is seen that the expansion line 4 is the upper line, expansion line C is the lower
line, with expansion line B in between. This is not incidental as expressed in the result
below. Moreover, by suitable selection of capacity factors for the units it will be possible
to end up at any point (g, p) located between expansion lines A and C. Such selection of
capacity factors will be called a dispatch.

Lemma 1: Consider for a given outage pattern the expansion lines 4, B and C
corresponding to loading orders with increasing, arbitrary and decreasing c¢”-values,
respectively. Then the following holds:

A. The expansion lines start and end at the same points, viz., (q° , p°) and (qN ,pY ) ,
respectively.

B. For any ¢,q" <¢<¢°, and any points (q,pA) , (q,pB) , (q,pc) , located at
expansion lines 4, B and C, respectively, there holds p© < p® < p*.

C.Forany p,p"” <p<p°, and any points (q”,p) ,(qB,p) , (qc,p) located at

expansion lines 4, B and C, respectively, there holds ¢* <q® <¢°.

D. For any (g, p) located between expansion lines 4 and C there exists a dispatch that
ends up in this point.

Rise-R-963(EN) 15




Proof:

A. Considering the capacities (c,.",c,-” ) as vectors in R*> we see that the addition of all
capacities in the outage pattern brings us from point (qO , p°)to point(q”, pN)g For
vectors this result is independent of the sequence in which they are added.

B. Consider a given ¢,q" <g<g°. We want to find the maximum value of p
corresponding to this. We therefore formulate the following optimization problem:

wlr]

i=]
N
2‘1;‘ =q
i=1
p; =c!"q, for back-pressure units
0<p;,<cf,i=1...,,N
0<g;<cf,i=1...,N
Here units corresponding to a 0 in the outage pattern have been assigned
¢/ =c/ =0. The variables in the optimization problem are p,,i=1,...N and
q;,i=1,...,N. Thus, all units are formally assumed to be able to produce both heat

and power, but a heat unit has ¢/ =0 and a condensing unit has ¢/ =0.

Obviously condensing units shall not be used, as they do not really enter the additive
R N _ . _ . . . .
constraint 2 i 4: =4,1e., p; =0,i € c, where c is the set of condensing units. The

criterion may therefore be rewritten,
0
maX[p - Zpi}

ieNC
where NC is the set of non-condensing units. Finally using p, = ¢" g, these constraints
may be omitted and the criterion may be rewritten,

max|:p° - Zci’"qi}.
ieNC

The problem is a linear programming problem. It is well-known that the optimal
solution may be found by a sorting procedure, taking the units in a sequence
corresponding to increasing ¢™-values. Alternatively, a complete proof is given in
relation to Lemma 2 below.

This loading order therefore gives the maximum p-value to the given g-value, and it
follows that p® < p*.
Changing the criterion from maximization to minimization we will by similar
argumentation obtain that p© < p®. Combining the results yields the desired relation
pc <p® <pt.

C. We may obtain the third result in a similar way by reversing the roles of p and q.

D. See the proof of Lemma 2 below. OJ
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The importance of the Lemma is the following: First we have found absolute limits for
the intervals in which we can end up. Second, we have established that any point within
the border given by expansion lines A and C may be reached by a suitable dispatch.
(Observe that to reach this result we do not actually need to find the dispatch.)

As we shall see in Section 3.4, the consequence of this is that we will be able to
determine the values of EOE and EUE. This will be done by performing two sets of
convolutions, viz., one in which we follow expansion line A, and one in which we follow
expansion line C.

The exact way of doing this, in particular knowing when to stop applying more units,
will depend on the criterion for balancing overflow energy against unserved energy for
power and heat. Thus, the above illustration is fairly general and needs to be specified
for full implementation.

In the sequel we limit ourselves to the criterion of heat priority. First we will show how

to include extraction units in this analysis (Subsection 3.3), and then we show how to
define and derive EOE and EUE for this criterion (Subsection 3.4).

3.3 Extraction units with heat priority criterion

Now we introduce extraction units. These are more complicated because there is
freedom of choice of production combinations of p and g. The analysis leaves slightly
less general results. Therefore, we consider only the case of heat priority.

The loading possibilities of an extraction unit could also be described by a capacity factor
(two-dimensional in this case), cf. Subsection 3.2, but we shall keep the description
verbal until the end of Subsection 3.4. This is sufficient, because, as will be seen, we
need only consider loading on the line AB and on the line OC, cf. Figure 8.

We may therefore consider the following main types of loading of an extraction unit,

As a fully loaded back-pressure unit, point C in Figure 8.

e As a partially loaded back-pressure unit, a point on the line OC in Figure 8.

e Maximum g load and, relative to this, also maximum p load, point B in Figure 8.

Partially loaded on the ¢’-line, i.e., a point on the line AB in Figure 8.

O c?

Figure 8 : Loading of an extraction unit.

As above, we consider two specific loading orders for any given outage pattern.
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A. Treat all extraction units as back pressure units. Then apply all units sorted according
to increasing ¢” - values.

B. First apply all non-extraction units sorted according to decreasing ¢”-values. Then
apply all extraction units sorted according to increasing ¢’-values.

In both cases the dispatch is adjusted according to the heat priority criterion. As before,
heat units are formally defined with ¢ = 0, while condensing units are defined with ¢ =

(=%

In case 17, this implies that as long as no g-overflow is generated the units are used
with full capacities (extraction units are treated as back-pressure units , i.e., point C in
Figure 8 is used). Then capacity is reduced so that no g-overflow is generated
(extraction units produce at a point on the line OC in Figure 8), or units do not produce
at all. Case “1” may be characterized as minimum p-production to any given g-
production.

In case 27, condensing units are applied first, at full capacities (p-overflow need not be
avoided). Then back-pressure units are applied, followed by heat units: both types with
suitable adjustments of production, according to the heat priority criterion. And finally
extraction units are loaded as follows: As long as no g-overflow is generated, they are
loaded to point B in Figure 8. If the point B in Figure 8 will produce g-overflow, then
production is reduced to a point on the line AB so that no g-overflow is attained and
(possibly) no unserved g-energy remains. Observe that extraction units must be applied
even if no unserved g-energy exists (in which case they are loaded to point A). Case “2”
may be characterized as maximum p-production to any given g-production.

Observe that loading order “2” may be described as taking all the units in sequence
according to decreasing slope of the “upper” limit of the working areas, this being ¢ for

non-extraction units and —¢; for extraction units. Recall that the ¢’ -value for a given

unit / is defined as the negative of the slope, i.e., i is positive. Observe also that if there
are no extraction units then for g>0 the two loading orders correspond to those of
expansion lines A and C of Lemma 1.

Figure 9 illustrates the two loading orders and possible loading points.
We call the resulting end points (¢’ ,p") and (¢*, p?).

Loading order 1:

LLb L.

EXT!1 EXT2 CON D
Loadin g order 2:
COND EXT2 EXTI

Figure 9 : The two loading orders and possible loading points.
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The following result combines the ideas of Lemma 1 with extraction units and
specialization to the case of heat priority.

Lemma 2: For any outage pattern and demand point we have the following, using
dispatches according to the heat priority criterion

e ¢'=g*andp® <p'.

e All other sequences or dispatches give end points (g, p) satisfying g =q' =¢* and
p*<p<p'.

e Forany p® Sp<p' there exists a dispatch that gives the end point (g', p).

Proof: The idea of the proof of this Lemma follows closely that of Lemma 1. The first
optimization problem in the proof may be indicated as follows:

]

i=]

N
ZQi =ql
i=1

p; =c!"q, for back-pressure units
p; =0 for heat only units
g; =0 for condensing units
¢q; Sp; Scf —clq, forextraction units
0<p,sc¢f ,i=L...,N
0sg,<c¢! ,i=1...,N

We now give a detailed proof.

The production adjustment (dispatch) strategies in the two cases are identical with respect
to g—production, viz., maximal g—production as long as there is unserved g—demand, and
then adjustment of g—production such that no overflow is attained. Therefore ¢! = ¢2.

We define the sets B, C, E and H of unitindexes i = 1,...,N representing the sets of back-
pressure, condensing, extraction and heat units, respectively. The following optimization
problem may then be formulated:

max {p° =Y pi— 3. pi— 3, pi

ieB ieC icE
N gi=¢"-¢
pi=clq; ieB
Fg<pi<cd —clgi icE
0<pi<c] Vi
0<gi <! Vi

In this, p is the initial p—demand and ¢ is the initial g—demand. The optimization prob-
lem may be interpreted as one of finding the maximal remaining p—demand or minimal
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p-production, given the total g—production, ¢g° — g'. Optimization is with respect to vari-
ables g; and p;, i =1,...,N. Thus, all units are formally assumed to have both power and
heat production, but heat unit i has ¢/ = 0 and condensing unit i has ¢ = 0.

We shall now show that the production on the units as given by loading order and dispatch
”1” gives an optimal solution to this optimization problem.

We may eliminate the variables p;, i € B, from the criterion, using the relation p; = c{’q;.
The constraints p; = ¢/’g;, i € B, are then eliminated. The criterion function is then refor-

mulated as follows:
max |p° - Y cl'gi— Y, pi— X, Di
icB ieC ieE

The problem is a linear programming problem (see e.g. Luenberger (1984)). There is
a feasible solution because of the choice of right hand side g° — ¢!, and it is specified
by the merit order and production adjustment. We show that the specified feasible solu-
tion is optimal in the optimization problem by using necessary and sufficient optimality
conditions expressed by the Kuhn—Tucker conditions (Luenberger (1984)). We introduce
the multiplier x € R relative to the constraint 25‘_7__1 g; = ¢° —g'. We introduce the non-
negative multipliers A;, i € E, relative to ¢/’q; — p; < 0, and the non-negative multipliers
\i, i € E, relative to p; — cf’ +c7g; < 0 (these two sets of constraints are equivalent to
c'qi < p < cf —clq;). We introduce multipliers 8¢ relative to lower and upper bounds on
all p;—values, and 6? relative to lower and upper bounds on all g;—values.

The Kuhn—Tucker complementary slackness conditions in relation to the multipliers (ex-
cept #) and inequality constraints are for all i:

A;>0,andA; =0 if c"qi—pi<0 (i.e., not at the ¢”—line)
Ai>0,andA; =0 if Di— cf’ +¢/gi <0 (ie., notat the ¢’ —line)
& <0 if p;=0 (ie., at the lower bound)

>0 if pi=cf (ie., at the upper bound)

8 =0 if0<pi<cl

37 <0 ifg; =0 (ie., at the lower bound)

87 >0 ifgi=c? (ie., at the upper bound)

87 =0 if0<qgi<c!

Combine now J;, i € E, into the vector A, A, i € E, into the vector A, Sﬁ’ ,i€Einto &,
etc., and ¢” into ¢”. Let A¢” denote the vector with elements A,c)’, i € E, and let Ac”

denote the vector with elements X,'c}’, i € E. Further, —1 is a vector with all entries equal
to —1, and 0 is the zero vector.

The Kuhn—Tucker stationary conditions with respect to variables p; may now be specified
as,

0= 40+ 385 (i €B)
1= u0+& (ieC)
~1= u0—-A+A+8f (i€E)
0= ﬂ0+5€1 (ieH)

We now let A; =1 and Ai=0,icE (indicating that the solution specified by the loading
order and dispatch is at the ¢”line, which is true). We let 8{’ = —1,i € C (indicating that
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the solution is at the lower bound, which is true). We let 8{’ =0,ieB,icE,ieH (no
indication implied).

It is seen that this satisfies the above stationary conditions for arbitrary choice of u, and it
also satisfies the complementary slackness conditions.

Finally we may formulate the Kuhn-Tucker stationarity condition with respect to variable
g; as follows,

~" = pl+8% (i€B)
0= ul+8% (ieC)
0= ul+M"+Ac"+8% (i€E)
0= ul+3; (ieH)

Now let i* denote the index of the last unit in the merit order which has a positive g—
production. Take u = —cls. We observe u < 0. Due to the sorting with respect to increas-
ing ¢"*—values this implies —cf* > u, i <i*,and —c7* <p, i* <.

Let 87 = —c"—u,i € B, i € E. This is non-negative if / < i* (indicating that the solation
is at the upper bound, which is true), non-positive if i* < i (indicating that the solution is
at the lower bound, which is true). Let 8;’ = —u, i € C, i € H (non-negative, indicating
upper bound, which is true).

It is seen that this satisfies the above stationarity conditions and the complementary slack-
ness conditions. We have therefore shown that the specified solution with the specified
choice of multiplier values satisfies the Kuhn—Tucker conditions, and the solution is there-
fore optimal.

It follows that the optimal criterion value is p!.

We now specify another optimization problem, identical to the first one except that maxi-
mization is replaced by minimization. This may be interpreted to mean that the maximal
p-production or the minimum remaining p—demand should be found, relative to the given
total g—production ¢° —¢g.

In a way similar to the above it may be shown that the solution specified by loading order
and dispatch 72” is feasible and optimal in this problem, and that the optimal criterion
value is p2. We omit this.

As p! is obtained by maximization and p? is obtained by minimization it follows that
p* <pl.

As all other sequences and production adjustments are identical with respect to total g—
production, it follows that any end point (g, p) satisfies ¢ = ¢! =¢? and p? < p < p!.

Finally we show that for any p? < p < p! there exists a dispatch that gives the end point
(¢*,p). Let the optimal solutions to loading order ”1” be denoted (g'*, p'*) and (¢**, p?*),
respectively. It follows that,

N N
(@',p") = (Zq}*,ZP}*)
=1 i=1
N N
(¢%,p%) = (Z q?*,Zp?*)
1 i=1

i=1
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For some o € [0, 1] there holds (¢!, p) = a(q}, p) + (1 — &x)(¢?, p?) because g' = ¢* and
p? < p < pl. Therefore also,

(Zaq Zw) (2(1— )a; é a)p?*>

The production (0g}* 4 (1 —a)g?*, ap}* + (1 — &) p?*) on unit i is feasible because (g'*, p}
and (g?*, p#*) are feasible, o € [0,1] and the working area for any unit is a convex set (cf.
Luenberger (1984)). Therefore there exists a dispatch that gives the end point (¢!, p). O

The two Lemmas may be interpreted as follows in relation to the p-overflow criterion:
For a given demand point with associated probability mass and for a given outage pattern
we can calculate lower and upper limits on the p-overflow and unserved p-energy by
performing two calculations, one for each of the two loading orders. Loading order “1”
gives a minimum p-production to any given g-production, and therefore sets the lower

limit on p-overflow. If in particular the end point (ql, p' ) has 0<p' then p-overflow is
zero, otherwise it is —p'. Loading order “2” gives maximum p-production and therefore
sets the lower limit on unserved p-energy. If in particular the end point (q2 D’ )has
p? <0 then the unserved p-energy is zero, otherwise itis p?.
Apart from identifying these limits the Lemmas also may be interpreted to state that any
value between these limits may be attained by a suitable dispatch; this is relevant when
p”> <0< p'. It is worth observing that the desirable dispatch has been shown to exist.
However, it will not actually be calculated by the method.
The assumption underlying the derived result on the desirable dispatch is that in real time
operation the control room operator knows the demand at the given time. He also knows
which units are available, i.e., he knows which outage pattern is relevant for his dispatch.
He is therefore able to perform the dispatch that will give the most desirable result.
The results may therefore be summarized as follows:

e If 0 < p® then the minimum unserved p-energy is p and there is no p-overflow.

e If p' <0 then the minimum p-overflow is — p' and there is no unserved p-
energy.

e If p> <0< p’ then there exists a dispatch so that the end point (p,q) has p=0
implying that there is no p-overflow and no unserved p-energy.

These results refer to a specific demand point and outage pattern. The results suggest
that the quantity EOE” may be calculated from convolution “1” and the quantity EUE”
may be calculated from convolution “2”, whereas EUE? may be calculated from either
(and EOE*=0 by the definition of the heat priority criterion). Further, it is suggested that
there is no contradiction between the objectives of getting small values of EOE” and
EUE’, i.e. that a trade-off between these quantities is not necessary. We now extend the
result in this direction for all demand points. For this purpose, we interpret a specific
outage pattern as a system with fully reliable units.

Lemma 3: Assume that we have a system with fully reliable units (FOR=0) and consider

the heat priority case. Perform the convolution “1” and calculate EOE” and EUE?. Then
perform the convolution “2” and calculate EUE” and EUE".
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Then EOE?=0; the two values of EUE? are equal ; and no dispatches can give lower
value of EOE?, EUE? or EUE?.

Proof: The results of Lemma 2 were derived for one demand point. We first show that
the results may be extended to hold for all demand points treated together.

The derivation of the limits involved in Lemma 2 calls for an optimized dispatch
(minimization in case “1”, maximization in case “2”) for the given demand point and
outage pattern. As shown in the proof of Lemma 2, this optimization is achieved by
applying the units in a specific loading order and using specific loading rules. The
decisive property of this is that the loading of a particular unit depends only on the
convolution in question (“1” or “2”) and on the demand point (g,p) to which it is applied;
in particular, it does not depend on the position of the unit in the loading order nor on
the initial point of demand to which the first unit in the loading order was applied.
Therefore the optimal dispatch is also achieved if all demand points are treated together.

It is observed that the dispatches involved in Lemma 2, one for each demand point, need
not actually be calculated; it is sufficient that they exist, which they do also if all points
are treated together in the convolution. Therefore, it follows that the limits involved in
Lemma 2 still hold, as well as the conclusions concerning the overflows and unserved
energies.

Obviously, the analysis of all demand points for one outage pattern may be interpreted as
a convolution where all the units which are on in that outage pattern are fully reliable.
Therefore, the quantities EOE and EUE, defined in Subsection 2.5, may be calculated
from the convolutions “1” and “2”, respectively. _

From the definition of the heat priority case it follows that EOE?=0, and obviously this
quantity cannot be reduced. The values EUE? will be equal, as follows from Lemma 2,
and it follows from the definition of the heat priority case that they are minimal. Finally,
it follows from Lemma 2 that EOE? and EUE’ may be calculated by convolutions “1”
and “2”, respectively, and that the values are minimal. [J

In the next subsection we extend the result to the normal case of not fully reliable units.
However, first we discuss a graphical illustration of the above results.

Graphical illustration :

We turn to a graphical illustration in line with that of Figure 7, where no extraction units
were introduced. It turns out that it is not straightforward, which is why we take it here
at the end.

There is no need for any special treatment in order to reach the upper expansion line.

In order to reach the lower expansion line, we have to split the extraction units into two
parts. This particular split is possible for two reasons: First it exploits the partial
independence between p and g production on a extraction unit. Second, under the
assumptions taken here we know the particular outage pattern in question, and therefore
no difficulties of a stochastic nature are present.

The first part of the split extraction unit i corresponds to a condensing unit with capacity
¢/ . The second part corresponds to a back-pressure unit with heat capacity ¢! and

back-pressure slope —¢; (negative).

The condensing part is taken into the loading sequence together with the ordinary
condensing units (i.e., first in convolution “2”). The back-pressure part is taken into the
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loading sequence together with the ordinary back-pressure units (where they will come
last, because the back-pressure slope — ¢ is negative).

An illustration is given in Figure 10.

p @s\
A o
0‘5&9 - HOB
hd EXT1
EXT1-Cond
EXT2
EXT2-Cond
BP2
COND
COND
BP2 oS
| %0&5
EXT1-Cv o BP1 ‘b&g\
X)O
'
q

Figure 10 : Loading of the units for the two loading orders.

This way of splitting units will give the same result as described in Lemma 2, as may be
verified by adapting the proof of the Lemma to include split units.

We close with an important observation concerning the loading orders. This observation
is that a condensing unit may be taken at any position in the loading order, without
influencing the result relative to the p’-value of Lemma 2. This also holds if the
extraction units are split into two units as described in relation to the graphical analysis.

In particular, this means that an artificial condensing unit may or may not be placed next
to the artificial back-pressure unit that resulted from a split of an extraction unit. In other
words, this confirms that there is freedom to choose between the originally described
loading order “2”, and the split loading order described in relation to the graphical
analysis, cf. Figure 10. Why then present the different loading orders?

The advantage of the split loading order is that it leads to a neat graphical analysis.
However, this analysis is performed in relation to a given outage pattern, ie.
stochasticity is not present.

The advantage of the loading order “2” is precisely that it takes an extraction unit as one
unit, not two independent subunits. When stochasticity is to be treated this implies that
difficulties concerning dependence between outages of the two subunits do not arise.
Therefore, this loading order is better suited for the subsequent analysis.
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3.4 Results for the heat priority criterion

We are now in a position to see how the quantities EOFE and EUE may be derived for the
heat priority criterion. This is done by performing two convolutions. In the first one, “1”,
units are loaded according to increasing ¢”-values. This convolution, characterized as
minimum p-production for given g-production, is used to determine EOEF and EUE?. In
the second one, “2”, the units are loaded according to decreasing c"-values (non-
extraction units first) and then increasing c’-values (extraction units). This convolution,
characterized as maximum p-production for given g-production, is used to determine
EUEF? and EUE?. Observe that by definition EOE?=0.

Now we extend the above results in two ways as follows:

First, we show that the heat priority criterion yields well-defined minimum values of
EUE?, EOF? and EUF? (recall that EOE?=0). This in particular means that there is no
trade-off between these values.

Second, we show that these quantities may be calculated by performing two
convolutions and we specify the loading orders and production adjustment strategies to
be used.

Proposition:
Consider the heat priority criterion.

Perform two sets of convolutions with loading orders and dispatches as described above,
“1” and “2”. For “1” calculate EOE? and EUE? and denote them EOF*' and EUE ¥ |
respectively. For “2” calculate EUF® and EUE? and denote them EUE"’ and EUE?,

respectively.
Then EQE? = 0 and EUEY = EUE?.
Define EOEP= EOE !, EUEP= EUE", and EUE'= EUE% =EUE®.

Then these quantities are well defined in the sense that no loading order or production
adjustment can give lower values of any of them.

Proof: As shown in Lemma 3 for one outage pattern, interpreted as a system with fully
reliable units, we can calculate the desired quantities FZOE and EUE, and these are well-
defined, minimal values. Obviously, EOE? = 0. For all possible outage patterns these
quantities may be calculated by taking the sum over all the 2V outage patterns of the
quantities, weighted by the respective probabilities of the individual outage patterns. We
shall show that by making a traditional convolution we get the same result.

The derivation of the limits involved in Lemma 2 and applied in Lemma 3 calls for an
optimized dispatch (maximization in case “1” , minimization in case “2”) for the given
demand point and outage pattern. As shown in Lemma 2, this optimization is achieved by
applying the units in a specific loading order and using specific loading rules (dispatches).
The decisive property of this is that the loading of a particular unit depends only on the
convolution in question (“1” or “2”) and on the demand point (g,p) to which it is applied;
in particular, it does not depend on the outage. Therefore, the optimal dispatch is also
achieved if the traditional convolution is applied.

It follows that making a traditional convolution corresponds to adding the 2" outage
patterns, weighted by the respective probabilities of the individual outage patterns.
Therefore, the calculation for all outage patterns may be performed simultaneously in the
form of a traditional convolution. OJ
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Observe that slight savings in computation may be obtained because in the convolution
“1” the condensing units need not be applied in order to calculate EOF = EOE ?' and
EUE? = EUE? . Further, in the convolution “2” the condensing units may be placed
anywhere in the loading order. Thus, by placing them last only that part of the probability
space with p>0 need be considered because the purpose of the convolution “2” is the
calculation of EUF? = EUE” and EUE? = EUE “. And finally, since EUE? = EUE?,
only one of these quantities need be calculated.

The application of the proposition is illustrated in Figure 11. The plants of the CHP
system used are described in Table 1.

Unit Type FOR Capacity c" c’
Heat Power
Ml/s - MW MW/(MJ/s) | MW/(MJ/s)

HOB Heat unit 0.1 1000

COND Condensing unit 0.1 300

BP1 Back pressure unit 0.1 250 100 0.40

BP2 Back pressure unit 0.1 200 150 0.75

EXT Extraction unit 0.1 500 575 0.80 0.15

Table 1 : Plant data.

Figure 11 shows the two frequency functions after convolution with minimum power
production relative to heat production (convolution “1”) and maximum power
production relative to heat production (convolution “2”). In convolution ”1” the units
are applied in the loading order HOB, BP1, BP2, EXT, and COND, while in convolution
“2” the loading order is COND, BP2, BP1, HOB, and EXT.

00.07-0 08
w0.06-0.07
70.05-006
m3.04-005
©0.03-0.04
00.02-0 03
®001.002
w0 00-0 01

016018
©0.140.16
B80.12.0.14
=n0.100.12
m0.080.10
00.06-0.08
00.040.06
90.02.0.04
®0.00.002

Figure 11 : Frequency functions after convolution.
Left ; Minimum power production relative to heat production.
Right : Maximum power production relative to heat production.

Figure 12 shows the corresponding marginal frequency functions for heat and power.

26 Rise-R-968(EN)




Marginal frequency function for Heat Marginal freguency function for Heat
0.0014 + 0.0014 ¢
0.0092 0.0012 +
0.0010 0.0010 4 M. = 0.9905
Max. = 0.9905
0.0008 0.0008 {
0.0006 0.0006
0.0004 1 0.0004
0.0002 k 06.0002
0.0000 At~ —- 0.0000 ——t +———+ +—+ +—+ +— F
«
S EEEEEEEEEREEREEEREE $° 8328838838383 83288¢83%3
Heat (MJ/s) Heat MJ/s]
Marginal frequency function for Power Marginal frequency function for Power
0.08 e 0.08
0.07 007
0.06 0.06 4
Max. = 0.1751
0.05 0.05
004 0.04
0.03 0,03
0.02 002
0.01 0.01
0.80 e it o et a o o
8283 °8 238888385888 8¢8¢F¢% § 23§ 38323 883§ 3
Power [MW] Power [MW]
Marginal frequency function for Marginal frequency function for
overflow power production unserved power demand
0.0025 0.007
0.006
0.0020
0.005
2.0015 0.004
0.0010 0.003
0.002
0.0005
0,001
0.0000 e — ot — °
- =5 @ - o e o @ o o P et + +—+ + = +
8 8 § 8§ § § 8 8 8 8 ®R 8 % g 2 &8 2 8§ E 8§ 8 8§ &8 8 B8 8
Power [MW] Pawer [MW]

Figure 12 : Marginal frequency functions after convolution.

Left : Minimum power production relative to heat production.

Right : Maximum power production relative to heat production.
Observe that the two marginal frequency functions for heat (top graphs) are identical.
The two bottom graphs in Figure 12, indicating the overflow power production and the
unserved power demand, are enlargements of the left and right parts of the middle graphs
in Figure 12.
By taking the two bottom graphs of Figure 12 together, as shown in Figure 13, we get a

marginal frequency function for the unbalances between power demand and production,
i.e. the power overflow and the unserved power demand. Most of the power demand is

satisfied exactly. This gives a large probability value at p =0 (not shown in the figure).
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Figure 13 : Marginal frequency function for the unbalances between power demand and production.

We conclude by specifying how the production levels during convolutions may be
reduced in order to avoid g-overflow. This subject was postponed in Subsection 2.3,
because we needed the above results.

Consider a point which before convolution of unit # has coordinates (q,p‘), with

0< §<c§ . For this point the production level must be reduced.

Consider first a unit loaded on the back-pressure line with slope ¢’ (a heat unit, a back-
pressure unit, or an extraction unit in the convolution “1”). The production of this unit
should be (sci,sc’), where the scalar s has the value s=¢g / ¢?. The resulting

remaining load from the point ((7 , 'p‘) will then be located at the position (Fj , ﬁ) -
(sc,‘f ,s¢f ) =(0,p —scl).
It follows that the convolution formula (5) for values on the p-axis should be substituted
by
1
£00.9)=(1-1,)] £,..(sc?, s Yds+1.£,.,(0. ) (14)

Consider now the convolution “2”. Here, an extraction unit is loaded along the c’-line. It
follows that for this unit the formula (5) should be substituted by,

fn(oap) = (l—rn)_':fn—l(sc;l’c: —sc,’fc:)ds+rnf —1(O>p) (15)

For heat unit and back-pressure units we still use (14).

For condensing units (5) still has validity in both convolutions, “1” and “2”, as this unit
will not generate g-overflow.

This section concludes the basic development of the method since it shows how to find
the quantities FOE and EUE for the heat priority case.

The method, as presented here, deals with one heat area only. We expect that it will be
straightforward to extend the method to deal with more than one heat area for the heat
priority case. However, we omit further discussion on this subject.

Therefore, we now turn to questions of implementation.
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4. DISCRETIZATION AND ANALYTICAL
REPRESENTATIONS

The above analysis indicates that certain functions have to be identified and certain
calculations have to be performed in order to derive quantitative results. This may be
done in various ways, see e.g. Lin et al. (1989) or Caramanis et al. (1983).

A discretization of the probability space may be used, as we shall discuss in Subsection
4.1. Also a continuous representation of the probability space may be adopted, using
approximations by analytical functions. This will be discussed in Subsection 4.2, and
specialized to the Fourier series in Subsection 4.3.

In general there are the following three essential steps in applying the method:
1. Identification of the initial probability function ( fo orE,).
or F

n+l 2

2. Convolution, i.e. generation of f,,, from f, or F, and the characteristics
of unit n+1.

3. Calculation of desired quantities EUE , etc.

We discuss numerical methods in relation to these steps.

4.1 Discretization

The idea of this method is first to discretize the state-space for (x?, x?) into squares and
then treat all probabilities as discrete probabilities.

For specificity, assume that a grid with 25 [MJ /s] x 25 [MW] squares is used. This is
interpreted to mean that all probability mass is located at points (251‘ , 25 j) , where i and j
are integers. The probability mass in a specific point (x,.‘i, xj’*) = (25i*,25 ¥ *) is assumed
to represent all the probability mass distributed over the square with x?-co-ordinate
satisfying ~ 25i* - 12.5<x? <25*+125 and ¥ -co-ordinate satisfying
25j*-125<x? <25j*+125.

The advantage of the discretization procedure is that it is relatively straightforward to
conceive and implement. The disadvantage is that some errors are introduced, as we now
explain in relation to the three steps of the introduction to Section 4.

When we identify the initial probability function (Step 1) an error may or may not be
introduced, depending on how the initial function is given. If it is given as a discretized
function with the same grid-size then actually no error is introduced in defining
f, and / or F. Otherwise (i.e. the initial function is given as a discretized function with
different grid-size or it is given as a continuous function), an error will almost certainly
be introduced.

In the second step (convolution) errors will most probably be introduced, due to
inconsistencies between the grid-sizes and the magnitudes c¢?, c’and c? /c?of the
individual units. In one-dimensional analysis this may be avoided by applying grid-sizes
that are consistent with the capacities (see e.g. Lin, Breipol and Lee (1989)). But with
two or more dimensions this is most unlikely to be avoidable. Thus, ad hoc
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approximation and interpolation must be developed (see e.g. Sendergren (1994) for
ideas).
Finally, in Step 3 no additional error will be introduced.

The computational complexity of the discretization method may be indicated as follows:
Assume grid-sizes so that a total of D’ grid squares cover the relevant gp-area. Then
convolution of one unit requires arithmetical operations proportional to D?, and one set
of calculations for N units will require arithmetical operations roughly proportional to D?
N. Therefore, e.g. a halving of the grid-length in each of the two dimensions is paid for
by a four times longer computational time.

Alternative implementations

The above description was based on the idea of an adjustment of the production of unit
n, if full production would give overflow that was undesirable according to the criterion
applied (in our basic case: heat priority). This results in an accumulation of probability
mass on the p-axis.

Now we describe an alternative idea: Rather than collect probability mass at the p-axis,
we shall save this probability mass in a different function called f . We exploit the
insight gained in Subsection 3.4.

The computational complexity of this alternative method is the same as that above, i.e.

D? N. The advantage is that it points to ideas that are more convemently handled in
connection with continuous functions, cf. the next subsection.

Following the convolution of unit #, and prior to the convolution of unit n+/, a
corrective calculation is performed. The aim is to find out what the result would have
been if the load had been adjusted according to the heat priority criterion.

Consider first a unit loaded on the back-pressure line with slope ¢ (a back-pressure unit,
or an extraction unit in the convolution “1”, yielding minimum p-production to any g-
production, cf. Subsection 3.3).

We define the function f,:R—» R as that which holds the probability mass at the p-

axis. We define f, ( p) = 0 . After convolution of unit » we define,
7p)=Fa(p)+ a=-r)f £.(a.p+cla) dg (16)

where ¢ =c?.

For n=N this function therefore holds the probability that the g-load has been exactly
fulfilled, while the resulting p-load has the magnitude p. The p-overflow may be
calculated (c.f. also (13), and Subsection 3.4) as

EOE” =~t[_pfu(plp—+|_p[fvla. p)dadp a7

Now consider a unit loaded according to the convolution “2” of Subsection 3.3. Again a
back-pressure unit is loaded along the ¢” -line, while an extraction unit is loaded along
the ¢’-line. The argumentation proceeds as above. We reach the same expression as in
(16) for the contribution of the back-pressure unit, while the similar expression for the
extraction unit is,

a-r)f f.a.p-clq) dq (18)
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where c=c!.
The FUE? formula corresponding to (17) will be,
EUE” = <[ pfy(pMp + | p[fv(a. p)dgdp (19)

The main conceptual difference between the two methods is that a certain part of the
probability mass in the first method is contained in a specific segment of f, (viz., along
the p-axis) while in the alternative method this part of the probability mass is contained in

the specific function £, .

The implementation of this idea in the discretized method is straightforward. The results
are, of course, the same. And the complexities of the calculations are also the same.

The purpose of introducing the alternative version here is therefore to be able to have a
parallel, in the discretized version, to what will be applied in the next subsection on
analytical representations. :

The difficulty with the version presented first, in relation to the analytical representations,
is that the functions £, for »>1 will display a discontinuity along the p-axis. By storing
a certain part of the probability mass in the function f,, this discontinuity is avoided,
facilitating the analytical representation.

4.2 Analytical representations

In the above we have been working with a discrete representation of the distribution
and/or frequency functions. This means that in the one-dimensional case the functions

F, and/or f, are defined in discrete points x;,j=1,...,J, through the values F,,(x].)
and/or f, (xj).

The advantage of this approach is that it is relatively straightforward to explain and also
relatively straightforward to implement in computer calculations. Moreover, f,or F, will
often be given as such discrete functions, based on underlying data material. However,
the calculation may be time consuming. The key part of the calculations is to perform the
convolution. It is therefore desirable to find other ways.

A number of techniques have been proposed that exploit an approximations of the
functions involved by analytical functions. This permits a derivation of convenient
relations between F and F, (and between f,,, and f,). In particular, relations

n+l 2
between the statistical aspects, cumulants and moments (see Rau et al. (1980), Stremel et
al. (1980)) of the functions are exploited.

In applying the convolutions there are essentially the following three steps as defined
earlier:

1. Identification of f5 or Fy.

) from f, (oan) and from
characteristics of unit #+1 (the FOR r,,, and capacity (working area)).

2. Convolution, i.e. identification of £, (orF

n+l

3. Calculation of EUE, etc., to be performed as an integration of f,, or calculation
of values of F,,.
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Analytical functions will typically be given as a finite series, i.e., of the form
X
F(x)=2 c;p"(x) (20)
k=0

where c* is a coefficient and ¢* is a given function; a similar expression is used for f,.

The above three steps may therefore be reformulated as,
1. Identification of ¢, £ =0,...,K

2. Identification of c*, from c*, k¥ =0,...,K and characteristics of unit n+ L.

n+l

3. Calculation of values or integrals of ¢*,k=0,...,K.

As a simple example, assume that F, is one-dimensional and given as a polynomial of
degree K, i.e. 9*(x)=(x)":

X
F(x) =2 k(0" @1)
k=0

The first of the above steps may be performed by determining ¢!,k =0,..,K, e.g. by
minimizing the sum of square of deviation between defined in (21), and the given
function F"O, say . In other words, the ¢, are determined by solving the problem,

w5 (Ba))-r6)] | e

j=1
with respect to the variables ¢, ,k =0,...,K. The distribution function given originally

}70 is here assumed to be defined through the J values Fo(x ; ), j=1..,J.

The convolution is defined as,

Fn+1(x) = rn+1Fn(x)+(1 - rn+])Fn(x + fnﬂ)
=r,,+1(}K:c,’f (x) ] 1-r) k(e 7, ) (23)
k=0 k=0

Obviously the expression is again a polynomial of degree K, and the values of the
coefficients c’,, may be determined analytically, so that ., may also be written in the
form (21). Finally, a calculation of values Fy may be performed analytically term by term.
The polynomial approximation therefore permits the three steps to be performed.
However, as is well-known, it is not desirable to us the polynomial (21) as
approximation. This is to say that this approximation is weak in relation to step 1 above.

Rather, orthogonal functions should be used in order to have better approximation
performance.

Therefore, the task is to find series that combine good approximation properties (in
relation to step 1) with convenient formulas for the two other steps.

In the one-dimensional analysis the following functions have been used : Gram-Charlier
(Rau, Toy and Schenk (1980)), Edgeworth (Levy and Kahn (1982)), Legendre
(Jargensen (1990)), Mixture of Normals (Gross, Garapic and McNutt (1988)) and the
Fourier series presented below.
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4.3 The Fourier Series

In the sequel we analyze the application of the Fourier series in the two-dimensional
analysis. Apparently this series has been used only in the one-dimensional case in Lin,
Breipol and Lee (1989), Rau and Schenk (1980) and in Jenkins and Vorce (1977).
However, only the first one of these works has been available to us.

The two-dimensional analysis below includes the one-dimensional analysis as a special
case, and as such it contributes to the one-dimensional analysis as well.

For an introduction to multidimensional Fourier series see Canuto et al. (1986), and see
Press et al. (1992) for computational aspects.

In relation to the double Fourier series f, (or ) may be defined as follows, with / and J
indicating the number of terms in each dimension

£, (x, y) = i ZJ:(CJ” ) sin (ix) sin ( jy)

i=0  j=0

I

n

+ (cj) cos (ix) cos ()

n

(cf)n sin (ix) cos ( jy)

M- 1DM- 1M

+

+
MN EDMN TOTMs.

(c,.;“ ) cos (ix) sin ( jy) 24

n

H

il
<
L
Ji]
(=

Figures 14 and 15 show the ability of the Fourier series of representing the marginal
frequency functions for heat and power demand. Figure 17 gives the same information
for the two-dimensional frequency function.

Discrete and Fourier representations
0,12 of the marginal frequency function for heat demand
0.11 +
0.10 +
0.09 +
0.08 L Discretisation :
25 MJ/s
0.07 + )
0.06 +
0.05 +
0.04 +
0.03 4
0.02 +
0.01 +
0.00 =ttt ettt e
o o (o) =] o o o o (=] (] o o o (o]
o o [} o o o o (] (=] o Q Q
- o ™ < wn (e} N~ © (=] e “: (‘\_l ‘t">_
Heat [MJ/s]

Figure 14 : Comparison of discrete and Fourier representations of the marginal
frequency function for heat demand.
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Discrete and Fourier representations
0.08 of the marginal frequency function for power demand
0.07 +
Discretisation :
0.06 1 25 MW
0.05 +
0.04 +
0.03
0.02 +
0.01 +
0 T T : : : T : 1 ; ¥ %";7: I I I 'lil l I T "lfl I I I 'I | I I-IWML-“MLﬂv!I;
o Q o (] (o] (=] [} o (=] [ o
o o o o Q Q (=] o o o
-~ N ™ < w © I~ <« [+>3 S
Power [MW]

Figure 15 : Comparison of discrete and Fourier representations of the marginal
frequency function for power demand.

Now we discuss the application of the Fourier series in relation to the three steps:

Step 1

The first step is to identify f, and/or F;, i.e., to determine the coefficients (c,.j)o. We

discuss it in relation to £, only, as F; may be treated similarly.

The data representing the two-dimensional demand function, conceived as a joint
probability frequency function, will typically be given as values in discrete points. Thus,

for each index pairs (a,b), a=1,...,4, b=1,...,B, we have values on (qa , pb), representing
the probability of having demand ¢, p, , corresponding to the index pair (a,5).
During the convolution of the units the function f, will be shifted in the downwards and

leftwards directions in the (g,p)-plane. Therefore, the function f,must be defined in
order to accommodate this.

Thus, let g;** be the largest value of heat demand which will be assumed to occur. It is

ax

assumed that g;™ is a finite value. Similarly the finite value p7™ is the largest power

demand which will occur. Then the function fo must be defined with g-arguments up to
" =q;" + Z c! (25)
and with p-argument up to

=p7 +Zc" (26)
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In this, heat units have ¢ = 0 and condensing units have ¢? = 0.

All the values (q,p) within the rectangle 0<g<g™, 0<p<p™, for which no
demand is expected, will be defined with fo (q, p) =0. By definition this holds for
q;" <q<q™ andp;” < p<p™

The Fourier series is periodic with period 27 . In order to apply it to the given problem
we consider only one period. Further, we scale the variables so that the g-interval

[O,q““"] is mapped onto [0,27[] , and the p-interval [O, p“‘a"] is mapped onto [0,27r] .

This is accomplished as follows: Define

4= 0™ ,a=0,.,A @7)
b max
D, :—g-p ,b=0,.,B (28)

Then the coefficients are given by expressions similar to the following one :

s SB3 2nq, ) . J27p
(cij )0 = T max , max max max ; ; fo(qa>qb)S1n( qmax )Sln( pmaxbj

Howeyver, observe that the formulas depend on the specific definition (24) given, and in
particular also that advantage may be taken of a reformulation using complex numbers,
see Press et al. (1992). :

Step 2
We now specify how to perform step 2, the convolutions. For this we have the following
result: '

Proposition (Convolution Formula for Double Fourier Series):

Assume,
=% () sn s )
+z Ji(c;”) cos (i) cos ()
+zz () s ) cos ()
+z é(cﬁ) cos (i) sin ()

Define,

For(%.9) = Panfie,3) + (= P ) x4y + )

Then f,.,; may be written in the same form as £, , and the coefficients are given as,
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) sin (jdy)— (c;s)n sin (idx) cos (jdy)]
(c,.jc)wr1 ( ) (1 1)[( ,.’.‘) sin (idx) sin (jdy)

+\c; ) cos zd cos(]d

+ (c,.j.°) sin (zd ) cos (]dy) + (c,.j.’) cos (zd ) sin (jdy)]

Proof:

We use the formulas,
sin (a+b) = sin (a) cos (&) + cos (a) sin (b)
cos (a+b) = cos (a) cos (b) - sin (a) sin (b)
to rewrite the series expression of f,, (x+d,, y+d,):

Jo (x+dy, y+d,) =
Z]: i(c;s) (sin (ix) cos (idx) + cos (idx) sin (idx))

(sin (jy) cos (jdy) + cos (jy) sin (jdy))

+ZI‘; i(cgc) (cos (ix) cos (idx)— sin (ix) sin (idx))

=0 j=0

(cos (jy) cos ( jd, ) sin (jy) sin (jay) )
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+

(cg,‘) (sin (#x) cos (idx) + cos (ix) sin (idx))

n

M-

I
=0 j

(o5 (1) cos ) sin (1) sin (s,

i
(=]

(cf) ( cos (ix) cos (idx)— sin (#x) sin (idx ))

n

+
.M‘*

-.
i
[=3

-,

J
=0

sin ( jy) cos (jd y) + Cos (jy ) sin (jdy ))

—,

Substituting this into the definition of f,.; , using the definition of £, and rearranging
terms we get the desired result. O

Again advantage may be taken of complex notation.

Step 3
In Step 3 we calculate the quantities EOE and EUE.

Using the frequency function f, and using Subsection 2.5 and the alternative

implementation defined in Subsection 4.1, the required calculations may be performed
term by term.

In conclusion we see that it is possible to perform the operations required in the three
steps when using the double Fourier series.

We finish this section by an example.

The data in this case is sampled in 25MJ/s intervals for heat and 25MW for power.
Figure 16 shows the sampled two dimensional histogram for heat and power. Actually,
Figure 3 and 16 show the same data.

In order to define a big enough envelope for the data set, to be able to represent it by the
periodic Fourier series, we must know the maximum load and the capacities of the
plants. The capacities shown in Table 1 indicate a minimum envelope of 3025M1J/s for
heat and 1600MW for power. In terms of 25MJ/s x 25MW intervals, this leads to
121x64 points, which are rounded to 128x64 to improve the speed of the FFT routine
(see Press et. al. (1992)). '

Figure 17 shows the interpolated frequency function. The function is shown with point
in between the 25MJ/s x 25MW intervals, as well as the original points. This is done to
give indication of the oscillatory nature of the Fourier interpolation. Some small
oscillations can be observed in the figure, but it seems to fit well to Figure 16.

The next two figures show the functions f and 7 with the first plant loaded. Note that
the two dimensional mesh is periodic so the data appears at the corners of the mesh.

The following figures show the two functions as they are generated by loading the
remaining units.
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Figure 16 : Sampled histogram with 25MJ/s X 2SMW sample intervals.
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Figure 17 : Frequency function with 12.5MJ/s x 12.5MW intervals.
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Figure 18 : Frequency function with first plant loaded.
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Figure 19 : The auxiliary function f with first plant loaded.
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Figure 20 : Frequency function with second plant loaded.
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Figure 21 : The auxiliary function f with second plant loaded.
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> ! 1 ! ! ! ! !

S U PERES e — A e _—
I — SO - _— - \oo _—
I — SN S S o e R
S SUNINE RIS A — e iy

10k S SRRURUUUUN U ORI L SR AP N

I i L L 1

Power [MW]

-5 i )
-800 -600 -400 -200 0 200 400 600 800

Figure 23 : The auxiliary function 7 with third plant loaded.
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Figure 24 : Frequency function with fourth plant loaded.
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Figure 25 : The auxiliary function f with fourth plant loaded.
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Figure 26 : Frequency function with fifth plant loaded.
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Figure 27 : The auxiliary function f with fifth plant loaded.
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Figure 28 :Same as Figure 26, but with the power axis moved half a period to show the
residual heat demand more clearly.
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5. CONCLUSIONS

A probabilistic production simulation method has been presented for an energy system
containing combined heat and power plants. The method permits incorporation of stochastic
failures (forced outages) of the plants and is well suited for analysis of the dimensioning of the
system, that is, for finding the appropriate types and capacities of production plants in relation
to expansion planning.

The method is in the tradition of similar approaches for the analysis of power systems, based
on the load duration curve. The present method extends on this by considering a two-
dimensional load duration curve where the two dimensions represent heat and power.

The method permits the analysis of a combined heat and power system which includes all the
basic relevant types of plants, viz., condensing plants, back-pressure plants, extraction plants
and heat plants.

The focus of the method is on the situation where the heat side has priority. This implies that
on the power side there may be imbalances between demand and production. The method
permits quantification of the expected power overflow, the expected unserved power demand,
and the expected unserved heat demand.

It is shown that a discretization method as well as the double Fourier series may be applied in
algorithms based on the method.
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