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Abstract 

X-ray energy dispersive diffraction is used mainly for structural characterization 
of polycrystalline powders and amorphous materials. One of the important 
features of it is the fixed scattering angle facilitating in particular studies of 
materials in special environments (e.g., high pressure, high and low 
temperature). There are two versions of x-ray energy dispersive diffraction. In 
one - called XED - an incident "white" beam is used and the spectral distribution 
of the diffracted photons is analyzed by means of a solid state detector. Its 
important feature is the simultaneous appearance of all reflections. In the other 
version - called monochromator scan method (MSM) - the incident beam is 
monochromatic and its wavelength is changed stepwise by rotating the crystal 
monochromator. 

The lecture notes describe both versions and present examples of their 
applications. 
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PREFACE 

These lecture notes give a brief review of the X-ray energy-dispersive diffraction 
methods and presents several examples of its applications to structural studies of 
solids at high pressure and of amorphous materials. The review has an 
introductory character and does not pretend to be comprehensive. It is assumed 
that the reader is familiar with structural analysis of powdered crystals and 
amorphous materials performed by means of the monochromatic beam angular 
dispersive method. 

The lecture notes are partly based on the review "Application of energy-
dispersive diffraction for characterization of materials under high pressure" by B. 
Buras and L. Gerward to appear in "Progress in Crystal Growth and Charac­
terization" edited by P. Krishna, Pergamon Press. 
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1. INTRODUCTION, THE XBD AND MSM WHITE BEAM DIFFRACTION 
METHODS 

There are tw_ versions of tie X-ray energy dispersive methods (Fig. 1). In both 
the scattering angle 20Q is fixed. In the first version - called briefly XED - the 
beam impinging on the sample is a polychromatic ("White") one and the photon 
energy distribution of the scattered beam is analysed by means of a solid state 
detector (SSD) connected to a multi-channel pulse height analyser (Fig. la). One 
obtains an x-ray diffraction pattern: scattered intensity I«>(E) versus photon 
energy E. An example of such a pattern is shown in Fig. 2. 

M /{/white 

„X< 

l290-
Proportional 
counter 

(b) 

Fig. 1. X-ray energy dispersive powder methods: the XED method (a), and the 
MSM method. M - monochromator, S - polycrystalline sample. 
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In the second version - called monochromator scan method (IISM) - a 
monochromatic beam is impinging on the sample (Fig. lb). Its wavelength 
(photon energy) is in the course of measurements changed step-by-step by 
rotating the monochromator. The intensity of the scattered X-rays is measured -
separately for each photon energy - by a proportional counter. A SSD is not 
required. As a result one obtains an x-ray diffraction pattern: scattered intensity 
Io(E) versus photon energy £, similar to that given by XED. 
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Fig. 2. XED diffraction pattern from BaTiC>3 powder recorded in 1 second at 
DORIS (3.7 GeV, 14 mA, Ec = 9.25 keV) with an ultra pure 
germanium detector. 

It should be noted that both XED and MSM are in fact white beam methods, the 
difference being that in XED all photons present in the white beam are scattered 
simultaneously regardless of their energy, while in MSM they are scattered one-
by-one depending on their energy. As a consequence the formula to be used in a 
crystal structure analysis is the same in both cases. For historical reasons they 
will be derived in conjunction with the description of the XED method. 

The lecture notes discuss the XED method in some detail and MSM one only very 
briefly. 
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2. GENERAL INFORMATION ON XED 

The method invented in 1968 [1,2]* is primarily applied to studies of 
polycrystalline samples and thus the following discussion is mainly devoted to 
this case. Structural studies of disordered materials are discussed in Section 7. 

As already mentioned in the introduction and depicted in Fig. la the XED is a 
white beam method. Each set of crystal lattice planes of the powdered sample of 
spacing dH (H indicates the Miller indices of reflection HKL) selects from the 
incident white spectrum photons of energy EH (wavelength AH) fulfilling the 
Bragg equation 

he 12.398 (keV A) , . . 

(h is Planck's constant, c the velocity of light), and reflects them into the detector. 
Figure 2 shows an example of a pattern measured at the synchrotron radiation 
source DORIS (Hasylab, Hamburg, FRG). The Bragg equation is usually written 
in a more convenient form for XED: 

dH- E,, 5in6o = C = 6.199(keV A) * l D* 

The integrated intensity of a reflection recorded by the detector along a unit 
length of the Debye-Scherrer ring is given by the formula 

(2) 
IH = Clio<E)E-W q(E)A(E,eo)Cp(E,eo)lHsin-\Aeo 

where C is a constant for a given experiment, io(E) the incident beam intensity 
per unit energy range, j the multiplicity factor, F the structure factor including 
the atomic scattering factors and the temperature factors, q(E) the detector 
quantum efficiency, A(E,80) the attenuation factor, Cp(E,0o) the polarization 
factor and A60 is a convolution of the incident and diffracted beams divergences. 
All values in the square bracket should be taken for the H reflection. The formula 
is derived in Sections 3 and 4. 

From the positions EH of the reflections in the energy scale, recorded by the solid 
state detector (see Fig. la), and the known scattering angle 260, one calculates a 
set of interplanar spacings dH using eq. (lb). From the diffraction pattern, one 
calculates the integrated intensities IH- Then by means of eq. 2 one can calculate 
a set of structure factors [J|F|]H, provided that [i0(E), q(E), A(E,60), Cp(E,e0)]H are 
known. These factors are discussed in Sections 3 and 4. 

With a set of interplanar spacings dH and a set of structure factors (J|F|]H one may 
determine the structure of a given sample in the same way as in the case of the 

* An annotated bibliography covering the years 1968-78 can be found in ref. [3]. 
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angular dispersive method. The latter is described in great detail in the literature 
and thus is beyond the scope of these lecture notes. 

The main characteristic features of the energy dispersive method differing from 
the x-ray monochromatic beam (angular scan) method, are the following: 

(a) The incident beam is polychromatic ("white"), 
(b) The scattering angle 20o is fixed during a measurement but can be 

optimized for each particular experiment. There is no mechanical movement 
during the recording. 

(c) The detector is an energy-dispersive one, 
(d) All reflections are recorded simultaneously, 
(e) The counting time is relatively short due to the high detector efficiency and 

simultaneous recording of reflections. 

There are many applications of the method. By far the most important are studies 
of structural transitions. In this case the simultaneous appearance of all 
reflections and the short exposure times are essential. The fixed geometry is very 
convenient when cryostats, furnaces or high pressure cells are used (only one 
inlet and one outlet window are necessary). XED is also very useful, among 
others, for structural studies of amorphous materials and textures, see sections 7 
and 9.2, respectively. 
A white (polychromatic) x-ray beam can be obtained from X-ray tubes 
(Bremsstrahlung) and from synchrotron radiation (SR) sources. The discussion in 
the present lecture notes is limited to SR. However, references are also made to 
experiments using x-ray tubes because each of these experiments could be made 
also with SR, though the opposite is not always true. 

3. THE FORMULA FOR INTEGRATED INTENSITY FOR 
POLYCRYSTALLINE MATERIALS [1,4] 

In the XED and MSM methods the relation between the integrated intensity and 
the structure factor is different from the one in the angular dispersive method. 
The basic formula valid for both XED and MSM is derived below within the 
framework of the kinematical theory of diffraction beginning with the classical 
formula for the power IC,H of a monochromatic beam of wavelength Ao diffracted 
by a non-absorbing powder sample [4], For the basic formula it is assumed also 
that both the efficiency of the detector and the attenuation factor are equal to 1. 
All corrections are included later. For the whole Debye-Scherrer ring we have 

» • ° 4«n9B P B v 2 
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where r« is the classical electron radius, SV the sample volume, V the unit cell 
volume, OB is the Bragg angle and AA the spectral width of the incident 
•Maochromatic radiation. The meaning of the other symbols was already 
explained in Section 1. The reason we write the polarisation factor as Cp(E,OB) 
and not (1 +cos22GJ/2, as we do in the angular dispersive method, will become 
dear in Section 4.1. It should be noted that io(A)AA is the intensity of the incident 
beam usually denoted by I» in the angular dispersive methods. In the latter 
methods AA is defined either by the spectral width of the characteristic line or by 
the spectral width of the monochromatic beam obtained by means of a single 
crystal monochromator. In the white beam energy dispersive method AA depends 
on the overall divergence A0o of the incident and diffracted beams. By 
differentiation of the Bragg equation 

2da«e = X ( 4 ) 

with d constant one obtains 

AA = A- cote A8 *5 ) 

and the formula for the integrated intensity in the white beam energy dispersive 
method is 

I i cMB - A8 SV / e . 

o 

for the whole Debye-Scherrer ring. All values in the bracket are taken for the H 
reflection. 

If the detector of length € (along the Debye-Scherrer ring) is located at distance R 
from the sample then the measured integrated intensity is £/(2nR»n260) times 
smaller and thus 

' I I 8V i?- t i . . i 8V Aa (7) 

!H V • 
As mentioned in Section 1, the diffracted intensity is recorded as a function of 
photon energy. It is therefore convenient to express the integrated intensity in 
terms of the photon energy, which is related to the wavelength by the wellknown 
expression 

E = £ = ! i i ( k e V . A). (8) 
A A 

The incident beam intensity per unit wavelength range, io(A), is related to the 
intensity fer unit energy range, i0(E), through 
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UK I B* (9) 
i . U > = i . ( » | - | = i . < E , - » 

From eqs. (7), (8) and (9) one has 

wnere Co = (hc)*ro,f-8v7(16nRV*) is constant for a given experiment. 

In order to obtain the full formula one must multiply I*H with a detector efficiency 
factor q(E) and an attenuation factor A(E,u»). Finally one gets 

IH = CJi#(B)B-^f*|(BA(B.e-)Cr(E,e^«a-\A0# 

For a given experimental set-up both &» and A6» are constants and can be 
included into the constant C©- One then obtains 

(12) 
i H = a i t ( E W - W n<B)A<E,e-)Cr<R.ejiH 

with 

• • • 

It follows from the formula (12) that calculations of the structure factors from the 
measured integrated intensities require the knowledge of the spectral distribu­
tion io(E) of the incident beam. It should be noted that for a fixed magnetic field 
bending the electron trajectory the spectral distribution of S.R. depends only on 
the electron energy. The fact that the spectral distribution is independent of the 
electron current is important because in a storage ring the current decreases with 
time. In the case of SR the spectrum i0(E) can be calculated in the first 
approximation from the storage ring parameters taking into account the 
attenuation of the beam by all materials which it penetrates on its way between 
the source and the sample. It can also be inferred e.g. from a diffraction pattern of 
a known sample. 

4. CORRECTIONS TO THE FORMULA FOR INTEGRATED INTENSITY 

4.1. Polarization Factor |5| 
The polarization factor Cp(E,60) depends obviously on the polarization of the 
incident beam, P(E), which is known to depend on the photon energy E. P(E) is 
defined with respect to a given plane as 

l»(B) = |i JE)-1 (E)Wi (E)+i (E)l ( 1 4 ) 

o,p op ojf oft 

where i0|p(E) and i0,n(E) are the parallel and normal components cf the incident 
beam intensity with respect to this plane. 
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When dealing with synchrotron radiation, the polarintionPXE) is usually defined 
with respect to the plane of the electron orbit which is horisontal. Synchrotron 
radiation emitted by electrons on an ideal orbit is rally polarised, with the 
polarisation vector in the plane of the electron orbit In the case of a non-ideal 
electron orbit, the usual case, the radiation is not fully polarised in the orbital 
plane. However, the polarisation P(B) can be calrulatrd in the first approximation 
from the parameters of the storage ring. For more precise knowledge of the 
polarisation it should be measured (see eg. ref. 5b). 

For an incident non-polarised beam, the polarisation factot, as is well known, 
equals 

1+«™. (15) 
v—«— 

For an incident beam with a degree of polarisation P(E) the polarisation factor in 
the kinematical approximation equals [5a] 

Cf&fiJ= -[l+CMfte.-røkMZa- an*2v#) (16) 

where a is the angle between the plane defined by the incident and diffracted 
beam directions and the plane with respect to which the polarisation PXE) was 
defined. In the case of synchrotron radiation the latter plane is horisontal and 
thus for scattering in this plane a = Oand 

C (B,e XberåonUD = -[1 +eMfa> -Pf&mh* ] (17) 
9 • 2 • • 

and for scattering in the vertical plane a = 90* and 

C (E,0 XvtrtkeD = -(1 +cm*2e + P ( E W 2 0 1. (18) 
9 • 2 • • 

As mentioned above in the case of a storage ring P(E) can be calculated and thus 
also Cp(E,0o). When no great precision is required one can assume that P(E) •* 1 
and thus 

(19) 
C (E,8 XhornonUl) - mføe 

9 • • 

C (MJfrannaD • 1 ( 2 0 ) 

As shown in Fig. 3 there exists in the case of a horisontal scattering plane a 
"blind" region around 20" = 90*. A vertical scattering plane is much mon 
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favourable because for all energies and all scattering angles Cp(E,90)(vertical) ** 
1. However, the mechanical construction of the diffractometer, mounting of 
furnaces, cryogenic equipment etc. are easier to handle when the x-rays are 
scattered in the horizontal plane. 

10 

I 
c, 

03 

Ql . . . . i • . . i . i • t « » . . . . I 
O 90 60 0 0 ' 1 3 0 - ISO 100 

2<Udtg)-~ 

Fig. 3. The polarization factor CP(E,8C) for a powdered sample calculated for a 
horizontal scattering plane and an ideal electron orbit. 

It has been shown [5a] that the beam can be treated as unpolarized when the 
angle between the scattering plane and the plane of the electron orbit is 45°. 

4.2. Attenuation factor A(E,80) 
Well established methods and formulas exist for calculating the attenuation 
factor for the monochromatic beam angular dispersive method. In the energy-
dispersive method the photon energy (wavelength) changes from reflection to 
reflection and thus one calculates the attenuation factor separately for each 
reflection using the above mentioned methods and formulas. As a consequence, 
the attenuation factor is a function both of photon energy and scattering angle. In 
the calculations one can use within a good approximation the energy 
corresponding to the peak position. Attention should be called to the fact that 
changes of the absorption as function of photon energy are rather dramatic, in 
particular at absorption edges. 

4.3. Solid state detectors; callibration; quantum efficiency 10] 
A solid state detector transforms the energy of an absorbed photon into an 
electrical pulse of height proportional to the photon energy. These pulses are 
sorted out according to their height by a multichannel pulse height analyzer. 
Each channel number corresponds to a defined energy. Tnus in general the 
measured photon energy E is a function of the channel number N. 
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This function is determined by a callibration procedure using the photon energies 
of characteristic radiation of several elements excited by a radioactive source. An 
example of the result of such callibration procedure is shown in Fig. 4. 

J 

200 430 800 1000 
Channel number 

Fig. 4. An example of the result of calibration of a multichannel pulse-height 
analyzer using the known photon energies of characteristic radiation 
of Cu, Rh, Mo, Ag and Ba. 

The detector* usually used are high purity germanium (HPGe) and Si(Li). The 
Lithium drifted detectors must be kept at liquid nitrogen temperature all the 
time. The extra pure Ge detector must be at liquid nitrogen temperature only 
during the measurements. The detectors have a build-in low noise preamplifier 
kept at the same temperature as the detector. The preamplifier is connected to a 
multichannel pulse height analyzer through an amplifier. The data can be 
displayed on a fluorescent screen or on an X-Y plotter and recorded on a 
magnetic tape. They can also be directly transferred to the memory of a computer 
for data treatment. 
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There are two important characteristics of semiconductor detectors: (i) energy 
resolution and (ii) quantum efficiency n.(E). The energy resolution is discussed in 
Section 5. The efficiencies are illustrated in Fig. 5. One sees that the Si (Li) 
detector has a quantum efficiency of unity for low energy photons, but drops 
rapidly for photons above 30 keV. It should be noted also that the efficiency curve 
is a smooth one. la the case of a Ge detector, the high efficiency extends to higher 
photon energies. However, the efficiency curve in this case has a kink at 11.1 keV 
due to the absorption K-edge in Germanium. As a consequence, it is difficult to 
estimate the spectral distribution i0(E) in the region of about 11 keV. For reasons 
of both high efficiency and smoothness of the efficiency curve the Si(Li) detectors 
are used for low energy photons, say, up to 30 keV and Ge detectors for high 
energy photons above— 12keV. 

100 

0.2 OS 10 
Energy (k«V) 

100 

100 
En«r«y(ktV) 

1000 

Fig. 5. Quantum efficiency of semiconductor detectors as function of photon 
energy. 
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6. EXPERIMENTAL SET UP [7-91 

The principal elements of an experimental set up were already shown in Fig. 1. 
More details of a set-up at a SR source are shown in Fig. 6. (Examples of existing 
XED diffractometers are among others described in Refs. 7-9). The directions and 
divergences of the incident and diffracted beams are defined by slits Si, S2 and S3, 
S4, respectively. They also define the mean scattering angle 260. For small 
samples (e.g. 0.3 mm in diameter) slit S3 may usually be omitted. 

GONIOMETER 

MAM CATCHER I 0« WINDOW 

•e\/\, 

SEMICONDUCTOR 

DETECTOR AND 

PftEAMPL 

DEAM PIPE TO 
THE STORAGE 
RING 

\ 

MINI­
COMPUTER 

AMPLIFIER 
AND POWER 

SOPPtr 

MULTICHANNEL 
HEIGHT 

ANALYSER 
- »ULSE-I 

x - y 
PLOTTER 

4 FLOPPY 
Ol SK 

Fig. 6. An XED set-up at a SR source (schematically). 

The divergences of the incident and diffracted beams depend on the widths of the 
slits and the source-sample and sample-detector distances, respectively. 

The source-sample distance depends on the storage ring and the location of the 
experiment in the experimental hall. It varies, say, from 10 m to 40 m. The 
sample-detector distance is much smaller, usually below 1 m. As a consequence, 
the widths of the slits for the diffracted beam must be much smaller than for the 
incident beam. 

The dimensions of the source in a storage ring varies from several millimeters to 
parts of a millimeter. Table 1 presents, as examples, the FWHM's of the 
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dimensions of S.R. sources from bending magnets of DORIS and the expected ones 
of the European Synchrotron Radiation Facility (ESRF). 

Table 1. Full widths at half maximum of S JR. sources (in mm) 

Horizontal plane 

Vertical plane 

DORIS 

2.4 

0.7 

ESRF 
expected 

0.4 

0.3 

Due to these small source sizes, the slit 1 (see Fig. 6) is in many cases 
superfluous*'. Assume, for example, a source size of 1 mm, the width of slit S2 
equals 0.2 mm and the source-sample distance is 20 m. Then the divergence of 
the incident beam is 10~4 radians. For the diffracted beam it is difficult to obtain 
such a small divergence. For a rather large 1 m distance between the sample and 
the detector and slits S3 and S4 of widths 0.1 mm each, one obtains a divergence of 
2-10-4 radians. At present S.R. sources this may lead to insufficient intensity. 
At the ESRF it should not involve any problems. 

As will follow from the next section, for Bragg angles larger than, say, 10 degrees 
a divergence of the order mentioned above gives only a small contribution to the 
overall resolution governed mainly by the energy resolution of the SSD detector. 

The recording Urne depends clearly on the number of photons per second passing 
the solid angle defined by the source size and slit S2- Thus the figure of merit of an 
SR source for XED is brightness. 

In order to reduce the background appropriate shielding must be used. In case of 
S.R. for safety reasons the whole experimental set-up is placed in a hatch covered 
with lead (~ 5 mm thick). Thus all movements of the detector, sample and 

) One should use, however, a diaphragm in order to reduce the background. 
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goniometer must be remotely controlled. An important element of such a set-up is 
the beam catcher (see Fig. 6). 

6. PRECISION OF THE XED METHOD 

By differentiation of the Bragg equation lb and under th > assumption that errors 
6E and 660 of the measurements of photon energy and Bragg angle, respectively, 
are of a statistical nature, one obtains 

where 6d is the absolute precision of the interplanar spacing measurement. 

860 ia usually 5 millidegree «* 10 ~4 radians or smaller. As we shall see later, 0o is 
seldom smaller than 5° and thus cot6o560 is usually smaller than 10~3. 

In order to calculate 8E it is necessary to consider two values: the energy 
resolution 8Ep of the detector system and 8Ee, the energy broadening of the 
reflection due to beam divergence. Following Ref. 10 we have 

• .„ (22) 
6 ^ = [(^mB/+ 5.546 P. € BJM 

where AEamp is due to the dark current through the solid state detector and to the 
noise in the field-effect transistor and the preamplifier, F is the Fano factor, € is 
the energy required for creating an electron-hole pair. 8Ee we get by 
difTeratiating the Bragg equation with d = const 

(23) 
5EA=-Ecot8A0 

V 0 0 

where A6Q is the beam divergence. Assuming a Gaussian distribution for both 
8ED and 8Ee one obtains 

(24) 
5B = [(5ED)2+(8Ee)

2lI/2 

Simple algebra then gives 

8E 
— =C - ll(AE • d- nnO )*+ 5.546- CP€d«n9 + (Coot9.A6J2]1" (25) 
g •wp o o i if 

withC = 6.199 keVÅ. 

Fig. 7 shows examples of the dependence of 8E/E on 60 for two interplanar 
spacings 0.5 A and 1Å and two divergences 10~4 and 10~3 radians. Note that in 
all four cases 8E/E decreases with decreasing 60 down to a certain minimum and 
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then increases rapidly. The initial decrease is due to the first term in Eq. 25, 
however, when 80 becomes very small the leading term is the last one, which 
blows up for small 60. Fig. 7 illustrates also that 8E/E decreases with decreasing 
interplanar spacing, and that the minimum value of 8E/E is smaller for smaller d 
and shifts to smaller 60. A small 60 for a given lattice spacing means a large 
photon energy. 

250 

200 

ISO 
lii 

•I 

S2 
100 

50 

0 
0 » 20 30 (0 50 60 70 60 90 

e.n 

Fig. 7. 8E/E as function of 0O for two interplanar spacings: 1 Å (curve a) and 
0.5 A (curve b). The full lines are (or A80 = 10 "3, the dotted for A80 = 
io-4. 

Using formulas 25 and 26 one obtains 

— = C_I{(AB • d sinB ?+5.546- CF€«n8 +[cos8 (A6 +69 )]2}1/Z (26) 
d ' amp o o o o o 

It follows from Fig. 7 that for A0O = 10 - 4 radians - which it is possible to achieve 
with SR - and angles, say, smaller than 10° (but not too small) 8E/E is smaller 
than 10~2. It should, however, be recalled that 6E is the full width at half 
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maximum and that the centroid of the reflection can be measured with a 
precision, say, 10 times or more better. Thus the SE/E value in Eq. 21 can be made 
smaller than 10~3 and thus of the same order as cot80880- In conclusion, 8d/d can 
be measured with a precision of 10 ~3 or better for the condition mentioned above. 
However this involves high energy photons. 

Fig. 8 shows an example of an improvement of energy resolving power by 
increasing the photon energy. One easily notices that although 8E increases with 
photon energy, the distance between the reflections increases faster and they are 
better separated. 

•« r 
en=12° 
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24 25 26 27 
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320eV 330 eV 
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4942 keV 

j 1 _ 

•4.49keV- H 
5351 keV 

i I 

49 50 51 52 53 54 
keV 

Fig. 8. An example of an improvement of energy resolving power by 
decreasing the scattering angle. 

In conclusion one sees that high energy photons improve both the accuracy of 
lattice spacing measurements and the resolving power. 
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To get an idea of the required photon energies we assume A0O = 10~4 and 60 = 5 
which is close to the value of 60 leading to small 8E/E for d = 0.5 Å. In this case E 
= 142 keV. Wavelengths shifters can easily emit photons of this energy, however 
the efficiency of the Ge solid state detector decreases several times (see Fig. 4). 
Due to the high intensity of modern S.R. sources, this should not cause any 
problems in most cases one can think of. 

The accuracy of structure factor determination depends - in addition to accuracy 
with which E can be measured - on the accuracy with which the incident intensity 
and the attenuation, polarization and detector efficiency factors (see Eq. 2) can be 
estimated. Also, the energy dependent Compton effect should be taken into 
account. All these lead in practice to the conclusion that in general the XED is a 
less precise method for structure determination than the monochromatic beam 
angular method. However, its other qualities enumerated in Section 1 make the 
XED a useful and convenient method in many cases. Some applications are 
briefly described in the section 9. 

7. STRUCTURAL STUDIES OF AMORPHOUS MATERIALS 

The use of XED for structural studies of amorphous materials is illustrated with 
the simple example of a monoatomic amorphous material. 

As is well known, the structure of an amorphous monoatomic material is 
characterized by the radial distribution function (RDF) 4nr2p(r), where p(r) is the 
number density of the material at a distance r from an atom placed at the origin 
(r=0). The scattered intensity is denoted I0(q), where q = (4nsin6)/A is the 
modulus of the scattering vector. After correcting Io(q) for the incident spectrum, 
absorption, polarization, Compton scattering etc. one obtains I(q). It c&n be shown 
that 

ql(q)= 4nr9(p(r)-plrinqr ( 2 7 ) 

Jo 

where p0 is the average number density. After Fourier transformation, this yields 

4nr2[p(r)-po) = (2/n) ql<q) sn(qr) dq ( 2 8 ) 

Io(q) and I(q) are usually continuous oscillating functions (see Fig. 9a,b). The 
widths of the peaks are broad and thus very good accuracy in determining the 
positions of the peaks is not required. However, the Fourier transform (see Fig. 
9c) is very sensitive to the shape of I(q). In the angular dispersive method one 
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Fig. 9. The measured (a) intensity I0(q) of the beam scattered by an 
amorphous material (mercury) versus scattering vector q, (b) the 
corrected intensity I(q) - see text, (c) the RDF versus distance from an 
atom placed at the origin. After Ref. 20. 
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measures Mq) consecutively point by point by changing stepwise the scattering 
angle. It follows from the above that the steps must be small and thus the 
measurements are time consuming**. 

In the XED q = (4n/hc)E sin60 « 1.01 Esin^Å'/keV) and the steps of q 
depend on the steps of E, which are determined by the chosen channel width of the 
multichannel pulse-height analyser. It can be made very small. In conclusion: by 
means of XED the shape of I(q) is measured simultaneously for a desired range of 
q and with a better accuracy than in the angular dispersive method. This may 
explain the fact that a relatively small amount of work on amorphous materials 
has been done prior to the development of XED. 

8. THE MONOCHROMATOR SCAN METHOD (MSM) 

We introduce the method by presenting the monochromator scan diffractometer 
recently described by Parish and Hart (1987) (Fig. 10). An X-ray white beam from 
a storage ring is defined by slit C and diffracted by Silicon (111) double crystal 
monochromator mounted on the diffractometer Di. The monochromatic beam, 

Fig. 10. Experimental set-up for energy dispersive diffraction by means of a 
monochromator scan. The symbols are explained in the text. (After 
Ref. 11). 

*) This situation has recently changed with the development of position-sensitive 
detectors. 
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which wayelength depends on the Bragg angle 6||, is directed to the sample S 
using the slits C2 and ES. The instrumentation is designed so that any 
wavelength can be used without realigning the second diffra'tometer D2 used for 
the sample. The monochromatic beam is monitored by measuring the scattering 
from a thin (0.025 mm) inclined Be foil with a scintilation counter SCI. The 
monitor counts are used to normalised the measured data to a constant intensity 
of the monochromatic beam impinging the sample. The intensity of the beam 
diffracted by the powdered sample under a fixed angle 0S is measured by a 
proportional counter. 

In the course of the experiment the monochromator is turned in small steps and 
consequently the wavelength of the radiation incident on the sample also changes 
accordingly. As a result one obtains an x-ray pattern of the same kind as using 
the XED method. An example of such a pattern obtained by means of the MSM 
method is shown in Fig. 11. 

23 E (keV) 
0.54 MA) 

Fig. 11. Energy dispersive diffraction pattern of quartz with the same energy 
range (5-23 keV) but different 26 settings. The (110) reflection is 
marked in both patterns for comparison. The intensities at the longer 
wavelength are reduced by air absorption. (After Ref. 11). 



- 26 -

In both methods - the XED and MSM - the scattering angle is find which is of 
great advantage in particular for experiments with samples in special 
environments. In the XED, as opposed to the MSM, all reflections are recorded 
simultaneously, which is of great importance for phase transition studies. One 
should also notice that in the XED experimental set-up there are no moving parts 
as opposed to the MSM. However, the resolving power of MSM is in general better 
than that of XED. 

9. APPLICATIONS 

9.1. Introduction 
The XED found many applications in materia) sciences, however, the main 
interest lies within two broad areas. The first involves structural studies and 
phase transitions at high pressures and high (low) temperatures. The second 
involves structural studies of amorphous materials including crystallization 
phenomena. However, one can find also applications of XED in other fields, as for 
example, studies of texture in thin films [12,13], anharmonicity [14], 
measurements of mean-square atom displacements [15], and others. Both 
Bremstrahlung from x-ray tubes and synchrotron radiation are in use. 

9.2. Textures 
In an ideal polycrystalline material the directions of crystallograpbic planes is 
isotropically distributed in space. However, e.g. rolling of a polycrystalline 
material can create a preferred orientation of crystallographic planes (socalled 
texture). As a result the properties of the material, e.g. strength, may become 
different in different directions. Thus the knowledge of texture is important for 
some applications of polycrystalline materials. It can be revealed and measured 
by x-ray and neutron scattering. Figure 12a shows an XED diffraction pattern of 
iron along the rolling direction, and Fig. 12b perpendicular to it. From the 
intensities of the reflections (Oil) and (002) one easily conclude that the 
crystallographic planes (002) are lying almost predominantly in the rolling 
direction, while the (Oil) planes are predominantly perpendicular to the rolling 
direction. The simultaneous appearance of all reflections, characteristic for XED, 
is essential for such measurements. 
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Encrty ClwV) 

Pig. 12. An XBD diffraction pattern from iron along the rolling direction (a), 
and perpendicular to the rolling direction. (Leif Gerward, private 
communication). 

• J . Structural Studies at High Pressures (17-21] 
In recent years structural studies of solids under high (tens and hundreds of 
kilobars) and very high (megabars) pressures have become increasingly 
important for basic and applied solid state physics and geophysics [17]. The high 
and very high static pressures are obtained by means of diamond-anvil cells DAC 
(see e.g. Ref. 18) and the most frequently used diffraction method is XED. 
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Fig. 13 shows the principle of a DAC cell. The sample is placed in a small hole in a 
0.1-0.3 mm thick metal foil (gasket). The pressure is exerted by the two flat 
diamond faces pressed against each other. The volume of the sample is very small 

OFFRACTEO BEAM 

Fig. 13. The diamond anvil high pressure cell - schematically. See text. 

(10~6-10~3 mm3) and thus for structural studies a high brightness x-ray source is 
needed. Although x-ray tubes can be used SR presents a great challenge. The 
DAC is placed on the sample table of an XED diflfractometer mentioned in Section 
5 and described in some detail in Ref. 7-9. 

As an example of such studies we discussed the pressure induced transformation 
of YbH2 at room temperature [19]. The structure of this material at atmospheric 
pressure is orthorhombic. The XED diffraction patterns at four different 
pressures are presented in Fig. 14. It is clearly seen that at 14.3 GPa (143 kbar) 
some new reflections appear in addition to those characterizing the orthorhombic 
structure. At 17.0 GPa the reflections from the orthorhombic structure have 
partly disappeared, and at 28.2 GPa they are absent. On the basis of the 
measured interplanar spacings the high pressure structure was identified as 
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hexagonal. The orthorhombic phase can be viewed as a distorted hexagonal 
packing with c/a *» 1.6, and the transformation as a collapse to a hexagonal 
structure with c/a = 1.34. 
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Fig. 14. The XED diffraction pattern of YbH2 at several pressures. (After Ref. 
19). 
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This example illustrates clearly the ability of studies of phase transformation in 
situ, recording the transformation step by step with changing pressure. The 
equation of state for a particular phase can be determined by measuring the unit 
cell volume as a function of pressure (an example is given in Ref. 18). 
Quantitatively, the equation of state can be used to calculate material 
parameters, such as the bulk modulus and its pressure derivative. 

240 

200-

160-

• 120-

160 -tzo -eo -«0 0 40 
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Fig. 15. The pressure profile on the rhenium gasket measured by XED from 
the measured volume of the hep unit cell of Re-metal at various 
locations. The distances shown are measured with respect to the center 
of the diamond or the highest pressure region in the cell. (After Ref. 
21). 

Another example illustrates structure studies at ultra-high pressures [21], where 
XED and SR were used to study Re-metal up to 2.16 Mbar (216 GPa). It was found 
that the hep structure exists up to this pressure (volume fraction v/v0 = 0.734) 
and the c/a ratio is independent of pressure. In this study the x-rays were also 
used to obtain a pressure profile across the diamond face (Fig. 15). This required a 
very narrow beam of a very high intensity. 

0.4. Structural Studies of Disordered Materials 
For disordered materials (e.g. amorphous metals, amorphous polymers, liquids) 
the determination of the pair correlation function or the radial distribution 



- 31 -

function are of primary importance. As already mentioned, the angle dispersive 
method is in this case difficult and time consuming. In contrast the XED enables 
a much faster and more accurate determination of the radial distribution 
function. Examples of such studies can be found in Ref. 22-24. 
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Fig. 16. Series of diffraction patterns of the crystallization of Feg3Si7Bio after 
annealing at 350°C for 18,44,85 and 1375 minutes. The pattern of the 
virgin amorphous sample at room temperature is also shown. (After 
Ref. 25). 

9.5. Crystallization of Metallic Glasses 
Metallic glasses have attracted much interest due to their remarkable magnetic 
and mechanical properties. Because the amorphous state is metastable it can be 
transformed to a crystalline one by annealing at elevated temperatures. These 
studies are interesting from a scientific point of view and are also important for 
practical applications of metallic glasses. As an example, we briefly present the 
work on crystallization of Fe-Si-B [25]. Amorphous ribbons of Fe9o-xSixBio with x 
ranging from 7 to 21 were investigated using XED and S.R. at DORIS at 
Hasylab/DESY. The samples were placed in a special furnace and could be heated 
up to several hundred degrees C. The annealing was isothermal. The temperature 
was raised to the desired value and then the structural changes as a function of 
time were studied by means of XED. The counting time was several minutes. 
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Then the temperature was raised and again the structural changes were 
measured as a function of time. Fig. 16 shows an example of a diffraction pattern 
obtained in case of x = 7. By analysing the patterns it was possible to study the 

500 100b IS» 
TIME (min) 

Fig. 17. The time-dependence of the integrated intensity of (o, •) the (0 0 2) 
peak of a-Fe(Si) and ( • ) the (0 2 2), (13 0) peaks of Fe2B of Fe83Si?Bio 
during annealing. The left-hand side of the figure shows annealing at 
350°C and the right-hand side shows continued annealing at 438°C. 
(After Ref. 25). 

time dependence of the evolving new phase and identify its crystallographic 
structure. The latter was done mainly by examination of the peak positions and 
comparing the interplanar spacings found in this way with the ones of known 
chemical compounds of iron, silicon and boron. In the case of x = 7 it was found 
that the new phases are a-Fe(Si) and Fe2B. Fig. 17 shows the time dependence of 
the integrated intensities of the evolving two phases at two different 
temperatures. 

—ooOoo— 

The author expresses his thanks to Dr. Leif Gerward and Dr. Bente Lebech for 
reading the manuscript and useful comments. 
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