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Abstract Tarbaleace ia plasmas has beea investigated experimentally aad nu­
merically. The work described here is divided into fear parts: 

• Experiments oa edge tarbakacc ia a single-ended Q-machiae. Coavective 
cells are investigated ia detail together with the anomalous transport caased 
by them. 

• Numerical simulation of the edge turbulence ia the Q-macaiae. This simu-
latioa ases spectral methods to solve Eater's equation ia a cylindrical geom­
etry. 

• Measurements on wave propagation and the ioa beam instability ia an an-
magaetised plasma with aa mm beam with a fiaite diameter. 

• Development of software ior the automated acquisition of data. This program 
can control an experiment as well as make measurements. It also includes a 
graphics part. 

This report is practically identical to the thesis submitted to the Technical 
University of Denmark for obtaining the Ph.D. degree. This was submitted on 1 
October 1989 and the lecture held on 1 March 1990. 
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Summary 
Virions aspects of pawn* taibahact has* been iavcstigaied i iiinisnintaMj and 
nunncricalty. la mngartiscd nlstmas the rmphnsii bas been on the study of/tute-
tear or tons« fiat ceil f actaatioas m tae edge of a Q-machine plasma, caastd by 
the Kcrria-HeUaaolts instability. This has been studied extensively- The stadies 
sal into fear w i n groans: 

1. Gcacral stadies of the turbahtnce assag corrctatioa mraeurcantatr Thcar 
have aacoveicd the spectra of the lactaatioas aader various conditions aad 
the phase rektions bet »tea the potential aad density f actaatioas both ia 
the main plaasaa and ia the edge respoa. 

2. Investigations of the interaction between the tarbustat (spontaacoas) ftucta-
atioas aad an extcraaly iajected convectiv* cefl- It is foaad that the tarba-
kac* iatetacte aoakaearly with the c d aad that the eel csseatialy absorbs 
the energy of the tarboJeace. The rcsah is a cascade of energy front high 

3. Mcnsarcsncnts of the tiuns acid plassna transport atsorinlid with the tar-
baleace have been performed. Here it is foaad that the tarbatcut transport 
is orders ofmngaitanV larger thaa that of rmarirsl diffusion. Ia other words, 
this type of tnrbakace amy be a major toarce of plasma loss ia some types 
of magnetic confinement experiments. The resatts may be apptknbh even if 
the driving mirhaniiwi is different. 

4. Conditional statistical measaremenU of the tartmleuc* have Inm nwsde using 
a digital oscilloscope to acqaire real-time traces of the f actnatiag quantities. 
These mnke it possible to get a picture of the state of the plasma daring huge 
Inctaations in the density or electrical field aad to mensnre the anomnloas 
lax associated with sack large lactaatioas. 

A simalntion of the Kelvin-HelmkolU instability ia the edge of the Q-mackine 
has been initiated. la this simahtfioa the gnidiag center equations (the finid con­
tinuity equation, the K x B velocity eqaatioa, aad Poissoa's cqaation) nre solved 
in two dimensions in cylindrical geometry (the direction afoag the magnetic field 
B ignored). A spectral method n employed. In the radial directioa the expansion 
is made with Chebyshev polynomials, while in the nsimatkal direction a Fourier 
expansion is employed at the bouadary conditions are periodical. A very efficient 
solver has been developed for Poissoa's equation in tkis geometry which yields a 
very accurate solution with only 0(1) calculations per grid point. Initial results 
are ia qualitative agreement with experiment though problems remain. An exten­
sion to include viscous effects is being developed at the time of writing (autumn 
1989). 

In an anmagnetised plasma investigations of the ion beam instability have been 
performed. The emphasis has been on tbe study of tke plasma response to a 
weak beam of last (supersonic) ions moving through the plasms. Experiments in 
n Doable-Plasma device have been performed and are compared to theoretical 
calculations. Good agreement has been obtained. In addition, initial experiments 
have been made on the ion beam instability with a finite-diameter ion beam. 

Finally, a versatile program for data acquisition and display is presented. This 
program, called AIDA, has originully been developed for the experiments of the 
Plasma Physics Section. However, it is adaptable for many types of experiment. 
It can be used both for automatic data acquisition and also to some extent to 
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tuatiol %w& cxpninnt^ ta* wsalmn* aas ac*a oa caat of aat. aaa awaaa are 
astd cxtcasåvdjr- Moat of tar data prorated m tai> tacais have area acqaiwd 
aåag UHB proftaai waka raas oa a staadaid PC. 
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Dansk resumé 
Forskettge aspekter a f tarbakas i planaarr er blevet adfbrsaet. bade eksperiaara-

tek og ved aaaterisfce simatatioaer. I aiagaetiierfdf plasmaer kar kovedvsgtea 

vartet lagt på stadset a f f aktaatsoaer a f /tale-typca, også kaldet ioaatin.se crUrr 

i kaatea af et plasma i ea Q-masluae. Disse laktaatioaer bliver drevet a f Ketvia-

Hebaaolts iastabikitetea. Uadersagctserae kaa iaddeies i f re hovedgrupper: 

1. Gcacrtlk stadier a f tarbakaara ved kjaapaf korrtlatiunrmnhager. Pådeaae 

saåde er flaktaatioaeracs spektrasa blevet asatt saisaea used Ensrrclaiioaer-

ae miBcm faktaatioaerae i poteatiakt og p la imala lku l ia , både i audtea 

af |daisaart og i kaatea, hvor tarbakaara er snest adtalt. 

2. Undersøgelser a f vekseivirkaiagea asttkat de (spoataae) tarbaJeate lak taa­

tioaer og ea koavektiv cele påtvaaget phnaart- Det ses ker, at tarbalrasea 

vekselvirker på ea ikke-knevr atådc aatd cekVa, og at ceiea opsagei energi 

fra tarbakaara. Falgea er, at cactgka strømsaer fra kaje balgital til lave 

balgrui 

3. Maliager a f dea piasanalraasport på tvsrrs af magæUehet, sosa tarbakasea 

ibrårsager. Her fader asaa, at dea tarbckate transport er fere starrei-

sesordeaer starre cad dea, der skyldes klassisk disTasioa. Med aadre ord: 

tarbakaara kaa vane bovedkildea td tab a f plasma i visse typer af eksperi­

menter med magnetisk iadeslataiag af plasmaet. Disse resaltater kaa vane a f 

betydaiag for andre eksperimenter, også selv ost mekaniiaira, der forårsager 

tarbakasea er ea aadea. 

4. Målinger af tarbakasea sned betiaget statistiske metoder er bkvet adført 

v. bj . a- et digitaloscilloskop, der kaa opsamle tidsserier af de flaktaereade 

størrelser i saad tid. Dette muliggør ea aadersagebe af plasmaets tilstand, 

nar faktaatioaerae i tattkedea eller £-féltet er store, og at mak dea dertil 

barende radiære f a x . 

Et projekt til simakriag a f Kelvin-Helmbolls iastabiliteten i kaatea af Q-mas­

kinen er blevet indledt. I denne sunalatioa findes ea Irsaiag til Gnidiag-ceater 

bgaingerne (koatiaaitetsbgaiagea, B x B-hasrigkedsligningea og Potssoas ligning) 

i pokere koordinater. Kan bevsrgebe på tvsrrs af magaetfeltet bliver betragtet her. 

Låsningen findes ved brag a f spektrak metoder. I den radiere retning advikles i 

Chebyshevpolynomier mens en Foarieradvikliag brages i den asimatkak retning, 

eftersom randbetingelserne her er periodiske. En ssrrdeks effektiv løsningsmetode 

til Poissons ligning er bkvet advikkt. Låsningen kan her findes med (7(1) bereg­

ninger pr. gitterpunkt. De første resaltater viser en kvalitativ overensstemmelse 

med eksperimenterne. Der er dog stadig visse problemer. Disse søges løst ved at 

medtage viskositet i ligningerne. Dette er ved at blive udviklet i skrivende stund 

(efterår 1989). 

I et umagnetiseret plasma er der bkvet udført undersøgelser af ion-beam in­

stabilitet!. Her er vatgten bkvet lagt på stadiet af forstyrrelsen af plasmaet som 

følge af indskydning af en svag stråle af hurtige (supersoniske) ioner. Der er blevet 

udført eksperimenter i Dobbelt-plasma maskin« i, og disse er bkvet sammenholdt 

med teoretiske beregninger. Der ses at varre god overensstemmelse. Derudover er 

der bkvet foretaget indledende eksperimenter over ion-beam instabiliteten med 

en ionstråk med endelig diameter. 

I forbil.delse med eksperimenterne er der blevet udviklet et alsidigt computer­

program til opsamling og grafisk udskrivning af måledata. Programmet, AIDA, er 
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opriaddigt blevet udviklet til eksperimeaterae i PlasmaTTsiksektioaea. mea kaa 
aareades i maafe typer afeksperiaieater. Det kaa braces bade til aatoaiatisk op-
sawliag af data og til at styre eksperiateatet. Der er blevet lagt stor vargt på at 
gwe det bragerTealigt ved adstrakt brag af Størstedele* af de måledata, 
der prsseatercs i deaae rapport er opsaaUet med AIDA, der kører på ea staadard 
PC. 
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1 Introduction 
TW stady of tarbalcace is alassaas kos received saaea iatetest ia receat j m a Tool 
• cspecsaly I n c lor aasgaetsc fwatoa caergy research. T W objective of magnetic 
faott l e n i d • to corf— a hot plasma ia a mngarlir i t M ssforieatry wel 
*my mwmwpmj amJmaW*ma] i H ^ K > « ^ o % 9 o^P mw£S£^BSiv v f ammwsj y mwmasajw emj, vajmv asaWpj^h^^SwSsmWB N Q o W o ^ M o i t f 

which impaired tW pr i fc r—rr of early cxperiasfati have Wca broaght sader 
cosCroL However, tW paasma rnataiapfnt is stiB aot aearly as good as »cold W 
expected from aa naarjas «f rmssirnl difaaioa. TW noma lor this is Ihnagat to 
he asaialy with what has beta termed aucfwautacattmsfl, ch. 11 J. These appear 
where free eaergy is available, e-g. where tW giedkali ia drarity, amgaetic or 
ekctrkal fald or tesapuatare are large, or where there are mhomsgraiiiiri ia tW 
velocity datfrtbatioa- IastnhmtMS m these rcgioas stay caasc tarbakace with scale 
sises that are ssaal compared to that of tW cxperimcat1. While these tarhafcat 
toctaatioas do aot completely disrapt tW pheema diichargf they are auatthtlua 
laiaghl to coairihate stioagty to tW aassaaloT trsaipsrt. of phaaaa across tW 
aiasarTir fiild fla nadfrrtandias; i f l i i r siiaH hi Mini ikajieaai liai i il aiaj |inial 
to remidiii or to iprrifc coaaatssas whkh eahaace tW aasaaaloai traaipnrt aad 
shoald theresare be avoided. 

eat theoretical aset hods are ased si the msestsmtfssas of these asstahmtets. Sosae 
caa W adtqaatdy dtstriWd by tW two laid caaatioaa or evea by MHD theory. 
These are ia assay ways siaaiar to tW asacroiastabanties ia their origia- How­
ever, they are aonasJry coaaard to ipirial repoas of tW ssssata, especialy ia tW 
phama edge where tW giadkats are largest aad there is (ia fiwioa expenaeats) 
a stroag rntax of imparities frost tW wal of tW vacaam chaasber. Examples of 
these gmdieat-drivea iaitahihtwi arc tW drift iastabSty caased by deasity (radi­
cate aad tW KeJvia-HehaWItt iaatabiSty which is drivea by velocity shears where 
tW efcctrical fald has large gradiiats. 

Other isotahilrties arc dae to aoa-Maxweliaa distribatioa foactioas aad avast 
W treated by tW Vhjeo* eaaaiioa. A prime a m p l e of this is tW two-strcaai 
or beam iastabmty where chained partides are awriag throagh a plasasa with a 
speed comparable to tW speed of soaad ia tW plasasa. Aaother is tW Tom coat" 
iastabmry toaad ia mirror saadsjacs where particles ia a certam »ekxitiy mage 
are lost at tW eads of tW miraisi. This distorts tW velocity distribatioa aad 
leads to iaitarnajlj 

Oae thiag commoa to s i stadies of plasma tarbaleace is their aoabacar char­
acter. While the stability criteria lor the varioas instabilities *ad their associated 
iaitial growth rates caa aonaaBy W cakamted by a Kaeax analysis, tW evomtioa 
of tW iastahirity leadiag to tarbaleat behavioar caa oaly W described asiag the 
m l aoahaeaf eaaatioas. This of coarse leads to almost iasarmoaatabte difficulties 
ia doiag precise aaalytkal calcalatioas. Therefore tW theoretical stody of tarba-
Wace ia plasmas is often ptrtVand by aamerical calcalatioas. Here too, tboagh, 
dimkaltia caased by the aoahacar character of tW problems oftea manifest them­
selves. 

Oa tW expcrimeatal side tW problems of doiag accarate measBremeats of tar­
baleace are seea immediately from tW aoarepetttive character of tarbaleat lacta-
atioas. IdeaBy, oae woakJ take a huge aamber of "snapshots" ia rapid »accession 
of tW rekvaat phwma parameters, sach as the deasHy aad local potential ia order 

1 In ( I ) the term mkrn iw l ability ia Hard <mh tnr iwalabilitki caoacd by nnn-MuwrlEan \t-
Incity iMtiilw>t>nw». Ilcrr, h»m»tr . I have o d i l mainly tn describe Incal metabiStica cnmpaicii 
with sfntiaJ iwelahililict which cnmplcUly dawapt the platiwa. 
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to follow coherent structures in the turbulence. However, such a measurement is 
not feasible. For one thing it would require the storing of an enormous amount of 
data. Furthermore, diagnostics such as probes which are the only ones to measure 
potentials accurately disturb the plasma and must be kept as «mall and few as 
possible. For these reasons measurements of plasma turbulence are of a statisti­
cal nature. Many measurements are made in a few points to obtain an averaged 
picture of the plasma turbulence. 

The contents of this work are organised as follows: Chapter 2 describes exper­
iments on plasma edge turbulence in the Risø Q-machine. These are caused by 
the Kelvin-Helmholts instability. Statistical measurements are performed using 
Langmu-r probes to reveal coherent structures in the turbulence. In chapter 3 is 
described an attempt at simulating the phenomena investigated experimentally in 
chapter 2. Spectral methods are used on a one-fluid equation. Problems with the 
numerical methods have not yet been completely solved but already results bear 
clear resemblance to experiments. 

In chapter 4 is related the first experiments on the Risø DP-machine. This con­
tains an unmagnetised plasma into which an ion beam can be injected. Measure­
ments of the plasma response to perturbations of the beam reveals Cerenkov-like 
radiation patterns. Also, the beam instability is investigated in some detail. 

Finally, chapter 5 contains a description of a large data-acquisition program 
developed by me and used for many of the experiments in this work. This is 
admittedly not what one would usually understand by plasma physics research. 
However, data acquisition using computers have by now become an integral part 
of experimental physics. Therefore I have thought is worthwhile to describe these 
efforts as they have been a necessary prerequisite for this work. 

2 Risø-M-2858 



2 Experiments on edge turbulence in a Q-machine 
2.1 Introduction 

Studies of turbulence in magnetiied plasmas have been perfomed in many different 
experimental machines with widely varying geometries (see for instance [2, 3]). 
These have most often been multipole devices or tokamaks. These experiments 
are hampered by the complexity of their geometries which makes it difficult to 
generalize from measurements in a few points, by the often short duration of the 
plasma and for tokamaks also the high temperatures of the plasma which make 
probe measurements impossible except in the scrape-off layer. In contrast to this 
the Q-machine features a simple geometry with a cold steady-state plasma in which 
measurements can be made anywhere. Of course it is by no means certain that the 
results obtained in a Q-machine will have any relevance to large toroidal devices. 
Still, there are indications that the phenomena observed in the Ris Q-machine and 
reported here are similar in structure and sometimes in physical origin to those 
observed in other machines. 

Due to the physical nature of the plasma in the Q-machine (see next section) 
the emphasis here is on turbulence in the plane perpendicular to the magnetic 
field and the corresponding enhanced particle transport across field lines. This is 
of course also the topic of greatest interest for fusion-related work. 

The work related in this chapter in reality consists of two distinct experiments, 
described in two papers[4, 5]. However, since there is some overlap between the 
two experiments, especially as the experimental set-ups were almost identical I will 
here treat them together and make no distinctions between the two. In addition 
some new results are presented here which have not yet been published. 

2.2 Experimental set-up 

Basic machine set-up and diagnostics 
The experimental set-up consists of the Risø Q-machip- which is outlined in 
Fig. 1. (In the following a basic knowledge of Q-machines is assumed.) It is a fairly 
standard Q-machine[6] operated in single-ended mode. The hot plate is made from 
tantalum and is heated by electron bombardment from behind (energy 1.5-2keV) 
to a temperature of up to app. 2200<,C. In the other end of the plasma column 
the plasma is terminated by a cold metal plate. This can be biased relative to the 
vacuum chamber. Close to the end plate a small (8mm diameter) metal disc has 
been placed. This too can be biased independently. 

Diagnostics in this machine consists of Langmuir probes[6, ch. 3j. These are 
spherical platinum probes :•( diameter 1mm. Only the tip is exposed to the plasma. 
The probe shaft is covered with two concentric glass tubes for electrical insulation. 
Between the glass tubes is a grounded metal tube. Depending on the experiment 
up to four probes are used at one time. Some are fixed in one or a few positions 
while others can be moved freely across the plasma column. 

Basie plasma characteristics 
In this machine a cesium plasma is used. The magnetic field strength can be var­
ied in the region 0.1-0.6T. Depending on the cesium oven temperature and the 
hot plate temperature the plasma density is n = 10ir'-10"'m~ \ measured by ion 
saturation current to a probe. The plasma temperature is essentially determined 
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Figure l. Schematic drawing of the Risø Q-machine. HP is the hoi tantalum 
plate. CP is the cold end-plate which can be biased independently. 
D is the ezciter disc and Pi & PS are Langmuir probes. 

by »he hot phue temperature and so is Tt ~ Tj ~ 0.2eV where Ti<e is the ion and 
electron temperature, respectively. The temperature has been measured over the 
entire plasma column. It was found that there is no appreciable temperature vari­
ation across the plasma column. This is what one would expect since the plasma 
is not in contact with the walls and the mean free path for charge exchange is 
much greater than the diameter of the plasma column. There is thus no mech­
anism which preferably cools one part of the plasma. At the plasma parameters 
used here th<- plasma is electron rich and therefore the plasma potential is nega­
tive. The plasma potential is measured by the floating potential, V) of a Langmuir 
probe. As the electron temperature is constant the plasma potential Vp is given 
by Vp ^ Vf - 4Te = Vj - 0.8V. The plasma potential varies with the density and 
hot plate temperature but is generally 3V. 

In Fig. 2 is shown the density and floating potential of the probe in a cross-
section of the plasma column. It is seen that the plasma potential is very nearly 
constant across the column and rises outside the main plasma. (The "main" plasma 
is here taken to be the part of the plasma whe - the magnetic flux tubes intersect 
the hot plate.) The constancy of the plasma potential inside the main plasma is 
caused by "hot-plate damping". Where the flux tubes impinge on the hot plate 
excess charge is "shortened out" as the hot plate is electrically conducting. (The 
argument is actually a little more involved because of the plasma sheath at the 
hot plate.) 

The density profile is somewhat similar to the potential profile but more peaked. 
This is thought to be due to the fact that the temperature of the hot plate varies 
slightly across the plate and is highest in the middle. Variations in work function 
across the plate also influence the plasma density. 

2.3 Measurements of turbulence in the plasma edge. 

Basic characteristics of the turbulent fluctuations 
The original intent with the Q-machine concept was to produce a plasma free 
from large-scale instabilities and therefore free from noise (except thermal noise, of 
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Figure 2. a) & b) Probe floating potential VJ(T) across the plasma column, 
c) & d) Density variation no(r) over the column. The dashed circle 
shows the edge of the hot plate. 
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Figure 3. a) Spectra of the fluctuations in the plasma potential normalised by 
Tr/e for different radial positions Y. b) Similarly for the density 
fluctuations normalised by the local background density. The edge 
of the plasma is atY = 15mm. 

0 5 10 15 20 0 5 10 15 20 
MkHzl f l kHz l 

Figure 4. As previous figure, but this time for oscillations with a narrow 
frequency band, a) Potential fluctuations, b) density fluctuations. 

course). In the main plasma column this has largely been achieved. However, in the 
edge of the plasma there are spontaneous low-frequency (~ 20kHz) fluctuations. 
That this should be so is not surprising. In thi edge there are large density and 
potential gradients. Thus there is free energy which may drive an instability. 

The spectrum of the fluctuations has been measured with a standard spectrum 
analyser. Density fluctuations were measured by the AC-signal to a Langmuir 
probe at ion saturation current, the potential fluctuations by the AC-signal to a 
floating probe. In Pig. 3 is shown for one set of plasma parameters the spectra 
of the fluctuations n normalised by n»(r) and !j> normalised by T,/e for various 
radial positions. 

It is immediately seen that in the main plasma there is only a very weak signal 
at ~ 8kHz. However, in the plasma edge there are strong fluctuations with a broad 
low-frequency (up to 5kHz) spectrum. The very low frequency fluctuations found 
in the main plasma are thought to be noise due to outside sources. 

The spectra in Fig. 3 were obtained at a specific set of plasma parameters. 
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Figure 5. a) Fluctuation amplitude at 1kHz as a function of radial position, 
b) DC density and potential profiles. 

When the parameters are changed, different spectra are measured as can be seen 
from Fig. 4. Here the fluctuations in the edge are characterised by a narrow fre­
quency peak at 5kHz and its harmonics. These are similar to those seen by other 
observers[7]. At still other pa »meters a hybrtf between these two types of fluc­
tuations may appear. The change between these regimes is thought to be due to 
changes in the potential gradient in the plasma edge. Thus a steep potential gra­
dient gives a narrow frequency band while a less steep gradient gives a broader 
band spectrum. The potential gradient depends on many plasma parameters (hot 
plate temperature, density and magnetic field for instance) so it is not possible to 
give an excact description of how to obtain these different spectra. 

Discussion of the physical origin of the fluctuations 
The most conspicuous feature of the oscillations is that they are localized in the 
edge region of the plasma. In Fig. 5 is shown the fluctuation amplitude as a 
function of radial position (for the broad band case). For this figure the signal was 
band-pass filtered at 1 kHz. For reference the DC density and potential profiles 
are also shown. It is clearly seen that the fluctuation level is highest at the radial 
position where the potential gradient is largest and not where the density gradient 
is largest. This seems to indicate that it is the potential gradient that is the driving 
mechanism for the fluctuations in the edge. The electrical field gives rise to an 
•simuthal BxB velocity. Since the electrical field is not homogeneous there will be 
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a velocity shear in the radial direction, »citing an in.*t»mity. From fluid dynamics 
this is known as the Kebrin-Hehnk Lz instability. Th> has been investigated in 
detail by Ken* et al.[7j, mainly for 'a* narrow band rc-e shown in Fig. 4. 

The nature of the fluctuations t -evealed by a comparison between the two 
figures in Fig. 3. Is the main plasma th • fluctuation lr els in the two figures are 
comparable ir sitrngth, that is, wt c.tn write c4/Te ~ n, a„(r), or in other words, 
that the sleclr >rs are isothermally 6 jltimann distributed. These fluctuations are 
strongest at -->- p; ;ition of the at«-epest density grad>nt. They are therefore in­
terpreted as s'.-rtrc« .»tic drift wav s[6 8]. These hav-- n frequency 

dlnw 

'* 2* '2xeB0R 

whi-*» with parameters relevui t-.r this experiment g.ves a frequency of the 
order of SkHs, in fair agreement with experimental c-»ult . 

It tne edge region the reUtior. L>etween potential and density fluctuations is 
e^/T > n/n©(r). This indicates that the fluctuating axe of the electrostatic 
flute .jpe or connective cell typ. This type of fluktuations is characterised by 
pert- ibations which are in phase aiong the magnetic fiel« In a cylindrical plasma 
the- therefore resemble flutes on an ancient greek olomn, hence the name. In 
a h mogeneous plasma the relation between densit/ a-d potential fluctuations 
sho .id be e$/Te ~ (hAi;)~2n/no[9j. For the present "as where there is a density 
gre lient a relation can be obi mined between the ion density fluctuations and the 
po' -rniial fluctuations in the following way. The continu'.y equation for the ion* is 

^ + V ( n v ) = 0. (1) 

It is assumed that there is no DC electrical field sn-i that v<. = 0. In the low 
frequency range we can write 

•Do 

Standard vertor relations give V - v = • and hence for Eq. 1 we find when 
linearising: 

— + v • VtHy = 0 

where n = n« + h. Considering only perturbations of the form ae'**~,*Jl we get 

-iwn - i I k4> x -̂ - 1 • Vi»o ~ 0, 

- (2) 

Finding k from the fact that we are dealing with fluctuations with mode number 
m = 2 (see next section) we find that h/n,, ~ 0.2e#/T, in fair agreement with the 
results in Fig. 3. 

That the fluctuations are really of the flute type was verified by measuring the 
phase of the fluctuations along the plasma column. It was found that at constant 
radial and asimuthal position there was no appreciable phase change along the 
field lines. Also, moving the end plate did not result in changes in the phase. 

h - k ^ x ct • Vn,j 
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Catitlatiaa msarur«minii 
la order to study tke tarbukace ia greater detail nteasaremeats were made of 
tke cross-correiaUoa betweea tke lactaatiag quantities ia space aad tim«. Tke 
corrdatioB measurements were nade with two Laagmair probes. Oae was held 
at a axed positioa while tke other coald be moved across tke plasma colama 
vertically aad horizontally, la principle a cross-correlation faactioa between two 
qualities A aad B is given by: 

*««(r , ,r 2 , r )= / i4(r,,t)B(n,l + r)dt (3) 
Jim 

where (| — f,, is a long time iatsrval (compared with typical time scales for tke sig­
nals). At tke time wken tkese measaremeats were made we did not have equipment 
to measure accurately long time series of tke signals ia real time. The measure­
ment was therefore done with a box-car averager. This samples tke two signals 
(witk a time difference of r) aad multiplies them. This is repeated at (airly long 
time intervals (5-20ms) aad the results are averaged. Because of tke long time 
interval between each measurement tke different measurements are statistically 
independent of each other. Tke average (takea over a total of app. 3 seconds) is 
therefore a good approximation to aa ensemble average. By moviag one probe 
around in the plasma a complete correlation function can be obtained. Tab is 
shewn in Fig. 6. Here is skovn the cross-correlation R++(T.,,T,T) for four different 
values of r. Tkese measurements (and tke following) were made ia a square area 
witk around 20 x 45 measuring points. From Fig. 6 one may note many interesting 
features. First, we see from Fig. 6a that the turbulent ffuctuatkms are fairly homo­
geneous in the asimuthal direction, with an approximate mode number m = 2, i.e. 
the figure depends only on the absolute separation angle between tke probes and 
not on their excact position. In the radial direction, the fluctuations are not at all 
homogeneous. This is not surprising when comparing with Figs. 3 and 5, where 
it is seen that the level of fluctuations depends strongly on radial position. The 
correlation length B also much shorter in the radial direction. In the asimuthal 
direction the correlation length is approximately half a circumference. 

Most prominently, the figures clearly show convective cells moving around the 
circumference of the plasma column. It is also seen that regions of positive cor­
relation are followed by regions of negative correlation, indicating a number of 
convective cells of changing polarity around the circumference. In Fig. 7 is shown 
the asimuthal position of the convective cells as a function of time. From this fig­
ure the velocity can be calculated. This value is estimated at * ~ 200ms"'. From 
Fig. 2 an electrical field strength can be estimated in the region of the convec­
tive cells of Fig. 6. The radial correlation length is app. 9mm and the estimated 
electrical field is 85Vm~'. With a magnetic field strength of 0.35T this gives an 
E x Btf/B^i drift velocity of 240ms"'. There is thus good reason to claim that the 
convective cells are transported around the plasma column by E x B drift. 

Information about the turbulence can also be obtained from cross-correlations 
between density measurements and between potential and density. This is shown 
in Fig. 8, still for the broad band case. 

The first thing to be noted from this figure is that the fluctuations in the edge 
are clearly correlated with those in the main plasma. That this should be so is not 
obvious. As was argued in sec. 2.3 the driving mechanisms are different for the 
two types of fluctuation«. There must then be some coupling mechanism linking 
the fluctuations. This coupling is thought to be carried out by the ions since these 
gyrate with a fairly large Larmor radius (~ 2mm). Thus, by this coupling the 
edge fluctuations may drive the drift waves in the main plasma unstable. The 
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Figure 6. Contour plots of the cross correlation function R^(T„,X,T) = 
{+{rn,i)4i(t,i + T)) for four different values of T, a) r = Ofts, 
b) T = 2S/M, c) T = 50/ii a*4 d) r - 100ft«. 5oti4 contovr* in-
rftcofe a positive correlation, dashed contours are negative. r»> i* 
marked vitk a •• Again, the dashed circle marks the extent of the 
hot plate. For this figure plasma parameters were Bn — 0 35T, 
no(r = 0) = 10,6m-:*. The magnetic field vector points into the 
plane. 
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mecanism is thought to be the following: The drill instability is not very strong 
at the plasma parameters ia this experiment. Due to end losses the growth rate is 
farther diminished, and so the drift modes may not be unstable at all but on the 
other hand they are at most weakly damped. The edge fluctuations have a broad 
spectrum acd thus they contain the resonance frequency for the drift waves in the 
main plasma. Thus the drift waves can be driven by the edge fluctuations. 

From the phase relations between the density and potential fluctuations several 
interesting features of the turbulence can be found. In Fig. 8 is clearly seen that 
the potential and density are in connterphase (anti-correlated) at the position 
of the reference probe (the • in the figure). This is not what one would expect 
from a simple analysis of flute-type oscillations, where the density is in phase 
with the electrical field and therefore 90° out of phase with the potential (É -
&&). The simple analysis is also the one giving the maximum growth rate of the 
instability. However, the ductustions seen in this experiment are subject to a non­
linear interaction, which damps the instability by changing the phase relation. 
This damping is partly due to finite Larmor radii. An analysis by Chen[10] shows 
that in the saturated fluctuations the electrical field should be 90° out of phase 
with the density and therefore the potential should be in counterphase with the 
density. This analysis is corroborated by the data in Fig. 8. However, though the 
potential and density are anti-correlated they are not exactly in counterphase as 
the lecal minimum for the correlation function is not at the point of the reference 
probe. 

The situation is different in the main plasma. Here it is found that the potential 
fluctuations in the main plasma are in phase with the density fluctuations at the 
same asimuthal position. Also the density fluctuations are in phase. Therefore the 
potential and density fluctuations in the main plasma must be in phase too. This 
is what is expected for resistive drift modes. 

The correlation analysis was also performed for plasma parameters where the 
fluctuation spectrum has a narrow peak (Fig. 4). The results are shown in Fig. 9. 
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Figmr* 9. Contour plots of cross correlation /uacftoa* for nmrrow mtmd fimc-
tMotion*. *)R^= (4{ro,imr,t)), b) R.+ = ( i f o W r . f ) ) . 

From this ligure it is easy to see that aroaad the plasma colama are two areas of 
positiTe correlation and two of negative correlation. Thus the oscillations have an 
asimuthal mode number m = 2. Furthermore, here the deasity and potential are 
very nearly in counterphase. This is in agreement with the experimental results 
ofKentetal.[7]. 

2.4 Interaction between the turbulence and an injected 
convectire cell 

In the preceding discussion the turbulent fluctuations are generated spontaneously 
and therefore the properties of the turbulence are independent of the time of 
measurement. Furthermore, the statistical nature of the measurements means that 
the interaction between specific structures in the turbulence cannot be studied. 
By perturbing the plasma one can study the interaction between this perturbation 
and the spontaneously generated turbulence. Such a perturbation was made with 
the exciter disc placed at the end plate of the Q-machine (see Fig. 1). The exciter 
is placed at a radial and azimuthaj position close to the fixed reference probe. The 
perturbation was made by applying a positive voltage pulse to the disc, thereby 
drawing electrons out of 'he flux tube impinging on the disc. In other words, a 
convectire cell is injected into the plasma. Typically, the applied voltage was + 12V 
for 20/ts. The repetition rate was lOOHs, which is much longer than the correlation 
time. Correlation functions were measured as in the previous section, only here 
the time of measurement was triggered by the injection of the convective cell. 

Broad band case 
In these measurements the fluctuation spectrum wu broad as in Fig. 3. For this 
situation correlation measurements were made. In Fig. 10 is shown the cross cor­
relation function Rr{i\,l\) = {4>(*o,i\)4>(*,i\)) for various values of the time t\ 
after the injection of the cell. It is seen that the correlation function essentially 
retains its form in this time interval while the amplitude varies strongly. In Fig. 11 
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Pimm 10. Corrtlmhonf*mctiomRx{tt,tl) = (*(r0,l,)^(r. I,)), wkertl, ts (ae 
(nu a/ler Hu ta/ecfseu into the fUimt of m positivt eomttctiw 
ceil, for four different tame* oftt.m)tx - 30ps, b) t, - 70ps, c) 
t, = I50as, 4) «, = 400as-

b shown the time evolution of £,(< i, t() for different asimathal positions at a fixed 
radial position of r = I6mm. The dbtarbaace dæ to the convective cell b dearly 
seen. It grows within it ~ SOjts aad b completely damped oat at tt - SOOps. 

In order to understand the interaction between the backgroaad 1 actaatioas 
aad the injected cell the contribatioas of the two coroponeau to the correla­
tion function mast be clearly identified. If the flnctaatiag poteatial b written at 
4(r, I) = d>n(r, () + d>,(r, I), the labscript R denoting the backgroaad fluctuations, 
the correlation fnnction caa be written 

«r(*i,«i) = (*V>h,fi)#jr(rvi|)) + tV(n.,<i)*V(r,f|) 

+<*«('»• «i))*Mr,i.) + ér(rn,l,)(dB(r,«,)>. (4) 

*V b not averaged since it most be the same ia all statbtkally independent real­
isations. Now, if 4r *nd d>R are statistically independent, that b if the injected cell 
b (imply superimposed on the backgroaad turbulence, then the average potential 
will be (i) - 4r, whereby Eq. 4 becomes 

JZr(«i,ii) = Jtøb.t.O) + «, (»i i<i )#*Mi)- (s) 
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Ftfmre ti. Time eMiafam • / tke cørrtlmttem. fmnettem es m Fi§. 10 før dif­
ferent erinrmtkml mmfi— af tke radial mmsitiem r = 16mm. 

A(r» , r ,0 ) beiag the standard potential cross cwrrehUioa faactioa for tero tiase 

delay. Fig- !U saggests that the iajected cefl b aoi simply saperimposed oa tke 

tarbakrace. This bccoaau evea more clear ia Fig. 12. Here is skowa first tke 

correlation faactioa AV aad tke corrdatioa faactioa witk ao e d b iajected. Tkea 

tke two are sabtracted. Fiaally is skowa ( ^ r , , , ! , ) ) ^ , ! , ) ) , which woald be eqaal 

to «V(r«,<i)«Y(r> l |) if tke c d aad tke tarbaleace did aot iateract. Ia tkat case 

Figs. 12c le d woald be ideatical. Stacc they dearly are very different it caa 

be coaciaded that tke ceU iateracU aoakaearly witk tke backgroaad tarbaleace. 

These resalU confirm similar findings by eg. Pécseh et al.[l I j . The iacreasr ia the 

corrdatioa faactioa iadicates that the eærgy of the iajected ceB is coadeascd ia 

the lowest order modes, m = 0 aad m = 1. Tkas tke coavective cell modifies tke 

tarbaleace, makiag energy tow from kigk order modes iato larger stractares. 

The experiments discassed ia tke previoas section were «iso performed for plasma 

parameters where the tactaatioas have a narrow baa J spectram as ia Fig. 4. Here 

tke lactaatioas are mack more cokereat aad it is possible to stady ia greater 

detail the interactioa between the spoataacoas lactaatioas aad aa externally ex­

cited coaveclive cell. l a Fig. 13 b shown the corrdatioa faactioa I t ( I , , I , ) = 

(w(r„ , t , )aHM,) ) * * diflereat times after the injection of the cell. These figures 

indicate that as long as the cdl exists the oscillations are essentially m - I modes 

whereas tke backgroaad fluctuations without tke iajected cell have m = 2. How 

the backgroaad fluctuations are perturbed by the convective cdi can be seen from 

Fig. 14. This skows tke time evolatioa of tke average potential fluctuation («V) 

before aad after the injection of the cdl, for a namber of asimathal positions 

aroaad the plasma cotamn. As the cells are injected at random time points rela­

tive to the backgronnd flactaatioas, the average potential before the injection is 

very close to sero. Immediately after tke injection tke cell it seen, aad after the 

ceD has decayed (at 200-300«*) the iakereat flactaatioas reappear. However, the 

phase of tke backgroaad flactaations is locked to the cdl even after tke ceU has 
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Figure 13. Correlation function Rc(tlttx) = (ø(r0) t,)ø(r, ( |)), for a case 
when the spectrum of the fluctuations has a narrow peak. Figure is 
analogous to Fig. 10. a) t | = 70/M, b) tt = lbOfts, c) t\ = 400/1«, 
d) Correlation function for the unperturbed plasma. 

decayed and so the average potential is nonzero. Thus the cell affects the coherent 
oscillations for much longer than the lifetime of the cell. 

A further examination of this was carried out to determine the relation between 
the injection time (relative to the inherent mode) and the phase shift. For this 
measurement the injection time was triggered by the inherent fluctuations. The 
average potential was then measured at a fixed azimuthal position 8 — 90°. The 
results are shown in Fig. 15. This figure clearly shows that the modification of the 
phase depends on the phase of the injection. When the cell is injected in phase 
with the fluctuations the phase is not appreciably changed. The maximum phase 
change comes when th»- o II is injected 90° out of phase with the inherent mode. 

The evolution of the pi *sma response to the injected cell is shown in Fig. 16 as a 
function of the azimuthal position. Again, there are clear differences between the 
cases A and B of Fig. IS. Of special interest is Fig. 17, which shows the Fourier 
components of a series of curves as those in Fig. 16. The Fourier components can 
here be considered as "modes" and Fig. 17 then shows the relative strength of the 
different modes as a function of time after the cell injection. This interpretation 
of the Fourier components as "modes" should be taken with some caution as the 
lifetime of these modes is comparable to the frequency of the oscillations. 

The most important result to be seen from Fig. 17 is that, after the cell has 
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Figure 14- Time evolution of the averaged potential (<t>) at various azimutkai 
position* at the radial position r = 18771m. A convective cell is 
injected at t=0. 

been injected the low order modes (m = 0 and m = 1) grow while the inherent 
m = 2 mode is quenched in the period 200/is < t < 300/«. This indicates that 
the cell perturbs the inherent mode in a way such as to precipitate an inverse 
cascade of energy from high to low modes. Furthermore, even when the cell has 
decayed at t > 400/is the inherent mode does not retain its former strength for 
several hundred /is. This feature is most clearly seen in Fig. 17a pertaining to 
cell injection in phase with the inherent fluctuations. When the injection is out 
of phase the picture is less clear. In this case higher modes (m > 3) are also 
excited and the m = 2 mode is stior.gly enhanced in the first 100/« after the cell 
injection. However, also here the high order modes are quenched for a period after 
this initial response. The fact that in both cases the in — 2 mode does not fully 
recover until long after the cell has decayed indicates that there may be some 
interaction between the modes for this extended period. 

2.5 Anomalous plasma transport 

Due to the randomly varying electrical field, the plasma will be transported with 
a local velocity v = É x B(,/B(^ (as long as frequencies are much lower than the ion 
cyclotron frequency). The plasma flux associated with this velocity can be written 
as I = nv. Note that f does not contain the DC flux in the azimuthal direction. 
The interesting part of the flux is the transport out of the plasma column, which 
may be termed an anomalous diffusion, since it gives rise to a diffusion across the 
field lines which is not of the classical type. The anomalous radial transport will 
in the foUowing be called f0 = nEg/B0. A positive value of f0 corresponds to flux 
out of the plasma column. 

To calculate the flux it is necessary to measure the local fluctuations in the 
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Figure 15. Time evolution of the average potential fluctuations when an 
convective cell is injected. Measurements are here triggered by 
the inherent fluctuations, a) The time evolution at a fixed point 
(0 = 90°) for different injection times (indicated by arrows). Top 
trace shows background fluctuations alone, b) Trace of the peaks in 
the signal shown in a). In A the cell is injected out of phase with 
the background mode, in B the injection is in phase. The oblique 
line shows the time of injection. 
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Figure IS. Potential variation as a function of azimuthal position for vari­
ous times t after the cell injection. In a) the cell is injected in 
phase with the inherent fluctuations, in b) 90° out of phase. This 
corresponds to the cases A and B in Fig. IS. 
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Figure 17. Temporal evolution of the azimuthal mode numbers m — 0 to m = 
4 (of the potential), a) shows case A of Fig. 15, b) is for case B. 
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electrical field and the density simultaneously at approximately the same radial 
and asimuthal position. This was done using three probes entered from the side 
of the machine. Two of these were placed at r = 17mm and 10mm apart in 
the asimuthal direction and left floating. The potential difference then gives the 
asimuthal electric field. The distance between the probes is large enough that the 
probe sheaths do not overlap but small enough compared to the scale site of the 
turbulence that aliasing errors are not significant. To ensure that the measured 
electrical field really only is the asimuthal component the two probes were line-
adjusted until the DC voltage between them vanished. Between the two floating 
probes is placed a third probe biased for ion saturation current. This measures the 
fluctuating density. The fluctuating radial flux is then measured by multiplying 
the signal from the density probe and the £-field probes. 

Results with broad band turbulence 
The first investigation is in a situation where the turbulence has a broad frequency 
spectrum as shown in Fig. 3. Using a Hewlett-Packard analog correlator probabil­
ity densities were obtained for the fluctuating quantities. The results are shown 
in Fig. 18. From this figure we can see that (n) = (E) = 0, as expected. However, 
the flux has a non-zero average, indicated by the arrow in Fig. 18c. The average 
flux can thus be measured to (fn) = 1.1 • 10 i 6m~ 2s~ l . In addition to this it is 
seen that while the density and electrical field probability distributions are almost 
Gaussian distributions the flux distribution is markedly asymmetric. From the 
figure we find a skewness of ~ 0.3 and a kurtosis of ~ 4. The positive value of (f()) 
indicates a net flux out of the plasma column. From this a diffusion coefficient 
can be defined as Da = (»w)/|Vn«|, from which D„ = 3 • l O ^ m ' s - 1 . Compared 
to the Bohm diffusion coefficient Dn ~ nT/qBo = 4 • I0~ 2 m 2 s _ l it is somewhat 
lower, but it is more than an order of magnitude larger than the classical dif­
fusion coefficient, Dr = IrfTn/Bl = 1.7- l O - ' m V (ij is given by Spitzer[12]: 
n = 5.22 • 10~r,ln A/TA/i and In A ~ 15). The transport along the field lines can 
also be calculated. Using a plasma velocity of 500ms"' the plasma flux along the 
field lines is 5 • 10 l y m~ 2 s _ l . If the radial flux is assumed to be constant along the 
plasma column, the total radial transport is 1.2- 10 , ss~' while the longitudinal 
transport is 3.5 • 10 l 6 s - 1 ; in other words about 3% of the plasma is lost radially 
while the rest is lost by condensing on the end plate. 

The processes giving rise to the anomalous diffusion can be investigated in more 
detail by measuring the autocorrelation functions of the fluctuating quantities. 
In Fig. 19 is shown the autocorrelation functions Rn(r) — (h(t)ii(l + r)}, Rj, 
and Ry. While the autocorrelation of n and E tend to zero for r —+ oo, Rv 

tends to a constant nonzero value. The average flux can then be calculated as 
(fo) = yjRi(? —* oo). The value found by this method is close to the one found 
from Fig. 18. In Fig. 19d is shown the cross correlation function R„XJ\T). From 
this it is easily seen that n and E are significantly correlated. The normalised 
correlation is RAxfi(0)/{Ra(0)Rf.(0)) ~ 0.3. 

A Fourier transform of Ærtx/> in time will yield the power spectrum of the flux, 
using the convolution rule: 

F(a(i)-6(t)) = y*F(o(i))F(6(r + r)dr. 

The spectrum is written as S(f = w/2ir) = \S(f)\e'*lf). In Fig. 20 is shown 
| 5 ( / ) | and ¥ ( / ) . From the phase spectrum it can be seen that for high frequencies 
the phase difference between n and E is close to zero, but for the lowest frequencies 
the phase difference is closer to * / 2 . It will be recalled that according to Chen [10] 
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Figure 18. Probability densities (relative occurrence of different instananeous 
values) for the fluctuating quantities, a) Normalised density, b) 
azimuthal electric field, c) radial flux f,,. In this experiment B» -
0.25T, n o ~ 5 1 0 l 6 m - 3 . 

the phase relation should be sero for linear instability but */2 for the saturated 
fluctuations. Thus Fig. 20 gives a further indication that energy is cascading from 
high order modes to lower ones. The high frequency modes will then remain lin­
early unstable because their energy is fed into the lower order modes which then 
are driven into saturation. It should be noted here, that while * ( / ) — 0 was always 
observed for the high modes the phase of the low frequency modes was sometimes 
- x / 2 rather than x/2. 

As the phase of the low frequency modes is close to x/2 these modes should not 
contribute to the net outward flux. That this is indeed so was verified explicitly 
by filtering the h and E signals with a high-pass filter before multiplying them. 
It was found that the net outward flux, (f0) was not appreciably affected, when 
the cut-off frequency was below ~ 2kHs. However, for higher cut-oft* frequencies 
the net flux decreased. This result is somewhat surprising, since the amplitude of 
these low frequency modes is rather high compared to the high frequency modes. 

Narrow band case 
The preceding investigation was also carried out for a narrow frequency band 
regime, such as the one seen in Fig. 4. Probability distributions were also ob­
tained for this case for the three fluctuating quantities. Here it was found that the 
probability distribution for the density, P(h) closely resembled that of a purely 
sinusoidal oscillation with amplitude A: P{a) = (A/K)J •^(Ai - a1) for o < A, 0 
otherwise. There was a bit of "smearing out" due to the very low frequency noise 
component which is always present. This in fact dominated the result in P(E). 
The probability distribution for the radial flux was again asymmetrical, but with 
a much lower average outward transport. 
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In Fig. 21 is shown the autocorrelation functions and the cross correlation be­
tween the density and electrical field (similar to Fig. 19). The fluctuation level is 
somewhat lower than in the broad band case. The correlation between the density 
and electrical field is ii. this case very low, RAxf:{0)/{Rn(0)RÉ(ii)) 2: 0.03. The 
density and electrical field are approximately ~/2 out of phase, as is clear from 
Fig. 21d. 

The diffusion coefficient is here estimated to Dm = 3 • 10~5m2s~' This is lower 
by around two orders of magnitude than the anomalous diffusion in the broad 
band case. This shows that the anomalous transport is strongly dependent on 
edge plasma parameters. 

Modification of the flux by eonveetive cell injection. 
It was shown in section 2.4 that the external excitation of a convective cell modified 
the turbulence in the edge in significant ways. To investigate the influence on the 
turbulent flux measurements of this were made during injection of convective cells. 
Thus measurements were made of (r0(t|)) = (n(i|)£(f t)) where i\ is the time after 
the cell injection. One result is shown in Fig. 22. This result was obtained with a 
broad band spectrum. Just after the injection the flux is enhanced, but afterwards, 
when the main part of the cell passes the probe, the diffusion diminishes. This 
behaviour is also present when the spectrum has a single frequency peak, as is 
shown in Fig. 23 for three different values of 9p. The time of the minimum depends 
on ØD in a way which indicates that the perturbation of the flux travels around 
the plasma column with the E x B»,/®o velocity. An interesting feature is that the 
flux may go inwards for a short period after the cell injection. This means that 
it is possible to change the turbulent flux transiently by external perturbations. 
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However, in these experiments the total flux was not appreciably changed by this 

method. 

2.6 Conditional statistical analysis of the turbulence 

In the discussion of Fig. 18 it was noted that the probability distribution of the 
fluctuating radial flux was markedly asymmetric and that it had an anomalously 
large kurtosis. This seems to indicate that the transport is caused in a large part 
by large "bursts" of plasma being injected during short intervals of time rather 
than by a more steady "seeping" of plasma out of the plasma column. 

In order to investigate this in more detail a series of experiments have been 
performed which investigate statistically the conditions in the plasma edge during 
periods where the plasma transport is anomalously large. Such an investigation 
has only recently become possible by the availability of fast digital oscilloscopes. 
A two-channel digital oscilloscope is being used for these measurements in an 
experimental set-up which closely resembles the one used for the earlier flux mea­
surements. This new set-up consists of the three fixed probes which measure the 
fluctuating electrical field and density. Added to this is a fourth movable probe 
which may be placed in any position across the plasma column. This measures the 
fluctuating potential or density. The potential difference signal from the electrical 
field probes together with the signal from the moving probe is then fed into the 
to channels of a digital oscilloscope which in this set-up is used mainly as a tran­
sient recorder. It may acquire data scans of up to 32000 points for each channel. 
The acquisition rate is here put at 50-100kHz which is sufficient to prevent alias-
i-g errors. The acquired traces are then sent to a computer for processing. This 
processing consists of the following: 

• Search the £-field trace for spikes which fulfill the condition E > ko, where 

tr is the root mean square value of the E-field trace, <r — \j{El) and A; is a 

specified number. (The condition may also be that E < k<r where k is now 

a negative number.) 
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• Every time the condition is fulfilled take out the part of the trace starting 
a time r before the spike and ending at a time r after the peak. These are 
then added together. This is done both for the £-field and for the potential 
fluctuation trace. 

• Repeat the preceding for a number of positions of the potential probe. 

By moving the movable probe around and performing this measurement in a 
grid of points it is possible to obtain an averaged picture of the plasma when the 
fluctuating electrical field is large (positive or negative) at the position of the fixed 
probes, or in other words when there is a large instantaneous radial transport of 
plasma into or out of the plasma column. 

An example of a measurement of this kind is shown in Fig. 24. Here the mea­
surement has been made in a grid of 8 x 13 points across half of the plasma 
column. Prom the measurements pictures have been reconstructed of the state of 
the plasma at four times before and after the peak in the electrical field. The plots 
show an average of a few hundred occurrences. 

The figure clearly shows the occurrence of a pair of convective cells of opposite 
polarity moving past the electrical field probes. At the time r = 0 the boundary 
between the two cells is almost right between the two probes. The polarity of the 
cells indicates that the instantaneous transport is out of the plasma column. In 
Fig. 25 is shown a similar measurement where the movable probe measured the 
fluctuating density. In Fig. 25 the density fluctuations have been normalised by 
the local DC density. This shows that at the time of a large electrical field the 
density perturbation at the probe position is clearly negative. This indicates that 
the fluctuations in the density and electrical field are largely out of phase. Thus 
the net transport u small and the large structures shown here may be relatively 
ineffective in transporting the plasma out of the column. This is in agreement with 
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the results obtained in the previous section. 
In order to avoid storing very large amounts of data the incoming data for 

Pigs. 24-25 are processed at once for each point in the grid. However, this means 
that it is not possible to make another analysis (e.g. with a different condition) 
of the same data. For this reason a simpler experiment was performed which 
allowed us to save the entire trace for a single point. In this way several different 
conditions can be investigated for the same set of data and the raw data may 
be manipulated in various ways. The measurement was made with the two fixed 
E-field probes and the fixed density probe. Traces of the afield and the density 
fluctuations were obtained. ' r . instar.taueou« flux due to the fluctuations can then 
be calculated by multiplying the two signals. Some results are shown in Fig. 26. 
In this figure is given the conditionally averaged values of the £-field, the density 
fluctuations and the flux f = hE for two different conditions, one where the E-
field fluctuation is positive and hence the instantaneous transport is outwards and 
one where the E-field is negative. In both cases it is clear that the density is 
perturbed when the electrical field has a large spike. The phase difference between 
E and n lies between 0 and x/2 in both the positive and negative case. Th;s causes 
the somewhat surprising result that the flux has a positive spike both when the 
transport is outwards and when it is inwards. Even more surprising is the fact 
that while the flux spike is small when the transport is outwards (in agreement 
with the experiments described in the previous paragraph) the flux is much larger 
when the transport is inwards. This means that the greatest contribution to the 
net flux comes when the instantaneous transport is inwards. There is perhaps a 
correspondence between this result and the results shown in fig. 18. This shows 
the probability densities for the various fluctuating quantities. Looking closely at 
this figure, one may see that both the density and the »lectric field distributions 
are slightly skewed in the negative direction, while the flux distribution is clearly 
skewed in the positive direction. All this indicates that a considerable part of the 
net flux may be due to these negative Æ-field spikes. This is being investigated 
further at the time of writing. 

2.7 Plans for the near future 

The experiments described above clearly show that large fluctuations do contribute 
to the net flux out of the plasma column. However, the mechanism is not clear. In 
particular it is not understood why the greatest (perhaps even dominant) contri­
bution comes when the transport is actually inwards. For this reason there is need 
of an experiment where potential or density data are acquired from a number of 
points together with the E-Reld data in a way similar to the one described above. 
However, this time all the data must be saved so that it is possible to apply several 
different conditions to the same set of data. This requires the storage of large sets 
of data (typically lOMbytes) so the experiment must be carefully prepared. It is 
not practical to store a large number of such experiments. 

On a slightly longer timescale it may be possible to perform a similar experiment 
where the condition is applied to both the electrical field and the flux signal. In 
this way large flux spikes can be investigated in more detail. However, this will 
require three ot more input channels where at the present only two are available. 
This may be remedied at some time in the future, the authorities willing. 
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3 Numerical simulation of Q-machine edge plasma 

3.1 Formulation of the problem 

Due to the magnetic field the plasma in the Q-machine can be considered essen­
tially two-dimensional. Therefore it may be worthwhile to try to make a numerical 
simulation of the processes in the plasma and especially in the edge of the plasma 
which is dominated by large density and electrical field gradients. This chapter 
describes a method for simulating a disk- or ring-shaped two-dimensional plasma. 

The starting point for the simulation is the fluid equations of continuity for the 
electrons and ions: 

- ^ + Y • V»,,c = 0. (6) 

Here n, f are the ion and electron densities respectively. The velocity v should 
really be calculated from the higher order fluid equations. However, here only the 
lowest order approximation is taken into account, in which the velocity is the E x B 
velocity given by: 

E x B 

The flow is here taken to be incompressible and inviscid, and it is assumed that 
higher-order effects can be ignored so that v; = v,.. If we assume that all ions 
are singly ionised we can get an equation for the charge density p = n, - nr by 
subtracting the two continuity equations. Using then Poisson's equation and the 
fact that E - -V<p the following closed system of equations is obtained: 

- ^ + v V p = 0 (8) 

E x B 

v = - p - (9) 
vV = -— (io) 

where <j> is the electrical potential. Equation 8 is known in fluid dynamics as Eu-
ler's equation. These equations, together with appropriate initial and boundary 
conditions, form the system that is to be solved. Note however, that several as­
sumptions have been made in the process of simplification. As already mentioned 
incompressibility has been assumed. When we subtracted the mass conservation 
equations we lost all information about the plasma density and density gradients. 
This is especially grave for a simulation of the main plasma in the Q-machine since 
this part of the plasma is characterized by strong density gradients and hardly 
any electrical fields. This simulation will therefore be restricted to the edge of the 
Q-machine plasma. Futhermore, all external forces except electrical and magnetic 
fields have been disregarded. Finally, despite the use of E x B drift velocities finite 
Larmor radius effects have been ingnored, even for the ions. 

The equations to be solved describe an incompressible plasma in a magnetic 
field. However, a mathematically entirely analogous problem exists in fluid dy­
namics. If V7 denotes the stream function, u> = V x v the vorticity (a pseudc-scalar 
in this two-dimensional problem, w = 0,0, u»,) and v the velocity we have the 
following equations for an inviscid incompressible fluid: 

dial 

— + v V w = 0 (11) 

u ; = V x v (12) 
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Figure 27. The shape of the region in which the equations are to be solved. 

where the sign convention is taken from [13]. It is easy to see that apart from a 
sign in Poisson's equation these equations are analogous to Eqs. 8-10. 

The equations are solved in an annulus-shaped region as shown in Fig. 27. r„ 
is the inner and r» is the outer radius of the annulus. The shape of the region 
makes cylindrical (polar) coordinates an obvious choice. In cylindrical coordinates 
equations 8 and 10 look like this where r is the radial and 0 the azimuthal 
coordinates: 

dp 1 
Mdr 

dip dp 
~dr"dB 

= 0, 

T dr* dr 802 
Co 

(14) 

(15) 

Eq. 10 has been multiplied by r2 in the process. On the two boundaries the 
potentials are constant around the annulus though not necessarily equal. This 
means that we have Eg = 0 at both boundaries and since vT = —Eg/B, = 0 there 
can be no transport across the boundaries. 

3.2 The Numerical Methods 

General method 
Equations 14 and 15 can be combined to form one nonlinear partial differen­
tial equation with derivatives in both space and time. This is a mixed initial— 
boundary value problem. The boundary conditions for this equation are: <t>(r„,9, t) = 
V„, 4>(n,0,t) - Vh, <t>{r,0,t) - </>(r,2ir,t). The initial condition is tt>(r,0,O) = 
f(r, 0). The method used here for solving it uses a finite difference (time-differencing) 
method for the time variable [14, 15], since this is unbounded. For the space vari­
ables we use one of the so-called pseudospectral methods [16, 17]. These methods 
work by sampling the functions of the equations at discrete points (collocation 
points) and then expanding these data in a series of orthogonal functions. The 
system of equations can then be solved by working on the coefficients of these 
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functions to give a solution for each time step. The trick lies in selecting expan­
sion functions that are well-behaved. The most commonly used expansion is the 
Fourier expansion because it has nice properties with respect to differentiation 
[18]. But Fourier expansion is only possible if the problem has cyclical boundary 
conditions. In the present problem this is only the case in the aiimutha] direction, 
where we use a real (not complex) Fourier expansion. 

However, one may use many other sets of linearly independent functions. For 
this problem the variables are expanded in the radial direction in Chebyshev 
polynomials of the first kind. (In the following they will simply be called Chebyshev 
polynomials). The generating function for the n'th Chebyshev polynomial is: 

T n ( i ) = cos(narccosi), (16) 

and the first few polynomials are: 

Tn(x) = 1 

T,(x) = x 

Ti(x) = 2x2 - 1 

7!,(i) = 4x:l - 3x 

As can be seen from the generating function Chebyshev polynomials are only 
defined in the interval - 1 < x < 1. At the edges of this interval we have for all n: 

T „ ( - l ) = (-1)" (17) 

T„(l) = 1. (18) 

This means that the annulus must have a width Th~ra = 2, and the radial distance 
must be transformed like this: 

x = r — a 

where a is the mean radius of the annulus a — (r„ + Tt,)/2 (see Fig. 27). The 
expansion of the functions will thus be of the form: 

*•(*.*)= £ (Ea".»T»'(*))e"'s 09) 
n = — OD rn=ti 

with O < 0 < 2T, - 1 < x < 1. 
The function is expanded in infinite series of orthogonal functions, something 

that is fairly impossible to do on a computer. An explanation on how to truncate 
to a finite number of expansion functions (modes) is given in section 3.2. In the 
azimuthal direction we have periodic boundaries and so we can perform a Fourier 
expansion in this direction. Numerical methods for Fourier expansion (transforma­
tion) are well known[19]. However, there is no method which will directly expand 
a function given at discrete points in Chebyshev polynomials. To remedy this the 
grid points in the radial direction have been chosen in the following way: 

x, = - c o s ( ^ ) , 0 < i < M. (20) 
y M 

With this choice of points Eq. 16 will look like this: 

T„(zj) = cos (narccos[- cos ( ^ ) ] ) = _ c o s ( - ~ ) . (21) 

The Chebyshev polynomials are now expressed by a cosine function and so the 
Chebyshev expansion can be performed by a cosine transform which is closely 
related to a Fourier transform. 
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Fourier expansion methods 
The general method for expanding a periodic function in a Fourier series is found 
in standard mathematical textbooks and looks like this: 

/ ( « ) = £ c„ e -* (22) 
n = — oo 

where the complex numbers c„ are given by 

c„ = ^ | * / ( * ) * — * d * . (23) 

f(x) is periodic with period length 2x. 
This method demands the calculation of an infinite number of factors c„, so it 

is not very well suited for numerical treatment. However, there are several ways 
of making approximations to this system. One is to simply truncate the sum: 

/ ( x ) ~ £ c „ e ' " (24> 
o 

This method is called the Galerkin or true spectral method. Note that f(x) is 
still continuous. The method we have chosen is a little different. Instead of ap­
proximating the function at all points we choose a number of equidistant discrete 
points, f{xj) and demand that the expansion be exact at these points. This is 
the so-called pseudospectral or collocation method. (The use of these names in 
the literature is not consistent.) The points x} are called collocation points. The 
expansion now looks like this: 

i \ - i , v - i 

/ ( x , ) = ^ c t e « ^ = 5 ] c t e ' ^ 4 (25) 

with the ct's given by: 

c* = ^ £ ' / ( * , ) * - ' " * ' • (26) 

A proof that these two equations are consistent with each other is given in App. B. 
In the present case f(x) is a real function but the ck 's are complex. Thus twice 

as much space is needed to store the function values in "transformed space" (i.e. 
expanded) as in "real space" but of course there is no more information stored. 
This amounts to a considerable waste of computer memory. For this reason a real 
(not complex) Fourier expansion (transform) has been chosen. Here the expansion 
is in sines and cosines: 

N,'1~' 
/ (*,) = Ao,, + ABw/,cos(*i) + £ (a*cos(-Jjfc) + bksin(-J;*)) (27) 

where the coefficients a* and 6* are given by: 

2*. 
°* = ]^ H /(*j)co*(^*». 

> = 0 

/ V - l 
, 2 * . 6* = ^ £/(*,)*"(V*j)- (28) 

The proof of consistency for these equations is very similar to the complex trans­
form case. 

The real Fourier transform lends itself well to the transformation of data in the 
azimuthal direction. However, it was found in Eq. 21 that Chebyshev polynomials 

Risø-M-2858 35 



can be represented as cosine functions. Therefore the data must be transformed 
in the radial direction into an expansion in cosines. This is done in a way very 
similar to the real Fourier transform: 

\ 

with the a*'s given by: 

«* = 2^ E' fo )«*(£**)- (30) 

>=» 

Note that here we expand in N + 1 functions and that the transformation and the 

inverse transformation are symmetrical2. 

Solving Poisson's equation 
Poisson's equation in cylindrical equations is given in Eq. 15. After transformation 
this equation gives an equation for the infinite series given in Eq. 19 which looks 
like this for each n: 

(x + a ) 2 ^ ( £ <t>,nnT„,(x)) + (x + o ) — ( £ <t>m„Tm(x)) - n2 £ 4>mnTm(z) 

-x 

= - (x + a ) 2 £ P m n T , „ ( i ) (31) 
t n = " 

where p has b^en used for p/e„. (This will be done from now on.) This equation 
contains the first and second derivatives of series of Chebyshev polynomials mul­
tiplied by powe.s of x. The polynomials ensuing from differentation of Chebyshev 
polynomials and multiplications with polynomials are not themselves Chebyshev 
polynomials and so cannot be used directly for this calculation. But formulas are 
available for calculating the derivatives of functions that are expressed as Cheby­
shev series. A function f(x) which is expanded: 

TC 

/ ( i ) = £ a,nTm(x) 
m=<> 

can be expressed as a new series of Chebyshev polynomials. Formulas are given 
in Appendix A which wit] be useful for this purpose. 

J\lt the "thrrrt'isr excellent treatment <»f thr Kast l't>uricr lransf"rn> in Nnmcriral Hrcipcs{HJ] 
t hr authors mistakrnly assert that thr o»sinr transform is nut *> inmrt rif'al an<) drvolr mm It 
disi tission In Ihr problem of ho« to mnkr it sn. 
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Using the relations in Appendix A, Eq. 31 can be written: 

((« + of-T-r. + (* + «)^- - »"J Y. •"-T~ix) 

p = l . p = : i . F = -». J> = "•!• 

p even p odd p even p even 

oc ac ao 

p = I. m= I P = "* + 2, 
p odd p -f «• even 

+4am{m+l)^n .+ ,>B + 2a ^ p(p2 - m2 - Ijdy« + a3 £ p(y - m 2 )^ , , 
p = m + :». p = m -f 2. 
p + m «>dd p + m even 

+m«ml,+2 E P*F» + 2 a £ *#pw-*a*«»)T«(*) 
p - m + 2. p = m + I. 
p + m rrrn p + m odd 

Several of these terms cancel and the end result is: 

(i(«2 +1) jr p3«,.,.+.f; p:v„B - n2**.) + Y, ((«'+1) £ *p2 - m2)*p 
p = 2, p = 1. m = | p = m + 2. 

p rvrn p *xid B- fm rvrn 

30 

+ 2« £ p(p2 - m2)*,,, + (m2 - n2)«™ )Tm(*) 
p = m + I. 
p + m odd 

at 

= (* + a)2]Tpm„:rm(x) 
m=() 

ac 

= -£pm»T.n(z). (») 

In this system truncation to a finite number of modes is done by choosing a number 
of collocation points as explained in section 3.2. Then the upper boundary on 
the sums can be replaced by the number of modes M which we want to retain. 
(Note that the expansion coefficients, (pmK, for the retained terms are not exactly 
identical to the coefficients of the same modes in the full expansion.) We thus get 
for each Fourier mode a set of M + 1 linear equations with the Af + 1 unknowns 
øom^ini-• -,4>Mn- The m'th equation has the following form: 

(m2-n2tø r a i I + 2a(m + l)(2m+l)0m + I .» + (1+a 2 ) (m+ 2)(4m + 4)*m+,.„ + ••-

+a"(Af )(M2 - m7)4>Mn = -Pmn 

with a* either equal to 2a or 1 + a2 depending on whether m is odd or even. 
The structure of the system of equations is shown in Fig. 28. This system is 
triangular, (it is also singular, as there is a tern in the diagonal where m2 = n2, 
more about that later). Solving a triangular system by back-substitution requires 
a few times M7 floating point operations. So to solve for 4> requires of the order 
of N • At2 operations. If we want to solve the equations using a large number of 
modes we cen run into trouble, even on a large computer. Luckily, there is a way 
around this. If we denote the m'th equation E(m) we can make the operation 
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o J( l -r • . ' ) •» a 57 J ( l + « > ) - M 
I 
l i ) 1 - « ' 2a 6 ( ! + • ' ) 24 l i 6t (l + a*> 120 
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90 Figure 28. The system of equation« for solving Poisson's equation. 



E'(m) — E[m) + aE(m + 2) + ØE(m + 4). By choosing a and j3 correctly we 
can eliminate all terms except for the first five in all the equations. If you look at 
Eq 33 and Pig. 28 you will see that the p'th and p+ Tth columns of the triangular 
matrix will look like this (p is odd in this example): 

°P* i ( l + a - ' ) ( p + l ) ' 
( l + « 2 > p < y - l ) 2 a ( p + l ) ( ( p + l ) 2 - l ) 

2ap(p2 - 4 ) (1 + a2)(p + l)((p + I)2 - 4) 

(l + a2)p(p2-m2) 
2ap(p 2 - (m+l ) 2 ) 

( l + « 0 p ( p 2 - ( m + 2) i) 
2ap(p-'-(m+3)2) 

2 a ( p + l ) ( ( p + l ) 2 - m 2 ) 
(l + a i ) ( p + l ) ( ( p + l ) 2 - ( m + 2)2) 

2 « ( p + l ) ( ( p + l ) 2 - ( m + 2 ) 2 ) 
(l + a 2 ) ( p + l ) ( ( p + l ) 2 - ( m + 3 ) 2 ) 

From this it is fairly easy to see that we can write two equations for a and 0: 

pip' - m2) + ap(p2 - (m + 2)2) + 0p(P
2 -(m + 4)2) = 0, 

((p+ l)2 - m2) + a((p+ I)2 - (m + 2)2) +/3((p+ I)2 - (m + 4)2) = 0. 

These equations must hold for all values of m and p, so we can solve for a and 0. 
The result is: 

-2(m + 2) 

0 = 

m + 3 
m+ 1 

(34) 

(35) 
m+ 3 

So we end up with a set of equations of the following form: 

(m2 - n2)4>mn + 2a(m+ l)(2m + ltøm+l .„ + (4(1 + a2)((m + 2)(m + 1) 

~a((m + 2)2 - n2))tf„,+i,„ + 2a(2m2 + 9m + 7)^ra+.,,n + 0((m + 4)2 - n2)^m+1,, 

= -Pmn - aPm + 2,n ~ 0Pm+ l,n (36) 

For m = 0 and for the last few equations this will look a little different. 
Now we have a triangularised, pentadiagonal system of equations. This can be 

solved using O(M) operations. But the system is still singular and we have not 
taken account of boundary conditons. Both can be resolved by noting that at the 
boundaries we get: 

£(- l ) 'Vmn=an , (37) 

/ , <t>mn — &n- (38) 

If the last two equations in the system are replaced with these two, a regular 
system of equations is obtained. The last two equations in the system are the ones 
which should be removed since they only contain information about the highest 
modes and are not very accurate because of the truncation. One obstacle remains. 
If you look at Eq. 36 you will see that for m > n the coefficients of the second 
and third term is larger than that of the first term which is the diagonal element. 
This means that the matrix is ill-conditioned (the diagonal element should be the 
largest numerically) which will impair the accuracy of the solution, especially when 
a large number of modes is used. In fact, it was found that already for M > 32 the 
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Figure 29. The structure of the matrix after manipulations and insertion of 
the boundary conditions. 

accuracy became unacceptably low. This problem can be solved by putting the 
two boundary conditions on top of the array and pushing all the other equations 
down two places. The resulting array has the form outlined in Fig. 29. Now the 
third term of Eq. 36 is the diagonal element and the matrix is well-conditioned. 

This system which can easily be triagularised and solved by back- or forward-
substitution. The number of floating operations used to solve this system is O(M) 
operations for each azimuthal mode or 0(Af x JV) operations for the solution to 
Poisson's equation. This is less than the amount of computation needed for the 
Fourier transform which needs 0(Af log2(A/) x N + JV]og2(̂ v*) x M) operations. 
This means that it will be feasible to use & large number of modes, eg. 128 x 512. 

Calculating the derivatives and other things 
As can be seen from Eqs. 8-10 the gradients of both p and 4> must b" calculated. 
In cylindrical coordinates the gradient operator is: 

• - ( £ ) 
In transformed space the 9 derivative is calculated very easily, since it is just a 

differentiation of a Fourier series, i.e. each mode must be multiplied by the mode 
number: 

|(Epn.^-2' ,n/") = ^fr £•*.•«-'"""/v- (40) 

The calculation of the r derivative is a bit more tricky since it involves derivatives 
of series of Chebyshev polynomials. But we can use Eqs. 92 and 93 of Appendix A. 
Thus we get: 

dp " " 

v- •. v- i-
p odd p pvrn 
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M M M 

m = l p = m + l . p = m + "i. 
p + m »»dd p-f m rve« 

The new coefficients are the sums of the old ones and the amount of calculation 
needed for taking the gradient seems to be around N x M2 multiplications. Again, 
a simple trick saves the day. Denoting the new coefficients for the derivatives p'mK 

we get: 
M 

Pm-/.» = (m - 2)/jm_i,„ + 2o(m - l)p„,_,.» + 2mpmn + 2a £ pp^, 
p = m + I. 
p + m odd 

M 

+2 ^ ppfn =(m-2)pH , .2 .1 1 + 2a(m- 1 )^ . . , . , + mpn... + * w ( 4 2 ) 
j> = m + 2, 
p + m r\rn 

Now we can calculate the gradients using only a few times NxM multiplications 
and this calculation is not a limiting factor. 

In solving Poisson's equation the right-hand side is r2p, but in most of the rest 
of the calculations we need just p. Therefore we need a way to multiply and divide 
by r1 in transformed space. To this end we can use Bqs. 90 and 91. It is easy to 
see that if we want to calculate r2p from p we can get each new coefficient as a 
sum of a few of the old ones. But if we want to go the other way we have to solve 
a linear system of equations, each of which looks like: 

5^m,»-2 + « P m - l . B + ( § +a2)Pn,n + *Pm+l,n + L,Pm+2,n = p'„n (43) 

(Again, the first few equations look a little different.) This system is a pentadiag-
onal system of equations and can be solved in 0(M) operations for each Fourier 
mode. 

Calculation of f̂ and time integration schemes 
In the previous section we saw how to solve Poisson's equation. Now we can plug 
the solution into the Euler equation and look for ways to solve that. The equation 
to be solved is given by Eq. 14: 

•tdp i Hdp dj>dp\ 

It can be solved in configuration space, transforming the terms necessary for the 
calculation back into real space before calculating the time derivative. It is easily 
seen that four terms are needed for this, and each must be back-transformed. 
After a new value for p has been obtained we must once again transform this into 
transformed space. So altogether 5 transformations are needed for each time step. 
It turns out that these transformations take around 70% of the total computation 
time of the code. It would seem that it was far easier to do the time-stepping 
in transformed space. This would be possible but would not be any easier for 
the following reason. On the right-hand side of Eq. 44 we hav« to calculate two 
products of terms. This is easily done in real space but in transformed space 
products become convolution integrals (integrals in the Fourier transform, double 
sum« in the Fourier expansion): 

F(/(x) g{x)) = J F(/(*)F(»(* + OW. 

Therefore these multiplications must be done in real space and so it makes no 
difference at this stage whether the timestepping is done in real or in transformed 
space. 
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Now that we have calculated the right-hand-side of Eq. 44 we can employ a 
finite-difference method to solve for p. Several methods exist which are described 
in literature. In the following i wiii ase the notation ased by Gatdag[15j. If *t 
have an equation of tab form: 

we can approximate the solution at the time points ntAl. The simplest way is 

a straightforward extrapolation: 

pm*'-pm + Gm A« (45) 

where Gm - G(pm, r,$, mAI). This method is known as the "Enler" method. It is 
very easy to use bat nnfbrtnnately it is unconditionally unstable, i.e. the solntion 
diverges exponentially from the correct solntioa. Another way is the so-called 
"leapfrog" method: 

This method too is very simple bat is also prone to become aastable. A slightly 
more involved method is the pmrtzmltf corrected second-order Admms-B*skfortk 
Scheme which consists of two steps, a predictor step: 

pT+' - / - + ( 3 C ~ - C — ' ) - y . W) 

and a corrector step: 

p m + ' = p m + ( G - + G - * ' ) y . (48) 

Here we first calculate a valve of p from the old derivatives C " ~' and G"*. The i we 
calculate a new valne of the derivative, C"* 1 and use this to calculate a corrected 
valne for p m + l . Note that we do not calculate new valnes for the derivatives but 
use the ones obtained from the predicted values of p (thus the tildes on these 
terms). This is why it is called "partially corrected". If the derivative C " + I is 
updated with the corrected value of p the scheme is called "fully corrected". 

Methods like the 2nd order Adams- Bashforth require more computer memory 
than the leapfrog and similar schemes because it is necessary to save the derivative 
for two time steps. 

A third method and the one that was chosen initially for this problem is the 
third order partimllf corrected Ad*m*-Bmskfortk Scheme. It works much like the 
second order version. The two steps look like this: 

p">+' = p
m + [23C" - l6Gm~' + SG***} ~ f (49) 

pm+' = pm + [5Gm+' + 8G~ - Gm~ '] — . (SO) 

This method has good stability characteristics. On the other hand it requires 
the saving of three versions of the derivative at all times. Also we need to know 
the derivative at two previous time points. This means that we can not jnst start 
with the initial condition and use the third order Adams-Bashforth scheme. T<> 
get the code "up and running" the following starting procedure is used: 

1. Take a step to At /2 with the Euler method. 

2. Take a step to At with the leapfrog method. 

3. Go oat to 2At with the 2nd order Adams-Bashforth. 

4. For all following time steps use the 3rd order Adams-Bashforth. 
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Fi§*tt 30. The If mrfmmenis fmr Ike siac **d casiac esaaajtaas m the at-
rmalM dtrtttion, 2*j/N, caa hr rrareseafcd a» caafr* ta « uatt 
circle. Htrt AT = 32. The dasaca tint radical«« the sUH of the 
"farMdtn" area wAere ana una; occur*. 

la the previous section it was seea that it is accessary to do a coapie of malti-
pbcatioas of terms ia order to solve the system of eqaatioas. Bat ia doing these 
maltipfacatioas we eacoaater a aew difKcalty. Whea two Fourier ezpaasioas of 
faactioas arc multiplied we effectively maltiply all modes with each other. Ia 
other words we get terms of the form 

a , « * c o s ( ^ ) c o s ( ^ ) . = I « , « [«*(jU + *)) + «*{j[j ~ '«))] 

(Similar terms arise if the functioa is expanded ia a combiaatioa of siacs aad 
cosiaes.) Here we get aew cosine terms witk freqacBcies that are respectively the 
sam aad the difference of the old oaes. This applies even if the maltipbcatioa 
is done ia real space, since these aew terms will show ap once the function is 
traasfbrmed again. 

la a continuous representation this woald not matter but here we have a discrete 
number of points in which the faactioa is "sampled''. Since we have only a finite 
aamber of modes the new modes may have frequencies that are too high to be 
represented with the given number of modes and so information about the system 
disappears out of the high end of the spectrum. But what is worse, these terms 
will show up in the low end of the spectrum. The reason for this can be seen in 
Fig. 30. Ia this figure arc shown the arguments for the expansions in sines and 
cosines. 
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for the transformation in the azimuthal direction. The expansion goes from 0 
to JV/2 - 1, so the points only cover the upper half of the circle. (The situation in 
the radial direction is the same since there we step x/N N times and so still go 
from 0 to 7T.) Now if two sufficiently high modes are multiplied the new term will 
move into the lower half of the circle. But as we have that 

COS(TT + n) = cos(ir — n) 

and 

sin(jr + n) = — sin(7T — n) 

we see that the modes in the lower half of the circle will give a false contribu­
tion to the modes in the upper half. In the extreme case, if the highest modes, 
cos(2ir/N • N/2) are multiplied together they will contribute to the DC-level, which 
is certainly not physical. This phenomenon is completely analogous to the situa­
tion in analog-to-digital signal processing when one attempts to sample a signal 
with a sampling frequency lower than two times the highest frequency present in 
the signal. This problem is known as aliasing. 

One may choose many different ways of avoiding this problem. The one employed 
here to "dealias" is very simple. If we remove all modes with a frequency higher 
than two-thirds of the maximum frequency we will cut out a "pie slice" of the 
circle, (see Fig. 30). The angle of the slice is 2 T / 3 . NOW if we multiply the highest 
retained modes together, the product will fall into the part that was cut out. It 
will no longer be possible to excite modes in the lower part of the circle. Of course 
the cut-out part will be filled with terms when the multiplication is performed and 
these modes must be removed again after the multiplication. This method works 
well as can be seen from the results from the code below. The obvious drawback 
is that we effectively only use (2

i)
i — jj or around 44 % of the modes we have 

represented. 

Evaluating the solution by calculating invariant quantities. 
Due to the finite number of modes and the finite-difference time step the obtained 
solution will not be exact. We therefore need some indication of how well the 
code is performing. For this purpose we can use some quantities which should be 
invariant in time for this particular problem. Two of these are: 

and 

Cda- const. (51) 

p2 da = const. (52) 
IA 

Since the fluid is incompressible Eq. 51 simply expresses that ^p|v|* is invariant, 
in other words that kinetic energy is conserved. The other invariant is not quite as 
self-evident, but it is easy to derive from the original equations. Euler's equation 
can be written as: 

t = -v<„.). 
By multiplying with p we get 

dt 
-LV-tfr). 
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Integrating over the entire area gives: 

and using Gauss' theorem we can write: 

/
V • (p'v)da — <j> plv • nd5 

where the contour integral is to be taken over both the inner and outer bound­
aries. But since transport across the boundaries is not allowed vr = 0 on the 
boundaries and hence v - n = 0. This yields: 

* / / * = o 

from which we immediately get Eq. 52. 
This prcves that these two quantities are conserved in time for an exact solution. 

In our care we only employ a finite number of modes to describe the solution. It 
is possible to prove that in pseudospectral methods where only Fourier expansion 
is used these quantities will still be conserved even though only a finite number 
of modes is present ("rugged invariance"[18]). However, in the present case the 
solution is partly described by Chebyshev polynomials. Furthermore the invariance 
of p2 and v2 will be destroyed both by the dealiasing and by the finite-difference 
method used for the time integration. So we would not expect these "invariants" to 
be invariant. But they do offer information about how far the solution has diverged 
from the exact one. These quantities are thus calculated every few times.eps and 
the results saved in a file from which they may be read and displayed after the 
program has run. 

3.3 Numerical results. 

Code optimisation 

The code for this simulation has been implemented on two different computers: 
the VAX-8700 at Risø and the Amdahl VP-1100 supercomputer1 at UNI-C. The 
VAX only has one processor and so there is not much to be done in optimizing 
the code. On the VP-1100, however, the performance can depend very strongly 
on small adjustments in the code. 

The VP-1100 is a vectorprocessor and so has the ability to perform several 
identical tasks simultaneously. The compiler automatically vectorizes D0-loops in 
FORTRAN, provided the tasks in the loop are independent. For instance, in the 
two examples given here: 

DO 1=1, 1000 DO 1=1, 1000 
C(I) = A(I) + B(I) C(I) = A(I) + C ( I - l ) 

END DO END DO 

the loop on the left hand side can be vectorized while the o'.hcr cannot, as the 
result in the i'th step depends on the i-l'th. When executing nested D0-loops the 
compiler can vectorize the innermost loop but not the outer ones. 

On the VP1100 there is a facility to analyze the vectorization of a given program. 
This consists of simply stopping the program at random 'points and asking whether 

3\\«-ll, iilninftl »uprrmmputrr 
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the instruction being performed is vectorized or not. The degree of vectorization 
is expressed in % for each subroutine. 

Some parts of the program lend themselves particularly well to vectorization. 
Thus the subroutine solving Poisson's equation can reach a degree of vectorization 
of around 98%. For this reason the time taken to solve Poisson's equation is only 
around 7% of the total CPU time. Other parts are equally efficient, such as the 
differentiation and division is transformed space. The greatest problem lies with 
the Fast Fourier Transform (FFT). Traditionally, a two-dimensional FFT has been 
performed on the VAX by first doing a one-dimensional FFT on each column in 
the array, and then doing the same on each row. However, the FFT requires many 
rearrangements of the elements in the vector to be transformed (actually a reversal 
of the bits in the address of each element[19j). Therefore the one-dimensional 
FFT is hard to vectorize. Implementing the VAX code unaltered on the VP1100 
yielded a vectorization degree of only a few percent. Even the vectorized library 
routines for one-dimensional FFT on the VP1100 could only attain about 40%. 
The solution is to perform all the FFT's at once. Instead of exchanging the place 
of two numbers in a vector two entire vectors are exchanged simultaneously. Thus 
the vectorization of the FFT's approach 90%. These vectorization degrees cannot 
be translated directly into a measure of performance. But this change yielded an 
overall increase in speed of a factor 2.5, even over the vectorized one-dimensional 
FFT. Still, the two FFT's together take up around 70% of the time spent running 
the code, so it is important not to perform any unnessecary transformations. 

Another fine-tuning of the code relates to the so-called memory bank conflict. On 
the VP-1100 the RAM memory is divided into 128 banks and successive bytes of 
data are stored in different banks. Different banks can be accessed simultaneously 
but two numbers in the same bank require two successive read operations. So if 
the bytes to be read are stored at intervals of 128 they will all lie in the same bank 
and require many read operations. This is the bank conflict. It is best resolved by 
always having arrays with an odd number of elements. In the case considered here, 
where we require that the number of modes be a multiple of 2 there is a great risk 
of memory bank conflict. To avoid this tht number of elements in each dimension 
was increased by one (unused) element. This seemingly innocuous modification 
actually increased the speed of the code by 20 % at a price of a small amount of 
wasted memory! 

Altogether the code has become very efficient. When a large number of modes is 
employed (e.g. 32 x 128 or greater) the program runs at a speed of ~50-60 MFlops 
(million floating point operations per second). The theoretical maximum for the 
VP-1100 is 286 MFlops. However, this limit is hardly ever approached for realistic 
programs. Among programs performing a variety of tasks this code is actually one 
of the faster ones implemented on the VP-1100. 

Initial results 
To check the correctness of the code implementation the first runs were made 
with special initial and boundary conditions. Solutions were found which were 
stationary or uniformly rotating. It was explicitly verified that these runs behaved 
as expected. 

To excite the Kelvin- Helmholtz the initial condition was taken to be <t>(a) —• 

aS(b) = 0 and 

p ( * , M = 0) 
Vcosh2 Bz / x+* v ; v ' \ cosh ' (Bz ) / x + A 

where A, B and P are adjustable parameters and n is an integer. This will set up 

(1-*Y(53) 
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a strong shear in the motion of the fluid. However, this will not in itself excite the 

instability. This situation is an unstable equilibrium as there is no 0-dependence. 

To disturb the equilibrium a small sinusoidal variation in the azimuthal direction 

is superimposed. 

There are two remaining independent parameters to be specified in order to run 

the code. One is the time step size, At and the other is the radius a (see Fig. 27). 

In some respect these two parameters are not quite independent, because of the 

Courant criterion. This makes the requirement that 

At 
v - - « 1 

Ax 

where v is the fluid velocity in some direction and Ax the spacing between any 

two grid points. This criterion states that within one time step the fluid must move 

a distance that is much smaller than the grid spacing if the calculation is to remain 

stable. The reason for this is that the explicit time integration uses information 

about the conditions at earlier time points. This information is used together with 

the present state of the system to calculate the evolution (sec. 3.2). Therefore 

the old information must pertain to approximately the same fluid element as the 

present information. Hence, if the radius is diminished, the grid points will lie 

closer, especially on the inner boundary and thus the time step size must also be 

diminished. For the same reason the number of modes is higher in the azimuthal 

direction than radially (normally 4x higher). A special feature has been included 

in the program to calculate the Courant criterion in both radial and azimuthal 

direction. It calculates the fluid velocity using Eq. 7. 

A trial run with 32 x 128 modes and k in Eq. 53 equal to 2 is seen in Fig. 31. The 

t solution of p and 4> is shown here for six different times. The most obvious feature 

of this run is the emergence of two vortices seen in both figures. This clearly shows 

that the flow is indeed unstable and that vortices develop spontaneously from very 

small deviations from equilibrium. The experimental analogue of Fig. 31b is Fig. 6. 

The similarity is q\iite clear. Of course this does not necessarily indicate that the 

driving mechanisms are the same in the experiment and the simulation. Also the 

conditions are not exactly the same. In the experiment all the plasma moves in 

the same direction, only with different angular velocities. In the simulation some 

of the plasma moves in the opposite direction. Therefore the vortices seem to be 

stationary or at least moving only slowly in the simulation whereas they have a 

large azimuthal velocity in the experiment. Nevertheless, this simulation shows 

that a velocity gradient is sufficient for the instability to arise and form vortices. 

Another, less fortunate feature of Fig. 31 is the emergence in the last pictures in 

Fig. 31a of regions of very large positive and negative charge. This is not a physical 

phenomenon but an artefact of the numerical method. The fast fluctuations arise 

when an attempt is made to Fourier (or Chebyshev) transform a function with 

large gradients. This is known as Gtbbs' phenomenon or ringing and is discussed 

in more detail in for instance Coutsias et al.[20]. The sharp gradients occur when 

the vortices form. As can be seen from the figure thin threads connect the forming 

vortices. The ringing arises around these threads. The reason it only occurs in p 

and not in <f> is that p is the second derivative of 4> and therefore has the largest 

gradients. 

The ringing is self-amplifying and will sooner or later ruin the simulation. The 

evolution of the "invariants" is shown in Fig. 32. The sharp rise in both curves is 

mainly due to the ringing. 

The most obvious way to remedy this is to introduce a larger number of grid 

points (and thus more modes). In Fig. 33 64 x 256 modes have been used. It is 
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T » 0.60 T - 120 

T - U O T » 2.40 T - 3.00 

b) T - 0 . O O T» 0.60 T - 120 

T - 2 . 4 0 T - 3.00 

Figure 31. a) p(x,6,t) for six different times. Here a _.- 3.0, Al - I • 10 ', 

P — 3, B = 5, and f - 0.2. b) <p(x,0) at the same time points. 

High values are white, low values dark in the plots. 
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Figure 32. Invariants of p1 and v2 for the simulation in Fig. 31. The curve 

shows the evolution of the relative change from the initial value. 

clear that this gives a large improvement though the price is a factor of 8 in the 
execution time (the time step must be halved to satisfy the Courant criterion). 
However, this remedy only postpones the problems. In the last pictures in Fig. 33 
the ringing arises again. 

It was also found that applying a fully corrected time integration scheme im­
proved things. With the fully corrected scheme the ringing still arises but it does 
not grow nearly as fast as in the partially corrected scheme. In Fig. 34-35 are 
shown sample runs with 32 x 128 modes and k — 7, both with partially and with 
fully corrected schemes. However, the fully corrected scheme cannot prevent the 
ringing from arising. 

Though the fully corrected time integration cannot entirely solve the problem 
of the ringing it has enabled us to perform some experiments on the code. For 
instance we may try a different perturbation. In Fig. 34b is shown a run where 
k = 7. It is clearly seen that this time seven vortices form out of the sheared 
flow. This shows that we may control the number of vortices simply by applying 
a suitable perturbation. 

Another possibility is to give an initial perturbation which is not strictly sinu­
soidal. In this way the vortices forming will not be equidistant and thus they may 
interact. Fig. 36 shows an example of such a simulation where the perturbation is 
of the form (\sin(7-6) + t-2sin(6). At first, the vortices form in much the same way 
as in Fig. 34b, but later on the vortices start to coalesce. This is not surprising 
since the vortices have the same polarity (as can be seen from the plots of the 
potential which corresponds to the stream function). At the end of the run almost 
all the charge (vorticity) has been sucked into one large blob. This simulation has 
a close experimental analogy in an experiment performed by Pécseli et al.[21|. In 
this experiment two convective cells were injected into the edge of a Q-machine. 
It was observed that when the 'wo cells were of the same polarity they would 
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Figure 33. As Fig. 31a, only for 64 x 256 modes and with bt - 5 10 
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Figure 34. a) p at 6 different times with 32 * i28 modes and k - 7, P ... 6 
and t - 0.5 with partially corrected time integration, b) As a) but 
with fully corrected time integration. 
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Figure 35. Evolutions of the invariants tn the two runs of Fig. 34- a) par-
Hell* corrrrted scheme, b) fully corrected scheme. Note the differ­
ent scales in the two plots. 

coalesce in a manner similar to that seen in this simulation. 

3.4 Attempts at removing the ringing 

It is the attempt to transform functions with large gradients that leads to the 
ringing. The result is that the high order modes are amplified disproportionally. 
Therefore it may make sense to selectively damp these high modes. This can be 
done by simply applying a filter to the high modes in transformed space, but the 
relevance of this method to physical phenomena is not clear. A more "natural" 
method would be to introduce viscosity into the equations of motion for the fluid. 
In the hydrodynamic equations this enters into the two-dimensional Navier-Stokes 
equation: 

dv 

dt 
+ v • Vv - Vp + vV*v = 0 (54) 

where p is the pressure and v denotes the strength of the viscosity- Taking the 
curl of this equation yields: 

dm 
dt -r v • u> + i/V2w - 0 (55) 

where u — V x v. The pressure gradient vanishes identically. 
The Laplacian of the charge can be calculated in a way similar to that of the 

gradient operator. In principle then, this new term could simply be incorporated 
into the timestepping. However, this would be very prone to become unstable. The 
reason for this can most readily be seen when looking at the Fourier transform 
in the aiimuthal direction. The second derivative of the Fourier terms will be 
of the form i/A((-n i)pm,„. If u is chosen correctly, this new term will cancel 
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the contributions to the high modes, which is just what viscosity is supposed to 
do. But if v is too large the viscosity term may actually make the high modes 
numerically larger and thus lead to an instability. 

The way around this difficulty is to solve the timesteppin^ for the new term in an 
implicit way. The third order (fully corrected) Adams-Bash forth time integration 
would then look like: 

P»+i = Pm + [23G,„ - 16G,„. , + 5G,„. . j y f vMV2pm+u (56) 

Pm +1 = Pm + [5G,„ + , + 8G„, - G,„ , J — + vA« V -p'm + , , (57) 

where p" = r'2p. This can be written as 

(r- - r - i /AtV J )p m + 1 = p,„ + [23G,n - 16G,„_ , + 5 G . „ . . a j y , (58) 

(r- - rVAiV-') f t„ + l = pm + [5G,„+1 4 8G,„ G „ , . , j y . (59) 

The left hand sides in Gqs. 58- 59 can be solved in a way similar to the solving 
of Poisson's equation. Indeed we already have a code for solving r-'V'ø = -rzP-

In this case, since there is one more term here, the system of equations becomes 
nonadiagonal and not pentadiagonal as the standard Poisson solver. However, 
since Eq. 55 is now a fourth order differential equation for <f> in space it becomes 
necessary to specify an additional set of boundary conditions. The simplest way-
is to prescribe a fixed p at the boundaries. However, this may create sharp gradi­
ents in p close to the boundaries. This will lead to a numerical instability which 
completely destroys the solution in only a few timesteps. unless u is very large (of 
the order of unity) in which case everything decays exponentially and the flow is 
no longer unstable. 

Other simple solutions have been tried, such as ignoring boundary conditions 
altogether or forcing them to be equal to their values at the previous timestep. 
These too however, lead to strong numerical instabilities which completely destroy 
the solutions in only a few timesteps. Therefore the problem of adding viscosity is 
not yet solved. Further ideas are under investigation, but no definite results have 
yet appeared. Therefore this will not be further described here. 

3.5 Future developments 

If (when) the problems with ringing are solved the code will be used for several 
purposes. One is to study the diffusion of t»st particles due to the instability. This 
will be done in a way similar to the one described by Knorr et all 18). This will 
be of great interest since it allows a comparison with the experimental results of 
chapter 2. 

Another potential use of this simulation is to study vortex dynamics in greater 
detail. Recent investigations[22j have indicated that a wide vange of phenomena, 
such as for instance the red spot on Jupiter can be simulated by an instability 
due to a velocity shear in a cylindrical region. These investigations have focused 
on the evolution of an already existing vortex. With this code it may be possible 
to study the emergence of vortices in such systems as well as their evolution. 
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4 Experiments on wave propagation and in­
stability in a plasma with an ion beam 

4.1 Introduction 

One of the most widely investigated problems in plasma physics is the problem of 
a beam of charged particles injected into a plasma, or alternatively, of a plasma 
in which one species of particles is moving relative to the others. One example of 
this is a current carrying plasma where the electrons will have a nonzero average 
velocity relative to the ions. This will in some cases give rise to the two-stream 

or beam instability. In the Rise Double-Plasma machine a beam of moderately-
fast ions is injected into a stationary plasma. Depending on the beam velocity and 
intensity we may excite the ion beam instability, or we may study other phenomena 
of the interaction between the beam and the plasma. 

This chapter is divided into a theoretical and an experimental part. In the 
theoretical part I will present some analytical calculations of the plasma response 
to a weak beam of charged particles and present some computer calculations of 
this. Then I will give a brief expose of the theory of the beam instability. In the 
experimental I will describe the results obtained with the DP-machine on Cerenkov 
radiation from a weak supersonic beam and on the beam instability. 

4.2 Analysis of the plasma response to a dilute beam of 
fast ions. 

In this section the problem of the plasma response to the injection of a dilute 
beam of ions will be discussed. The mathematical treatment of this problem is 
essentially due to H. L. Pécseli. 

The term "dilute7- is here used to denote a beam of ions so weak that the 
ions in the beam do not interact perceptibly. Also, the weak beam cannot excite 
the beam-plasma instability. Therefore the plasma response can be seen as the 
superposition of the response to a single ion and it is this response which will be 
calculated here. Also, in the following the effect of the plasma on the beam ions 
will not be taken into account. 

Calculations in one spatial dimension 

The natural starting point for this calculation is thr Vlasov equation for the ions: 

df _ . eldf n 

^ + v V / t M ^ v - ° <6°> 
where / is the normalised distribution function for the ions. We shall here consider 
a perturbed stationary solution. Thus wr have E>, 0 and /,, /„(v| with 
J"/i.(v)dv -.- 1. Initially, we will take the perturbation to b«- that of a single i<>n 
with charge q introduced at t 0 and x 0 and immediately removed again. The 
disturbance will then be of the form qb\x)fi(t). For simplicity we shall start with 
the one-dimensional Vlasov equation, which in its linearised form is: 

df df c d<t> r., . 

where we have introduced E - - Vø, i.e. the electrostatic approximation. 

A second relation between / and (j> can be obtained by using Poissor.'s equation: 

_. . , e(n, ri.) 
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We shall make two farther assumptions. Oae is that the electroas behave isother-
mally aad are distributed according to the BolUmaan distribution, i.e. a, = 
*,***'*-. The other is that we have quasiaeulrauly, a, ~ a.. With these as­
sumptions the led hand side of Eq. 62 vanishes aad we have 

t)d* - £ - 4»(x)*(i) (63) 

where a, is the perturbed ion density, normalised by a,,. 
We now perform a Fourier transform in space and a Laplace transform in time, 

where we use iu for the traditional Laplace variable s. Eqs. 61 aad S3 then become: 

- « , / ( « , « , » ) + * * / ( * , * , v) - j ^ • * * < * • - ) / • • !») =•• ° ( M ) 

/ / ( * . » . 

aad 

/ 
/ ( * , w , , ) d . = ^ é < * , - ) q (65) 

where / and 4> now denote the transformed fuactioas. W'e have here used the initial 
condition / ( i , w, t — 0) = 0 and the tact that the Laplace and Fourier transform 
of a delta function is unity. It should be noted that here w is a complex number 
with a positive imaginary part, while k is real. 

Eliminating / we get: 

T, J M, r - f T, M,J * I 

But due to the quasiaeutrality we have edv'T, - n{k,m) and so we get 

»(*,«) = —--—. (67) 
1 + if; J w r ; « 

This equation can then be solved by performing the inverse Fourier and Laplace 
transforms. The inverse Fourier transform will be treated first. This is given by 

»(*,«) = ~ f n(k,u)e'krdk. (68) 

The solving of this is not an obvious matter. Here we will follow the method of 
Masonj23] in the way used by Andersen et al.[24j. In the integral in the denom­
inator we have a pole at » = <•>/*. When k < 0 the imaginary part of u/k is 
negative. Thus when we integrate along the real r-axis we integrate above the 
pole. Similarly, when k > 0 we integrate below the pole. Therefore we should split 
the integral in Eq. 68 into two: 

» (* ,« ) = ^ ( / n,{x,u)e,k'dki J i»,,(*,w)e,"dJfe) (69) 

where n u ( z , w ) are given by 

1 ^ V . Jl . . ' -•/* r " " 

The two integration paths in Eq. 70 run above and below the p"lr. respectively. 
If we consider the line u/k v in the complex i-planc as shown in Fig. X! 

we see that in the region to the left of the line we have Inw. k • 0. i.e. the 
integration along the real v-axis runs above the polt. Therefore n,(fc,w) is defined 
in this region. Similarly, nj(k,*i) is defined in the region to the right of the line. 
Therefore we can perform an integration around a closed contour in each region. 
The results of these integrations will depend only on the poles of the functions 
in eq. 70. These poles can only arise from the denominator becoming equal to 
sero. Now, it may be shown by a Nyquist analysis that the functions nlt(k,u>) 
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are botk analytical ia tke areas where they are defiaed (see App. C). Tkas tkere 
are ao potes fer tke faactioas iaside tke iatcgratioa roatoars aad both coatoar 
iategrab are eqaal to tero. Tke iategrab along tke å-axis are then equal to tke 
iategrab aloag tke line k = »• tf witk the directions skowa ia Kg. 37. Eq. 69 will 
tkea become 

»<*:") = £ (f •.M^eT'dv- jH «,(^)~e'-'d^ 

2xJ„ v* 
( » , ( * ) - a 2 M ) e ' * ' d v . (71) 

Tke inverse Laplace transform is easily performed by noting that the »Terse 
Laplace transform of -tue'-' '* - h'{ 'r -1) where t'(x) is tke derivative of Dirac's 
delta fanction. We then get: 

n(z,t) - , - f" -, (",(") - * » ) * ' ( * t)dv. (72) 
2* y„ v- v 

To solve this we make the substitution z - ' whereby 

We use integration by parts to obtain 

Making use of the fact that 

with the usual integration paths (see App. C) we find 

»(*. 0=4i* '< . ) (74) 
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fhere 

h(i) = 1m 
1 + f c J ^ , 

= Im 
-(^/^Vd"-^(0), 

= «•-
LÆtø M, 

( i - f t p / S H +('feÆ«))' 
(75) 

If we assume that the unperturbed ion distribution is Maxwellian we can express 
the response in terms of the plasma dispersion function. We then have: 

«•> = VES«"*" 
3 / 2 

The integral in the denominator of h can now be evaluated. By making the 
substitutions y — y/Mi/2TiV — v/vu and 7 = ^/Mi/2Ti{ with va being the ion 
thermal speed we get 

•*-(-*)/:s^ 

where Z is the plasma dispersion function. Then we get 

1 JQlmZ'fr) 

(76) 

kfr) = (77) 

where <? = TJTt. 
Now we have the plasma response to a perturbation of the form qS(x)6(l). In 

the following this will be denoted n<j(y)- The response to a moving charge with a 
path given by x — Vot is found by considering the moving charge as a continous 
succession of delta functions. This can be written as: 

ft fOC 

n<')(x,i)= / / 6(z'-v(>t')nt(z-z',t--t')dx'dt' 
Jo J-x 

2K 

By substituting x - V-'r' t n e above integral becomes 

5 L x^tk'MdX = 2*(«-M)fc (l) ' (78) 
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Calculations in three dimensions 
The plasma response in three spatial dimensions can now be calculated in a similar 
way. Here we will make the postulate that the response to a perturbation of form 
q6(r)6(t) has the following form 

The response in one dimension can be calculated from the above in the following 
way: 

»i'W> = i///jM«(Æ33p3^!)-.w 

2*q 

dy'dz' 

where first £2 = (y - y1)2 4- (z — z')2 and later -y2 = £2 + x2 was introduced. This 
is now the one-dimensional response to a delta function in time and space. But 
this must then be equal to the result obtained in Eq. 74. We therefore have: 

t" Jx, \tm ) irl2 \t/ 

erentiating this by x we get 

t" \tmJ vi2 \tl t 

or 

t" Vt"'/ 2ir2 t* x \tJ 
(79) 

From this we see that n = 4 and m = 1. Thus we have 

"P = o" * 2ir 

The response to a moving charge in three dimensions can now be calculated in the 
same way as for the one-dimensional case. The charge is moving in the positive 
z-axis with speed v0. This yields: 

K ' J„ («' - O'* s/x2 + y2 + (z- v„l>)2 \ t'-i ) 

This is the response of the plasma to a charge moving with constant velocity v„. 

This expression can easily be evaluated numerically. Since the theory is linear this 
expression can be extended to a spatial distribution of moving ions simply by 
superposition. This is also done easily numerically as wil, be shown in the next 
section. 

Numerical calculation of the plasma response 

The evaluation of Eq. 81 by numerical means is a fairly straightforward procedure. 
Here will only be presented the general methods and the results. Since the result 
is symmetric air ut the line of propagation of the disturbance the plasma response 
has only been calculated in two dimensions. 
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We will assume that the unperturbed distribution function is Maxwellian. The 
first task is to calculate the derivative of the plasma dispersion function. According 
to "The Plasma Dispersion Function" [25] we can write 

where the integration path runs below the pole. If 7 is real (as is the case here) 

we may rewrite the integral in the following way: 

d y = - 2 V r e - ' > / e' di. (82) 

This in turn can be expanded as a series: 

The calculation of this function which is called the Dawson integral can be 

performed by a library subroutine at the Ris VAX mainframe. 

The calculation of the plasma response to a single ion introduced at (r,z,t) = 

(0,0,0) will then consist of the following steps: 

• First the function h(-y) is calculated using the Dawson integral procedure. 

A table of A-values is constucted for a range of 7's. This step only depends 

on Q. 

• Then the second derivative of h is calculated. This is done by performing a 
cubic spline interpolation (see Appendix D) on the tabulated /i-values and 
differentiating numerically twice. The results are saved in a table. 

• The response for given values ofr and z can now be calculated using Eq. 81. 

The integral is evaluated by constucting a table of the function to be inte­

grated (using the table of h") and doing spline interpolation on this table. 

This can then be integrated analytically. 

• n(x,t) is calculated in a grid of points in the r, z-plane. 

Numerical results 
The starting point for the calculation of the plasma response is the function h. The 
only parameter which enters this function is the temperature ratio Q. In Fig. 38 
h is shown as a function of the independent variable £ together with its second 
derivative for three different values of Q. Note how h steepens and narrows with 
increasing Q. 

The function h" is used for calculating the plasma response to a point charge. 
Here we would expect the response to depend qualitatively on the speed of the 
injected charge and the temperature ratio. More precisely, we should see radically 
different behaviour depending on whether the speed of the charge is below or 
above the ion sound speed, C,. This is given by C, --. -J\y,T, +f,T,)/M, — 

VvTi + Qlr)T,)/Mi. Here, 7*,, denotes the ratio of specific heats for the ions and 
electrons, respectively. At relevant vt,'s the electrons can be taken as isothermal 
while the ion response is adiabatic, i.e. 7, = ) and 7 , - 3 (see [26]). The calculated 
results of the response to a point charge are shown in Figs. 39-41. 

In Fig. 39 we see the plasma response (density perturbation) to a positive point 
charge introduced at i = 0 at three different times after the injection. Here v<,/vn — 

5, so the motion is supersonic. Note the "wavefronts" propagating at an angle away 
from the path of the moving charge. Note also the negative perturbation which 
follows the positive perturbation (the primary response to a positive charge). 
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Figure 38. a) The function h(y) at Q - 1, b) at Q = 10. c) /i"(i) at Q = 1, 
d) atQ- 10. 
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T=0.2 T=0.5 

T=0.8 

Figure 39. Plasma response to a point charge injected at (r, z) — (0,0) and 

the time 1 = 0, calculated for three later times. Here Q = 5 and 

vt,/v,, =- 5. Areas of positive charge are black, negative areas are 

grey in this and the following figures. 

v=1.5 v=2.0 

v=3.0 

Figure JO. Plasma response to a point charge for three different injection 

speeds. Q — 5 in all plots, whereby C, ~ 2.83t»(j. 
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Q=1 Q=5 

Q=10 

Figure 41. Plasma response to a point charge for three different values of Q. 

v„ = bv,, in all plots. 

In Fig. 40 is shown the response for three different injection speeds. In the first 
two frames v„ < C, while in the third the speed is supersonic. This is clearly seen 
from the figures. At subsonic speeds a semicircular perturbation propagates from 
origo ahead of the moving charge and the perturbation around the injected charge 
is more or less circular (less at increasing speeds). At supersonic speeds two almost 
plane "wavefronts" appear. These must travel at C, and so must form an angle 
0 with the normal to the trajectory of the charge given by cost) — C,/v(t. This is 
analogous to the Cerenkov radiation known from high energy physics. 

The plasma response depends strongly on the temperature ratio, Q. This is 
seen in Fig. 41. At low values of Q the perturbation is quickly damped while 
at high Q the ripples created by the perturbation propagate with hardly any 
attenuation. This is consistent with the fact that Landau damping exhibits the 
strongest damping of low-frequency waves when T, is low. Note that in the last 
frame in Fig. 41 some of the ripples behind the moving charge may be an artefact 
of the calculation. The reason for this is the very sharp spike of h" (see Fig. 38). 
A small error in the calculation of the argument for this function could change 
the result drastically. 

If we want to calculate the plasma response to a moving charge distribution 
this can be done by simple superposition. Of course this will only produce mean­
ingful results (i.e. relevant to experimental results) if the charge distribution is so 
dilute that it does not affect the trajectories of its constituents. In this case the 
response to a spatial distribution of point charges moving at uniform velocity can 
be calculated simply by calculating the response to a single charge and adding the 
response itself shifted in space. This has been done in Fig. 42. Here is shown the 
response to a disc-shaped distribution of ions. The disc is orientated perpendic-
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T=0.5 

Figure 42. Plasma response to disc of ions injected at (r, z, t) — (0,0,0) at 
the lime t = 0.5. Here v„ — hvti and Q = 5. 

ular to the plane of the figure and is moving in this plane. The relevance of this 
example to experiment will become clear in the next section. 

4.3 Briefly on the ion beam Instability. 

In the previous section the plasma response to a very low intensity beam was 
discussed. Under those circumstances the plasma response can be calculated an­
alytically using linear theory. If we now move to larger beam intensities we en­
counter the beam instability. An accurate solution of the plasma response in this 
case would require the use of the full nonlinear Vlasov equation. This is not a 
feasible undertaking, so in the following I will restrict myself to discuss briefly the 
dispersion relation for unstable waves in a two-stream plasma. 

The starting point is again the linearised Vlasov equation, Eq. 61 and Poisson's 
equation, Eq. 62. In this case, however, we will not require quasineutrality. Then 
Eq. 62 becomes when transformed: 

-k<* 
«o 

(83) 

and Eq. 63 becomes: 

fdv ~ ^-<f> + -~— 4>. 

When transformed, the Vlasov equation looks like this: 

(-•* + ik)f = ~ik4>f,,(v) + g{k, v) (84) 

where g(k,v) is the transform of f(x,v,t — 0). Proceeding as in the previous 
section we obtain for <f>{k,u>): 

4>{h,w) 
1 + \\V r^fl^l 

n„M, dr 
(85) 

with A,( = ^/eoTe/noe2 being the Debye length. The denominator of Eq. 85 is 
the plasma dielectric function e[k,w) [27]. The dispersion relation for small scale 
oscillations is given by 

£/£$* = • <"> e{k,U) = l + k'\l 
no 
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where the integration runs below the pote in v = m/k. 

A calculation of stability requirements for the dispersion relation is performed in 
App. C. It is shown there that if /„(») is a MaxweUian the dispersion relation will 
only have damped solutions. But if the distribution function has more than one 
maximum the dispersion relation may have growing solutions. If the distribution 
function is a sum of two drifting Maxwellians, each with drift Telocity r, , the 
dispersion relation can be written as 

1 + (*-*)* - §r £ »J* [(* - «J) / S ] = ° (87) 

where the n} 's are the relative densities of the two ion components, n, + n-, = 1. 

The stability criterion can be calculated in a way similar to that of appendix C. 
It will be found that the stability of the beam-plasma system depends strongly on 
Q and v,. For low (?-values there is strong Landau damping and thus no instability. 
Similarly, if v} becomes too large the instability is not excited. 

From Eq. 86 the general dispersion relation for low frequency modes can be 
calculated. This requires the use of the complex plasma dispersion function which 
may be found tabulated[25] or can be calculated numerically. In Fig. 43 is shown 
the dispersion relation for a set of parameters relevant to the experiments in the 
DP-machine. The dispersion relation is calculated both for the background plasma 
alone and for a plasma with an ion beam. 

In the background plasma there is one low-frequency mode, the ion acoustic 
mode. However, in the ion beam plasma two different modes may be excited. 
That this is so may be easily seen when considering the beam in its reference 
frame. There will then be one ion acoustic mode running forward and one running 
backward. But in the laboratory frame both these modes will propagate in the 
direction of the beam. It is furthermore seen that the slow mode is unstable for 
these parameters whereas the fast mode is weakly damped. The background ion 
acoustic wave is strongly damped at high frequencies (Landau damping again). 

The above calculations were all done using the one-dimensional Vlasov equation. 
In reality the ion beam introduces an anisotropy into the calculations and the 
modes behave differently along the beam and in the radial direction. I will not 
here try to perform calculations on this problem but only briefly relate some 
numerical results obtained by various workers, e.g. Doveil and Gresilion[28] and 
Johnsen(29]. They found that at low beam velocities (less than about i.5vri) the 
unstable modes are propagating almost parallel to the beam. At greater beam 
velocities oblique modes become unstable and at vi, > 2v,, the oblique modes 
dominate. 

These results assume a uniform three-component plasma (ions, electrons and 
beam ions). If the beam is of finite diameter these results may need modification. 
This, however, is a major undertaking anil will not be attempted here. 

4.4 Experiments on the DP-machine 

Experimental set-up 

Experiments on ion acoustic waves and the beam instability requires a largely 

iinmagnetized plasma, preferably without DC-currents, which may disturb the 

plasma stability properties. These requirements are fulfilled in a Double Plasma 

(DP) machine. A schematic diagram of the Ris DP machine is shown in Fig. 44a. 

The DP machine consists of a cylindrical vacuum chamber of height 110 cm and 

Rise-M-2858 65 



Figure 43. Dispersion relation for tke ion acoustic modes. Upper figures show 
the fast and slow beam modes, lower figures the plasma mode when 
the beam is not present. Solid lines show the real part, dashed lines 
the imaginary part of v. Plasma parameters are: T,k/Tn, — 0.05, 
«» - 5»„„, «»/n„ = 0.05, n,, - 10"m '. In a) Q = T,/T, = 15, 
inb)Q = 5. 
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Figure 44- a) Schematic drawing of the experiment, b) The "chimney" used 
for collimating the beam. 

diameter 50 cm. The chamber is divided into two parts separated by a metal 
plate with a central hole of diameter 10 cm. The two chambers may be electrically 
biased relative to each other. Along the sides of both chambers are placed rows of 
glow filaments (not shown in the figure) which may be heated to emit electrons. 
The filaments may be biased relative to the walls of the chambers (normally ~ 
40V). The resulting current ionises the gas in the chambers to produce a plasma. 
Argon gas has been used in these experiments, at neutral pressures of 4 - 10~:>-
1 • 10 'mbar. Both chambers may be fitted on the outside with arrays of small 
permanent magnets to improve plasma confinement near the wall. 

Between the two chambers is placed a metal mesh which is biased at a high 
negative potential (~ -80V). This is to ensure that electrons do not pass from 
one chamber to the other. Ions however, may travel freely from one to the other. 
If the two chambers are at different potentials an ion beam will pass between 
the chambers through the hole in the dividing wall. In our experiment the lower 
chamber (the driver chamber) is always at a higher potential than the upper (the 
target chamber). 

The machine is similar in structure to most other DP machines (see e.g. [30, 3Ij). 
The main new feature is the metal plate which separates the two chambers. This 
allows a beam of finite width to be injected into the target plasma where in normal 
DP machines the beam extends to the walls. 

Diagnostics are placed in the target chamber. These are of two types. First there 
are two energy analysers. These are similar to the ones used by Andersen et al.[32] 
except that a second mesh has been added in front of the analyzer. This is biased 
at a high negative level (~ -60V) to repel the fast (non-thermal) electrons which 
may be present in the DP machine. One energy analyser enters from the top of the 
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machine (see the figure) and may be moved across the ion beam as well as along 
it. The other is inserted through the side of the machine. It can only be placed at 
a few fixed vertical position but may be rotated at an angle to the beam. 

The other type of diagnostic is a plane Langmuir probe of diameter 5mm. This 
too can be moved along and across the beam. 

CoUimating the beam 
In order to study the propagation of ion acoustic waves inside and outside the 
beam it is important to know precisely the radial extent of the beam. However, 
the beam ions may be deflected by the strong electrical fields in the vicinity of 
the mesh separating the two chambers. To ensure that the ions are unidirectional 
we have used various collimators in front of the hole between the chambers. An 
example of these collimators is shown in Fig. 44b. It consists of a metal cylinder 
of diameter 80mm and height 50mm. The cylinder is filled with thin-walled metal 
tubes of diameter 8mm. (These dimensions vary between the different collimators.) 
This will ensure that the beam is completely collimated within an angle of 9' 
and almost entirely coUimated within 5°. The collimator can be raised above the 
bottom plate. This helps electrons to enter the collimator and neutralise space 
charges. 

An analogous system is used to enhance the directional sensitivity of the energy 
analysers. Here the first grid is replaced with a brass plate of thickness 2.5mm. In 
this has been drilled a large number of holes with diameter 0.4mm. This allows 
only ions impinging at an angle of < 9" to enter the analyser. The transparency 
of this collimator is about 50%. 

Plasma and beam characteristics. 

Basic plasma parameters were measured in fairly standard ways. The electron 
temperature, T, was inferred from the ion acoustic sound speed. C,. C, was mea­
sured in the background by exciting ion acoustic waves of known frequency and 
measuring the wavelength. From this T, can be calculated using the assumption 
(valid in this type of plasma) T, <i. Tr. We found T, = 2.2eV. T, was not measured 
directly but it is known that in DP-machines T y 0.17",. 

The plasma density was measured by the Langmuir probe, from the ion satura­
tion current. The value depends on the parameters of the plasma discharge (no­
tably the current from the filaments to the wall) but is normally around 10"m '. 

By applying a voltage difference (positive at the driver) between the two cham­
bers a bep.m is injected into the target chamber. The beam profile in the target 
chamber is shown in Figs. 45fc46 for two different beam intensities, mesaured from 
the analyser characteristic. In these two examples the collimator was not mounted. 

From these figures we note several features. In Fig. 45 the beam widens as it 
propagates in the background plasma, while in Fig. 46 the beam does not widen 
perceptibly. This is consistent with the fact that in the first rase thr beam is much 
stronger than in the second, in fact the beam density is almost comparable t<> the 
background density. The widening is due to repulsion by the electrical field caused 
by excess space charge. 

The beam profile at the opening is somewhat peculiar in the strong beam rase, 
with a central dip in beam density. This is thought to be caused by to edge effects 
near the hole between the chambers where electrical fields are very strong. The 
same phenomenon is seen when the collimator is used. 

As the beam propagates through the plasma it is strongly attenuated. This is due 
to charge exchange collisions with the neutral background gas. The attenuation 
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Figure 45. a) & b) Propagation of the beam in the target chamber from 0 to 
400 mm above the dividing plate. E» - 12« V. c) Energy analyser 
characteristic for this beam, taken at r - 0 and x - 70mm. 
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therefore depends oa the background pressare. Here it shoald be noted that in this 
experiment the coibsioa cross scctioa is larger than the standard value as gives by 
e.g. Hegerbetg et al-[33j. The reason is that a fairly huge part of the bachgroand 
gas is ia an excited state and thas the cross section is larger. 

When the collimator b ased, it b (band, somewhat surprisingly, that Che beam 
b strongly atteaaated (more thaa aa order of magnitude). The caase is not en­
tirely dear bat b tboaght to be spnrioas electrical fields between the separating 
grid and the collimator which defect the beam ions. The situation is somewhat 
ameliorated by rabiag the collimator above the bo"om plate (see Fig. 44). The 
strong attenuation limits the asefalness of the collimator for some purposes which 
require strong beams. On the other hand it may serve as aa efficient attenuator. 

loas passing through the separating grid will be defected in a random fashion. 
Thb will increase the radial beam temperature. An estimate of thb can be found 
by the directional analyser. Placing thb in the middle of the beam we measure 
the beam intensity as a function of the angle of incidence. The result b shown in 
Fig. 47. It b seen that there b a definite signal beyond the cut-off at 9*. so the 
ions are not unidirectional. From the curve we find a radial temperature of O.SeV. 

Experiments with a weak modulated beam. 
By perturbing a weak beam we may investigate the propagation of thb perturba­
tion inside and outside the beam. In our experiments the perturbations were of 
two kinds: 

• A sinusoidal signal applied to an otherwise steady-state beam. Thb will 
excite the k>n acoustic modes in the beam. 

• A short pulse of ions (with no steady-state beam) injected into the target 
chamber. 

The propagation of the perturbation b measured by the Langmuir probe, mea­
suring the AC value of the electron saturation current. This b then multiplied with 
the original signal and averaged, using a lock-in amplifier. Thb analog method b 
fast enongh that a two-dimensional picture of the per'urbation can be obtained 
in a reasonable time. 
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Figure 48. Ion sound wave propagation inside and outside the beam. The col­
limator is shown in the lower right corner of the figure. Here 
Eb = 5 eV, f — 100 kHz. Only one half of the experiment is 
shown in the figure. The dashed line indicates the angle at which 
the waves propagate outside the beam. 

Wave propagation 
In this series of experiments a weak, i.e. eVp_p <€. £*, sinusoidal signal was su­
perimposed on the DC-voltage between the driver and target chambers. Thus the 
two beam acoustic modes (see Fig. 43) were excited. If the frequency is sufficiently 
low (much lower than the ion plasma frequency at uipi/2jr = ^/ne'i/e,}Mj/2ir ~ 
350kHz) this should then couple to the ion acoustic mode in the background 
pla&ma. 

In Fig. 48 is shown one measurement of the propagation of tho wave inside and 
outside the beam, shown as a contour plot of the probe signal and the reference 
signal multiplied and averaged in time. Wavefronts are clearly seen to be perpen­
dicular to the beam inside the beam and to propagate at an angle to the beam in 
the background plasma. From plots of this kind the bending angle at the interface 
can be found as a function of the beam velocity. 

This function is plotted in Fig. 49. The solid curve indicates th theoretical 
values given by cos 0 — C,/vh (the simple law of diffraction in two media with 
different propagation speeds). 

The experimental results are in qualitative agreement with the expectations but 
show clear deviations quantitatively. Various explanations for this can be found: 

At subsonic speeds the theoretical curve does not apply as the wavefronts will 
here be semicircular outside the beam (see Fig. 40). But in the experimental results 
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Figure 49. The angle 8 at which the sound waves propagate outside the beam, 
as a function of y/Wt, « »j,. 

the wavefronts do not bend at sharp angles at the beam boundary. Thus the 
simicircular wavefronts at subsonic speeds may have been mistakenly interpreted 
as a bending angle. 

At supersonic speeds the observed angle is consistently smaller than the one 
predicted by theory. One explanation could be that the beam is not excactly 
monoenergetic. This would blur the sharp bending of the wavefront. However, the 
beam temperature is not nearly high enough to explain the discrepancies. A better 
explanation may be that the plasma electrons have a small component which is 
much hotter than the bulk of the electrons. This will lead to a higher C, in the 
background plasma and hence to a smaller bending angle. 

As was mentioned in section 4.4 the bottom plate of the target plate (and hence 
the collimator) can be biased independently. In all the experiments described 
above the bottom plate was at ground potential (as is the target chamber). If the 
bottom plate is biased at the same potential as the separating grid (i.e. — —80V) 
the picture is quite different. In Fig. 50 is shown the wave propagation in this case. 

It is seen clearly that the waves do not propagate outside the beam. The reason 
is thought to be the following: The ions in the background are attracted by the 
negative potential of the bottom plate and thus obtain a net downwards drift. This 
will cause the plasma ion acoustic mode in Fig. 43 to be rotated around origo in 
the negative direction. It will then become more difficult for the beam modes to 
couple to the plasma mode. 

Plasma response to a short pulse of fast ions. 
In these experiments the DC voltage between the driver and target chamber was 
set to 0V. By applying a short (~ 10/M) voltage pulse between the chambers a 
bunch of ions was injected into the target chamber. The plasma response to this 
disturbance can be traced by correlating the signal to the Langmuir probe with 
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Figure 50. Ion sound wave propagation in the target chamber when the bottom 
plate is biased at -80 V relative to the target chamber. The waves 
do not propagate outside the beam. Eh = 5 eV, f - 50 kHz. Only 
one half of the experiment is shown m the figure. 
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Figure 51. Plasma response to a pulse of supersonic ions of duration lOfis at 
different times after injection. In a) t — 35/X5, in b) t — 45/tJ after 
the start of the pulse. The pulse energy f?fc = 5eV. Only one half 
of the experiment is shown in the figure. Again, the dashed line 
indicates the angle at which the waves propagate outside the beam. 

the applied voltage pulse V(t) i.e. 

n(r,z,T)= fh(r,z,t + T)V{t)dt. (88) 

The multiplication and time integration is performed with a boxcar averager. 
By varying r the time evolution of the plasma response can be obtained. This is 
shown in Fig. 51 for two different values ofr. It is clearly seen that the perturbation 
propagates along the z-axis. 

These measurements are somewhat distorted by noise but still it is possible to 
see a resemblance to the numerically calculated results in Figs. 39- 42. 

It is seen from Fig. 51 that the plasma is perturbed both inside the path of the 
pulse of ions and outside. Since the ions in the pulse are supersonic the perturba­
tion propagates slower than the pulse and hence at an angle outside the path. This 
angle depends on the pulse energy as is seen in Fig. 52. As in the wave propagation 
the measured angles are consistently smaller than predicted values. 

Experimental investigations of the ion beam instability. Preliminary results. 
The experimental results to be described here are only a preliminary investigation 
of the turbulence due to the ion beam instability. Most of this work has also been 
done by other authors,[29][34][35]. The main new feature of this work is the finite 
width of the ion beam which gives rise to some special effects. 
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Figure 52. The angle 6 at which the disturbance due to a pulse of ions prop­

agates outside the beam, as a function of yfE\, oc Vb. 

For this experiment the collimator was not used as it attenuates the beam too 
strongly. Without the collimator the beam density can become comparable to the 
background plasma density as is shown in Fig. 45. At this beam density the ion 
beam instability is excited provided the beam energy is not too high. 

By applying a standard spectrum analyzer to the signal from the Langmuir 
probe the frequency spectrum of the noise generated by the instability can be 
obtained. This is shown in Fig. 53 at various points in the target chair.uer. 

In Fig. 53a we show the noise spectra in the middle of the beam (r — 0) at 
various distances z from the orifice. It is seen that the instability grows in the 
time it takes the ions to reach a position about ? cm into the target plasma. At 
a beam voltage of 12V this gives a growth time of — 10/is. At higher positions 
the noise level diminishes again due to the attenuation of the beam, see Figs. 45 
and 46. A conspicuous feature of the noise spectra is their double-humped form. 
Most earlier investigations with ion beams filling the entire experiment [36] showed 
spectra with a single broad peak (one exception may be the results of Taylor and 
Coroniti[34|). Since the main difference in our experiment is the finite width of the 
ion beam, we expect that the second hump is due to radial modes in the beam, 
which are excited at beam velocities vh > C, as is the case in this experiment [37]. 
These modes propagate across the beam and are partially reflected at the edges 
because of the change in refractive index at the edge. The second (high frequency) 
hump disappears further into the background plasma as the beam becomes weaker. 

In Fig. 53b it c we show spectra at different radial positions at z — 8cm and 
z = 17cm, respectively. It is seen that the noise level diminishes when we move 
from the center of the beam towards the edge. At the same time the spectrum 
changes qualitatively. This too may be due to the partial reflection at the beam 
edge. It is also seen that the noise does not disappear entirely at the edge of the 
beam. This shows that the noise generated inside the beam propagates in the 
radial direction out of the beam. 

A more detailed investigation of the turbulence caused by the instability will be 
the subject of future studies. This will introduce two-point correlation methods 
similar to those described in chapter 2 to determine the propagation of structures 
in the turbulence. 

76 Risø-M-2858 



50 100 

f IkHz] 

L L_l- l _ l _ l -I . 1_J.._I 

50 100 

f [Ui\z\ 

Figure 53. Spectra of the noise due to the beam instability, a) Spectra taken 

in the middle of the beam at various distances from the orifice, b 

& c) Spectra for different radial positions at positions z — Scm 

and z — 17 cm above the orifice. 
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5 The AIDA data acquisition and display sys­
tem. 

5.1 Introduction 

The Advanced Interactive Data Acquisition program is a collection of routines 
written in ASYST to facilitate the acquisition and plotting of measurements from 
the Q- and DP-machines of the Plasma Physics Section. Here it has been used 
extensively and some of the data from the Q-machine and all the data from the DP-
machine presented in the previous chapters have been acquired with this program. 

The system has been designed to enable the user to perform data acquisition 
operations without any deep knowledge of the hardware or of programming in 
ASYST. 

AIDA runs on an IBM PC or compatible using the ASYST software toob (ver­
sion 2.0 or later). It also requires one of the A/D plug-in boards for the PC 
which is supported by ASYST. Our set-up consists of an Olivetti M380/XP5 PC-
compatible computer with a hard disk, expanded memory, and a floating point 
co-processor, a matrix printer and a Hewlett-Packard 7475 graphics plotter. The 
A/D-board is an Analog Devices 2818, with 4 A/D channels, two D A channels 
and 2 x 8 digital input/output channels. The A/D-board is connected to a couple 
of custom-built motor control boxes, which can control two stepper motors and 
two DC motors. 

5.2 General structure of AIDA 

The goal set for the development of AIDA was to make it easy for the user to 
perform a wide variety of data acquisition session.- without programming (on the 
user's part) and to display the data thus obtained. It should be possible to use the 
program with many different experimental set-ups and make the measurements in 
many different ways. To make the program easy to use it has been made menu-

driven to a high degree and to make it generally applicable the concept of the 
Measurement Type was introduced. The structure of the source code generally 
reflects the structure of the program as revealed through the menus, so in tke 
following I will more or less go through the program menu by menu. 

When first entering AIDA from the ASYST environment you are presented with 
a menu as the one in Fig. 54. 

This corresponds well to the physical structure of the program as see« in Fig. 55. 
As you can see, AIDA consists of a main part and three general subparts which 
correspond to the various options in the main menu. The main part consists of 
initialisation routines, the main menu, and some general routines that are used 
by more than one of the subparts. This part of the program has been SAVEd in 
a customized version of ASYST called AIDA and thus these routines arc always 
available. The subparts have each been stored in one or more overlay filr.i{srr 39, 
p. 1.10 rT.j). These overlay files can be ioaded into ASYST by the main program 
and the Words (subprograms is ASYST are called Words) in them can then be 
accessed. However, they cannot be active all at the same time. Therefore there 
are sometimes some overlapping between the routines in the various overlays. We 
will have a look at each of these parts in turn, but first I will take a look at the 
concept of the Measurement Type. 
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FigniT 55. Top level structure of A IDA. Each box in the subprograms corre­

sponds to an ovrlay file. 

5.3 Measurement Types 

The term Measurement Type denotes a set of information which makes it easy 
to perform a series of identical or nearly identical data acquisition sessions. This 
information may be about the shape of the acquired data, when to make a mea­
surement, or general parameters for the experiment. The information in the Mea­
surement Type is also used by the graphics part of AIDA to find the televant data 
in the data files and determine the parameters for the plot. Each Measurement 
Type has a specific name of not more than 12 characters and an abbreviation 2 
characters long. This name is used by the user to find the relevant information 
for the data acquisition session. The abbreviation is among other things used for 
naming the data files where the acquired data are stored. The name of a data file 
made with AIDA is HRddiwnyy.XXX, where RR is the abbreviation name, followed 
by the date the acquisition was made. XXX is the number of the data file acquired 
that day using the given Measurement Type. 

The information making up a Measurement Type is stored in two files. One is 
an ASYST file called DEFAULT.RH and the other an ASCII file called QUESTIOH.NR 
where again RR denotes the abbreviation name of the Measurement Type. DEFAULT.RR 
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contains a single array of 30 real numbers (this number can be changed, of course). 
The numbers in the DEFAULT. I I file contain the following information: 

Mas. l -2» Default values of parameters for the data acquisition session. These 
can be parameters that are essential for the proper execution of the session, 
e.g. the number of measurement points, or they can be general parameters 
for the experiment that have no intuence on the acquisition session. These 
values are set by the user in the beginning of each session (see sec. 5.4). They 
are also stored in the comments of the data file created in the session. Some 
of these parameters must occupy fixed places in the list, whereas others may 
be placed randomly- Not all 20 places need be used. 

Nos. 21-31 These numbers are conversion factors between the integer values out­
put by the A/D-converter and the real valu*s of the quantities measured by 
the A/D-channets- Two numbers are required for each channel, a conversion 
factor and an offset value, and so there is room here for four channels. 

Nos. 29-42 These numbers are specific to the current Measurement Type but are 
not normally changed between sessions using the same Measurement Type. 
The information stored here includes items such as the number of A/D-
channeb used in these sessions, the number of comments in the data files, 
whether the sets of data are one- or two-dimensional etc.. 

Nos. 4J-5f are not currently used. 

The exact contents of the DEFAULT. 13 file for set-up used in the Plasma Physics 
Section is described in the AIDA Reference Manual ([44, App. Bj). 

The file Q0ESTI0I.II is closely related to the first 20 numbers in the file 
DEFAULT. I I . This file contains the text for the questions which the user are given 
in the beginning of each data acquisition session and the corresponding comments 
which are put into the comment lines of the data file created during the session. 
The file is read one line at a time, so the questions and comments mnst be placed 
on separate lines with no empty lines between lines of text. 

As was mentioned in the beginning of this section, the files resulting from a 
data acquisition session are named according to the date of the acquisition and 
the number of previous completed sessions on that day. Therefore we must have a 
place to store information on the number of times a given Measurement Type has 
been used today. This information has been stored in the file HEAS.TTP. This is an 
ASYST file which contains 100 comment lines and two arrays of length 100. The 
comment lines contain the names of the currently defined Measurement Types 
and the arrays contain for each entry in the comments the date of last access 
and the number of sessions made on this last date. This file is read by the data 
acquisition parts of AIDA and is updated by the subprogram that constucts or 
changes Measurement Types. 

5.4 The data acquisition subprograms 

The basic classes of Measurement Types 
Essentially, the task of the data acquisition part of AIDA is to control the flow of 
data from an A / D plug-in board to the computer memory and on to an ASYST 
data file. There are almost infinitely many ways of doing this and so it is im­
portant that the program makes it easy for the user to make exactly the type of 
measurement she wants. Indeed, a large part of the acquisition routines deal with 
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selecting the appropriate Measurement Type u d finding the right parameters for 
the measuring session. 

At present four bask classes of data acquisition sessions exist. They differ from 
each other in the organisation of the data and the way the time of measurement is 
determined. Determining the time of measurement can here be done in two ways: 

1. The measurements can be made at equal time intervals. 

2. The time of measurement can depend on some other measured quantity. 
Here the present version of the program makes some constraints: 

• The reference quantity determining the time of measurement must be 
measured by the first channel of the A/D-converter. 

• The points of measurement must be at equidistant values of the refer­

ence quantity. 

• The reference values must tacre*»c monotonkally. 

The program can of course be modified to remove these constraints. 

In order to use the first class of measurements the A/D board must be able to 
be programmed to different acquisition frequencies. This is the case for the one 
we are using. The reference quantity for the second class may in principle be any 
measurable quantity that satisfies the constraints. It may be the position of a 
measuring probe, the temperature of the experiment etc.. 

In a sense the two classes are equivalent since the time could be measured by the 
reference channel and thus turn the second class into the first. However, there is an 
important difference. In the first class you may acquire data at a rate which is only 
limited by the type of A/D board you use. These boards normally work at rate 
from a few kHi to a few hundred kHi. But in the second class of measurements 
there is a large programming overhead and so the maximum speed here will be 
less than 100 Hi, even on the fastest PC's. 

Each of these two different ways of making measurements can again be divided 
into two groups according to whether the grid of measuring points in phase space 
is one- or two-dimensional. In other words: each time you make a series of measure­
ments depending either on time or some other quantity, you make a scan through 
the parameter space of your experiment. A IDA allows you to make either one scan 
and save the data in a seperate file or to make several scans where some other 
quantity is changed between scans. The values of this quantity may or may not be 
equidistant and the value of this second quantity may or may not be monitored 
by an A/D-channel. Note here, that whether you make a one- or two-dimensional 
measurement you will get a set of data of this dimension from r.ack of the A/D 
channels you use. 

General structure of the Acquisition routines. 
The routines for the two classes of Measurement Types are placed in separate 
overlay files (see Fig. 55). Since you may not load one overlay from another thr 
highest level of these routines is part of the main system. This consists of among 
other things the acquisition menu shown in Fig 56. 

Of the three options in the menu, the simplest is the listing of the available 
Measurement Types. The list of Measurement Types is stored in a text file which 
can br read with the ASYST editor. The routine called by option 3 simply calls 
the edi.or. 

The data acquisition programs themselves are activated by the second option. 
The general lay-out of this part of the program is shown in Fig. 57. 
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DATA ACQOISITIU MUKRAH 

Fl : QOIT 

F2 : Perform th« data a c q u i s i t i o n 
F3 : L i s t taa ava i l ab l e H«asur«Mnt Types 
F4 : S«t op — a s u r w n t parameters 

Figure SS. The mens for tlu émt* acasuibox system. 
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Figure 57. i'frmetsre o/ (Ae oaia aefsisif ton part of A IDA. 

The very first thing this program does is to get the name of the Measurement 
Type from the user and then examine the DEFAULT.RR file to find which class of 
Measurement Type it is. This is necessary at the very start as the Words for the 
various classes are stored in two different overlays. 

What happens next varies a little between the classes of Measurement Types. 
For two-dimensional measurements the user is asked whether the points in the 
second dimension in phase space are equidistant or not. This has some bearing 
on which questions the user will be asked next. For the next part is a series of 
questions about parameters for the session, arranged in a menu, where the user 
can browse through the menu using the cursor keys. Some of the parameters are 
essential for the measurement session, such as the number of data points. 

When the parameters have been entered the program sets up some temporary 
arrays for storing the data as they are being acquired. The shape and size of the 
arrays vary with the Measurement Types and the entered parameters. The file for 
the data is also created at this time. 

Now the program is ready to proceed with the actual data acquisition as soon 
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Fl : QOIT 
F2 : Shew values of å/D channels 
F3 : Sat o f f s e t aad iacreaeata l v a l v e s 

Figure 54. Tke e-famtiøa scran m m . 

as tke aser is ready. Tke data acqaisitioa process depeads not only oa the class 
of Measurement Type »ad the number of data points bat also to what extent 
the experiment can be controlled by the program. If the program can control the 
valne of the independent variable that is changing daring a scan aad the parameter 
chaagiag between scans, then the entire data acquisition process caa ran without 
farther help from the aser. If the set-up is not automatic the program will stop at 
coaveaient points. Moreover, the aser caa at almost aay time stop the acqaisitioa 
to exit. In the case of two-dimensional measurements it b also possible to stop to 
see a plot of the last completed scaa or to retake a anmber of scaas. 

Whea the acquisition has finished (or has beea terminated prematurely) the 
aser is asked whether to save the data. This is thea done if wished. The data 
acquisition is now tabbed and tke aser may return to make another acquisition 
with the same Measurement Type or return to tke data acquisition menu. 

Tke fourth option in the data acquisition menu b a set of roatiaes which cali­
brate the Measurement Type so that the values measured by the A/D converter 
will be converted into the actual physical values when a measurement b done, it 
will present you with yet another menu shown in fig 58. 

The first option measures the voltag; input to the A/D channels aad shows tke 
values output directly by tbe A / D ckanneb. Hitting a key will give new values. Tkb 
b useful for determining the relation between tke physical quantities measured and 
tke output from tke A / D board. Thb knowledge b necessary for tke second option 
in tke menu. For a chosen A/D channel it asks you for two physical values and the 
corresponding output from the A/D. Thus the program can calculate the general 
relation (assuming that it b linear) and output tke proper physical values to the 
data file when making a measurement. 

5.5 The graphics subprograms 

ASYST has powerful built-in graphics facilities. Ordinary two-dimensional plots 
(e.g. plots of a function vs. an independent variable) can easily be made in many 
different fashions. For a closer look at these capabilities, see [39, ch. 6]. These 
Words are so easy to use that they can normally be used directlv from the com­
mand line interpreter. 

In addition to this ASYST also features Words to make three-dimensional plots, 
such as contour plots and netsurface or azonometric plots 40, ch. 9 j. examples are 
shown in Fig. 59. These 3-D plotting Words are the ones that form the backbone of 
the graphics utilities in AIDA. For while the few Words which cover 3-D plotting in 
ASYST are easy to use, they are not very flexible and so additional programming 
is called for. In the process it was discovered that the plots are not always of 
sufficiently good quality, as can be seen in the contour plot in Fig. 59, and therefore 
some additional programs were made tc enable the data to be plotted using the 
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Figure 59. Examples of contour and axonometric plots made, with A IDA. 
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COITOUR AMD AXOIOMETRIC PLOTTING PROGRAMS 

Fl : QUIT 

F2 : Plot data Iron a data f i l « 
F3 : Plot data from an ASTST array 
F4 : Reconfigure the plots 
FS : Convert data to SURFER format 
F6 : Print information from a data f i l « 

Figure 60. The graphics men«. 

Plot data 
from data 
file 

Plot data 
from array 

Configure 
the plot 

SURFER 
conversion 

Data 
from 
file 

Dota 
from 
array 

print i n ­
formation 

Figure 61. Structure of the graphics part of A IDA. The structure reflects the 
graphics menu options. 

SURFER graphics software. 
If you choose the graphics option in the main me.iu you will be presented with 

a new menu as shown in Fig. 60. 
Physically the programs are divided into two overlay files, one containing the 

Words to convert data into a SURFER file and the other containing all the rest. 
The w o parts have similar structure and many Words exist in both. For this 
reason I will in this section only describe the actual graphics in any detail. The 
structure of the two is shown in Fig. 61. 

The actual plotting ratines 
Both the 3-D plotting and the SURFER conversion programs can be further di­
vided into two parts. One takes the data to be plotted or converted from an 
ASYST data file created with AIDA. The other takes as input an ordinary two-
dimensional ASYST array. Again, there is much overlap between the two parts. 
Generally speaking, the only difference between plotting data from a file or an 
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Data file plotting program 
Contour Plot 

Manipulate data 

Plot to 
screen 

Plot to 

HP plotter 

Axonometric Plot 

Manipulate data 

Plot to 
screen 

Plot to 

HP plotter 

Figure 62. Block structure of the Words for plotting data from a data file. 

Fl : Plot to screen 
F2 : A4 plot to plotter 
F3 : A3 plot to plotter 

Figure 63. The plotting menu. 

array is how they find the data to be plotted. In both parts there are checks as to 
whether the file/array exists, whether the data set is two-dimensional etc.. Again, 
they are so similar that they will not here be described separately. See Fig. 62 for 
the structure of these parts of the program. 

Before specifying the data file/array where the data are stored the user is asked 
whether to make a contour or an axonometric plot. The treatment of the data 
varies somewhat for the two types of plot, so the program must know this at an 
early stage. 

Once the data have been input to the program (they are stored in a TOKEN 
array) the user has several possibilities for manipulating the data before plotting. 
It is possible to take out a part of the data array for closer inspection or to deplete 
the array by taking only every n'th row or column. This is convenient for making 
contour plots of large arrays since ASYST may not otherwise have enough memory 
to make the plot. The array may also be transposed or turned around so that it 
can be shown from any side in an axonometric plot. 

When the final data set has been obtained the user must specify some informa­
tion about the plot to be made. For the axonometric plot the user must specify the 
viewpoint for the plot. For a contour plot the program must know which contour 
levels to plot. Also the shape of the plot may be fitted to the actual data if the 
data came from an AIDA data file which contained the relevant information. This 
will be described in more detail in the AIDA manual [43]. 

Finally the destination of the plot must be specified. At the moment there are 
in our system two possibilities, indicated by the menu which is shown in Fig. 63. 

Auxilliary functions 
Two other options exist in the graphics menu which we have not yet discussed. 
They are both very simple. 

Option 4 in the menu will give you a set of questions like the ones in the dialogue 
before a data acquisition session (see p. 82). Only here the questions will be about 
the sne of the plots, the colours to use and the type of lines (solid, dashed etc.) for 
the contour plots. The questions and the default values are saved in a Measurement 
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MEASURING TYPE UPDATING SYSTEM 

Fl : QUIT 
F2 : Nak« a n«w Measurement Typ« 
F3 : Delete a Measurement Typ« 
F4 : Chang« th« nam« of a Measurement Typ« 
FS : Hak« chang«« in a Measurement Typ« 

Figure 64. Measurement Type updating mean. 

Insert new name 
in MEAS.TYP 

Creole def. file 

Set default 
constants 
Creole Cues file 
Edit Questions 
tile 

Delete name in 
MEASTYP 

Delete Default 
and Questions 
file 

Chonqe name 

Delete name in 
MEASTYP 

Insert new name 
in MEAS.TYP 

Chonqe Mens Type 

Set Detoult 
contents 

Edit Ouestions 
file 

Figure 65. Block structure of the Words for making or updating a Measure­
ment Type. 

Type of its own. This Measurement type is not listed in the MEAS.TYP file and to 
avoid conflict they have a three-letter extension: qVESTI0N.COM and DEFAULT,CON. 

Option 6 will print the information that is stored in the comments of a data file 
made with AIDA. This should need no further explanation. 

5.6 Making and updating Measurement Types 

In section 5.3 the concept of the Measurement Type was introduced. From the 
structure of the Measurement Types and the way they are referenced it can be 
seen that it would be a fairly straightforward process to create new Measurement 
Types or to modify existing ones. However, there is still considerable scope for 
error in the process, especially if it is not done often. For this reason a part of 
AIDA was developed to take care of the maintenance of Measurement Types. 

This part of AIDA is stored in a separate overlay file and is invoked with option 
4 in the main menu. You will then get a new menu, see Fig. 64. 

The block structure of this part of the program is given in Fig. 65. As can be 
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seen, the various options in the updating menu use the same building blocks. Some 
of the options will therefore only be described very brief y in the following. 

Changes to the HEAS .TIP fil« 
As mentioned earlier, the file NEAS.TTP contains a list c r the currently defined 
Measurement Types. The object of options 2-4 in the menu will therefore be to 
manipulate thir file. Inserting a new name and abbreviation for a Measurement 
Type consists simply of getting the name from the user and writing it to an empty 
slot in the file. However, before entering the new name the program must search 
the list to see if the name or abbreviation already exists. The list of names may 
also be full. In any case, the u^r will be told and must choose another name. 

The Words for deleting a Measurement Type are similar. Here too, the program 
must get the name from the user, and then delete the entry in the list if it exists. 
The user can also choose whether to keep the QUESTION .11 and DEFAULT.Ml files 
or delete them. 

Once these two parts have been made they can easily be combined to change 
the name of a Measurment Type. All that is needed is a small routine to change 
the extensions of the QUESTION and DEFAULT files. 

Changes to the Measurement Type files 
Since each Measurement Type consists of two files of different types it is obvious 
that this part of the program is subdivided into two sets of routines, each manip­
ulating one part of the Measuremnt Type. Here, changes to the DEFAULT file will 
be considered first. 

In option 2 in the menu the new DEFAULT file must first be created and then 
filled. The second part is identical to option 5 in the menu. The changes that 
can be made to a DEFAULT file with these Words only affect the last part of the 
array. The first 20 slots in the array are changed in the dialogue in the data 
acquisition session and the next 8 (in our set-up) are changed by option 4 in the 
data acquisition menu (see section S.4). The values in the rest of the array slots 
can be set in this part of the program. This session is a questions menu like the 
one in every data acquisition session (p. 82). The questions are saved in the file 
QUESTION. SET. They can of course be changed to fit another experimental set-up. 

5.7 Present and future developments 

In the form described above AIDA has been designed to perform data acquisition 
via an A/D plug-in board. However, ASYST also has facilities to communicate 
with instruments via the GPIB data communication bus. This enables ASYST to 
communicate with many different types of instruments, such as spectrum analy­
sers, digital oscilloscopes etc.. For a programmer who wants to make a gener d-
purpose program which utilises the GPIB bus this raises a number of difficulties. 
Most important among these is the fact that different instruments have differ­
ent formats for the orders they need for communicating. Also, the format of the 
data varies between instruments. This in effect makes it impossible to satisfy all 
the objectives of AIDA: that the user should be able to run it without detailed 
knowledge of ASYST or the hardware involved in the data acquisition. 

The solution to this is to require the user to make a routine which performs the 
actual data acquisition. This must be compiled before calling A IDA and will then 
be called by AIDA at runtime. AIDA can then control the independent variables 
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between each measurement. Thb arrangement also allows the user to perform 
some manipBlatioii of the acquired data immediately after the acquisition. This 
is haadv if the amount of data is too large to store, which can be a problem with 
fer instance long time traces from transient recorders or digital oscilloscopes. 

In practice the user may have to produce more than one routine as there may be 
orders which are only executed at the very beginning or end of the data acquisition 
session and not every time an acquisition is being made. The na-nes of these 
programs must be placed on the first lines of the file QOESTIOI. XX (XX is again 
the abbreviation of the Measurement Type). They are then called at appropriate 
times using the ASYST Word "EXEC. 

The questions session at the start of the data acquisition can be used to initialise 
variables for the user-defined routine. This is done with an ASCII file called ? .XX. 
This contains a list of the names of variables in the routine which are to be 
initialised. The number of names in the list should correspond to the number of 
questions and the variables will be given the value of the answer to the specific 
question. If not all the answers to the questions correspond to a variable in the 
routine, a name of a dummy variable can be used instead. 

Since the data acquired by this method does not have any previously determined 
form, it is not possible in advance to create the data file for the results. This most 
therefore be done by the user's routines. Also the filling of the data file must be 
done by the user. For the same reason the data fife thus created cannot be read 
by the graphics part of AIDA. In the future modifications may be made to the 
graphics part of AIDA in order to enable it to read non-standard files and extract 
the relevant data. Thb will probably work on the same lines as this new data 
acquisition. 

This new data acquisition application has by now (medio Jane 1989) been im­
plemented and has already been used in acquiring ant' analysing the data for the 
conditional statistical analysis in chapter 2 sec. 2.6. Here the data are acquired 
with a LeCroy digital oscilloscope used as a transient recorder. The amount of 
data measured in each session is upwards of 10M bytes. Therefore the analysis is 
performed immediately at each point across the plasma column. However, this 
new feature is by no means completed yet. Most importantly, some small bugs 
still haunt the system. Also, new features may be added, but these will have to 
be thought up first. 
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A Some useful relations between Chebyshev 
series 

A given function fix), defined in the interval 1 * * -- 1 can be expanded as an 
infinite series of Chebyshev polynomials: 

Given this expansion we can write various expansions of Lf where L is some 
operator: 

x/(x) = ±a, + (a.. + i«,.)7\(x) + I E ( • « _ , + am,x)Tm{x) (90) 

* 7 ( « ) = 1 [(2*. + a2) + (3a, + at)T,(x) + (2-,. + 2*, + a,)T,(x) 

+ £ ( « » _ , + 2«,. + «m^)TM(x)] (91) 

• * . X 

n«)= E ' * p + 2 E E i«vT~(*) («) 
p = I, wi^l f r m + I. 
p IHM p | m mltl 

«r(«) = É *•»•+É (""-+ 2 É ^)T»(*) («) 
p s 2, tm— I p = m + "2. 
p rrm p + m rvm 

,-x) ?fc 

/"(«) - j E *\+ E E **' - "»3Kr-(») (M> 
p = J, m= I p = m -f 2. 
p rvrn p + m rvrn 

p = :». m = i 
p ftrtrl 

+ E ^ ™ V 'WK(') (9&) 
p = in + .«. 
p + rn >><M 

*''/"(*) - £ E "tø' - 2)a„ + E ( m < m " >)«•-
p = 2. H I - I 
p rvr« 

+ E P ( P 2 m 2 2)ap)Tm(«) (96) 
p = m + 2. 
|> + HI cvrn 
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B Consistency of the discrete Fourier expan­
sion 

The proof that Eq. 25 and Eq. 26 are consistent with each other can be seen by 
inserting one in the other[4?j: 

/(*-) = EliI>>'*'*]«•**'•• 
V I V - I 

*=» ) - " 

^ E W E ^ ^ ' ' -•" = 
The last sam is a geometric series: 

E-" = E--' = irv' 
n-ti m-\ 

and so we get: 

I V " ' • m'**il-

1 
.V 

->) 

*=•• 

Since both j and >. are integers we have for all j : 

l _ e ' 2 ' U - i ) = o 

while the following is valid only for j = >•: 

1 _ e1 *<*-•»> = 0. 

This means that all the terms in the sum are sero except for the term where 
>, = j . For this term we use THospital's rale to get: 

1-«"**-'> j _ jjV^'U J))\ = ? « _ w 

From this we find: 

1 -v~' 
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02667 -, 

-0 2667 -' 

-05333 -

Fif re ft. m) raise« • / A(«/k) for real waiaes • / « /* . The fwcttmn f u 
Aere ckoaen to be a åimxwelbmn. b) A function f with out§ ørne 
nuuimwm ond its étriwotne, together with the fmnction l / (* - a). 

C Nyquist analysis for the plasma dispersion 
function 

The following aaalysis has beea performed by several aathors, e.g. Jacksoa[46j. 
The problem is to determiae the valaes o f« /* for which the deaomiaator of the 
right haad side of Bq. 67 vaaishes, that b 

w . ha * - •*/* 
(97) 

where the iategration paths ran above aad below the pole, respectively. We will 
first look at iategratioa path 2. This is the classical plasma dispersion faactioa. 

Since T,/M, can take on many different valaes the question is whether the valae 
of the integral in the cqaatkm can become real and positive. For this purpose we 
write the integral as 

K(.) = p | ^ d . + * / : , ( . ) 

where a = w/k. The function R will map a curve in the a-plane into a curve 
in the A-plane. Specifically, the real u-axis will have the form given in Fig. 66a. 
This becomes clear when yon look at Fig. 66b which shows the function / , iu 
derivative, and the function l/(v - a). For a <£. 0 the real value is almost sero 
and the imaginary value is positive. For a > 0 the imaginary value » negative. So 
as you trace out the real axis in the a-plane you will go around the curve in the 
A-plane in the direction indicated by the arrows. As we walk along the u-axis we 
will have a-values with positive imaginary values to the left of the axis. This must 
also be the case in the A-plane. Thus the positive imaginary u-plane maps into 
the inside of the curve in Fig. 66a. This means that R(u) can only attain positive 
real values for a-values with negative imaginary parts. 

Now, valnes of a = v/k with negative imaginary parts correspond to negative 
»-valnes since v always has a positive imaginary part. Negative valnes of k only 
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occar ia regtoa I of tg 37. Bat • . • ( * . . ) is oaly deSaed ia regioa 2. Therefore the 
deaomiaatot of »_• caaaot become rero ia the defiaitioa area aad there are ao 
poles dae to the deaomiaaior-

For *,(&.w) the sttaatioa is similar. la this case we integrate above the pole ia 
the r-ptaac. So here we get 

*(»)=: „ | £^.d> -»£(•). 
The resalt of this difeteace a that the carve ia ?ig. 66a is traced ia the opposite 

directioa. Bat then it will be a-ral aes with acgative imagiaary parts that map iato 
the iaside of the carve. So only valaes of a with positive imagiaary parts will satisfy 
Eq. 97. This correspoads to positive &-valaes which are oaly foaad ia regioa 2. 
Bat a, is oaly detlaed ia regioa 1. So this too caaaot have a pole dae to the 
deaomiaator ia the regioa where it is defined. 
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D Briefly on the Cubic Spline Interpolation 
The fottowiag exptaaatioa is very brief. To get more iaformatioa, see '19;. If we 

have a faacttoa j (x ) givea as a table of correspoadiag valaes of * aad «. we caa 

perform aa iaterpoiatioa betweea valaes of a. We choose lor each interval betweea 

poiats a cabic polyaomial to be the interpolating fraction, ia the iaterval betweea 

(*„» , ) aad (x , f I . j , + I) this b writ tea as: 

» *9, 

with 

. 4 -JE 

B :: 

C = 

D = 

+ *>»,+. + < V + D , ; + I 

..*r.*j...t 

HA* - A)[x,+t - x,)*, 
i(ir" JJ)(X,+, *,)*. 

Here, jj" is the secoad derivative of the polynomial at the poiat x, . 

The above defiaitioas do aot prescribe a aaiqae cabir polyaomial for the iater­

val, siace j j ' aad j ^ + l caa take aay valae. Therefore we prescribe a coastraiat, 

aamety to reqaire thai the derivatives of the cabic polynomials shoald be coatia-

aoas at the boaadaries of the iatervab. This coastraiat lor the y"'s is eqaivaleat 

to 

*t *J-lir . *{*! ~ * J " , *J** ~ *t " _ *•»• ' ~ 9j 9f ~ 9l-l 

f »,-.-"• 3 », + 6 »!•• , , + I - x , x , - x , _ , 

For N poiats x, we get N - 2 eqaations of this kiad. Together with saitable 
coastraiats at the ead poiats{ 19) we get a tridiagonal system of eqaatioas which 
caa be solved to fiad the j£"s. Thea the cabic iaterpoiatioa polyaomial is foaad 
for every ialerval. 

Whea the interpolating polynomials have been (band it is a straightforward 
matter to obtain the derivative of the origiaal fa actio«. We Sad: 

dx = x T ^ r ^ —6""<»'•• *'*> * ~ir•<»'•• - * '>*• • • 
Similarly, the integral of the fanctioa caa easily be foaad. 

94 Ris*-M-2858 



References 
(ll flMU bystes mmd Ifnckmr f u w i Metemrrk, CiB R. D. edit©*. Academic 

Press, Loadoa, (1M1) 

(2} Rotb J. R., Krawcaoaek W. H , Powers E. J , Hoac J Y. aad Kna Y. C. 
Pays. *e». UtL, 49 1450 (1971) 

[3] RiU C. P., Brower D. L-, Rhodes T. L., Bcagtsoa R. D., Leviasoa, S. J., 
Laluaaaa N. C , Peebles W A. aad Powers E. J., N*cL fkarn 2T HIS, 
( I W ) 

[41 litaka S., Hald T., Pécsefc H. L. aad Rasatassea J. J. Pay«. Me*. Lett. 69, 
102« (IMS) 

[5] „laM T., Iisaka S., Pécseii H. L., Rasamssea J. J. Plasaia Pay*. Caatr. fwstaa 
89, 1297 (1988) 

(6j Motley R. W. Q-MacAne«, Academic Press, New York. (1975) 

[7j Keat G. I., Jea N. C. aad C a n F. P. Payne* • / Ftmtds 12,2140 (1M») 

(8j Weaaad J. Low Fremuencp Modes Associated wUk Drift Motions ta Inkome-
aeacaa* Plasmas 3rd ed., Caabaers UaiversHy of Tccaaology, Gotbeabarg, 
Swedea IMS 

[»j P.K., Ya M. Y-, Rabmaa H. U. aad SpaUcbek K. H. Pays. Rep. 104, 227 
(1964) 

[10] Cbea F. F. Pfcysic* of FtmUs t , 912 (1965) 

[11] PécseM H. L., Rasmasara J. J., Sagai H. aadTboauea K. Plum* Pays. Contr. 
Pnston 26, 1034 (1984) 

[12] SpiUer L., Paysic* a/fairy Ionized Gmses, laterscieacc. New York, (I95*) 

[13] Laaib H. Hpdrodjnomics Dorer Press, (1932) 

[14] Grove Taomsea, P. Nmmeriske metoder for sdoontife differentimlhmnisioer. 
Namerisk fastitat, DTH, I977 

[15] Gasdag J. J. CompmUtionml Pkjsus 29 lit-tOl (197$) 

[16] Gottlieb D. aad Orssag S. A. Nnmtncml Anoifsis of Spectral Methods: Tke-
ary •** AppHcmtions, SI AM, CBMS-NSF Rem. Conf. Ser. ra AppL Moth. 20 
170pp.(1977) 

[17] Myers R. B.( Taylor T. D, Mardock J. W. J. CompnUtionol Pkfsics 43 
180-188(1981) 

[18] Kaorr G., Haasen F. R., Lyaov J. P., Pécseii H. L. an.I Rasmussen J. J. 
Pkfsiem Serrate 38, 892 (1988) 

[i9] Press W. H., Flanaery B. P., Teukobky S. A., Velleding VV. T. \umtnrol 
Recipes, Cambridge University Press (1986) 

[20] CoaUias E. A., Hansen F. R., HBM T. and Lynov J P. PAysica Script* 49, 
270, (1989) 

[21| Pécseii H. L., Rasmussen J. J. and Thomsen K., Plasma Pkws. Contr. Fmsion, 
8, 837 (1985) 

[22] Marcos P. S., Nttnrt, 881,693 (1988) 

Risa-M-2858 95 

file:///umtnrol


(23) MMD« R. J , Pkms*cs • / Fbnds XX, 1042 (1970) 

(24) Aadenca S. A.. Outstolérsea C. B.. Jeasea V. O.. Mirkebea P. aad Kiebea 
P.. Pmmmn •§ Fbwma 14. fM (ItTl) 

(2Sj Fried B. aad Coate S., The Plum* Duwmmm Pnmetåmm, Acadeauc P i w , 
New York (IM1) 

(29) i n K%mpe* N. G. Ffcyaka ZS, Ml (1957) 

(2T| Jeaaea V. O.. forefnmasaoter i Plmammfnm IL, Rn (1994) 

(MJ DOT«! F aad Crcmloa D. Pkm. mf Fimids 19, I75C 

[29| Jokaaca H. htUrmttmm atrweea Imm tmermj i n bmmm mmd mm memutu flmetm-
atmma ta Jieid free »Mjiai, Uamrsity of Tinmi, Norway 1994 

(39) Taylor R. J., MacKeaar K. R. aad Iken H. *e». Set. Aufram. 43 1C7S (1972) 

(3I| limpacker R aad MacKeam K. R. Re». Sri. hutrvm. 44 T2fi, (1973) 

(MJ Aadenca S. A., ChnrtoCttsm G. B , Jeaata V. O., Mkacfaea P. aad Nicbea 
P., Pknéea •/Fimida 14, 72* (19TI) 

[331 Rtcrrbert R , EMbrd M. T. aad Skalerad H R., J H n . • » . 797 (IM2) 

(£4) Taylor R. J. aad CoroMli P. V., Pift Me*. Lett. 29, 34 (1972) 

[35} Kiwamoto Y. J. Pkm. Sar. • / Jamt* VI, 4SS (1974) 

(3S| PajiU T-, Okaaata. T. aad Adackt S., Plum« Pkmaica, 19, t7S (1977) 

(37) Gn'iMua D., Doted P. aad Bassi J. M., Pkma. Mn. UU. 34,197 (1975) 

(39) Lyaov, J. P. aad Mkkefaea, P., G ANDALF, A GenermUa AmfkemUe Nrnmer-
icai DmU Acmmiaitiam laboratory Facitiry, Raa-M-2393 (1983) 

(39) ASYST t.O Mosaic / , system, yraa*ics,stef*s<K* fataniaj; MacniBaa Software 
Compaay, 1997. 

(40j ASYST t.0 Møémle t, Ammtmna, Macatdha Software Compaay, 1997. 

(41) ASYST t.O Mande 3, Acfaudim, Macanttaa Software Compaay, 1997. 

(42) ASYST 2 0 Modale 4, GPIB/1EEE4*', ftfacanllaa Software Compaay, 19S7. 

(43) HaU, T-, Øsers mwdc /or AWA, Plasma Pkysks Seclioa, Rita-I-470 (ia 
preparatioa) 

(44) Hald, T-, Reference Mmmmml far AWA, P l u a t Physics Seclioa, Rb#-1-471 
(ia preparatioa) 

(45) Smrfer Reference Mmmmml Goidea Software lac, Golden CO, USA 

(49| Jacksoa J. D , J. Nucl. BnernCl 171 (I960) 

(47) J-P Lyaov, private commaakmlioa. 

96 Rm»-M-28&8 



Bibliographic Data Sheet BJs*-M-m8 

Title and autlmr(s) 

Experimental and Numerical Investigations of Plasma Turbulence 

Thomas Huld 

ISBN 

87-550-1624-3 

Dept. or group 

Department of Optics and Fluid Dynamics 

(•roups own reg. numbcr(s) 

I'ages Tables Illustrations 

105 0 66 

ISSN 

0418-6435 

Date 

July 1990 

Pntjrc-l/o«!,tract n«». 

Itcferrnccs 

47 

Abstract (Max. 2UUU char.) 

Turbulence in plasmas has been investigated experimentally and numerirally. The 
work described here is divided into four parts: 

• Experiments on edge turbulence in a single-ended Q-machine. Convective 
cells are investigated in detail together with the anomalous transport caused 
by them. 

• Numerical simulation of the edge turbulence in the Q-machine. This simu­
lation uses spectral methods to solve Euler's equation in a cylindrical geom­
etry. 

• Measurements on wave propagation and the ion beam instability in an un-
magnetized plasma with an ion beam with a finite diameter. 

• Development of software for the automated acquisition of data. This program 
can control an experiment as well as make measurements. It also includes a 
graphics part. 

Descriptors INIS/i;i)» 

A CODES; COMPUTERIZED SIMULATION; CONTINUITY EQUATIONS; DATA 
ACQUISITION; HELMHOLTZ INSTABILITY; PLASMA; PLASMA MICROIN-
STABILITIES; PLASMA SIMULATION; TURBULENCE 

Available on request from: 
l.iso I ibrary, Kisit National Laboratory (Uiso Hibliotek, I '>nkiiiriu*c<-rit<r Itisit) 
P.O. Hov If), I)K -llMjl) Koskilclc. Denmark 
I'lione + |.-> I2 :»7 12 12, exl. 22(>H/22(i<) • Iclex l.» I l(i • lelefax + I". Hi 7.1 7,0 27 



Available on exchange from: 
Risø Library, 
Risø National Laboratory, P.O. Box 49, 
DK-4000 Roskilde, Denmark 
Phone + 45 42 37 12 12, ext. 2268/2269 ISBN 87-550-1624-3 
Telex 43 116, Telefax +45 46 75 56 27 ISSN 0418-6435 


