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Abstraet  Turbulemce in plasmas has been investigated experimentally and nu-
maerically. The work described here is divided into four parts:

o Experiments oa edge turbulence in a single-ended Q-machime. Convective
cells are investigated in detail together with the anomalous transport caused
by them.

e Numerical simulation of the edge turbulence in the Q)-machine. This simu-
lation uses spectral methods to solve Euler’s equation in a cylindrical geom-
etry.

o Measurements on wave propagstion and the ion beam instability in an un-
magaetised plasma with an ion beam with s finite diameter.

o Development of software ior the sutomated acquisition of data. This program

can control an experiment as well as make messurements. It also includes &
graphics part.

This report is practically identical to the thesis submitted to the Technical
University of NDenmark for obtaining the Ph.D. degree. This was submitted on 1
October 1989 and the lecture held on 1 March 1990.
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Summary

Various sspects of plesma turbulence have been iavestigated experimentally snd
sumerically. I1n magnetined plosmas the emphasis has been on the study of fiute-
type or convective cril fluctuations in the edge of 2 Q-machine plasma, cansed by
the Kelvin-Helmboltz instability. This has been studied extensively. The studies
fall iato four main groups:

1. General studies of the turbulence wsing cotrelation meusurements. These
have uncovered the spectia of the fluctuations under varioes conditions and
the phase relations between the potential and density fluctuations both ia
the maeia plasma and iz the cdge region.

2. Investigations of the interaction between the turbulent (spontancous) flucta-
stions and an externally injected comvective cell. It is found that the tarbu-
lence interacts nonkneatly with the cell and that the cell essentially absorbs
the energy of the turbulence. The resalt is a cascade of energy from high
mode aumbers Lo lower omes.

3. Measurements of the cross-field plasma transport associated with the tur-
bulence have been performed. Here it is found that the turbulest transport
is orders of magnitude Jarger than that of cleasical diffasion. In other words,
this type of turbulence may be 3 major source of plasma loms in some types
of magnetic confinement experiments. The resalts may be applicable even if
the driving mechanism is different.

4. Comditionsl statistical measurements of the turbulence have been made using
a digital oscilloscope to acquire real-time traces of the finctuating quantities.
These make it possible Lo get & picture of the state of the plasma duriag large
fluctuations in the density or electrical field and to measure the anomalows
flux associated with such large fluctuations.

A simulation of the Kelvia-Helmbkolts instability in the edge of the Q-machine
has been initiated. In this smulation the guiding center equations (the flwid con-
tinuity equation, the E x B velocity equation, and Poisson’s equation) are solved
in two dimensions in cylindrical geometry (the direction along the magnetic field
is ignored). A spectiral method is employed. In the radial direction the expansion
s made with Chebyshev polymomials, while in the asimuthal direction a Fourier
expansion is employed as the boundary conditions are periodical. A very efficient
solver has been developed for Poisson’s equation in this geometry which yields a
very sccurate solution with only O(1) caleulations per grid point. Initial results
are in qualitstive agreement with experiment though problems remain. An exten-
sion to include viscous effects is being developed at the time of writing (autumn
1989).

In an unmagnetised plasma investigations of the ion beam instability have been
petformed. The emphasis has been on the study of the plasma response to s
weak beam of fast (supersonic) ions moving through the plasma. Experiments in
a Double-Plasma device have been performed and are compared to theoretical
calculations. Good sgreement hes been obtained. In addition, initial experiments
have been made on the ion beam instability with a finite-diameter ion beam.

Finally, a versatile program for data acquisition and display is presented. This
program, called AIDA, has originally been developed for the experiments of the
Plasma Physics Section. However, it is adaptable for many types of experiment.
It can be used both for automatic data acquisition and also to some extent to
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contrel the experiment. The emphaws has been ca case of use. and menuns are
wsed extensively. Most of the data presested in this thesis have beem acquired
wsing this program which runs on a staadard PC.
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Dansk resume

Forskellige aspektier af turbulens i plasmacr er blevel ndforsket, bade chsperimen-
telt og ved numcriske simulationer. | magnetiserede plasmaer har hovedvagten
varet lagt pa stadiet af flukinationer af fute-typen, ogsi kaldet konwekiive crlier
i kanten af et plasma | en Q-maskine. Dinse fluktuationer bliver drevet af Kelvin-
Helmbolts instabiliteten. Undersogeiserne han inddeles i fire hovedgrupper:

1. Generelie studier of turbulensen ved hjeelp af korrelationsmilinger. Pa deane
made cr fluktuationernes spekirum blevet milt sammen med faserelationer-
ac mellem fluktuationerne i potentialet og plasmatactheden, bide | midten
af plasmaet og i kansten, hror turbulensen er mest udtalt.

2. Undersogeiser af vekselvirkningen meliem de (spontane) turbuleate fluktne-
tiomer og en koavektiv celle patvunget plasmact. Det ses ber, at tarbalensen
vehselvirker pi en ikke-linewr made med cellen, og al cellen opsuger energi
frs tutbalensen. Foigen o1, al energien strommer fra hoje belgetal til lave
belgetal

3. Malinger af den plasmatransport pé tvmrs af magnetfeitet, som turbulensen
forirsager. Her finder man, at den turbelente tramsport er flere stocrel
sesordenetr storre end den, der shyldes klnssisk diffwsion. Med andre ord:
turbulensen kaa varre hovedkilden til tab af plasma i visse typer af ehsperi-
menter med magaetisk indeslutaing af plasmact. Disse resultater kan veere of
betydming for andre cksperimenter, ogsa selv om mehanismen, der forarsager
turbulensen er en anden.

4. Malinger of tusbulensen med betinget statistishe metoder er blevet udfert
v. hj. a et digitaloscilloskop, der han opsamle tidsserier af de fluktuerende
storrelser i sand tid. Dette muligger en undersogeise af plasmaets tilstand,
nir fluktuationerne i tartheden eller E-feltet er store, og at male den dertil
horende radiwere flux.

Et projekt til simulering af Kelvin-Helmhboltz instabiliteten i kanten af Q-mas-
kinen er blevet indledt. | denne simulation findes exn Irsaing til Guiding-center
ligningerne (kontinuitetsligningen, B x B-hastighedsligningen og Poissons ligning)
i poleere koordinater. Kun bevaegelse pa tvaers af magnetfeltet bliver betragtet her.
Lesningen findes ved brug af spektrale metoder. | den radimre retning udvikles i
Chebyshevpolynomier mens en Fourierudvikling bruges i den asimuthale retning,
eftersom randbetingelserne her er periodiske. En swrdeles eflektiv lgsnimgsmetode
til Porssons ligning er blevet udviklet. Losningen kan her indes med O(1) bereg-
ninger pr. gitterpunkt. De forste resultater viser en kvalitativ overensstemmelse
med eksperimenterne. Der er dog stadig visse problemer. Disse soges lost ved at
medtage viskositet i ligningerne. Dette er ved at blive udviklet i skrivende stund
(efierar 1989).

I et umagnetiseret plasma er der blevet udfert undersegelser af ion-beam in-
stabiliten. Her er veegten blevet lagt pa studiet af forstyrrelsen af plasmaet som
folge af indskydning af en svag strale af hurtige (supersoniske) ioner. Der er blevet
udfert eksperimenter i Dobbelt-plasma maskine 1, og disse er blevet sammenholdt
med teoretiske beregninger. Der ses at vare god overensstemmelse. Derudover er
der blevet foretaget indledende eksperimenter over ion-beam instabiliteten med
en ionstrale med endelig diameter.

I forbir.delse med eksperimenterne er der blevet udvikiet et alsidigt computer-
program til opsamling og grafisk udskrivning af miledata. Programmet, AIDA, er
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oprindeligt blevet udvikiet til eksperimenterne i Plasmalysiksektionen, men kan
anveades : mange typer af cksperimenter. Det kan bruges bade Ul antomatisk op-
sambing af data og til at styre ekspenimentet. Der er blevet lagt stor vargt pa at
gore det brugervenhigt ved udstrakt brug af menuer. Storstedelen af de miledata.
det prasenteres i| denne rappott er opsamlet med AIDA, der kocer pa en standard
PC.
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1 Introduction

The study of turbulence in plasmas hes received much interest in recent years. Ths
= especially true for magnetic fusion energy research. The objective of megmetic
fesion research s to coafine & hot plasma in &3 magnetic field sefliciently well
to allow fesion processes to occur. By now, maay of the lurge-scale instabilities
which isapaired the performance of corly experiments have beea brought under
con_rol. However, the plasma confincanent s still not mearly as good as would be
expected from an anslysis of classical diffusion. The reasoa for this is thought to
Be meialy with what has been termed micreinsiabilities{], ch. 11]. These appear
where fiee energy is svailable, c.g where the gradients in density, magnetic o
dlectrical ficdd o temperature are lge, or where there arc inhomogeneities in the
velocity distribution_ Instabilities in these regioas may canse turbulence with scale
sives that are small compared to that of the experiment’. While these turbulent
thought to contiibute stiroagly to the anomalouns transpert of plasme across the
magnetic ficld. An understanding of this would be most desirable since it may point
to remediies or to specific conditions which enhance the anomalows transport and
should therefore be avoided.

ent theoretical methods are used in the investigations of these instabilities. Some
cas be adequatedy described by the two-fluid equations or even by MHD theory.
These are in many ways similar to the macromsisbilities in their origin. How-
ever, they are normally coafined to special regions of the plasma, especially ia the
plesme edge where the gradients are largest and there 15 (in fusion experiments)
a strong influx of mpurities from the wall of the vacuum chamber. Examples of
these gradieat-driven instabilities are the drift instability cansed by density gradi-
eats and the Kelvin-Helmbholts imstability which is driven by velocity shears where
the dectrical field has lasge gradients.

Other instabilities are due to non-Maxwelion distribution fenctions and must
be trested by the Viesov equation. A prime example of this is the two-stream
ot beam instability where chasged particies are moviag through a plesma with &
speed comparable to the speed of sound i the plasma. Another i the "loss-cone”
instability found in mirror machines where particles in 2 certain velocitiy reage
are lost st the ends of the mochine. This distorts the velocity distribution and
leads to instability.

One thing common to sll studies of plasma turbulence is their nonknenr char-
initial growth rates can normally be calkculated by a knesr analysis, the evolution
of the instability leading lo turbulent behaviour can osly be described wsing the
full nonlinear equations. This of course leads to almost insurmountable difficulties
in doing precise analyticsl calculations. Therefore the theoretical study of turbe-
Jence in plasmas is ofien performed by numerical calculations. Here too, though,
difficultics caused by the nonlinear character of the problems often manifest them-
selves.

On the experimental side the problems of doing accurate measurements of tur-
bulence are seen immediately from the nonrepetitive character of turbuleat fuctu-
ations. Ideslly, ome would take & large number of “snapshots” in rapid succession
of the relevant plasms parameters, such as the density aad local polential in order

Yin [1) the term micrminstability is woed oaly for instabilities caused by mon-Maxwelban ve-
Incity distributinne. Here, nwever, | have used it mainly tn describe lncal instabilities compared
with ginbel instabilities which completely disrupt the plasma.

Riss-M-2858 1



to follow cokerent structures in the turbulence. However, such a measurement is
not feasible. For one thing it would require the storing of an enormous amount of
data. Furthermore, diagnostics such as probes which are the only ones to measure
potentials accurately disturb the plasma and must be kept as small and few as
possible. For these reasons measurements of plasma turbulence are of a statisti-
cal nature. Many measurements are made in a few points to obtain an averaged
picture of the plasma turbulence.

The contents of this work are organised as follows: Chapter 2 describes exper-
iments on plasma edge turbulence in the Risg Q-machine. These are caused by
the Kelvin-Helmholts instability. Statistical measurements are performed using
Langmu‘r probes to revesal coherent structures in the turbulence. In chapter 3 is
described an attempt at simulating the phenomena investijated experimentally in
chapter 2. Spe:tral methods are used on a one-fluid equation. Problems with the
numerical methods have not yet been completely solved but already results bear
clear resemblance to experiments.

In chapter 4 is related the first experiments on the Risg DP-machine. This con-
tains an unmagnetised plasma into which an ion beam can be injected. Measure-
ments of the plasma response to perturbations of the beam reveals Cerenkov-like
radiation patterns. Also, the beam instability is investigated in some detail.

Finally, chapter 5 contains a description of a large data-acquisition program
developed by me and used for many of the experiments in this work. This is
admittedly not what one would usually understand by plasma physics research.
However, data acquisition using computers have by now become an integral part
of experimental physics. Therefore 1 have thought is worthwhile to describe these
efforts as they have been a necessary prerequisite for this work.

2 Risp-M~-2858



2 Experiments on edge turbulence in a Q-machine

2.1 Introduction

Studies of turbulence i magnetized plasmas have been perfomed in many different
experimental machines with widely varying geometries (see for instance [2, 3]).
These have most often been multipole devices or tokamaks. These experiments
are hampered by the complexity of their geometries which makes it difficult to
generalize from measurements in a few points, by the often short duration of the
plasma and for tokamaks also the high temperatures of the plasma which make
probe measurements impossible except in the scrape-off layer. In contrast to this
the Q-machine features a simple geometry with a cold steady-state plasma in which
measurements can be made anywhere. Of course it is by no means certain that the
results obtained in a Q-machine will have any relevance to large toroidal devices.
Still, there are indications that the phenomena observed in the Ris Q-machine and
reported here are similar in structure and sometimes in physical origin to those
observed in other machines.

Due to the physical nature of the plasma in the Q-machine (see next section)
the emphasis here is on turbulence in the plane perpendicular to the magnetic
field and the corresponding enhanced particle transport across field lines. This is
of course also the topic of greatest interest for fusion-related work.

The work related in this chapter in reality consists of two distinct experiments,
described in two papers[4, 5]. However, since there is sume overlap between the
two experiments, especially as the experimental set-ups were almost identical I will
here treat them together and make no distinctions between the two. In addition
some new results are presented here which have not yet been published.

2.2 Experimental set-up

Basic machine set-up and diagnostics

The experimental set-up consists of the Ris¢ Q-machin- which is outlined in
Fig. 1. (In the following a basic knowledge of Q-machines is assumed.) 1t is a fairly
standard Q-machine[6] operated in single-ended mode. The hot plate is made from
tantalum and is heated by electron bombardment from behind (energy 1.5-2keV)
to a temperature of up to app. 2200°C. In the other end of the plasma column
the plasma is terminated by a cold metal plate. This can be biased relative to the
vacuum chamber. Close to the end plate a small (8mm diameter) metal disc has
been placed. This too can be biased independently.

Diagnostics in this machine consists of Langmuir probes{6, ch. 3]. These are
spherical platinum probes - { diameter Imm. Only the tip is exposed to the plasma.
The probe shaft is covered with two concentric glass tubes for electrical insulation.
Between the glass tubes is a grounded metal tube. Depending on the experiment
up to four probes are used a® one time. Some are fixed in one or a few positions
while others can be moved freely across the plasma column.

Basic plasma characteristics

In this machine a cesium plasma is used. The magnetic field strength can be var-
ied in the region 0.1-0.6T. Depending on the cesium oven temperature and the
hot plate temperature the plasma density is n = 10'°-10"*m~* measured by ion
saturation current to a probe. The plasma temperature is essentially determined

Risg-M-2858 3
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Figure 1. Schematic drawing of the Risg Q-machine. HP is the hot tantalum
plate. CP is the cold end-plate which can be biased independently.
D ts the ezciter disc and P1 & P2 are Langmuir probes.

by she hot plave temperature and so is T, ~ T; ~ 0.2eV where T is the ion and
electron temperature, respectively. The temperature has been measured over the
entire plasma ~olumn. It was found that there is no appreciable temperature vari-
ation across the plasma column. This is what one would expect since the plasma
is not in contact with the walls and the mean free path for charge exchange is
much greater than the diameter of the plasma column. There is thus no mech-
anism which preferably cools one part of the plasma. At the plasma parameters
used here the piasma is electron rich and therefore the plasma potential is nega-
tive. The piasma potential is measured by the floating potential, V; of a Langmuir
probe. As the electron temperature is constant the plasma potential V,, is given
by V, > V; - 4T, = V; — 0.8V The plasma potential varies with the density and
hot plate temperature but is generally ~ —3V.

In Fig. 2 is shown the density and floating potential of the probe in a cross-
section of the plasma column. It is seen that the plasma potential is very nearly
constant across the column and rises outside the main plasma. (The “main” plasma
is here taken to be the part of the plasma whe » the magnetic flux tubes intersect
the hot plate.) The constancy of the plasma potential inside the mein plasms is
caused by “hot-plate damping”. Where the flux tubes impinge on the hot plate
excess charge is “shortened out” as the hot plate is electrically conducting. (The
argument is actually a little more involved because of the plasma sheath at the
hot plate.)

The density profile is somewhat similar to the potential profile but more peaked.
This is thought to be due to the fact that the temperature of the hot plate varies
slightly across the plate and is highest in the middle. Variations in work function
across the plate also influence the plasma density.

2.3 Measurements of turbulence in the plasma edge.

Basic characteristies of the turbulent fluctuations
The original intent with the Q-machine concept was 1o produce a plasma free
from large-scale instabilities and therefore free from noise (except thetmal noise, of

4 Risg-M-2858
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Figure 2. a) & b) Probe floating potential V,(r) across the plasma column.
¢) & d) Density variation ny(r) over the column. The dashed circle

shows the edge of the hot plate.

Rise-M-2858



e®!IT,

f{kHz]

Figure 3. a) Spectra of the fluctuations in the plasma potential normalised by
T./e for different radial positions Y. b) Similarly for the density
fluctuations normalised by the local dackground density. The edge
of the plasma is at Y = 15mm.
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Figure 4. As previous figure, but this time for oscillations with a narrow
frequency band. a) Potential fluctuations, b) density fluctuations.

course). In the main plasma column this has larg:ly been achieved. However, in the
edge of the plasma there are spontaneous low-frequency (,S, 20kHz) fluctuations.
That this should be so is not surprising. In th: edge there are large density and
potential gradients. Thus there is free energy which may drive an instability.

The spectrum of the fiuctuations has been measured with a standard spectrum
analyser. Density fluctuations were measured by the AC-signal to a Langmuir
probe at ion saturation current, the potential fluctuations by the AC-signal to a
floating probe. In Fig. 3 is shown for one set of plasma parameters the spectra
of the fluctuations i normalised by ny(r) ard ¢ normalised by T, /e for various
radial positions.

It is immediately seen that in the main plasms there is only a very weak signal
at ~ 8kHz. However, in the plasma edge there are strong fluctuations with a broad
low-frequency (up to 5kHe) spectrum. The very low frequency fluctuations found
in the main plasma are thought to be noise due to outside sources.

The spectra in Fig. 3 were obtained at a specific set of plasma parameters.

6 Risg-M-2858
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Figure 5. a) Fluctuation amplitude at 1kHz as ¢ function of radial position.
b) DC densily and potential profiles.

When the parameters are changed, different spectra are measured as can be seen
fiom Fig. 4. Here the fluctuations in the edge are characterised by a narrow fre-
quency peak at 5kHz and its harmonics. These are similar to those seen by other
observers(7]. At still other pa ameters a hybrid between these two types of fluc-
tuations may appear. The change between these regimes is thought to be due to
changes in the potential gradient in the plasma edge. Thus a steep potential gra-
dient gives a narrow frequency band while a less steep gradient gives a broader
band spectrum. The potential gradient depends on many plasma parameters (hot
plate temperature, density aad magnetic field for instance) so it is not possible to
give an excact description of how to obtain these different spectra.

Diseussion of the physical origin of the fluetuations

The most conspicuous feature of the oscillations is that they are localized in the
edge region of the plasma. In Fig. 5 is shown the fluctuation amplitude as a
function of radial position (for the broad band case). For this figure the signal was
band-pass filtered at ! kHz. For reference the DC density and potential profiles
are also shown. It is clearly seen that the fluctuation level is highest at the radial
position where the potential gradient is largest and not where the density gradient
is jargest. This seems to indicate that it is the potential gradient that is the driving
mechanism for the fluctuations in the edge. The electrical field gives rise to an
ssimuthal E x B velocity. Since the electrical field is not homogeneous there will be

Risp-M-2858 7



a velocity shear in the radial directicn, e citing an insta-iity. From fluid dynamics
this is knowr as the Kelvin-Helmh .z irtability. Th* bas been investigated in
detail by Ken et al.{7], mainly for "n> rarrow band c=-z shown in Fig. 4.

The nature of the fluctuations © -evealed by a coiupanson between the two
figures in Fig. 3. Ic the main plasr:a th - fluctnation l--els in the two figures are
comparable i sirength, that is, we can wrile e¢/T, ~ n, 2a(r), or in other words,
that the slecir:ss are isothermally £ >ltsmann distribkted. These fluctuations are
strongest al ..~ gisition of the strepest density graa nt. They are therefore in-
terpreted as rl-ctrc=.atic drift wav 5[6 8]. These hav-- a fr-quency

=% _r ;d;hdi_
T 2x “2xeBoR

which with parameters relevan: for this experime..t g.ves a frequency of the
order of SkHs, in fair agreement witli experimental i-sult .

Ir. tne edge region the relatiorn Letween potentiai and density fluctuations is
e$/T > #/ny(r). This indicates that the fluctuat.uns are of the electrostatic
Rute igpe or conwective cell typ: "This type of flu~t.-ations is characterised by
pertyibations which are in phase aiong the magnetic fielr In a cylindrical plasma
the; iherefore resemble flutes on an ancient greek . olemn, hence the name. In
a h mogeneous plasma the relation between densit/ a-d potential fluctuations
sho.\d be e¢/T, ~ (kAp)~27/mo}9). For the present ~as- where there is a density
gre iient a relation can be obisined between the ioa densily fluctuations and the
po’ sntial fluctuations in the following way. The continu.y equation for the ions is

on
2 +V-(nv)=0. (1)

It is assumed that there is no DC electrical field en.d that v, = 6. In the low
frequency range we can write

[
v=-Vo¢ x —=.
®X B,

Standard vertor relations give V - ¥ = 0 and hence for Eq. 1 we find when
linearising:

-

%tE+V-Vn0=0

where n = n,, + #. Considering only perturbations of the form ae'ke-iat g get
—iwﬁ—i(k&x e_,) -Vny~ 0,
Bﬂ
i -k x é - Vny @)
ny wByno '

Finding k from the fact that we are dealing with fluctuations with mode rumber
m = 2 (see next section) we find that #/n, ~ 0.2e¢/7. in fair agreement with the
results in Fig. 3.

That the fluctuations are really of the flute type was verified by measuring the
phase of the fluctuations along the plasma column. It was found that at constant
radial and azimuthal position there was no appreciable phase change along the
field lines. Also, moving the end plate did not result in changes in the phase.
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Cerrelation measurements

In order to study the turbulence in grester detail messurements were made of
the cross-correiation between the fluctuating quantities in space and time. The
correlation measurements were made with two Langmuir probes. One was held
at a fixed position while the other could be moved across the plasma column
vertically and horisoatally. In principie a cross-correlation function between two
quantities 4 and B is given by:

R_”y(n,tz,f) = [' A(n,l)B(b,l + f)dl (3)

where {, — I, is & long time inl>tval (compared with typical time scales for the sig-
mals). At the time when these measurements were made we did not have equipment
to messure accurately long time series of the signals in resl time. The measure-
ment was therefore done with a box-car averager. This samples the two signals
(with a time difference of v) and multiplies them. This is repesated at fairly long
time intervals (5-20ms) and the results are averaged. Because of the long lime
interval between each messurement the different messurements are statistically
independent of each other. The average (taken over a total of app. 3 seconds) is
therefore a good approximation to an ¢nsemble average. By moviag ome probe
around in the plasma a complete correlation function can be obtained. This is
shewn in Fig. 6. Here is shovn the cross-cotrelation Ryy(r,,r, 7) for four different
values of 7. These messurements (and the following) were made in a square area
with around 20 x 45 measunng points. From Fig. 6 one may note many interesting
features. First, we see from Fig. 6a that the turbulent fluctuations are fairly homo-
geneous in the azimuthal direction, with an approximate mode number m = 2, i.e.
the figure depends only on the absolute separation angle between the probes and
not on their excact position. In the radial direction, the fluctuations are not at all
homogeneous. This is not surprising when comparing with Figs. 3 and 5, where
it is seen that the level of fluctuations depends strongly on radial position. The
correlation length is also much shorter in the radial direction. In the asimuthal
direction the correlation length is approximately half a citcumference.

Most prominently, the figures clearly show convective cells moving around the
citcumference of the plasma column. It is also seen that regions of positive cor-
relation are followed by regions of negative correlation, indicating a number of
convective cells of changing polarity around the circumference. In Fig. 7 is shown
the asimuthal position of the convective cells as & function of time. From this fig-
ure the velocity can be calculated. This value is estimated at ¥ =~ 200ms-'. From
Fig. 2 an elxctrical field sirength can be estimated in the region of the convec-
tive cells of Fig. 6. The radial correlation length is app. 9mm and the estimated
electrical field is 85Vm™~'. With s magnetic field strength of 0.35T this gives an
B x B,/ B? drift velocity of 240ms~"'. There is thus good reason to claim that the
convective cells are transported around the plasma column by B x B drift.

Information about the turbulence can also be obtained from cross-correlations
between density measurements and between potential and density. This is shown
in Fig. 8, still for the broad band case.

The first thing to be noted from this figure is that the fluctuations in the edge
are cleatly correlated with those in the main plasma. That this should be so is not
obvious. As was argued in sec. 2.3 the driving mechanisms are different for the
two types of fluctuationsi. There must then be some coupling mechanism linking
the fluctuations. This coupling is thought to be carried out by the ions since these
gyrate with a fairly large Larmor radius (~ 2mm). Thus, by this coupling the
edge fluctuations may drive the drift waves in the main plasma unstable. The
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Figure 6. Contour plots of the cross correlation fanction Ryy(tn,r,7) =
(i(r.,, t)&(r,t + 1)) for four different values of 7, a) v = Opus,
b) r = 25ps, ¢) v = 50ps and d) v = 100ps. Solid contours in-
dicate a positive correlation, dashed conionrs are negative. r,) is
morked wilk a . Again, the dashed circle marks the exztent of the
hot plate. For this figure plasma parameters were B, = 0.35T,
no(r = 0) = 10'°m=3. The magnetic field veclor points into the
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Figure 7. Arimuthal position (angle 8) of the convective cells of the previous
figure a3 & funciion of 7. The positions of one positive cell are
marked with G, those of a negative cell with o.

mecanism is thought to be the following: The drill instability is not very strong
at the plasma parameters in this experiment. Due to end losses the growth rate is
farther diminished, and so the drift modes may not be unstable at all but on the
other hand they are st most weakly damped. The edge fluctuations have a broad
spectrum ard thus they contain the resonance frequency for the drift waves in the
main plasms. Thus the drift waves can be driven by the edge fluctuations.

From the phase relations between the density aad potential fluctuations several
interesting features of the turbulence can be found. In Fig. 8 is clearly seen that
the potential and density are in connterphase (anti-correlated) at the position
of the reference probe (the e in the figure). This is not what one would expect
from s simple analysis of flute-type osciliations, where the density is in phase
with the electrical field and therefore 90° out of phase with the potential (E =
ikg). The simple analysis is also the one giving the maximum growth rate of the
instability. However, the fluctustions seen in this experiment are subject to a non-
linear interaction, which damps the instability by changing tiue phase relation.
This damping is partly due to finite Larmor radii. An analysis by Chen[10] shows
that in the saturated fluctuations the electrical field should be 90° out of phase
with the density and therefore the potential should be in counterphase with the
density. This analysis is corroborated by the data in Fig. 8. However, though the
potential and density are anti-correlated they are not exactly in counterphase as
the lrcal minimum for the correlation function is not at the point of the reference
probe.

The situation is different in the main plasmas. Here it is found that the potential
fluctuations in the main plasma are in phase with the density fluctuations st the
same asimuthal position. Also the density fluctuations are in phase. Therefore the
potential and density fluctuations in the msin plasma must be in phase too. This
is what is expected for resistive drift modes.

The correlation analysis was also performed for plasma parameters where the
fluctuation spectrum has & narrow peak (Fig. 4). The results are shown in Fig. 9.

Riss-M-2858 11
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Figure 8. Contour_ plots of varions cross correlation functions. a) Ry =
(6('0’ ‘)?('v‘)): b) Ran = (d(rot)ii(r,t)), c) Rae =
(R(ro,t)d(r,1)). As in Fig. 6, only no(r = 0) = 3-10'm~? gnd
Bn =0.28 T.
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tuations. &) Ryy = (#{ro, t}é(r, 1)}, }) Rag = (R(ro, t)e{r,1)).

From this figure it is easy to see that around the plasma colama are two areas of
positive correlation and two of megative correlation. Thus the oscillations have an
asimuthal mode number m = 2. Furthermore, here ihe density and potential are
very neatly in counterphase. This is in agreement with the expenimental results
of Kent et 2l.[7].

2.4 Interaction between the turbulence and an injected
convective cell

In the preceding discussion the turbulent fluctuations are generated spontaneously
and therefore the properties of the turbulence are independent of the time of
measurement. Furthermore, the statistical nature of the measurements means that
the interaction beiween specific structures in the turbulence cannot be studied.
By perturbing the plasma one can study the interaction between this perturbation
and the spontaneously generated turbulence. Such a perturbation was made with
the exciter disc placed at the end plate of the Q-machine (see Fig. 1). The exciter
is placed at a radial and azimuthal position close to the fixed reference probe. The
perturbation was made by applying a positive voltage pulse to the disc, thereby
drawing electrons out of ‘he flux tube impinging on the disc. In other words, a
convective cell is injected into the plasma. Typically, the applied voltage was +12V
for 20us. The repetition rate was 100Hz, which is much longer than the correlstion
time. Correlation functions were measured as in the previous section, only here
the time of measurement v:as triggered by the injection of the convective cell.

Broad band case

In these measuremenis the fluctuation spectrum was broad as in Fig. 3. For this
situation correlation measurements were made. In Fig. 10 is shown the cross cor-
relation function R.(t,,¢) = (&(rmt.)&(r,tl)) for various values of the time {,
after the injection of the cell. 1t is seen that the correlation function essentially
tetains its form in this time interval while the amplitude varies strongly. In Fig. 11

Rise—M-2858 13
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Figure 10. Correlation fanction R.(t,,1;) = (#{Fo, £, )(r, 1,)), wherel, is ihe
time afier the injection inlo the plasme of & positive convective
cell, for four different wlnes of t;,. a)t, = J0ps, b) 1, = T0ps, c)
iy = I150us, d) £; = 400us.

is shown the time evolution of R,(2;,1,) for different azimathal positions at a fixed
radial position of r = I6mm. The disturbance due Lo the convective cell is cleasly
seen. It grows within ¢, ~ 50us and is completely damped out at {; = 500pus.

In order to understand the interaction beiween the background fluctuations
aad the injected cell the contributions of the two components to the correls-
tion function must be clearly identified. If the fluctuating potential is written as
#(r,1) = Pr(r, 1) + .(r, 1), the subscript R denoting the backgiound fluctuations,
the correlation function can be written

R (t),8) = (®n(ro,1:)dr(r, 41)) + (20, b1 )é. (1. ;)
+{Or(ra.1)))é (2, ;) + 6.(n, 1) (n(r,1,)). (1)

&, is not averaged since it must be the same in all statistically independent real-
isations. Now, if §, and éx are statistically independent, that is if the injected cell
is simply superimposed on the backgrouad turbuleace, then the average potential
will be (¢) = @,, whereby Eq. 4 becomes

Rr(‘ly‘l) = R('m r, 0) + ‘c('ﬂv‘l)‘c('n‘l)- (5)
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Figure 11. Time cvelution of the correlation function as in Fig. 10 for dif-
Jerent azimuthal pesitions at the radial position r — 16mm.

Riro,r,0) being the standard potertial cross correlation function for zero time
deley. Fig. 10 suggests that the injecied cell is not simply superimposed on the
turbulence. This becommes even more clear in Fig- 12. Here is shown first the
correlation function R, and the correlation function with so cells injected. Then
the two are subtracted. Finally is shown (ﬂr..,l.))(i(r,l.)), which would be equal
1o @.(rn, £ )0.(r, 1) if the cell and the turbulence did not interact. In that case
Figs. 12c & d would be identical. Since they clearly are very different it can
be concinded that the cell interacts nonlinearly with the background turbulence.
These results confirm similar findings by eg. Pécseli et al.{11]. The increase in the
correlation fanction indicates that the energy of the injected cell is condensed in
the lowest order modes, m = 0 and m = 1. Thus the convective cell modifies the
turbalence, making energy flow from high order modes into larger structures.

Nerrow band case

The experiments discussed in the previous section were siso performed for plasms
parameters where the fluctuations have a narrow baa | spectrum as in Fig. 4. Here
the fluctuations are much more coherent and it is possible to study in greatey
detail the interaction between the spontancous fluctuations and an externally ex-
cited conveclive cell. In Fig. 13 is shown the correlation function R.(1).1;) =
(#{(Tn, 1,)0(r, 1,)) at different times after the injection of the cell. These figures
indicate that as long as the cell exinis the oscillations are essentially m = 1 modes
whereas the background fluctuations without the injected cell have m = 2. How
the background fAuctuations are perturbed by the convective cell can be seen from
Fig. 14. This shows the time evolation of the average potential fluctuation (¢)
before and afier the injection of the cell, for a number of asimuthal positions
around the plasma column. As the cells are injected at random time points rela-
tive to the background fluctuations, the average polential before the injection is
very close to sero. Immedistely afier the injection the cell is seen, and after the
cell has decayed (at 200-300us) the inkerent fluctuations reappear. However, the
phase of the background fluctuations is locked to the cell even afier the cell has
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Figure 12. a) Correlation function as in Fig. 10, for t; = 100us. b) Same
set-up, but without cell injection. c) Subtraction of a) and b). d)

(B(r0,21)) (B(r, 11)).
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Figure 13. Correlation function R.(t,,1,) = (4-5(!‘0, t,)r}(r, 1)), for a case
when the spectrum of the fluctuations has a narrow peak. Figure is
analogous to Fig. 10. a) t, = TOus, b) t, = 150us, c) t; = 400us,
d) Correlation function for the unperturbed plasma.

decayed and so the average potential is nonzero. Thus the cell affects the coherent
oscillations for much longer than the lifetime of the cell.

A further examination of this was carried out to determine the relation between
the injection time (relative to the inherent mode) and the phase shift. For this
measurement the injection time was triggered by the inherent fluctuations. The
average potential was then measured at a fixed azimuthal position 8 = 90°. The
results are shown in Fig. 15. This figure clearly shows that the modification of the
phasc depends on the phase of the injection. When the cell is injected in phase
with the fluctuations the phase is not appreciably changed. The maximum phase
change comes when the ¢ 1l is injected 90° out of phase with the inherent mode.

The evolution of the pi.sma response to the injected cell is shown in Fig. 16 as a
function of the azimuthal position. Again, there are clear differences between the
cases A and B of Fig. 15. Of special interest is Fig. 17, which shows the Fourier
components of a series of curves as those in Fig. 16. The Fourier components can
here be considered as “modes” and Fig. 17 then shows the relative strength of the
different modes as a function of time after the cell injection. This interpretation
of the Fourier components as “modes” should be taken with some caution as the
lifetime of these modes is comparable to the frequency of the oscillations.

The most important result to be seen from Fig. 17 is that, after the cell has
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Figure 14. Time evolution of the averaged poteniial (&) at various azimuthal
positions at the radial position r = 18mm. A convective cell is
injected at 1=0.

been injected the low order modes (m = 0 and m = 1) grow while the inherent
m = 2 mode is quenched in the period 200us < t < 300us. This indicates that
the cell perturbs the inherent mode in a way such as to precipitate an inverse
cascade of energy from high to low modes. Furthermore, even when the cell has
decayed at ¢ > 400us the inherent mode does not retain its former strength for
several hundred us. This feature is most clearly seen in Fig. 17a pertaining to
cell injection in phase with the inherent fluctuations. When the injection is out
of phase the picture is less clear. In this case higher modes (m > 3) are also
excited and the m = 2 mode is sticrgly enhanced in the first 100us after the cell
injection. However, also here the high order modes are quenched for a period after
this initial response. The fact that in both cases the 11 = 2 mode does not fully
recover until long after the cell has decayed indicates that there may be some
interaction between the modes for this extended period.

2.5 Anomalous plasma transport

Due to the randomly varying electrical field, the plasma will be transported with
a local velocity ¥ = E x B,/ B} (as long as frequencies are much lower than the ion
cyclotron frequency). The plasma flux associated with this velocity can be written
as P = Aiv. Note that T does not contain the DC flux in the azimuthal direction.
The interesting part of the flux is the transport out of the plasma column, which
may be termed an anomalous diffusion, since it gives rise to a diffusion across the
field lines which is not of the classical type. The anomalous radial transport will
in the following be called o = Ep/By. A positive value of I'y corresponds to flux
out of the plasma column.

To calculate the flux it is necessary to measure the local fluctuations in the
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Figure 15. Time evolution of the average potential fluctuations when an
convective cell is injected. Measurements are here triggered by
the inherent fluctuations. a) The time evolution at a fized poini
(6 = 90°) for different injection times (indicated by arrows). Top
trace shows background fluctuations alone. b) Trace of the peaks in
the signal shown in a). In A the cell is injected out of phase with
the background mode, in B the injection is in phase. The oblique
line shows the time of injection.
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electrical field and the density simultaneously at approximately the same radial
and azimuthal position. This was done using three probes entered from the side
of the machine. Two of these were placed at * = 17Tmm and 10mm apart in
the asimuthal direction and left floating. The potential difference then gives the
asimuthal electric field. The distance between the probes is large enough that the
probe sheaths do not overlap but small enough compared to the scale sise of the
turbulence that aliasing errors are not significant. To ensure that the measured
electrical field really onmly is the azimuthal component the two probes were fine-
adjusted until the DC voltage between them vanished. Between the two floating
probes is placed a third probe biased for ion saturation current. This measures the
fluctuating density. The fluctuating radial Aux is then measured by multiplying
the signal from the density probe and the E-field probes.

Results with broad band turbulence

The first investigation 1s in a situation where the turbulence has a broad frequency
spectrum as shown in Fig. 3. Using a Hewleti-Packard analog correlator probabil-
ity densities were obtained for the fluctuating quantities. The results are shown
in Fig. 18. From this figure we can see that (n) = (E) = 0, as expected. However,
the flux has a non-zero average, indicated by the arrow in Fig. 18¢c. The average
flux can thus be measured to (I';) = 1.1-10'*m~2?s~!. In addition to this it is
seen that while the density and electrical field probability distributions are almost
Gaussian distributions the flux distritution is markedly asymmetric. From the
figure we find a skewness of ~ 0.3 and a kurtosis of ~ 4. The positive value of (I')
indicates a net flux out of the plasma column. From this a diffusion coefficient
can be defined as D, = (i#)/|Vno|, from which D, = 3- 10~ *m?~!. Compared
to the Bohm diffusion coefficient Dy ~ xT/qBy = 4- 10~ °m?s~! it is somewhat
lower, but it is more than an order of magnitude larger than the classical dif-
fusion coefficient, D, = 29Tn/B2 = 1.7- 10" *'m2s~' (n is given by Spitzer[12]:
n=>522-10""InA/T*? and In A ~ 15). The transport along the field lines can
also be calculated. Using a plasma velocity of 500ms~! the plasma flux along the
field lines is 5-10'Ym~2s~!. If the radial flux is assumed to be constant along the
plasma column, the total radial transport is 1.2 - 10'*s~' while the longitudinal
transport is 3.5 - 10'%s~!; in other words about 3% of the plasma is lost radially
while the rest is lost by condensing on the end plate.

The processes giving rise to the anomalous diffusion can be investigated in more
detail by measuring the autocurrelation functions of the fiuctuating quantities.
In Fig. 19 is shown the autocorrelation functions R;(r) = (a(t)a(t + 7)), R
and R;. While the autocorrelation of # and E tend to zero for r — oo, R;.
tends to a constant nonzero value. The average flux can then be calculated as
(T) = /R;(r — ). The value found by this method is close to the one found
from Fig. 18. In Fig. 19d is shown the cross correlation function R, ,.(7). From
this it is easily seen that # and E ate significantly correlated. The normalised
correlation is R, (0)/(R:(0)K(0)) = 0.3.

A Fourier transform of R ;. in time will yield the power spectrum of the flux,
using the convolution rule:

F(a(t) - b(t)) = / F(a(t))F(b(t + 7)dr.

The spectrum is written as S(f = w/2x) = |S(f)|e'*!/). In Fig. 20 is shown
{S(f)i and ¥(f). From the phase spectrum it can be seen that for high frequencies
the phase difference between 7 and E is close to zero, but for the lowest frequencies
the phase difference is closer to x/2. It will be recalled that according to Chen[10]
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Figure 18. Probadilily densilies (relative occurrence of different instananeous
values) for the fluctuating quaniities. a) Normalised density, b)
azimuthal eleciric field, c] radial fluz [y. In this ezperiment B, =
0.25T, ny ~5-10%m~3.

the phase relation should be zero for linear instability but /2 for the saturated
fluctuations. Thus Fig. 20 gives a further indication that energy is cascading from
high order modes to lower ones. The high frequency modes will then remain lin-
early unstable because their energy is fed into the lower order modes which then
are driven into saturation. It should be noted here, that while ¥(f) = 0 was always
observed for the high modes the phase of the low frequency modes was sometimes
—=x/2 rather than x/2.

As the phase of the low frequency modes is close to /2 these modes should not
contribute to the net outward flux. That this is indeed so was verified explicitly
by filtering the 7 and E signals with a high-pass filter before multiplying them.
It was found that the net outward flux, (l."o) was not appreciably affected, when
the cut-off frequency was below ~ 2kHs. However, for higher cut-off frequencies
the net flux decreased. This result is somewhat surprising, since the amplitude of
these low frequency modes is rather kigh compared to the high frequency modes.

Narrow band case

The preceding investigation was also carried out for a narrow frequency band
regime, such as the one seen in Fig. 4. Probability distributions were also ob-
tained for this case for the three fluctuating quantities. Here it was found that the
probability distribution for the density, P(#) closely resembled that of a purely
sinusoidal oscillation with amplitude A: P(a) = (A/x)/\/(A? —a?) fora < 4, 0
otherwise. There was a bit of “smearing out” due to the very low frequency noise
component which is always present. This in fact dominated the result in P(E).
The probability distribution for the radial flux was again asymmetrical, but with
a much lower average outward transport.
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Figure 19. Autocorrelation functions for the fluctuating quanlities, a)
Ri(7) = (a(t)a(t + 7)), b) R, ¢) R;. d) Cross correlation func-
tion between i and E, R, (1) = (A(t)E(t + 7)), normalised by
R;(0)R;(0). Parameters as in Fig. 18.
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Figure 20. Cross-power spectrum for & and E, from a Fosrier transform of
the results in Fig. 19. a) |S(f)|, 8) ¥(f). For large frequencies
where the amplilude is smail the phase calculstions are not reli-
able.

In Fig. 21 is shown the autocorrelation fanctions and the cross correlation be-
tween the density and electrical field (similar to Fig. 19). The fluctuation level is
somewhat lower than in the broad band case. The correlation between the density
and electrical field is ir this case very low, R, . (0)/(R;(0)Rg(0)) = 0.03. The
density and electrical field are approximately /2 out of phase, as is clear from
Fig. 21d.

The diffusion coefficient is here estimated to D, = 3-10-°m?s~' This is lower
by around two orders of magnitude than the anomalous diffusion in the broad
band case. This shows that the anomalous transport is strongly dependent on
edge plasma parameters.

Modification of the flux by convective cell injection.

It was shown in section 2.4 that the external excitation of a convective cell modified
the turbulence in the edge in significant ways. To investigate the influence on the
turbulent flux measurements of this were made during injection of convective cells.
Thus measurements were made of (To(2,)) = (A(2,)E(t,)) where ¢, is the time after
the cell injection. One result is shown in Fig. 22. This result was obtained with a
broad band spectrum. Just after the injection the flux is enhanced, hut afterwards,
when the main part of the cell passes the probe, the diffusion diminishes. This
behaviour is also present when the spectrum has a single frequency peak, as is
shown in Fig. 23 for three different values of 8;;. The time of the minimum depends
on @), in a way which indicates that the perturbation of the flux travels around
the plasma column with the E x B,/ B? velocity. An interesting feature is that the
flux may go inwards for a short period after the cell injection. This means that
it is possible to change the turbulent flux transiently by externsl perturbations.
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However, in these experiments the total flux was not appreciably changed by this
method.

2.6 Conditional statistical analysis of the turbulence

In the discussion of Fig. 18 it was noted that the probability distribution of the
fluctuating radial flux was markedly asymmetric and that it had an anomalously
large kurtosis. This seems to indicate that the transport is caused in a large part
by large “bursts” of plasma being injected during short intervals of time rather
than by a more steady “seeping” of plasma out of the plasma columa.

In order to investigate this in more detail a series of experiments have been
performed which investigate statistically the conditions in the plasma edge during
periods where the plasma transport is anomalously large. Such an investigation
has only recently become possible by the availability of fast digital oscilloscopes.
A two-channel digital oscilloscope is being used for these measurements in an
experimental set-up which closely resembles the one used for the earlier flux mea-
surements. This new set-up consists of the three fixed probes which measure the
fluctuating electrical field and density. Added to this is a fourth movable probe
which may be placed in any position across the plasma column. This measures the
fluctuating potential or density. The potential difference signal from the electrical
field probes together with the signal from the moving probe is then fed into the
to channels of a digital oscilloscope which in this set-up is used mainly as a tran-
sient recorder. It may acquire data scans of up to 32000 points for each channel.
The acquisition rate is here put at 50-100kHz which is sufficient to prevent alias-
i- g errors. The acquired traces are then sent to a computer for processing. This
processing consists of the following:

o Search the E-field trace for spikes which fulfill the condition E > k-o, where
o is the root mean square value of the E-field trace, o = y/ (EY and k is a

specified number. (The condition may also be that E < ko where k is now
8 negative number.)
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e Every time the condition is fulfilled take out the part of the trace starting
a time 7 before the spike and ending at a time r after the peak. These are
then added together. This is done both for the E-field and for the potential
fluctustion trace.

e Repeat the preceding for a number of positions of the potential probe.

By moving the movable probe around and performing this measurement in a
grid of points it is possible to obtain an averaged picture of the plasma when the
fluctuating electrical field is large (positive or negative) at the position of the fixed
probes, or in other words when there is a large instantancous radial transport of
plasma into or out of the plasma column.

An example of a measurement of this kind is shown in Fig. 24. Hete the mea-
surement has been made in a grid of 8 x 13 points across half of the plasma
column. From the measurements pictures have been reconstructed of the state of
the plasma at four times before and after the peak in the electrical field. The plots
show an average of a few hundred occurrences.

The figure clearly shows the occurrence of & pair of convective cells of opposite
polarity moving past the electrical field probes. At the time r = 0 the boundary
between the two cells is almost right between the two probes. The polarity of the
cells indicates that the instantaneous transport is oui of the plasma column. In
Fig. 25 is shown a similar measurement where the movable probe measured the
fluctuating density. In Fig. 25 the density fluctuations have been normalised by
the local DC density. This shows that at the time of a large electrical field the
density perturbation at the probe position is clearly negative. This indicates that
the fluctuations in the density and electrical field are largely out of phase. Thus
the net transport 15 small and the large structures shown here may be relatively
ineflective in transporting the plasma out of the column. This is in agreement with
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the results obtained in the previous section.

In order to avoid storing very large amounts of data the incoming data for
Figs. 24-25 are nrocessed at once for each point in the grid. However, this means
that ii is not possible to make another analysis (e.g. with a different condition)
of the same data. For this reason a simpler experiment was performed which
allowed us to save the entire trace for a single point. Ia this way several different
conditions can be investigated for the same set of data and the raw data may
be manipulated in various ways. The measurement was made with the two fixed
E-field probes and the fixed density probe. T:aces of the E-field and the density
fluctuations were obtained. " - : insizntaneous flux due to the fluctuations can then
be calculated by multiplying the two signals. Some results are shown in Fig. 26.
In this figure is given the conditionally averaged values of the E-field, the density
fluctuations and the flux ' = #E for two different conditions, one where the E-
field fluctuation is positive and hence the instantaneous transport is outwards and
one where the E-field is negative. In both cases it is clear that the density is
perturbed when the electrical field has a large spike. The phase difference between
E and n lies between 0 and x/2 in both the positive and negative case. This causes
the somewhat surprising result that the flux has a positive spike both when the
transport is outwards and when it is inwards. Even more surprising is the fact
that while the flux spike is small when the transport is outwards (in agreement
with the experiments described in the previous paragraph) the flux is much larger
when the transport is inwards. This means that the greatest contribution to the
net flux comes when the instantaneous transport is inwards. There is perhaps a
corrmspondence between this result and the results shown in fig. 18. This shows
the probability densities for the various fluctnating quantities. Looking closely at
this figure, one may see that both the density and the slectric field distributions
are slightly skewed in the negative direction, while the flux distribution is clearly
skewed in the positive direction. All this indicates that a considerable part of the
net flux may be due to these negative E-field spikes. This is being investigated
further at the time of writing.

2.7 Plans for the near future

The experiments described above clearly show that large fluctuations do contribute
to the net flux out of the plasma column. However, the mechanism is not clear. In
particular it is not understood why the greatest (perhaps even dominant) contri-
bution comes when the transport is actually inwards. For this reason there is need
of an experiment where potential or density data are acquired from a number of
points together with the E-field data in a way similar to the one described above.
However, this time all the data must be saved so that it is possible to apply several
different conditions to the same set of data. This requires the storage of large sets
of data (typically 10Mbytes) so the experiment must te carefully prepared. 1t is
not practical to store a large number of such experiments.

On a slightly longer timescale it may be possible to petform a similar experiment
where the condition is applied to both the electrical field and the flux signal. In
this way large flux spikes can be investigated in more detail. However, this will
require three or more input channels where at the present only two are available.
This may be remedied at some time in the future, the authorities willing.
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3 Numerical simulation of Q-machine edge plasma
3.1 Formulation of the problem

Due to the magnetic field the plasma in the Q-machine can be considered essen-
tially two-dimensional. Therefore it may be worthwhile to try to make a numerical
simulation of the processes in the plasma and especially in the edge of the plasma
which is dominated by large density and electrical field gradients. This chapter
describes a method for simulating a disk- or ring-shaped two-dimensional plasma.
The starting point for the simulation is the fluid equations of continuity for the
electrons and ions:
on.
e +v-Vn;, =0. (6)
Here n; . are the ion and electron densities respectively. The velocity v should
really be calculated from the higher order fluid equations. However, here only the
lowest order approximation is taken into account, in which the velocity is the Ex B
velocity given by:
ExB N
v= B (7)

The flow is here taken to be incompressible and inviscid, and it is assumed that

higher-order effects can be ignored so that v; = v.. If we assume that all ions
are singly ionised we can get an equation for the charge density p = n, — n, by
subtracting the two continuity equations. Using then Poisson’s equation and the
fact that E = — V¢ the following closed system of equations is obtained:

dp
— -Vp=0 8
5 TV VP (8)
ExB
¥ = T (9)
V2¢: —£ (10)
€y

where ¢ is the electrical potential. Equation 8 is known in fluid dynamics as Eu-
ler’s equation. These equations, together with appropriate initial and boundary
conditions, form the system that is to be solved. Note however, that several as-
sumptions have been made in the process of simplification. As already mentioned
incompressibility has been assumed. When we subtracted the mass conservation
equations we lost all information about the plasma density and density gradients.
This is especially grave for a simulation of the main plasma in the Q-machine since
this part of the plasma is characterized by strong density gradients and hardly
any electrical fields. This simulation will therefore be restricted to the edge of the
Q-machine plasma. Futhermore, all external forces except electrical and magnetic
fields have been disregarded. Finally, despite the use of E x B drift velocities finite
Larmor radius effects have been ingnored, even for the ions.

The equations to be solved describe an incompressible plasma in a magnetic
field. However, a mathematically entirely analogous problem exists in fluid dy-
namics. If ¢ denotes the stream function, w = V x v the vorticity (a pseudc-scalar
in this two-dimensional problem, w = 0,0,w,) and v the velocity we have the
following equations for an inviscid incompressible fluid:

dw

— . = 11
5t +v-Vw=0 (11)
w=Vxv (12)
V21[):w (13)
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Figure 27. The shape of the region in which the equations are to be solved.

where the sign convention is taken from [13]. It is easy to see that apart from a
sign in Poisson’s equation these equations are analogous to Egs. 8-10.

The equations are solved in an annulus-shaped region as shown in Fig. 27. r,
is the inner and 74 is the outer radius of the annulus. The shape of the region
makes cylindrical (polar) coordinates an obvious choice. In cylindrical coordinates
equations 8 and 10 look like this where r is the radial and 6 the azimuthal
coordinates:

% 1 (260 2900]

"5t B |06 aras| =" (14)
¢ o9 9 P

2000 99 99 _ __2P

ot T T, (15)

Eq. 10 has been mmltiplied by 72 in the process. On the two boundaries the
potentials are constant around the annulus though not necessarily equal. This
means that we have Ey — 0 at both boundaries and since v, = —Ep/B, = 0 there
can be no transport across the boundaries.

3.2 The Numerical Methods

General method

Equations 14 and 15 can be combined to form one nonlinear partial differen-
tial equation with derivatives in both space and time. This is a mixed initial—
boundary value problem. The boundary conditions for this equation are: ¢(r,,6,1) =
Va, &(rs,8,t) = Wy, ¢(r,0,t) = &(r,2x,1). The initial condition is ¢(r,6,0) =
J(r,8). The method used here for solving it uses a finite difference (time-differencing)
method for the time variable [14, 15], since this is unbounded. For the space vari-
ables we use one of the so-called pseudospectral methods {16, 17]. These methods
work by sampling the functions of the equations at discrete points (collocation
points) and then expanding these data in a series of orthogonal functions. The
system of equations can then be solved by working on the coeflicients of these
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functions to give a solution for each time step. The trick lies in selecting expan-
sion functions that are well-behaved. The most commonly used expansion is the
Fourier expansion because it has nice properties with respect to differentiation
[18]. But Fourier expansion is only possible if the problem has cyclical boundary
conditions. In the present problem this is only the case in the azimuthal direction,
where we use a real (not complex) Fourier expansion.

However, one may use many other sets of linearly independent functions. For
this problem the variables are expanded in the radial direction in Chebyshev
polynomials of the first kind. (In the following they will simply be called Chebyshev
polynomials). The genetrating function for the n’th Chebyshev polynomial is:

Tw(z) = cos(narccos z), (16)

and the first few polynomials are:

7;)(2) =1

TW(z) = =

Ta(z) = 2221
Tyz) = 42° -3z

As can be seen from the generating function Chebyshev polynomials are only
defined in the interval —1 < z < 1. At the edges of this interval we have for all n:

T.(-1) = (-1 (17)
T.(1) = L (18)

This means that the annulus must have a width r,—-r, = 2, and the radial distance
must be transformed like this:

Z=r—a

where a is the mean radius of the annulus @ = (v, + r)/2 (see Fig. 27). The
expansion of the functions will thus be of the form:

o 9 <
F(z,0) = Z (Z @nnTon ()€™ (19)
n=-20 m=H
with0<8<2x, -1<z< 1.

The function is expanded in infinite series of orthogonal functions, something
that is fairly impossible to do on a computer. An explanation on how to truncate
to a finite number of expansion functions (modes) is given in section 3.2. In the
azimuthal direction we have periodic boundaries and so we can perform a Fourier
expansion in this direction. Numerical methods for Fourier expansion (transforma-
tion) are well known[19]. However, there is no method which will directly expand
a function given at discrete points in Chebyshev polynomials. To remedy this the
grid points in the radial direction have been chosen in the following way:

z,:—cos(—;}), 0<i< M. (20)
With this choice of points Eq. 16 will Jook like this:

Ta(2zi) = cos (narccos [ - cos (%)]) = —co8 (%}1) {21)

The Chebyshev polynomials are now expressed by a cosine function and so the
Chebyshev expansion can be perforrned by a cosine transform which is closely
related to a Fourier transform.
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Fourier expansion methods
The general method for expanding a periodic function in a Fourier series is found

in standard mathematical textbooks and looks like this:
20
fla)= Y cne™ (22)

n=-0

where the complex numbers ¢, are given by
€n = il;‘/_'f(::)e""’ d=. (23)

f(=) is periodic with period length 2x.

This method demands the calculation of an infinite number of factors c,,, so it
is not very well suited for numerical treatment. However, there atre several ways
of making approximations to this system. One is to simply truncate the sum:

N
f(z) ~ Zc,,e"". (24)
0
This method is called the Galerkin or true spectral method. Note that f(z) is
still continuous. The method we have chosen is 2 little different. Instead of ap-
proximating the function at all points we choose a number of equidistant discrete
points, f(z;) and demand that the expansion be exact at these points. This is
the so-called pseudospectral or collocation method. (The use of these names in
the literature is not consistent.) The points z; are called collocation points. The
expansion now looks like this:

Not N-t
f(zj) = Z crel*r = Z cpe’ NIk {(25)
k=0 k=0
with the c;’s given by:
p Nl e
Cx = —ﬁ Z f(z,)e UN k". (26)
j=vn

A proof that these two equations are consistent with each other is given in App. B.
In the present case f(z) is a real function but the c;’s are complex. Thus twice
as much space is needed to store the function values in “transformed space” (i.e.
expanded) as in “real space” but of course there is no more information stored.
This amounts to a considerable waste of computer memory. For this reason a real
{not complex) Fourier expansion (transform) has been chosen. Here the expansion
is in sines and cosines:
Nf2-1 2
f(=;) = Sao + dans, cos(xj) + Z (ak cos(%jk) + By sin(%jk)) (27)
k=1
where the coefficients a; and b; are given by:

N-t

ay = %F,, f(z,')cos(%rkj),

b — & =,

v o= 5 2 fla)sin(Grk). (28)

j=n
The proof of consistency for these equations is very similar to the complex trans-
form case.

The real Fourier transform lends itself well to the transformation of data in the
azimuthal direction. However, it was found in Eq. 21 that Chebyshev polynomials
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can be represented as cosine functions. Therefore the data must be transformed
in the radial direction into an expansion in cosines. This is done in a way very
similar to the real Fourier transform:

8
fl@)) = 3_ ox cos( i) (29)

k=0

wiih the a;’s given by:

N
1 T .
a = z—ﬁjz_:“f(%)cos('ﬁh)- (30)
Note that here we expand in N + 1 functions and that the transformation and the
inverse transformation are symmetrical®.

Solving Poisson’s equation

Poisson’s equation in cylindrical equations is given in Eq. 15. After transformaticn
this equation gives an equation for the infinite series given in Eq. 19 which looks
like this for each n:

L = d |« ) —
(3 + a)za—:'.z( Z ¢mnfrm(:)) + (z + a)d—:-( Z ¢mn7;n(:)) - nz L ¢vnn7;n(3)

m=0 mz=t m=i

x
= _(1 + a’)2 Z pmnj'm(:) (3])
m=0n
where p has been used for p/¢,,. (This will be done from now on.) This equation
contains the first and second derivatives of series of Chebyshev polynomials mul-
tiplied by poweis of . The polynomials ensuing from differentation of Chebyshev
polynomials and multiplications with polynomials are not themselves Chebyshev
polynomials and so cannot be used directly for this calculation. But formulas are
available for calculating the derivatives of functions that are expressed as Cheby-
shev series. A function f(z) which is expanded:

f(z) = Y anTi(z)

m=1

can be expressed as a new series of Chebyshev polynomials. Formulas are given
in Appendix A which wiil be useful for this pt:pose.

?In the ntherwise excellent treatment of the Fast Fourier [ransform in Numerical Recipes{19]
the authors mistakenly assert that the cosine transform is not svimerrical and devote much
discussion to the problem of how to make it so.
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Using the relations in Appendix A, Eq. 31 can be written:

((: +a)]£ +(z+ c)% - nz) Z OmnTm(z)

=B A - Dbeta Y HE - Dot 1Y Pt Y P

p=2. p=4 p=2, rp=2
p even p odd P cven P even
o 0 . 0
+a E ””—nzﬁ,.)+z(m(m—l)¢,..+ Z plp’ - m* - 2)¢,.
p= I m=1 p=m+ 2
p vdd P+ meven

+4am(m + 1)¢m+1,n + 2a Z PP’ —m’ - 1)¢pa + a’ Z PP’ ~ m*)éma

p=m+3 p=m+ 2
P+ maodd P+ meven

+MPmn + 2 Z ”'l + 2a Z ”’l - nzénu )Tm(z)

p=m+2, p=m+ 1
P+ meven P+ m odd

=~(2+a)" Y pmaTw(3). (32)
m=0

Several of these terms cancel and the end result is:

(La®+1) Y Pbpmta ) Popm - n?dum ) + Yy (a2+ 1) Y -m*)epm
m=]

p=2, p=1 p=m+ 2,
p even p odd P+ m even

+20 Y PP —m)opn + (M — 2)bmn ) Tn (2)
D dd

= -(z +a)? E PranTm(Z)

m=0

= - Z PranTm(z). (33)

m=0

In this system truncation to a finite number of modes is done by choosing a number
of collocation points as explained in section 3.2. Then the upper boundary on
the sums can be replaced by the number of modes M which we want to retain.
(Note that the expansion coefficients, @, for the retained terms are not exactly
identical to the coefficients of the same modes in the full expansion.) We thus get
for each Fourier mode a set of M + 1 linear equations with the M + 1 unknowns
Som; Pins - - - Parn. The m’'th equation has the following form:

(m® — 2)mn + 2a(m + 1)(2m + )Pt 1.0 + (1 + a*)(m +2)(4Mm + O)Pmszn + -
+a (M) (M?* ~ m*)darn = —Pmn

with a* either equel to 2a or I + a* depending on whether m is odd or even.
The structure of the system of equations is shown in Fig. 28. This system is
trisngular, (it is also singular, as there is & zero in the diagonal whete m? = n?,
more about that later). Solving a triangular system by back-substitution requires
a few times M? floating point operations. So to solve for ¢ requires of the order
of N - M? operations. If we want to solve the equations using a large number of
modes we cen run into trouble, even on a large computer. Luckily, there is a way
around this. If we denote the m'th equation E(m) we can make the operation
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E*(m) = E(m) + aEim + 2) + BE(m + 4). By choosing a and 3 correctly we
can eliminate all terms except for the first five in all the equations. If you look at
Eq. 33 and Fig. 28 you will see that the p'th and p+ 1°th columns of the triangular
matrix will look like this (p is odd in this example):

] ap® Jd+e?)(p+1)* ]
(1+a¥p(p* - 1) 2a(p+ 1)((p+1)* - 1)
2ap(p’ - 4) (1+a®)(p+ )P+ 1) —4)
(1+ a?)p{p? - m?) 2a(p + 1)((p +1)? - m?)

2ap(p’ - (m+1)°)  (1+a*)(p+ 1)((p+1)* - (m+2)°)
(1 + a®)p(p* — (m +2)?) 2a(p+ 1)((p+ 1)* - (m + 2)?)

2ap(p’ - (m+3)%)  (1+a®)(p+1)((p+1)° - (m+3))
| : : .
From this it is fairly easy to see that we can write two equations for a and 3:

PP’ — m’) + ap(p’ ~ (m +2)*) + Bp(p* - (m +4)") =0,

(P+ 1)’ -m*)+a((p+1)* - (m+2)°)+B8((p+ 1)’ - (m+4)*) =o0.

These equations must hold for all values of m and p, so we can solve for a and 3.
The result is:

-2(m+2)
= 2 34
a 3 (34)
m+ 1
= — 35
m+3 (35)

So we end up with a set of equations of the following form:
(m? = 0*)Pumn + 2a(m + 1)(2m + 1)@t i.n + (4(1 + @*)((m + 2)(m + 1)
~a((m+2)° - n*))dmizn + 2a(2m’ + 9m + T)dmian + B((m +4)° — 2°)Pmian
= ~Pun = @Pmian — PPmiin- (36)

For m = 0 and for the last few equations this will look a little different.

Now we have a triangularised, pentadiagonal system of equations. This can he
solved using O(M) operations. But the system is still singular and we have not
taken account of boundary conditons. Both can be resolved by noting that at the
boundaries we get:

A
Z(_l)m‘»mn = @p, (37)
"
Y bmn = b (38)

If the last two equations in the system are replaced with these two, a regular
system of equations is obtained. The last two equations in the system are the ones
which should be removed since they only contain information about the highest
modes and are not very accurate because of the truncation. One obstacle remains.
If you look at Eq. 36 you will see that for m > n the coefficients of the second
and third term is larger than that of the first term which is the diagonal element.
This means that the matrix is ill-conditioned (the diagonal element should be the
largest numerically) which will impair the accuracy of the solution, especially when
a large number of modes is used. In fact, it was found that already for M > 32 the
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Figure 29. The structure of the mairiz afier manipulations and insertion of
the boundary conditions.

accuracy became unacceptably low. This problem can be solved by putting the
two boundary conditions on top of the array and pushing all the other equations
down two places. The resulting array has the form outlined in Fig. 29. Now the
third term of Eq. 36 is the diagonal element and the matrix is well-conditioned.
This system which can easily be triagularised and solved by back- or forward-
substitution. The number of floating operations used to solve this system is O(M)
operations for each azimuthal mode or O(M x N) operations for the solution to
Poisson’s equation. This is less than the amount of computation needed for the
Fourier transform which needs O(M log,(M) x ¥ + Nlog,(N) x M) operations.
This means that it will be feasible to use & large number of modes, ¢g. 128 x 512.

Caleulating the derivatives and other things
As can be seen from Eqs. 8-10 the gradients of both p and ¢ must be calculated.
In cylindrical coordinates the gradient operator is:

2p
Vo= ( 58 ) (39)

r 08
In transformed space the @ derivative is calculated very easily, since it is just a

differentiation of a Fourier series, i.e. each mode must be mulitiplied by the mode
number:

a N o —2xi N o
56( Z pm"e_z'"'/l\) = N Z ﬂPmne’z""/'\ . (40)

n=0 n=0
The calculation of the r derivative is a bit more tricky since it involves derivatives

of series of Chebyshev polynomials. But we can use Eqs. 92 and 93 of Appendix A.
Thus we get:

ap A A
r'a—' = GPZ:‘ PPpn +r§ PPpn

p odd p even
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At M A
+3 (moma+28 3 pomt2 Y. popa). (41)

m=1 p=m+ 1, rp=m+ 2
P+ m wdd P+ meven

The new coefficients are the sums of the old ones and the amount of calculation
needed for taking the gradient seems to be around N x M? multiplications. Again,
a simple trick saves the day. Denoting the new coefficients for the derivatives pl,
we get:

Y]

Prm-2n = (M= 2)pm_2.n +2a(m — 1)pm_1.x + 2Mpun + 2a z PPp=

p=m+ 1,
p + m odd

M
+2 Z PPpn = (m - 2)pm-2.n +28(M — 1)pm_i.n + MPmn + p:_-.(42)

p=m+$2,
P+ m even

Now we can calculate the gradients using only a few times N x M multiplications
and this calculation is not a limiting factor.

In solving Poisson’s equation the right-hand side is r?p, but in most of the rest
of the calculations we need just p. Therefore we need a way to multiply and divide
by r? in transformed space. To this end we can use Egs. 90 and 91. It is easy to
see that if we want to calculate r?p from p we can get each new coeflicient as a
sum of a few of the old ones. But if we want to go the other way we have to solve
a linear system of equations, each of which looks like:

%Pm,n-! + @Pm_ 1.0 + (% +0")pmn + @Prmyim + f:‘PnH-?.- = Pran- (43)

{Again, the first few equations look a little different.) This system is a pentadiag-
onal system of equations and can be solved in O(M) operations for each Fourier
mode.

Calculation of 2£ and time integration schemes

In the previous section we saw how to solve Poisson’s equation. Now we can plug
the solution into the Euler equation and look for ways to solve that. The equation
to be solved is given by Eq. 14:

4 0p dpdp O dp

oGt a9
It can be solved in configuration space, transforming the terms necessary for the
calculation back into real space before calculating the time derivative. It is easily
seen that four terms are needed for this, and each must be back-transformed.
After a new value for p has been obtained we must once again transform this into
transformed space. So altogether 5 transformations are needed for each time step.
It turns out that these transformations take around 70% of the total computation
time of the code. It would scem that it was far easier to do the time-stepping
in transformed space. This would be possible but would not be any easier for
the following reason. On the right-hand side of Eq. 44 we have to calculate two
products of terms. This is easily done in real space but in transformed space
products become convolution integrals (integrals in the Fourier transform, double
sums in the Fourier expansion):

PUG@) ole)) = [ FU@F(o(z + O)de.

Therefore these multiplications must be done in real space and so it makes no
difference at this stage whether the timestepping is done in real or in transformed

space.

(44)
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Now that we have calculated the night-hand-side of Eq. 44 we can employ a
finite-difference method to solve for p. Several methods exist which are described
in literature. In the following i will use the notation used by Geszdagiis]. If we
have an equation of this form:

:‘—P =G(p.7,6,1),
we can approximate the solutior at the time points mi. The sumplest way is

a straightforward extrapolation:
pl-+l :p"+G"~At (‘5)

where G™ = G(p™, .0, mAt). This method is known as the "Euler” method. It s
very casy to use but unfortunately it is unconditionally unstable, i.e. the solution
diverges exponentially from the correct solution. Another way is the so-called
“feapfrog” method:

Pt =" G200 (46)

This method too is very simple butl is also proae to become unstable. A slightly
more involved method 1s the partislly correcied second-order Adams-Bsashforth
Scheme which consasts of two steps, a predictor step:

- - At
' =p"+(3G™ -G~ ')-?, (47)
and a corrector step:
-~ - 1
P = g4 (G4 Gm) T (48)

Here we first calculate a value of p from the old derivatives G™ ' and G™. The 1 we
calculate a new value of the derivative, G™*' and use this to calculate a corm.cted
value for p™*'. Note that we do not calculate new values for the derivatives but
use the ones oblained from the predicted values of p (thus the tides on these
terms). This is why it is called “partially corrected”. If the derivative G™*! is
updated with the corrected value of p the scheme is called “fully corrected™.

Methods like the 2nd order Adams-Bashforth require more computer memory
than the leapfrog and similar schemes because it is necessary to save the derivative
for two time steps.

A third method and the one that was chosen initially for this problem s the
tAird order partially correcled Adams-Bashforth Scheme. It wotks much like the
second order version. The two steps look Like this:

- - PRI § |

Y = p"'+[zw"—|sc""+sc""‘;‘|32-. (49)
. - - t

p,.+| - Pm+[scm+l+acm__cn-li%_ (50)

This method has good stability characteristics. On the other hand it requires
the saving of three versions of the derivative at all times. Also we need to know
the derivative al two previous time points. This means that we can not just start
with the initial condition and use the third order Adams-Bashforth scheme. To
get the code “up and running” the following starting procedure is used:

1. Take a step to Ai/2 with the Euler method.
2. Take a step to At with the leapfrog method.
3. Go out to 2A1 with the 2nd order Adams-Bashforth.

4. For all following time steps use the 3rd order Adams-Bashforth.
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Figure 30. The N argumenis for the sine end cosine expansions in the az-
imuthel direction, 2x)/N, can be represented a3 angles m & unil
circle. Here N = 32. The dashed bine indicales the start of the
“forindden” area where sliaving occurs.

Dealiasing

In the previouws section it was seem that it is necessary to do a couple of multi-
plications of terms in order to solve the system of equations. But in doing these
multiplications we encounter a new difficulty. When two Fourier expansions of
fenctions are msultiplied we effectively multiply all modes with each other. In
other words we get terms of the form

s cosl T)cos ). = deye [con( s 4 1) + cos g3 - )]

(Similar terms anise if the function is expanded in a combination of sines aad
cosines.) Here we get new cosine terms with frequencies that are respectively the
sum and the difference of the old ones. This applies even if the multiplication
is done in real speace, since these new terms will show up once the function is
transformed again.

In a continuous representation this would not matter but here we have a discrete
number of poiats in which the function is “sampled”. Since we have only a finite
number of modes the new modes may have frequencics that are too high to be
represented with the given namber of modes and so information about the system
disappears out of the high end of the spectrum. But what is worse, these terms
will show up in the low end of the spectrum. The reason for this can be seen in
Fig- 30. In this figure are shown the arguments for the expaasions in sines and
cosines,

i . 2%
a, cos(~N—1) + b,sll(—ij)
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for the transformation in the azimuthal direction. The expansion goes from 0
to N/2 - 1, so the points only cover the upper half of the circle. (The situation in
the radial direction is the same since there we step #/N N times and so still go
from 0 to x.) Now if two sufficiently high modes are multiplied the new term will
move into the lower half of the circle. But as we have that

cos(x + n) = cos(x — n)
and
sin(x + n) = —sin{x — n)

we see that the modes in the lower half of the circle will give a false contribu-
tion to the modes in the upper half. In the extreme case, if the highest modes,
cos(2x/N - N/2) are multiplied together they will coninbute to the DC-level, which
is certainly not physical. This phenomenon is completely analogous to the situa-
tion in analog-to-digital signal processing when one attempts to sample a signal
with a sampling frequency lower than two times the highest frequency present in
the signal. This problem is known as aliasing.

One may choose many different ways of avoiding this problem. The one employed
here to “dealias” is very simple. If we remove all modes with a frequency higher
than two-thirds of the maximum frequency we will cut out a “pie slice” of the
circle. (see Fig. 30). The angle of the slice is 2x/3. Now if we multiply the highest
retained modes together, the product will fall into the part that was cut out. It
will no longer be possible to excite modes in the lower part of the circle. Of course
the cut-out part will be filled with terms when the multiplication is performed and
these modes must be reinoved again after the multiplication. This method works
well as can be seen from the results from the code below. The obvious drawback

i

is that we effectively only use () = 5 or around 44 % of the modes we have

represented.

Evaluating the solution by caleulating invariant quantities.

Due to the finite number of modes and the finite-difference time step the obtained
solution will not be exact. We therefore need some indication of how well the
code is performing. For this purpose we can use some quantities which should be
invariant in time for this particular problem. Two of these are:

/‘ |v|*de = const. (51)
and

/‘p2 do = const. (52)

Since the fluid is incompressible Eq. 51 simply expresses that %plvl2 is invariant,
in other words that kinetic energy is conserved. The other invariant is not quite as
self-evident, but it is easy to derive from the original equations. Euler’s equation

can be written as:

dp
F__g. )
3 (pv)
By multiplying with p we get
dp
LA\
Pa = PV (oY) =

ap? ]
15 = AV ).
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Integrating over the entire area gives:

%g/pzda:—%/ V. (p*v)de
LR A

and using Gauss’ theorem we can write:

/ V-(p'zv)dtr:f- p*v -nds
A Si+S,

where the contour integral is to be taken over both the inner and outer bound-
aries. But since transport across the boundaries is not allowed v, = 0 on the
boundaries and hence v - n = 0. This yields:

% ! plde =0

from which we immediately get Eq. 52.

This prcves that these two quantities are conserved in time for an exact solution.
In our care we only employ a finite number of modes to describe the solution. It
is possible to prove that in pseudospectral methods where only Fourier expansion
is used these quantities will still be coaserved even though only a finite number
of modes is present (“rugged invariance”{18]). However, in the present case the
solution is partly described by Chebyshev polynomials. Furthermore the invariance
of p? and v? will be destroyed both by the dealiasing and by the finite-difference
method used for the time integration. Sc we would not expect these “invariants” to
be invariant. But they do offer information about how far the solution has diverged
from the exact one. These quantities are thns calculated every few times:eps and
the results saved in a file from which they may be read and displayed after the
program has run.

3.3 Numerical results.

Code optimisation

The code for this simulation has been implemented on two different computers:
the VAX-8700 at Risg and the Amdahl VP-1100 supercomputer® at UNI-C. The
VAX only has one processor and so there is not much to be done in optimizir.g
the code. On the VP-1100, however, the performance can depend very strongly
on small adjustments in the code.

The VP-1100 is a vectorprocessor and so has the ability to perform several
identical tasks simultaneously. The compiler automatically vectorizes DO-loops in
FORTRAN, provided the tasks in thz loop are independent. For instance, in the
two examples given here:

DO I=1, 1000 Do I=1, 1000
C(I) = A(I) + B(I) C(I) = A(I) + C(I-1)
END DO END DO

the loop on the left hand side can be vectorized while the o'ier cannot, as the
result in the i’th step depends on the i-1’th. When executing nested D0-loops the
compiler can vectorize the innermost loop but not the outer ones.

On the VP 1100 there is a facility to analyze the vectorization of a given program.
This consists of simply stopping the program at random voints and asking whether

3Well, atmost supercomputer
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the instruction being performed is vectorized or not. The degree of vectorization
is expressed in % for each subroutine.

Some parts of the program lend themselves particularly well to vectorization.
Thus the subroutine solving Poisson’s equation can reach a degree of vectorization
of around 98%. For this reason the time taken to solve Poisson’s equation is only
around 7% of the total CPU time. Other parts are equally efficient, such as the
differentiation and division is transformed space. The greatest problem lies with
the Fast Fourier Transform (FFT). Traditionally, a two-dimensional FFT has been
performed on the VAX by first doing a one-dimensional FFT on each column in
the array, and then doing the same on each row. However, the FFT requires many
rearrangements of the elements ia the vector to be transformed (actually a reversal
of the bits in the address of each element{19]). Therefore the one-dimensional
FFT is hard to vectorize. lmplementing the VAX code unaltered on the VP1100
yielded a vectorization degree of only a few percent. Even the vectorized library
routines for one-dimensional FFT on the VP1100 could only attain about 40%.
The solution is to perform all the FFT’s at once. Instead of exchanging the place
of two numbers in a vector two entire vectors are exchanged simultaneously. Thus
the vectorization of the FFT’s approach 90%. These vectorization degrees cannot
be translated directly into a measure of performance. But this change yielded an
overall increase in speed of a factor 2.5, even over the vectorized one-dimensional
FFT. Still, the two FFT’s together take up around 70% of the time spent running
the code, so it is important not to perform any unnessecary transformations.

Another fine-tuning of the code relates to the so-called memory bank conflict. On
the VP-1100 the RAM memory is divided into 128 banks and successive bytes of
data are stored in different banks. Different banks can be accessed simultaneously
but two numbers in the same bank require two successive read operations. So if
the bytes to be read are stored at intervals of 128 they will all lie in the same bank
and require many read operations. This is the bank conflict. It is best resolved by
always having arrays with an odd number of elements. In the case considered here,
where we require that the number of modes be a multiple of 2 there is a great risk
of memory bank conflict. To avoid this the number of elements in each dimension
was increased by one {unused) element. This seemingly innocuous modification
actually increased the speed of the code by 20 % at a price of a small amount of
wasted memory!

Altogether the code has become very efficient. When a large number of modes is
employed (e.g. 32 x 128 or greater) the program runs at a speed of ~50-60 MFlops
(million floating point operations per second). The theoretical maximum for the
VP-1100 is 286 MFlops. However, this limit is hardly ever approached for realistic
programs. Among programs performing a variety of tasks this code is actually one
of the faster ones implemented con the VP-1100.

Initial results
To check the correctness of the code implementation the first runs were made
with special initial and boundary conditions. Solutions were found which were
stationary or uniformly rotating. It was explicitly verified that these runs behaved
as expected.
To excite the Kelvin-Helmholtz the initial condition was taken to be ¢(a) =
#(b) = 0 and
p(z,0,t =0) = {P~ (_._,,,_E., — ) + L -tanh(Bz) + ecos(kwnd)| -(1-=
cosh?(Bz) z+ A

where A, 5 and P are adjustable parameters and n is an integer. This will set up
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a strong shear in the motion of the fluid. llowever, this will not in itseif excite the
instability. This situation is an unstable equilibrium as there is no -dependence.
To disturb the equilibrium a small sinusoidal variation in the azimuthal direction
is superimposed.

There are two remaining independent parameters to be specified in order to run
the code. One is the time step size, At and the other is the radius a (see Fig. 27).
In some respect these two parameters are not quite independent, because of the
Courant criterion. This makes the requirement that
A

Az

where v is the fluid velocity in some direction and Az the spacing between any
two grid points. This criterion states that within one time step the Ruid must move

v

a distance that is much smaller than the grid spacing if the calculation is to remain
stable. The reason for this is that the explicit time integration uses information
about the conditions at carlier time points. This information is used together with
the present state of the system to calcuiate the evolution (sec. 3.2). Therefore
the old information must pertain to approximately the same fluid element as the
present information. Hence, if the radius is diminished, the grid points will lie
closer, especially on the inner boundary and thus the time step size must also be
diminished. For the same reason the number of modes is higher in the azimuthal
direction than radially (normally 4x higher). A special feature has been included
in the program to calculate the Courant criterion in both radial and azimuthal
direction. It calculates the fluid velocity using Eq. 7.

A trial run with 32 x 128 modes and k in Eq. 53 equal to 2 is seen in Fig. 31. The
evolution of p and ¢ is shown here for six different times. The most obvious feature
of this run is the emergence of two vortices seen in both figures. This clearly shows
that the flow is indeed unstable and that vortices develop spontaneously from very
small deviations from equilibrium. The experimental analogue of Fig. 31b is Fig. 6.
The similarity is q-ite clear. Of course this does not necessarily indicate that the
driving mechanisms are the same in the experiment and the simulation. Also the
conditions are not exactly the same. In the experiment all the plasma moves in
the same direction, only with different angular velocities. In the simulation some
of the plasma moves in the opposite direction. Therefore the vortices seem to be
stationary or at least moving only slowly in the simulation whereas they have a
large azimuthal velocity in the experiment. Nevertheless, this simulation shows
that a velocity gradient is sufficient for the instability to arise and form vortices.

Another, less fortunate feature of Fig. 31 is the emergence in the last pictures in
Fig. 31a of regions of very large positive and negative charge. This is not a physical
phenomenon but an artefact of the numerical method. The fast fluctuations arise
when an attempt is made to Fourier (or Chebyshev) transform a function with
large gradients. This is known as Gibbs’ phenomenon or ringing and is discussed
in more detail in for instance Coutsias et al.[20]. The sharp gradients occur when
the vortices form. As can be seen from the figure thin threads connect the forming
vortices. The ringing arises around these threads. The reason it only occurs in p
and not in ¢ is that p is the second derivative of ¢ and therefore has the largest
gradients.

The ringing is self-amplifying and will sooner or later ruin the simulation. The
evolution of the “invariants” is shown in Fig. 32. The sharp tise in both curves is
mainly due to the ringing.

The most obvious way to remedy this is to introduce a larger number of grid
points (and Jhus more modes). In Fig. 33 64 x 256 modes have been used. It is
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T =120

T = 180 T =240

T =060 T =120

T =180 T =240

Figure 31. a) p(z,8,t) for siz different times. Here @ - 3.0, At = 11077,
P =13, B=25, and ¢ = 0.2. b} ¢(z,0) at the same time points.
High values are white, low values dark in the plots.
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Figure 32. Invariants of p° and v® for the simulation in Fig. 31. The curve
shows the evolulion of the relalive change from the inilial value.

clear that this gives a large improvement though the price is a factor of 8 in the
execution time (the time step must be halved to satisfy the Courant criterion).
However, this remedy only postpones the problems. In the last pictures in Fig. 33
the ringing arises again.

It was also found that applying a fully corrected time integration scheme im-
proved things. With the fully corrected scheme the ringing still arises but it does
not grow nearly as fast as in the partially corrected scheme. In Fig. 34-35 are
shown sample runs with 32 x 128 modes and k = 7, both with partially and with
fully corrected schemes. However, the fully corrected scheme cannot prevent the
ringing from arising.

Though the fully corrected time integration cannot entirely solve the problem
of the ringing it has enabled us to perform some experiments on the code. For
instance we may try a different perturbation. In Fig. 34b is shown a run where
k = 7. It is clearly seen that this time seven vortices form out of the sheared
flow. This shows that we may control the number of vortices simply by applying
a suitable perturbation.

Another possibility is to give an initial perturbation which is not strictly sinu-
soidal. In this way the vortices forming will not be equidistant and thus thev may
interact. Fig. 36 shows an example of such a simulation where the perturbation is
of the form ¢, 3in(7-0) + ¢, sin(6). At first, the vortices form in much the same way
as in Fig. 34b, but later on the vortices start to coalesce. This is not surgrising
since the vortices have the same polarity (as can be seen from the plots of the
potential which corresponds to the stream function). At the end of the run almost
all the charge (vorticity) has been sucked into one large blob. This simulation has
a close experimental analogy in an experiinent performed by Pécseli et al.[21]. In
this experiment two convective cells were injected into the edge of a Q-machine.
It was observed that when the two cells were of the same polarity they would
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T = 0.00
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Figure 33. As Fig. 31a, only for 64 x 256 modes and with &t = 5-10 ',
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Figure 34. a) p ot 6 different times with 32 » {28 modes and k =~ 7, P - 6
and ¢ = 0.5 with partially corrected time integration. bj As a) but
with fully corrected time integration.
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Figure 35. Evolutions of the inverianis in the two runs of Fig. 3{. a) par-
tially corrected scheme, b) fully correcied scheme. Note the differ-
ent scales in the two plots.

coalesce in a manner similar to that seen in this simulation.

3.4 Attempts at removing the ringing

It s the attempt to transform functions witk large gradients that leads to the
ringing. The result is that the high order modes are amplified disproportionally.
Therefore it may make sense to selectively damp these high modes. This can be
done by simply applying a filter to the high modes in transformed space, but the
relevance of this method to physical phenomena is not clear. A more “natural”
method would be to introduce viscosity into the equations of motion for the fiuid.
In the hydrodynamic equations this enters into the two-dimensional Navier-Stokes
equation:

%t!+v-Vv—Vy+vV2v:0 (54)

where p is the pressure and v denotes the strength of the viscosity. Taking the
curl of this equation yields:

3 ;
5?+v-w+uvzw:0 {55)

where w = V x v. The pressure gradient vanishes identically.

The Laplacian of the charge can be calculated in a way similar to that of the
gradient operator. In principle then, this new term could simply be incorporated
into the timestepping. However, this would be very prone to become unstable. The
reason for this can most readily be seen when looking at the Fourier transform
in the azimuthal direction. The second derivative of the Fourier terms will be
of the form vA#(-n?)p,, ,. If v is chosen correctly, this new term will cancel
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Figure 36. a} p at 12 diffcrent times with 64 - 256 modes and k7, with

further asymmetrical perturbation of the form sin(8).
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the contributions to the high modes, which is just what viscosity is supposed to
do. But if v is too large the viscosity term may actually make the high modes
numerically larger and thus lead to an instability.

The way around this difficulty is to solve the timestepping for the new term in an
implicit way. The third order (fully corrected) Adams-Bashforth time integration
would then look like:

- - .A‘ 9 .

P+t = Pwm + [230"' - 166"‘“' + SG'H‘~2|-_2_ + VAtv-pm{-lr (56)
- - - v wA‘ 2 . (=

pm+| = P + [SGIH+| + 8C"m - (1,,,,, ¥ ‘2— + "’A‘v pm+|1 (Dl)

where p° = r?p. This can be written as

2 -2 2y~ . . v ,Al

(T' L 7°Y4% )p...+| = Pt l23(1m ~ 16G, - + 5Gin - Zi?r (58)
. , . At

(T' - rzu.MV')p,,,“ = P;,, + {SG"H»I + 8Gm - va IJ"Z”“- (59)

The left hand sides in Egs. 58- 59 can be solved in a way similar to the solving
of Poisson's equation. Indeed we already have a code for solving r* V¢ = —rp.
In this case, since there is one more term here, the system of equations becomes
nonadiagonal and not pentadiagonal as the standard Poisson solver. However,
since Eq. 55 is now a fourtk order differential equation for ¢ in space it becomes
necessary to specify an additional set of boundary conditions. The simplest way
is to prescribe a fixed p at the boundaries. However, this may create sharp gradi-
ents in p close to the boundaries. This will lead to a numerical instability which
completely destroys the solution in only a few timesteps, unless v is very large (of
the order of unity) in which case everything decays exponentially and the flow is
no longer unstable.

Other simple solutions have been tried, such a&s ignoring boundary conditions
altogether or forcing them to be equal to their values at the previous timestep.
These too however, lead to strong numerical instabilities which completely destroy
the solutions in only a few timesteps. Therefore the problem of adding viscosity is
not yet solved. Further ideas are under investigation, but no definite results have
yet appeared. Therelore this will not be further described here.

3.5 Future developments

If (when) the problems with ringing are solved the code will be used for several
purposes. One is to study the diffusion of t=st particles due to the instability. This
will be done in a way similar to the one described by Knorr et al.{18]. This will
be of great interest since it allows a comparison with thie experimental results of
chapter 2.

Another potential use of this simulation is to study vortex dynamics in greater
detail. Recent investigations[22] have indicated that a wide range of phenomena,
such as for instance the red spot on Jupiter can be simulated by an instability
due to a velocity shear in a cylindrical region. These investigations have focused
on the evolution of an aiready existing vortex. With this code it may be possible
to study the emergence of vortices in such systems as well as their evolution.
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4 Experiments on wave propagation and in-
stability in a plasma with an ion beam

4.1 Imtroduction

One of the most widely investigated problems in plasma physics 1s the problem of
a beam of charged particles injected into a plasma, or alternatively, of a plasma
in which one species of particles is moving relative tu the others. One example of
this is a current carrying plasma where the electrons will have a nonzero average
velocity relative to the ions. This will in some cases give rise to the two-stream
or beam instability. In the Rise Double-Plasma machine a beam of moderately
fast ions is injected into a stationary plasma. Depending on the beam velecity and
intensity we may excite the ion beam instability, or we may study other phenomena
of the interaction between the beam and the plasma.

This chapter is divided into a theoretical and an experimental part. In the
theoretical part I will present some analytical calculations of the plasma response
to a weak beam of charged particles and present some computer calculations of
this. Then I will give a brief exposé of the theory of the beam instability. In the
experimental I will describe the results obtained with the DP-machine on Cerenkov
radiation from a weak supersonic beam and on the beam instability.

4.2 Analysis of the plasma response to a dilute beam of
fast ions.

In this section the problem of the plasma response to the injection of a dilute
beam of ions will be discussed. The mathematical treatment of this problem is
essentially due to H. L. Peécselr.

The term “dilute” is here used to denote a beam of ions so weak that the
ions in the beam do not interact perceptibly. Also, the weak beam cannot excite
the beam-plasma instability. Therefore the plasma response can be seen as the
superpositicn of the response to a single ion and it is this response which will be
calculated here. Also, in the following the effect of the plasma on the beam ions
will not be taken into account.

Caleulations in one spatial dimension
The natural starting point for this calculation is the Vlasov equation for the ions:

%{+v-?[ 4%%{ =0 {60)
where f is the normalised distribution function for the ions. We shall here consider
a perturbed stationary solution. Thus we have E., 0 and f. Jo(v) with
J fo(v)dv - 1. Initially, we will take the perturbation to be that of a single ion
with charge g introduced at ¢ -~ 0 and x 0 and immediatelv remnoved again. The

disturbance will then be of the form g#(x)#(1). For simplicity we shail start with
the one-dimensional Vlasov equation. which in its linearised form is:

af af ¢ 0,
e R A P §
o " ar at, 00 (61)
where we have introduced E == - V¢, i.e. the electrostatic approximation.
A second relation between f and @ can be obtained by using Poisson’s equation:
: e(n, -
Tl - »-(---AE-»J. (62)
1
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We shall make two further assumptions. One is that the electroas behave isother-
mally and are distributed according to the Boltamaanm distnbution, ie. x, =
ne'® - The other is that we have quasinewtrality, n, =~ =,. With these as-
samptlions ihe lefl hand side of Eq. 62 vanishes and we have

n, = /](:,.,t)d' =~ ;_—‘ ~ gb(z)8(1) (63)

where =, is the perturbed ion density, normalised by a.,.
We now perform a Founer transform in space and a Laplace transform in time,
where we use kv for the traditional Laplace vaniable s. Eqs. 61 and 63 then become:

—wa flk,w, ¥) + ik f(k,w,¥) - ‘—‘i.u(k,..) folw) =0 (64)
and
/[(k,u,r)dt = %é(k,u) —§ {65)

where f and ¢ now denote the transformed functions. We have here used the initial
condition f(z,v,1 = 0) = 0 and the fact that the Laplace and Founer Lransform
of a delta function is unity. It should be noted that here w is a complex number
with a positive imaginary part, while & is real.

Elimilulin; f we get:

f'(') _esT f’\v)
/ M =7 T 6, ;—d (66)
But due to the quaslenlnhty we have e¢/T, = n(k,w) and so we get
9 -
a(k,w) = ——— T (67)
I+ ;r;': “I;;‘-rd

This equation can then be solved by performing the inverse Founer and Laplace
transforms. The inverse Fourier transform will be treated first. This is given by

n(z.w) = % / " ik, w)et dk. (68)

*x
The solving of this is not an obvious matter. Here we will follow the method of
Mason|23] in the way used by Andersen et al.;24. In the integral in the denom-
inator we have a pole at v = w/k. When k < 0 the imaginary part of w  k is
negative. Thus when we integrate along the real v—axis we integrate above the
pole. Similarly, when k > 0 we integrate below the pole. Therefore we should split
the integral in Eq. 68 into two:

n(r,w) = 1—:’; (f ny(z,w)e't dk ] n-_,(x,w)c""dk‘) (69)
where n| ;(z,w) are given by

l
crl 2 Jki r

The two integration paths in Eq. 70 run above and below the pole. respeclively.

n._-,(z.w) = — (70}

If we consider the line w/k - v in the complex k-plane as shown in Fig. 37
we see that in the region to the left of the line we have Imw k - 0. ic. the
integration along the real v-axis runs above the pole. Therefore n, (k. «w) is defined
in this region. Similarly, n;(k,w) is defined in the region to the right of the line.
Therefore we can perform an integration around a closed contour in each region.
The resuits of these integrations will depend only on the poles of the functions
in eq. 70. These poles can only arise from the denominator becoming equal to
sero. Now, it may be shown by a Nyquist analysis that the functions n, ,(k,w)
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Fiugure 37. Inlegration contours in the k-plane. file

are both analytical in the areas where they are defined (see App. C). Thus there
are no poles for the fanctions iaside the integration comtours and both contour
inlegrals are equal to zero. The integrals along the k-axis are then equal to the
integrals along the line k = o+ with the directions shown n fig. 37. Eq. 69 will
then become

iz, w) = _i—’ (/:r'u.(v):‘gc'f‘dv - [‘ ng(v)—;—:—;e':’dv)

q

= :; (my(¥) — ma(p)) ' T d. (71)

The inverse Laplace transform is easily performed by noting that the inverse
Laplace transform of —awe'=” " = ¥ (% --t) where §'(z) is the derivative of Dirac’s
delta fanction. We then get:

n(z, t) = i;[ ‘%(n,(v) - nal )8 e (72)

To solve this we make the substitution z = ! whereby
" x
= o £5)) (= t)d:.
a(z,t) 2’_:[ (m(__) n:A 7))o= t)d
We use integration by parts to obtain

w032 [0 L ) e s

~3 tix s -
~ gp (WE) - mu). 173)
Making use of the fact that

./,:J-—-—')t.d' - (/z ,bi_t',d') for x real

with the usual integration paths (see App. C) we find
Qs
az ) = Lw(2) (74)
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1
= Im
(1* (M.Pf vi")d"‘"’ (f)))
T ey
=x w, folv) (75)

. 2
(1- fef 48040) " + (x 2 £300))
If we assume that the unperturbed ion distribution is Maxwellian we can express
the response in terms of the plasma dispersion functicn. We then have:

[ M; _ap?
Jolv) = Ex_T}e T

MAY? e
i) = —7,15: (—F) ve T

The integral in the denominator of A can now be evaluated. By making the
substitutions y = \/—M.-/ZTW = v/v; and ¥ = /M;/2T{ with v, being the ion
thermal speed we get

A 2

[42] (] [e <] bl
) A AL ve ©
_m;l——zdv: W(_T) oo V€ @

I ) 7 vy
= —= —--,—,-_l dy

vr ( b ) /:m y—7

oc —y’
= (M d
— ( 1';) [\/’;"’7/:00 y_7dy]
== +12(1) = £2'(7) (76)
where Z is the plasma dispersion function. Then we get

1 ,QImZ'('r)
h(‘Y) = PR 7 " 1 ;
1= R 70 T (1- 1eRez(m)” + (JQImZ/(x)”
where Q =T, /T,.
Now we have the plasma response to a perturbation of the form gé(z)é(t). In
the following this will be denoted n4($). The response to a moving charge with a

path given by z = vt is found by considering the moving charge as a continous
succession of delta functions. This can be written as:

t poo
al(e,1) = / / §(z" — vyt')ng(z - 2’ ¢ - t')da'dt
0 J-o

t b
~q 1 ’ I‘—‘U”t y
= — k dt’.
2r J, (- 1)? (t—t’)

By substituting x = ",—';-',— the above integral becomes

(77)

4 —
2x z/t z— ‘l!()t

W ()dx = 5———h (7). (78)

2x(z ~ vot)
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Calculations in three dimensions

The plasma response in three spatial dimensions can now be calculated in a similar
way. Here we will make the postulate that the response to a perturbation of form
qd(r)é(t) has the following form

ngn)(r,t) = ti"H (t'L") .

The response in one dimension can be calculated from the above in the following

Wy = &[]t (VEEE I g

way:

t"l

g > VE+ -y + (-2 .,
= F/[@H( o )dyd,.
_ 2% mH(V:2+£2)d£

tYl 0

t m

where first €2 = (y — ¥')? + (z — 2z')? and later v? = £* + z* was introduced. This
is now the one-dimensional response to a delta function in time and space. But
this must then be equal to the result obtained in Eq. 74. We therefore have:

2 [ ()= )

Differentiating this by = we get

—-2rq T\ —q,u ::) 1
t I'H(t'")_nﬂh (t t

or
1 z 1 101 T
—H(— = ——|=n"(%)]. 79
tn t'") PR A [1: (t) (79)
From this we see that n = 4 and m = 1. Thus we have
3 _ g t u(f)
M= izt \1) (80)

The response to a moving charge in three dimensions can now be calculated in the
same way as for the one-dimensional case. The charge is moving in the positive
z-axis with speed v,. This yields:

t 1 t—1 wa 7—77“—".‘_—”_{;.5
a(r,t) = / B \/l + 32 + (2 —wt’) dt'.(81)
o (U= \/:!:2 + 32 + (2 — wt')? t—t ,

This is the response of the plasma to a charge moving with constant velocity v,.

This expression can easily be evaluated numerically. Since the theory is linear this
expression can be extended to a spatial distribution of moving ions simply by
superposition. This is also done easily numerically as wil. be shown in the next
section.

Nuinerical caleulation of the plasma response

The evaluation of Eq. 81 by numerical means is a fairly straightforward procedure.
Here will only be presented the general methods and the results. Since the resuit
is symmetric abr 1t the line of propagation of the disturbance the plasma respounse
has only been calculated in two dimensions.
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We will assume that the unperturbed distribution function is Maxwellian. The
first task is to calculate the derivative of the plasima dispersion function. According
to “The Plasma Dispersion Function”[25] we can write

1 e’y.) 1 x €>y') . e
Z(v) = 7;_/2:1;——1(1!‘: NG p‘/_xy"_ydy+ure vl.

where the integration path runs below the pole. If v is real (as is the case here)

we may rewrite the integral in the following way:

oo —”2 2 ’ 2

p/ ‘ dy = —2v/7e ™’ / e''dt. (82)
-x YU 0

This in turn can be expanded as a series:

[ _ i i 4
e'Y‘/‘bedt_§7—,[l+F+F’7+...]_

The calculation of this function which is called the Dawson integral can be
performed by a library subroutine at the Ris VAX mainframe.

The calculation of the plasma response to a single ion introduced at (r,z,t) =
(0,0,0) will then consist of the following steps:

e First the funciion h(7) is calculated using the Dawson integral procedure.
A table of h-values is constucted for a range of v’s. This step only depends

on Q.

e Then the second derivative of h is calculated. This is done by performing a
cubic spline interpolation (see Appendix D) on the tabulated h-values and
differentiating numerically twice. The results are saved in a table.

e The response for given values of r and z can now be calculated using Eq. 81.
The integral is evaluated by constucting a table of the function to be inte-
grated (using the table of k") and doing spline interpolation on this table.
This can then be integrated analytically.

e n(z,?) is calculated in a grid of points in the r, z-plane.

Numerical results

The starting point for the calculation of the plasina response is the function h. The
only parameter which enters this function is the temperature ratio Q. In Fig. 38
h is shown as a function of the independent variable £ together with its second
derivative for three different values of Q. Note how h steepens and narrows with
increasing Q.

The function A" is used for calculating the plasma response to a point charge.
Here we would expect the response to depend qualitatively on the speed of the
injected charge and the temperature ratio. More precisely, we should see radically
different behaviour depending on whether the speed of the charge is below or
above the ion sound speed, C,. This is given by C, -- \/(_-y—,TT_%;,—I,)/M, =
\/(-y. + Qv )T;)/M;. Here, v;,, denotes the ratio of specific heats for the ions and
electrons, respectively. At relevant v,’s the electrons can be taken as isothermal
while the ion response is adiabatic, i.e. 7, = J and v; = 3 (see [26]). The calculated
results of the response to a point charge are shown in Figs. 39-41.

In Fig. 39 we see the plasma response (density perturbation) to a positive point
charge introduced at ¢ = 0 at three different times after the injection. Here v, /vy =
5, so the motion is supersonic. Note the “wavefronts” propagating at an angle away
from the path of the moving charge. Note also the negative perturbation which
follows the positive perturbation (the primary response to a positive charge).
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T=0.2 T=0.5

Figure 39. Plasma response to a poini charge injected at (r,z) — (0,0) and
the time t = 0, calculated for three later times. Here Q = 5 and
/v = 5. Areas of positive charge are black, negative areas are
grey in this and the following figures.

v=1.5 v=2.0

™ LA

Figure 40. Plasma response to a point charge for three different injection
speeds. Q =5 in all plots, whereby C, > 2.83v,;.
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Q=10

Figure 41. Plasma response to a point charge for three different values of Q.
v, = Svy; in all plots.

In Fig. 40 is shown the response for three different injection speeds. In the first
two frames v, < C, while in the third the speed is supersonic. This is clearly seen
from the figures. At subsonic speeds a semicircular perturbation propagates from
origo ahead of the muving charge and the perturbation around the injected charge
is more ofr less circular (less at increasing speeds). At supersonic speeds two almost
plane “wavefronts” appear. These must travel at C, and so must form an angle
8 with the normal to the trajectory of the charge given by cos8 = C, /v, This is
analogous to the Cerenkov radiation known from high energy physics.

The plasma response depends strongly on the temperature ratio, Q. This is
seen in Fig. 41. At low values of Q the perturbation is quickly damped while
at high Q the ripples created by the perturbation propagate with hardly any
attenuation. This is consistent with the fact that Landau damping exhibits the
strongest damping of low-frequency waves when 7, is low. Note that in the last
frame in Fig. 41 some of the ripples behind the moving charge may be an artefact
of the calculation. The reason for this is the very sharp spike of k" (sec Fig. 38).
A small error in the calculation of the argument for this function could change
the result drastically.

If we want to calculate the plasma response to a moving charge distribution
this can be done by simple superposition. Of course this will only produce mean-
ingful results (i.e. relevant to experimental results) if the charge distribution is so
dilute that it does not affect the trajectories of its constituents. In this case the
response to a spatial distribution of point charges moving at uniform velocitv can
be calculated simply by calculating the response to a single charge and adding the
response itself shifted in space. This has been done in Fig. 42. Here is shown the
response to & disc-shaped distribution of ions. The disc is orientated perpendic-
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T=0.5

Figure {2. Plasma response to disc of ions injected at (r,z,t) = (0,0,0) at
the time t — 0.5. Here v, = 5v,; and Q@ = 5.

ular to the plane of the figure and is moving in this plane. The relevance of this
example to experiment will become clear in the next section.

4.3 Briefly on the ion beam instability.

In the previous section the plasma response to a very low intensity beam was
discussed. Under those circumstances the plasma response can be calculated an-
alytically using linear theory. If we now move to larger beam intensities we en-
counter the beam instability. An accorate solution of the plasma response in this
case would require the use of the full nonlinear Vlasov equation. This is not a
feasibie undertaking, so in the following I will restrict myself to discuss briefly the
dispersion relation for unstable waves in a two-stream plasma.

The starting point is again the linearised Vlasov equation, Eq. 61 and Poisson’s
equation, Eq. 62. In this case, however, we will not require quasineutrality. Then
Eq. 62 becomes when transformed:

—k*¢ =
€y
and Eq. 63 becomes:

c(n, n;) (83)

n; =/Idv: %cﬁ ok’ —¢.

When transformed, the Vluov equation looks like this:
(=i + sk)f = 2ikofo(s) + g(k,) (84)
]
where g(k,v) is the transform of f(z,v,t = 0). Proceeding as in the previous
section we obtain for ¢(k,w):

‘l”', 2Q—r‘ldr
Hk,w) = (85)

L(r)
+ Alk? - ,.M ey

with Ay = /&I, /noe? being the Debye length. The denominator of Eq. 85 is
the plesma dielectric function e(k,w) (27]. The dispersion relation for small scale
oscillations is given by

e(k,w) = 1+ k?A2 - M/’"()d =0 (86)

v—-Y
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where the integration runs below the pole in v = w/k.

A calculation of stability requirements for the dispersion relation is performed in
App. C. It is shown ihere that if f,(v) is a Maxwellian the dispersion relation will
only have damped solutions. But if the distnibution function has more than one
maximum the dispersion relation may have growing solutions. If the distribution
function is a sum of two drifting Maxwellians, each with dnift velocity v,, the
dispersion relation can be wntten as

2
ey - T3 w2 [ n) VB =0 (o)

where the r,’s are the relative densities of the two ion components, a, + »; = 1.

The stability criterion can be calculated in a way similar to that of appendix C.
It will be found that the stability of the beam-plasma system depends strongly on
Q and v,. For low Q-values there is strong Landau damping and thus no instability.
Similarly, if v, becomes too large the instability is not excited.

From Eq. 86 the general dispersion relation for low frequency modes can be
calculated. This requires the use of the complex plasma dispersion function which
may be found tabulated{25] or can be calculated numerically. In Fig. 43 is shown
the dispersion relation for a set of parameters relevant to the expenments in the
DP-machine. The dispersion relation is calculated both for the background plasma
alone and for a plasma with an ion beam.

In the background plasma there is one low-frequency mode, the ion acoustic
mode. However, in the ion beam plasma two different modes may be excited.
That this is so may be easily seen when considering the beam in its reference
frame. There will then be one ion acoustic mode running forward and one running
backward. But in the laboratory frame both these modes will propagate in the
direction of the beam. It is furthermore seen that the slow mode is unstable for
these parameters whereas the fast mode is weakly damped. The background ion
acoustic wave is strongly damped at high frequencies (Landau damping again).

The above calculations were all done using the one-dimensional Vlasov equation.
In reality the ion beam introduces an anisotropy into the calculations and the
modes behave differently along the beam and in the radial direction. 1 will not
here try to perform calculations on this problem but only briefly relate some
numerical results obtained by various workers, e.g. Doveil and Grésillon[28] and
Johnsen[29]. They found that at low beam velncities (less than about i.57,,) the
unstable modes are propagating almost parallel to the beam. At greater beam
velocities oblique modes become unstable and at v, > 2v,; the oblique modes
dominate.

These results assume a uniform three-component plasma (ions, electrons and
beam ions). If the beam is of finite diameter these results may need modification.
This, however, is a major undertaking and will not be attempted here.

4.4 Experiments on the DP-machine

Experimental set-up

Expetiments on ion acoustic waves and the beam instability requires a largely
unmagnetized plasma, preferably without DC-currents, which may disturb the
plasma stability properties. These requirements are fulfilled in a Double Plasma
{DP) machine. A schematic diagram of the Ris DP machine is shown in Fig. 44a.
The DP machine consists of a cylindrical vacuum chamber of height 110 cm and
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Figure 43. Dispersion relation for the ion acouslic modes. Upper figures show
the fast and slow beam modes, lower figures the plasma mode when
the beam is not present. Solid lines show ihe real part, dashed lines
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Figure 44. o) Schematic drawing of the ezperiment. b) The “chimney” nsed
for collimating the beam.

diameter 50 cm. The chamber is divided into two parts separated by a metal
plate with a central hole of diameter 10 cm. The two chambers may be electrically
biased relative to each other. Along the sides of both chambers are placed rows of
glow filaments (not shown in the figure) which may be heated to emit electrons.
The filaments may be biased relative to the walls of the chambers (normally ~
40V). The resulting current ionizes the gas in the chambers to produce a plasma.
Argon gas has been used in these experiments, at neutral pressures of 4- 1077~
1- 10" 'mbar. Both chambers may be fitted on the vutside with arrays of small
permanent magnets to improve plasma confinement near the wall.

Between the two chambers is placed 2 metal mesh which is biased at a high
negative potential (~ —B0V). This is to ensure that electrons do not pass from
one chamber to the other. lons however, may travel freely from one to the other.
If the two chambers are at different potentials an ion beam will pass between
the chambers through the hole in the dividing wall. In our experiment the lower
chamber (the driver chamber) is always at a higher potential than the upper (the
target chamber).

The machine is similar in structure to most other DP machines (see e.g. {30, 31}).
The main new feature is the metal plate which separates the two chambers. This
allows a beam of finite width to be injected into the target plasma where in normal
DP machines the beam extends tn the walls.

Diagnostics are placed in the target chamber. These are of two types. First there
are two energy analysers. These are similar to the ones used by Andersen et al.[32]
except that a second mesh has been added in front of the analyzer. This is biased
at a high negative level (~ —60V) to repel the fast (non-thermal) electrons which
may be present in the DP machine. One energy analyser enters from the top of the
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machine (see the figure) and may be moved across the ion beam as well as along
it. The other 1s inserted through the side of the machine. it can only be placed at
a few fixed vertical position but may be rotated at an angle to the beam.

The other type of diagnostic is a plane Langmuir probe of diameter Smm. This
too can be moved along and across the beam.

Collimating the beam

In order to study the propagation of ion acoustic waves inside and outside the
beam it is important to know precisely the radial extent of the beam. However,
the beam ions may be deflected by the strong electrical fields in the vicinity of
the mesh separating the two chambers. To ensure that the ions are unidirectional
we have used various collimators in front of the hole between the chambers. An
example of these collimators is shown in Fig. 41b. It consists of a metal cylinder
of diameter 80mm and height 50mm. The cylinder is filled with thin-walled metal
tubes of diameter 8mm. (These dimensions vary between the different collimators.)
This will ensure that the beam is completely collimated within an angle of 9°
and almost entirely collimated within 5°. The collimator can be raised above the
bottom plate. This helps electrons to enter the collimator and neutralise space
charges.

An analogous system is used to enhance the directional sensitivity of the energy
analysers. Here the first grid is replaced with a brass plate of thickness 2.5mm. In
this has been drlled a large number of holes with diameter 0.4mm. This allows
only ions impinging at an angle of < 9° to enter the analyser. The transparency
of this collimator is about 50%.

Plasma and beam characteristics.

Basic plasma parameters were measured in fairly standard ways. The electron
temperature, T, was inferred from the ion acoustic sound speed, C,. CC, was mea-
sured in the background by exciting ion acoustic waves of known frequency and
measuring the wavelength. From this T, can be calculated using the assumption
(valid in this type of plasma) T, < T.. We found T, = 2.2eV. T, was not measured
directly but it is known that in DP-machines 7. ~ 0.17,.

The plasma density was measured by the Langmuir probe, from the ion satura-
tion current. The value depends on the parameters of the plasma discharge (no-
tably the current from the filaments to the wall) but is normally around 10" m~".

By applying a voltage difference (positive at the driver) between the two cham-
bers a beam is injected into the target chamber. The beam profile in the target
chamber is shown in Figs. 45&46 for two different beam intensities, mesaured from
the analyser characteristic. In these two examples the collimator was not mounted.

From these figures we note several features. In Fig. 45 the beam widens as it
propagates in the background plasma, while in Fig. 46 the beam dnes not widen
perceptibly. This is cousistent with the fact that in the first case the beam is much
stronger than in the second, in fuct the beam density is almost comparable to the
background density. The widening is due to repulsion by the electrical field caused
by excess space charge.

The beam profile at the opening is somewhat peculiar in the strong beam case,
with a central dip in beam density. This is thought tn be caused by to edge effects
near the hole between the chambers where electrical fields are very strong. The
same phenomenon is seen when the collimator is used.

As the beam propagates through the plasma it is strongly atienuated. This is due
to charge exchange collisions with the neutral backgronnd gas. The attenuation
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therefore depends on the background pressure. Here it should be noted that in this
experiment the collision cross section is larger than the standard value as given by
e.g. Hegerberg et al {33. The reason is that a fairly large part of the background
gas i in an excited state and thus the cross section is larger.

When the collimator is used, it is found, somewhat surprisingly, that the beam
1s strongly attenuated (more than aa order of magnitude). The cause is not en-
tirely clear but is thought to be spurious electrical fields between the separating
grd and the collimator which deflect the beam ioms. The situation is somewhat
ameliorated by raising the collimator above the bo**om plate (see Fig. 44). The
strong attenuation limits the usefulness of the collimator for some purposes which
require strong beams. On the othér hand it may serve as an effictent attennator.

lons passing through the separating grid will be deflected in a raadom fashion.
This will increase Lthe radial beam temperature. An estimate of this can be found
by the directional analyser. Placing this in the middle of the beam we measare
the beam intensity as a function of the angle of incidence. The result is shown in
Fig. 47. It is seen that there is a definite signal beyond the cut-off at 9°, so the
jons are not enidirectional. From the curve we find a radial temperatare of 0.8eV.

Experiments with a weak modulatied beam.

By perturbing & weak beam we may investigate the propagation of this perturba-
tion inside and outside the beam. In our experiments the perturbations were of
two kinds:

e A sinusoidal signal applied to an otherwise steady-state beam. This will
excite the ion acoustic modes in the beam.

o A short pulse of ions (with no steady-state beam) injected into the target
chamber.

The propagation of the perturbation is measured by the Langmuir probe, mea-
suring the AC value of the electron saturation current. This is then multiplied with
the original signal and averaged, using a lock-in amplifier. This analog method is
fast enough that a two-dimensional picture of the perturbation can be obtained
in & reasonable time.
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Figure 48. Ion sound wave propagation inside and outside the beam. The col-
limator is shown in the lower right corner of the figure. Here
Ey, = 5 eV, f = 100 kHz. Only one half of the ezperiment is
shoun in the figure. The dashed line indicates the angle at which
the waves propagate outside the beam.

Wave propagation

In this series of experiments a weak, i.e. eV,_, <« E,, sinusoidal signal was su-
perimposed on the DC-voltage between the driver and target chambers. Thus the
two beam acoustic modes (see Fig. 43) were excited. If the frequency is sufficiently
low (much lower than the ion plasma frequency at w,;/2% = \/ne'z/m/%r ~
350kHz) this should then couple to the ion acoustic mode in the background
plasma.

In Fig. 48 is shown one measurement of the propagation of the wave inside and
outside the beam, shown as a contour plot of the probe signal and the reference
signal multiplied and averaged in time. Wavefronts are clearly seen to be perpen-
dicular to the beam inside the beam and to propagate at an angle to the beam in
the background plasma. From plots of this kind the bending angle at the interface
can be found as a function of the beam velocity.

This function is plotted in Fig. 49. The solid curve indicates th theoretical
values given by cos@ = C,/v, (the simple law of diffraction in two media with
different propagation speeds).

The experimental results are in qualitative agreement with the expectations but
show clear deviations quantitatively. Various explanations for this can be found:

At subsonic speeds the theoretical curve does not apply as the wavefronts will
hete be semicircular outside the beam (see Fig. 40). But in the experimental results
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the wavefronts do not bend at sharp angies at the beam boundary. Thus the
simicircnlar wavefronts at subsonic speeds may have been mistakenly interpreted
as a bending angle.

At supersonic speeds the observed angle is consistently smaller than the one
predicted by theory. One explanation could be that the beam is not excactly
monoenergetic. This would blur the sharp bending of the wavefront. However, the
beam temperatuse is not nearly high enough to explain the discrepancies. A better
explanation may be that the plasma electrons have a small component which is
much hotter than the bulk of the electzons. This will lead to a higher C, in the
background plasma and hence to a smaller bending angle.

As was mentioned in section 4.4 the bottom plate of the target plate (and hence
the collimator) can be biased independently. In all the experiments described
above the bottom plate was at ground potential (as is the target chamber). If the
bottom plate is biased at the same potential as the separating grid (i.e. ~ —80V)
the picture is quite different. In Fig. 50 is shown the wave propagation in this case.

It is seen clearly that the waves do not propagate vutside the beam. The reason
is thought to be the following: The ions in the background are attracted by the
negative potential of the bottom plate and thus obtain a net downwards drift. This
will cause the plasma ion acoustic mode in Fig. 43 to be roiated around origo in
the negative direction. It will then become more difficult for the beam modes to
couple to the plasma mode.

Plasma response to a short pulse of fast ions.

In these experiments the DC voltage between the driver and target chamber was
set to OV. By applying o short (~ 10us) voltage pulse between thc chambers a
bunch of ions was injected iato the target chamher. The plasma response to this
disturbance can be traced by correlating the signal to the Langmuir probe with
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plate is biased at — 80V relative to the target chamber. The waves
do not propagate outside thc beam. Ey = 5 eV, f = 50 kHz. Only
one half of the ezperiment is shown in the figure.
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Figure 51. Plasma response to a pulse of supersonic ions of duration 10us at
different times after injection. In a) t = 35us, in b} t = 45us after
the start of the pulse. The pulse energy E, = SeV. Only one Aglf
of the ezperiment is shown in the figure. Again, the dashed line
indicates the angle at which the waves propagate oulside the beam.

the applied voltage pulse V(1) i.e.
A(r,2z,7) = /ﬁ(r, z,t+ 1)V (t)dt. (88)

The multiplication and time integration is performed with a boxcar averager.
By varying 7 the time evolution of the plasma response can be obtained. This is
shown in Fig. 51for two different values of 7. It is clearly seen that the perturbation
propagates along the z-axis.

These measurements are somewhat distorted by noise but still it is possible to
see a resemblance to the numerically calculated results in Figs. 39- 42.

It is seen from Fig. 51 that the plasma is perturbed both inside the path of the
pulse of ions and outside. Since the ions in the pulse are supersonic the perturba-
tion propagates slower than the pulse and hence at an angle outside the path. This
angle depends on the pulse energy as is seen in Fig. 52. As in the wave propagation
the measured angles are consistently smaller taan predicted values.

Experimental investigations of the ion beam instability. Preliminary results.
The experimental results to be described here are only a preliminary investigation
of the turbulence due Lo the ion beam instability. Most of this work has also been
done by other authors,[29][34/(35]. The main new feature of this work is the finite
width of the ion beam which gives rise to some special effects.
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For this experiment the collimator was not used as it attenuates the beam too
strongly. Without the collimator the beam density can become comparable to the
background plasma density as is shown in Fig. 45. At this beam density the ion
beam instability is excited provided the beam energy is not too high.

By applying a standard spectrum analyzer to the signal from the Langmuir
probe the frequency spectrum of the noise generated by the instability can be
obtained. This is shown in Fig. 53 at various points in the target chamber.

In Fig. 53a we show the noise spectra in the middie of the berm (r = 0) at
various distances z from the orifice. It is seen that the instability grows in the
time it takes the ions to reach a position about 7 cm into the target plasma. At
a beam voltage of 12V this gives a growth time of ~ 10us. At higher positions
the noise level diminishes again due to the attenuation of the beam, see Figs. 45
and 46. A conspicuous feature of the noise spectra is their double-humped form.
Most earlier investigations with ion beams filling the entire experiment [3€] showed
spectra with a single broad peak (one exception may be the results of Taylor and
Coroniti(34]). Since the main difference in our experiment is the finite width of the
ion beam, we expect that the second hump is due to radial modes in the beam,
which are excited at beam velocities v, > C, as is the case in this experiment [37].
These modes propagate across the beam and are partially reflected at the edges
because of the change in refractive index at the edge. The second (high frequency)
hump disappears further into the background plasma as the beam becomes weaker.

In Fig. 53b & ¢ we show spectra at different radial positions at z = 8cm and
2 = 17cm, respectively. It is seen that the nnise level diminishes when we move
from the center of the beam towards the edge. At the same time the spectrum
changes qualitatively. This too may be due to the partial reflection at the beam
edge. It is also seen that the noisc does not disappear entirely at the edge of the
beam. This shows that the noise generated inside the beam propagates in the
radial direction out of the beam.

A more detailed investigation of the turbulence caused by the instability will be
the subject of future studies. This will introduce two-point correlation methods
similar to those described in chapter 2 to determine the propagation of structures
in the turbulence.
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5 The AIDA data acquisition and display sys-
tem.

5.1 Imntroduction

The Advanced Interactive Data Acquisition program is a collection of routines
written in ASYST to facilitate the acquisition and plotting of measurements from
the Q- and DP-machines of the Plasma Physics Section. Here it has been used
extensively and some of the data from the Q-machine and all the data from the DP-
machine presented in the previous chapters have been acquired with this program.

The system has been designed to enable the user to perform data acquisition
operations without any deep knowledge of the hardware or of programming in
ASYST.

AIDA runs on an IBM PC or compatible using the ASYST software tools (ver-
sion 2.0 or later). It also requires one of the A/D plug-in boards for the PC
which is supported by ASYST. Our set-up consists of an Oliveiti M380/XP5 PC-
compatible computer with a hard disk, expanded memory, and a floating point
co-processor, @ matrix printer and a Hewlett-Packard 7475 graphics plotter. The
A/D-board is an Analog Devices 2818, with 4 A/D channels, two D/A channels
and 2 x 8 digital input/output channels. The A;/D-board is cornected to a couple
of custom-built motor control boxes, which can control two stepper motors and
two DC motors.

5.2 General structure of AIDA

The goal set for the development of AIDA was to make it easy for the user to
perform a wide variety of data acquisition sessions without programming (on the
user’s part) and to display the data thus obtained. It should be possible to use the
program with many different experimental set-ups and make the measurements in
many different ways. To make the program easy to use it has been made menu-
driven to a high degree and to make it generally applicable the concept of the
Measurement Type was introduced. The structure of the source code generally
reflects the structure of the program as revealed through the menus, so in tke
following I will more or less go through the program menu by menu.

When first entering AIDA from the ASYST environment you are presented with
a menu as the one in Fig. 54.

This corresponds well to the physical structure of the program as seen in Fig. 55.
As you can see, AIDA consists of a main part and three general subparts which
correspond to the various options in the main menu. The main part consists of
initialisation routines, the main menu, and some general routines that are nsed
by more than one of the subparts. This part of the program has been SAVEd in
a customized version of ASYST called AIDA and thus these routines arc always
available. The subparts have each been stored in one or more overlay files(see 39,
p. 1.10 fT]). These overlay files can be lraded into ASYST by the main program
and the Words (subprograms is ASYST are called Words) in them can then be
accessed. However, they cannot be active all at the same time. Therefore there
are sometimes some overlapping between the routines in the various overlays. We
will have a look at each of these parts in turn, but first [ will take a look at the
concept of the Megsurement Type.

78 Risp-M-2858



AIDA DATA ACQUISITION/GRAPHICS UTILITY PROGRAM
Select one of the function keys

F1 : QUIT

F2 : NHake some data acquisition

F3 : Hake a contour or axonometric plot

F4 : Construct or change a Heasurement Type

Figure 54. The main menn in AIDA
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Figure 55. Top level siructure of AIDA. Each box in the subprograms corre-
sponds to an ovrlay file.

5.3 Measurement Types

The term Measurement Type denotes a set of information which makes it easy
to perform a series of iduntical or nearly identical data acquisition sessions. This
information may be about the shape of the acquired data, when to make a mea-
surement, or general parameters for the experiment. The information in the Mea-
surement Type is also used by the graphics part of AIDA to find the 1elevant data
in the data files and determine the parameters for the plot. Each Measurement
Type has a specific name of not more than 12 characiers and an abbreviation 2
characters Jong. This name is used by the user to find the relevant information
for the data acquisition session. The abbreviation is among other things wused for
naming the data files where the acquired data are stored. The name of a data file
made with AIDA is NNddmmyy . XXX, where NN is the abbreviation name, followed
by the date the acquisition was made. XXX is the number of the data file acguired
that day using the given Measurement Type.

The information making up a Measurement Type is stored ir two files. One is
an ASYST file called DEFAULT. ¥ and the other an ASCII file called QUESTION. NN

where again Nl denotes the abbreviation name of the Measurement T'ype. DEFAULT. NN
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contains a single array of 50 real numbers (this number can be changed, of course).
The numbers in the DEFAULT . UK file contain the following information:

Nes. 1-20 Default values of purameters for the data acquisition session. These
can be parameters that are essential for the proper execution of the session,
e.g. the aumber of measurement poiats, or they can be general parameters
for the experiment that have no influence on the acquisition session. These
values are set by the user in the beginning of each session (see sec. 5.4). They
are also stored in the comments of the data file created in the session. Some
of these parameters must occupy fixed places in the list, whereas others may
be placed randomly. Not all 20 places need be used.

Nos. 21-28 These numbers are conversion factors between the integer values out-
put by the A/D-converter and the real valuss of the quantities measured by
the A/D-channels. Two numbers are required for each channel, a conversion
factor and an offset value, and so there is room here for four channels.

Nos. 20-42 These numbers are specific to the current Measurement Type but are
not normally changed between sessions using the same Measurement Type.
The information stored here includes items such as the number of A D-
channels used in these sessions, the number of comments in the data files,
whether the sets of data are one- or two-dimensional etc..

Nos. 43-50 are not currently used.

The exact contents of the DEFAULT. N file for set-up used in the Plasma Physics
Section is described in the AIDA Reference Manual ({44, App. B}).

The file QUESTION NN is closely related to the first 20 numbers in the file
DEFAULT. NK. This file contains the text for the questions which the user are given
in the beginning of each data acquisition session and the corresponding comments
which are put into the comment lines of the data file created during the session.
The file is read one line at a time, so the questions and comments must be placed
on separate lines with no empty lines between lines of text.

As was mentioned in the beginning of this section, th= files resulting from a
data acquisition session are named according to the date of the acquisition and
the number of previous completed sessions on that day. Therefore we must have a
place to store information on the number of times a given Measurement Type has
been used today. This information has been stored in the file KEAS. TYP. This is an
ASYST file which contains 100 comment lines and two arrays of length 100. The
comment lines contain the names of the currently defined Measurement Types
and the arrays contain for each entry in the comments the date of last access
and the number of sessions made on this last date. This file is read by the data
acquisition parts of AIDA and is updated by the subprogram that constucts or
changes Measurement Types.

5.4 The data acquisition subprograms

The basic classes of Measurement Types

Essentially, the task of the data acquisition part of AIDA is to control the flow of
data from an A/D plug-in board to the computer memory and on to an ASYST
data file. There are almost infinitely many ways of doing this and so it is im-
portant that the program makes it easy for the user to make exactly the type of
measurement she wants. Indeed, a large part of the acquisition routines deal with
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selecting the appropriate Measurement Type and finding the right parameters for
the measunng session.

At present four basic classes of data acquisition sessions exist. They differ from
each other in the organisation of the data and the way the time of measurement is
determined. Determining the time of measurement caa here be done in two ways:

1. The measurements can be made at equal time intervals.

2. The time of measurement can depend on some other measured quantity.
Here the present version of the program makes some constraints:

¢ The reference quantity determuniag the time of measurement must be
measured by the first channel of the A/ D-converter.

e The points of measurement must be at equidistant values of the refer-
ence guantity.

e The reference values must increase monotonically.

The program can of course be modified to remove these constraints.

In order to use the first class of mes<nrements the A /D board must be able to
be programmed to different acquisition frequencies. This 1s the case for the one
we are using. The reference quantity for the second class may in principle be any
measurable juantity that satisfies the constraints. It may be the position of a
measuring probe, the temperature of the experiment etc..

In a sense the two classes are equivaleni since the time could be measured by the
reference channel and thus turn the second class into the first. However, there 1s an
important difference. In the first class you may acquire data at a rate which is only
limited by the type of A;D board you use. These boards normally work at rate
fiom a few kHz to a few hundred kHsz. But in the second class of measurements
there is a large programming overhead and so the maximum speed here will be
less than 100 Hz, even on the fastest PC’s.

Each of these two different ways of making measurements can again be divided
into two groups according to whether the grnd of measuring points in phase space
is one- or two-dimensional. In other words: each time you make a series of measure-
ments depending cither on time or some other quantity, you make a scan through
the parameter space of your experiment. AIDA allows you to make either one scan
and save the data in a seperate file or to make several scans where some other
quantity is changed between scans. The values of this quantity may or may not be
equidistant and the value of this second quantity may or may not be monitored
by an A/D-channel. Note here, that whether you make a one- or two-dimensional
measurement you will get a set of data of this dimension from each of the A/D
channels you use.

General structure of the Acquisition routines.

The routines for the two classes of Measurement Types are placed in separate
overlay files (see Fig. 55). Since you may not load one overlay from another the
highest level of these routines is part of the main system. This consists of amnng
other things the acquisition menu shown in Fig 56.

Of the three options in the menu, the simplest is the listing of the available
Measurement Types. The list of Measurement Types is stored in a text file which
can b read with the ASYST editor. The routine called by option 3 simply calls
the edi.or.

The data acquisition programs themselves are activated by the second option.
The general lay-out of this part of the program is shown in Fig. 57.
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F1 : QUIT

F2 : Perform the data acquisition i
F3 : List the available Neasurement Types i
F4 : Set up measurement parameters |

Figure 56. The menu for the deis acquisilion system.
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Figere 57. Struclure of the dala acquisition pari of AIDA.

The very first thing this program does is to get the name of the Measurement
Type from the user and then examine the DEFAULT. BN file to find which class of
Measurement Type it 1s. This is necessary at the very start as the Words for the
various classes are stored in two different overlays.

What happens next varies a little between the classes of Measurement Types.
For two-dimensional mcasurements the user is asked whether the points in the
second dimension in phase space are equidistant or not. This has some bearing
on which questions the user will be asked next. For the next part is a series of
questions about parameters for the session, arranged in a menu, where the user
can browse through the menu using the cursor kevs. Some of the parameters are
essential for the measurement session, such as the number of data points.

When the parameters have been entered the program sets up some temporary
arrays for storing the data as they are being acquired. The shape and size of the
arrays vary with the Measurement Types and the entered parameters. The file for
the data is also created at this time.

Now the program is ready to proceed with the actual data acquisition as soon

*
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Figure 58. The e quisition setup menn.

as the user is ready. The data acquisition process depends aot oaly on the class
of Mcasurement Type and the number of data points bul also to what extent
the experiment can be coatrolled by the program. If the program can control the
valee of the independent variable that is changing during a scan and the parameter
changing between scans, then the entire data acquisition process can run without
farther help from the user. If the set-up is not automatic the program will stop at
convenient points. Moreover, the user can at almost any time stop the acquisition
to exit_ In the case of two-dimensional measurements it is also possible to stop to
see a plot of the last completed scan or to retake a aumber of scans.

When the acquisition has Knished (or has been terminaled prematurely) the
user is asked whether to save the data. This is then done if wished. The data
acquisition is now finished and the aser may tetura to make another acquisition
with the same Measurement Type or retura to the data acquisition menu.

The fourth option in the data acquisition menu is a set of routines which cali-
brate the Measurement Type so that the values measuied by the A /D converter
will be converted intn the actual physical values when a measarement is dome. [t
will present you with yet another menu shown in fig 58. )

The first option measures the voltag: input to the A/D channels and shows the
values output directly by the A/D channels. Hitting a key will give new values. This
is useful for determining the relation between the physical quantities tiicasured and
the output from the A/D board. This knowledge is necessary for the second option
in the menu. For a chosen A/D channel it asks you for two physical values and the
corresponding output from the A/D. Thus the program can calculate the general
relation (assuming that it is lincar) and output the proper physical values to the
data file when making & messurement.

5.5 The graphics subprograms

ASYST has powetful built-in graphics facilities. Ordinary two-dimensional plots
(e.g. plots of a function vs. an independent variable) can easily be made in many
different fashions. For a closer look at these capabilities, see {39, ch. 6!. These
Wortds are so easy to use that they can normally be used ditectiv from the com-
mand line interpreter.

In addition to this ASYST also features Words to make three-dimensinnal plots.
such as contour plots and netsurface or azonometric plots {40, ch. 9 {. Examples are
shows in Fig. 59. These 3-D plotting Words are the ones that form the backbone of
the graphics utilities in AIDA. For while the few Words which cover 3-D plotting in
ASYST are easy to use, they are not very fizxible and so additional programming
is called for. In the process it was discovered that the plots are not always of
sufficiently good quality, as can be seen in the contour plot in Fig. 59, and therefore
some additional programs were made tc enable the data to be plotted using the
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Figure 59. Ezamples of conlour and azonometric plots made with AJDA.
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CONTOUR AND AXONOMETRIC PLOTTING PROGRAMS

F1 : QUIT

F2 : Plot data from a datu file

F3 : Plot data from an ASYST array

F4 : Reconfigure the plots

FS : Convert data to SURFER format

F6 : Print information from a data file

Figure 60. The graphics menu.

Main
program

-
Plot data Plot dato Oonfigure SURFER print in—
from dato from arsay, the plot conversion formation
tile Data Dota
from from
file array

Figure 61. Structure of the graphics part of AIDA. The structure reflects the
graphics menu oplions.

SURFER graphics software.

If you choose the graphics option in the main me:u you will be presented with
a new menu as shown in Fig. 60.

Physically the programs are divided into two overlay files, one containing the
Words to convert data into a SURFER file and the other containing all the rest.
The 1wo parts have similar structure and many Words exist in both. For this

reason | will in this section only describe the actual graphics in any detail. The
structure of the two is shown in Fig. 61.

The actual plotting rulines

Both the 3-D plotting and the SURFER conversion programs can be further di-
vided into two parts. One takes the data to be plotted or converted from an
ASYST data file created with AIDA. The other takes as input an otdinary two-
dimensional ASYST array. Again, there is much ovetlap between the two parts.
Generally speaking, the only difference between plotting data from a file or an
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Data file plotting program

Contour Plot Axonometric Plot
Manipulate data Manipulate data
Plot to | Plot to Plot to | Plot to
screen | HP plotter | screen | HP plotter

Figure 62. Block structure of the Words for plotting dala from a data file.

F1 : Plot to screen
F2 : A4 plot to plotter
F3 : A3 plot to plotter

Figure 63. The plotting menu.

array is how they find the data to be plotted. In both parts there are checks as to
whether the file/array exists, whether the data set is two-dimensional etc.. Again,
they are so similar that they will not here be described separately. See Fig. 62 for
the structure of these parts of the program.

Before specifying the data file/array where the data are stored the user is asked
whether to make a contour or an axonometric plot. The treatment of the data
varies somewhat for the two types of plot, so the program must know this at an
ecarly stage.

Once the data have been input to the program (they are stored in a TOKEN
array) the user has several possibilities for manipulating the data before plotting.
It is possible to take out a part of the data array for closer inspection or to deplete
the array by taking only every n’th row or column. This is convenient for making
contour plots of large arrays since ASYST may not otherwise have enough memory
to make the plot. The array may also be transposed or turned around so that it
can be shown from any side in an axonometric plot.

When the final data set has been obtained the user must specify some informa-
tion about the plot to be made. For the axonometric plot the user must specify the
viewpoint for the plot. For a contour plot the program must know which contour
levels to plot. Also the shape of the plot may be fitted to the actual data if the
data came from an AIDA data file which contained the relevant information. This
will be described in more detail in the AIDA manual {43].

Finally the destination of the plot must be specified. At the moment there are
in our system two possibilities, indicated by the menu which is shown in Fig. 63.

Auxilliary functions
Two other options exist in the graphics menu which we have not yet discussed.
They are both very simple.

Option 4 in the menu will give you a set of questions like the ones in the dialogue
before a data acquisition session (see p. 82). Only here the questions will be about
the size of the plots, the colours to use and the type of lines (solid, dashed etc.) for
the contour plots. The questions and the default values are saved in 8 Measurement
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MEASURING TYPE UPDATING SYSTEM

F1 : QUIT

F2 : Make a neu Weasurement Type

F3 : Delete a Measurement Type

F4 : Change the name of a Neasurement Type
F5 : Make changes in a Measurement Type

Figure 64. Measurement Type updatling menx.

Moin Updote
Routine

Insert Megs. Type

Delete Meos. Type

inser{ new naome
in MEAS.TYP

Create def. file

Delete name in
MEAS TYP

Chonge name

Chonge Megs. Typs

Set detauit
constonts

Delete Defouit
and Questions
file

Delete name in
MEAS TYP

Set Defouit
contents

Insert new name

in MEAS TYP

E£dit Questions
fils

Creole Ques. file

Edit Questions
file

Figure 65. Block structure of the Words for making or updaiing a Measure-
ment Type.

Type of its own. This Measurement type is not listed in the NEAS.TYP file and to
avoid conflict they have a three-letter extension: QUESTION . CON and DEFAULT. CON.

Option 6 will print the information that is stored in the comments of a data file
made with AIDA. This should need no further explanation.

5.6 Making and updating Measurement Types

In section 5.3 the concept of the Measurement Type was introduced. From the
structure of the Measurement Types and the way they are referenced it can be
seen that it would be a fairly straightforward process to create new Measurement
Types or to modify existing ones. However, there is still considerable scope for
error in the process, especially if it is not done often. For this reason a part of
AIDA was developed to take cate of the maintenance of Measurement Types.

This part of AIDA is stored in u separate overlay file and is invoked with option
4 in the main menu. You will then get a new menu, see Fig. 64.

The block structure of this part of the program is given in Fig. 65. As can be
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seen, the various options in the updating menu use the same building blocks. Some
of the options will therefore only be described very briefly in the following.

Changes to the NEAS . TYP file
As mentioned earlier, the file NEAS.TYP contains a hist ¢” the currently defined
Measurement Types. The object of options 2-4 in the menu will therefore be to
manipulate thir file. Inserting a new name and abbreviation for a Measurement
Type consists simply of getting the name from the user and writing it to an empty
slot in the file. However, before entering the new name the program must search
the list to see if the name or abbreviation already exists. The list of names may
also be full. In any case, the usir will be told and must choose another name.

The Words for deleting a Measurement Type are similar. Here too, the program
must get the name from the user, and then delete the eriry in the list if it exists.
The user can also choose whether to keep the QUESTION . % and DEFAULT . NN files
or delete them.

Once these two parts have been made they can easily be combined to change
the name of a Measurment Type. All that is needed is a small routine to change
the extensions of the QUESTION and DEFAULT files.

Changes to the Measurement Type files

Since each Measurement Type consists of two files of different types it is obvious
that this part of the program is subdivided into two sets of routines, each manip-
ulating one part of the Measuremnt Type. Here, changes to the DEFAULT file will
be considered first.

In option 2 in the menu the new DEFAULT file must first be created and then
filled. The second part is identical to option 5 in the menu. The changes that
can be made to a DEFAULT file with these Words only affect the last part of the
array. The first 20 slots in the array are changed in the dialogue in the data
acquisition session and the next 8 (in our set-up) are changed by option 4 in the
data acquisition menu (see section 5.4). The values in the rest of the array slots
can be set in this part of the program. This session is a questions menu like the
one in every data acquisition session (p. 82). The questions are saved in the file
QUESTION.SET. They can of course be changed to fit another experimental set-up.

5.7 Present and future developments

In the form described above AIDA has been designed to perform data acquisition
via an A/D plug-in board. However, ASYST also has facilities to communicate
with instruments via the GPIB data communication bus. This enables ASYST to
communicate with many different types of instruments, such as spectrum analy-
sers, digital oscilloscopes etc.. For a programmer who wants to make a generl-
purpose program which utilises the GPIB bus this raises a number of difficulties.
Most important among these is the fact that different instruments have differ-
ent formats for the orders they need for communicating. Also, the format of the
data varies between instruments. This in effect makes it impossible to satisfy all
the objectives of AIDA: that the user should be able to run it without detailed
knowledge of ASYST or the hardware involved in the data arquisition.

The solution to this is to require the user to make a routine which performs the
actual data acquisition. This must be compiled before calling AIDA and will then
be called by AIDA at runtime. AIDA can then control the independent variables
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between cach measurement. This arrangement also allows the user to perform
some manipulation of the acquired data immediately after the acquisition. This
is handy if the amount of data is too large to store, which can be a problem with
for instance long time traces from transient recorders or digital oscill »scopes.

In practice the user may have to produce more than one routine as there may be
orders which are only executed at the very beginning or end of the data acquisition
session and not every time an acquisition is being made. The names of these
programs must be placed on the first lines of the file QUESTION.XX (XX is again
the abbreviation of the Measurement Type). They are then called at appropriate
times using the ASYST Word "EXEC.

The questions session at the start of the data acquisition can be uszd to initialise
vaniables for the user-defined routine. This is done with an ASCII file calied ?.1X.
This contains a list of the names of variables in the routine which are to be
initialised. The number of names in the list should correspond to the number of
questions and the variables will be given the value of the answer to the specific
question. If not all the answers to the questions correspond to a variable in the
routine, a name of a dummy variable can be used instead.

Since the data acquired by this method does not have any previously determined
form, it is not possible in advance to create the data file for the results. This must
therefore be done by the user’s routines. Also the filling of the data file must be
done by the user. For the same reason the data file thus created cannot be read
by the graphics part of AIDA. In the future modifications may be made to the
graphics part of AIDA in order to enable it to read non-standard files and extract
the relevant data. This will probably work on the same lines as this new data
acquisition.

This new data acquisition application has by now (medio June 1989) been im-
plemented and has already been used in acquiring anc analysing the data for the
conditional statistical analysis in chapter 2 sec. 2.6. Here the data are acquired
with a LeCroy digital oscilloscope used as a transient secorder. The amount of
data measured in each session is upwards of 10Mbytes. Therefere the analysis is
petformed immediately at each point across the plasma column. However, this
new feature is by no means completed yet. Most importantly, some small bugs
still haunt the system. Also, new features may be added, but these will have to
be thought up first.
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A Some useful relations between Chebyshev
series

A given function fix), defined in the interval 1 < 2 <. | can be expanded as an
infinite series of Chebysher polynomials:

fiz) = Y anTu(3) (89)

Given this expansion we can wrile various expansions of L f where L is some
operator:

2f(x) = jai + (an + jau)Ti(x) + | }:(‘-—l + G 1 1)Tia (%) (%0)

22 f(z) = 1[(2an + a2) + (30, + @)T;(2) + (200 + 20, + @) Te(2)

+ Z(a.._z + 28, + ¢-+2)T.-(1)] (91)
F@=Y pp+2) Y pyTa(a) (92)
b i

z2f'(z) = Z pa, + z (ma,. +2 )_ pa, ) T (2) (93)
:v-\'ﬂl :+ ::\‘:l

=) =13 Z P'a, + Z Z PP’ — m’)a,Talz) (94)
p=2 m=ip=m 41
pryen P+moryrn

2f"(z) = i Z pp’ - Da, + z (Zm(M+ | §T S

p=13 m=i
| 4 odd
+ Y HEt-m' - 1)ay)Ta(a) (95)
p=m4+,
P4 m ol

2 f(2) = }: op’ - 2)a, + Z (m(m 1)a,,

p= mad
,"'\""
+ E pp* - m? 2)a,,)Tm(z) (98)

p=m4+ 2,
P+ meven
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B Consistency of the discrete Fourier expan-
sion

The proof that Eq. 25 and Eq. 26 are consistent with each other can be seem by
inserting ome in the other!47):

fz,)) = ):[ ): flz,)e ¥kl

): f(x,)L s L f(z,)): (eu- 0"

= k=-v = k=w
The last sum is a geometric series:

Zc —Za"" = .\"

and so we get:

e'2%r- -1}

f2,.) = sz( T e

="

Since both j and ), are integers we have for all j:

] -e*-2) — o
while the following is valid only for j = j:

1-e¥U--0 =g

This means that all the terms in the sum are zero except for the term where
v = J- For this term we use 'Hospital’s rule to get:

1~ e} N dij(l e xu- ”). 2% N
I- c'z:\;(J”_l)'l=l ad;(l _'v'r() -)))‘ - "T'; B

’=s-
From this we find:

fa) = 5 X 1) N6 - 3) = fls.).

m=n
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Figure 66. a) Valzes of R(w/k) for real values of w/k. The fonction f is
Aere chosen to br & Maxwellian. b) A fanction [ with only ome
mazimem sad ils derivative, logether with the function 1 /(3 —=).

C Nyquist analysis for the plasma dispersion
function

The following analysis has beea performed by several authors, e.g. Jackson[46].
The problem is to determine the values of w/k for which the demominator of the
right hand side of Eq. 67 vanishes, that is
T [ B
M ], ,v-w/k
where the integration peths run above and below the pole, respectively. We will
first look at integration peth 2. This is the classical plasma dispersion function.
Since T, /M, can take on many different values the question is whether the value
of the integral in the equation can become real and positive. For this purpose we
wrile the integral as

R(x)=p [ ,E’{_'%d' +ixfy(s)

where s = w/k. The fanction R will map a curve in the s-plane into a curve
in the R-plane. Specifically, the real n-axis will have the form given in Fig. 66a.
This becomes clear when you look st Fig. 66b which shows the function f, its
derivative, and the function 1/(v — u). For 5 < 0 the real value is almost zero
and the imsaginary value is positive. For ' 0 the imaginary value is negative. So
8s you trace out the real axis in the u-plane you will go around the cutve in the
R-plane in the direction indicated by the arrows. As we walk along the u-axis we
will have u-values with positive imaginary values to the left of the axis. This must
also be the case in the R-plane. Thus the positive imaginary s-plane maps into
the inside of the curve in Fig. 66a. This means that R(x) can only attain positive
real values for u-values with negative imaginary parts.

Now, values of » = w/k with negative imaginary parts correspond to negative
k-values since w always has & positive imaginary part. Negative vaines of k only

| I dv=0. (97)
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occur in regroa | of fig 37. But = (k. &) is only defined in region 2. Thetefore the
denominato: of n: canmnot becume zero in the defimition area and there are no
poles due to the demomimator.

Fot m (k. w) the situation is simiar. Ia this case we integrate above the pole in
the »plane. So here we get

R(s) = p/ ?}%dv - fo{m).

The result of this difference is ikat the curve in Fig. 66a is traced in the opposile
direction. But then it will be u-values with aegative imaginary parts that map into
the insade of the curve. So only valuwes of u with positive imaginary parts will satisfy
Eq. 97. This cotrespoads to positive k-values which are oaly found in regron 2.
But n; is only defined in region 1. So this t0o cannot have a pole dwe to the
denominator in the region where it is defined.
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D Briefly on the Cubic Spline Interpolation

The following explesation is very bricl. To get mote information, see (191 If we
have a function y(z) given as a table of corresponding values of 3 and y. we can
perform an interpolation between values of y. We choose for each interval between
poiats a cubic pulymomial to be the interpolating function. [n the interval between
(x,,9,) and (2, + 1,y, + 1) this is written as:

y = 4y, + By, + Cy. + Dy;'“

with
4 = He~*
1 F
B bitd ‘x"—"x'l Ty
41— 3,
C = A" - Az - 1),
D = 5(”2' - B)z)4 - £,) .

Here, y is the second derivative of the polymomial at the point 3,.

The above definitions do not prescribe a unique cubic polynomial for the inter-
val, since y and y],, cam take asy valee. Therefore we prescribe a comstruiat,
namely to require that the derivatives of the cubic polynomials shoukd be contin-
wous at the boundaries of the intervals. This constraiat for the y'’s is equivalent
to

z, - 3l—l’n . ey ’)’n+ LR I TS /) /e /5L
- — g T T - S s
€ -1 3 ’ 6 A S T T

Fot N points z, we get N — 2 equations of this kind. Together with switable
constraints at the end points{19} we get a tridiagonal system of equations which
can be solved to find the 37’s. Then the cubic interpolation polynomial is found
for every interval.

When the interpolating polynomials have been found it is a straightforward
matler Lo obtain the derivative of the original function. We find:

dy w1 -y 3AT-1} 3B’ -}
az :::: ~:l, B LTI L APl LT ) AN
Similarly, the integral of the function can easily be found.
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