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Abstract 
During a two--year period, measurements were obtained along four meteorolog­

ical masts placed from the coastline to 30 km inland at the North Sea coast of 
Jutland in Denmark (the JYLEX experiment). 

The data were organized to show the behaviour of the most important para­
meters of the turbulent structure when a flow passes from over-sea to over-land 
conditions. The results are stratified according to season, day and night, and wind 
direction. 
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1 Introduction 

When air flows from one surface to another with different characteristics, an Inter­
nal Boundary Layer (IBL) develops downwind from the change. For long fetches 
the IBL grows until it fills in the Planetary Boundary Layer (PBL), and a new 
equilibrium is established. In this paper we shall relate the problems of a flow 
response to changing surface characteristics to a data set obtained during an ex­
periment (JYLEX) in which meteorological parameters were measured along four 
masts placed inland from the coastline at the North Sea coast of Denmark. 

In an earlier paper (Sempreviva et al., 1990) we have discuesed the development 
of an IBL when controlled by mechanical turbulence only, that is near-neutral 
conditions. Here, we pay attention to the problem of the growth of an IBL over 
land when thermal effects are important. 

The flow response will be discussed in terms of a data set analysis with pro­
duction of spatial variation of the characteristic parameters of the atmospheric 
turbulence. 

2 Experimental setup 

The JYLEX experiment (JYLland EXperiment) was established on the west coast 
of Jylland (the Danish name for Jutland) to study the change of surface layer 
characteristics as a function of distance from the sea. 

Meteorological variables were measured along four masts placed from the shore 
line up to .. 30 km inland. The positions of the masts are sh<!>wn in Fig. 1. The 
shore-line mast Ml was a 32-m mast while the rest of the masts were 24 m high. 
Figure 2 illustrates the appearance of the shore-line· mast and one of the inland 
masts. Table 1 summarizes the measurements conducted at each mast. 

The ~periment lasted from May 1982 until June 1984 yielding 25 months of 
data. The measurements were recorded as 10-min average values while wind direc­
tion and temperature were recorded as instantaneous values, although the response 
time of the instruments themselves provided some smoothing. The time constants 
of the wind vanes were about 20/u (u being wind speed measured in m/s) while 
the thermometers had time constants of around 2 min; both vali.tes are from Mahrt 
and Larsen (1982) who used the same instrumentation. 

In connection with change of recorder tapes (every three weeks), photographs 
were taken of the surroundings of each mast to record seasonal variation of the 
vegetation. 

The experiment was originally conceived as a straight line of masts reaching 
from the west coast of Jutland towards the east. It appears from Fig. 1 that the 
final setup neither started at the shore line of the North Sea nor can it be described 
as a straigth line. To avoid flow-obstructing features in the near field around each 
mast had the highest priority, and the final setup was a result of this. Even in this 
fairly flat part of Denmark, such features were abundant in the form of coastal 
brinks, dues, and dikes at the coast or hills, houses and trees further inland. 

A more detailed description of the measuring site with roughness, distance to 
the coast etc. is given in Sempreviva et al. (1988). 
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Figure 1. Maps of the experimental site. Figure Ja shows the overall area while 
Fig. 1 b gives a more detailed map of the site, indicating positions of the masts. In 
Fig. lb main geographical features are also indicated, such as towns (black areas), 
forests (shaded areas), and heights of terrain (20 and 50-m isolines). Positions of 
the measuring masts are indicated by Ml, M2, MS, and M4). 
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Figure 2. Appearance of the meteorological masts used during the.experiment. Fig­
ure 2a shows the mast at the shoreline, mast 1,· while Fig. 2b shows ·o.ne of the 
inland masts, mast -l· 

3 Data selection and analysis 

The present paper is concerned with the change of turbulence characteristics as 
the air moves from the sea under nonneutral conditions, considered in a previous 

·.paper (Sempreviva et al., 1990). Therefore, a subset of data was selected according 
to the following criteria: 

- data were to be included only in case of wind from the westerly sectors at 
mast 1, that is between 235 and 315°; 

- data should be available at all four masts, and 

- data with nonneutral conditions were ensured by demanding that the calcu-
lated Richardson number Ri should fulfill the following conditions at all four 
masts 

Ri < -.03 Ri > .03 

The selected data set consisted of 18025 profiles simultaneously recorded at each 
mast, specified below according to season and wind direction sector. 
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Table 1. Distri6ution of the nonneutral data used in this report according to wind 
direction sectors (1-9, see 6elow) and season. 

wind Dir. Sector 1 2 3 4 5 6 1 8 9 Total 
vvmter 141 845 926 938 155 756 199 544 387 6697 
Spring Ul4 118 123 120 l:W 132 126 226 257 1390 
Summer 434 416 575 598 125 115 928 1265 1855 7631 
P'all 123 281 386 238 201 166 210 350 396 2307 

Total 1458 1670 2010 1894 1821 1829 2063 2385 2895 18025 

The smaller number of cases for spring and fall is due to the definition of peri­
ods. i.e. the periods of spring and fall are shorter than those of winter and summer, 
defined the normal way. Each set was stratified and codified according to the fol­
lowing criteria. 

Wind direction sectors 

The 90° sector was subdivided into nine 10° sectors. This division into sectors 
has been done for two reasons. 

1. The individual mast looks across different upstream surface characteristics in 
each sector. 

2. At the coastline the upwind air flow has different meteorological characteristic 
parameters (e.g. humidity, speed, temperature). A flow from the north is 
generally colder and less moist than one from the south because the former 
is often associated with high-pressure systems from the polar circle. 

Seasons 

We did not consider the conventional period for the seasons. We have chosen spring 
and fall periods in such a way that 

a) the same amount of solar radiation would arrive at the ground surface if 
clouds etc. could be neglected; 

b) the periods are supposed to cover as much as possible the periods when Taea < 
71and and Taea > 71and for spring and fall, respectively. As a result we use 
seasons defined as follows. 

winter 
spring 
summer 
fall 

30.10 
10.03 
13.05 
01.08 

- 09.03 
12.05 

- 31.07 
- 29.10 

In Fig. 3 the yearly behaviour of the air and sea temperature is shown (Larsen 
and Jensen, 1983). In the cited report the authors found that climatologically seen 
the sea temperature in the spring is 1 ° colder than the air temperature. 
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Figure 9. The annual variation of Danish national average values of air and sea 
surface temperature (Larsen and Jensen, 1989). 

Day and night 

The time of sunset and sunrise has been calculated for each day of the year by 
simple library routines and compared with the values from standard tables. For 
each 10-min scan the following parameters have been calculated. 
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Richardson number 

Ri=g_ {f+r 
T (Ml (1) 

where the detailed definitions are specified in Appendix A. The reference height 
used for the Richardson number calculation was 10 m. 

Monin·Obukhov length L 

This was calculated using the Richardson number, To avoid that for Ri > 0.2 
L goes to infinity and then turns to positive values, we used the formulation given 
in Appendix A, Eqs. (A9) and (AlO) (Larsen and Nielsen, 1991) 

L = ::£.. u~ (2) 
UK T. 

Depending on the sectors, mast 1 is located at a distance varying betweeen 
75 and 1100 from the coast. For each direction we plotted the wind profiles, see 
figure 4. 

From the plots a kink is seen showing two profiles, a lower and an upper one. 
The kink disappears with increasing distance to the water because of homogeneous 
terrain from the mast (figure 4, sectors 8 and 9). It is also seen that the sector 
profiles can be divided into groups according to the upwind flow climatology. 

From these profiles we may guess that data from the higher levels of the mast, 
viz. 13 and 30.9 m, for temperature and 19 and 31.5 m, respectively for wind 
speed represent over~water conditions while the lower levels measure the param~ 
ters pertaining to the IBL that develops when air flows inland from the sea. With 
this in mind we calculated as follows. 

Temperature over sea at 2 m 

We used the upper-level temperature to calculate the temperature over the sea at 
2 m, using similarity profiles of potent.ial temperature, compare Appendix A. 

In table 2 the values of the two t.emperatures are shown for each season and day 
and night. The two temperatures should represent two different situations. The 
extrapolated temperature should represent over-sea conditions and the measured 
temperature the IBL conditions. 

As could be expected from figure 4 for sector 9 (with the longest fetch, i.e. 
1150 m to the water), the two temperatures have the same values showing an 
homogeneous upwind terrain. The sector also shows the larger difference between 
day and night temperature which also indicates that in this sector mast 1 mostly 
reflects land conditions. 
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Figure,/. Mast 1: wind profile averages over the data summarized individually for 
each wind direction sector in table 1. 

Table £. Variability of temperatures at mast 1 versus season, time of day and 
sector. Tiand is the temperature measured £ meters above local terrain. On the 
other hand, Taea is the temperature at £ m extrapolated from the measurements 
at 19 and 91 m, respectively. These temperatures are assumed to mostly reflect 
upstream over-sea conditons. 

Sec- Winter Spring Summer Fa.11 
tor Uay Night Day Night Day Night Day Night 

'.liand T..,. 7iaad T•e• 7i&ad T .... 7ia.nd T.ea 7iaad T1ea. 7i .. d T.ea. 7i .. d T ... 7iaad T ... 
1 6.9 6.6 7.0 6.8 7.1 6.6 5.5 5.7 14.3 14.1 H.4 H.8 17.0 16.7 16.2 16.4 
2 7.7 7.3 6.7 6.5 S.7 S.5 5.2 5.5 14.3 H.1 12.9 13.2 16.4 16.3 16.4 16.6 
3 8.7 8.5 6.5 6.3 5.5 5.3 5.1 5.2 1-4.0 13.9 12.7 13.0 16.7 16 • .C 16.6 16.8 
4 7.7 7.6 7.3 7.3 s . .c 5.3 5.2 S.4 14.0 13.8 12.9 13.2 16.5 16.1 15.3 15.4 
5 6.8 6.7 6.6 6.6 6.1 S.8 4.9 5.1 13.9 13.9 13.0 13.3 15.7 15.2 14.5 14.5 
6 7.0 6.8 6.4 6.-4 6.6 6.3 4.4 4.7 14.2 14.1 12.4 12.8 15.8 15.7 14.2 14.2 
7 7.3 7.0 6.3 6.3 7.1 7.0 4.8 4.9 14.l 14.1 12.7 13.0 16.0 16.0 13.S 13.9 
8 7.9 7.8 5.9 S.9 8.1 7.9 5.8 6.0 13.8 13.8 12.3 12.5 15.8 15.8 12.8 13.0 
9 8.3 8.2 5.6 s.s 8.1 8.1 5.9 6.1 13.8 13.9 12.0 12.1 16.3 16.2 13.4 13.4 
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Wind speed ratios U,/U1 

The ratios between the values of the velocity at mast i = 2, 3, and 4, and the 
value at mast 1 have been calculated (where the velocities refer to 24 m.) At mast 
2, 3, and 4 the measurement level is 24 m while for mast 1 we extrapolated the 
3Ui m velOcity to 24 musing upstream parameters. 

Sensible heat flv.z 

heat flux= -pc,/r.u. (3) 

where p is the air density, c, the specific heat at constant pressure, T. the turbu­
lence temperature scale, and u. is the friction velocity. 

For mast 1 heat flux was calculated using the 13 and 31 m level, respectively, 
while for the other masts the 2 and 24-m levels were used. 

To test the applied methods (see Appendix A), we considered mast 3 where 
also a sonic anemometer was used. A complete 24-hour time series of heat fluxes 
was selected for 28 June 1983, computed by eddy correlation and compared with 
correlations calculated in Eq. (3). Figure 5 shows this comparison. As it can be 
seen, the two time series show good agreement. 

Finally, a few words should be said about the analysis approach in the present 
report. The purpose is mostly to extract the broad climatological features of the 
JYLEX data set of most relevance to the growth of the internal boundary layer 
when thermal effects are important. Therefore, our approach shall be to average 
the para.meters above specified for eMh of the classes also defined above, that is 
for each mast, wind direction sector, season and day /night. 

It is to be noted that a set of stability classes has not been defined as would 
·have been natural in this study of nonneutral boundary layers. The reason is our ... · 
difficulty in specifying relevant stability classes here where both the stability over 
water and over land are relevant. Furthermore, it is not dear at present that 
stability would be the best measure of the influence of thermal effects on the 
growth of the internal boundary layer. As a rough measure of the thermal effects, 
the seasons and day /night stratification are used here. 

As in the study of neutral JYLEX data (Sempreviva et al., 1989), we use the 
wind direction stratification to plot the data versus land fetch although realizing 
that this method is more doubtful in tae present report as the insolation charac­
teristics are found to be different for different wind directions. 

4 Presentation of the figures 

In this section we present a series of figures that illustrates the climatology of the 
region for characteristic parameters important to the formulation of models that 
describe development of a thermal internal boundary layer TIBL. 

In Fig. 6a the incoming global solar radiation pertaining to each wind direction 
is shown. Unfortunately, only one year of data was available for this p~rameter, 
but the comparison between analyses for the said year and/or for the complete 
set of data shows largely the same results as exemplified in Fig. 6b. 

We obtained a set of 10266 10-min data points with radiation measurements. 
Their distributions according to sectors and season are shown in table 3. 

12 Ri~M-2924(EN) 



June 2ath 1983 HEAT FLUX 

,'1 
I I 

Joo· I 

I t /I 
I II I 

f'I 11"., II I 
I 

I I I 
I I I 

200 
I I I 

.L 
I I 
I I 
I I 

I 
I 

100 ~ 

- lOO-t---11----1 - Profile Derived 
- - - Measured by Sonic 

Hour 

Figure 5. Comparison between the heat flux estimated by a sonic anemometer 
and the velocity and temperature profiles as used in this report and detailed in 
Appendix A. 

Table 3. Distribution of the radiation data according to wind direction sectors 
{1 - 9) and season. 

l Season 1 2 3 4 5 6 7 8 9 I Total I 
Winter 227 349 494 369 209 245 285 178 179 2535 
Spring 49 39 18 3 24 31 26 91 142 423 
Summer 281 340 418 396 411 465 642 953 1409 5315 
Fall 116 213 267 216 199 148 181 301 352 1993 
Total 673 941 1197 984 843 889 1134 1523 2082 10266 

The small number of cases for spring and fall has been discussed before in 
connection with table 1. For table 3 the spring data are especially sparse due to 
missing data for that period. 

Figures 7 to 12 show the spatial variation of wind speed ratios, friction velocity, 
scale temperature, Richardson number, vertical and horizontal temperature and 
heat fluxes resulting from the data analysis. 
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In the figures presenting the data we shall generally adhere to the notation given 
in table 4 to distinguish between data from different wind direction sectors. 

Table ,f. Notation used to distinguish between data from different direction sectors. 
In most of the plots the data are presented sector by sector. However, we have 
occasionally grouped the data in three times three neighbouring sectors. 

I Sector I Sectors 

1 x 1 2 3 * 
2 + 4 5 6 II 

3 [J 7 8 9 0 
4 0 

5 18:1 

6 ® 
7 • 
8 • 
9 * 

mW/cm2 

x winter 

50 6. spring 
0 summer 
0 fall 

~o 

0 

30 0 0 0 
0 tl 0 

0 
0 0 0 

A 0 0 0 

20 

D x 

10 
x x 

x 
x x 

x x 

2 3 ~ 5 6 7 8 
Mean incoming radiation for the y sectors in different season 

Figure 6a. Global radiation measured at mast 1 as a function of season and wind 
direction sector. 
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Figure 6b. Difference between the £-m temperature at mast £, 9 and 4 and mast 1 
for different periods and for the full data set as well as for the one-year data set 
where radiation data are available. The notation is described in table 4. 

Ris~M-2924(EN) 15 



5 General Remarks 

As we can expect the atmosphere appears to be more stable at night than by day. 
In winter the spatial behaviour of the parameters shows less diurnal variation. 
Global incoming solar radiation (Fig. 6) is seen to depend on the wind direction, 
whfoh is higher in case of northerly wind. This behaviour is present in all seasons 
and is due to the different climatology of the flow coming from different sectors. 

It is therefore natural that also for the parameters, data pertaining to the NW 
sectors can be distinguished from data with parameters pertaining to SW sectors 
that show a different climatology of the two air flows. · 

5.1 Wind speed ratios uif u1 

There is a decrease in the wind going inland. This is more enhanced at night: 
we assume this to be due to the more stable nighttime conditions over land. In 
some papers, Ogawa and Ohara (1985), Doran and Gryning (1987), Bergstrom 
et al. (1988), Van Wijk et al. (1989), wind speeds are reported to be higher over 
land than over sea. This happens in spite of the larger roughness over land, when 
stable stratification over sea and unstable stratification over land occur, especially 
during spring (Bergstrom et al., 1988). 

It appears from the present data set, figures 7a and 7b, that the spring average 
wind speed ratio shows the following behaviour. The wind speed decreases at mast 
2 sited around 1000 m from the coast and increases again at mast 3 at 3000 m. 
Another decrease takes place at mast 4 (30-60 km inland). This effect can be 
observed also during winter, but less clear and only from the southern sectors. 
Generally, it is seen that the mean ratio is less than one. 

To study more thoroughly the argument, we investigated the raw data, search­
ing for data that showed stability over sea as calculated at mast 1 and instability 
over land as calculated at the remaining three masts. We plotted wind speed ratios 
versus fetches for the three groups of data as shown in figures 7c, 7d and 7e. From 
these figures we see that first the ratios tend to decrease with increasing fetch 
whereafter a considerable spreading of the points appears further downstream. 
This behaviour can be explained by the fact that the flow response is first domi­
nated by change in roughness with stability effects being more important inland. 

We note that there are no cases with stability over sea and instability over land 
both in winter and in the night-time. 

5.2 Richardson number 

Winter days and nights show the same behaviour, i.e. decreasing stability condi­
tions over land, see figures 8a and Sb. By night the inland mast measures stable 
conditions in all four seasons. The behaviour of mast 1 is different, showing over­
water conditions. In the spring and summer we observe instability whereas stability 
is observed during fall. We think that this can be due to advection of colder air 
from the deeper sea while in the fall the advection is heated over shallow water 
in front of the mast by the radiation during the day. In the fall stable conditions 
should instead be due to advection of warmer air from the deeper water over 
shallow water that emits the heat more rapidly. 

During the day, solar radiation heats the shallow water creating instability for 
all three seasons. 
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Figure 7c. Wind speed rations plotted versus fetch for selected conditions (stable 
upstream, unstable downstream at all three land masts) for sectors 1, £and 3. 

SECTORS 4 5 6 21 cases 

1.80 

1.60 

1.40 , 

; 1.20 

........... . . c ~ .. 
::_:, 1.00 

. ,. . 
: : . . . . . 

0.80 
. . . 

I • 

0.60 

0.40 
100 1000 10000 

fetch (m) 

Figure 7d. As for figure 7c but for sectors ,/, 5 and 6. 
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5.3 Friction velocity and turbulence temperature scale 

Figures 9a, 9b, 9c and 9d show the parameters of friction velocity and turbulence 
temperature versus fetch, season and day or night. The friction velocity, u., and 
the scale temperature, T., are derived from the profiles measured, see Appendix A. 

5.4 Heat Flux 

During daytime we observe a different behaviour of the heat flux values for the 
different sectors. Using parameters pertaining to the SW directions, the heat fluxes 
calculated for masts 2, 3 and 4 are below the ones calculated· using the NW wind 
parameter values, see figures lOa and !Ob. 
If we consider what is already discussed above for Fig. 6a, showing the seasonal 

global radiation, we know that it is higher with winds coming from the NW sectors, 
especially in the spring and fall. This point is confirmed also by the figures showing 
the nighttime heat flux where the spread of the data points disappears. 

The absolute values of heat flux decrease going inland, especially at night. We 
will discuss this later together with the vertical and horizontal variation of the 
temperature. 

The presence of an upwind water surface can be noted from the smaller variation 
of the heat flux calculated at mast I between day and night relative to the variation 
of the inland masts. Larsen and Gryning (1985) found that the influence of the 
sea extends up to 20 km inland, this could explain the different values for mast 4 
in respect to masts 2 and 3. 

5.5 Temperature 

Vertical difference of Temperature 

Figures Ila and llb show the spatial variation of the vertical temperature. As seen 
from the ;figures, the absolute value of the vertical temperature gradient decreases 
when going inland. 

Horizontal variation of temperature 

Figures 12a and 12b show the horizontal variation of temperature for all four 
seasons and day /night. Temperature difference versus fetch is plotted: AT = T1 -
T;; i = 2, 3, 4 at 2 m height. Negative values for AT mean that the land surface 
is warmer and positive values that it is colder than the water surface. 

In agreement with the results in Gryning and Batchvarova (1990) we found 
that by day the temperature increases going inland. In spring the increase is 
less than in fall, especially as concerns masts 2 and 3. We think that the heat 
capacity difference between sea and land plays an important role here. At night 
the temperature decreases inland, and in spring we see a faster decrease than in 
fall. Winter shows the same behaviour both during day and night. For the southern 
sectors the temperature increases inland while for the northern ones it decreases. 
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Heat ftux, vertical and horizontal AT 

The growth of a 'Thmperature Internal Boundary Layer (TIBL) can be approached 
according to two different assumptions, e.g. Berkowicz (1988). 

Some models relate the heat flux to differences between land and water tem­
perature. Land temperature is constant with the distance from the water and 
the air temperature starts warming up and tends to reach the level of the land 
temperature further inland (figure 13a). In this way the heat flux decreases inland. 

Other models relate the temperature difference between air and land to the solar 
radiation and the related turbulent heat flux, figure 13b. Sol8:1' radiation heats the 
land, and so the heat flux is constant and the vertical temperature difference is 
kept constant. 

Unfortunately, we have no data on land and sea temperature. However, we do 
have quite extensive information on the behaviour of the different parameters 
inland as illustrated above. 

It is seen from figure 13 that the inland variation of the heat flux is the most 
distinct difference between the step change in heat flux and that of surface tem­
perature models. 

In figure 14 we have therefore normalized the heat-flux plots of figure 10 by the 
average heat flux at mast 4. The figure indicates very strongly that the nighttime 
data seem definitely best described by the step change in the surface temperature 
model, while by day the data are somewhat closer to the step change in the heat 
flux model, at least in summer, fall and spring. 
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Figure 19. Two different descriptions of the development of a thermal internal 
.boundary layer (Berkowicz, 1988}. In figure 19a, the step change in surface tem­
pemture is considered, while figure 13b considers a step change in surface heat 

flux. 
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Figure 14a. Heat flux, H, at the different masts, normalized by the heat flux at mast 4, Ho, and plotted versus fetch. 
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Appendix A: Description of profile relations 

The Richardson number is defined by 

R . g ~+r 
i- -

- T (~~)2 

where 

r = adiabatic lapse rate 
T = temperature 
u = wind speed 
z = vertical coordinate, and 
g = acceleration due to gravity. 

Ri has been calculated at the logarithmic mean height 
z1z2 

ZLMH= ---
Z1 + Z2 

and then referred to the 10-m level 

Rz = RLMH • IO 
ZLMH 

The heat flux, H, has been derived from the profiles as 

H = -pcpT.u .. 

where 

p is air density 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

Cp is its specific heat at constant pressure while T., and u,. are the turbu-
pcp is heat capacity 

lence temperature scale and friction velocity, respectively. To calculate T .. and u. 
we used the following formulation 

z2 (z2) (z1)-1 u,. = Awc/eft~n zi - WM L +WM L 
where \ft M is the similarity function for the mechanics momentum 

( 1 + x) ( 1 + x2 ) 7r WM= 2 ln - 2- +In - 2- -2arctan(:z:) + 2 

where 

for the instable case, Dyer and Hicks, and 
z 

WM= -5L 
for stable cases. For L we used the following formulation 

T. = Ae · K • (in ;: - \ft H ( T) +\ft H ( 1)) 
where A0 is the potential temperature difference between level z2 and z1. 

Ae =AT+ 0.0098Az 

Ris~-M-2924(EN) 
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where 

t:;.T 
f/!H(z/L) 

f/!H =-5f 

is the temperature difference measured between z1 and z2 and 
is the similarity function for the temperature profile 

Ri > 0 

'Y!n = 2 ln (l±T~z{L>) Ri < 0 

where 

T(z/L):::: (1-16 f;)- 112 Dyer and Hicks. 

For stable cases the Monin-Obukhov length, L, has been calculated using (Larsen 
and Nielsen, 1991) 

Z • J(H 
L = l.fJm Ri [{M 

where 

- 1 
- 1-5(~)Ri 

1+ 24 · 4Ri 

(A.9) 

O < Ri < 0.2 

Ri > 0.2 

(A.10) 

This formulation has been used when calculating L, using the Richardson num· 
ber so a.s to avoid L being .. infinitive which would result in negative values for ,., 
Ri > 0.2. 
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