
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Diagonalization Procedure for a Bose System Hamiltonian

Kowalska, A.; Lindgård, Per-Anker

Publication date:
1966

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kowalska, A., & Lindgård, P-A. (1966). Diagonalization Procedure for a Bose System Hamiltonian.  (Denmark.
Forskningscenter Risoe. Risoe-R; No. 127).

http://orbit.dtu.dk/en/publications/diagonalization-procedure-for-a-bose-system-hamiltonian(0067f74a-6e7d-42b4-8ddb-0c9b41c3ff7a).html


fM 

O 

o 
8-

OL 
'•O 
c/i 

Riso Report No. 

Danish Atomic Energy Commission 

Research Establishment Riso 

Diagonalization Procedure for a 

Bose-System Hamiltonian 

by Antonina Kowalska and P.A. Lindgård Mogensen 

tf0.\75> 

May, 1966 

Sales distributor i: Jul. Gjellerup, 87, Solvgade, Copenhagen K, Denmark 

Arailab/t on exchange from: Library, Danish Atomic Energy Commission, Risd, Roskilde, Denmark 



May, 1966 Ris6 Report No. 127 

Diagonalization Procedure for a 

Bose-System Hamiltonian 

by 

Antonina Kowalska 

University Jagiellonski 

Institute of Physics 

Krakow, Poland 

and 

P . A. Lindgård Mogensen 

The Danish Atomic Energy Commission 

Research Establishment Rise 

Physics Department 

Abstract 

A diagonalization procedure for a quadratic form of Bose operators 

is presented. Explicit, exact expressions for the eigenvalues and the t rans

formation matrices are given for the case of two interacting Bose systems. 

As examples of applications may be mentioned simple magnon treatment of 

antiferromagnets or ferromagnets with two atoms per unit cell, magnon-

phonon interaction and other interactions between collective modes. 
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Introduction 

By diagonalization of a Hamilton operator we mean a procedure for 
finding the energy eigenvalues and the coefficients of the matrix vhich t rans
forms the Hamiltonian into its diagonal form. In physical applications the 
energy vahies are usually 0f principal interest, and there exist relatively 
simple methods of obtaining them; well known is the Bogoliubov } equation-
of-motion method. We shall here present a method which is a slight gener
alization of the simple diagonalization method of a symmetric quadratic 
form. 

In the literature, the coefficients of the transformation matrix are 
given explicitly only for some special cases. It appears that the coefficients 
play a role in obtaining information about the interaction in a Bose system. 
This is the case with the magnon treatment of the rare-earth metals dis
cussed in ref. 2. Therefore we shall give a procedure and the explicit ex
pressions for the coefficients for more general cases which appear to be of 
importance for instance in spin-wave analysis of materials having non-
isotropic spin interaction. The procedure may be characterized as a step-
transformation method. 

In section 1 we give the eigenvalues of a general bilinear, two-Bose-
system Hamiltonian, and in section 2 the step-transformation matrices are 
given for a number of cases. 

In appendix 2 we illustrate the step-transformation method by cal
culating the final transformation matrix in a simple case. 

1. Diagonalization of a General Bilinear, Two-Bose-System Hamiltonian 

Let us for simplicity give the calculations for two interacting Bose 

systems, "a" and "b", with equal numbers of particles.- One may think of 

systems like ferromagnets with two atoms per unit cell, antiferromagnets, 

magnon-phonon systems, etc. The theory might easily be extended to deal 

with more than two systems. 

The most general Hamiltonian bilinear in Bose operators we are 

going to consider may be written 

H t o t = Z H^ ; (1.1) 
q M 

all 
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q i s short for wave vector q. 

H 
1 A a , + , + , 
T A a a + a a ) 2 q' q q q q' 

+ 4 A b ( b b + + b" b ) 2 q* q q - « ' q q 

+ T, (E a. a + B a a ) 2 q q -q q -q q ' 

-* (B b b + B b b 2 q q -q q -q q 

(1.2) 

+ C a b + + CK b a+ 

q q q q q q 

+ D a b + D x b + a + 

q q -q q -q q 

3. h t 
A ' is r e a l because H must be hermit ian; 

q q 

B a ' = B a ' because of the Bose commutation re la t ions (BCR) and q -q ' 

the symmetrizat ion performed. 

The coefficients A a ' , B a ' , C , and D a r e defined through 
q q q q 6 

(1 . 2) and a re at the beginning subject to no more r e s t r i c t i ons . 

Let us write (1.1) in a more sys temat ic way as 

H. . = 2 H - 2 H , 
tot q c ' 

q H q H 

aU al l 

(1.3) 

where 

1 "+ , + , ^ 
H = -x a a b b 

q 2 q -q q -q 

A" B* 
q q q q 

B a A a D C 
q -q -q -q 

C D* A b B b * 
-q q q 

D C* B b A b 

q - q q 

a 

- q 

(1-4) 

or in short notation 

H • \ A+ H A (1.5) 



where H is the 4 x 4 matr ix and A the "column opera tor" . H = H 
q q 

because H is hermi ' i an . 

We want to diagonalize (1.1) for an a rb i t r a ry q. So let us a s sume 

that for this q there exists a non-singular t ransformation mat r ix T (short 

for T ) so that 
- q 

H = I A+ F A = -j (T" 1 A)+ T + H T ( T - 1 A) 

- | F + E F 

(1.6) 

v h e r e E i s a diagonal matr ix . 

E = T H T , and A = T F (1.7) 

We define the second equality in (1 . 7) explicitly by 

a l a 2 °3 Q 

P? P? PA P 

Vl h h Y 

4 

; 

4 

y. 
3 

fF 1 
q 

F - q 

Gq 

G + 

- q 

(1-8) 

where F and G a r e quasi-part ic le opera tors and the q-dependent coeffi

cients a r e defined in such a way that a.(-q) = p*(q) and "Y-(-q) = 6.(q). 

(1.8) expresses that we want to diagonalize H. . by writing every opera to r 

a s a l inear combination of some ^ i s i - p a r t i c l e opera to r s . The mat r ix E 

i s defined by ^ 

H * i F E F = 4 F„ F „ G„ G n q 2 - 2 q - q q - q 

E* 

Ex 

E g 

q 

>» 

E g 

-q 

f N 
F 

q 

< 

G 
q 

(1.9) 
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i c — 
E / b is reaJ because- Il = U . 

-q *1 
The total Kamiltonian will then assume the diagonal form (1.11): 

H t o t = 7 ~ < E ~ F 

q 
all 

* F + F A E1 F F + +EgG' ?"G + E g G G + ) (1.10) q q q -q -q -q q q q -q -q -q ' ' 

2 T lw f (F + 

at q * q 
all 

F„ + 4) + *» q<Gq Gq + H- (1.11) 

where hw * *» = E ' *» a r e the dispersion relat ions for the two possible 

modes descr ibed by F and G opera tors . To obtain this resu l t we have 

used the fact that al l opera tors involved a r e Bose ope ra to r s . 

By combining (BCR) and (1. 9) one sees that the coefficients in the T 

matr ix must fulfil the equation 

P* P 

52 51 

*4 

„X 

"3 

6 4 5 3 

s 

X 
"l 

X 
-a , 

•P< 

Pi -V 

1.12) 

Thus the commutation re la t ions in a s imple way define T~ by the coefficients 

in T . This proper ty i s the crucia l point in this method and makes the dia-

goiiplization of II easy. We also note that T* f T indicates that the t r a n s -— — — + - l 
formation is non-unitary. F rom (1. 7) we obtain H T = (T ) E or , 

explicitly. 
f 

v. 

A a 

q 

»\ 

c 
q 

D 
q 

BK 

q 

A a 

-q 

-q 

c* 
-q 

c * 

D 
-q 

A b 

q 

B b 

q 

q 

c 
-q 

B b 

q 

A b 

-q 

Q i 

Y i 

52 

°2 

a* 

Y2 

61 

a 3 

Y3 

84 

a 4 

p; 

Y4 

5 3 
s v. s 

-p 

1 

X 
2 

•i 

.X 

"°2 a 3 

pf -PS 

•T2
 Y3 

> 

"a4 

ft* P3 

- Y 4 

6 3 

E 
-q 

E g 

q 

E 8 

"1" 
(1.13) 
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We notice that we can change signs in part of a column as follows: 

1 o 

-P 

Y 

"N 

-1 
> 

a 

P 

Y 

6 
k s 

(1.14) 

So for every column vector u . of T , (1.13) can be written as 

H ui = X. B Uj (1.15) 

where B i s the 4 x 4 mat r ix in (1.14) 

X = E f , -V, = E f , X = E g , and -X. = Eg 
1 q 2 -q 3 q * 4 -q 1 

X. is the i ' th root of the determinant equation 

det(H - A B) 

<Aq - M 

.a 

Bc 

( A * q + X ) 

D* 

D* (Ab - X) 
-q v q 

,b* 

D B q ( A ^ X) 

(1.16) 

= X4 + K, X3 + K0 X2 + K, X + K = 0 3 2. 1 o 

We are here only interested in the case where the energy i s an even 

function of q. In thai case (1.16) is reduced to a second-order equation in 

X2 . 

Therefore we look for the cases where K« and K, vanish, 

K„ = A a - A a + A b - A b = 0 for A a ' b = A a ' b . 3 -q q -q q q -q 

* ) 

(1.17) 

*T The last condition in (1.17) is not the only possibility for making K, 

equal to zero; but it i s the only one which does not impose restrictions 

between systems "a" and "b". 
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We then obtain the following condition for the other coefficients; 

K l M | C q | 2 - | C q | 2 ) ( A ^ A b
q ) + ( | D q | 2 - | D q | 2 ) ( A b

q . A a ) 

(1.18) 

+ 2 Re B a ( C D - C D ) + B b (CX D - CX D ) = 0. 
[ q l q -q -q q ' q q q -q - q j 

When (1.17) and (1.18) a r e fulfilled, the solution to (1.16) has the 

form 

(t tu>q 'g) - (Eq 'S) " R - t 5 ; (1.19) 

R and S a re easily obtained from (1.16). 

We shal l he re only give the explicit expression for a par t icu lar c a s e . 

Consider two equivalent sys t ems in which the coefficients fulfil the 

conditions 

A a = A b = A = A , B a = B b = B and C = CK . (1.20) 
q q q - q q q q q - q 

Then (1.17) and (1.18) a r e fulfilled with no conditions imposed on D , and 

we have 
2 2 

R = A q " l B q l + lCql S—^ = * - I 1 - 2 1 ) 

S = 2 |A C - BKD I + 2 |A C - BKD I q q q q | | q - q q - q | 

IB D K - B K D I " | c D - C X D I + i | D 
1 q q q - q ' ' q - q q q1 * [] 

- i 2 
2 21 

For D = D = 0 , (1.19) is reduced to 
q -q 

o 2 2 
(Ito j | g > = ( % " | C q | ) - | B q | . (1.22) 

In the following we shall present a procedure for finding the coeffi

cients of the transformation mat r ix T . 
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2. Method of Finding the Coefficients of the Transformation Matrix T 

In the general case the problem of solving the equations (1.15) is 
„3) 

t roublesome. For some special cases the solution is given in many papers 

The method descr ibed below, which is a kind of "s tep- t ransformation method", 

can be ponlied +r> r> n o r p general Hamiltonian, inchidinjf that in which the 
K) absolute values of the coefficients D and D a r e not equal ' . The idea is to q - q H 

write the T mat r ix as a product of s imple r ma t r i ce s (four in the c a s e s con

sidered below) which descr ibe s impler t ransformat ions. We apply this 

method to three c a s e s , assuming such proper t ies of the coefficients of the 

Hamiltonian (1.1) that the conditions (1.17), (1.18) and those mentioned jus i 

below (1. 2) a r e fulfilled. 

In all th ree cases we therefore a s sume A~ = A and rea l , and 
q -q 

B = B1 (i = a, b). Besides , in par t icular ca se s the coefficients fulfil the q -q 
following conditions: 

1st case : B a rb i t r a ry . C = C , D = D ; 
q -q q -q 

2nd case : B 1 r e a l . C = CK , D = DK ; 
q -q q - q 

3rd ca^e: A a = A b . B a = B b , 
q q q 

C = C , D a rb i t r a ry , q -q q J 

P l p 2 0 0 

f, P4 0 0 

o o p. Pfi 

o o p7 p8 

rx 0 0 r 2 

0 r 3 r 4 0 

0 r„ r c 0 
D 6 

r ? 0 0 r 8 

Sj 0 s 2 0 

0 s 3 0 s 4 

s - O sfi O o 6 

0 s ? 0 s 8 

h *2 ° ° 

tg ^ 0 0 

o o t7 t8 

-~ll In T • T - Ill - IV 
(2.1) 

K) This i s the case in a spin-wave t rea tment for instance of a spin system 

of hep s t ruc ture for which the Hamiltonian contains dipole-dipole or 

quadropole-quadropole interaction t e r m s . 
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2 . 1 . F i r s t Case 

In the first case the diagonalization i s performed in the four s teps 

given explicitly below. 

We shall use the following notations (where it is not misleading, we 

omit the index q): 

A a = A A q A l ' B a = B , - | B t | e i f ,2 _ „2 

A b = A Bb
q

 = B2=lB
2l «** : K* = A M B , | 2 

!-•"!• - - I ? - A j - | B l | ' ; 
(2.2) 

|2 
q 2 ' " q " 2 " ' " 2 1 c ' ""2 ""2 " ' " 2 

(we here a? e ume | B | < | A | , which is usually the case) , 

and for the matr ix coefficients: 

iTC i g i O* ix 

Pn = | P n l e ^ * n " l r n l e • S n = I s n I e ^ V I *n| e » ; 

(n = 1 . . . 8 ) . 

2 . 1 . 1 . The first s tep transformation descr ibed by mat r ix T, 

t ransforms H (see (1.4) and (1. 5)) into a s imi la r expression with new coef

ficients A* - B l » ^+ > **+ " demanding that the t ransformation 
-ql -ql -ql -ql 

pres«.' res commutation relat ions and gives B + = 0 , we obtain the fol

lowing vfelues for p : 
3 *n 

•JL 

II 

P l p2 o o 

p 3 p 4 0 0 

o o p. Pf 

0 0 
'8 



- 1 1 -

\ A 1 + K 1 i l r l 

V̂ —nq- e P2"l|-nq- e 

i«P iTCj i*p i n 2 

P 3 s - | p 2 l e e P 4 = ~ | P i ! e e 

V K 2 iTC< 
inq-

_\ ^ 2 ' " 2 "*5 ,-1 A 2 " K 2 i T t6 
^q-e 

i<l» i ^ 5 i* ilt _ 
P 7 = - I P 6 I e e P 8

a - | p 5 l e e 

Tt Tt_, u ^ , Tt_, a re a rb i t r a ry phase p a r a m e t e r s . (2.3) 

It turns out that 

A ! " Kl '' A + T " K 2 ' 
-ql -ql 

C T = e 
i(TCj - n 5 ) 1<p j ^ __i4p , * { < e C

q | P l l | P 5 l e 

D
q lPi l 'Pel e 

.i(ip+«|») 

+ C -> 2 I IP6I •-* 

- D*qNlp5l } ; 

i(Tr6 - n2) ty 

•ql | -qi C -T- e " " e " X | C . a | P i l | P 5 l e " + <Z\H\W* 

D-alPi! IPs I e • • " • • ' - • S w i m }• 
(2.4) 
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D . - e i ( ^ - ^ e ^ { c | P l | , p 6 | e ^ 
ql 

+ C - q N |P5I
 e • i * 

^NIPSI^^^-^NIPSI} 

D - q i = e e * [c-qN P 6I 
• i t P + C« ,p 2 , , P 5 | e " * 

D-a|Pll lp5l e 
•i(<P+<J> ) Dq N |P6j[ 

(2.5) 

We see that the conditions C - C_ . D = D_ give | C J = |C , | 
q' q ql1 I -ql l 

and I D J = I £>_ . I for a rb i t r a ry BA . 

In the second case , where we assume C = C , D = D , i t i s 
q -q q - q 

necessa ry to assume also B rea l in o r d e r to get IC , | = JC J, 

ID , | = |D J . These conditions a r e required in o r d e r that the next s tep 

t ransformat ion may be performed. 

2 . 1 . 2. In the second step transformation we shal l use the following 

notations: 

C t q I
 = % ; \ i - * t q : |M q l - | M . q | ; | N q | = |N_ q | ; (2.6) 

K. - K2 A K. + K , * 2 

(-V-2) -lNql ; 
(2.7) 

* - * ^ * \ 

K, + K 9 ' : 

One can easily check that K, - Q, = K„ - Q„ and 

N N J « (Kj - Q^fKj + Q2) 
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This is the transformation described by matrix T „ . It transforms 

the considered part of the Hamiltonian into a new one with the coefficients 

D. A, , B, , C, 
-qll -qll -ql l •ql l 

Demanding that the transformation p rese rves commutation relations 

and gives D , = 0, we obtain the following values for the coefficients r : 

T 

r l ° ° r2 

0 r 3 r 4 0 

0 r 5 r6 ° 

k 
r ? 0 0 r 8 

A K l + Q 2 i S 1 

<5pn^ e , \ 

K i - Q i * 2 

r 3 " - ' r l ' e 
i§, 

r 4 = | r 2 | e 
ig 

N* i g 3 N* ig, 

r 7 = l r 
N ig. 

2 , l ^ | e 

N q i S 2 
8 n i p t , 

(2.8) 

» 8-*' 84 are arbitrary phase parameters. 



- 14 -

It turns out that 

-ql l 

K -
-qll 

B * • 
-qll 

Qa ; 

l r i l l r
2 l 1 

" | N | ' 
1 q' 

Til lr2l 
1 ql 

\ll = Q 2 ; 

M N + M q -q -q 

M * N * + M * 
q -q -q 

(2.9) 

Nqj e 
(2.10) 

i) 
- i (S 2 - 84) 

1 r 2 2 1 i ( 8 i 
qll |N q | 1« 1' q -q I 2' -q qf 

C * « _ ^ _ ( | r J 2 M , I N K
 + | P 1 | 2 M « N ^ l e " 1 

-qll | N q | Y 2' q -q I 1" -q q j 

(2.11) 

- i (S 2 - 83) 

If we assume the following relation between the arbitrary phase 

factors: 

1 {t1 - § 3 ) -i(§ - §4) M * N* 
e = e ~TVr" TJ » and use (2.6), we obtain 

q -q 
the relation 

Ba
1T * B „ and at the same time C TT ~ C* TT . (2.12) 
q " q " q " -<*" 

2 .1 . 3. In the third step transformation we shall use the following 

notations: 

C q I l " P q J V P - q '' BqH " K* ' Uq ' {%' ^ 

w l " 

W 2 " 

^ 4 ? L ^ + | r q , 2 

. ^ .^2L^2, |P ,. 
(2.14) 
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The third step transformation described by the matrix T . . . trans

forms the considered part of the Hamiltonian into a new one with the coef

ficients A* , B* , C. , D 
tqlH IqlU Iqlll -qlll 

Demanding that the transformation preserves commutation relations 

and gives C. * 0, we obtain the following values for the coefficients s : 
-qlll 

C 

T i III 

s- 0 s„ 0 

0 s
3 ° s4 

s 5 0 s 6 0 

0 s ? 0 s g 

^ 

Q l - w 2 idx 

W l - W
2 ° 

id 3 
s 3 = Isjl e 

P i d 2 

^ • l ^ l j p 2 ] e 
i ql 

vKl^I 

_\IW1"Q1 J62 
-i ^Wj - W2 

i d 4 s 4 - | s 2 , e 

P i d 2 

•e - - i" i i |p jr ' 

id P i d 4 

i qi 

(2.15) 

6 , 6 d d are arbitrary phase parameters. 

It turns out that 

W, 
.qlll 

A ; - w 2 
-qlll l 

R a R b „ ^ l - d 3 > . , i ( d 2 - 0 4 > ^ i - d 3 ) 
B. * B, = U e if we assume e = e : -qlll -qlll q 

(2.16) 
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D. • O ; this follows from the relations (2.12). 

So we s e e that after performing the three above step transformations 

we get a transformed Hamiltonian with only A and B coefficients different 

from zero. Therefore, to obtain a completely diagonalized form we have to 

perform a fourth step transformation of the same type as the first. 

2 . 1 . 4 . In the fourth step transformation we shall use the following 

notations: 

E 1 »Vi2" , U | 2 ; E2=\|w2
2- |U|2 ; Ue1 *~ 3 = X 

(2.17) 

Demanding that the transformation with matrix T j V preserves com

mutation relations and gives Bx
 J V • 0, we obtain the following values for 

the coefficients t : n 

IlV 

*1 *2 ° ° 

t8 t4 o o 

0 0 t 5 t 6 

*7 *8 
v 

W, + E, ix 

h l - ^ " e 
W, -E-, ix i w r E l 

v - hilprj 
x , » a 

\ W 2 + E 2 i T 5 
TE: <Å 

W 2 - E 2 iXg 

TET
 e 

(2.18) 



X. , T 2 » ^ » T e a r e a rb i t ra ry phase p a r a m e t e r s 

*b 
It turns out that A 

ficients a r e equal to zero. 
-qlV 

E, + = E„ , and all other coef-
-qlV 

2. 2. Second Case 

In the second case , where we assume B rea l , C = C x , D = D* , 
q q - q ' q -q ' 

the procedure is completely s imi la r to that for the f i rs t case (see the r e 

mark just below (2. 5)). 

In both cases mat r ix T i s only determined within four a rb i t r a ry 

phase factors , one for each column. We can use this a rb i t r a r i ne s s if we 

want the coefficients of the matr ix T to fulfil the conditions a-(-q) = p-(q) , 

V-q) * di(3> • 

2. 3. Third Case 

In the third case (A* = A £ , B* = B | J , C = C* D a rb i t r a ry ) we 

have general ly JD U |D J , so we cannot follow the procedure of the f irs t 

and second c a s e s because now |M j f |M jand |N | f |N | . 

2. 3 . 1 . Therefore we change the f i rs t s tep t ransformat ion, using to 

descr ibe it ma t r ix T . of the shape 

1*1 

?\ P2 ° ° 

0 0 

?i ?! ° ° 

(2.19) 

We shal l use the following notations: 

A a « A b = A B a = B b B (2.20) 



- 18 -

Performing this transformation, we obtain new coefficients A. , 
tq l 

B + , C + , D. . Demanding that the t ransformation p re se rves com-
-ql -ql -ql 

mutation relat ions and gives B + = 0, we obtain the following values for 

the coefficients p ' : •ql 

, 1 A + K l iK1 , i A - K j 

PI "] " n q - e P2s] T K J -

iTC, 

, \ A - K 2 " 3 A+K2 iTC. 
p 4 - ^ ^ ^ e 

D * i n D* m. 
P s ' - l p i l p ^ r 6 3 PeHPgljirV 4 

D in D in. 
p? " - I p i ! ^ , e * pir-IPiIji3! e 

(2.22) 

Tij , Ti„ , Tt_ , i t . a r e a rb i t r a ry phase p a r a m e t e r s . 

It turns out that 

K T
 = K i 

-ql 

A = K2 
-ql 

(2.23) 
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C . = e 
i i«! - * 3 ) 

^IPIMP^J^J-C^IP'IIP'I ^ 

D D 
+ B | P ; | | P 3 | + B « | p ' | | p i | p [ ^ - 1 j L L ; 

C T = e * " <- C -ql q Pl lKlp 3 ] -Cq|P2l|P3l p 

+ B>2I W + B iplllPslpr^ft 
ql I ql 

We can get C T = C , if we assume e s ql -ql 

(2. 24) 

(2.25) 

= e 

Dql * ^ " V { - Cq|Pll|Pil l^Jf " Cq|P2HP4l -jSj 

+ B i P i i i P ; i + ^*l"4l,T*lft}-
qi i -q l 

(2.26) 

D = D , if condition (2. 25) is fulfilled. 

Putting again C q I - Mq, Dq J • Nq, we have |Mqj - |M_q| , |N q | = | N q | , 

and we can perform second, third and fourth step transformations as before. 

Also as before, matrix T will be determined within four arbitrary phase 

factors, one for each column. 
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3. Conclusion 

We have shown that a bil inear Bose Hamiltonian can be diagonalized 

in a s imple way by a method analogous with that used for the diagonalization 

of a quadratic form of c-number var iab les . The fact that we have been 

dealing with Bose opera tors reveals i tself in the matr ix B (1.14 and 1.15), 

which in the case of c -numbers i s the unit matr ix . The Bose commutation 

relat ions thus introduce the s t ra in (1.12) on the coefficients in the t r a n s 

formation ma t r ix T 

Ty - (-)1+j TJJ . (3.1) 

It should be noted that the s t ra in condition (or the mat r ix B) i s de

pendent not only on the (BCR), but a lso on the sequence chosen of the 

opera tors in the quadratic form (1.4). 

In section 2 it has been shown how it i s possible to obtain the coef

ficients T . - , subjected to the s t ra in (3.1) when cer ta in relat ions a r e ful

filled between the ma t r ix elements of the hermet ian matr ix , which i s to be 

made diagonal. The s t ra in (3.1) is c lea r ly independent of the following 

changes in the opera tor sequence in (1.4): a <-> b and /or a O b 

The resu l t of the s tep t ransformations in section 2 can thus also be applied 

to other cases of in terre la t ions between A , B , C . and D than those 
q q q q 

quoted in cases I to III. As an example of this it is easily checked that case 

III i s comprised by case I when the rea r rangement a <•» b , a and b 

unchanged, is made . Finally i t should be mentioned that the method used in 

s ec . 1 can be applied to any quadratic form of opera tors for which the com-
4) mutation re la t ions a r e equal to c -numbers ' . In general the ma t r ix B will 

not be diagonal. 
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Appendix 1. Calculation of Eiiergxes in the Third Case 

We can easily calculate the energies E« , E ? for instance in the Lhird 

Ki(2.8): 

i :e. We s t a r t from the formuln (2. 17) with M , N given bv (2. 24), (2. 26) 
q q v ' »» 

2 Q i + Q 2
 2 < V Q 2

 2 
o o •> "»i ^ " ^ 1 ^9 9 9 

E- = w; - iur = ( A
2 -) + ( - V - £ ) + i p r - IUI 

<Q 2 - Q2
2> 

i—— + IPI (QX -Q,r 

R +M S N (compare with (1 . 19)) , 

where | P | 2 = | M | 2 {Illl£ a n d , u f 2 - f j M l f j N l f 

(QT + Q2)2 (Q2 + Q2)2 

1 ^ 2 . 1 ^ 2 . 1 ,~2 
?Qi + I Q 2 - i P l " - lu l" = 7 ( Q X + Q 2 ) + i Ml* 

(-±2-2.) + ( - i ^ ) - | N ( 2 + l M l " = A 

2 + f T . .2 .„ .2 

T 
2 _ A 2 lPq l » l P . q r - l N r + |M)' 

[%2-Q2
2]2

 2 
I M I ^ K j + K g ) 2 ^ ^ 2 - ^ 2 ] - < K r

K 2 ) 2 , N , 2 + < K l + K 2 > 2 , M | 

£ ( | D | 2 - | D J 2 ) + ( K 2 + K 2
2 ) ( | M | 2 . | N | 2 ) + 2 K j K 2 ( | M | 2 + | N | 2 ) . 

From the definitions of M and N we obtain (putting C • C) 
q q q 
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^ i r _ J 2 A 2 ( | C | 2 + |B| 2 )+2K 1K 2 ( |C | 2 - |B | 2 )+ 2ReC2DqD* 

+ 2 R e B 2 D * D K 

q - Q 

- 4 R e A B C D * 
-q 

4 R e A B X C D i ; 

x | N , 2
 = T K i T r ( 2 A 2 ( | C | 2 + | B l 2 ) + 2 K 1 K 2 ( | B | 2 - | C | 2 ) ^ 2 R e C 2 D q D _ q 

1 2 i l 
+ 2 R e B 2 D * D X 

q -q 

- 4 R e A B C D * _ 

4 R e A B * C D . 

2 2 
Putting these expressions for |M| and | N | into R and S, we 

obtain formula (1. 22). 



- 23 -

Appendix 2. Explicit Calculation of the Matrix T for a Special Case 

AQ = A = A ; B = B = B (not necessarily real); 

C = C * ; D = D = 0 . 

q -q q -q 

This example is comprised by case III. Let us make the additional 

assumption that A > 0 (if not, we could always write H = - (-H) and diago-

nalize - H) and use the notation B = | B | e , C = | C | e 1 ( * ) . AU formulae 

introduced in the description of the four step transformations will now be 

very simple. Starting at section 2.3, we obtain 

K l = K2 = A 

N - N - |B|e 1 4 e1* q -q 

i(7tn - TC„) . „ i i { i r , - 1l_) . i 
M = M - I C l e * S e1* = |C| e 4 2 V * q -q 

Q 1 - 02 - V - |B | 2 = Q 

.x AJC| i ( 8 l " §4> i(Trl " V i«p iy' = J e e e T e T 
P = p " = ^ J ^ i e e e ^ e ^ = P 

q -q Q 
Kd.-rfg) 1 ( ^ - 8 3 ) H\-*2) i i p 

£i C* £k ' 

I 

X - 2|B| |C| e ' 1 3 V * 3 e ' 1 l V * e1* 

W1 - W2 = 2(W2 - Q) = 2(Q - W2) = 2 |P| 

E 2 = (A+ |C|)2 - |B | 2 E 2 = (A- |C | ) 2 - | B | 2 . 

The relations (2. 25), (2.16), (2.12) between the otherwise arbitrary 

phase factors TI , a , d are now 
r n sn n 
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KUj - It ) i(TC4 - IC,) 
e = e 

i(d2 - rf4) !(*! - rf3) 
= c 

i(S1 - Sg) - i ( § 2 - 8 4 ) Z i t ^ - T l j ) -2i(<f+ vp') 
= e 

The matrices of the four step transformations are then 

S 
ilt, 

1 0 0 0 

TT • 
- I 

e 

0 

0 

0 

0 

0 

0 

0 

i1c 3 

- e 

0 

e 

0 

1TC, 
0 -e 0 0 

S 

r"" 

J i l l f2" 

id. 

id 

p e
i d i -P *d2 

fPT6 

P i d 3 

id 

-P i d 4 
FPT e 



r~ 

CM 

on 

Iff 
i 

\< 
9-
i 

9-

i 

fcT 

CO 

on 

25 -

/ — 

*b 
<0 

fc» 
~H 

<u 

N 

W 

oa 
£ 

OJ 

8 
ra 

<o 
H 
- i - i 

a> 

N 

W 
+ 

CVJ 

£ 

N 

« 
M 

I 

J - * 

CM 

4) 

G> 
• 

<. 

1 

0 
on 

o 

or 
+ 
^ 

9-

r-I 

• I - I 

4> 

on ̂  

O" 

+ 
< 

Of 
1 

«i 

0) 

X|K 

i-H 

w 
1 

I - I 

£ 

1-1 

KJ 
M 

t - i 

W 
+ 

•M 

£ 

r1 

H 
M 

*b 
in 

eg 

+ 
CM e 

w 
I 

CM 

CM 

E 

i« 
+ 

I« 

CM 

• 

On 

0? 
I 

<D 

^ P » 
fc 

*b 

G 

> 
HI 
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Multiplying the four ma t r i ces by one another, we obtain matr ix T 

with the following elements: 

F i r s t column: 

u. 
1 H 1 + 51 + 1 + 1' 

1 ^8 Q E j 
fa (A + QHWj + E x ) - ^ ( A - Q H W J - E J ) j 

Let us denote the expression in the b races as L; then 

L" = 2 Q (A + | C j + E x ) . If | B | i s smal l , which i s usually the case , 

L > 0 and a, becomes 

i(i t + § + <S + x) 
ax - —±= * 1 l \| A + | C | + E 2 . • 

1 2JE^ 1 

c x -
x i«pi(TC1+ g x + <JX+ x ) 

PrT* ' e e 
4 p Q E ^ 

^ ( A - Q X W J + E J ) + \ (A+QMWj-Ej)! 

Denoting the expression in the b r a c e s as L ' , we obtain 

(L1)2 = 2 Q(A + | C | - E j ) . It turns out that, for small | B | , L* < 0 and 

p.;, becomes 

*_ •!__ B ^l + h + V V 
«* = 7 ^ - -ili - x x UHCI-E, 

Similarly we get 

Y = _ L _ C i ( T C l + § 1 + d l + X l ) , . 
Yl ir^ rn e u + i c i + El 

2 T ^ = ^ rffi RTT e ' A + | C | E l 2 " 2 p l TBI TCT 
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Second column: 

2 2 ^ ' * 

fiX.^J B ^ i ^ i + V V r ; n 

v - C 
Y 2 " KTT °2 

fix _ C Rx 
5 i - i n p i • 

Third column: 

«« + s + 6 + 1 ) ̂ ^ 

6 * . - 1 B ^ 1 + *1 + *2 + V t A - l C I - B . 

2 w; «** 

Y » C 

Y3 - TC7 a 3 

6 * - C ft* 

Fourth column; 

•ivwv ) i i . l c , , 
° 4 " 2lEj 

. . . -1 B « V «1+ *2+ V U - I C I + B 
p° 71^" w e 
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C 

*3* 
C Ax 

rer p3 

Putting the following values for the arbitrary phase factors: 

i = 1 . e < * 1 + S l + d l + V B* 
= TO 

i ( t i 1 + g 1 + <J2+ x5) 
= 1 

H\ + 8 l + d2 + t 6 ) fiK B" 
1*1 

we can, using the same notation as in ref. 2. , write matrix T as 

T = 

x x P - ni p - m_ *o o *a a 

- ni m 

cp„ - cm„ - cp„ 
rO O *a 

cm 

V. 
•cm cp cm - cp 

o *o a *a 

where 

ni 
B| - E 

o ta 

P s 

ro, a 

\ K . a + ' B | 2 * E o . 
\ ^ 
1 o, a 

rcr 
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E here stand for E. „ and may denote the optical and the accoustical o, a 1 ,2 J r - t_—: _. 
energy respectively. Notethat A + |C| * ^Ej + |B| and 

A - |C| =^E2
2 + | B | 2 . 
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