# Exchange interaction in the heavy rare earth metals calculated from energy bands 

Lindgård, Per-Anker

Publication date:
1974

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lindgård, P-A. (1974). Exchange interaction in the heavy rare earth metals calculated from energy bands.
(Risø-M; No. 1701).

## DTU Library

## Technical Information Center of Denmark

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal


## Title and author(s)

Date February :1\%,

Exchange Interaction in the Heavy Rare
Earth Metals Calculated from Energy Bands by

Per-Anker Lindgaird

Department or group
Physies

Group's own registration number(s)

The indirect exchange interaction (RKKY) is calculated for the heavy rare earth metals. The conduction electrons are treated by the argumented-plane-wave (APW) method. Numerical results for the susceptibility $X_{q}$ for APW- and free electrons are given. The numerical accuracy is tested for the free electron model using both a root-sampling method and a linearized integral method. The first method requires 450,000 and the latter 9,000 points in the entire Brillouin zone for a good agreement with the Lindhard function. $\mathrm{x}_{\mathrm{q}}$ and the wave vector dependent exchange integral $\mathrm{J}_{\mathrm{q}}$ is calculated for $\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$, and Er in the ordered phase. $\mathrm{J}_{\mathrm{q}}$ is calculated for $G d$ with the inclusion of the matrix element, calculated on the basis of APW functions.

Available on request from the Library of the Danich Atomic Energy Commiagion (Atomener cikommissionens Bibliotek), Ries, BK-4000 Ronkilde, Denmark Telephone; (08) 3551 01, ext. 334, telex; 43116

# Exchange Interaction in the Heavy Rare Earth 

## Metals Calculated from Energy Bands

by

Per-Anker Lindgård
Danish Atomic Energy Commission 4000 Roskilde

Denmark

Lectures given at XI Annual Winter School for Theoretical Physics Karpacz, Poland 18-2 to 3-3 1974.
Contains unpubliahed materials. Should not be quoted or referred to without the permission of the auther.

## 1. INTEODUCTION

The heayy rare earth metals were obtained in pure ⼼m and as single crystals about ten years ago. This made a detailel experimental investigation possible. Neutron scattering in particular has been an important tool. As a result we dy now have obtained a very complete knowledge about the magnetic interactions. Fie experimental facts, whicn are reviewed in ${ }^{1}$, revealed that she magnetic properties are determined by ar intricate interplay of forces of similar magnitude. The dominant is the indirect Ruder-man-Kittel-Kasuya-Yosida (RKKY) exchange interaction, which we shall attempt to calculate from first principles, here. Jf importance is also the crystal field anisotropy and magnetoelastic effects. The anisotropy of this origin is of a single ion type. Recent neutron scattering measurements ${ }^{2 \prime}$ have shown that also two-ion-anisotropy may be of importance. There are numerous possibilities for anisotropy of the interaction between the moments at different sites. As we shall see the RKKY interaction, which: is mediated by the conduction electrons, is anisotropic in the magnetically oriered phase. The two-ion-interaction, which is mediated by phonons, is strongly anisotropic. The magnitude of the interaction between the spin system and the lattice is determined by the coupling between the spin- and orbital-motion of the electrons. If the spin-orbit coupling and the orbital momentum is large we must therefore expect large arisotropies both of single-ion and two-ion nature. Also the RKKY interaction becomes anisotropic as discussed by Kaplan and Lyons ${ }^{3}$.

In order to avoid the complications of anisotropy we shall start by considering the RKKY interaction in a pure spin system with no orbital effects. This is examplified by gadolinium, which has a ${ }^{8} S$ ground state. The electronic configuration of $a$ Gd atom is a xenon core with seven $4 f$ electrons and three ( $5 d^{1} f_{i} i^{2}$ ) outiser electrons.

The basic interaction is between the localized $4 f$ electrons belonging to the inner shells of gadolinium and the conduction electrons. Rudermann and Kittel assumed for simplicity that the condition electrons were completely free (i.e. plane wave states). We are now able to go a step further and treat the conduction electrons in a more realistic fashion. A standard techrique

$$
-2-
$$

is the augmented plane wave (APL) merhod 4,5).

## 2. THE AUGYENTED PLANE HAVE METHOD (APU)

In the APN-method the electrons are supposed to move in a simplified potential which is atomic like inside a sphere (the muffin tin (in two dimensions)) around each ion and constant ( $=0$ ) between the spheres. The Schroding.r equation is then solved numerically for this potential by the variational method.

The trial wave function is obtained by expanding the wave functions inside the spheres in atomic like functions and between the spheres in plane waves. The wave functions are matched at the surface of the spheres and the coefficients in the expansion is determined by minimizing the energy.

The wave function for the electrons, the crystal wave function, is therefore

Where the coefficients $A_{i}(\underline{k})$ are to be deterpined variationally. The sum is over a set of reciprocal lattice vectors $\mathrm{I}_{\mathrm{i}}$ where we write $\underline{k}_{i}=\underline{k}+\underline{I}_{i}$.


The auguented plane wave is outside the spheres

$$
\psi_{k_{i}}(\underline{r})=\frac{1}{\sqrt{\prime}} e^{i k i \cdot \underline{r}}
$$

where $\Omega$ is the volume of the unic cell.

Inside the n'th sphere it is
where $L_{n}$ is the radius of the sphere and $\underline{R}_{n}$ the vector to the center. The number of 2 values to be included in the sum are not specified at this point. However, if we want to represent $s, p$, $d$ or $f$ character of the crystal wave function we must include $\ell=0,1,2,3$. The wave function ir. the two regions (2) and (3) can be made to match at the sphere surface by choosing the expansion coefficients $A_{\mathbf{l}_{\boldsymbol{m}}}(\underline{k})$ in (3). By expanding (2) in spherical harmonics and Bessel functions around the center of the sphere

$$
\begin{equation*}
\frac{1}{\sqrt{\alpha}} e^{i k i r}=\frac{4 \pi}{\sqrt{L}} e^{i k_{i} \cdot R_{n} \sum_{l=0}^{\infty} \sum_{m=-\ell}^{\ell} i_{j}^{\ell_{j}}(k \rho) Y_{i m}\left(\hat{k}_{i}\right) Y_{\ell m}(\stackrel{\oplus}{\rho})} \tag{4}
\end{equation*}
$$

and equating this with (3) at $\rho=L_{n}$ we find

$$
\begin{equation*}
A_{l m}(k)=\frac{4 \pi}{\sqrt{2}} e^{i k_{i}+g_{n} i^{1} Y_{i m}\left(\hat{k}_{i}\right) j_{2}\left(k L_{n}\right) / Y_{i, E}\left(L_{n}\right)} \tag{5}
\end{equation*}
$$

 It is continuous, but has a discontinous slope at the sphere radius. The expansion coefficients $A_{i}(\underline{k})$ in (1) are found by minimizing the energy

$$
\begin{equation*}
E_{\underline{k}}=\left\langle\psi_{\underline{k}}\right| H\left|\psi_{\underline{k}}\right\rangle /\left\langle\psi_{\underline{k}} \mid \psi_{\underline{k}}\right\rangle \tag{6}
\end{equation*}
$$

This gives a secular equation for the determination of the $A_{i}(\underline{k})$. We shall not go further into this.

The $F_{1, E},(\rho)$ functions are the radial solution to the Schrodinger equation inside the sphere

$$
\begin{equation*}
\left(\frac{1}{r^{2}} \frac{d}{d r}\left\langle r^{2} \frac{d}{d r}\right)+\frac{\ell(\ell+1\rangle}{r^{2}}+V(r)-E^{\prime}\right) F_{\ell \cdot} E^{\prime}(r)=0 \tag{7}
\end{equation*}
$$

$\Psi_{2, E},(p)$ must be regulat at the center $(p=0)$, but there is no
boundary condition at $p=m$ and hence there exist solutions for ail $E^{\prime}$. This is a complication and $E^{\prime}$ must be chosen selfconsistently according to (6). Several methods have been devised to make this practically. Harmon ${ }^{5 \text {; }}$ used a linearized AUP method ${ }^{6}$ ) to obtain the wavefunctions for Gd, which we are going to use later. Also the crystal potential inside the sphere, $V(r)$, must be chosen selfconsistently. This is done by sumang the contribution to the coulorb potential from a large nunber of surrounding ions including the conduction electron charge density. The exchange interaction may be included in the Slater $\rho^{1 / 3}$ approximation.

By carrying out this programe we are able to find a set of selfconsistent energy bands $E_{k}$ and the corresponding wave functions $\psi_{k}$ for the conduction electrons. The variationally determined vavefunctions are presumably less reliable than the energies. Also they are more sensitive to the approximation ade when constructing the muffin-tin-potential. However, we may expect them to be best near the atoms inside the spheres. Therefore they should be quite adequate in calculating the matrix element between the conduction electrons and the localized $4 f$ electrons, which is relevant for the calculation for the RKXY interaction. The $4 f$ electrons are well approximated by the atomic wavefunctions of Herman and Skillman ${ }^{7}$ ).

## 3. THE RKKY-INTERACTION WITH realistic energy bands

### 3.1. The Interaction between conduction electrons and the 4 f electrons

By means of these realistic energy bands and wave functions we can proceed to calculate the RKXY interaction. 18)

In the calculation of the energy bands we did not sonsider explicitly the interaction between two electrons but rather the interaction between one electron and the average potential sor all the other electrons. As a perturbation on this model we shall now consider the interaction between a cenduction electron and $\mathbf{a} 4$ electron. The direct interaction is the Coulomb interaction $v\left(x_{1}-\boldsymbol{x}_{2}\right)=\frac{\mathbf{e}^{2}}{\underline{r_{1}} \underline{r}_{2}}$ betwen a conduction electron at $\underline{r}_{1}$
and a 4 f electron at $\underline{r}_{2}$. In general, however, the potential is screened by the presence of the other electrons, in which case $v\left(\underline{r}_{1}-\underline{r}_{2}\right)$ will be modified to for example the Yukawa potential $e^{z} \exp \left[-\kappa\left|\underline{r}_{1}-\underline{r}_{2}\right|\right] / \underline{r}_{1}-\underline{r}_{2} \mid$, where $\kappa^{-1}$ is the screening length.

Since we are interested in the magnetic interaction we shall only consider the exchange interaction and further only t..e term which involve the scattering of a conduction electron on a $4 \pm$ electron.

This is represented in terms of electron creation an 1 annihilation operators, $c_{k_{k}}^{+}$and $c_{\underline{k}}$ respectively as follows

$$
\begin{align*}
& i=1,2,3,4 \\
& c_{\underline{k}_{4} s_{4}}^{+} \quad c_{\underline{k}_{3} s_{3}}^{+} \quad c_{k_{2} s_{2}} \quad c_{\underline{k}_{1} s_{1}} \tag{8}
\end{align*}
$$

where<|v|> is the matrix element, $k_{i}$ the crystal momentum and $s_{i}$ the spin index. Since $v\left(\underline{r}_{1} \underline{-r}_{2}\right)$ is independent of spin, the spin must be conserved in the scattering process. Let us assume that the $4 f$ electrons are well approximated by localized atomic states $\phi_{4 f}\left(\underline{F}-\mathcal{R}_{n}\right)$ at the site $\underline{R}_{n}$ and the conduction electron wave function is $\psi_{\underline{k}, E}(\underline{r})$ in ( 1 ). Then the conduction electrons are scattered from one state of momentum $k$ to another of $k$ ' whereas the localised electrons are scattered from one localised state to antoher, with or without spin flip. We can represent the change in the localised states by the change in the total local spin $\underline{S}_{n}$ instead of by means of the creation and anninilation operators in (8).

The perturbation of the single electron Hamiltonian which was used in the rand calculation is therefore in this approximation for the s-f exchange interaction as follows

$$
\begin{align*}
& H_{g f}\left(\mathcal{R}_{n}\right)=-\frac{1}{N} \sum_{k_{0}} j_{B f}\left(\underline{k}, k^{\prime}\right) e^{i\left(k-k^{\prime}\right) R_{n}} \\
& \left(c_{k_{t}^{+}}^{+} c_{k^{\prime}}-c_{x^{t}}^{+} c_{k^{\prime}}\right) s_{n}^{2} \tag{9}
\end{align*}
$$

where the last line shows the spin flip scattering processes and the middel line the processes without spin flip.

The matrix element is

$$
\begin{align*}
& j_{6}\left(\underline{k}, \underline{k}^{\prime}\right)=N \int \underline{d r}_{1} \frac{d r_{2}\left\{\phi_{4 f}^{*}\left(\underline{r}_{1}-\underline{R}_{n}\right) \psi_{\underline{k}}^{*}\left(\underline{r}_{2}\right) v\left(\underline{r}_{1}-\underline{r}_{2}\right)\right.}{} \\
& \left.\phi_{4 f}\left(\underline{r}_{2}-\underline{R}_{n}\right) \quad \psi_{\underline{k}^{\prime}}\left(\underline{r}_{1}\right)\right\} e^{i\left(\underline{k}^{\prime}-\underline{k}\right) R_{n}} \tag{10}
\end{align*}
$$

$j_{s f}\left(\underline{k}, \underline{k}^{\prime}\right)$ is in ependent of the lattice site $\mathbb{R}_{n}$ since

$$
\begin{equation*}
f_{\underline{k}}(\underline{r})=u_{\underline{k}}(\underline{r}) e^{i \underline{k} r}=\psi_{\underline{k}}\left(\underline{r}-\underline{R}_{n}\right)=u_{\underline{k}}(\underline{r}) e^{i \underline{k r}} e^{-i \underline{k} R_{n}} \tag{11}
\end{equation*}
$$

according to Block's theorem. We shall assume that $\phi_{4 \mathrm{f}}\left(\underline{\underline{r}} \underline{R}_{n}\right)$ vanishes outside the muffin-tin-sphere around $R_{n}$ and therefore we only integrate ( 10 ) inside the sphere to obtain the geneiralized exchange integral $j_{s f}\left(\underline{k}, \underline{k}^{\prime}\right)$.

### 3.2. The effect of orbital moment of the $4 f$ electrons

Let us generalize the interaction Hamiltonian (9) sligthly. In the presence of orital momentum $L$ for the $4 f$ electrons the total angular momentum $\underline{J}=\underline{L}+\underline{S} \quad(J=|L \pm S|$ since $\underline{L}$ and $\underline{S}$ are parallel, with + for the heavy and - for the light rare earth metals). Then we can replace $s$ in ( 9 ) by the spin projection along $\underset{J}{ }$ namely ( $g-1$ ) $\mathbb{J}$, where $g$ is the Lande factor. A proper calculation of the orbital effects will give rise to a more complicated form for (9) as discussed by Kaglan and Lyons ${ }^{3)}$. The effect is however small and will be neglected here.

### 3.3. The effect of magnetic ordering of the

## localized moments

If the localized moments are ordered througout the erystal they will give rise to a molecular magnetic field $H_{M}$ which will shift the energy of the otherwise degenerate spin-up and spin -down electrons i.e. $E_{k t} \neq E_{k \downarrow}$. This molecular field model is equivalent to the rigid-band-shift model. The shift in energies can be calculated exactly by diagonalizing the single electron Hamiltonian and the molecular field term

$$
\begin{equation*}
H=\sum_{K, s} E_{K, s} c_{K, s}^{+} c_{K, s}+H_{M} \tag{10}
\end{equation*}
$$

The molecular field is obtained by taking the thermal average value of localized moments $\underline{S}_{n}$ in (9).

For the sake of generality we shall calculate the RKKY interaction for the conically ordered phase. The cone-structure, which contains as special cases both the ferromagnetic and the spiral structure, is defined by the following parameterization of the ionic moments:

$$
\begin{equation*}
\left\langle\underline{S}_{\underline{R}_{n}}\right\rangle=m(T) S\left\{\sin \theta \cos \left(\underline{Q} \cdot \underline{R}_{n}\right), \sin \theta \sin \left(\underline{Q} \cdot \mathbb{R}_{n}\right), \cos \theta\right\} \tag{11}
\end{equation*}
$$

where $m(T)$ is the temperature dependent reduced magnetization, $\theta$ is the cone angle and $Q$ the spiral vector.

Using (9) and (10) we find the molecular field $\mathrm{K}_{\mathrm{M}}$ to be used in (10), which then can be diagonalized using standard techniques.

## We find the new energies

$$
\begin{equation*}
\varepsilon_{k, Q}^{ \pm}=\varepsilon_{p} \pm \sqrt{\left(\varepsilon_{m}-\Delta\right)^{2}+\gamma^{2}} \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{E}_{\mathrm{p}}=\left(E_{k-Q / 2} \pm E_{k+Q / 2}\right) / 2  \tag{13}\\
& \Delta=S m(T) \cos \theta j_{g f}(k, k) \text { and } \gamma=\operatorname{Sm}(T)_{\sin \theta} j_{s f}(k, k+Q)
\end{align*}
$$

the new wave functions are

$$
\begin{aligned}
& \Psi_{k, t}=\cos \theta|k-Q / 2, p\rangle+\sin \phi|k+Q / 2, \downarrow\rangle \\
& \Psi_{k,-}=-\sin \theta|k-Q / 2, \uparrow\rangle+\cos \phi|k+Q / 2, \downarrow\rangle
\end{aligned}
$$

where
$\operatorname{tg} \boldsymbol{\phi}$

$$
\begin{equation*}
=\frac{X}{\varepsilon_{k, Q}^{\dagger}+\Delta-E_{k-Q / 2}} \tag{15}
\end{equation*}
$$

(12) shows the energies of the conduction electrons in the magnetically ordered phase.

For the ferromagnetic case $\theta=0$ and $Q=0$ and we find the rigid band model:

$$
\begin{equation*}
r_{k}^{* \omega}=E_{k} \pm \Delta \tag{16}
\end{equation*}
$$

where $\Delta$ goes to zero when the magnetization vanishes at $T_{c}$
For the spiral case we obtain the results discussed by Elliott and Wedgwood ${ }^{8}$ ). In this case, as in the general case of cone structure, the magnetic order produces gaps in the electron energy bands related to the spiral vector $Q$. This is of importance when calculating the temperature dependence of the spiral vector $Q(T)$, and in general the temperature dependence of the exchange interaction.

The magnetic order, the effect of which we have just included, is of course a consequence of the interaction between the loca. moments. In other words the interaction must be calculated selfconsistently.

### 3.4. The generalized RKKY interaction

## in the ordered phase

We now proceed to calculate the RKKY interaction by taking into account the terms left in (9). $\mathrm{H}_{\mathbf{g f}} \boldsymbol{- H}_{M} 13$ not digonal between the states (12), but the effect thereof can be found by second order perturbation theory.

The shift in energy is then using (9) and (12):

$$
\begin{equation*}
\delta E^{(2)}=\sum_{n, n^{\prime} i}^{\left.\left.\sum<0\left|H_{s f}\left(R_{n}\right)-H_{M}\right| i\right\rangle\langle i| H_{s f}\left(R_{n}\right)-H_{M} \mid 0>/\left(\varepsilon_{0}-\varepsilon_{i}\right\rangle\right) .} \tag{17}
\end{equation*}
$$

where $|0\rangle$, |i> are the initial and intermediate states respectively and $\varepsilon_{0}, \varepsilon_{i}$ the corresponding energies, from (12). We must remember that the electrons can be scattered only from an occupied atate to an empty state according to the Pauli principle. This can be accounted for by the fermi factors $f_{k}=\left[e^{\left(E_{k}-E_{F}\right) / k T}+1\right]^{-1}$. We shall assume that $f_{k}$ is a step function, being 1 for energies smaller than the fermi energy and 0 for larger snergies. ${ }^{9}$ ) We then find from (17) for the cone-structure the following effective interaction between the localized moments.

$$
\begin{equation*}
H_{q}=-J_{q}^{n} S_{q}^{2} S_{q}^{2}-\frac{1}{i} J_{q}^{\frac{1}{q}}\left(S_{q}^{+} S_{-q}+S_{q}^{-} S_{-q}^{+}\right) \tag{18}
\end{equation*}
$$

where the wave vector dependent exchange interaction is

$$
\begin{aligned}
& J_{q}^{\prime \prime} S_{q}^{z} S_{-q}^{z}= \\
& \sum_{n n} S_{n}^{z} S_{n}^{2}, e^{i, q\left(R_{n}-R_{n} \prime\right)} \frac{1}{2 N} \sum_{k} f_{k}\left(1-f_{k+q}\right)\left|j_{s f}(k, k+q)\right|^{2} \\
& {\left[\left(1+\cos ^{2} 2 \phi\right)\left\{\frac{1}{\varepsilon_{k}^{+}-\varepsilon_{k+q}^{+}}+\frac{1}{\varepsilon_{k}^{-}-\varepsilon_{k+q}^{-}}\right)+\sin ^{2} 2 \phi\left\{\frac{1}{\varepsilon_{k}^{+}-\varepsilon_{k+q}^{-}}+\frac{1}{\varepsilon_{k}^{-}-\varepsilon_{k+q}^{+}}\right\}\right.}
\end{aligned}
$$

and

For a ferromagnetic ordering is $\phi=\theta=Q=0$ from ( 13,15 ) and (19) reduces considerably. We find

$$
J_{q}^{\prime \prime}=\frac{1}{N} \sum_{k} f_{k}\left(1-f_{k+q}\right)\left|j_{s f}(k, k+q)\right|^{2}
$$

$$
\begin{equation*}
\left\{\frac{1}{\varepsilon_{k}-\varepsilon_{k}+q}+\frac{1}{\varepsilon_{k}^{k}-\varepsilon_{k}^{k}+q}\right\} \tag{20}
\end{equation*}
$$

and

$\left\{\frac{1}{\varepsilon_{k}^{-}-c_{k}+q}+\frac{1}{\varepsilon_{k}-\varepsilon_{k}+q}\right\}$
whore $\mathrm{c}_{\mathbf{k}}^{\boldsymbol{*}}$ are given by (16).

$$
\begin{align*}
& J_{q}^{L}\left(s_{q}^{+} s_{-q}^{-}+s_{q}^{-} s_{-q}^{+}\right)=  \tag{19}\\
& \sum_{n n} e^{i q\left(R_{n}-R_{n} n\right)}\left\{S_{n}^{+} S_{n}^{-}, e^{i Q\left(R_{n}-R_{n} r\right)}+S_{n}^{-} S_{n}^{+}, e^{-i Q\left(R_{n}-R_{n} \cdot\right)}\right) \\
& \frac{1}{2 N} \sum_{k} f_{k}\left(1-f_{k+q}\right)\left|j_{s f}(k, k+Q+q) j_{s f}(k, k-Q+q)\right| \\
& {\left[\sin ^{2} 2 \phi\left(\frac{1}{\varepsilon_{k}^{+}-\varepsilon_{k+q}^{+}}+\frac{1}{\varepsilon_{k}^{-}-\varepsilon_{k-q}^{-}}\right)+\left(1+\cos ^{2} 2 \phi\right)\left\{\frac{1}{\varepsilon_{k}^{+}-\varepsilon_{k-q}^{-}}+\frac{1}{\varepsilon_{k}^{-}-\varepsilon_{k+q}^{+}}\right\}\right]}
\end{align*}
$$

This interaction is anisotropic contrary to the paramagnetic RKKY -interaction. For the ferromagnetic phase we obtain a $J_{q}^{\prime \prime}$ and a $J \frac{1}{q}$ for the spin components parallel or perpendicular to the average moment direction. $J_{q}^{\prime \prime}$ involves only scattering of electrons with no spin-flip and $J_{\frac{1}{4}}^{q}$ only with spin-flip. $J \frac{1}{q}$ can be measured directly by spin wave measurements, whereas $J_{q}^{\prime \prime}$ cannot be measured as a function of the wave vector. However, the magnetic contribution to the free energy is $-J_{q}^{I f} S_{Q}^{Z} S_{q}^{Z}$ for $q=0$. If $J_{q}^{\prime \prime}$ has a maximum for $q \neq 0$ it shows that, if for no other reasons, a nonferromagnetic state would have lower free energy. However it is necessary to calculate selfconsistently the energy difference between the various phases.

### 3.5. The magnitude of the $s-f$ interaction

Experimental information about the magnitude of the $s-f$ interaction $j_{s f}\left(k, k^{\prime}\right)$ can be obtained directly by considering the polarization of the conduction electrons. This can be found either by measuring the total moment pr. atom or by means of NMR technique measuring the magnetic field, which the conduction electrons create at the nucleus.

For ferromagnetic ordering the net polarization is given by the difference between the number of electrons with spin up and spin down. In the rigid band model ( $T=0$ ) this is to a good approximation

$$
\begin{equation*}
n_{p}-n_{t}=\left(\Delta_{p}-\Delta_{\phi}\right) \rho\left(E_{F}\right) / 2=\Delta \rho\left(E_{F}\right)=\operatorname{Sm}(T)_{\frac{1}{N}}^{\frac{1}{k}} j_{g f}(k, k) \rho\left(E_{F}\right), \tag{21}
\end{equation*}
$$

where $\Delta_{f}$, is the energy shift of the spin up and spin dow electrons realitive to the paramagnetic fermi-energy $E_{F}$ and $\rho\left(E_{F}\right)$ is the density of states at the fermi energy. We obtained (21) by averaging over all momenta in (10).

Since each unpaired electron contributes to the magnetic moment by $\frac{1}{2} g_{B} \mu_{B}=1 \mu_{B}$ we find for the average $s-f$ interaction (m(0)=1)

$$
j_{B f}(0)=\frac{\Delta}{S}=\frac{2 d M}{g_{g} \mu_{B} S p\left(E_{F}\right)}
$$

Whare 8 M is the conduction electron polarization in $\mu_{B}$ and $g_{8}=2$.

From magnetization data ${ }^{1)}$ and a theory for the temperature dependence of the magnetization ${ }^{10}$ we find the results given in table 1.

| J L | S | $g$ | $\rho\left(E_{F}\right)^{\text {States }}$ Ryd | $E_{\mathbf{F}}$ Ryd | ${ }^{6} \mathrm{Mr}_{\mathrm{B}}$ | $\Delta \mathrm{Fyd}$ | $j_{s f}(0)(\delta M)$ | $j_{s f}(0)\left(T_{c}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gc 7/20 | 7/2 | 2 | 25.6 | . 440 | . 55 | . 021 | .006 | . 006 |
| Tb 63 | 3 | 3/2 | 28.0 | . 509 | . 41 | . 015 | . 005 | . 006 |
| Dyl2/25 | 5/2 | 4/3 | 27.7 | . 513 | . 41 | . 015 | . 006 | . 007 |
| End5/26 | 3/2 | 6/5 | 23.0 | .451 | . 22 | . 010 | . 006 | . 009 |

Table 1: Data for the heavy rare earth metals, $\rho\left(E_{F}\right)$ is the calculated density of states, $\Delta$ is half the fermomagnetic splitting and $j_{s f}(0)$, the deduced $s-f$ interaction in Ryd. We notice it is almost independent of the elements. The values estimated from the ferromagnetic transition temperature is given in the last column.

The s-f interaction can be estimated from the ferromagnetic transition temperature as follows

$$
\begin{equation*}
k T_{c}=0.792 \frac{1}{3} \mathrm{~J}_{0}^{n} \mathrm{~J}(\mathrm{~J}+1) \tag{22}
\end{equation*}
$$

where $J_{0}^{W}=\left[(g-1) j_{s f}(0)\right]^{2} \rho\left(E_{F}\right)$.
0.792 is a factor which corrects the molecular field value for $T_{c}$.

Having derived the expressions (19) and (20) for the indirect exchange interaction and estimated the interaction strength we shall consider the actual calculation. The summation over th; wave vectorg $k$ in (19) and (20) must be done numerically.

## 4. NUMERICAL METHODS

On the basis of the APW energy bands calculated by Louks ${ }^{11)}$ we can evaluate the sums in (19) and (20). The matrix element $j_{g f}(k, k+q)$ must be evaluated using the wave functions. The major contribution to the sum comes when the denominator is small. In other words when the electrons are scattered from just below to just above the fermi surface. This makes the numerical calculation difficult. A possible way is to sum over a very large number of $k$ points and exclude the contribution then the denominator is smaller than a chosen number 8 . This is called the root-sampling method. This is a brute-force principel value calculation (correct in mathematical sense, if we let $\delta$ go to zero). However, it is very difficult to test the convergence of this proceedure numerically. In fact the noise in the computer sets a limit for how small $\delta$ can be chosen and how fine a mesh of $k$ point we can use - apart fron the practical problem of the increasing computer time. However, the method is simple and vas used by Liu et al ${ }^{12)}$ and also in several of the results to be discussed. 13) The convergence seems to be good and the conputing time reasonable with a mesh with 450000 points in the total Brillouin zone. These calculations were simplified by the assumption that the matrix element $j_{G f}(k, k+q)$ was independent of $k$ and only dependent on the difference $q$, i.e. $j_{s f}(k, k+q) थ j_{s f}(q)$.

In order to test the convergence and also to make it feasible to include a $\underline{k}$ dependence of $j_{s f}(k, k+q)$ a different numerical method was used. In this method the Brillouin zone is divided into a relatively small number of micro cells. Inside each cell are the constant energy surfaces $\varepsilon_{k}$ approximated by planes. This makes it possible to integraté analytically inside each micro cell. The integrals are only divergent if the energy surfaces $\varepsilon_{k}$ and $\varepsilon_{\underline{k}+q}$ are exactly parallel. This will occur very rarely. This sōcalled linearized method was developed for density of state calculations by Gilat and Raubenheimer 12) and was later simplified by Jepsen and Andersen, who used it for calculating fermi surface areas. The sum in (19) and (20) are more complicated and has not freviously been calculated using this method, We shall therefore briefly describe it. The Brillouin zone is divided into micro cells of the shape of tetrahedra ${ }^{15}$ ) of a
rolume $V$ as shom on fig. 1 . In each corner are the energies

$$
\varepsilon_{k}^{i}=\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \text { and } \varepsilon_{k+q}^{i}=e_{1}, e_{2}, e_{3}, e_{4}
$$

Since the constant energy surfaces are approximated by planes the constant energy difference $m=\varepsilon-e$ is also a plane. The probien is therefore to integrate

$$
\begin{equation*}
I=\int_{0 \min }^{\frac{\max }{m}} \mathrm{~A}(\omega) \mathrm{dm} \tag{23}
\end{equation*}
$$

over the part $P$ of the tetrahedra for which $\epsilon<E_{F}$ and $e>E_{F}$, where the area of the constant energy difference plane inside $P$ is $A(a)$. $P$ may be a complicated polyhedra because of the restrictions coning frow the fermi $f_{k}$ factors in (19) and (20). $f_{k}\left(1-f_{k+q}\right)$ can by symetry considerations be replaced by $\mathbf{1}\left(f_{k}-f_{k+q}\right)$. We do not use the latter fore (although it simplifies the calculation considerably) because the result then is given as the difference between rwo large numbers which may be inaccurate numerically. For illustration whall consider the case where the condition ( $\varepsilon<E_{F}$ and $e>E_{F}$ ) is fulfilled for the whole tetrahedra.

The area $A(\omega)$ is then simply the area of a cut of the tetrahedra perpendicular to the planes. This area is clearly a quadratic function of $\Leftrightarrow$, being zero for $a$ outside the range $\boldsymbol{m}_{\text {max }}$ -Win. The area can easily be expressed by geomstrical considerations in teres of the corner energies $c^{i}$ and $e^{i}$ and $V$, it is not necessary to calculate the normal vector to the plames. Therefore, in the case where we must integrate over the whole tetrahedra (23) is simply

$$
\begin{equation*}
I=\Sigma \int_{n}^{\omega_{\min }}\left\{a_{n}\left(\varepsilon^{i} e^{i}\right)+b_{n}\left(\varepsilon_{q}^{i} e^{i}\right) \omega+c_{n}\left(\varepsilon_{,}^{i} e^{i}\right) \omega^{2}\right\} / \omega d \omega, \tag{24}
\end{equation*}
$$

where the sun is over each type of cross sections (triangle or square) and $a_{n}, b_{n}, c_{n}$ the parameters characterizing this. We notice that the integral is logariteicly divergent when $0_{\text {min }}{ }^{\text {max }}$ i.E. when the plenes of $c_{k}$ and $c_{k+g}$ are pamallel.

We can test the mathod on the lree electron model where the energy band: axt parabolic. The sua $(19,20)$ can then be integrated exactly giving the Lindhard function. Tha result of the root
sampling method and the linearized method is show on fig. 2 together with the exact result. We see that the linearized method gives an excellent result for only 9000 k -points in the entire Brillouin zone.

## 5. RESULTS

Let us start by considering what effect the magnetic ordering has on the RKKY exchange interaction. That is the same as asking what is the intrinsic temperature dependence. The formulas were developed in (15) and (20). We shall only be interested in a qualitative answer, which will show the general magnitude and the direction of the effects. We therefore make the simplifying assumption that for this purpose we can consider the matrix element $j_{s f}(k, k+q)$ to cnly depend on the difference $q$. Our problem then reduces to calcuiating the electronic static susceptibility,

$$
x_{q}^{a \beta} \sim \frac{1}{N} \sum_{k} f_{k}\left(1-f_{k+q}\right) /\left(E_{k}^{\alpha}-E_{k+q}^{\beta}\right)
$$

We determine the matrix element $\left|j_{s f}(q)\right| 2$ from experiments, by comparing $x_{\mathrm{l}}^{\mathbf{1}}$, the calculated sum without it, with the $\mathrm{J} \frac{1}{q}$ obtained from spin wave measurements. The matrix element is assumed to be insensitive to the magnetic structure and is used in obtaining the exchange interaction in other magnetic phases. The absolute scale of $J \frac{1}{q}$ cannot be determined from the opin wives. The scale is found from the transition temperature $T_{N}$ and coincidently from the conduction electron polarization table 1. This gives $J_{q}^{n}$ for $q=0$.

Fig. 3 shows the results for the ferronagnetic phase at $\mathrm{T}=0$ for Gd, Tb, Dy, and Er using the APW energy bands and the root -sampling method with 450000 points in the entire brillouin-zone (the linearized method was also used as a test, it gave essentially the identical result and is not shown). It is clear that $J_{q}^{m}$ and Ji differ significantly for all materials. The dots show the points compared with the experimental $\mathrm{J} \frac{1}{\mathrm{q}}$, the calculation was done for 60 equidistant $q$-values. For terbium the experimental $j_{\frac{1}{q}}$ shows no maximum for $q \notin 0$, whereas the calculated $\mathrm{J}_{\mathrm{q}}^{\prime \prime}$ shows that Tb
has a tendency to form a spiral structure even in the ferromagnetic phase. The enhancement of the maximum for $q \neq 0$ is also evident for Dy and Er in which the spiral region is large. The opposite effect occurs for $G d$, where $J_{Q}^{n}$ shows that $G d$ should not form a spiral phase, and nor it does. Furthermore it is clear that the maxima in $J_{q}^{\prime \prime}$ occuss at q-values verry elose to the experimental spiral vectors (indicated with an arrow and that it is significantly displaced from the peaks in $X(q)$, which is directly related to the presence of flat parallel pieces of Fermi surface. The matrix element thus plays an important role in determining the wave vector dependence of the exchange interaction. The semiemperically found wave vector dependence of the natrix element is very similar for all materials, despite the rather different $x(q)$ functions. This is encouraging for the present analysis. Overhauser ${ }^{16}$ ) has argued that the matrix element should follow the 4f-form factor. By extending his model to include the Bloch character of the conduction electrons we would expect a narrow central peak originating from the conduction electrons. This is the form found in fig. 4.

The energy difference between the ferromagnetic and spiral phases is, as judged from the $T=0$ fermomagnetic data fig. 4 , for Gd ; $\mathrm{Tb}, \mathrm{Dy}$, and Er in per cent of the exchange energy: $-14 \%,+5 \%$, $+5 \%,+12$. This gives for Tb , Dy, and Er a stabilization of the spiral phase by $10 \mathrm{~K} / i=0$ times the reduced magnetization squared. The magnetoelastic stabilization of the ferromagnetic phase is for these naterials at the ferromagnetic-spiral transition typically 1 K/ion.

The last column in fig. 4 shows a calculation at half the saturation moment of $X_{0}^{\eta}(q)$ in the ferromagnetic phase and $x_{0}(q)$ in the spiral phase, with spiral vector $Q$. The contribution to the free energy is proportional to $-|j(Q)|^{2} \times \frac{f}{Q}(0) \cdot \chi \frac{f}{Q}(0)$ as a function of the spiral vector $Q$ follows closely that of $\chi_{0}^{\pi}(q)$ as a furction of $q$, which shows that the most probable spiral vector coincide with that found in the ferromagnetic phase. The precise location is sensitive to the wave vector dependence of the matrix element.

The above simple calculation gave encouraging results and is a natural extension of the calculation of the exchange interaction in the paramagnetic phase. ${ }^{12 \text { ) However, the next step is }}$
to consider the matrix element more seriously. We shall do this for the paramagnetic phase with no band splitting. Harmon ${ }^{5}$ ) has by means of the APH functions calculated $\left|j_{s f}(k, k+q)\right|^{2}$ for the simplest material Gd. A few of the matrix elements are shom on fig. 3. They generally show the $\underline{q}$ dependence we anticipated, namely a sharp peak at $g=0$. On the other hand it is clear that they are quite sensitive to the value of $k$, and irregularities occur as a function of $\underline{q}$, which presumably comes from the hybridization of the $p$ - and $d$-wave functions.

It is therefore of importance to carry out the complete sum (20) including the $\underline{k}$ dependence of $j_{s f}(\underline{k}, \underline{k}+q)$. Preliminary results are shown on fig. 5. The calculation is performed by the lin-earized-integral method (23) with 7000 k points in the entire Brillouin zone and with $\mathbf{j}_{\mathbf{s f}}(\underline{k}, \underline{k}+\underline{q}$ ) included rectangularily at 1250 k points. The result is the first direct calculation of the RKKY interaction for Gd with no adjustable parameters. The $g$-dependence of $J_{g}$ is in satisfactory agreement with that obtained experimentally from spin wave measurements, shom as $\frac{\mathrm{J}}{\mathrm{l}} \mathrm{l}$ in fig. 4. An important question to be investigated is if the major contribution to $J_{q}$ comes from the part of the sur for whith $j_{s f}(\underline{k}, \underline{k}+\underline{q})$ is insensitive to $\underline{k}$ or if both the $\underline{k}$ and $q$ dependence are equally important, the last case would indicate that the matrix element is as important in determining the magnetic properties of the heavy rare earths as the fermi surface topology.

Work on these questions is in progress. A large number of problems are waiting to be dore in developing and refining the theory, here presented, and confronting it with the experimental facts.

## REFERENCES

1) K.J. Elliott ad., Magnetic Properties of Rave Earth Hetals (Plenum Press, London, 1972)
2) J.G. Houman, J. Jensen, F. Touborg (iy74) to be published
3) J.A. Kaplan and D.H. Lyons, Phys. Rev., 129, 2072 (1963)
4) T.i. Louks, Augented Plane Wave Method (H.A. Benjanin, Inc., New York, 1967)
5) B.N. Harmon, Conduction Electron Polarization, Spin Densities and The Keutron Magnetic Formactor of Gadolinium. Thesis (1973)
6) D.D. Koelling, J. Phys. Them. Sol. 33, 1335 (1972)
7) F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Inc. Englewood Cliffs, Hew Jersey (1963).
B) R.J. Elliott and F.A. Hedgrood, Proc. Phys. Soc., 81, 846 (1963)
8) This is a very good approximation at all relevant temperatures.
9) P.A. Lindgird and 0. Danielsen (1974) (to be published)
10) S.C. Keeton and T.L. Louks, Phys. Rev. 168, 672 (1968)
11) S.H. Liu, R.P. Gupta, S.K. Sinha, Phys. Rev. B, 4, 1100 (1971)
12) P.A. Lindghrd and S.H. Liu, Proceeding of the Int. Conf. on Magnetism, Moscov (1973).
13) G. Gilat and L.J. Raubenheimer, Phys. Rev., 144, 390 (1966)
14) 0. Jepsen and O.K. Andersen, Solid State Commun., 9, 1763 (1971)
1) A.W. Overhauser, J. Appl. Phys., 34, 1019 (1963)
2) W.E. Evenson and S.H. Liu, Phys. Rev., 178, 783 (1968)
3) We follow closely the notation of A.J. Freeman ref. 1 .


Fig. 1 At the top is shown the constant energy plane, for $\varepsilon_{k}=\varepsilon_{F}$ and $\varepsilon_{k+q}=\varepsilon_{F}$. The Brillouin zone is divided into tetrahedra as shown below of constant volume $V$, here oriented so that the direction of increasing energy difference $\omega$ is vertical. The cut with the constant planes are shown. The area of these cuts are quadratic functions of $\omega$ in the regions 1,2 and 3 . The sum then reduces to the integral shom in the lowest line. In general the plane $\varepsilon_{k}{ }^{2} \varepsilon_{F}$ and $\varepsilon_{k+q}{ }^{2 \varepsilon_{F}}$ may also cut the tetrahedra. In this case must only be integrated over the part $P$ for which the $f_{k}\left(1-f_{k+q}\right)$ condition is fulfilled.


Fig. 2a The generalized susceptibility for free electrons. The points are the numerical results for the linearized-integral -method for meshes with 1000,9000 and 30000 points in the entire Brillouin zone (hep) with $\mathrm{k}_{\mathrm{F}}=0.7$ of the zoneboundary wavevector ( $\Gamma$-K). We notice a very good agreement with the theoretical Lindhard function already with the mesh with 9000 points. The insert shows that the most difficult region for $g+0$ is reproduced well. The oystematic deviation is due to the fact that the integration is performed in the inscribed polyhadra in the fermi sphere. It has both convex and concave parts and the volume is better approximated by the polyhedra in a realistic system,



Fri. 2 Erimple of dytortion of the Fermi unfice in the

Fis. 4. Ganeralized macrptibitity for ilve-

Fig. 2b The result of the root -sampling-method ${ }^{17)}$ in a coarse mesh of 27000 points. We notice that spurious peaks occur because of the mesh for $k$ values less than $2 k_{F}$. The convergence is good in a mesh with 450000 points, not shown. 12,13 )


Fig. 3 Example of $\left|j_{s f}(k, k+q)\right|^{2}$ for Gd calculated by the APM method by Harmon. ${ }^{5}$ )


Fig. 4. The perpendicular susceptibility $\left.X_{(q)}^{( }\right)$, the perpendicular experimental exchange interaction $J \frac{1}{q}$, the calculated parallel exchange interaction $\mathrm{J}_{\mathrm{q}}^{\mathrm{n}}$ and the deduced matrix element $|j(q)|^{2} /|j(0)|^{2}=$ $|\langle m| x| n\rangle\left.\right|^{2}$ for the ferromagnetic phase (splitting: 0.008 Ryd). The last column shows $\chi_{3} f(Q)$ in the apiral phase for $Q_{0}=0, Q_{1}=\frac{1}{6} \frac{\pi}{c}$, $Q_{2}=\frac{2}{6} \frac{\pi}{c}$ and $Q_{3}=\frac{3}{6} \frac{\pi}{6}$ (splitting 0.004 Ryd); the corresponding ferromagnetic $X^{\prime \prime}(q)$ is also shown (thin lint).


Fig. 5. Preliminary result for the calculated RKKY interaction, using Harmon's APW natrix element ${ }^{5 \text { ) }}$. Only scattering relevant for an extended zone has been included as a first approximation.


Fig. 6. APW energy bands for $\mathrm{Dy}^{11)}$. Only the bands crossing the fermi surface have been included in the sum.

