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1. INTRODUCTION 

The heavy rare earth metals were obtained in pure :orr. and ai 

single crystals about ten years ago. This made a detailed exper­

imental investigation possible. Neutron scattering in particular 

has been an important tool. As a result we by now have obtained a 

very complete knowledge about the magnetic interactions. The ex­

perimental facts, which are reviewed in , revealed that the 

magnetic properties are determined by an intricate interplay of 

forces of similar magnitude. The dominant is the indirect Ruder-

man-Kittel-Kasuya-Yosida (RKKY) exchange interaction, which we 

shall attempt to calculate from first principles, here. Of import­

ance is also the crystal field anisotropy and magnetoelastic 

effects. The anisotropy of this origin is of a single ion type. 

Recent neutron scattering measurements have shown that also 

two-ion-anisotropy may be of importance. There are numerous pos­

sibilities for anisotropy of the interaction between the moments 

at different sites. As we shall see the RKKY interaction, which 

is mediated by the conduction electrons, is anisotropic in the 

magnetically ordered phase. The two-ion-interaction, which is 

mediated by phonons, is strongly anisotropic. The magnitude of 

the interaction between the spin system and the lattice is deter­

mined by the coupling between the spin- and orbital-motion of the 

electrons. If the spin-orbit coupling and the orbital momentum 

is large we must therefore expect large ar.isotropies both of 

single-ion and two-ion natura. Also the RKKY interaction becomes 
3) 

anisotropic as discussed by Kaplan and Lyons 

In order to avoid the complications of anisotropy we shall 

start by considering the RKKY interaction in a pure spin system 

with no orbital effects. This is examplified by gadolinium, 

which has a S ground state. The electronic configuration of a 

Gd atom is a xenon core with seven 4f electrons and three (Sd f>r, ) 

outlier electrons. 

The basic interaction is between the localized uf electrons 

belonging to the inner shells of gadolinium and the conduction 

electrons. Rudermann and Kittel assumed for simplicity that the 

condition electrons were completely free (i.e. plane wave states). 

We are now able to go a step further and treat the conduction 

electrons in a more realistic fashion. A standard technique 



- 2 -

is the augmented plane wave (APW) act hod * . 

2. THE AUGMENTED PLANE HAVE HETHOD (APW) 

In the APW-method the electrons are supposed to sove in a 

simplified potential which is atomic like inside a sphere (the 

muffin tin (in two dimensions)) around each ion and constant (-0) 

between the spheres. The Schrodingi-r equation is then solved 

numerically for this potential by the variational method. 

The trial wave function is obtained by expanding the wave 

functions inside the spheres in atomic like functions and between 

the spheres in plane waves. The wave functions are matched at 

the surface of the spheres and the coefficients in the expansion 

is determined by minimizing the energy. 

The wave function for the electrons, the crystal wave function, 

is therefore 

•t-k.E < r ) = ? Ai (^ J »k. ( r ) ' ( 1 ) 

where the coefficients A-(k) are to be determined variationally. 

The sum is over a set of reciprocal lattice vectors j. where we 

write k. = k+t^. 

The auguented plane wave is outside the spheres 

where 0 is the volume of the unit cell. 

Inside the n'th sphere ~t is 

• v.<r) = e 1 y - ' & I I *•„<!«) T, F , ( p ) Y ( p ) , p ' = ir-R;<L 

(3) 

where L i s the radius of the sphere and ^ the v e c t o r to the 

c e n t e r . The number of I va lues t o be included i n the sum are not 

s p e c i f i e d a t t h i s p o i n t . However, i f we want t o represent s , p , 

d or f character of the c r y s t a l wave funct ion we must include 

1 = 0 , 1 , 2 , 3 . The wave funct ion ir. the two reg ions (2) and (3) can 

be made t o match at the sphere surface by choosing the expansion 

c o e f f i c i e n t s A t a(k> i n ( 3 ) . By expanding (2) i n spher ica l har­

monics and Besse l funct ions around the cen ter of the sphere 

i _ e i k Æ = i i e i k . i ' 5 n Z I i * j . (kp> Y* Cki) Y,„(p> CO 
/S- Æ 1=0 m=-t L 1 B l" 

and equat ing t h i s with (3) a t p=Ln we f ind 

'WS' " T e i- i , ! ! n i% Yr.(Si)Jl(kLn , /T„E'(Ln) ( 5 ) 

The APW function •k.<r> with this A ^ C k ) is called a basis function. 

It is continuous, but has a discontinous slope at the sphere radius. 

The expansion coefficients A^Ck) in (3) are found by minimizing 

the energy 

Ek • <V"iV / < ' tvV (6) 

This gives a secular equation for the determination of the A^(k). 

He shall not go further into this. 

The T. P,(P) functions are the radial solution to the 
* ft 

Schrddinger equation inside the sphere 

(JL i (r2 _S , + *Ji*±l • V(r)-E') T,.E,(r) -- 0 (7) 
r 2 dr dr r

2 ' 

T, r,(p> must be regular at the center (p»0), but there is no 
»ft 



boundary condition at p=« and hence there exist solutions for 

all Ef. This is a complication and Ef Bust be chosen selfcon-

fistently according to (6). Several methods have been devised 

to make this practically. Harmon ' used a linearized AWP method 

to obtain the wavefunctioiis for 3d, which we are going to use 

later. Also the crystal potential inside the sphere, V(r), must be 

chosen selfconsistently. This is done by summing the contribution 

to the Coulomb potential from a large number of surrounding ions 

including the conduction electron charge density. The exchange 

interaction may be included in the Slater p approximation. 

By carrying out this programme we are able to find a set of 

selfconsistent energy bands E. and the corresponding1 wave functions 

>. for the conduction electrons. The variationally determined 

wavefunctions are presumably less reliable than the energies. 

Also they are more sensitive to the approximation made when con­

structing the muffin-tin-potential. However, we may expect them 

to be best near the atoms inside the spheres. Therefor they 

should be quite adequate in calculating the matrix element be­

tween the conduction electrons and the localized *»f electrons, 

which is relevant for the calculation for the RKKY interaction. 

The If electrons are well approximated by the atonic wavefunctions 

3. THE RKKY-INTERACTION WITH 

REALISTIC ENERGY BAKDS 

3.1. The Interaction between conduction electrons 

and the If electrons 

By means of these realistic energy bands and wave functions 

wo can proceed to calculate the RKKY interaction.18 

In the calculation of the energy bands we did not consider 

explicitly the interaction between two electrons but rather the 

interaction between one electron and the average potential for 

all the other electrons. As a perturbation on this model we 

shall now consider the interaction between a conduction electron 

and a tf electron. The direct interaction is the Coulomb inter­
s' 

action v(r1-x2) * | r _r I between a conduction electron at r^ 

5 -

.uid a If electron at £2. In general, however, the potential is 

screened by the presence of the other electrons, in which case 

v(r.-r-) will be modified to for example the Yukawa potential 

e* exp{-x|r -r !)/jr -r |, where »rk.s the screening length. 

Since we are interested in the magnetic interaction we shall 

only consider the exchange interaction and further only t..e term 

which involve the scattering of a conduction electron on a Uf 

electron. 

This is represented in terms of electron creation an I anni­

hilation operators, c^ and c^ respectively as follows 

v(rj-r,) = i I <!Si,s1(,k.3S3|v(x1-r.2)|k2s2,!s:'s1 > 

V i 

1=1,2,3,4 

Ck„s„ % s 3
 Ck2S2

 ck l S l (8) 

where<|v|> is the matrix element, k^ the crystal momentum and 

S: the spin index. Since vCr^-rj) is independent of spin, the 

spin must be conserved in the scattering process. Let us assume 

that the »f electrons are well approximated by localized atomic 

states •uf<r~Sn)
 a t the site Rn and the conduction electron 

wave function is \ . - (r) in (1). Then the conduction electrons 

are scattered from one state of momentum k to another of k' 

whereas the localised electrons are scattered from one localised 

state to antoher, with or without spin flip. We can represent 

the change in the localised states by the change in the total 

local spin S instead of by means of the creation and annihilation 

operators in (8). 

The perturbation of the single electron Hand Itonion which 

was used in the tand calculation is therefore in this approximation 

for the s-f exchange interaction as follows 

W i ' i. f (..*•> • i t , r t , ) & 

A »A 

{<CSrVt - ° y C * ' * ) S n ( 9 ) 

+ ctf°k>8n * c y V t Sn > 



where the last line shows the spin flip scattering processes and 

the middel line the processes without spin flip. 

The matrix element is 

36,(k,k') = N J d r x drj.ttJjCrj-R^ i£(r2> vU^-rj) 

*„f<£2"V 1'kt(£l)}e
itk-'"y3n (10) 

j f ( k , k ' ) i s independent of the l a t t i c e s i t e R s ince 

+ k ( r ) = u k ( r ) e 1 ^ = 1-k(r-Rn) = i ^ t r O e 1 ^ e"lk&> (11) 

- — - — « 
according to Block's theorem. We s h a l l assume that • ^ ( r - J O 
vanishes outs ide the muff in-t in-sphere around R and therefore 
we only integrate (10) in s ide the sphere t o obtain the genera l i zed 
exchange in t egra l j s f ( k > k / ) . 

3 . 2 . the e f f e c t of o r b i t a l moment of the If e l e c t r o n s 

Let us genera l ize the i n t e r a c t i o n Hamiltonian (9) s l i g t h l y . 
In the presence of orLi ta l momentum L for the "*f e l e c t r o n s the 
t o t a l angular momentum £ = L+£> (J=|L±S| s ince L and £ are 
p a r a l l e l , with + for the heavy and - for the l i g h t rare earth 
meta l s ) . Then we can replace £ in (9) by the spin projec t ion 
along J_ namely ( g - l ) £ , where g i s the Lande f a c t o r . A proper 

ca lcu la t ion of the o r b i t a l e f f e c t s w i l l g ive r i s e to a more com-
3) p l i ca ted form for (9) as d i scussed by Kaplan and Lyons . The 

e f f e c t i s however small and w i l l be neglected here . 

3 . 3 . The e f f e c t of magnetic ordering of the 

l o c a l i z e d moments 

If the l o c a l i z e d moments are ordered througout 'he c r y s t a l 
they w i l l give r i s e to a molecular magnetic f i e l d H„ which w i l l 
s h i f t the energy of the otherwise degenerate spin-up and spin 
-down e l ec trons i . e . ^vrk E V L - This molecular f i e l d model i s 
equivalent t o the r i g i d - b a n d - s h i f t model. The s h i f t in energ ies 
can be ca lcu lated e x a c t l y by d iagonal iz ing the s i n g l e e l e c t r o n 
Hamiltonian and the molecular f i e l d term 

H = *!s E*.s °*-s °k-s + H « (10> 

The molecular field is obtained by taking the thermal average 

value of localized moments S in (9). —n 
For the sake of generality we shall calculate the RKKY inter­

action for the conically ordered phase. The cone-structure, which 

contains as special cases both the ferromagnetic and the spiral 

structure, is defined by the following parameterization of the 

ionic moments: 

<SR > = m(T)S(sin8 cosUJ-R,,), sine sin^.j^), cose } (11) 

where m(T) i s the temperature dependent reduced magnet izat ion , 
8 i s the cone angle and Q the s p i r a l vec tor . ' 

Using (9) and (10) we find the molecular f i e l d K„ t o be used 
i n ( 1 0 ) , which then can be diagonal ized using standard techniques . 

We f ind the new energ ies 

ek,Q • £p * / < £ m - A > V 

Ep ' ( Ek-Q/2 * E k + Q / 2 ) / 2 

(12) 

(13) 

a = S m(T)cose j s f ( k , k ) and Y=Sm<T)sin6 j s f (k ,V+Q) 

the new wave funct ions are 

• k + = cosB |k-Q/2,f> + s i n * |k+Q/2,J> 

i|i, = - s i n e | k - Q / 2 , f > + cos* |k+Q/2,*> 

(Ht) 

tg* = -j—It (IS) 
ek,Q+A"Ek-Q/2 

(12) show« the energies of the conduction electrons in the mag­

netically ordered phase. 



For the ferromagnetic case 6=0 and £=0 and we find the rigid 

band model: 

r " • E k *- * ( 1 6 > 

where A goes to zero when the magnetization vanishes at T . 

For the spiral case we obtain the results discussed by Elliott 
8) and Wedgwood . In this case, as in the general case of cone 

structure, the magnetic order produces gaps in the electron energy 

bands related to the spiral vector £. This is of importance when 

calculating the temperature dependence of the spiral vector Q(T), 

and in general the temperature dependence of the exchange inter­

action. 

The magnetic order, the effect of which we have just included, 

is of course a consequence of the interaction between the loca? 

moments. In other words the interaction must be calculated self-

consistently. 

3.<i. The generalized RKKY interaction 

in the ordered phase 

We now proceed to calculate the RKKY interaction by taking 

into account the terms left in (9). H f-H„ is not digonal be­

tween the states (12), but the effect thereof can be found by 

second order perturbation theory. 

The shift in energy is then using (9) and (12): 

SE<2,= Z Z<0|Hsf(Rn)-HM|ixi|Hsf(Rn,)-HM|0>/(eo-ci) (17) 
n ,n fi 

where |0>, | i> a re t h e i n i t i a l and i n t e r m e d i a t e s t a t e s r e s p e c t i v e l y 

and e , e- the cor responding e n e r g i e s , from ( 1 2 ) . We must remember 

t h a t the e l e c t r o n s can be s c a t t e r e d only from an occupied s t a t e 

t o an empty s t a t e acco rd ing t o t h e P a u l i p r i n c i p l e . This can be 

accounted f o r by t h e fermi f a c t o r s f k = [ e ( E k _ E F ) / k T + l ] " 1 . We s h a l l 

assume t h a t f. i s a s t e p f u n c t i o n , being 1 f o r e n e r g i e s s m a l l e r 

than t h e fermi energy and 0 fo r l a r g e r e n e r g i e s . We then f i n d 

from (17) fo r the c o n e - s t r u c t u r e t h e fo l lowing e f f e c t i v e i n t e r ­

ac t i on between the l o c a l i z e d moments. 

»q = -^ % §q " » J t <Sq S-q * Sq 8 V < 1 , } 

where the wave v e c t o r dependent exchange i n t e r a c t i o n i s 

J q S Q S - q -

t , szf . l a ^ - v ) i j i f lc(i-fktq)|5sfu,k tq)|2 

nn* K 

U-fcos 22*){ - j r - i j + - ~ z >+sin22»{ + 1 . + - 1
 t > 

Ek~Ek+q Ek~Ektq Ek~Ek+q Ek_Ek+q 

(19) 

Jq C8J S ^ • Sq S^) . 

iqd^-R«.) {s+ s- eiQ(V
Rn') • s' s\ e'^^'V ) ) 

. n n n n 
nn' 

1 r • 
W £ fk(l-fk+q)|Jsf(k,k+Q+q)Jsf(k,k-Q+q)| 

i in 22» { - ^ - V + - - 1- > + <l+cos 2 2*M - r ^ - + •_ \ > 
Ek"Ek+q Ek"Ek-q Ek"Ek-q Ek~Ek+q 

For a f e r romagne t i c o r d e r i n g i s $=6=Q=0 fr>om (13,15) and (19) 

reduces c o n s i d e r a b l y . We f ind 

Jq = i k
f k ( 1 " W ' isf (k.^q'l2 

ek-ES*q Ek-EJctq (20) 

and 

Jq = * * f k l l - W '3sf ( k ' k + ^ 

{ — I — • — i — } 
e r e * + q EÉ- e**q 

where ej* are given by ( 1 6 ) . 



This interaction is anisotropic contrary to the paramagnetic RKKY 

-interaction. For the ferromagnetic phase we obtain a J" and a J-"-

for the spin components parallel or perpendicular to the average 

moment direction. J^ involves only scattering of electrons with 

no spin-flip and J^ only with spin-flip. JJ- can be measured 

directly by spin wave measurements, whereas J" cannot be measured 

as a function of the wave vector. However, the magnetic con­

tribution to the free energy is -J" S^SZ for q=0. If J" has a 

maximum for q*0 i t shows that, if for no other reasons, a non-

ferromagnetic state would have lower free energy. However i t is 

necessary to calculate selfconsistently the energy difference 

between the various phases. 

3.5. The magnitude of the s-f interaction 

Experimental information about the magnitude of the s-f inter­

action j s f (k ,k ' ) can be obtained directly by considering the 

polarization of the conduction electrons. This can be found either 

by measuring the total moment pr. atom or by means of NMR technique 

measuring the magnetic field, which the conduction electrons create 

at the nucleus. 

For ferromagnetic ordering the net polarization is given by 

the difference between the number of electrons with spin up and 

spin down. In the rigid band model (T=0) this is to a good approx-

nt " n4 ' <V<VP(EF>/2 = 4p(EF) = Sm(T)^Jsf(k,k) p(EF), (21) 

where Lft is the energy shift of the spin up and spin down elec­

trons realitive to the paramagnetic fermi-energy Ep and p(EF) is 

the density of states at the fermi energy. We obtained (21) by 

averaging over all momenta in (10). 

Since each unpaired electron contributes to the magnetic moment 

by lg„MB=l|iB we find for the average s-f interaction (m(01=l) 

f ( 0 ) sfvu' ' S 
A . 24M 

g auBSp(EF ) 

where SM is the conduction electron polarization in u_ and g x2. 

From magnetization data and a theory for the temperature depen­

dence of the magnetization we find the results given in table 

1. 

Gc 

Tb 

J L 

7 / 2 0 

6 3 

D y 1 5 / 2 5 

ErLS/2 6 

S 

7 / 2 

3 

5 / 2 

3 / 2 

fi 

2 

3 / 2 

4 / 3 

6 / 5 

S t a t e s 
o(EF) '"Svd 

2 5 . 6 

2 8 . 0 

2 7 . 7 

2 3 . 0 

EpRyd SMiiB 

. 4 4 0 

. 5 0 9 

. 5 1 3 

. 1 5 1 

. 5 5 

. 1 1 

. 4 1 

. 2 2 

ARyd 

. 0 2 1 

. 0 1 5 

. 0 1 5 

. 0 1 0 

3 s f ( 0 ) ( 6 M ) 

. 0 0 6 

. 0 0 5 

. 0 0 6 

. 0 0 6 

j s f ( 0 ) ( T c ) 

. 0 0 6 

. 0 0 6 

. 0 0 7 

. 0 0 9 

Table 1: Data for the heavy rare earth metals, p(E-) is the cal­

culated density of states, A is half the ferromagnetic splitting 

andj _(0),the deduced s-f interaction in Ryd. We notice i t is 

almost independent of the elements. The values estimated from the 

ferromagnetic transition temperature is given in the last column. 

The s-f interaction can be estimated from the ferromagnetic 

transition temperature as follows 

kT„ 0.792 ^ J£ J(J+1) ( 22 ) 

where JJ = [(g-1) 3sf<0)r P<Er). 

0.792 is a factor which corrects the molecular field value 

for Tc. 

Having derived the expressions (19) and (20) for the indirect 

exchange interaction and estimated the interaction strength we 

shall consider the actual calculation. The summation over tfc-

wave vectors k in (19) and (20) must be done numerically. 



t. NUMERICAL METHODS 

On the basis of the APW energy bands calculated by Louks 

we can evaluate the sums in (19) and (20). The matrix element 

j5f(k,k+q) must be evaluated using the wave functions. The major 

contribution to the sum comes when the denominator is small. In 

other words when the electrons are scattered from just below to 

just above the fermi surface. This makes the numerical calcul­

ation difficult. A possible way is to sum over a very large 

number of k points and exclude the contribution when the denomi­

nator is smaller than a chosen number j. This is called the 

root-sampling method. This is a brute-force principel value 

calculation (correct in mathematical sense, if we let i go to 

zero). However, it is very difficult to test the convergence of 

this proceedure numerically. In fact the noise in the computer 

sets a limit for how small 6 can be chosen and how fine a mesh 

of k point we can use - apart from the practical problem of the 

increasing computer time. However, the method is simple and was 
12) used by Liu et al and also in several of the results to be 

13) 
discussed. The convergence seems to be good and the com­
puting time reasonable with a mesh with "*50 0C0 points in the 
total Brillouin zone. These calculations were simplified by 
the assumption that the matrix element j f(k,k+q) was independent 
of k and only dependent on the difference q, i.e. j ,(k»k+q)'<>3 _(q) 

In order to test the convergence and also to make it feasible 

to include a k dependence of jsf(k,k+q) a different numerical 

method was used. In this method the Brillouin zone is divided 

into a relatively small number of micro cells. Inside each cell 

are the constant energy surfaces ek approximated by planes. 

This makes it possible to integrate analytically inside each 

micro cell. The integrals are only divergent if the energy sur­

faces ek and e^ are exactly parallel. This will occur very 

rarely."This socalled linearized method was developed for density 
12) 

of state calculations by Gilat and Raubenheimer and was later 

simplified by Jepsenand Andersen, who used it for calculating 

fermi surface areas. The sum in (19) and (20) are more com­

plicated and has not previously been calculated using this method. 

We shall therefore briefly describe it. The Brillouin zone is 

divided into micro cells of the shape of tetrahedra of a 

volume V as shown on fig. 1. In each corner are the energies 

Since the constant energy surfaces are approximated by planes the 

constant energy difference «=e-e is also a plane. The problem is 

therefore to integrate 

max 
A(«) d* (23) 

over the part P of the te trahedra for which e«E f and e>Ej.,where 
the area o f the constant energy d i f f erence plane i n s i d e P i s A(a>). 
P may be a complicated polyhedra because of the r e s t r i c t i o n s coming 
from the fermi ffc f a c t o r s i n (19) and ( 2 0 ) . f K < l - f k + a > can by 
symmetry cons iderat ions be replaced by l < f ] t

- f ] t + q ) - * d o n o t "** 
the l a t t e r form (although i t s i m p l i f i e s the c a l c u l a t i o n considerably) 
because the r e s u l t then i s g iven as the d i f f erence between two 
large numbers which may be inaccurate numerical ly . For i l l u s t r a t i o n 
we s h a l l cons ider the case where the condit ion (e<EF and «>EF) 
i s f u l f i l l e d for the whole te trahedra . 

The area A(t») i s then simply the area of a cut of the t e t r a ­
hedra perpendicular t o t h e • p l a n e s . This area i s c l e a r l y a 
quadratic funct ion of a , being zero for u out s ide the range w ^ ^ 

-w • . The area can e a s i l y be expressed by geometrical cons ider-
min i i 

a t i ons in terms of the corner energ i e s c and e and V, i t i s 

not necessary t o c a l c u l a t e the normal vec tor t o the u p l a n e s . 

Therefore, in the case where we must in tegra te over the whole 

tetrahedra (23) i s simply 
"•ax 

I = i f { a n ( e i e i ) * b n ( e i e i ) « i * c n ( e j e 1 ) » 2 } / w d » , (2t> 
n w . mm 

where the sum i s over each type of cross s e c t i o n s ( t r i a n g l e o r 

square) and a n , b , c n the parameters character iz ing t h i s . He 

n o t i c e t h a t the i n t e g r a l i s l ogar i tmie ly divergent when " „ i n ' " « , , 

i .m. when the plan«* of efc and t ^ a«* p a r a l l e l . 
He can t e s t the method" on the Tree e l e c t r o n modal where the 

energy band: ape p a r a b o l i c . The SUB (19 ,20) can then be in tegrated 

e x a c t l y g iv ing the Lindhard func t ion . The r e s u l t o f the r o o t -



sampling method and the l i n e a r i z e d method i s shown on f i g . 2 
together with the exact r e s u l t . We see that the l i n e a r i z e d method 
g ives an e x c e l l e n t r e s u l t for only 9 000 k-po ints i n the e n t i r e 
B r i l l o u i n zone. 

5. RESULTS 

Let us start by considering what effect the magnetic ordering 

has on the RKKY exchange interaction. That is the same as asking 

what is the intrinsic temperature dependence. The formulas were 

developed in (IS) and (20). We shall only be interested in a 

qualitative answer, which will show the general magnitude and the 

direction of the effects. We therefore make the simplifying as­

sumption that for this purpose we can consider the matrix element 

j j(lc,k+q) to only depend on the difference q. Our problem 

then reduces to calculating the electronic static susceptibility. 

We determine the matrix element |j f(q)|
2 from experiments, 

by comparing xi> 'the calculated sum without it, with the J£ 

obtained from spin wave measurements. The matrix element is 

assumed to be insensitive to the magnetic structure and is used 

in obtaining the exchange interaction in other magnetic phases. 

The absolute scale of JJ- cannot be determined from the spin waves. 

The scale is found from the transition temperature T„ and eoin-

cidently from the conduction electron polarization table 1. This 

gives J" for qsO. 

Fig. 3 shows the results for the ferranagnetie phase at T=0 

for Gd, Tb, Dy, and Er using the APW energy bands and the root 

-sampling method with 150 000 points in the entire brillouin-zone 

(the linearized method was also used as a test, it gave essentially 

the identical result and is not shown). It is clear that J" and 

J£ differ significantly for all materials. The dots show the points 

compared with the experimental JX; the calculation was done for 

SO equidistant q-values. For terbium the experimental J£ shows 

no maximum for q i 0, whereas the calculated J" shows that Tb 

IS -

has a tendency t o form a s p i r a l s tructure even i n the ferromagnetic 
phase. The enhancement o f the maximum f o r q^0 i s a l s o ev ident f o r 

Dy and Er i n which the s p i r a l region i s l a r g e . The oppos i te e f f e c t 
occurs for Gd, where J" shows that Gd should not form a s p i r a l 

phase , and nor i t does . Furthermore i t i s c l e a r that the maxima 
in J" occurs a t q-values very c l o s e to the experimental s p i r a l 
vec tors ( i n d i c a t e d with an arrow) and that i t i s s i g n i f i c a n t l y 

d i sp laced from the peaks in x<Q>t which i s d i r e c t l y r e l a t e d to 
the presence of f l a t p a r a l l e l p i e c e s o f Fermi surface . The matrix 
element thus p lays an important r o l e in determining the wave 

vec tor dependence of the exchange i n t e r a c t i o n . The semiemperically 
found wave v e c t o r dependence of the matrix element i s very 

s i m i l a r for a l l m a t e r i a l s , de sp i t e the rather d i f f e r e n t xW 

f u n c t i o n s . This i s encouraging f o r the present a n a l y s i s . Over-
16) 

hauser has argued that the matrix element should fo l low the 

Hf-form f a c t o r . By extending h i s model t o inc lude the Bloch 
character of the conduction e l e c t r o n s we would expect a narrow 

c e n t r a l peak o r i g i n a t i n g from the conduction e l e c t r o n s . This i s 
the form found i n f i g . t. 

The energy d i f f e r e n c e between the ferromagnetic and s p i r a l 
phases i s , as judged from the T=0 ferromagnetic data f i g . 1 , for 
Gd, Tb,Dy, and Er i n per cent of the exchange energy: - l i t , +5*, 
-•-5%, +12%. This g i v e s for Tb, Dy, and Er a s t a b i l i z a t i o n of the 
s p i r a l phase by 10 K/ion t imes the reduced magnetization squared. 
The magnetoe las t i c s t a b i l i z a t i o n of the ferromagnetic phase i s for 
these mater ia l s a t the f erromagnet i c - sp ira l t r a n s i t i o n t y p i c a l l y 
1 K/ ion. 

The l a s t column in f i g . t shows a c a l c u l a t i o n at ha l f the 
sa tura t ion moment of x£'<l' in the ferromagnetic phase and xA<°.) 
i n '.he s p i r a l phase , with s p i r a l vec tor Q. The contr ibut ion t o 
the free energy i s proport ional t o - | j ( Q ) | 2 XÅ'0 ' - XÅ<°> as a 
funct ion of the s p i r a l vec tor Q fo l lows c l o s e l y that of xJ(Q) a s 

a funct ion of q , which shows that the most probable s p i r a l vec tor 
co inc ide with t h a t found in the ferromagnetic phase. The prec i s e 
l o c a t i o n i s s e n s i t i v e t o the wave vec tor dependence of the matrix 
e lement . 

The above s imple c a l c u l a t i o n gav« encouraging r e s u l t s and i s 
a natural ex tens ion of the c a l c u l a t i o n of the exchange i n t e r -

12) ac t ion in the paramagnetic phase. However, the next s t e p i s 
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t o consider the matrix element more s e r i o u s l y . He s h a l l do t h i s 
f o r the paramagnetic phase with no band s p l i t t i n g . Harmon has 
by means of the APW funct ions c a l c u l a t e d 13 sf (k.k+g.) | f o r t n e 

s implest mater ia l Gd. A few o f the matrix elements are shown 
on f i g . 3 . They genera l ly show the q dependence we a n t i c i p a t e d , 
namely a sharp peak at <j=0. On the o ther hand i t i s c l e a r that 
they are qu i te s e n s i t i v e t o the value o f k, and i r r e g u l a r i t i e s 
occur as a funct ion of q , which presumably comes from the 
hybridizat ion of the p - and d-wave f u n c t i o n s . 

I t i s there fore of importance t o carry out the complete sum 
(20) inc luding the k dependence of j « f (k,k.*g,). Preliminary r e s u l t s 
an shown on f i g . 5. The c a l c u l a t i o n i s performed by the l i n -
e a r i z e d - i n t e g r a l method (23) wi th 7000 k po in t s in the e n t i r e 
Br i l l ou in zone and with Jsf<!s,k*q_) included r e c t a n g u l a r i l y at 
12S0 k p o i n t s . The r e s u l t i s the f i r s t d i r e c t c a l c u l a t i o n of the 
RKKY i n t e r a c t i o n f o r Gd with no adjus table parameters. The 
q-dependence of J i s in s a t i s f a c t o r y agreement with that obtained 
experimental ly from spin wave measurements, shown as J J i n f i g . * . 
An important quest ion t o be i n v e s t i g a t e d i s i f the major con­
tr ibut ion t o J - comes from the part o f the sum for whi-:h j sf(k_,k*q) 
i s i n s e n s i t i v e t o k or i f both the k and q dependence are equa l ly 
important, the l a s t case would i n d i c a t e that the matrix element 
i s as important in determining the magnetic proper t i e s of the 
heavy rare ear ths as the fermi surface topo logy . 

Work on these ques t ions i s in progress . A large number of 
problems are wai t ing t o be dor.e in developing and r e f i n i n g the 
theory , here presented , and confronting i t with the experimental 
f a c t s . 

- 17 -
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LINEARIZED INTEGRAL METHQO 

'*£* 
ui 

I S A(b»/Wdti> 

Fig. 1 At the top i s shown the constant energy plane . for E s t ­
and e w a

s e f The Bri l louin zone i s divided into tetrahedra as 
shown below of constant volume V, here oriented so that the direct ion 
of increasing energy difference u i s v e r t i c a l . The cut with the 
constant m planes are shown. The area of these cuts are quadratic 
functions of <•» in the regions 1 , 2 and 3 . The sum then reduces to 
the integra l shown in the lowest l i n e . In general the plane 
£ j * e r and c j c + a

S £ r maY a l so cut the tetrahedra. In t h i s case must 
only be integrated over the part P for which the f ^ 1 " ^ ^ ) 
condition i s f u l f i l l e d . 



LINEARIZED INTEGRAL METHOD 

0 I I I I I I I L_J J I I L_J L 
0 1 2 

Wave vector q 

Fig. 2a The generalized susceptibility for free electrons. The 

points are the numerical results for the linearized-integral 

-method for meshes with 1000, 9000 and 30000 points in the entire 

Brillouin zone (hep) with kj,=0.7 of the zoneboundary wavevector 

(r-K>. We notice a very good agreement with the theoretical 

Lindhard function already with the mesh with 9000 points. The 

insert shows that the most difficult region for q*0 is reproduced 

well. The systematic deviation is due to the fact that the 

integration is performed in the inscribed polyhedra in the fermi 

sphere. It has both convex and concave parts and the volume is 

better approximated by the polyhedra in a realistic system. 

Fie. Z. Example of dhtortioa ef the Fermi Mfface In the 
numerical cahjalathm due to the finite n a b tine. 

Fl3. 4. GeiMmlieed iwceptibility foe three-
• J free e! 

17) Fig. 2b The result of the root -sampling-method in a coarse 

mesh of 27000 points. We notice that spurious peaks occur because 

of the mesh for k values less than 2kF. The convergence is good 
12 13) 

in a mesh with 450000 points, not shown. * ' 
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Fig . 3 Example of j „ f < k , k + q ) fo r Gd c a l c u l a t e d by the APW 
5) method by Harmon. 

X*«) J(q) J(q) l<mUfln>l2 ty>,X«) 
STATES/RY meV meV STATEVRV 

Fig. n. The perpendicular susceptibility xf q ), the perpendicular ex­

perimental exchange interaction J£, the calculated parallel exchange 

interaction J" and the deduced matrix element |j(q)|2/|j(0)|2 s 

|<m|jr|n>| for the ferronagnetic phase (splitting: 0.008 Ryd). The 

last column shows x$<q> in the spiral phase for Q = o, Qx = | *, 
Q2 * I c a n d Q3 * I c <»Plit*i"f 0.00* Ryd)} the corresponding ferro­

magnetic x"f , is also shown (thin line). 
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Gadolinium 

paramagnetic 

r' 
wave vector q 

Fie. S. Preliminary result for the calculated RKKY 
S) 

interaction, using Harmon's APW matrix element 

Only scattering relevant for an extended zone has 

been included as a first approximation. 

Fig. 6. APW energy bands for Dy . 

Only the bands crossing the fermi 

surface have been included in the sum. 


