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1. INTRODUCTION

The heavy rare earth metals were cbtained in pure Zuorm and as
single crystals about ten years ago. This made a detailed exper-
imental investigation possible. Neutron scattering in particular
has been an important tool. As a result we Dy now have obtained a
very complete knouwledge about the magnetic interactions. The ex-
perimental facts, which are reviewed in l), revealed that the
magnetic properties are determined by an intricate interplay of
forces of similar magnitude. The dominant is the indirec* Ruder-
man-Kittel-Kasuya-Yosida (RKKY) exchange interaction, which we
shall attempt to calculate from first principles, hexwe. If import-
ance is also the crystal field anisotropy and magnetoelastic
effects. The anisotropy of this origin is of a single ion type.

2) have shown that also

Recent neutron scattering measurements
two-ion-anisotropy may be of importance. There are numerous pos-
sibilities for anisotropy of the interacuvion between the moments
at different sites. As we shall see the RKKY interaction, which
is mediated by the conduction electrons, is anisotropic in the
ragnetically ordered phase. The two-ion-interaction, which is
mediated by phonons, is strongly anisotropic. The magnitude of
the interaction between the spin system and the lattice is deter-
mined by the coupling between the spin- and ortital-motion of the
electrons. If the spin-orbit coupling and the orbital momentum

is large we must therefore expect large arisotropies both of
single~ion and two-~ion nature. Also the RKKY interaction becomes
anisotropic as discussed by Kaplan and Lyons3).

In order to avoid the complications of anisotropy we shall
start by considering the RKKY interaction in a pure spin system
with no orbital effects. This is examplified by gadolinium,
which has a 8S ground state. The electronic configuration of a

)

Gd atom is a xenon core with seven 4f electrons and three (sates
outiier electrons.

The bagic interaction is between the localized uf electrons
belonging to the inner shells of gadolinium and the conduction
electrons. Rudermann and Kittel assumed for simplicity that the
condition electrons were completely free (i.e. plane wave states).
We are now able to go a step further and treat the conduction

electrons in a more realistic fashion. A standard techrnique
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is the augmented plane wave (APW) method "5).

2. THE AUGMENTED PLANE WAVE METHOD (APW)

In the AP¥-method the electrons are supposed to move in a
simplified potential which is atomic like inside a sphere (the
muffin tin (in two dimensions)) around each ion and constant (=0)
between the spheres.The Schréding.r equation is then solved
numerically for this potential by the variational method.

The trial wave function is obtained by expanding the wave
functions inside the spheres in atomic like functioqs and between
the spheres in plane waves. The wave functions are matched at
the surface of the spheres and the coefficients in the expansion
is determined by minimizing the energy.

The wave function for the electrons, the crystal wave function,
is therefore

"’k,}: (r) = [ A; (k) % (), )
= i =i
where the coefficients A, (k) are to be determined variationally.

The sum is over a set of reciprocal lattice vectors 1. where we
write k; = ks1..

The augmented plane wave is outside the spheres

vhere f} is the volume of the unit cell,

Inside the n'th sphere .t is

-
. i ki-Ry ;
(B = T 0 -E-gAl () ¥y pePIY  (B), plslr-R [<iy

(3)

where L is the radius of the sphere and gn the vector to the
center. The number of 1 values to be included in the sum are not
specified at this point. However, if we want to represent s, p,
d or f character of the crystal wave function we must include
=0,1,2,3. The wave function ir the two regions (2) and (3) can
be made to match at the sphere surface by choosing She expansion
coefficients Ah(l_:) in (3). By expanding (2) in spherical har-
monics and Bessel functions around the center of the sphere

Ivse ) - L » -
1 kg o My ikicR p oy i’jl(kp) ym(ii) T3 o
a /T £20 m=-1

and equating this with (3) at psL, we find

. ww _ikjeR, -1
Am(l_c) = z e =1 i Yl.n( i) (kL )/Y E'“‘n) (5)
The APW function .k (r) with this A, (k) is called a basis function.
It is continuous, but has a d:.scontxnous slope at the sphere radius.
The expansion coefficients A,‘_‘E) in (1) are found by minimizing

the energy

. .,
El‘- = <+5‘“H'k”‘+gl1’;’ ()

This gives a secular equation for the determination of the A;(k).
We shall not go further into this,

The 'L.E’“') functions are the radial solution to the
Schrddinger equation inside the sphere

(2 42 2, LD, yr)E') ¥, pile) 5 0 i
2 dr  dr ,.2 ’

Y E'(” must be regular at the center (pz0), but there is no
»



boundary condition at p=w and hence there exist solutions for
ail E'. This is a complication and E' must be chosen selfcon-
sistently according to (6). Several methods have been devised
5 used a linearized AWP nethodﬁ)

to make this practically. Harmon
to obtain the wavefunctions for 3d, which we are going to use
later. Also the crystal potential inside the sphere, V(r), must be
chosen selfconsistently. This is done by summing the contribution
to the Coulomb potential from a large number of surrounding ions
including the conduction electron charge density. The exchange
interaction may be included in the Slater °1/3 approximation.

By carrying out this programme we are able to find a set of
selfconsistent energy bands E, and the corresponding wave functions
4, for the conduction electrons. The variationally determined
wavefunctions are presumably less reliable than the energies.

Also they are more sensitive to the approximation made when con-
structing the muffin-tin-potential. However, we may expect them
to be best near the atoms inside the spheres. Therefo.se they
should be quite adequate in calculating the matrix element be-
tween the conduction electrons and the localized 4f electrons,
which is relevant for the calculation for the RKKY interaction.
The u4f electrons are well approximated by the atomic wavefunctions

of Herman and Skillman”.

3. THE RKKY-INTERACTION WITH
REALISTIC ENERGY BANDS

3.1. The Interaction between conduction electrons
and the uf electrons

By means of these realistic energy bands and wave functions
we can proceed to calculate the RKKY interaction.!®’
In the calculation of the energy bands we did not consider
explicitly the interaction between two electrons but rather the
interaction between one electron and the average potential for
all the other electrons. As a perturbation on this model we
shall now consider the interaction between a cenduction electron
and a 4f electron. 'l‘he direct interaction is the Coulomb inter-

action v(xl-le = 11‘_|TT between a conduction electron at )

and a 4f electron at Lo In general, however, the potential is
screened by the presence of the other electrens, in which case
vir,-r,) will be modified to for example the Yukawa potential
e? exp(-x{gl-gzllllg_l-gll, where «lis the screening length.
Since we are interested in the magnetic interaction we shall
only consider the exchange interaction and further only t..2 term
which involve the scattering of a conduction electron on a u4f
electron.
This is represented in terms of electron creation an!l anni-
hilation operators, c; and ¢ respectively as follows

v(r)-r,) = 4 E <k, S, ‘V(Il'lz)“sz PES 1 12
kis;
£21,2,3,4
s .5, %k,s, © (8)
4%y 33%3 2% K8

where<|v|> is the matrix element, k; the crystal momentum and
8; the spin index. Since "(31'52) is independent of spin, the
spin must be conserved in the scattering process. Let us assume
that the 4f electrons are well approximated by localized atomic
states Quf(r-k ) at the site R, ana the conduction electron
wave function is 1')( E (r) in (1). Then the conduction electrons
are scattered from one state of momentum k to another of k'
whereas the localised electrons are scattered from one localised
state to antoher, with or without spin flip. We can represent
the change in the localised states by the change in the total
local spin S, instead of by means of the creation and annihilation
operators in (8).

The perturbation of the single electron Hamiltonian which
was used in the :and calculation is therefore in this approximation
for the s=-f ¢xchange interaction as follows

HegB) = = § L Sgr (5b") ol 570
Kok’

+ z
((ci'ck,' - ¢ c!.") Sq (9)
+ - + +
crch,,sn * oy O s, !}




where the last line shows the spin flip scattering processes and
the middel line the processes without spin flip.
The matrix element is

Jg-tkok") = N fd_rl dr, {éys(ry-R) 'i’i(gz) v(p;-r,)
(TR e (et TRy (10

jsf(lg,li') is in’ependent of the lattice site R, since

B = upe = 4 (2R = u (peHE o7k an

‘
according to Block's theorem. We shall assume that ¢uf(£—5n)
vanishes outside the muffin-tin-sphere around R, and therefore
we only integrate (10) inside the sphere to obtain the geneialized
exchange integral j g(k,k').

3.2, The effect of orbital moment of the 4f electrons

Let us generalize the interaction Hamiltonian (9) sligthly.
In the presence of oruital momentum L for the 4f electrons the
total angular momentum J = L+5 (J=|LtS| since L and § are
parallel, with + for the heayy and - for the light rare earth
metals)., Then we can replace § in (9) by the spin projection
along J namely (g-1)J, where g is the Landé factor. A proper
calculation of the orbital effects will give rise to a more com-
pPlicated form for (9) as discussed by Kaplan and Lyonss). The
effect is however small and will be neglected here.

3.3. The effect of magnetic ordering of the

localized moments

If the localized moments are ordered througout *he crystal
they will give rise to a molecular magnetic field Hy which will
shift the energy of the otherwice degenerate Bpin-up and spin
-down electrons i.e. Epe$ E .. This molecular field model is
equivalent to the rigid-band~shift model. The shift in energies
can be calculated exactly by diagonalizing the single electron
Hamiltonian and the molecular field term

+ + 1 (10)

H = ¢ E K,5 ck,s M

k8

k.8 ¢

The molecular field is obtained by taking the thermal average
value of localized moments S, in (9).

For the sake of generality we shall calculate the RKKY inter-
action for the conically ordered phase. The cone-structure, which
contains as special cases both the ferromagnetic and the spiral
structure, is defined by the following parameterization of the
ionic moments:

§§Bn> = m(T)S{sind cos(g-gh), sine sin(gugn), cosf} (11>
where m(T) is the temperature dependent reduced magnetization,

6 is the cone angle and Q the spiral vector. '

Using (9) and (10) we find the molecular field Hy to be used

in (10), which then can be diagonalized using standard techniques.

We find the new energies
I YL 12)
k,Q P m

where

& = Eeqra * Exaqr2)/?
m (13)

A = Sm(TIcosd jgp(k,k) and y=Sm(T)sin® j s (k,k+Q)

the new wave functions are

i ,4 = €080 |k=Q/2,4> + sin¢ |k+Q/2,3>
(14)
Ve - = -8ind |k=Q/2,4> + cos¢ |k+Q/2,4>
v
where
tgd = —.—I————-— (1%)
ek,Q*A'Ek-QIZ

(12) shows the energies of the conduction electrons in the mag-
netically ordered phase.



For the ferromagnetic case 6=0 and Q=0 and we find the rigid
band model:

" -
% = E t4 (16)

where A goes to zero when the magnetization vanishes at Tc'

For the spiral case we obtain the results discussed by Elliott
and wedgwoode). In this case, as in the general case of cone
structure, the magnetic order produces gaps in the electron energy
bands related to the spiral vector Q. This is of importance when
calculating the temperature dependence of the spiral vector Q(T),
and in general the temperature dependence of the exdhange inter-~
action.

The magnetic order, the effect of which we have just included,
is of course a consequence of the interaction between the loca’
moments. In other words the interaction must be calculated self-
consistently.

3.4%. The generalized RKKY interaction
in the ordered phase

We now proceed to calculate the RKKY interaction by taking
into account the terms left in (9). Hgg~Hy 18 not digonal be-
tween the states (12), but the effect thereof can be found by
second order perturbation theory.

The shift in energy is then using (9) and (12):

SE(2)=nxn'§<°lef‘Rn)'HM|ixilef(Rn’)'HHIO”(‘o"i) 7
»

where |[0>, [i> are the initial and intermediate states respectively
and €,, €; the corresponding energies, from (12). We must remember
that the electrons can be scattered only from an occupied state

to an empty state according to the Pauli principle. This can be
accounted for by the fermi factors fk=[e‘Ek'=f)’kT¢1]'1 ., We shall
assume that fk is a step function, being 1 for energies smaller
than the fermi energy and 0 for larger snergies. We then find
from (17) for the cone-structure the following effective inter=-
action between the localized momesnts.

P—— 1 Z . L + +
Hy = =05 8¢ 8¢ - WE (838 + 50 Sl) Qe

-9 -

where the wave vector dependent exchange interaction is

z z -
Jpsisl -
z oz _i9(R -Rn¢) 1 - . 2
r sisie Raknt) orfa faq) g Rai) |
nn k
(1+cos22¢){ = 1, + — 1 )*sin22¢(—72—:— g }
kCkeq  fk keq EkTCkeq Bk Ckiq
and (19)
i + o= - ot _
Jg (sq s+ sgsly =

1 elPRnEan) gf 5o, AURRA) oo b iUy
nn' non non

1 .
W[ 6 Afy, ) 3gptkkeQsa)T g (K k-Q4q) |

1
sinl2¢ T 1+ + — 1_ } +(1+c05220){ —;—l:- +— ]
€k Ck+q Kk Ck-q e kg Kk Fktq

For a ferromagnetic ordering is ¢=6=Q=0 f-om (13,15) and (19)
reduces considerably. We find

1 : 2
noe g i £0-f,00 | er (k,k+q) |

q
1 .t 1
€l Cfeq °L-°£+q (20)
and
PSR T}

Ll T

where c}¥ are given by (18).
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This interaction is anisotropic contrary to the paramagnetic RKKY
-interaction. For the ferromagnetic phase we obtain a J" and a J&
for the spin components parallel or perpendicular to the average
moment direction. J('; involves only scattering of electrons with
no spin-flip and J‘(If only with spin-flip. JE‘]' can be measured
directly by spin wave measurements, whereas J; cannot be measured
as a function of the wave vector. However, the magnetic con-
tribution to the free energy is -J" S:S: for q=0. If Ja has a
maximum for q#0 it shows that, if for no other reasons, a non-
ferromagnetic state would have lower free energy. However it is
necessary to calculate selfconsistently the energy d'ifference
between the various phases.

3.5. The magnitude of the s~f interaction

Experimental information about the magnitude of the s-f inter-
action jsf(k,k') can be obtained directly by considering the
polarization of the conduction electrons, This can be found either
by measuring the total moment pr. atom or by means of NMR technique
measuring the magnetic field, which the conduction electrons create
at the nucleus.

For ferromagnetic ordering the ret polarization is given by
the difference between the number of electrons with spin up and
spin down. In the rigid band model (T=0) this is to a good approx-
imation

my - ny = (By=B,)0(Ep)/2 = Ap(ER) = SM(DIESgp0c,k) p(Ep),  (21)
k

where Ay, is the energy shift of the spin up and spin down elec-
trons realitive to the paramagnetic fermi-energy Ep and p(EF) is
the density of states at the fermi energy. We obtained (21) by
averaging over all momenta in (10).

Since each unpaired electron contributes to the magnetic moment
by igsuaﬂus we find for the average s-f interaction (m(0)=1)

A . __28M

dot (O BaugpSp(Ep)

where M is the conduction electron polarization in up and 8q%2.

- 11 -

From magnetization datal)

and a theory for the temperature depen-
dence of the magnetizatior.ln) we find the results given in table

1.

States] . W 130 (T )
slils | e bEn s ey btug|aryd fise (0 (a1 [0 (T,
Gq 7/20 '7/2 2 25.6 440 +551.021 . 006 . 006
™ 633 |3/2 28.0 .509 .411.015 .005 +006
Dyll5/235 [5/2|4/3 27.7 .513 +41].015 .006 .007
EI‘FLS/ 6 I3/2 6/5 23.0 451 .221.010 .00¢ 009

Table 1: Data for the heavy rare earth metals, p(El‘) is the cal-
culated density of states, 4 is half the ferromagnetic splitting
and j_.(0), the deduced s~f interaction in Ryd. We notice it is

almost independent of the elements. The values estimated from the
ferromagnetic transition temperature is giver in the last column.

The s-f interaction can be estimated from the ferromagnetic
transition temperature as follows

= (22)
KT, = 0.792 4 J% J(I+D)

where 3% = [(g-1) 3¢(0)]% p(Ep).

0.792 is a factor which corrects the molecular field value
for Tc.

Having derived the expressions (19) and (20) for the indirect
exchange interaction and estimated the interaction strength we
shall consider the actual calculation. The summation over tl~
wave vectors k in (19) and (20) must be done numerically.
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4. NUMERICAL METHODS

On the basis of the APW energy bands calculated by bouksn)

we can evaluate the sums in (19) and (20). The matrix element
j!f(k,lu-q) must be evaluated using the wave functions. The major
contribution to the sum comes when the denominator is small. In
other words when the electrons are scattered from just below to
just above the fermi surface. This makes the numerical calcul-
ation difficult. A possible way is to sum over a very large
number of k points and exclude the contribution when the denomi-
nator is smaller than a chosen number 8. This is called the
root-sampling method. This is a brute-force principel value
calculation (correct in mathematical sense, if we let § go to
zero). However, it is very difficult to test the convergence of
this proceedure numerically. In fact the noise in the computer
sets a limit for how small § can be chosen aad how fine a mesh
of k point we can use ~ apart from the practical problem of the
increasing computer time, However, the method is simple and was
used by Liu et al and also in several of the results to be
discussed. 19 The convergence seems to be good and the com-
puting time reasonable with a mesh with 450 060 points in the
total Brillouin zone. These calculations were gimplified by
the assumption that the matrix element jsf(k,)u-q) was independent
of k and only dependent on the difference q, i.e. jsf(k,ki-q)'\-isf(q).
In order to test the convergence and also to make it feasible
to include a k dependence of jsf(k,)u-q) a different numerical
method was used. In this method the Brillouin zone is divided
into a relatively small number of micro cells. Inaide each cell
are the constant energy surfaces €, approximated by planes.
This makes it possible to integrate analytically inside each
micro cell., The integrals are only divergent if the energy sur-
faces €, and ¢, are exactly parallel. This will occur very
rarely, This socalled linearized method was developed for density
of state calculations by Gilat and Raubenheimer 12) and was later
simplified by Jepsenand Andersen, who used it for calculating
fermi surface areas. The sum in (19) and (20) are more com-
plicated and has not previously been calculated using this method.
We shall therefore briefly describe it. The Brillouin zone is
divided into micro cells of the shape of tetrahedra 15 of a

- 13 ~

volume V as shown on fig. 1. In each corner are the energies

;; S €y Eys €3, € and "llt*q T e1r eps €31 ey

Since the constant energy surfaces are approximated by planes the
constant energy difference w=g¢-g is also a plane. The problem is
therefore to integrate
"max
1 =f 3 Atw) am (23)
“min
over the part P of the tetrahedra for which e<Ep and e>£r,vhzx-e
the area of the constant energy difference plane indide P is A(w).
P may be a complicated polyhedra because of the restrictions coming
from the fermi fk factors in (19) and (20). fk(l-t'k )} can by
sysmetry considerations be replaced by “fk'fk+q)' We do not use
the latter form (although it simplifies the calculation considerably)
because the result then is given as the difference between two
large numbers which may be inaccurate numerically. For illustration
we shall consider the case where the condition (e<Ep and e>Ef)
is fulfilled for the whole tetrahedra.

The area A(w) is then simply the area of a cut of the tetra-
hedra perpendicular to the w planes. This area is clearly a
quadratic function of @, being zero for m outside the range w_ .
~¥in® The area can easily be expressed :y seon;trica.l cclms%der-
ations in terms of the corner energies ¢~ and e~ and V, it 1s
not necessary to calculate the normal vector to the w planes.
Therefore, in the case where we must integrate over the whole
tetrahedra (23) is simply

-
nax igi i i igd),2
I - :f {a, (ete? ) (c7e Jurc, (c,eM)w” } ude, 4)
n .
“min

where the sus is over each typs of cross sections (triangle or
square) and a4, b, c, the parameters characterizing this. We
notics that the integral is logaritmicly divergent when w,, ze..
i,e. when the planes of € and €o are parallel.

We can test the method on the Tree electron model whers the
energy band: are parabolic. The sum (19,20} can then be integrated
exactly giving the Lindhard function. The result of the root~-
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sampling method and the linearized method is shown on fig. 2
together with the exact result. We see that the linearized method
gives an excellent result for only 9 000 k-points in the entire
Brillouin zone.

5. RESULTS

Let us start by considering what effect the magnetic ordering
has on the RKKY exchange interaction. That is the same as asking
what is the intrinsic temperature dependence. The formulas were
developed in (1%) and (20). We shall only be interefted in a
qualitative answer, which will show the general magnitude and the
direction of the effects. We therefore make the simplifying as-
sumption that for this purpose we can consider the matrix element
jsf(k,lﬂq) to enly depend on the difference q. Our problem
then reduces to calculating the electronic static susceptibility.

af 1 - a__B
N OvW )E fk(l fk‘,q)/(ek e“q )

We determine the matrix element Ijsf(q)|2 from experiments,
by comparing x4, the calculated sum without it, with the Ja-
obtained from spin wave measurements. The matrix element is
assumed to be insensitive to the magnetic structure and is used
in obtaining the exchange interaction in other magnetic phases.
The absolute scale of Jé.- cannot be determined from the spin waves.
The scale is found from the transition temperature TN and coin-
cidently from the conduction electron polarization table 1. This
gives J" for q=0.

Fig. 3 shows the results for the ferroamagnetic phase at T=0
for Gd, Tb, Dy, and Er using the APW energy bands and the root
-sampling method with 450 000 points in the entire brillouin-zone
(the linearized method was also used as a test, it gave essentially
the identical result and is not shown). It is clear that J% and
Ja- differ significantly for all materials., The dots show the points
compared with the experimental J-&; the calculation was done for
60 equidistant q-values. For terbium the experimental J"-'l' shows

no maximum for q £ 0, whereas the calculated Ja shows that Tb

- 15 -

has a tendency to form a spiral structure even in the ferromagnetic
phase. The enhancement of the maximum for q#0 is also evident for
Dy and Er in which the spiral region is large. The opposite effect
occurs for Gd, where J; shows that Gd should not form a spiral
phase, and nor it does. Furthermore it is clear that the maxima

in J7 occurs at g-values very close to the experimental spiral
vectors (indicated with an arrow) and that it is significantly
displaced from the peaks in x(q), which is directly related to
the presence of flat parallel pieces of Fermi surface. The matrix
element thus plays an important role in determining the wave
vector dependence of the exchange interaction. The semiemperically
found wave vector dependence of the matrix element 1'.s very
similar for all materials, despite the rather different x(q)
functions. This is encouraging for the present analysis. Over-
hausar 16) has argued that the matrix element should follow the
4f-form factor. By extending hie model to include the Bloch
character of the conduction electrons we would expect a narrow
central peak originating from the conduction electrons. This is
the form found in fig. 4.

The energy difference between the ferromagnetic and spiral
phases is, as judged from the T=0 ferromagnetic data fig. 4, for
Gd, Tb,Dy, and Er in per cent of the exchange energy: -14%, +5%,
+5%, +12%. This gives for Tb, Dy, and Er a stabilization of the
spiral phase by 10 K/ion times the reduced magnetization squared.
The magnetoelastic stabilization of the ferromagnetic phase is for
these materials at the ferromagnetic-spiral transition typically
1 K/ion.

The last column in fig. % shows a calculation at half the
saturation moment of xg(q) in the ferromagnetic phase and x&(q)
in ihe spiral phase, with spiral vector Q. The contribution to
the free energy is proportional to -[j(Q)|2 x&(o). x&(o) as a
function of the spiral vector Q follows closely that of x7(q) as
a function of q, which shows that the most probable spiral vector
coincide with that found in the ferromagnetic phase. The precise
location is sensitive to the wave vector dependence of the matrix
element.

The above simple calculation gave encouraging results and is
a natural extension of the calculation of the exchange inter-
action in ths paramagnetic phau.u’ Howaver, the next atep is



to consider the matrix element more seriously. We shall do this
for the paramagnetic phase with no band splitting. llar-;n'” has
by means of the APW functions calculated Ijsf(g,l_:og)lz for the
simplest material Gd. A few of the matrix elements are showm
on fig. 3. They generally show the q dependence we anticipated,
namely a sharp peak at ¢=0. On the other hand it is clear that
they are quite sensitive to the value of k, and irregularities
occur as a function of 4, which presumably comes froa the
hybridization of the p- and d-wave functioms.

It is therefore of iaportance to carry out the complete sum

(20) including the k dependence of j_.(k,k+g). Preliminary results
= sf

are shown on fig. 5. The calculation is performed b} the lin-
earized-integral method (23) with 7000 k points in the entire
Brillouin zone and with j  (k,k+q) included rectangularily at
1250 k points. The result is the first direct calculation of the
RKKY interaction for Gd with no adjustable parameters. The

g-dependence of J is in satisfactory agreement with that obtained
experimentally from spin wave measurements, shown as J1 in fig. .

An important question to be investigated is if the major con-

tribution to '.l1 comes from the part of the sum for whi-h j_glk,k¢q)

is insensitive to k or if both the k and q dependence are equally
important, the last case would indicate that the matrix elesent
is as important in determining the magnetic properties of the
heavy rare earths as the fermi surface topology.

Work on these questions is in progress. A large number of
problems are waiting to be dore in developing and refining the
theory, here presented, and confronting it with the experimental
facts.
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LINEARIZED INTEGRAL METHOD
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Fig. 1 At the top is shown the constant energy plane. for € €p

and ehqzer. The Brillouin zone is divided into tetrahedra as

shown below of constant volume V, here oriented so that the direction
of increasing energy difference w is vertical. The cut with the
constant w planes are shown. The area of these cuts are quadratic
functions of w in the regions 1, 2 and 3. The sum then reduces to
the integral shown in the lowest line. In general the plane

€y *Cp and ‘k+q"f may also cut the tetrahedra. In this case must
only be integrated over the part P for which the fk(l-fk+ )

q
condition is fulfilled.



LINEARIZED INTEGRAL METHOD
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Fig. 2a The generalized susceptibility for free electrons. The
points are the numerical results for the linearized-integral
-method for meshes with 1000, 9000 and 30000 points in the entire
Brillouin zone (hep) with kp=0.7 of the zoneboundary wavevector
(r«K). We notice a very good agreement with the theoretical
Lindhard function already with the mesh with 9000 points. The
insert shows that the most difficult region for q+0 is reproduced
well. The systematic deviation is due to the fact that the
integration is performed in the inscribed polyhedra in the fermi
sphere. It has both convex and concave parts and the volume is
better approximated by the polyhedra in a realistic system.
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Fu. 2 E of distortion of the Fermi surface in the
mumerical calcolation due to the finite rvesh size.
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F13. 4. Generalired suscrptibility for three-
dimensional free electrons.
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Fig. 2b The result of the root -sampling-method” in a coarse
mesh of 27000 points. We notice that spurious peaks occur because
of the mesh for k values less than 2k}-. The convergence is good

in a mesh with 450000 points, not shown.n’la)
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Fig. . The perpendicular susceptibility x+ the perpendicular ex-
Fig. 3 Example of |j (k,luq)lz for Gd calculated by the APW 8 The perpe P Y X(q)* perp:
of perimental exchange interaction Ji, the calculated parallel exchange
method by Harmon. .

interaction J" and the deduced matrix element |j(q)|2/lj(¢))[2 =z
[<m[x{n>|2 for the ferromagnetic phase (spiitting: 0.008 Ryd). The
last column shows X§(a) in the spiral phase for Q =0, Q ¢ % g.
Q= % g and Q, = %-g (splitting 0.004 Ryd); the corresponding ferro-
magnetic x"(q) is also shown (thin line).




Gadolinium
paramagnetic

RKKY exchange integral Jq

r A "'

wave vector q

FTig. 5. Preliminary result for the calculated RKXY
interaction, using Harmon's APW matrix elements).
Only scattering relevant for an extended zone has

been included as a first approximation.
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Fig. 6. APW energy bands for Dyll).

Only the bands crossing the fermi
surface have been included in the sum.




