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by 
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Denmark 

Abstract 

A mean field - crystal field theory is developed for 

random, multi-component, anisotropic magnetic alloys. It is 

specially applicable to rare earth alloys. A discussion is 

given of multicritical points and phase transitions between 

various states characterized by order parameters with dif

ferent spatial directions or different ordering wave vectors. 

Theoretical predictions for the phase diagrams and magnetic 

moments, based on known parameters for the rare earth alloys 

Nd-Pr, pure dhcp Nd, TbEr and TbTm alloys, agree with experimental 

observations. A simple procedure to include fluctuation cor

rections in the mean field results? is also discussed. 



1. Introduction 

The physics of anisotropic mixtures have several 

interesting aspects. Multicritical points (bi-, tri-, tetra-

critical points, etc.) may be realized for simple model 

systems. We shall discuss these within the context of mean-

field theory taking the crystal field, i.e. the anisotropy, 

exactly into account. We show that the free energy near a 

phase transition reduces to the anisotropic Landau expansion, 

the critical behavior of which case has been discussed using 

scaling arguments or renormalization group techniques by a 

1) 2) 
number of workers (Fisher and Pfeuty , Bruce and Aharony ). 

The theory is a generalization of the mean-field theory for an 

3) antiferromagner in a magnetic field by Thomas , and also of 

4) the theory by Wegner for an antiferromagnetic alloy. 

Another aspect of anisotropic magnetic alloys that is of 

interest is their significance for the understanding of the 

rare earth metals. A number of experiments on rare earth alloys 

have been made giving phase diagrams and magnetization curves 

e.g. Er-Tb and Dy by Millhouse and Koehler , Nd-Pr by Lebech 

et al. , while a number of dilutions of rare earth metals 

6 ) 

with Y or Yb have been described by Koehler . To a large ex

tent these data have not been analyzed and fully utilized to 

extract information about the crystal fields and exchange inter

actions in these materials. The present theory may provide a 
7) basis for doing so. Nagamiya developed a complete theory for 

the pure heavy rare earth metals in which the crystal field 

quenching of the magnetic moments to a good approximation can 
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be neglected. This is not the case in general, and not in 

particular for the light rare earth metals. However, by for

mulating the theory in terms of susceptibilities the effect 

of the crystal field is easily taken into exact account. 

The two components theory is given in section 2, and 

the general case is discussed in appendix A. Section 3 gives 

a number of examples of transitions between disordered and 

ordered states in simple systems. In section 4 is discussed 

the case of competing order parameters, either with respect 

to moment directions or ordering wave vectors, or both. The 

various multicritical points are discussed in general terms. 

Appendix C gives a detailed calculation of the typical example 

of a singlet-singlet - singlet-doublet alloy. A similar dis

cussion of the singlet-doublet system in an external magnetic 

8) 

field was discussed in detail by Wang and Khajehpour . Sec

tion 5 gives concluding remarks. Appendix D presents a simple 

procedure to go beyond the mean-field approximation and in

clude fluctuation corrections in the single ion free energy 

used in the theory. 
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2. Molecular Field Theory for Phase Transitions 

Let us consider the phase diagram for magnetic phases 

of an alloy of two elements with different susceptibilities; 

for example an alloy of two rare earth metals. We shall assume 

a perfect random alloy of ions of types 1 and 2 for which the 

Hamiltonian can be written 

W = I (cxCvj-c^Judj) J.i-J.J • ct(vj -dJ.^ij)^..^.) 

i j J J 

- C,C2J 2 J i 2 < i j r f 1 , ' J 1 ; } (1) 
ij J ' 

where c are the concentrations,V the crystal fields,and n en 

J (ij) the exchange interaction between the angular momenta 

J . and J .. In the molecular field approximation (1) reduces ni mj r r 

to a single site Hamiltonian. For simplicity we shall in 

detail consider the case where <Ji> and <J2> are parallel 

in the ordered phase. The general case, treated in appendix 

A, is more complicated, but analogous. The molecular fields 

are then 

Hi = ciJi i(<Ji>*s1) + c2Jj2(<Ja> + S2) 
(2) 

Hi = C l J2 J (<Jj -> + S 1 ) • C2J22(<«J2> + S2 ) 

where s n are variational parameters set equal to zero in the 

final result; the Fourier-transformed interaction constants 

and angular momenta are 

r - , iQ'R iQ'R 
J ™ ' | "«.«>• . Jm = Ie J|nR (3, 
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and Q is the wave vector characterizing the ordering. 

We have then obtained two single ion Hamiltonians 

H, = - H,J, + Vcl 

H2 = - H2J2 + Vc2 

The total free energy is 

(4) 

F(si,s2) = ctFi(si,s2) • c2F2(si,s2) (5) 

where the elemental free energies are determined from 

-BF(s,,Sl) -0H 
i n = Tr e n (6) 

n 

The phase diagram can be obtained from the free energy (5). 

We shall return to this point in the next section. 

2.1. Physical Argument for Ordering 

In order to gain some insight let us consider the 

problem physically. Near the ordering temperature the molecu

lar fields are small,and we could expect that the magnetic 

moment induced at a site is proportional to the molecular 

field, with the proportionality constant being the para

magnetic susceptibility. 

<Ji> = Hix° = (JnCi<Ji> • 3i2c2<J2>) x° 
1 , l < 7 > 

<J2> = HJX' = (J2lCl<Jl> + J22C2<J2> X° 
2 * 
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Non-trivial solutions can only be found !•" the determinant 

for the equation system is zero. This gives the condition 

(Ji2>2clC2 = i - J - : ( J r - c J )(K - caJ21) (8) 
Xi X2 X i 11 X 

1 2 

where x is the enhanced susceptibility. The condition for n 

ordering of a pure system is, as is well known, that the 

inverse enhanced susceptibility goe? to zero at the tran

sition temperature. Equation (8) is ?learly a generaliza

tion of this condition to the alloy aase, expressing that 

the product of the enhanced elemental susceptibilities must 

equal the squared interaction between the systems. If we 

express the concentrations in terms of c = cj and (1-c) = cj, 

then the condition for the ordering temperature TN is an 

equation of second order in c: 

Ac2 • Be + C = 0 (9) 

with the coefficients 

A = J i i J2 2 ** C«Ji 2 5 

B = J n / x ' " J22 /X 0 " A (10) 
1 1 

C = - (1/X° - J22>/X° 
2 I 

B and C depend on T through the susceptibilities x0(T). 

2.2. Exact Condition for Equilibrium and Ordering 

Let us now proceed to derive the condition for ordering 

on the basis of the molecular field free energies (5) with 
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no additional assumptions. The theory is a generalization 

3) 

of the molecular field treatment by Thomas of an 

antiferromagnet with weak anisotropy. The condition for a 

stable (or metastable) solution for <Jt> and <J2> is that 

the free energy F(si,s2) has a minimum with respect to 

small variations of the parameters Sj and s2,i.e. with 

respect to variations in <Jj> and <J2>. 

At equilibrium we demand 

3F(si,s2) . 3f(si,s;) _ Q 
3si ' 3s2 

and furthermore that 

(11) 

;nm .,. xnm 32F , 2 ; r ~Jim ... sum o r , . _ . <5 F = ) s F s„ with F = r — 7 — (12) *• n m 3s 3s nm n m 

must be positively definite. This means that all eigen

values of the hermitian matrix F are positive or zero. 

A second order phase transition occurs according to Landau 

when the coefficient to the term in the 

free energy of second order in the order parameter is zero. 

That is when an eigenvalue of 62F is zero. The eigenvalues 

are 

X = i(Fll+F22) ±/i(F»UF") 2- (Fl,F22 - ?12?21) (13) 

The conditions for a second order phase transition are there

fore 
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(a) !*- = H - = o and (b) f 1 1?" = F18?*1 . <m) 
«Si 3s2 

The order parameter is the eigen vector corresponding to 

the eigenvalue zero. 

By differentiating the free energy (5) we find 

condition (lHa): 

3si kT l x « i x 3si ' 
1 2 

(15) 

3 ^ = - PT {CKJ,> ^ - ^ • c2<J2> ^r - ^ r ] - 0 
1 2 

where x° is the elemental single ion susceptibility with 

the given values of <J!> and <J2>. The homogeneous equations 

(15) have only non-trivial solutions if 

3<Jt> 3<J2> 3<Ji> 3<J2> ,,-.-> 
dsi 3s2 " 3s2 3si ^l ' 

By differentiating (5) we can find each term in (16)j for 

example 

'*•? • 3?7 {Tr.J.."M,«.l ' X'ISJ- (17) 3s 

A f ¥ / 3 < J l ^ -» 7 3<«J 2>1 

X° {ciJn( »-J •D+ciJia^-r-M • 3s, •*'•-»-!» 3s, 

By solving the coupled equations of type (17) for 

3<Ji> 
— j £— , we can write equation (16) 

j 
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<vJ,,/X2 • " . J ) c 2 ) ( J 2 a / X i + ( J , a ) c , ) = ( J , 2 ) | r | r . ( 1 8 ) 
1 2 

2 

This can be reduced to CiC2(Jl2) s l/x 1/x .which is 
1 2 * 

exactly the same condition as that obtained by the physical 

arguments (8). Since (15) and (18) are general conditions 

for the existence ordering, we find the ratio between the two 

elemental momenta in the ordered phase: 

ci<Ji> x* 
^ J - ; = ̂ c,j 1 2x 2. (19) 

Both systems therefore "order" simultaneously, although the 

induced moments may be significantly different. In some cases 

it may be more illustrative to say that one system orders 

spontaneously, but polarizes the other by its molecular field. 

Eq. (19) is valid near the transition temperature, Tc, when 

the molecular fields are small enough to allow a lineariza

tion of the equations which determines the moments. We no

tice the ratio between the moments using the simple equation 

(7) is incorrect in the ordered phase, although T is cor

rectly given. Away from T when the molecular fields become 

stronger a simple magnetic structure described by one Q 

vector is no longer consistent with molecular field theory. 

This is because only an expansion of the type 

T r r in(5»R T 
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can satisfy the non-linear s«Ifconsistency eeuation. The higher 

harmonics with wave vectors n$ lead to a "squaring up" of the 

moment distribution and give rise to extra satellite peaks 

in a neutron diffraction pattern. The effect was discussed in 

detail by Nagamiya , who derived the expression and tempera

ture dependence for a for a simple model system. The theory 

for the alloy can easily be generalized to take this effect 

into account. However, if no higher order satellites are 

observed experimentally the theory is greatly sinplified by 

ignoring a for n i 1. 

In order to find the transition temperature we must 

also fulfil condition (14b) which makes one eigenvalue 

zero. By differentiating (15) with respect to Si and Sj 

we find after a rather lengthy calculation that (mb) ar.d 

(16 or l<+a) are fulfilled simultsneously when <Ji> = <J2> = 0. 

4. general proof is given in appendix A. The temperature at which 

(18) or (8) is fulfilled is therefore the transition t mperature T„. 

The concentration dependence of the transition tempera

ture T„(c) is found from (9) with the coefficients (10). This 
N 

result is quite general and holds when the ordered moments 

<Ji> and <Ja> are parallel. Special cases have been derived 

for the singlet-singlet model by Shiles et al. , and 

we have used it for illustration purposes for the (singlet-

doublet )-( Kramers' doublet) alloy of Pr-Nd (Lebech et al. ). 
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3. Simple Examples 

Let us illustrate the theory given in section 2 

and appendix A by a number of examples. We shall use the 

general formula for the single-ion susceptibility given 

in appendix B. 

a) Heisenberg Magnets with Magnetic Ground State 

Multiplets 

The simplest case concerns an alloy of S-state ions 

with isotropic Heisenberg exchange interaction between the 

moments J . Because of the isotropic ground state the 

influence of the crystal field is negligible and the para

magnetic unenhanced susceptibility is the Curie-Weiss sus

ceptibility 

An = ̂ X n where XR = Jn<Jn+l>. « = x,y,z . (20) 
aa 

Equation (9),which determines the ordering temperature T„, 

can then De reformulated to a second order equation in TN 

with the solution 

3kTN = | ( j , i X l C + J 2 2 X 2 < l - c ) ) ± / i ( 3 i i X i c - J 2 2 X 2 ( l - c ) ) % j l 2 X , X 2 . 

(21) 

It has a solution for any concentration c. This is a virtue 

of the molecular field theory because it is equivalent to the 

assumption of infinite range interactions. If the interactions 

are of short range the theory will break down at small con

centrations. The paramagnetic phase separation curve versus 
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-2 -.2 

concentration is convex if JijXi>J22Xa (i.e. TN of the 

alloy is larger than that corresponding to a non-magnetic 

dilution).It is concave if Ji2Xi<Jj2Xj. 

The phase diagram is very similar if the ionic levels 

are crystal field split, but with a magnetic multiplet as 

the ground state. The susceptibilities then have a Van Vleck 

term in addition. However, in most cases the influence 

of the crystal field can be represented by an effective 

spin characterizing the multiplicity of the ground state. 

b) Singlet Ground State Magnets 

Interesting phase diagrams occur in alloys involving 

singlet ground state magnets. Let us consider the level 

schemes in Fig. 1 with the first excited states being a 

singlet, doublet and triplet respectively, and with non-

vanishing matrix elements for the operators indicated. The 

susceptibility tensor then has the components 

20) 

=singlet 

VV. 

, X 
=doublet 

VV 

VV 
'CW 

(22) 

:triplet aa 
(VV + CW ) , a a ' 

n 

where the Van Vleck term is denoted VV = ̂ (np-ni)|<0|J |1>| 

and the Curie Weiss term (for the excited state) is denoted 
2 

CWa = IcT^^^cJ^I ' T h e P°Pulati°n factor for the ground 

state is no = 1/2 a"d that for the excited state is 

ni = exp(-D/kT)/Z , where the partition function, when the 

excited state has multiplicity p, is Z * 1 + p exp(-D/kT). 
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Some typical phase diagrams obtained by using (9), (20), 

and (22) for alloys of these systems are shown in Fig. 2. 

The (singlet-doublet) - (Kramers' doublet) case is relevant 

for a Pr-Nd alloy and the experimental values for Tj. are 

also shown (Lebech e_t a_l. ). For singlet ground state mag

nets a critical magnitude of the exchange interaction is 

necessary for inducing spontaneous magnetism. Therefore, 

no ordering is possible for certain concentrations even in 

molecular field theory. 

c) Alloys of Magnetic and Non-magnetic Ions 

For alloys with non-magnetic elements or elements with 

zero susceptibility components (element 2) the molecular 

field condition for ordering, (8), reduces to l/x° 
i 

The exchange interaction is simply reduced proportionally to 

= e j , i 

the concentration. This equation was used by Cooper (1972) 

for Tb Y. Sb. c 1-c 
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4. Phase Transitions between Ordered Phases and 

Multi Critical Points 

So far we have considered the stability limits between 

an ordered and a disordered phase. Phase transition between 

phases with different order parameters is also possible. It 

is of second order if two non-degenerate eigenvalues of 62F 

become zero at a particular concentration or magnetic field. 

It is of first order if the free energy of two phases becomes 

equal although 62F is finite. By a multi critical point (MCP) 

we here understand a point in a phase diagram at which 

several phases coexist. 

1.1. Uniaxial Antiferromagnet in a Magnetic Field 

A well known example of a bicritical point (Thomas 1969) 

is the spin flop transition in a uniaxial antiferromagnet in 

a magnetic field along this axis. The bicritical point at 

which the paramagnetic and the two ant iferromagnetic phases 

coexist, with the antiferromagnetic moment parallel and per

pendicular to the field direction, is determined by 

1/X..CH) = l/Xi<H) = 0, (23) 

where x (H) is the enhanced paramagnetic staggered suscepti

bility in the presence of the field. The phase separation 

line between the ordered phases is of first order in the 

ordered phase. If the axial anisotropy is strong,and therefore 

XJ, is small,it may not be possible to fulfil (2 3) until at a 
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critical field H and temperature T , 3*F/3M% becomes nega

tive. This point (To,HQ) is a so-called tricritical point 

13) (Griffiths ) at which the transition to the paramagnetic 

phase becomes of first order at higher fields. This has been 

14) observed in FeCl- by Birgeneau et al. . The two situations 

are illustrated schematically in Fig. 3. Critical phenomena 

at tri- or multicritical points are of particular interest 

since the order parameter can fluctuate in several different 

ways. This influences the critical indices. 

H.2. Multicritical Points in Anisotropic Magnetic Alloys 

An analogous situation arises in anisotropic alloys 

where the enhanced susceptibility varies with the concen

tration. The competing order parameters are the different spatial 

components of the angular momenta or corresponding mean 

fields. In a coordinate system,where the enhanced suscepti

bilities are diagonal,the condition for having a multicriti

cal (bi- or tetra-) point is simply that (8) is fulfilled 

for two components a and 0. That is when 

Xaa(c,T)xa<X(c,T) = xe0(c,T)X
08(c,T) 

1 2 1 2 

In the mean field approximation the nature of the tran

sition between the ordered phases is most conveniently discussed 

using the Landau expansion of the free energy near the multi-

critical point. The most general expansion in the order 

parameter components m is 
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6 F<c,T) -- £Aa(c,T)m£ • J B (c,T)n£ng • I C ^ t c . T ) ^ + 
a a8 <»BY 

The second order phase boundaries between the ordered and 

disordered phase is given by A (c,T) = 0. The multicritical 

point occurs when A (c,T) = Ag(c,T) = 0. If the coefficient 

matrix, B ., to the fourth order term is indefinite (i.e. not 
op 

all eigenvalues are positive),the transition between the 

ordered phases is of first order and the transition point is 

called bicritical- If B n is positively definite (i.e. all 

eigenvalues are positive) there exists an intermediate mixed 

phase and all four phase boundaries are of second order - the 

transition point is then called a tetracritical point. If one 

or more of the eigenvalues of B . are zero the minimum con-
" ap 

dition for 62F, for finite m , is determined by C „ , the 

coefficient to the sixth order term. We shall denote such a 

point a tricritical point. This is a slight generalization 

of the conventional tricritical point which is the point 

along A (c,T) = 0 at which B (c.T) goes to zero and the 

second order phase line becomes of first order. It is not 

possible to have a bicritical point with second order tran

sitions between the ordered phases and a first order tran

sition from the disordered to the mixed phase - although 

some of the matrix elements of B . are negative. The various 
ap 

cases are shown schematically in Fig. 3. 

Let us illustrate the general discussion by a simple 

example that approximately describes many systems in 

practice. The details are given in appendix C. A simple 
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model system which shows two kinds of multicritical point 

is an alloy of (1) a singlet-singlet ion (S « = J) and 

(2) a singlet-doublet ion (S -- = 1), with the crystal field 

splitting 2D' and 2D, respectively. We assume that the 

singlet-singlet spontaneously order in the z-direction and 

therefore has the susceptibility components x = X n 

it i• = 0 

and xZZ - g^l-nM/d+n'), where n' = e-
2D'/kT. The singlet-

doublet is assumed also to order in the z-direction at high 

temperature, but with the x-y plane being favorable at low 

temperatures. The susceptibility components are then 

XXX = xyy = £<l-n)/(l*2n) and x " = hf n/(l + 2r.), where 

-2D/kT 
n = e and r is a matrix element, the other matrix el
ements are put equal to 1 for simplicity. 

The result is shown in Fig. H. The second order phase 

lines are obtained from eqs.(8) to (10) and are shown as bold, 

full lines. The thin full lines in the ordered phase (the 

dilution lines) are the second order lines as they would appear 

if the competing order did not give rise to any perturbation. 

We distinguish two types of MCP. Point B is genuinely due to 

the effect that the alloy elements have different order para

meters, symbolized by the vertical and horizontal arrows. 

Point A is simply due to a change of the relative magnitude 

of the enhanced susceptibility components for element 2 -

an effect which could also be obtained with a non-magnetic 

dilution This case is closely analogous to the antiferro-

magnet in a magnetic field. The first order phase lines are 

denoted by a bold, broken curve. In general both types of 
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MCP will not occur simultaneously, but they may in principle 

also coincide and give rise to a special MCP. For a different 

choice of the interaction J , shown as the dotted phase 
12 

line, no MCP exists although system 2 may undergo a first 

order transition at low temperatures. The first order lines 

were determined by an iterative numerical calculation of the 

locus of equal mean-field free energies in the ordered phase. 

At A we notice that it breaks away from the second order 

line with a kink and joins it again with a sharp bend. 

It is possible to physically predict whether one 

can expect to find a tetracritical or a bicritical point. 

The presence of order gives rise to a mean field h , which we 

may in fact consider to be the order parameter. If (a) this 

perturbs the low-lying energy levels only very weakly, the 

alloy elements will order (second order transition) close to 

the dilution lines and give rise to a net mean field h that 

is a mixture of the two competing fields. That is we have a 

tetracritical point. In the mean-field alloy theory we as

sume this field to act equally on any site in the crystal. 

However, different alloy atoms, of types n and m, in the cry-

tal will respond differently and produce the following local 

moment: 

K -' ln<c'T)-* ' 

Since the elemental susceptibility is anisotropic the alloy 

atom, of type n, will attempt to order in the preferred 
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direction for the pure element and not follow the direction 

of the mean-field. If (b) the mean field h does perturb the 

low-lying energy levels strongly, the mixed phase region 

shrinks and results in a first order transition between the 

pure phases. That is, we have a bi-critical point. 

The multicritical points are interesting from a phase 

transition point of view for several reasons. 

( D A change in critical behavior (in the example, 

from a one- to two-component order parameter system or an 

Ising to an X-Y-model system) in general from a p- to q-

component order parameter system. The critical behavior 

studied by the e-expansion technique is complicated by the 

presence of several fixed-points and even lines of fixed 

points. In the latter case scaling does not hold. A careful 

investigation of MCP may therefore provide a test ground for 

the limitations of scaling id«.as and the renormalization 

group technique. A recent theoretical investigation of the 

behavior of the bi- and tctra-critical phase lines was 

done by Fisher and Nelson using scaling arguments» 

2) 

and by Bruce and Aharony using c-expansion technique -

both yielded the result that the phase lines had a common 

tangent at the MCP. This is contrary to the simple mean-field 

prediction, which in fact seems to be in accordance with 

existing experiments. However, further experimental study 

of this is of importance. Aharony ' has recently con

jectured that the transition may be described by a Gaussian-

fixed point which produces results identical to the mean-field 



- 19 -

theory. 

(2) Near a bicritical point it is possible to study 

first order phase transitions that are very close to second 

order transitions. 

(3) Study of these phenomena in anisotropic magnetic 

alloys has the advantage of giving information about simple 

and non-trivial model systems which can be directly realized 

The rare earth alloys (and also, for example, mixed 

rare earth pnictides, chalcogenides or Alj-compounds) are 

particularly favorable systems to study experimentally. They 

are highly anisotropic and the relative influence of the crys-

17) 

tal field is well described by the Stevens factors. The 

relative exchange interactions scale well with the de Gennes 

factor1 . This considerably limits the number 

of parameters. The long range nature of the exchange inter

action makes the simple molecular field theory valid for a 

large concentration range. Thus the phase separation line for 

the Pr-Nd alloy (Lebech et al. ) is perfectly described by 

the above model for all measured concentrations, 3* to 100%. 

Finally the rare earth elements form ideal mixtures at all 

concentrations with no drastic changes in the lattice para

meters. The order parameter may be studied by neutron scat-
22) tering. The Tm-Tb alloy is an example of the kind shown in 

Fig. 4, for which the two pure elements spontaneously order 

in perpendicular directions. 

An investigation of the phase diagrams of the Er-based 
5) 

binary rare earth alloys has been made by Millhouse and Koehler 
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In this case the magnetic order parameter not only changes 

direction, but also character - i.e. it goes from ferro

magnetic to spiral or cone structure. We shall treat this 

problem in the next section. 

^.3. Transitions Between Different Types of Magnetic Order 

In mixed magnetic insulators transitions are often found 

between different types of magnetic order (antiferromagnetic). 

Wegner discussed the case of a binar mixture 

of isotropic antiferromagnets such as (Mn, Fe )WCL. The 

Landau expansion of the free energy reduces to that dis

cussed in the previous section and appendix C. The multi-

critical point behavior is therefore identical. 

A slightly more complicated situation arises in rare 

earth elements or mixtures with different incommensurate 

magnetic structures. Here we can distinguish two cases for 

a single element. (1) The incommensurate structure imposed 

by the exchange interaction is compatible with the crystal 

symmetry - e.g. a spiral structure in an axial crystal field, 

with the spiral vector Q along the axis. In this case all 

sites are equivalent irrespective of the value of Q - and 

we may treat the case as discussed previously. (2) The most 

complicated case is when the exchange structure is incompatible 

with the crystal field. This situation arises if we add a 

hexagonal crystal field to the previous example. For a 

general magnitude of Q no sites will be equivalent. The 

result is that a bunching of the moments along the easy 



- 21 -

directions occurs together with a variation in the magni

tude. If the exchange interaction is much stronger than the 

crystal field, the bunching effect dominates and we may 

neglect the variation in the magnitude. This case was con-

7) 
sidered by Nagamiya , using a number of simplifying 

assumptions. When the crystal field is strong it may be 

reasonable to assume a commensurate structure and treat the 

finite number of inequivalent sites, which then occur, as 

different alloy elements and calculate the structure and 

magnitude of the moments using appendix A. 

In order to elucidate the principle for an alloy we 

shall restrict a detailed discussion to the simple case of 

an alloy of two elements with different incommensurate ex

change structures»described by Q, i Q2, which are compatible 

with the crystal field. The ordering and transition tempera

ture for the pure elements are determined by the elemental 

enhanced susceptibilities — = —w - J_ = 0 , from which it 
X X Q 

is clear that Q is that wave vector q, for which J is n̂ ^ q 

maximum. The ordering temperature of the alloy is from (8) 

determined by the vector which at the highest temperature 

gives (\ - cJ^K-^r - (l-c)J*2) = c(l-c)(J'2) . Q(c) is in 

general different from Q and Q since it depends on the 
1 2 

wave vector dependence of the product of the enhanced in

verse susceptibilities and the wave vector dependence of 

the interaction J*2» see Fig. 5. However, at the transition 

from the paramagnetic to the ordered phase Q(c) is most likely 

to be close tc the Q , Q say, for the diluted element with 
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the highest transition temperature or the largest JQ . 

As the temperature is further lowered the condition for 

a second order transition = c(l-c)(J*2) may again be 

met at a wave vector Q close to Q corresponding to the 
2 

other element. In this case the elemental susceptibilities 

are to be calculated in the presence of the order character

ized by Q . At lower temperatures the structure is therefore 

in this case characterized by the two ordering wave vectors 

% Q and ^ Q . At a given concentration we may then have a 

tetracritical point at which the paramagnetic and three 

ordered phases exist with the wave vectors **» Q , * Q and 

a mixed phase with both wave vectors. The situation is 

clearly analogous to the case discussed in the previous 

section, where the competing order parameters were different 

components of the momentum vector. A bicritical point arises 

under the analogous conditions. The combined case is there

fore a superposition of the possible transitions involving 

both changes in directions and wave vectors. 

M.H. Applications 

The theory will be applied to the following alloys of 

the rare earth metals for which experimental data are available, 

The Tb-Er alloys were measured by Millhouse and Koehler and 

the Tb-Tm alloys are presently being investigated by Hansen 

22) and Lebech . In both cases Tb orders with spiral ordering 

with the moments in the basal hexagonal plane and Er and Tm 

order with a c-axis modulated (CAM) structure with the moments 
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along the hexagonal c-axis. Ho detailed analysis has yet been 

made of these data, we shall therefore as a first calculation 

only include the dominant physical features in the basic model. 

The Hamiltonian is a Heisenberg exchange interaction plus a 

crystal field, which is assumed for simplicity to contain only 

77 
the axial B 0* term and the hexagonal B (0*+—r0'). One exchange 

2 1 « t 8 i 

constant is obtained from the experimental T„i this is the 

interaction between Tb-Tb. The remaining exchange interactions 

are obtained using the scaling by the de Gennes factors which 
g -1 g -1 2 

relates J :J :J as 1: (——r) : f 2 ,) , where g- are the 

Lande factors. B is obtained from the measured difference be-
2 

6 ) 
tween the paramagnetic Curie temperatures ®w~^x* ^ *s ^ o r 

Tb obtained from the spinwave energy gap and B (Tb). For Er 

and Tm it is obtained by scaling the B (Tb) by the appropriate 

17) 
Steven's factors . The parameters are sunanarized in table 1. 

The calculation is done selfconsistently in the magnetization 

components and using the complete level schemes. The resulting 

calculated phase diagrams are shown in Figs. 6 and 7. A com

parison between Fig. 6 and the experimental results in Fig. 8 

for Tb-Er shows that the simplified model describes the exper

iments quite well. A large region of helical ordering is found 

and a small pocket near the Er or Tm end with CAM structure, 

separated from the helical ordering by a mixed phase. The criti

cal point is in agreement with experiment found to be a tetra-

critical point. The calculation does not consider the other 

observed structure changes such as for example to the ferro

magnetic order. In a more detailed analysis of the phase diagrams 

it is clear that one has to include other crystal field terms 

6) 
as well as magnetostriction, which is known to play an import-
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ant role at the ferromagnets' transition. The phase diagrams 

therefore contain valuable - *itional information about the 

interactions in the rare earth which has not previously been 

fully utilized. In addition they show examples of multicri-

tical points. On the Tb-Tm phase diagram we have indicated 

that a tri-critical point is possible in the ordered phase in 

analogy with the antiferromagnet in an external magnetic field, 

Fig. 3. Fig. 10 shows a fit to the phase diagrams using a = 

J //j J as a parameter. A good fit can clearly be obtained. 
12 1 1 2 2 

24) 
A more detailed discussion of this was recently published 

and further work shows that it is likely that the apparent strong 

interaction between different alloy elements is due to changes 

25) in the band structure in the alloys 

The pure dhcp Nd crystal may be considered as a 50-50% 

alloy of cubic- and hexagonal-site Nd. Information about the 

hexagonal site Nd was obtained by considering the Nd-Pr 

alloys . We assume the crystal field parameters to be the 

same for the cubic and hexagonal sites, which they would be 

in a point charge model. The observed magnetic structure on 

the hexagonal sites is sinusoidally modulated with the mo

ments in basal plane (1010) direction. In the dhcp structure 

this ordering gives rise to a very small molecular field on 

the cubic sites. The interaction between the hexagonal and 

cubic sites is therefore expected to be small due to cancal-

lation effects. However, the interaction between the cubic 

sites is expected to be of similar magnitude as that between 

the hexagonal sites. Table 1 shows the parameters used in the 

calculation of the temperature dependence of the magnetic 
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moments on the hexagonal and cubic sites shown in Fig. 9. 

The calculation shows that the hexagonal sites induce a weak 

magnetic order on the cubic sites in the same direction (1010) 

and with the same ordering vector Q. . At ^ 8 K a second order 

phase transition makes the cubic sites order with the moments 

in essentially the same direction. At lower temperatures a 

perpendicular component develops, which turns the moments on 

the cubic sites to an angle of approximately 30 from the 

hexagonal sites (with an ordering vector Q , which may be 

different from Q. ). This is in agreement with a preliminary 

analysis of neutron scattering measurements on pure Nd single 

23) 
crystals 
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5. Conclusion 

A mean-field theory for random anisotropic magnetic 

multi-component alloys is presented and it is shown that 

several regions of magnetic order are possible as a function 

of concentration and temperature. The phase transition be

tween these regions gives rise to multicritical points (bi-, 

tri- or tetra-critical points). These may be of interest to 

explore with great accuracy from the point of view of criti

cal phenomena since the magnetic systems are simple and direct 

model systems. It was shown that the mean-field random alloy 

theory agrees with observations for the rare earth alloys 

for all measured concentrations. The reason for the 

success of the simple theory is presumably 1) that the two-ion 

interaction in the rare earth metals is of long range, and 

2) that the real order parameters in the theory are the mean-

fields which to a much greater degree of accuracy are site 

independent than the individual moments. Finally the theory 

may also be applied to other anisotropic mixtures, the stat

istics of which can be simulated by a spin system. Using the 

expansion of the free energy in terms of the two-ion inter

action discussed in appendix D, it is simple to include the 

effects of fluctuations on the mean-field results. 

Acknowledgment. It is a pleasure to thank B. Lebech and 
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Appendix A 

General Molecular Field Theory for a Multi-Component Alloy 

In this section we shall generalize the molecular 

field theory given in section 2 so as to take into account a 

general anisotropic biquadratic exchange interaction be

tween the ions n and m: 

- T Ja. 3aB(ij) J8. . Al 
v. ni nm J mi 

The fourier transformed of the exchange interaction with 

the ordering wave vector Q is denoted 
nm 

•̂ ag r .-sag,*. i ($ •$ . . J = ) 2J (K) e nm . A2 nm L nm 
R 

We shall also take into account that in general the ordered 

moments <J\> and <Jj> may point in different and arbitrary 

directions. We must therefore minimize the free energy 

F(s ,s ) corresponding to (5) with respect to every compo-
n m 

nent. We shall use Greek letters for the components and 

italic for the alloy type and adopt the usual convention 

of summation over repeated Greek indices. The molecular 

field components are 

* *• m im m m m 
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The extremum condition (15) becomes 

,0 
il_ = i y c <j8> _ m s 0 

« o kT *• m m _ a 

3 H ; 
A»4 

The phase boundary between the ordered phase and the para

magnetic phase in which <JV> = 0 is determined when the 

32F determinant of is equal to zero (assuming that no 3 sI 3 s <» n * 
eigenvalue is negative) 

32F 

3sY 3sa 

3H* 3HB 

1 r m , n \ m 
* I cn, —Z <x')pft — " . A5 (JcT)* L "m . v Am'e8 iea 

£ <Jv>--0 m 3Sn 3 S* 
r 

However, from (AH) we see that non-trivial solutions only 
3Hm 

exist when the determinant of the matrix is equal to 

3sJ 
zero. Since the determinant of the matrix product (A5) 

is equal to the product of the separate determinants we 

3F 
find that — - = 0, and the condition that at least one eigenvalue 

3S£ 3Hm is zero is simultaneously fulfilled when the determinant of 

3s* 

is equal to zero. For finding the paramagnetic phase bound

ary,we can therefore obtain both the order parameter and 

ordering temperature from AU. This is much simpler than 

. . 3) 
diagonalizing A5 as suggested by Thomas . However, it 

seems to be necessary to diagonalize for finding second order 
3Hm 

phase boundaries in the ordered phase. The matrix — — is 

1 
found from 



- 29 -

3He
 0 3<JY> . 3<J*> 
= ) c J ' ( + 6 6. ) = (Y )„. A6 . a * n mn . a ay in *m B$ , a ist n 3st 3Sjl 

The partial derivatives of the angular momentum components 

are determined by the inhomogeneous equation system 

I «* m)- 6;
 6nmS, " c n O f £ = ' V m £ , n 3Sjl 

which is a generalization of eq. (17). The solution can be 
8Hm 

inserted in A6 and the determinant of found. The 

determinant clearly depends on the concentrations c , the 
•*»rt ft 

fourier transformed exchange interaction tensor J «,and on 

the elemental susceptibility matrixes (X^aa»an<^ "thereby 

on the temperature T. The derivation is not restricted 

to two alloying elements. The summation over the elements 

(the italic index in eqs.Al to A7) can therefore be extended 

to any value with the constraint J c = 1, 
n 

In order to gain some insight into the general formulae 

let us consider a simple case with two alloy elements and 

all susceptibility and exchange matrixes diagonal (but with 

arbitrary diagonal elements). Then the different angular 

momentum components are decoupled and the condition A6 

reduces to the question: for which component a does the deter-
3 Hm 

minant — first become zero as the temperature is lowered? 
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Since the ordered moments must be parallel the problem 

is reduced to that discussed in section 2. In the ordered 

phase it is possible for the system to undergo a spin f .»p 

transition where the moments choose a different direction. 

This transition can be of second order, namely if the 

corresponding eigenvalue is zero, or of first order if the 

free energies of the competing types of phases become equal. 
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Appendix B 

Magnetic Susceptibility 

The magnetic susceptibility for non-interacting icns 

with Stark split energy levels of energy E was first con-

20) 19) 
sidered by Van Vleck ' and later by Wang and Cooper 

Second order perturbation theory gives 

2 

CgU B>V = ̂ ! | L . [I <»|J |nxn|J |n> § . " V " 
ag n 

- I <n|Ja|n> \ e "
E n / k T \ <m|JB|m> \ e~

Em/kT} (Bl) 

<n|Ja|m><m[j0|n> " V k T 

+ 2 ( ^ B ) 2 I E~=E 
n ,m m n 

E *E n m 

-E /kT 
where the partition function is Z = \ e . The first two 

n 
terms are called the Curie Weiss susceptibility and the last, 

off-diagonal term is called the Van Vleck term. 
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Appendix C 

Singlet-Singlet - Singlet-Doublet Alloy Systems 

We shall here give the details of the theory for the 

simple model system discussed in section H.2. The energy 

levels and matrix elements are given in Figs, la and b. 

The Hamiltonian describing this system is 

fX *• n p np i] n p ni pj 

ij 

- I y'J (R..)C J{S X.S X. • Sy.Sy } 
£^ 22 1] 2 Jl 2] 2* 2l 

(CD 

-I g c yji.»3. + V k 6n n B i i < 
i,n 

V = - Tc 2D'SX. - Tc 2D(SZ.)2 

where n and p denote the type of atom, 1 or 2, «. and c 
r J r m m 

denote the respective matrix elements and concentrations 

(occupation probabilities), and g are the corresponding 

g-factors. In the mean-field-random-alloy approximation this 

Hamiltonian is replaced by (since x and y are equivalent we 

consider only the x,z plane) 

H = *'S*Q • zS^Q • XS
X
Q • Vc , (C2> 

where the mean fields acting on the fourier components of the 

effective spins are 
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z' = - <(J cSZ + J (l-c)SZ )> *• (g c + g (l-c))nnh , 
1 1 1 W »2 2V 1 2 B Z 

z = - <(J cSZ + J (l-c)SZ )> + (g c + g (l-c))y_h, (C3> 
1 2 1^ 22 2^ l l BZ 

Jx (l-c)Sxn)> + g (l-c)uRh 
22 2V 2 ° X 

in terms of the fourier transformed reduced exchange functions 

J = a a I2J (R)e1 %'* np n p| np 

(C4) 

JX = Y 2 I2JX (R)e1 *•* 
22 R 22 

This holds, in zero field h, for any magnetic structure de

scribed by the wave vector ($ (ferromagnetic-, spiral- or 

cone-structure, etc.), which is consistent with the axial 

symmetry of the crystal field V . For a finite field h and 

a non-ferromagnetic structure,or for complicated magnetic 

structures, a number of unequivalent sites will exist. They 

may be regarded as different alloy elements and treated as 

discussed in appendix A. Here we restrict ourselves to 

equivalent sites and h = 0. The singlet-doublet model in a 

magnetic field has been extensively discussed by Wang and 

8) Khajehpour 

Let us regard the mean fields as the order parameters 

of the problem. The advantage of this choice, rather than 

choosing the elemental moments, is that the mean fields are 

to a good approximation equal for all sites. As discussed in 
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section 4.2. this does not require the elemental moments 

to be equal in magnitude or in direction. On the 

other hand»the fields vanish when the ordered moments 

vanish at the ordering temperature. The energy levels of 

the two systems for the Hamiltonian (C2) can be found ana

lytically. Near the ordering temperature we may expand in 

the mean fields,and obtain for the singlet-singlet system 

the energies 

(C5) 

E
12 -

 D,{1 • ^ -h£^} 

and for the singlet-doublet system the energies 

E = - D {1+R} 

2 0 

E = D {1+^R-P} (C6) 
2 1 

E = D {1+JR+P} , 
22 

where 

R 

P2 

The free energy is then obtained in terms of the elemental 

internal energies and entropies as follows 

*(P ~ J(P 
1 x 2 z 2 

+ -(-) (-) 
8lD *D 

(C7) 
l,x,2,z.2 

V 16V 4V V 
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F = c(E°-kTS ) + (l-c)(É°-kTS ) <C8) 
1 1 2 2 

where the total internal energy is 

E = cE° + (l-c)E° = ${J z,2-2J z»z + J z2}/A + Jx2/Jx , 
0 1 2 2 2 12 11 22 

A = J J -J 2 (C9) 
11 2 2 12 

and the entropies are obtained from 

S = k Z = In Iexp(-E /kT) . (CIO) 
n n u r np 

P y 

Using C5 and C6 we find the free energy near the transition 

point to be 

F = a z'2 + b z2 + c x2 + 2d z'z 
2 2 2 2 

(Cll) 

+ a z'H + b z" + c x" + 2d x2z2 

% "t •• H 

The coefficients depend on the temperature and linearly on 

the concentration; they are given in table CI. From the 

SF 3F 3F minimum condition r— = T— = T— - - 0 we can eliminate z by 
o X d Z o Z 

z =-z'(a + 2a z*2)/d (C12) 
2 ". 2 

and two coupled equations result 

z'(a + bz'2 + b'x2) s 0 

(C13) 

x(a* t b'zT2 + b"x2) = 0 

where the coefficients are given in table CI. The equation 
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4) 
system (C13) is identical to the one discussed by Wegner 

for the problem of an alley of two different antiferromag-

netic substances. We have therefore used the same notation. 

By the Landau expansion we find the second order phase lines 

to be given by 

a % (_! 1_ - j *c(l-c)) = 0 and a' ̂  (̂ - - xXXU-c>) = 0 

x z z x z z l2 J 2B 

1 2 22 

in accordance with (8). In accordance with Wegner WF find 

that a mixed phase exists for bb">b'2. The phase separation 

lines and the order parameters are given in table CII. Typi

cal phase diagrams are shown in Figs. 3 and 4. It is clear 

from (C3) and (Cll) that the effect of an external magnetic 

field, which leaves the sites equivalent, is simple to 

include since none of the coefficients in table CI are 

altered. We also remark that tables CI and (Cll) can be 

used to discuss a binary alloy of singlet-singlet or one 

of singlet-doublets. Sufficient information is therefore 

available for additionally discussing an anisotropic anti-

ferromagnet in a magnetic field which gives rise to two un-

equivalent sites. 
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Appendix D 

Fluctuation Correction to the Single Ion Free Energy 

We wish to derive a simple procedure to include the 

fluctuations in a system that is dominated by single ion 

interactions. The corrections to the mean field - crystal 

field result are obtained by expanding the free energy re

garding the two-ion interaction as a perturbation. Let the 

Haniltonian be 

)-( U ) = A • XB (Dl) 

where the single ion Hamiltonian is A = Y (V. • H. S-) 
° h i i i 

,i 
and the two-ion-perturbation is B = Y J<??(S?-<S(?>)(s"-<S<?>); 

- • i] i i D ] i.] J 

<....> denotes the unperturbed average. We notice that 

21 i 
<B> = 0. According to Tyablikov , the standard expansion 

of the free energy then gives the following exact correction 

to second order: 

F = F - BX2 J* JX <B(x) B(x')> dxdx' (D2) 
2 • ' • • 

which shows that F is a better approximation to the true 

free energy than the mean field free energy since F < F 

< F . (D2) is an exact expression that may be evaluated using 

the definition for B. We can, however, express (D2) approxi

mately in terms of a well known function by use of the following 
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ineaualitv which holds for 8>0 

B ,,„x ,„ . 1,,B 2 
JP g2(x) dx > i(/p g(x) dx) > 0 . (D3) 
0 P 0 

If we regard B in (Dl) as the perturbation due to an external 

field H, i.e. B = [ Ha (S? - <S?>) the correction term in (n?) 
T 1 1 

2 1 
is - -yX2(H ) (x )• Using the unperturbed susceptibility func-

o 
tion x we find the following simple fluctuation correction 

o 

to the mean field free energy F : 
o 

Ffluct = F - kT I ( j r ) 2 - J — ( X ° a ) 2 , (DU) 
flUCt- ° R,a R (gPB)^ • 

which satisfies F„_ < F < F-, „_ < F . The advantage of 
true 2 fluct. - o 

using (D4) rather than the more correct (D2) is that it is 

easy to estimate when fluctuation corrections are of import

ance by considering the usually well known susceptibility 
_ . . aa 
function x 

o 
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Figure Captions 

Fig. 1. Level schemes and transition probabilities for the 

model systems considered in section 3; (a) singlet-singlet 

(b) singlet-doublet,and (c) singlet-triplet. 

Fig. 2. The transition temperatures versus concentration for 

alloys of crystal field split systems. The full curve shows a 

(singlet-doublet)-(Kramers' doublet) system, for instance 

P = Pr and N = Nd. The critical ratio for Pr was found11^ to be 

0.95 < 1. The dot-dashed curve shows the typical behavior of 

an alloy of two (singlet-doublet) systems, as for instance 

P = Pr and N = Tb, for which P is under-critical and N is over-

critical. The dashed curve is typical of a mixture of two 

strongly interacting, under-critical systems. The points show 

the Néel temperatures for Pr-Nd alloys obtained by neutron 

..« .. 11) diffraction 

Fig. 3. Schematic phase diagrams showing multicritical points. 

An antiferromagnet in a uniform magnetic field shows a bi-

and a tricritical point. The solid lines represent the locus 

of x» (H) and x« (H) equal to zero. A tetra-critical point is 

exemplified by an anisotropic magnetic alloy. 
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Fig. 4. The phase diagram for a singlet-singlet (left), 

singlet-doublet (right) alloy with the same crystal field 

splitting D, and the exchange interactions JÅ'/D = 5/3, 

J'2/D = 4/3, JQ2/D = 11/3, and r2 = 5/3. The full lines 

are the second-order phase separation lines, the broken 

curve the first-order lines. The two ordered phases are 

indicated by the arrow. Two types of bicritical points 

A and B are shown. The inserts show the MCP in 10*10 times 

magnification. The dotted lines show the calculated second-

order phase lines with JQ 2/D = 2. MCP exist in this case. 

The details of the calculation are given in appendix C. 

Fig. 5. Schematic presentation of the condition, l/x l/x = 

1 2 
2 

c(l-c)(j'2) , for a second order phase transition in an alloy 

with different elemental ordering wave vectors Q and Q and with 
1 2 

a wave vector dependent interaction JÅ2. 

Fig. 6. The calculated phase diagram for the TbEr alloy using 

the parameters in table 1. The heavy full lines show the second 

order phase transition lines. The thin full lines show where the 

ordering wouH occur if the system was not perturbed by the 

different order, already present. 

Fig. 7. As for Fig. 6. A possible tri-critical point is indicated 

in the ordered phase at which the transition between the helical 

and mixed phase may become of first order. 
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Fig. 8. The experimental data for the TbEr alloy from 

Fig. 9. The calculated temperature dependence of the magnet

ization for dhcp Nd, using the parameters in table 1. At 19.5 K 

the hexagonal sites order with the moment in the (1010)x direc

tion. This causes a weak polarization of the cubic sites along 

the same direction. Due to the interaction between the cubic 

sites a second order phase transition occurs at 9 K and at 

lower temperatures a component along the (1210)y direction 

develops, which causes the cubic moments to turn to about 30 

away from the hexagonal moment direction. This is in accordance 

23) with a preliminary analysis of Nd 

Fig. 10. .The calculated paramagnetic phase separation lines 

compared with experiments. One fitting parameter, a, is used 

varying the strength of the inter alloy element exchange inter

action J = o»/J -J The value of a is given on the figure. 
12 1 1 2 2 
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Table Captions 

Table 1. The parameters, in units of K, used in the calcula

tion of the phase diagrams for the alloys. The exchange 

interaction between the different elements Tb-Er, 

Tb-Tm and Nd(hex)-Nd(cub) is written under the last 

element. For dhcp Nd we do not make a distinction be

tween the ordering wave vectors Q, and Q for the hexa

gonal and cubic sites. 

Table CI. The coefficients for the Landau expansion for 

a singlet-singlet (with concentration c) and 

a singlet-doublet alloy. A = J11J22-J12 , 

0 = 1/kT, d' = gD',and d = 0D. x"° and Z. are 

the elemental susceptibilities and partition 

functions and n = exp(-d). The right column 

gives the coefficients expanded for small crystal 

field splittings d' and d. The last five terms are 

the coefficient in the reduced Landau expansion 

(C13). The information in the table can also be 

used to discuss alloys of two singlet-singlets or 

two singlet-doublets. 

Table CII. Regions of stability for the ordered phase for an 

anisotropic magnetic alloy on the basis of the 

Landau expansion (C13). The result is identical to 

that found by Wegner (197M) for antiferromagnetic 

mixtures. Regions with no, pure, and mixed order 

are possible in the C,T plane, depending on the 

coefficients given in table CI. 
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Table I 

B 2 

B4x 1 0 2 

V10* 
2 Jnn 

Tb 

0,89 

0 

0 ,2 

15,4 

Dy 

0,63 

0 

-0 ,2 

7 ,7 

Er 

-0 ,39 

0 

- 0 , 4 

3 , 0 

Tm 

-1 ,37 

0 

1,0 

2 , 0 

Ho 

0,18 

0 

0 , 2 

5 ,3 

Nd(hex) 

0,602 

0,364 

-2 ,4 

4,32 

Nd(cub) 

0,602 

0,364 

- 2 , 4 

2,50 
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Table CI 

liXdct express ions for small crystal fields 

a Ĵ /A - xZ2c 
2 2 2 1 0 

*J /A - £<l-}d,2)c 
2 2 4 

iJ /A -
i i 

X (1-c) 
2 0 

in -I IJ /A - f(l-4rd)(l-c) 

1/2JX 

2 2 
X X Xd-c) 

2 0 
1/2JX - |(l+id)Cl-c) 

2 2 J J 

J -}J /A 
2 1 2 

•iJ /A 
I 2 

a c-^(ix" - 6/Z2) 
* j 1 2 10 1 

B3 H 2 

3J (l-c)77(fn-l)/Z 
i, i ^ 

ft3 

§r(l-2d)(l-c) 
3b 

(l-c)^(2xXX 

2 2 0 
8(5+n)/Z2) 

2 

o 3 

|g-(l+d)(l-c) 

f?2 (• ZZ XX 
d ( 1 _ c ) £ _ ( x " - X

A A
 + 3Sd/Z2) 

2 2 0 2 0 
|^(l-d)(l-c) 

T W ^ — — - J2 c(l-c))/A 
d 1 0 2 0 2 Z Z z •" X X 

1 2 

1 2 

2(T
2-)(b <-r*-) + a Ĉ 2-)) 

d *• i, d i, d ; 

b" 2c 

b' d (-T2-) 
•» d 

2 
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Table CII 

Type 

no 

pure 

pure 

mixed 

Magnetic order 

z1 

0 

-a/b 

0 

a'b'-ab" 
j — 

bb"-b' 

X 2 

0 

0 

-a'/b" 

ab'-a'b 
1 

bb"-b' 

Region 

a>0 a'>0 

a<0 a >T—-a 
b 

a>pra' a'<0 

a<f^a' a , < i r a 

2 

for bb">b' 
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