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Preface 

The research that forms the basis of this report was carried out at 
Risø National Laboratory, former The Danish Atomic Energy Commission 
Research Establishment Risø, and during visits to the A . E . R . E . , Harwell, 
England, the Bell Laboratories, Murray Hill, USA, and the Ames Lab
oratory and Iowa State University, USA. The author is grateful for the 
excellent working conditions provided. The theoretical investigation was 
carried out in close contact with experimental realities. The basic phil-
oshopy underlying the work was to develop a theory sufficiently accurate 
to give a reliable prediction and description of the physical phenomena, 
and yet sufficiently simple to be tractable and ready to be confronted with 
the often very complicated nature of real and useful magnetic materials. 

Below are listed 30 articles, most published, in which the content of 

this report is treated in greater detail. 

Investigation of Magnon Dispersion Relations and Neutron Scattering Cross 
Section with Special Attention to Anisotropy Effects: 
by P. -A. Lindgård, A. Kowalska and P. Laut, 
J. Phys. Chem. Solids 28, 1357-70(1967). 

Inelastic Critical Scattering of Neutrons from Terbium: 

by J. Als-Nielsen, O. W. Dietrich, W. Marshall and P. -A. Lindgård, 

Sol. State. Com. 5, 607-11 (1967). 

Line Shape of the Magnetic Scattering from Anisotropic Paramagnets: 

by P. -A. Lindgård, 

IAEA Symposium on Neutron Inelastic Scattering, Copenhagen 1968, 

Vienna, IAEA, 93-99(1969). 

Covalency and Exchange Polarization in MnCCy. 
by P . -A. Lindgård and W. Marshall, 
J. Phys. C, 2 , 276-87 (1969). 
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Magnon Dispersion Relation and Exchange Interactions in MnF0: 
by O. Nikotin, P.-A. L'ndgård and O.W. Dietrich, 
J. Phys. C, 2» H 68-73 (1969). 

Magnetic Anisotropy in Rare Earth Metals: 

by M. Nielsen, H. Bjerrum Møller, P . -A. Lindgård and A.R. Mackintosh, 
Phys. Rev. Lett. 25, 1451-54 (1970). 

Magnetic Relaxation in Anisotropic Magnets: 
by P. -A. LindgSrd, 

J. Phys. C, 4_, 80-82 (1971). 

Anisotropic Exchange Interaction in Rare Earth Metals: 
by P. -A. Lindgård and J. Gylden Houmann, 
Conference Digest No. 3, Rare Earth and Actinides, 
Durham 1971, 192-95 (1971). 

Critical Electron-Paramagnetic-Resonance Spin Dynamics in NiCl?: 

by R.J. Birgeneau, L.W. Rupp, J r . , H. Guggenheim, P. -A. Lindgård 

and D. L. Huber, 

Phys. Rev. Lett. £0, 1252-55 (1973). 

Magnetic Properties of Nd-group V Compounds: 

by P. Bak and P . -A. Lindgård, 

J. Phys. C. 6. 3774-84(1973). 

Renormalization of Magnetic Excitations in Praseodymium: 

by P. -A. Lindgård, 

J. Phys. C. 8, L178-L181 (1974). 

Bose-Operator Expansions of Tensor Operators in the Theory of Magnetism: 

by P. -A. Lindgård and O. Danielsen, 

J. PhyB. C. 7, 1523-35(1974). 

Spin Wave Dispersion and Sublattice Magnetization in NiCl?: 
by P.-A. Lindgård, R.J. Birgeneau, J. Als-Nielsen and H.J. Guggenheim. 

J. Phys. C. 8, 1059-68(1975). 

Theory of Magnetic Properties of Heavy Rare-Earth Metals: 
Temperature Dependence of Magnetization, Anisotropy and Reso^ nee Energy: 

by P . -A. Lindgård and O. Danielsen, 

Phys. Rev. BH. 351-362(1975). 



Theoretical Magnon Dispersion Curve for Cd: 
by P . -A. Lindgård. B.N. Harmon and A.J. Freeman, 
Phys. Rev. Lett. 35. 3*3-MS (I97S). 

High-field Magnetisation of To Single Crytal«: 
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Bose Operator Expansion« of Tensor Operators in the Theory of Magnetism II: 
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J. Phys. C. 9. 2091-92 (1975). 
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Tb and Dv: 

by P . -A. Lindgård. 
Solid State Comm. | 6 , 491-4 (1975). 
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by P . -A. Lindgård, 

Phys. Rev. Lett. 36, 385-8« (1979). 
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Energy Band«: 
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1. INTRODUCTION 

In the field of magnetism the study of magnetically anisotropic ma
terials i s of particular interest. Anisotropic magnetic materials are of 
significant technical importance for use as permanent magnets. An under
standing of the physical mechanisms that are responsible for the mag
netism is valuable in the development of new magnetic materials with 
specific properties. Here the rare earth - transition metal compounds 
are among the best for this purpose. Anisotropic magnets are also of 
importance with respect to the fundamental aspects of theoretical physics, 
because they represent accurate physical realisations of model systems 
for which advanced statistical theories can be developed and tested. It i s 
thus possible to find systems with effectively low spatial dimensionality, 
d * 1. 2 and 3 and with different spin dimensionality n = I, 2, 3 , . . . ; these 
are usually termed the Ising, the x-y and the Heisenberg models. The spin 
dynamics at low temperatures and the critical phenomena near the mag
netic ordering temperature depend crucially on d and n. 

The following is a description of the various aspects of this complex of 
problems that have been investigated by the author. The work involved the 
development of theoretical methods for transforming complicated Hamil-
tonians to simpler Hamiltonians based on Bose or spin-operator equival
encies. This theory was used to calculate the spin excitation spectra in 
strongly anisotropic materials. Through a detailed analysis of experimental 
data on the rare earth metals, the nature and magnitude of the magnetic 
interactions were obtained. The spectra of other materials, for example 
the two-dimensional NiCl«. were also analysed. An ab initio calculation 
of the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction in Gd 
was performed on the basis of theoretical energy bands and wavefunctions 
for the conduction electrons. 

The magnetic phase diagrams of anisotropic magnetic alloys and the 
magnetic moment distribution in magnetic compounds and the rare earth-
transition metal alloys were investigated. Some problems concerning 
static and dynamic critical phenomena were also treated. 

It is beyond the scope of the present report to give a review of all the 
interesting aspects of anisotropic materials, or of the magnetic properties 
of the rare earth metals and compounds. The aim of the author i s to draw 
a guiding line through his contributions and results in this field and to 
facilitate the reading of the articles given in the preface. Two systems 
of references will be used in this brief survey. General references are 
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made by name and year and are listed alphabetically on pp. "5-76. Refer
ence to the articles on which this report is based is made by numbers; the 
articles are listed in the preface in chronological order, and again on p. 77 
according to the sequence in which they are dealt with in the text. The 
reader is referred to the original articles for further details of derivations, 
numerical results, and the relation to the work of other authors, as well 
as for a discussion of points not included in the present report. In appendix 
A a detailed comparison is given of different theories and analysis of the 
spin wave spectrum of Er. 

2. FORMAL DEVELOPMENTS 

In the theory of magnetism the operator equivalents method is well 
established. Stevens (1952) used the operator equivalents method in de
scribing the action of the crystalline electric field on localized atomic-like 
electrons. He introduced a set of operators that has been widely used 
for crystal field and anisotropy problems. These Stevens operators,denoted 
O m , have the disadvantage of not having simple transformation properties 
under rotations of the frame of coordinates. Another set of operators, 
the Raccah (1942) operators, denoted O, , are tensor operators and they 
therefore have systematic transformation properties. Both sets of operators 
are expressible in terms of angular momentum operators. 

In theories of excitations in systems of angular momenta (in the following 
often called spin operators),the kinematic problem arises that the com
mutator of the spin operators (in general tensor operators) is a new operator. 
Many attempts have been made to circumvent this problem by expanding the 
operators into simpler operators. The well known transformations by 
Holstein and Primakoff (HP) (1940), Dyson (1965), and Maleev (1958) are 
transformations of the spin operators to a series of Bose operators, which 
fulfil the commutation rules for spin operators within the 2J + 1 physical 
states. J is the angular momentum of the ground state multiplet. Cooke 
and Hahn (1969) showed that the kinematics of the spin operators could be 
represented by a hard core interaction in a corresponding Bose Hamiltonian. 
They found in this way a general Bose operator expansion for the spin 
operators that in limiting cases reduces to the Holstein-Primakoff and 
the Dyson-Maleev transformations. The characteristic of these expansions 
is that they are expansions for the components of a single spin operator, 
In ref. 1 an exact Bose operator expansion for any tensor operator was 
developed by matching the corresponding matrix elements for the Bose 
operator equivalent and the tensor operator. It was assumed for simplicity 
that the wavefunctions are the pure angular momentum eigenstates | J, J ) 
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with the ground state equal to ; J. J = J . By this method both the correct 
commutation rules and the correct matrix elements (even involving the non-
physieal states) were obtained for the Bose operator equivalents. It was 
further demonstrated in ref. I that the HP transformation for the single 
angular momentum operator is based on the assumption of pure states 
[ J. m ) with the J. J. ground state and that it gives identical results with 
the matching of matrix elements (MME) transformation within the physical 
states. 

The above transformations can be successfully applied to Hamiltonians 
that are dominated by an isotropic Heisenberg interaction term. The 

reason i s that, in this case, each angular momentum operator may be re
garded as experiencing the mean magnetic exchange field H which, a s 
suming it is dominant, produces Zeeraan-split single-ion energy levels 
with the ,'J, J } ground state. In most magnetic systems the crystal field 
V produces a non-negligible single-ion anisotropy. The effect is to perturb 

the Zeeman energies and wavelunctions to E and * - l a __! J, m ' . A , n n m nra 
J operator, therefore, in principle has matrix elements between aU states. 
A treatment of single-ion anisotropy by the above transformations neglects 
these effects and is only correct to lowest order in V c 'H # x . In systems 
where the crystal field dominates the exchange interaction, a convenient, 
although somewhat ad hoc, treatment can be obtained using the so-called 
standard basis operators C. = \ <J>. ) ( * _ [ . which are not Bose operators. 
This method was developed by several authors (Buyers et al. 1971, Haley 
and ErdOs 1972), 

However, in order to obtain a systematic treatment of the single-ion 
anisotropy without knowing the crystal field states explicitly, a perturbation 
expansion combined with the MME method was proposed in ref.2. (A slightly 
modified version was given by Kowalska and Lindgard (1977), and a survey 
of the results was given by Lindgård (1977)). This procedure makes it pos
sible to treat the anisotropy to any order in V /H . 

Let us consider the Hamiltonian for the Heisenberg interaction and a 
general single-ion crystal field 

H "-i iVrXJ • E B lm°lm , iMH" + Hint 0 ) 

1J i 
1m 

where the single ion Hamiltonian is 
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< - H e s j r * V c i H . * V c W 

• i m the molecular and crystal fields five« by 

« . x (31 

* is a fai mil pertareatiea expansion parameter, 
to tint final resntt. The interactisn Hamilt« 

»tot ' " j V i Ji « * « • < " Jf - «., ' («» 

1 21 2 .1 . Tne ma tching-of-matrix-element (MME) method ' ' 

We now wish to find a Base operator expansion for any tensor 
operator O, . Tne Hilbert space for the tensor operator is spanned by 
the 2J • I physical states, whereas for Boss operators it is spanned by 
an infinite number of states. However, by formally enlarging the Hilbert 
space for O. to infinity, and requiring that all matrix elements involving 
the non-physical states are sero, an exact operator equivalence can be 
constructed. The tensor operator O. is expanded in the following infi
nite, well vi del ad, Bose-operator expansion (WOBE) 

°*. - I <*%+****** *%•*** +...i.«* • 
q-Hpo 

(51 

f I -V«*I « * ; ; • * ; . • . •£.•*.»•...). 

The coefficients A mn round by requiring that the matrix elements 
of the tensor operator between the angular momentum states are equal to 
the WOBE between the corresponding Bose-operator states. 

< V I °kq'• n ' * < "'' W O B E f • > ' («> 

where * n „ *R are eigenfunctions of the single-ion Hamiltonian H*. equation 
(2). To achieve this, when the crystal fie'.d, V . is small compared with 
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y 
H » we expand the wave-function <)i in pure , J.m states using per
turbation theory. In general,the wave function has the form 

K - •„ |J. J - n> + 7 b„„ |J, J - p> . (7) "n=*nlJ- J " n > + y b n p | j ' J - p > 

p?n 
By matching the matrix elements using (5) and (6),we find the coef

ficients for q + u > 0, n' = 0 . . . . co (we shall assume q > 0). The ex
pansion of the O. for q < 0 can be obtained using the formula O. * 

V ' (=TH > <•«• l°kql *n > « . . . o +' • ' + «.. . 2J-(q+u)) 

- <"nV * £ + 7 5 r L n r A* +. . . + A j , , . , , )(1 - . n l p 0 ) 

and for q + u ( 0, n = 0, . . . oo 

A S • ^ ^ <*n.l0kqk>(Vo+-"+«n.2J+q+M> 

. ( i r A k W + _ L _ Ak»'+... + Ak»' f , ) ( l .« ) . 
'nT qo (n - 1)» q1 q(n-1)M n,o' 

(8) 

(9) 

An infinite expansion with these coefficients gives the correct matrix 
elements within physical space as well as the correct zero matrix elements 
outside. 

2.2. Explicit results to first order 

Using the first-order perturbation expansion for the wavefunction (7) 
and the crystal-field perturbation in the form (3), we can write the matrix 
elements (8, 9) in the following form 

(1) For V - 0 and n = n' + q,we find the result obtained and tabulated in 
ref. 1: 

, n q /(k-q)!n!Sn J 

<*„. i%i* n > - <J- •>-"'(% iJ- J-n > - jjftrh ^cTqwrv) c «** 
(10) 
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(2) For V f 0 and n = n* + q . we find the new term 

I I A N iV ^W (-1)q + W + 1 (l-u)!(k-q)!n:Sn s * 
< V , ° k q l % > = i w ^ (gq-Hi)! V H v(l-n.)Mk-Hi).'n'!5n; 

(ID 

*Cn'luC(n'+u)kq " C{n'+q)lu Cn'kq* ' 

where 

C 
n' , 
V ( W nN (1 + v+t) . ' i i 

and 

Sk « J ( J - J) . . . . ( J - (k - 1)ft) . (12) 

lr 

The coefficients A obtained in this way are tabulated explicitly in 

ref. 2. Using these we obtain an expansion of tensor operators, relevant 

to cubic and hexagonal crystal fields, which includes the effect of the 

crystal field to first order in &\m/Kex-

2. 3. Effective Bose-operator Hamiltonian 

To any order of perturbation, the result of the transformation when 

applied to the Hamiltonian (1) i s that (after a Fourier transformation 

to q-space) we can write 

• •»W •* •? J. *$W. viv*,s «.<wv * 
(13) 

+ W Y i f B^a-a- + cc} +-L Y J i B ^ l - - at a- a-> a- +cc)} 
N t . U I ' l l P A * l i W 4 q1 q2 q3 q4 

q3q4 

««rVVV + 

q should not be confused with the index q above, N is the number of spins in 
the crystal, cc denotes a complex conjugate, and the transformation ensures 
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that I B*° - 0. An identical form is obtained using the HP transformation, 
q q 

but in this case the last condition is not fulfilled. The well ordered Hamil

tonian (13) describes a highly interacting Bose system. This can now be 

treated by conventional many-body techniques (Abrikosov et al. 1968). 

2.4. Canonical tranform method 

A more elegant way of transforming the complicated Hamiltonian (1) 
3 4) in question is to use the theory of canonical transformations ' . To this 

end we carry out a transformation of H using a unitary operator e , which 
diagonalizes the single-site part of the Hamiltonian, H s . Using standard 

perturbation theory, it i s straightforward to obtain U to any order in X. 

To second order, we find explicitly 

lm e x l m « m H e x ) 

V 
(t4) 

m » 7 - m m { m + m ) Hex J 

Any transformed O can then be expanded in operators, O, which 
work on the eigenstates of H , using the well known relation 
5 = Z [... [U, [U,O | ] . . . ] /n ! . In particular.if we transform the Hamil
tonian H, we find that to any order in X it can be written in the form 

fi = HB + fi.nt. (15) 

where 

fiS = I K \ J ? + Evaxv«)' (,6) 

1 

H i n t - I I v\w<»0lmW0VmM • ( , 7 ) 

The parameters marked with A are related to those in the original 
Hamiltonian (1). The effect of the transformation is clearly to remove the 
off-diagonal single ion anisotropy and to replace it by an effective two* ion 
anisotropy, which has the symmetry of the lattice. 
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The advantages of a diagonalising of the single-site part of the Hamil-
tonian are (a) that the remaining ground-state correction due to a diagonali-
sation of (16) and (17) is considerably reduced, (b) that conventional tech
niques developed for the Heisenberg Hamiltonian can be used for the dia-
gonalization, and (c) that the anisotropy is treated systematically to a given 
order of perturbation in ratio to the exchange interaction. 

The excitation spectrum for H (15) can be treated by the Zubarev 
(1960) double-time Green's functions of tensor operators C\0. (q*,t); 
6. , ,(-q, o);'. For this, and other purposes, it is therefore valuable to 
have an explicit expression for the product (or commutator) of two tensor 
operators. This was derived and numerical tables produced for all 

5) relevant combinations . 

2.5. Effective spin Hamiltonian 

Assuming the exchange interaction to be dominant in (16).the two 
lowest-lying states are [J. J-l ) and [J, J). By the MME method we can 
then find a well-ordered spin or Bose operator expansion of the tensor 
operators in (16) and (17). The spin operator expansion perhaps shows the 
physics most directly. It is given by 

fi" - const +HM(1 +Yx)Yjj'J1
+/2J + w, 

i 
(18) 

H, 

where w denotes well-ordered higher-order spin terms. The operator 
generating longitudinal modes for this Hamiltonian is 

and the operators generating the transverse modes are 

' x = J x ( "A" **>+ W' J y = V "X + ̂  + w' (20) 

The operator expansions (19) and (20) are distinct from those en
countered in the pseudo-spin theories with respect to the conserved spin 
length J * 3, the inclusion of the higher-order spin terms w, and the per
turbation expansion in * of the coefficients (Yx.«z . $t. Yz, u and v ), 
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which makes a direct diagonalization unnecessary. The coefficients are 
given explicitly to second order in A in ref. 3. 

3. THEORY OF SPIN EXCITATIONS 

With the rare earth metals in mind, the linear spin wave theory was 
treated in great detail for a general bilinear Hamiltonian (18) for two atoms 
per unit cell and for different magnetic structures . 

The spin wave energy (for simplicity we only consider one atom per 
unit cell here) is given by 

•J xx yy1 

Eq = 1/w> «CJ , (21) 

where for simplicity q is now denoted q. The elementary frequencies, the 

physical interpretation of which is discussed in section 3 .4 . are 

«** = A„ + B„ and a™ = A - B„ (22) 
q q q q q q 

in terms of the (n=0) coefficients in the Bose operator Hamiltonian (13). 

It was pointed out that the neutron scattering cross section (for the 

creation of spin waves) is proportional to 

nh æ i <i+*,*> J a • < « * - » ; > £ tø,•!> (24) 

q q 

where K is the scattering wave vector and n = I exp(E_/kT) - 1 J" is the 

spin wave population factor. A measurement of either the energy or K 
dependence of the intensity therefore allows a separation of A_ and B . 

The possibilities of detecting single, or two-ion anisotropy were discussed. 
A genuine two-ion anisotropy (for example,the pseudo-multipolar Kaplan 
Lyons (1962) interactions) causes • lifting of essential degeneracies of the 

spectrum if it breaks the symmetry of the lattice. It can therefore be 
detected qualitatively. A non-symmetry-breaking two-ion anisotropy is 
more difficult to detect. It can only be found by measuring and comparing 

») 
By genuine TIA is meant structure independent two-ion anisotropy, as 
opposed to crystal field induced TIA. A distinction is further made 
between TIA which do or do not transform according to the lattice 
symmetry; denoted non-symmetry-breaking and symmetry-breaking 
TIA, respectively. 



- 18 -

2 3) 
wx x and u** (or A and B ) separately. It has recently become clear ' 
q 9. <1 «l 

that in this formulation single-ion anisotropy introduces an effective 
a q-dependence of B » which, how« 

A genuine two-ion anisotropy breaks this 
two-ion anisotropy (18) giving rise to a q-dependence of B_. which, however. 

i s closely related to that of A 

relationship. 

The result (24) has been used to measure anisotropy constants and the 
consistency with other measurements tested for Tb 0 9 HoQ , (Mackintosh 
and Møller 1972). see fig. 1. The linear spin wave theory including a 
treatment of dipolar forces was applied,for example,:o the antiferromagnet 

MnF T) 

Fif- * • Tee integrated i faait ies of 
Ik* aaattea gross! »rising frem spin 
m n cilatisn at terkeam-10*« kelmiam 
at I ! • K. Tke dashed line is the pre
dicted varieties frem (a »I) alene, 
while the MI line inclaé« s the terms 
(24) which tak* actssnt of the mag
netic antseuspj. »ilk anisetree? 
parameters a« eared from the field 
dtps ad« ace of Ike spin we»e energy 
gap. (Frem Mackintosh aad Mrtler 
1972). 

1 2 3 4 5 6 7 0 
MAONON ENERGY ImeV) 

3 .1 . Renormalization effects 

Jn) a(n) The inclusion of the higher-order terms A'"' and B' ' in (13) gives 
rise to two effects: a) A ground state correction at T = 0 to the assumed 
j j , J ) ground state. This effect is well known from the antiferromagnetic 
problem. Here the zero point motion is due to the influence of the crystal 
field, b) A renormalization of the spin wave energies for finite temperatures. 

3 .2, Low dimensional magnets 

For weakly anisotropic magnets>a Hartree Fock decoupling approxi

mation of the higher order terms in (13) is expected to work well. 

NiCl«. The theory was applied to the low-dimensional antiferromagnet 

NiCl2 '»for which the Neél temperature is T N = 52. 3 K. In NiCl2, the 
anisotropy is extremely small, V /H ~ 3 x 10 and of XY symmetry. 



- 19 -

NiCl. corresponds closely to a model system with a nearly isotropic spin 
Hamiltonian, but with large spatial anisotropy in the interaction strengths 
(J * 1, d -- 2, n - 3). As emphasised by Silberglitt (1973) in his work on 
CrBr3 , such systems provide sensitive and critical tests of the theory of 
spin-wave interaction effects. In particular, because of the two-dimen
sional character, the spin-wave dispersion surface is very anisotropic with 
a lowying branch for wavevectors in the direction of weak forces. Thus, 
even at temperatures much less than T N . spin waves in that direction will 
be strongly populated and consequently interact significantly. Ideally, the 
between-plane forces should be so weak that the dispersion surface is 
highly anisotropic but, on the other hand, of sufficient strength that the 
dispersion in the soft direction can be measured with conventional neutron 
scattering techniques. NiCl, provides a rather good example of such a 
system. As an aside, we should also mention that NiCl, has been exten
sively investigated via microwave resonance techniques, especially with 
respect to the critical behaviour (see references given by Birgeneau et al. 
1973). In this case NiCl. is of special interest because it is a non-cubic 
system with a nearly isotropic spin Hamiltonian; the near two-dimen
sionality is then of secondary interest. 

For NiCl«, renormalized spin wave theory with no ad hoc assump
tions accounts well for the measured temperature dependence of the spin 
wave dispersion, the spin wave energy gap and the sublattice magnetization 
up to 0 .4 TJJ, see fig. 2. 

NiCsF, . For this nearly one dimensional planar ferromagnet (J = 1, 
d = 1, n = 2), it was recently shown (Kjems and Steiner 1977) that the spin 
wave theory for the detailed example discussed in ref. 2 is valid. When 
the crystal i s exposed to a large magnetic field, the one-dimensional 
character is unimportant and the three-dimensional theory can be used. As 
the planar anisotropy parameter was known from other measurements, it 
was possible to establish that the "value" of a tensor operator O, in the 

excitation spectrum is not (O. ) ~J , as expected for classical spins 
1 1 (Cooper et al. 1962), but <0 l o> ~Sj=J(J- | ) . . . ( J - ^ - ) , as expected from a 

quantum-mechanical calculation. For 1=2, the difference is large. This 
problem was first mentioned in ref. 6 and later by Brooks et al, (1968). The 
origin of S. in (12) is evident from the derivation in section 2, equations (8) 
to (12). The effect is to reduce or cancel the effect of the crystal field for 
systems with a small spin value J; a result which can also be seen using 
group theory. In addition the predicted intensity properties for a planar 
magnet (section 3,4) were verified for NiCs F g . 
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3. 3. Anisotropic magnets 

In strongly anisotropic ferromagnets, as for example the heavy rare 
earth metals.it is important to consider the ground state corrections. As 
a first attempt this was done on the basis of the untransformed HP Hamil-
tonian (13). using the Hartree Fock decoupling in the real spec«;, ref. 9. 
Two characteristic functions were defined 

aM(T) = (1 /J)£ + a) 

and 

b(T) = (1/J)<aa; - ( l / J ) < a V > . 

where the Bose operators act on a single site i. The characteristic function 

AM(T) is related to the temperature-dependent deviation of the reduced 

magnetization m(T) by 

<JZ> = <0°> = J [1 - oM(T) ] = J l l - AM(0) ]m(T) . (25) 

The characteristic function b(T) is related to the non-spherical 
precession of the angular momentum in the presence of anisotropy. 

<Jx > ' < J y > = < °2> = 2 j 2 b ( T ) I 1 * 1 & M ( T ) J • (26) 

The effective Hamiltonian for the non-interacting Bose operators is 

then, after the usual Fourier transformation to wave-vector space, given by 

H " i I \̂<T> * <•>, * Vq' + VT)^-qaq+aqa-q)1 ' (2?> 

q 

A diagonalization gives the spin-wave energy (21) 

Eq(T) » { [ Aq(T) - Bq(T) ] [Aq(T) + Bq(T) ]} * . (28) 

The Bogolubov transformation, which diagonalises the Hamiltonian. 

enables us to evaluate the characteristic functions in terms of the tem

perature-dependent functions E (T), A (T), and B (T): 

*M<T>-TF £ < • > , > - W Z(4*TO I »,<T) * *3 ' 0 ' 
(29) 

http://metals.it
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1 ? , . -1 V B Q { T ) 

«T> = T I T Z <a-qaq :•= iwl rnm • V T ) + *J (29) 
q 

q q M 

where n (T) -1 / (e q' ' -1) i s the spin-wave population factor and the 
summation is over N points in the Brillouin zone corresponding to the 
number of atoms in the crystal. At first, only the resonance frequency. 
i . e . the spin-wave energv gap E _ was treated '. To the first order in 
the characteristic functions &M(T), b(T). and 1 'J, one finds the following 
contributions to the temperature dependence of the energv gap. valid for 
all 1 (using the abbreviation CL = 1(1+1 )/2) 

iVT>-Bo<T)isw = w 7 ( T ) = 

(30) i*Isi[" ^o00 '0* l f mhr%) l"M(T) • ^T ) i : 

i 

+ B,2c(1.2) i l - f y l ) lAM(T) - *b(T) ] ;J + fi"(T) 

+ 
where c(l ,m) are numerical constants. It was argued that 6* (T) should 

be neglected. This was later shown to be correct in ref. 2 by the MME 
approach and by Jensen (1975),+who showed that terms from the exchange 
interaction exactly cancelled 6~{T) to first order in 1/J. If b(T) is 
neglected,(30) reduces to the expression proposed by Cooper (1968). How
ever, if the ellipticity b(T) of the spin precession is not small,the sig
nificant result emerges that the elementary frequencies w (T) and *£y(T) 
are renormalized differently (even at T • 0). In ref. 9 the theory was 
developed for weakly anisotropic systems using the Bose operator equivalent 
of the HP Hamiltonian. However, the theory can clearly be directly 
adopted to obtain the temperature renormalization relevant to the' trans
formed Hamiltonian (13), for which the crystal field part is already diag-
onalized. 

The theory was used for a irst analysis of the data on the heavy rare 
earth metals; the spin wave energy gap and magnetization for Gd, Tb and 
Dy in ref. 9 and the high Held magnetization for Tb in ref. 10. However, 
it is likely that the treatment of the HP Hamiltonian by the Hartree Fock 
approximation is not sufficiently reliable to accurately account for the field 
dependence and anisotropy effect on the excitation spectra of magnets, for 
which the anisotropy is comparable in magnitude to the exchange interaction 
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Internal field IT) 

Fif. 3a. Th« square of the nagnon energy gap for various temperature* 
•a a function of a field applied in th« easy (solid dots) and hard (open dots) 
direction (Houmann et al. 1»75). The solid line represents the fit obtained 
in raf. 10. 

Internal field IT) 

Fif. 3b. The experiment«! data and the calculated total moment per Th 
atom (solid line) as a function of internal field in the hard direction at 
1.8 K (+). 4-llCltl , CS-S K ») and 77 K (*). The broken line la the cal
culated ionic moment per Tb atom. The difference between the solid and 
broken lines ia due to the conduction electron polarisation. The agreement 
with the measurements for the field applied in the easy direction is similar. 
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as for Tb and Dy. Thus it was not possible to describe the data from basic 
anisotropy and magneto-elastic parameters and phenomenological constants 
had to be introduced '. However, with this parameterization of the spin 
wave data at T=0, a good description of the temperature and field depen
dence of the energy gap and magnetization was obtained for Tb. See fig. 3. 

A systematic treatment of the effect of the crystal field and magneto-
elastic strain terms on the spin wave spectrum (in the weak limit) showed 
that higher order strain terms gave rise to additional contributions of six
fold symmetry (Lindgård 1971). Phenomenological terms of this symmetry 
are important for the interpretation of the measurements of the field de
pendence of the c 
physical origins. 
pendence of the energy gap for Tb ', but they may also arise from other 

3.4. Strongly anisotropic magnets 

If the crystal field is comparable to the exchange field, it was recently 
2 3) argued ' that it is essential for obtaining a correct understanding of the 

interactions, first to diagonalize the crystal field,as described in section 2, 

before attempting a calculation of the spin wave dispersion. It should be 

emphasized, however, that the Holstein Primakoff and the first MME (ref.1) 

methods are in principle correct. The difficulty lies in the fact that the 

Bogolubov transformation, performed in order to diagonalize the bilinear 

part of a well-ordered Bose operator Hamiltonian of the type (13), destroys 

the order of all the higher operator terms. If the terms could be reordered 

and the bilinear contribution evaluated,the result should be the same. The 
2 3) 

second MME approach ' is a simple way of performing this partial sum
mation to infinite order (see also the comments in appendix A). 

The result for a planar ferromagnet is (at T-0) 

w** « 2D + wq(u-v)2 

2 
(31) 

•T w (u+v) 

where w - 2«J(JL-JJ i g t n e isotropic spin wave frequency. 

D is the effective planar anisotropy constant that confine the spins to 
the plane, and u and v (20) are related to the ellipticity of the spin pre
cession, Einiation (31) represents a generalization of (30) with respect 

to the ground state correction, 
12) The classical interpretation of (31) is that a spin feels a large 

torque for motions perpendicular to the plane (x direction) resulting in a 
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XX 

small amplitude and a high frequency u = 2D + M i» . On the other hand, 

it only experiences the torque produced by the exchange interaction with other 
yy 

spins for motion in the plane (y direction) resulting in the frequency u/ -
M u . The motions are coupled and result in the, frequency E = 

The different amplitudes in the x and y motion give rise to dif
ferent renormalization of the highly anharmonic spin-spin interaction.thereby 

% XX W 

increasing the difference between u and uJJ. For the planar ferromagnet 

this alone makes M f M „ . M„r. are in general weakly q-dependent and 

not simply equal to (u - v) as in (31). The elementary frequencies can be 

measured from the intensity of scattered neutrons, I . The generalization 

of (24) is 
IQ æ {(1 - <*) (u - v ) V y + (1 - K*)(U + v ) V x } fn + 1)/E . (32) 

H * H J M M M 

3. 5. Crystal-field-dominated systems 

If the crystal field is larger than the exchange field, the methods de
scribed above are unsuitable. In this case the reverse expansion should 
be performed and the crystal field is diagonalized exactly at first. This 
clearly requires some prior information about the crystal field. 

Pr(dhcp). Pure Pr (J = 4) is non-magnetic and the hexagonal sites 
have a singlet ground state (o I and an excited doublet \ - l | at an energy D 
in the crystal field. The exchange interaction is not sufficient to make Pr 
order magnetically. However, a significant dispersion of the excitation 

spectrum is observed. Using the standard basis operator technique,the 
13) temperature renormalization of the excitation spectrum was considered . 

For this purpose the observed splitting of the modes excited by J and J 
* y 

was neglected. 
By considering the Green's function (<J+; J" >) and solving in the 

random phase approximation,one finds 

« j +
; j - » . i WT) . (33) 

S S " q ' u n o Z - E Z(T) 

The two doubly degenerate modes have energies 

Eq(T) M D[D - 4a2(Jq J|J»q | ) Q(T)]} i (34) 

I and J'_ are the inter and intra sublattice exchange functions and a-ylO 
is a matrix element. 

The neutron scattering of these excitations has the intensity 

H ' m c c c V ^ ) [1 +ce,(T-<T + » ) ] J V e x p f t T i T ) / k T - n 
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where ic is the neutron scattering vector. 7 i s a reciprocal lattice vector. 

V connects the two sublattices.and »-*p(i») • - J* ' | J ' q \ » s * . y »•»<* -

stand for neutron energy loss and gain. 

The renormalisation factor Q(T) is found to be equal to minus the 

quadrupole moment: 

Q(T) « - \ <MX
2 - J(J • 1) > = - JW+l) + } < J V + i"J*> • <35> 

We use the identity J(J+1) - J^ + JX
Z + J y

2 . and can then calculate 
Q(T) from equation (32). The result i s the same as that obtained by using 
the 'monotopic' condition (Haley and ErdOs 1972). We find 

r 3 r n E o ( T ) T 1 

a ^ 

(36) 

which reduces to the difference n o -n, between the population factors of 

J 0 )and } -1 > if the dispersion is neglected. By self-consistently solving 

equations (33) and (36) we obtain the renormalitation including the effects 

of the dispersion. A good agreement with the observed temperature 

dependence i s obtained with no adjustable parameters, see fig. 4. 

GAIN 

ar^i _J_ 
» 20 30 

TEMPERATURE IK) 
40 

f ig . 4. The exciton energies M q * 0 
and the »oft I M * M • • 0.25 rM • • » 
function of temperature (Houmann et 
•I. lt7S) compare with the theory. 
The thin line is the temperatur* de
pendence calculated without dispersion 
and mede te fit et lew temperature*. 
On Ike right-hand scale M shown the 
renormaliiation factor QTT). whteh is 
canal to minus the ousdnipole moment, 
and the relative neutron intensities 
I(T>/lfO) for the soft mode for neutron 
energy gain and loss. 
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The critical ratio R = Q(0) x 4a (J - • J ,| )/D was found to be equal to 
0. 93. This shows that Pr can very nearly form spontaneous magnetism 
(R = 1). 

It is clear from equation (36) and fig. 4 that the quadrupole moment 
(= - Q) does not approach -1 for T - 0, as it would if | 0 ) was the true 
ground state. In the state j 0) the spin precesses in the plane with zero 
component along the axis perpendicular to the plane. The exchange inter
action gives rise to a zero-point motion in which the angular momentum 
'wobbles' out of the basal plane with an average absolute angle of 8 making 
0(0) = 0.93. Hence.the ratio 4o (J - j J '[ )/D is indeed very close to 1. 
This is normally considered the criterion for the occurrence of magnetic 
ordering. We therefore conclude that it is the zero-point motion that 
prevents the Pr system from ordering. 

4. RARE EARTH METALS 

About two decades ago the first single crystals of pure rare earth ma

terials were produced at the Ames Laboratory (USA). This made possible 

detailed experimental investigations of the magnetic properties of these 

magnetically very complex and interesting materials. Neutron scattering 

experiments performed at Oak Ridge (USA), Chalk River (C), Risø (DK) 

and other laboratories have been of particular value for mapping out ' \e 

magnetic structures and excitation spectra of the rare earths. Much of 

the present author's work has attempted to reveal the basic magnetic 

interactions responsible for the magnetic properties. 

The physics of the magnetic properties of the heavy rare earth (RE) 

met?'s were originally thought to be very simple (see the review by Elliott 

1972), Because the RE are exceedingly similar chemically, their complex 

magnetic properties were expected to depend on the highly localized 4f 

electrons, the magnetic moment and spatial distribution of which can be 

calculated on a purely atomic basis. The long-ranged RKKY exchange 

interaction between the localized spin S - (g-1)J is mediated by the con

duction electrons and the transition temperature was therefore expected 
2 

by de Gennes (1966) to simply scale with (g-1) J(J+1) from element to el
ement. The crystalline electric field gives rise to magnetic anisotropy 
when acting on the aspherical 4f electron distribution, which is charac
terized by the Stevens' (1952) factors. Much lower in magnitude than these 
interactions should range magneto-elastic effects and the complicated 
pseudo-multipolar two-ion anisotropic forces of various origin. Neither 
of these types of interactions have the symmetry of the original lattice. 
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Static measurements and early neutron scattering studies were 
consistent with this picture (Elliott 1972). Inelastic neutron scattering 
from the spin waves is the most direct method available of obtaining 
information about the basic forces. The spin wave energy, E - w u u 

" » ft T 

yy 
q 

in anisotropic magnets is the geometric mean of the frequencies, u 

of the spin oscillations against the hardest (x-direction) and the second 

most magnetically hard direction (y-direction). It was pointed out that 

in order to measure the importance of the two-ion anisotropic forces it was 

necessary to a) look for symmetry breaking effects and b) to measure at 

least two independent wave-vector-dependent functions, for example u 

and u y y . Measurements of spin waves in Tb along the high symmetry 
H 14) 

direction (K-H) showed a splitting of the expected doubly degenerate 
modes, see fig. 5. However, the splitting was small ( ( 0. 5 meV) and could 
be accounted for by a small two-ion anisotropy of the magnitude of the mag-

14) 
netic dipolar interaction '. This is therefore consistent with the above 
picture. Similar measurements in Dy (Nicklow and Wakabayashi 1972) 
showed a relatively larger splitting at K (0,8 meV) and at A (0.5 meV), 

see f ig. 6. 

Fig. 5. The (pin wave dispersion 
relation for terbium at 4.2 K along 
the K-H edge of the reciprocal ion«. 
The splitting indicates the presence 
of two-ion anisotropy forces. The 
lower part shows the observed split
ting and the line the calculated con
tribution from the dipole forces, the 
dotted line is the contribution from the 
Kaplan-Lyons (19(2) interaction terms. 
The electric quadrupole interaction has 
not been included. 

o at 02 0.3 OA as 
I*') 
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However, for Dy, the interaction with the phonons has a significant in
fluence near A. The first measurements, which were in serious contrast 
to the simple picture, were the very detailed measurements on Er (Nicklow 
et al. 1971) and Tb in a magnetic field (Houman, Jensen, Møller and Tou
borg 1975), which for the first time allowed a determination of two wave-
vector-dependent functions. It was claimed, on the basis of the conven
tional spin wave theory (Cooper et al. 1962) for weakly anisotropic systems, 
that the results could only be understood by introducing a large non-sym
metry-breaking two-ion anisotropy. When the experimental situation 
reaches such a level of sophistication it is important to consider two poss
ible reasons for the discrepancies from theoretical expectation: a) The 
basic Hamiltonian is too simplified and additional physical effects need to 
be introduced (in this case two-ion anisotropy). b) The implicit assumptions 
forming the basis for theoretical approximations break down and a more 

accurate treatment is required of the Hamiltonian in question. It was first 
12) pointed out that for Er and Tb it was impossible to qualitatively distinguish 

between these two possibilities, but that the applicability of the conventional 
theory can be questioned in these cases since the magnitudes of the ex
change and crystal fields are comparable. A detailed and comprehensive 
analysis of the RE spin wave spectra using the theory developed in refs. 
2, 3 and 4 showed that the dominant features of these spectra can also be 
quantitatively understood on the basis of the simple picture with param
eters in agreement with those obtained from other measurements. This 
observation greatly simplifies further calculations of the magnetic prop
erties of the RE. A further discussion is given in appendix A. 

The spin wave spectra for Gd, Tb and Dy in zero field were analyzed 
in terms of interatomic exchange constants, J(R), and effective anisotropy 

parameters, which require no assumptions about the crystal field. The fit 
M xx 2 

is shown as the solid line on fig. 6. We used ' u = D + <•> (u-v) and 
w 2 Q x Q 

u~f = D + u> (u+v) , which is a generalization of (31). The reduced ex-
H y H _o 

change constants J(R)(g-1) are quite similar, as expected by de Gennes, 
-3 and fall off as R for increasing distance R, as expected for the RKKY 

interaction, see fig. 7. However, the oscillations are irregular indicating 
that the Fermi surface for the RE is far from spherical. The large de-

-2 viations for J» (R)(g-1)" show that the RKKY interaction cannot account 
for the total isotropic interaction in Pr. This is discussed further below. 

' For two atoms per unit cell u> =2J(J + |J' | - J - |J | ) , where j ' is 
the inter-sublattice exchange interaction and J the intra-sublattice 
interaction. 
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Fig. 1. The reduced interatomic exchange constant« JR(g- M"2 for Gd, 
Tb and Dy compared with a R dependence. Notice the interactions are 
predominantly ferromagnetic. The laat point at ft ~ 12 A includes effec
tively the contribution from larger distances and should be omitted in the 
comparison with Ft" . On the figure to the right we have included the re
duced effective isotropic interaction constants for Pr. For these the de 
Gennes scaling is clearly not obeyed. 

The deduced parameters for Gd, Tb, Dy and Er are given in ref. 15. 
The magnitude of the anisotropy constants are in agreement with those 
calculated using crystal field parameters deduced from measurements on 
dilute RE-Y alloys (Touborg et al. 1975). For Tb it was not possible from 
the available spin wave measurements (including those in a magnetic field) 
to resolve the effective anisotropy parameters into the nine basic crystal 
field and magneto-elastic parameters. The same conclusion was reached 
using the Hartree Fock theory . It was therefore not possible to cal
culate the magnitude of the single-ion contribution to the apparent two-ion 
anisotropy. However, by comparing J(R)(g-1)~ for Gd and Tb, fig. 7, 
it is clear that there is not much room for an additional (unresolved) 
genuine two-ion • Isotropy, which should be present for Tb but not for Gd. 
The symmetry breaking and non-symmetry breaking two-ion anisotropy 
terms for Tb are therefore presumably of similar magnitude and small 
(£ 10%) compared to the isotropic interaction. This is in agreement with 
the estimate by Kaplan and Lyons (1962). Judged from the magnitude of 
the irregularities (£ 0.3 meV) in the Er dispersion relation (fig. 8) these 
terms appear to be of a similar magnitude for Er as for Tb (fig. 5). 
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Fig I . The spin wave data for Er. The htngv full line represents Uw fil 

for which J(0) i* fised to (iv* T „ » 70 K. The Ihin line •• ih« beat ftl Jiv

ing T° N ' I I K. The broken lines »ho« (he positions of intersection« with 

modes with q«nQ. n« *t. *l J. Interactions caused by the perturbation of 

the hexsfonnl amaofropy are eapected where indicated. 

The spin wave theory for the cone structure of Er was refined by a 
more accurate diagonalization and by taking into account hitherto neglected 
effects of renormalization due to the crystal field and the perturbation 
from the six-fold crystal field term and two-ion anisotropy terms. A 
satisfactory agreement with the dispersion relation and the relative neu
tron scattering intensities could be obtained on the basis of an isotropic 

15) exchange interaction and a single ion crystal field with six parameters, 
A preliminary theory and analysis yielding the same conclusion was pub

lished previously '. The final fit is shown on fig. 8. The heavy full line 
2 

shows the fit with fixed T „ and the thin line the best fit. A ? test gives 
X =0.16 meV and * = 0,12 meV, respectively. The dashed lines show 
were the interactions, caused by the six-fold crystal field, with other Q-
modes are expected. In addition interactions caused by symmetry breaking 
two-ion anisotropy terms may be expected. A detailed discussion of dif
ferent theories and a comparison between the resulting analysis of the Er 
data is given in appendix A. It is concluded that the present data do not 
allow a reliable determination of non-symmetry-breaking two-ion ani
sotropy as introduced previously (Nicklow et al. 1971 and Jensen 1974) or 
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of the effects of additional spin wave renormalization '. The symmetry-
breaking effects must be resolved first; for this purpose more detailed 
experimental data as a function of temperature or magnetic field are needed. 

The spin wave spectrum for a cone phase can be written 

+ /•) 
q q ' 

(37) 

where the functions A , wxx and wyy are renormalized relative to those 
q q q 

calculated on the basis of the conventional theory (Cooper et al. 1962). 
The deduced elementary frequencies are shown on fig. 9. The last term 
in (37) is similar to that for a planar ferromagnet (31). The high frequency 
« x x for oscillations perpendicular to the cone surface is essentially in
dependent of q; whereas the q dependence of the frequency «** for oscil
lations tangentially to the cone surface is enhanced due to the renormaliz
ation effects caused by the different amplitudes in the x and y oscillations. 
The dashed line on fig. 9 shows the functions (corresponding to the fit with 
fixed TN) calculated neglecting a diagonalization of the J* J and Jy J 
terms; the full line includes this effect. 
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F ig . IOa. The qualitative effect of two-

ion aniaotropy CTIA) on the excitations 

in P r waa presented (schematically) at 

the Durham conference (ItTI) M l Due 

to lack of experimental information, 

typical values were assume« har the 

exchange and anisetree? parameter«. 

The ratio of the sn-isetroptc to the 

isotropic f ion Interaction waa as

sumed to be 1 'J . The top figure shows 

that no splitting is to be expected at K 

if the TIA acts only within a eublettice; 

a splitting at K is therefore a qualitative 

measure of the interxublattice TIA » t e r -

action, aa shown on the lower figure. 

A comparison with f ig. I Ob shows that 

the prediction waa verif ied experimen

tally in particular with respect te the 

interchange of the J and J modes 

along the rMfx) and rKfy) directions. 
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F ig . I Oh. The magnetic excitations in Pr at 6 .4 K (Houmann et a l . ' $73 . 

Houmann et a l . 1975, and to be published). The tines are guides to the 

eye. The splitting is indicative of anisotropic two-ion interactions. The 

degeneracy along the TAf ' direction and the interchange of the energies 

or the J and ,1 excitations along TM(x| and fK(y) is in accordance with 
* 7 13 M l 

pseudo-multipolar forces ' . A fit to the average dispersion relatione 

gives the isotropic interaction. The interatomic exchange constants are 

shown on fig. 7. 
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The situation is different for the light rare earth metal. Pr. Here 
the observation (Rainford and Houmann 1971) of a splitting of the expected 
doubly degenerate *»** and vi** modes was interpreted as a qualitative 
effect of a genuine symmetry-breaking two- ion anisotropy . The Kaplan-
Lyons interactions, or more generally pseudo-multipolar interactions. 
depend on the orientation of the interacting spins 3 , and J , relative to the 
interconnecting vector R. For example, the anisotropic part of the dipolar 
interaction is (J, -llHJ- * R V R - In general,we may in the effective bi
linear Hamiltonian encounter the following two-ion anisotropic terms 

^ ( R . J U ' j * ^ I°B (R.J) a g jf * lBj . (38) 

«.J ».J 

where R = [r.-r.|and a = R /R is a direction cosine. The effective inter-
1 J aS * 

action constant I (R.J) is isotropic in space. For a hexagonal crystal.it 

i s easy to show by considering the Fourier transformed interaction constant 

K°B(q.J) that 
(1) it vanishes for q along the c-axis (rA) 

(2) it changes sign for q in the a and b directions (rM and IK. respectively) 

(3) that the intersublattice interaction K?* (q.J) 

vanishes at the point K in the reciprocal space, while the intra 

sublattice interaction KT . (q, J) in general is finite. 

Assuming typical values for the two-ion interactions and the single-
ion anisotropy,the schematic dispersion curves for Pr shown on fig. 10a 
were predicted. It should be noted that an observation of a splitting at K 
is a qualitative measure for anisotropy of the interaction between the sub-
lattices. The symmetry properties of the Kaplan Lyons interactions were 
shown to be compatible with the early observations. The predicted intensity 
properties of the neutron scattering were later verified by more detailed 
measurements (Houmann et al. 1975) fig. 10b. A detailed analysis in 
terms of interatomic parameters and a general pseudo-multipolar Hamil
tonian was performed (Lindg&rd 1973, unpublished) and it was shown that 
this interaction has the special property of reversing the relative magni
tudes of the ">XX and w frequencies for q in the x and y direc-

131 1 4 
tions '. This is in agreement with the observations. Large splittings of 
expected degenerate modes are also observed in other Pr compounds (PrSb 
and PrAl«), but not in other RE compounds (Lindgård 1978). 
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For Pr, the isotropic and anisotropic exchange interactions are of similar 
magnitude (3:1). This is expected because the orbital effects are relatively 
more important for the light than for the heavy rare-earth metals. The 
interatomic interaction parameters of the total isotropic interaction were 

-2 given in ref. 13. The reduced interactions J(R)(g-1)" are shown as • on 
fig. 7. The fact that they do not obey the de Gennes scaling is an indirect 
indication that other interactions in addition to the isotropic RKKY inter
action are of importance for Pr. 

5. MAGNETIC ALLOYS 

Alloys of different rare earth metals are interesting from several 
points of view. The different crystal fields and exchange interactions give 
rise to effects of competing order parameters, and muiticritical points 
appear in the phase diagrams. An understanding of the phase diagrams is 
of interest both from a critical phenomena point of view and for an under
standing of the basic properties of the RE materials. 

Alloys of rare earth metals and transition metals (3d) are of great 
technical importance. A review of their properties is given by Wallace 
(1975). For permanent magnets, use is made of the high transition tem
peratures of the transition metals and the strong local anisotropy of the 
rare earth ions. The result i s very "hard" magnetic materials with suf
ficiently high transition temperatures. An example is SmCo,. Another 
interesting aspect is that these alloys are able to absorb large quantities 
of hydrogen (to some extent depending on the magnetic properties). An 
example is LaNi-. Here we shall only be concerned with the magnetic 
properties. 

For the purpose of describing the anisotropic rare earth alloys at 

any concentration, a simple mean field random alloy theory was formu-
17) lated '. It is in fact applicable to any anisotropic mixture. In terms of 

the anisotropic single-ion susceptibilities, % . it was shown that the 

ordering temperature of the alloys is determined by the equation 

I - T " " c l J l l « » H - T - C2J22(Q) > - c 1 c
2 J l 2 2 ^ <39) 

x , x2 

where c is the concentration of the element n and J (Q) is the Fourier n wpn'^' 
transformed exchange interaction between the elements p and n at the 



- 37 -

ordering wave vector Q. Equation (39) is the generalization of the well-
known mean field condition for ordering of a single element 11\ = 1 /y° -

J(Q) - 0. Multicritical points arise, for example,if (39) is fulfilled for a 
given concentration and temperature for two different components of the 
susceptibilities X and X 

5 .1 . Rare earth alloys 

This simple theory was shown to accurately account for the interesting 
18) 

phase diagram of the Pr-Nd alloys , see fig. 11. As mentioned in sec
tion 3.5, Pr is non-magnetic, but very nearly critical. A small amount 
of Nd (which has a magnetic Kramers' doublet as ground state) i s sufficient 
to make the alloy order. The very non-linear dependence of the ordering 
temperature with concentration follows from (39). Several existing 
measurements (see the review by Elliott 1972) of phase diagrams for 
other RE alloys had not previously been analyzed and fully understood. 
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Fig. 11. Transition temperatures vs 
concentration for »Hoy« of crystal-
field-eplit lytterne. The full curve 
•hows a (singlet doublet)-(Kramtrs* 
doublet) system, for instance, P-Pr 
and N'Nd. The critical ratio for Pr 
was found (rer. 18) to be 0.95 - I. 
The dot-dashed curve shows the typical 
behaviour of an alloy of two (singlet 
doublet) systems, as for instance P-Pr 
and N»Tb, for which P is undercritical 
and N is overcritical. The dashed 
curve is typical of a mixture of two 
strongly interacting, undercritical 
systems. The points show the Nfel 
temperatures for Pr-Nd alloys ob
tained by neutron diffraction (ref. 18). 

Using (39) and known crystal field and exchange parameters, a good 
17 19) agreement with numerous phase diagrams was obtained ' '. in ref. 19 

it was furthermore demonstrated that the "universal" deviation (the so-
called empirical 2/3 law, see the review by T. Rhyne (1972)) from de Gennes 
scaling could be understood as an effect of a gradual change in the exchange 
interactions as a result of a dependence of the electronic band structure on 
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a bi-critical point, T, and aeveral alloya of elementa with competing order 
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Fig. 12b. At the top i* shown the experimental variation of the spiral wave 
vector Q (turn angle w), at the Néel temperature o and at the Curie tem
perature v . The full line represents the prediction baaed on the effective 
alloy exchanev interaction i ,, (c. q). The interpolated reduced exchange 
interaction J a l I o y (c ,q ) = j c j ^ t q ) • H-c)Jgr(q) ' ( * E r - M } • On the lower 
right scale ia shown the effective exchange matrix element, Jdf, which is 
essentially constant. The lower left scale and o show the presently found 
J,.(O), the heavy full line ia the predicted variation based on J a n o y ( c . q). 
This variation is essentially linear between Cd and Er. From the exper
imental paramagnetic transition temperatures 8, and e, and ) d l we deduce 
I (0) indicated by V. Tnis is nearly constant as expected by de Gennes. 

the number of 4f electrons. Thereby the exchange interaction becomes 

weakly concentration-dependent. It was also pointed out that these ma

terials, for which the physical mechanism is now well understood, should 

be useful for the investigation ot multicritical phenomena. The phase 

diagrams shown in fig. 12 exhibit both bi- and tetra-critical points; 

the heavy full lines are the calculated phase separation lines. Fig. 12b 

shows the systematic variation of the parameters. 
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5. 2. Rare earth transition metal alloys 

As a first step towards obtaining a deeper understanding of the physical 
mechanisms in these materials.an alloy theory using the coherent potential 
approximation (CPA) was formulated (Szpunar and Kozarsewski 1977 and 
Szpunar and Lindgård 1976). This was applied to the (nearly isotropic ferro
magnetic) compounds G d | x Cox, G d | _ x

N i
x ' G d j . x

F e
x
 a n d Y j . x

c < V A 

good theoretical prediction of the concentration dependence of the moments 
of the 3d ions was obtained using a simplified elliptic density of states 

model. For a calculation of the concentration dependence of the transition 
20) tempcratures,an effective RKKY Hamiltonian was constructed . This 

model accounts semiquantitatively for the observed temperature dependence 

of the magnetic moments and the Curie and ferrimagnetic transition tem

peratures. The result is shown for the Gdj_ xCo x alloy on fig. 13. 

">—I—r—i—J—i—r—i—i—i 6 i i i i i [ 

CONCENTRATION lotm %) 

Fig. 13. Transition imptrMam and magnetic moment* calculated H M | 
the CM theory compared wltti the experimental data for the Cd-Co alloy*. 
The • represent the measured local moment of Co and the broken line the 
calculated moment; the Ml line i* the total calculated moment. At c - 12% 
there i* a compensation point at which the total moment i* tero because of 
the cancellation of the ferrimefneUcally ordered Cd and Co moments. 
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6. STATIC MAGNETIC PROPERTIES 

The investigation of the magnitude, distribution-and magnetic field 

dependence of the spin and charge density in a crystal is of importance for 

an understanding of the origin of the exchange interaction and the crystal 

field. The dominant interactions in magnetic insulators are the various 

super-exchange interactions and in the rare earth metals the RKKY 

exchange interaction. 

2\\ 
6.1 . Spin density and formfactor calculation for insulators :MnCOp 

2-
In this wep'-ly ferromagnetic salt the ligand CO, is a radical. Neu

tron scattering formfactor studies (Brown and Forsyth 1968) showed the 
puzzling result .hat a spin density was transferred to the C-ion and that it 

was antiparallal to that un the Mn- and the O-ions. An analysis of the 
2-molecular orbitals for CO, showed that the highest-energy molecular 

orbitals were triply degenerate, fully occupied states with zero weight on 

the C-ion. According to a covalency calculation, therefore, no spin density 
2-should be transferred to the C-ion. A variational calculation of the CO_ 

radical showed that the energy can be minimized by exciting an electron via 
the exchange interaction to the next higher molecular state n * that involves 
both the O- and the C-ions. The spin density for this state is found to be 
oppositely polarized for the O- and the C-ion. The effect of this exchange 
polarization is therefore to produce an enhancement of the spin density in 
the regions with the original spin density and a negative spin density in the 
previously spin-free region, i . e . at the C-ion. This is in agreement with 
the observations, and the order of magnitude of the effect is reasonable. 
MnCO, is a simple example that qualitatively shows that exchange polariz
ation is of importance for insulators. It is therefore clear that in a calcu
lation of the exchange interaction this (and other) effects have to be taken 
into account besides the direct- and the super-exchange interactions that 
originate from the covalency. For the rare earth metals, the exchange 

polarization effect is expected to be the dominant one, as will be discussed 
2-

in section 8. Because of the local character of the CO, radical, a cal
culation using molecular orbitals was adequate, while for the rare earth 
metals the non-local character of the electrons is essential and band 
theory must be used. 
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6. 2. Crystal field effects22* 

The magnetic properties of the rare earth monopnictides (group V 
compounds) are of particular interest because the crystal field and exchange 
energies are often of the same order of magnitude. Furthermore the simple 
rock-salt structure with high(cubic)svmmetry makes these compounds well 
suited for theoretical studies. The antiferromagnetic compounds NdP, 
NdAs and NdSb were investigated. The temperature dependence of the 
magnetic moment and the magnetic susceptibility was calculated within a 
mean field approximation based on crystal field energy levels measured 
by neutron scattering. The effect of magneto-elastic and higher order ex
change interaction was also considered. Good agreement with experiments 
on NdSb was obtained. However, deviations occured for the other compounds 
with respect to the magnitude of the crystal field quenching of the moment. 
This discrepancy is not yet understood and further experimental and 
theoretical studies would be valuable. 

7. CRITICAL PHENOMENA AND THE "ARAMAGNETIC PHASE 

If the crystal field is dominant and prevents magnetic order.the 
excitation spectrum can be obtained from the imaginary part of the Greens 
function (33) calculated using the standard basis operators. The theory is 
more difficult for weakly anisotropic systems because the transverse part 
of the exchange interaction causes a strong coupling between the crystal 
field states. 

The calculation of the line shape of the inelastic neutron scattering in 

the paramagnetic phase of anisotropic magnets was considered. The line 

shape was estimated by calculating the frequency moments of the line. The 

calculation of moments is very laborious. The second and fourth moments 

(the odd moments are zero) were derived for the Hamiltonian if -

L J.. .TVT. + D i,(J.)". The result is given in ref.23 and a comparison made 

VAh measurements of the paramagnetic scattering from Tb. Some comments 

on the problem of deriving line shapes from a limited number of moments 

are given in ref. 24. The theory is applicable at high temperatures, but is 

not reliable near the critical point, ref. 25. A contribution was also made 

to the investigation of the critical line shape measured in NiCl« . For 

both Tb and NiCl,, a discrepancy was found between experiments and the 

prediction of dynamical scaling. A review of phase transitions and static 
27) critical phenomena was written as part of a chapter on neutron scattering 

and phase transitions. 
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8. AB INITIO CALCULATION OF THE RKKY INTERACTION 

The theory of the magnetic properties described so far (except sec
tion 5) started at the phenomenological level where the Hamiltonian was 
assumed to be of some form, say 

H r - Z J i i V V I Blm°lm,i • <40> 
ij i lm 

Efforts to interpret the experiments were devoted to establishing 

the form of this Hamiltonian (if two-ion anisotropy should be added or not) 

and the magnitude of the parameters J. , and B, . This level is quite 

sufficient for the prediction of properties for which the parameters can be 

regarded as constants and for comparing different materials. However, in 

section 5 we saw that in order to obtain a good description of the concen

tration-dependent phenomena.it was necessary to go one step farther and to 

calculate the concentration dependence of the exchange interaction and the 

magnetic moments of the transition metals. Also this level was phenomeno

logical as the density of states was parameterized. A fruitful goal of 

physics is, in fact.to find the appropriate phenomenological level on the 

basis of which a group of properties can be adequately described. 

However, it is clearly of fundamental interest to test one's physical 

understanding by calculating the parameters from first principles ( i .e . the 

SchrOdinger equation and fundamental constants like the electric charge). 

In practice, this turns out to be extremely difficult because the parameters are 

often the sum and difference of many contributions- Very few attempts have 

been made to make such calculations for realistic systems of practical interest. 

Gd is one of the simplest rare earth materials and is good 
Q 

for an ab initio calculation. It has an isotropic ( S) atomic ground state 
and the anisotropy effects are therefore expected to be minimal. Because the 
localized 4f orbitals have negligible overlap between nearest neighbours, 
the exchange interaction J(R.) is believed to arise from the indirect coupling 
of the conduction electrons as described by the RKKY model. In this formu
lation, the expression for the Fourier transformed ,T(q) is given by 

• , i 5 , ' N ' ' n ["...•*•'*<r^""'*:!:n''- (4" 
k nTn' *1c+-q\n''hT?,n 

where the sum on Nl< values is over the whole Brillouin zone, and the Ej* 
are the energy eigenvalues with the Fermi occupation numbers f.- . 

http://phenomena.it
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I , (k,k+q) is the unscreened exchange matrix element which, for Gd 

metal with seven 4f electrons ( S state), is given by 

+3 

I n n , ( W ) 4 I . X n ^ V . m ^ r T T V . m < V * k V q . n ^ 2 > d V 
m=-3 

2-

(42) 

Here 4 - „,(**) is the 4 f orbital in the metal with angular component 
m and the •g (r) are Bloch wave functions of wave vector k and band 
index n. 

The first ab initio calculation of J(q) was based on energy bands and 
wave functions for the conduction electrons obtained by the augmented plane 
wave (APW) method (Harmon and Freeman 1975) and calculated atomic 

wave functions for the 4f electrons 28) The result is shown on fig. 14. 
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Fig. 14a. Th« theoretical wavc-vcelor-dtpcndcnt exchange interaction J 
(left acalt) and tlM spin-wave energy 29J (light acala) for Gd uatnf th« 
paramagnetic APW energy band*. Th* curve marked 3-4 i> tha contribution 
from th« bande croaetng the Fermi level and the "other" curve include« the 
reel of the contribution« from the firet eix band«. From the measured J_ 
fig. B one can show that the »elf energy g U I« small and can be neglected. 
Thla makea it poaaible to plac« J on an absolut« acal«. 

Fig. 14b. Th« «pin »ave apectrum E • 2SP0-J ) obtained by Ko«hl«r «t al. 
(1*70) from neutron acattertng m«aaur«mente and th« r««ult of th« calculation 
scaled by a q-independent factor of 3.6. 
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The comparison with the measured J(q) open points shows that a reasonable 

agreement is obtained if the matrix element is reduced by about a f ictor of 

two; this is also consistent with the observed conduction electron polariz

ation. Several factors may influence the magnitude of the matrix 

element, such as the use of the unscreened Coulomb interaction in (42) 

and the accuracy of the APW wave functions. An important conclusion 

from this study was that the matrix element plays a very decisive role for 

the q-dependence. At small q the matrix element completely overrides 

the effect of the Fermi surface, which was previously thought to determine 

the characteristic features of the q-dependence. A calculation using a 

single zone representation gave essentially the same result (Lindgård and 

Harmon 1976). 
It is possible that the inclusion of exchange interactions between the 

conduction electrons would provide a better agreement in the small q region 
(Cooke and Lindgård 1976); also, it may be necessary to include the in
fluence of additional conduction electron energy bands. Clearly more work 
is needed in tnis direction. Detailed experimental investigations of proper
ties sensitive to the electronic wave functions would be of particular value. 

A computer technique for calculating spectra of solids was developed 
— 29) for the calculation of J(q) '. A simpler comparative calculation of the 

effect of the splitting of the Fermi surface due to the molecular field was 
30) made for Gd, Tb, Dy and Er '. The difference between the exchange 

interaction in the paramagnetic and ordered phases (the intrinsic tem
perature dependence) is non-negligible ( - 10%). 





- 47 -

9. SUMMARY 

This report treats the theory of the magnetic properties of strongly 
anisotropic materials. These materials are very interesting both from 
a technical and from a fundamental physics point of view. In chapter 2 
are described a number of exact transformations of the crystal field and 
exchange Hamiltonian necessary for rraking it tractable by means of well 
founded theoretical methods. Chapter 3 gives the theory for spin exci
tations in systems with various ratios between the exchange and crystal 
field energies. The accuracy of the theory is tested on low dimensional 
systems, which are particularly sensitive to approximations. The re-
normalization effects due to anisotropy and temperature are discussed and 
the experimental observations analyzed. A zero point motion effect for the 
singlet ground state system, Pr, is demonstrated. Chapter 4 specifically 
discusses the result obtained for the rare earth (RE) metals and additional 
details are given in appendix A. Evidence of a large two-ion anisotropy is 
pointed out in the excitation spectrum for Pr. However, the experimental 
data for the heavy RE is consistent with the assumption that the contribution 
from two-ion anisotropy is small for the heavy RE and the form and magni
tude cannot at present be determined with any certainty. The dominant 
features of the heavy RE can be understood on tiie basis of a single ion 
anisotropy and an isotropic exchange interaction. This substantially s im
plifies the understanding of the heavy RE. The spin wave spectra of the 
heavy RE are analyzed and the deduced interatomic exchange interaction 
parameters are shown to obey de Gennes scaling and to decrease as the 
cubed inverse distance. In chapter 5 this picture is used to describe the 
phase diagrams of binary RE alloys. The occurrence of several multi-
critical points is demonstrated. A weak concentration dependence of the 
exchange interaction can explain the empirical 2/3 law. The RE transition 
metal alloys were investigated. The magnitude and temperature dependence 
of the nna gnetic moments and the remarkable concentration dependence of 
the transition temperature can be understood on the basis of a simple model. 
The concentration dependence originates from a change in the electronic 
band structure. Chapter 6 shows that exchange polarization occurs for a 
radical such as CO, so that the spin densities at the O- and C-ions are 
antiparallel. Calculations of crystal field quenching of magnetic moments 
are also discussed. In chapter 7 the influence of a weak anisotropy on the 
paramagnetic and critical neutron scattering line shape is discussed using 
frequency moments. Chapter 8 describes the first ab initio calculation of 
the RKKY interaction, which is an indirect interaction via exchange polar-



- 48 -

ization in a metal. It is demonstrated for Gd that the matrix element 
plays a dominant role in determining the characteristic wave vector 
dependence of the exchange interaction and overrides the effect of the 
Fermi surface at small wave vectors. 

It can be concluded that a number of the magnetic properties and spin 
excitations in anisotropic materials can be accounted for by the theories 
here presented. The magnitude and form of the basic magnetic inter
actions in the rare earth metals are well understood on this basis. This 
knowledge may be utilized either for predicting properties of the techni
cally important RE transition metal alloys, or for finding interesting model 
systems suitable for testing advanced statistical theories. It is also a 
challenge for future research in this field to further test and refine our 
ab initio understanding of the parameters of the magnetic interactions. 
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Appendix A 

Discussion of the Spin Wave Spectrum and Neutron 

Scattering Cross Section for a Cone Structure 

The measurements of the spin wave spectrum in the cone phase 

of Er (Nicklow et al. 1971) are of decisive importance for de

termining whether or not the Hamiltonian for the heavy rare 

earth metals should include large genuine two-ion anisotropy 

terms in addition to the crystal field anisotropy and an iso

tropic exchange interaction. Let us therefore discuss these 

measurements and their interpretation in some detail. Further

more, the cone structure includes other structures (the ferro

magnetic, antiferromagnetic and spiral structure) as special 

cases. Therefore, a discussion of the spin wave theory and neu

tron scattering cross section for the cone structure covers 

most structures of interest. 

A.l. Theoretical Dispersion Relations for a Conical Structure 

All theories predict a dispersion relation that can be 

written in the form (37), although the physical interpretation 

was not given previous to ref. 12 

E = A +/oXXwyy, wXX - u> + D (A.l) 
q q q q ' q q x * ' 

The direction x is normal to the cone surface, and y is tangen

tial to the cone surface and perpendicular to the hexagonal c-

axis. D is the planar effective anisotropy constant, which 

confines the spins to the cone surface (uq=g
 = °) • 

I. Zeroth order theory including a special two-ion 

anisotropy 

Cooper, Elliott, Nettel and Suhl (1962) considered the fol

lowing Hamiltonian 

H = " /, (Jij 3i'3j + Kij Jci Jcj> + I Vci ' (A'2) 

which includes an isotropic exchange interaction, Ji-i/ and a 

general axial crystal field along the c-axis, Vc, and a simpli-
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fied two-ion-anisotropic term, K ., of axial symmetry. The spin 

excitation spectrum was calculated by means of the conventional 

spin wave theory. Using the Holstein Primafcoff transformation 

and neglecting ground state corrections (to the classical ground 

state), they derived the following expressions for the cone 

structure 

Aq * C°(<J> - 2 J %[J(Q+q> ~ J(Q-q)]cos8 

uqy = F l ( q ) £ 2J{J(Q) " %U(Q+q) + J(Q-q)J) (A.3) 

w** = F°{q) = w° + 2JtK(0) - K(q) ] s in 2 9 + Dx 

where 

O _ „O 2 n ^ o,rl,n, l/_vi_,_2. 
w„ Pjcos^e + 2J[J(0) - J(q)]sinz9 (A.4) 

D = L sin26 (A.5) 

Here L is an effective axial anisotropy constant. We are 

following the definition by Jensen (1974), which differs slightly 

from that used by Nicklow (1971); the relation is 

L= 2J[J(Q) - J(0)] + 2J[LNicklow - K(0)] (A.6) 

The adjustable parameters in (A.3) are the Fourier components 

of J(0)-J(q) and K(0)-K(q) and the anisotropy parameter L. 

Notice that J(q) is not determined on an absolute scale. 

II. RPA theory of the spin wave renormalization 

Brooks (1970) developed a Greens function theory for strong

ly anisotropic ferromagnets within the random phase approxi

mation (RPA). Let us denote the reduced moment a = <J >/J (the 

reduction is due to crystal field quenching or temperature ef

fects) , then the RPA expressions for the cone structure are for 

the Hamiltonian (A.2) when K.. is neglected: 
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Aq = C°(q)a 

uq y = »Jtqla (A.7) 

«?= » ; • + °i 
This result does not differ in any way qualitatively from the 

zeroth o^der result (A.3). The exchange interaction is simply 

reduced by the factor o. The anisotropy constant, C' , is re-

normalized in a more complicated fashion. The renormalization, 

o, can be estimated if the crystal field and other interaction 

parameters in the Hamiltonian are completely known. The infor

mation available from an analysis of the spin wave dispersion 

in one symmetry direction is not sufficient. 

III. Zeroth order theory including a more general two-ion 

anisotropy 

Jensen (1974) applied the conventional spin wave theory to 

a Hamiltonian that included the following phenomenological two-

ion-anisotropic term 

" = * i j L KSm m , (^ , I% ( i )°^n.' ( J ) + CCl (A'8) 
I'm' 

This Hamiltonian includes implicitly terms which depend on the 

orientation of spins relative to the interconnecting vector ft.* 

such as pseudo-multipolar interactions. Such terms were found 

to be responsible for the two-ion anisotropy observed in Pr ' 

The notation is simplified by defining the Fourier transforms as 

K*,"m<R) eiq-S Kmlq) " I Kw (R) e <A-9) 

The isotropic exchange interaction is represented by setting 
Kll(g) = 2J(3) a n d Kio(g) * ~J ̂ q'* o f t n e n u m e r o u s possible 

terms in (A.8), Jensen considered explicitly only the terms 

with % and m less than three and m* = -m. The resulting general

ized expression for (A.3) is then 
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Aq « C(q) « COSO{% J[K11(Q+q) -IC^CG-qH 

• | JJ2 [K21(Q+q) - K21(Q-q)]cos 26 

- | JJ2 [K22(2Q+q)~ K22(2Q-q)]sin
2e} 

wyy Fx(q) = * J[2K11(Q) - Kll(Q+q) - Kn(Q-q)] 

+|jjJ[2K21(Q) - K21(Q+q) - K21(Q-q)Jcos
20 

-|jjJ[2K22(2Q)- K22{2Q*q)- K22(2Q-q))sin
29 

and (A.10) 

"q* " F 2 < q ) = * Jt2Kli(Q) - Ku(Q+q) - Ku(Q-q) ]cos
29 

+|jJ2[2K21(Q) - K21(Q+q) - K n (Q-q) ]cos
226 

-|jjf[2K22(2Q)- K22(2Q+q)- K22(2Q-q)]sin
28cos2e 

+{-2JfKlo(0)-Klo(q)J 

- 18JJ2[K2o(0) - K2o(q)Jcos
26 + Usin28 

where J^ = (J - h)• It is clear that no more than two inde

pendent functions of q can be determined from the available two 

measured functions B„ and E . In addition L is an adjustable 
q -q 

parameter. The dominant effect of K~_ is to create collective 

quadrupolar modes, involving the second excited states. It may 

be a serious approximation to neglect their influence upon the 

spin wave modes. 
IV. MME-theory of the spin wave renormalization, Isotropic 
two-ion interaction 

Lindgård et al.2,3,4,15,16) persued a different approach 

and investigated the effects of the approximations invclved in 

the zeroth order spin wave theory by means of the HME method. 

In order to clarify the discussion the possible two-ion-ani-

sotropy was completely neglected (although it can be straigth-

forwardly incorporated)and the following simpler Kamiltonian was 

considered. 
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H = - Z i . 1 - 1 + X V . (A.ll) 
±i lj i i i c,l 

Two types of ground state correction to the classical cone 

ground state appear. One is that, in the local coordinate 

system, "linear" terms of the type J*. J* occur in the Hamil-

tonian for finite q. A transformation was found which diag-

onalizes these terms . However, because the effect of this 

correction was found to be small for Er, we shall for simplicity 

omit it from the discussion (it cannot generally be neglected). 

The other ground state correction results from the mixing of 

the single-ion wave functions caused by the crystal field. As 

discussed in section 2, the single-ion Hamiltonian can be diag-

onalized (as far as the spin wave spectrum is concerned) by the 

transformation (20) 3"x = (u-v)Jx+hst and 3fy = (u+v)Jy+hst. The 

result of MME theory is the renormalized expressions (neglecting 

the well-ordered higher-order spin terms, hst) 

Ag = C°(q) (u2 - v2) 

"q^ = Fl(<I) (u + v ) 2 (A.12) 

wqX = uq (u " v ) 2 + Dx ( u , v ) 

2 2 The adjustable parameters are the Fourier components of (u +v \] (q) 

on an absolute scale and the dimensionless renormalization param-
2 2 eter r = 2uv/(u +v ). From this information the anisotropy 

parameter D"(u,v) can be calculated (i.e. it is not an adjustable 

parameter). In principle, u and v and thereby D" can be calcu

lated if the Hamiltonian parameters are known. Because u and v 
2 2 cannot be separated in the fit, we include (u +v ) in the ex-

2 2 
change parameters by formally setting u +v = 1 . The ground 

state corrections (u and v) depend on the ratio of the crystal 

field to the exchange field, which in turn depends on the absol

ute scale of J(q). If the ratio is small, one finds u ^ 1 and 

v i< 0, and (A.12) reduces to the zeroth order expression (A.3) . 

The dependence of the absolute scale of J(q) is not apparent 

from (A.12). In this formulation it is introduced through the 

constraint wyy = 0 (the Goldstone theorem), which must hold for 
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an undistorted cone structure. The condition can be written 

r • 2J J(Q) = D£(u,vj - 2J[J(Q) - J(0)]cos26 (A.13) 

where D" is an effective anisotropy constant, which can be cal

culated from u and v. If the ground state corrections are small 

(r ̂  0), (A.13) reduces to the condition obtained by Cooper 

et al. (1962) and the absolute scale of J(q) cannot be deter

mined from the spin wave spectrum. This is also the case for 

the RPA theory. 

Let us now compare the renormalization obtained in the MME 

theory with the RPA results. We shall not go into detail with 

respect to the renormalization of the crystal field parameters; 

however, these are treated more systematically by the MME ap

proach than by the RPA theory. For simplicity, we here consider 

D' (A.7) and D" (A.12) as effective anisotropy parameters. If 

we identify a with u2-v2 and Dx with (^£L) D£, it is clear that 

the spin wave energy, eg. (A.l), predicted by the two theories 

is identical. However, the MME and RPA theories differ in the 

following respects. 
XX W 

(i) The elementary frequencies u and w " are different in 

the two theories. They are physically significant quantities, 

that can be measured from the intensity of the scattered neutrons. 

(ii) From the MME result the renormalization can be deter

mined directly from the spin wave dispersion in a fit, as well 

as calculated from the basic Hamiltonian parameters. 

(iii) The MME renormalization of the excitation spectrum is 

not directly coupled to the quenching of the magnetic moment in 

the ground state as in the RPA theory. 

We shall return to point (i) in section A.3. Point <ii) 

was discussed above and the explicit expressions for u and v are 

given in refs. 3 and 4. Some additional comments on point (iii) 

may be appropriate. The commutator relation 

[Jx, Jy] = i Jz (A.14) 

holds by definition both for the original spin operators and for 

the transformed spin operators. The transformed relation reads 

t(u-v) Jx + hst, (u+v) Jy + hst] = i Jz(l+az)+hst (A.15) 
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2 2 
Therefore one might expect that u -v equals (1+a )=o, where a 

is the crystal field quenching of the moment in the ground state. 

However, this is not the case because of the higher-order spin 

terms, hst. Another way of expressing this is to say that the 

commutator relation holds for operators, but not in a subspace 

of states consisting of the ground state, |0>, and the first few 

excited states, |l>: 

i<o|Sz|o> = E <o|[Sx|p><p|, Sy]|o> f <o|[Sx|l><l|,Sy]|o> 

all states 
(A.16) 

2 2 The difference between u -v and (1 + a2) is evident from the 

explicit expansions given in refs. 3 and 4. 

V. Theories that more accurately include ground state cor

rections 

Consider a bilinear Hamiltonian of the form 

H = -L E{A„(S~S* + cc) + B „(S+ S* + cc)} + hst (A.17) 
*» q H H 4 4 ~H 4 

The MME transformation discussed in I'* was designed so that the 

single-ion part of the Hamiltonian was diagonal, i.e. E B = 0 . 
q q 

Although this considerably reduces the ground state corrections, 

additional corrections remain whenever B 4 0 for finite q. It 

is difficult to evaluate these corrections. A simple method of 

including them was proposed in ref. 3. We define the additional 

ground state corrections m and b by 

<Sq ^ o ~- 2s<1-m> a n d <sq S-q^ " S b (A.18) 

where (> indicates the true ground state. Clearly, m and b are 

in general q-dependent. The MME method then gives the further 

renormalized elementary frequencies 

Aq = C°(q) (u2 - v2) (1 - m) 

Wq F^(q) (u + v)* (1 - m + b) (A.19) 

WgX = w° (u - v) 2 (1 - m - b) + D x " 
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In this approximation not only the elementary frequencies differ 
in form from the conventional expressions (A.3), but also the 
resulting energy, which can be written as 

E q = A q f r • / e £ r [ l - &-> 2l • D-') ̂ r , (A.20) 

where the index r indicates that the exchange interaction is 
2 2 renormalized by the factor (u -v )(1-m). Equation (A.20) is 

identical in form to the result of a Hartree Fock treatment of 

the transformed Hamiltonian (A.17), in which case 

m = Å q
(nq+ *> V Eq~ * 

b = S £(nq + *> V E q ' 
(A.21) 

E AT _! 
where n = (e M -1) is the spin wave population factor. It 

is clear from (A.19) that (A.20) is also identical in form to 
the first-order perturbation result of the simple MME theory, 

2 
if we let u -v 1, v ^ 0, but retain v in (A.12). However, as 
shown in ref. 3 and also pointed out by Jensen (1976), the dif

ferent form of the energy thus calculated is not consistent to 

a given order of perturbation. It is possible that the special 

form of (A.20) is likewise an artifact of the approximations 

involved in the derivation; that is (A.18) or the Hartree Fock 

approximation. 

For the planar ferromagnet with a i = 2 crystal field term, 
Jensen (1976) showed/ by means of a Hartree Fock decoupling of the 

Holstein Primakoff (HP) Hamiltonian with m and b corresponding 

to (A.21) suitably approximated, that an energy could be obtained 

identical to that obtained by the MME method, to third order in 

the anisotropy perturbation and to first order in 1/S. In the 

following section we shall discuss a number of exact results 

and thereby compare the MME theory with other theories. 
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A.2. Evaluation of the Accuracy and Convergence of the 

MME-theory compared with other available Theories 

Let us consider a general Hamiltonian 

H = - UijV3j + X] V W ( J ) (A-22) 
ID J im,i 

~ single-ion two-ion ' 

where 

H° , , = I {- H J* + XT B. 00 4} (A.23) 
single-ion £ ex i ' tn lm,i 

H'two-ion = " ? A j V S j ' si = Ji " J5az'
 a = x'v'2 (A-24) 

The infinite order MME-transformation ' diagonalizes H° exactly 

by introducing new spin operators S with the same length (S = J). 

The diagonalization can be done exactly, but it is in the MME-

theory formally done by perturbation theory in A. The resulting 

diagonal H° is then: 

H° . . = 7 {E + E.S~S+/2S + HST} , (A.25) 
smgle-ion h o 1 i r 

where the well ordered higher order spin terms are 

2J 
HST = I EX(sT)n(S,)n (A.26) 

T n i i n=2 

In terms of Bose operators we have similarly 

oo 

H° , , . = y fE„ + E.ata, + y EB(at)na"} (A.27) 
single-ion i o l i l f;_ n i i 

E are the exact so-called mean field energy levels for (A.23). 
S B 

The coefficients E and E are simply related to E . n n r n 

Let us now compare with the standard basis operator (SBO) 

technique. In the SBO-theory we introduce the transition operators 

C = |n><p| between the exact mean field states with the energies 

E and E . The relation to the MME-spin operators is 
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<S +) n = l (S-p!(S+)n|S-p-n) C (A.28) 
p 2 z P»P+n 

where \) is an eigenstate of S , with JS)2 being the grovndstate. 

In terms of the SBO's we can write H as 

2J 
H „ 4 . „ . i « <«., = J (E + E . C . . + I E C } (A .29) 

s i n g l e - i o n r o 1 1 1 L _ n n n 
i n^* 

in complete analogy with (A.25) and (A.26). Using (A.28) one easily 
c 

finds the relation between E and E 
n n 

2J 
En = I p iS~n\ (S~)P(S+)p|S-n) (A.30) 

We now include the two-ion coupling terms (A.24) and obtain the 

total Hamiltonian by making the appropriate MME- or SBO-transforma-

tions. All steps so far described are exact. Differences arise 

only from different treatments of the resulting Hamiltonian. 

In the MME-theory the transformed total Hamiltonian has the form 

H = const. + T{A S"S+ + \B (S+ S+ + S~S~ )} + uHST (A.31) £ q q q q - q q q-q 

where all off-diagonal terms are two-ion terms i.e. proportional 

to Y and the coefficients to the HST are at least of the order 

1/S smaller than the bilinear coefficients; u is a formal pertur

bation expansion parameter. A and B contain terms of all orders 

in A and 1/S - or in other words - are general functions of B-

and S. In the MME theory (A.31) is treated by standard many-body 

perturbation theory in u. At T = 0 the bilinear Hamiltonian gives 

the exact energy spectrum, E , except for corrections of the order 

A2ufr/E ^ \2M/Z, where z is the number of interacting spins. If 

we^choose \i equal to 1/S = 1/J as the expansion parameter (the 

only exact one in this formulation) the correction is of the order 

A2/zJ which can be regarded as small. 

In the HP-theory the Hamiltonian has the form 

(A.32) 
_ U D M U p -L -U 

H = const. + ) {A a a + \B (a a + a a )} + u-HBT 
q q q q q - q q q-q 



- 61 -

where all off-diagonal terms are single-ion terms, but, again 

the coefficients to the well ordered higher order operator terms, 

HBT, are at least of the order 1/J smaller than the bilinear 

coefficients. The perturbation correction from the HBT is of the 

order ^-Tl/E • '•"- or '-"/J, which is much larger than that for 

the MME-tneory. Therefore, the MME-theory converges more rapidly 

to the exact result than the HP-theory. 

In the SBO-theory the energy spectrum for the Hamiltonian 

equivalent to (A.31) is found from the equations of motion for 

the Greens functions <<C ; C >> . These are then usually 
np rs q,a 

(Buyers et a_l 1971) decoupled in the random phase approximation 
(RPA) leaving -C > to be determined selfconsistently. However, 

nn 

this cannot be done in general and the following additional two 

approximations are made. 

<C > = <C C > ^ <C C > '•-. <C C > = n [i 111 
nn np pn any p nO On nO On MF n IA.JJ; 

where n is the mean field Boltzma: factor exp(-E /kT)/z. Notice 

from (A.28) that ^ „ C ^ ^ <* 2(S! (S
+)n(S_)n |S) is the expectation 

value in the mean field ground state of a complex of MME-operators. 

Exactly what approximation the described decoupling involves has 

not yet been investigated in general. However, the result of course 

reduces to the correct one in the strong crystal field limit (Â °°) 

and does give the RPA spin wave result in the weak crystal field 

limit (l>>.-*0). The exchange interaction is renormalized by <J >/J. 

The last siep in (A.33) implies <J > ̂  <J > M p. The moment is quenched 

by a general crystal field. At T = 0 the conventional spin wave 

theory neglects this 'enormalization due to the crystal field. This 

is correct only in the classical limit (J-°°) . 

In order to illustrate the general discussion let us compare 

the explicit results for a simple example. Consider a planar ferro-

magnet with the Hamiltonian 

H = - I J i V V J i + °£Ji 
ii 1 3 X D i 

x2 (A.34) 
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Because this only includes terms in (A.22) with *> _ 2 (A.34) is 

only valid for J < 3/2. Therefore 1/J is not a good expansion 

parameter. In terms of H = 2Jj , u = > -V and d = D(J-^)/H 

the following results are obtained with the SBO-theory and the 

bilinear contribution from the HP- and the »IE-theory (at T = 0): 

Eq = HexfoJq(ojq + 2 d ) ^ H P b i l i n e a r (A.35) 

Eq = Hex(u (u • 2d) + |lu (2-u )}* SB0-RPA(2) (A.36) 

Eq-Hex{wqI1+d"I(3H,d2 + *-1 * K 1 1 _ d + l ( 3^ ) d 2 + - ' ] + 

+ 2d[l-(j5r>d+..]}}^ MME bilinear (A.37) 

^ H „ U (u) +2d) + ̂  w (2-j )}* MME(2)bilinear (A.38) ex q q 2J q q 

The MME-spin operator representation and MME-Bose operator repre

sentation give the same result. It is evident that (A.36) and 

(A.38) are identical and that they reduce to E° for d*0 and 

also for J-*<*>. 

A rigorous perturbation theory of the effect of the higher 

order operator terms gives an identical result for the HP- and 

the MME-theory (usina the Bose operator representation) to the 

order d2/J: 

Eq = Hex(w (u) +2d) + |j w [2-ui -Mw-DM-w )]}' (A.39) 

.2 w(4-u> )-2 .2 
% E» II + XT 7§3— ] KP,MME o(2=) 

q 4J u +2d J 

where w = - £ 1/ID is the Watson integral (w -\> 1.4 depending on 

the structurl). By comparing the bilinear MME-result (A.38) with 

the exact result (A.39) it is evident that the MME-theory is 

rapidly converging. The neglected term, which is proportional to 

(w-l)d2/J ^ d2/zJ, is small. The infinite order bilinear MME-

contribution has the form (compare with (A.37)) 
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E„ = H (,„(u+v)2('J (u-v)2+2d __)P MME(3o)bilinear (A.40) q ex q q err 

It includes an exact diagonalization of the crystal field, but, 

the contribution from the higher order terms is neglected. Equa

tion (A.40) is presumably the most reliable of the discussed ap

proximations. A rigorous proof of this statement requires a treat

ment of the-higher order terms to at least second order of per

turbation. Work in this direction is in progress. 

The fact that u2-v2 ^ c in the MME-theory is of no direct 

consequence for the energy spectrum, because J does not enter in 

the rigorous renormalization (A.39). Using the explicit expan

sions in refs. 3 and 4 we find 

J = 1+a* = 1">2„Jo T Å T T ^ N 1 2 (A-41) 
m>o m i S 

[)B, (t+m+1)(l-m)]2 (A.42) 
m>0 4 ( m + 1 ) ! Sm+1 i m 

m>2 m-1 i 

where 

B S ^ 
B. = -r; =• [—: • ] , S. = J(J-±)...(J—rr-) (A.43) 
Im mHexJ 2n>u.m). i 2 2 

with «.,m = 2,4,6. We notice that u2-v2 = a for I < 2. Therefore, 

the effect of u2-v2 / a cannot be studied in the discussed simple 

example. Furthermore the difference u2-v2-a is in the general 

case of the order *2/J2. Therefore, a rigorous investigation of 

this problem requires at least an exact second order perturbation 

treatment of the general Hamiltonian (A.22). 

Using realistic crystal field parameters B obtained for the 

Er-Y alloys one finds o - 0.97 and u2-v2 = 0.82. The difference 

is quite large although J = 15/2. This is an example which shows 

that expansions in 1/J are not rapidly convergent in crystal 

field systems. 

The conclusion is that the MME-theory is the most rapidly 

convergent theory available for crystal field influenced systems, 

when tested against exact limiting cases. Application of this theory 

does not require a priori knowledge of the crystal field parameters. 
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A.3. The Neutron Scattering Cross Section for a Cone Structure 

The intensity of scattered neutrons is proportional to the 

spin-pair correlation function, Fourier transformed in time and 

space. It is in general 

(A.44) 

where K is essentially constant. Only the spin components per

pendicular to the scattering vector K contribute. For ic=(0,0,<), 

after the transformation of the spin variables to the cone struc

ture, characterized by Q = (0,0,Q) and a cone angle 9, we find 

the following spin-wave cross section 

I = K / dt e l w t I e lm x (A.45) 
-<*> im 

{(cos29(u-v)2<J*(0) JX(t)> + (u+v)2<J*(0) J^(t)>)cos(Q»R.) 

+2cos9(u2-v2)%(<J*(0) Jm(t)> - <jj(0) jJJ(t)>)8in(Q.RJlni)} 

We furthermore did perform the MME transformation as described 

in section IV in order to calculate the correlation functions 

from the imaginary part of the spin-wave Greens functions 

derived in ref. 4. Using Zubarev's (1960) definition the Greens 

functions are 

A +E A -E 

^ q q -q 

+ + "JBa 1 1 

^-q 'V*«" 17T ter;" s+r-) ' 
q q -q 

(A.46) 

where A -A „ = 2A , e„ = / / X u £ y = *j/(A +A J 2 - 4 B * and E„ = 
q -q q q q q g -g q q 

A +£ . This gives Im<<j";j">> <* /u /w"a, a = x,y and 0 = y,x. 

If the Hamiltonian does not contain symmetry-breaking two-

ion interactions of the pseudo multipolar type, the dispersion 

relations in a hep lattice with q = (0,0,q) may be "folded out" 
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and treated in the simpler double zone (rAT') representation. 

In the presence of symmetry-breaking interactions, the modes 

may interact at A in the single zone (TA) and cannot be "folded 

out". Under the above-mentioned restrictions, neutron scattering 

with energy loss measures a spin-wave branch 'rising from +Q and 

-Q with the intensity 

I = K'(n +l)(cos29(u-v)2 1-3- + (u+v)~ I -*- (A.47) q q ywXX 

+2cos6(u2-v2)} 6(q±Q-T-iO 

A similar cross section was previously derived by Baryaktar and 

Maleev (1963) : 

xx 
I = K'(n +l){ccs'iei/-2- + /-2- ; 2cos9} 6(q±Q-x-K) 
4 4 1/ ,„ x x \l (jJf J 

q (A.48) 

They used the HP-transformation (i.e. u=l and v=0) and neglected 

the renormalization due to the crystal field. In this limit 
2 2 

(A.47) reduces to (A.48). Since u -v can be factored out in 

(A.47) the relative intensities Ia/I__ are identical to those 
4 4 

obtained using (A.48). 

A.4. Spin Wave Measurements in Er at 4.5 K 

The spin wave energies E for a cone structure differ for q 

parallel and q* antiparallel to the cone vector Q. The single-

crystal Er sample investigated by Nicklow et al. (1971) was 

assumed to contain an equal number of domains with the +Q and 

-Q cone vectors. For the scattering vector ic along the hexag

onal axis (TA), both modes rising from +Q and -Q contribute to 

the cross section. The expression is given above in (A.47 ). 

Therefore, for a general K - (0,0,K), one should observe four 

spin-wave peaks. The multiple branches are shown on fig. A.I., 

and the positions are indicated of the constant q-scans, for 

which the measured intensities are shown on fig. A.2. The re

sulting dispersion relation, fig. A.3, derived from similar 

scans was obtained utilizing a theoretical calculation of the 

relative intensity of the peaks as a guideline for the identi

fication of the contributing branches. Nicklow et al. (1971) 
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Is Indicated. Thla makes It dif

ficult to obtsln sn accurate 

quantitative estimate of the In

tensity ratios. Typical error 

limits on the ratios In table 

A.l are s0.3. 

rig. A.3. The apln-wave data of 

Er at 4.S K. The solid llrve re

presents the fits obtained by 

the theories discussed in I, III 

and V. Th« dashed line Is the 

fit obtained by Nleklow et al. 

using (I) without two-Ion anl-

sotropy. However, the fit Is 

not unique and It was later 

found1 that a much better fit 

could be obtained on this basla, 

as shown In rig. I. 
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write: "The qualitative (i.e., strong versus weak relative in

tensities) that are predicted theoretically for the multiple 

peaks observed at a given K are in good agreement with our 

measurements. This information enables one to sort the data 

into the E and E branches. On the other hand some difficulty 

was experienced in obtaining a semiquantitative agreement be

tween experiment and theory when the exchange and anisotropy 

parameters which provide a good fit to the magnon energies are 

used in the intensity calculation". It is evident from fig. A.2 

that the width of the peaks varies considerably, and from fig. 

A.3 that there appear to be sharp kinks in the dispersion rela

tion. These features may result from different focusing con

ditions for the neutron scattering and/or interactions with 

other excitations. Because of the kinks, none of the proposed 

non-interacting theories have been able to provide a fit within 

the experimental error bars with a reasonable number of param

eters. This makes it particularly difficult to distinguish be

tween the applicability of the theories. Furthermore this makes 

it very difficult to obtain accurate numerical values for the 

relative intensity of the peaks. The experimental uncertainty 

on the spin wave energies were (perhaps rather optimistically) 

quoted to be between ±0.04 meV and ±0.08 meV. 

A.5. Analysis of the Spin Wave Data for Er 

All the theories I to V provide a fit of similar quality 

to the dispersion relation in the sense that a x2 test yields 

X ranging from x % °-l meV to x "" 0»2 meV. This, of course, 

means that the data are not very sensitive to details of the 

Hamiltonian. The analysis is complicated by the fact that the 

wave vector dependence mainly enters through J(Q+q) ± J(Q-q) 

and not through J(q) as in the case of ferromagnetic or anti-

ferromagnetic structures. Several different J(q) functions may 

give essentially the same J(Q+q) - J(Q-q). 

I. The conventional theory 

Using theory I, Nicklow et al. (1971) reported that they 

were unable to fit their data without including a large axial 

two-ion anisotropy term K(q) in (A.4). Ten parameters were used. 

A x2~test of the fit gives x ̂  °>1 meV. 2 JK(q) was found to be 
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comparable in magnitude with the single-ion anisotropy, L, and 

K(q) was much larger (two orders of magnitude) than the isotro

pic exchange interaction J(q). The reason for this is e/ident 

from (A.l) to {A.5). If a particular J(q) is found that gives 
VY XX 

the correct A . but not w , then w r»ust be adjusted by a wave-
q q q * 

vector-dependent function of the order of D to provide a fit. 

As a fit with two q-dependent functions is always possible, no 

check is possible on the form of the Hamiltonian. However, the 

calculated intensity ratios did not agree well with the observed 

ones. These results caused considerable confusion because the 

two-ion anisotropy found was far larger than expected. The 

result shown of a fit for the isotropic case was in severe 

disagreemen: with the experiments (Fig. A.3). Recently, the pre

sent author found that the fit is not unique and that a much 

better fit can be obtained in the isotropic case (x = 0.16 meV). 

The fit is almost identical to that showed as the heavy full line 

x z 

in Fig. 8 (which includes the small S S correction). The cal

culated intensity ratios are in reasonable agreement with the 

experimental ones, but the magnitude of the single-ion anisotro

py is too large compared to that obtained in the Er Y, alloys, 

see tables A.l and A.2. 

II. The RPA theory 

The results of theory II are in all respects indistinguishable 

from those of theory I. 

III. Conventional theory including quadrupolar two-ion 

interactions 

Using theory III, Jensen (1974) showed that if, instead, one 

alters ur and A , only a q-dependent function of the order of 

J(q) is necessary. Jensen chose J(q) and K22(q) as the fitting 

functions. However, since the scale of J(q) and K22(.j) is corre

lated with the additional fitting parameter L, the uniqueness of 

the fit is highly questionable. Using twelve adjustable para

meters Jensen was unable to obtain a satisfactory fit without 

systematic deviations o': the magnitude < 0.2 meV (x ^ 0.1 meV) . 

An analysis shows that the quadrupolar interaction 3C-~(q) = 

-3(J~|) K (q) he derived contributes < 0.3 meV to A and < 0.2 

meV to w^. Consequently*K,2 (q) is essentially undetermined. 
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• ( 2 - / c ) 

I n t e n s i t y r a t i o s 

Experiment 
iNlcklow e t a l l»7l> 

XV ranormalizad 

I c o n v e n t i o n a l 

I I I quadrupolar 

- " - (Jenaen 1974) 

Table A.1 

Comparison between the measured and calculated Intensity ratios. The corresponding experimental peaks 

are shown In Pig. A.2. Typical error limits on the experimental ratios are »0.3. The signature in the 

bracket Indicates the quality of the agreement, reproduced for an easy comparison In table A.2. 

I n t e n s i t y proper t i e s 

2 .0 2 . 1 t 2.24 2.7 

0 • 0 • 

0 • 0 • 

-

+ • • 

Anlsotropy 

L - u*X/sln'e<meV) 

17 

35 

104 

20 

7 

15-24 

20-19 

Number of parameters 

in the f i t 

6 

6 

10 

12 

X (meV) 

0.16 XV renormallzed 
(Lindgård) 

0.16 ' 1 conventional 
' ILindglrd; j 

' 1 
'^0.1 I two-ion anisotropy 

(Nicklow e t a l 1971) 

I I I two-Ion anisotropy' 
x ° - 1 (Jensen 1974) 

(Llndgard) 1 

C r i t i c a l f i e l d ' 
(Jensen 1974) 

Magnetization 
(Jensen 1974) 

Crystal f i e l d , E r x Yj_ 

Table A.2 

Comparison of the goodness and parameters of the fits for F.r obtained by the .1 

theoretical expressions I, HI, and IV. For comparison, some estimates art/ im-

the anisolropy parameters from other measurement:: 
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This is to some extent reflected in the large uncertainties of 

the derived parameters, but the standard (66%) error limits ob

tained in a least squares fit do not adequately show the corre

lation between the parameters. "3C22 ̂
 a n d "h'W = 2J(q) a r e 

shown on Fig. A.5. Table A.l. shows the intensity ratios calcu

lated using (A.48); the ratios quoted by Jensen (1974) are also 

shown. Since neither the ratios nor the energies are in entire

ly satisfactory agreement with the experiment, we conclude 

that the non-symmetry-breaking quadrupolar interaction, Kjjlq)> 

cannot be determined with certainty from the present data. Fur

thermore, in a consistent conventional theory the effect of a 

diagonalization of the linear terms S S and SyS must be con-
q q q q 

sidered before introducing extra physical parameters. This ef-
vv feet contributes to A and u with a magnitude < 0.1 meV, see q q ^ 

Fig. 9. 

V. First-order MME theory 

Using the first-order MME theory, which is identical in form 

to theory V (A.20), the present author found that a fit could 

be obtained without introducing any two-ion anisotropy by means 

of a single renormalization parameter in addition to the isotro

pic exchange interaction (x = 0.1 meV with six parameters). This 

showed for the first time that the basis for the reported large 

two-ion interaction was extremely doubtful. The subsequent 
3 4) analysis ' (V) showed that the renormalization had to originate 

from additional ground-state corrections (and not from the direct 

crystal field effects). The renormalization parameter found was 

unreasonably large: e = |-a-—— [ = 1.1 + 0.3; but for the reasons 

given above it cannot be determined with certainty because it is 

strongly correlated with the other parameters. 

IV. MME theory 

For the final fit it was therefore decided to use the infi

nite order MME theory including isotropic exchange interaction 

and the diagonalization of the linear SXSZ and SySz terms, but 
q q q q 

neglecting additional ground state corrections (i.e. e = 0) and 

genuine two-ion anisotropy (i.e. K (q) = 0). With six para-



- 71 " 

meters a reasonable fit to the energies was obtained (x = 0.16 

meV). Because of strong correlation between the parameters the 

scale of J(q) must be fixed to the scale obtained independently 

from the magnetic ordering temperature, TN. The resulting J(q) 

compare well with the J(q) obtained in other rare earth metals in 

Fig. A.6. The calculated intensity ratios are in reasonable 

agreement with the experiment, see table A.l, and are almost 

identical to those of the conventional theory. The difference 

is probably mainly due to the diagonalization of the S S and 
v z 
S'S terms. In the fit the renormalization parameter is found 
q q 

to be r = 0.71. This is in good agreement with that calculated 

from the crystal field parameters in the Er-Y alloys (Høg and 

Touborg 1974), as will be demonstrated below. A similar agree

ment is obtained with the effective anisotropy parameters D or 

L, which are calculated from r, see table A.l. Therefore in this 

respect the MME-theory is superior to the conventional theory. 

For a detailed comparison with the intensities, an under

standing is needed of the origin of the kinks observed in the 

dispersion relation. Several explanations have been proposed but 

none is entirely satisfactory. Nayyar and Sherrington (1972) sug

gested couplings with phonons, while Jensen (1974) and the pre

sent author considered the influence of six-fold anisotropy. 

A more likeJy explanation is that a small symmetry-breaking 

two-ion anisotropy causes the splittings. Figure A.4a shows 

the experimental results in a reduced zone and Fig. A.4b the 

result of the non-interacting theory. A symmetry-breaking two-

ion anisotropy can explain the observed splitting at A, and one 

that mixes the modes E(q+Q) and E(q-Q) can cause splittings at 

the positions indicated by 2, because any term in (A,8) with 

|nrt-m'| - 2 may be responsible. No splittings are expected in 

the middle of the zone. This is in agreement with the observa

tions. The magnitude of the solittings is < 0.2 meV, and we can 

therefore conclude that the symmetry-breaking two-ion aniso

tropy is of a magnitude similar to that found in Tb. 
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Er 4.5 K REDUCED ZONE 

Q 050 Q 
REDUCED WMVE VECTOR (q) 

Pig. A.4. (a) The experimental data for Br at 4.5 R In a single zone representation, (b) Theor
e t i c a l , non-interacting dispersion relations (rising fro*) +0 and -0) in a single zona represen
tat ion. Syamst 11 breaking two-Ion anlsotropy taras nay be responsible for sp l i t t ings at the zone 
boundary Indicated by s , and terms that mix tha sedes E and E

t2Q*a tot t h " * P l i t t i n 9 indicated 
by 2. Ho spl i t t ings are expected at tha tone centre in agreement with the observations. 

0 0.2 OX 0.6 0.8 1.0 
REDUCED WAVE VECTOR (2n/c) 

Fig. A.5. The exchange and 

quadrupole coupling introduced 

by Jansan I1974) in order to fit 

the Cr data. Notice the rela

tively large and strongly q-

dependent quadrupole coupling 

0.2 0.4 0.6 08 
REDUCED WAVE VECTOR 

rig. A.6. The isotropic ex

change interaction deduced by 

Lindglrd (1»77) without intro

ducing any two-ion anisotropy. 

It la quite similar to that 

found by Jensen, Fig. A.5. A 

comparison is made with the re

duced interactions found In 

other rare earth metals. 
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Numerical estimate of the crystal field effects in Er 

A numerical estimate of the renormalization parameters ex

pected for Er can be made using the explicit expansions to second 

order in refs. 3 and 4 and the crystal field parameters deter

mined from dilute Er-Y alloys (Høg and Touborg 1974). From 

TN -v. 70 K, we find H =2.13 meV and we use the following coef

ficients to the Raccah operators ° B _ : B 2 O
 = ~5-8 10 n»eV, B . = 

4.8 10 meV and Bfif) = 2.9 10 meV. The second-order expansions 

versus 1/H give: 

a = -0.031, 8 = -0.34, y * 1.43, and a = -0.052. 

4) From these we then find the estimated anisotropy parameters 

relevant for comparison with an analysis using (A.12). 

u = 1+a = 0.97 v = -8 = 0.34 

D x ' (u ,v ) = H e x U+Y-( l+a+B) 2 ] = 4.33 meV 

L = D"/sin29 = 19 meV 

In the analysis IV of the Er data we obtained th^ renormali-

zation parameter r = 2uv/(uz+v2) = 0.71 from the fit (fixed TN = 

70 K) shown as the full line in fig. 8. This parameter contains 

all information about the crystal field available from the spin 

wave data. From r and T„, or eguivalently from the elementary 

frequencies shown on fig. 9, we find L = ui Q/sin
2e = 17 meV. This 

value is also given in table A.2. Since it is not possible to 

separate u and v in the fit we did formally set u2+v2 = 1. jelow 

we compare the available renormalization parameters r and a for 
3 4) pure Er with those calculated using the second order expansions ' 

and the Er-Y crystal field parameters. 
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From analysis (IV) of 

the spin wave data 

for pure Er, and the 

magnetization data. 

u2+ v2 1.05 = 1 

r = 2uv/(u2+v2) 0.63 0.71 

a = l+a2 0.95 ~- 0.97 

u2-v2 0.82 

u 0.97 0.92 ? 
• deduced 

v 0.34 0.38 J 

The agreement is very satisfactory - the close aqreement with 

the deduced u and v in the last two lines is probably fortuitous. 

It is not clear whether convergence has been reached with the se

cond order expansions. The calculated value of the anisotropy con

stant L is also given in table A.2 (first order L = 20 meV and 

second order L = 19 meV). This L is in satisfactory agreement with 

L = 17 meV obtained from the spin wave data. However, although L 

appears to have convered the basic parameters a, B and >• do differ 

considerably between the first and second order values. The exper

imental reduction of the moment is obtained by assuming a ccnduc-

tion electron polarization of 0.3 uB together with the observed 

total moment of 9 w_; this gives o ^ 9/9.3 = 0.9. . In the fit we 

assumed u2+v2 = 1; this is clearly a good approximation. 

The conclusion is that the renormalized simple MME theory IV 

gives a satisfactory fit to the spin wave data and neutron scat

tering intensities with a small number of parameters. These are 

in good agreement with those obtained from other measurements. 

Evidence is pointed out of a small, genuine two-ion anisotropy of 

the same order of magnitude as that found for Tb. The nature and 

magnitude of a possible non-symmetry breaking two-ion anisotropy 

in Er can not be determined with any certainty on the basis of the 

available experimental data. 

Calculated from 

the Er-Y crystal 

field parameters 

to second order 
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DANSK RESUMÉ 

af 

Teoretiske Undersøgelser af Anisotrope Magnetiske Stoffer 

Magnetiske egenskaber af de sjældne jordarters metaller og forbindelser 

Denne afhandling behandler de magnetiske egenskaber ved magnetiske 
materialer, i hvilke de magnetiske momenter er fastlåst i bestemte ret
ninger i krystallen (anisotrope magneter). Sådanne materialer er af bety
delig interesse både udfra et teknisk og et grundvidenskabeligt synspunkt. 
I kapitel 2 beskrives et antal eksakte transformationer af den Hamilton 
funktion, der beskriver de magnetiske vekselvirkninger. Disse transforma
tioner er nødvendige for at kunne behandle problemerne med velfunderede 
teoretiske metoder. De magnetiske vekselvirkninger kan på en af de mest 
detaljerede måder undersøges ved at betragte de magnetiske momenter og 
små udsving fra deres ligevægtsstilling (spin eksitationer) ved hjælp af 
neutron spektroskopi. I kapitel 3 gives teorien for spin eksitationer i 
systemer med forskelligt forhold mellem energien af exchange vekselvirk
ningen og krystalfeltet. Renormaliseringen af de magnetiske vekselvirk
ninger forårsaget af anisotropi og af temperatureffekter diskuteres og 
sammenholdes med eksperimentelle observationer. En kvantemekanisk 
spinbevægelse ved det absolutte temperatur nulpunkt beskrives for det 
umagnetisk stof Pr, som har en singlet grundtilstand. I kapitel 4 beskri
ves resultatet af en analyse af de magnetiske vekselvirkninger i de sjældne 
jordarters (SJ) metaller. Det vises udfra eksitations spekteret for Pr at 
vekselvirkningen mellem to spin er stærkt anisotrop. Bidraget fra en så
dan anisotropi er lille for de tunge SJ og formen og størrelsen af denne 
vekselvirkning kan ikke bestemmes med nogen sikkerhed. De dominerende 
træk af de tunge SJ kan forstås på basis af krystal felts anisotropi og en 
isotrop vekselvirkning mellem forskellige spin. Dette simplificerer forstå
elsen væsentligt af de sjældne jordarter. Spekteret af spin eksitationer er 
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blevet analyseret, og de udledte inter atomare spin vekselvirknings para
metre vises at forholde sig relativt, som forventet af de Gennes. De af
tager med voksende afstand omvendt proportional med tredie potens af af
standen i lighed med dipole kræfter. I kapitel 5 benyttes det opnåede fysiske 
billede af forholdene for de rene SJ til at beskrive fase diagrammer af binære 
legeringer af SJ. Forekomsten af flere forskellige typer multi-kritiske 
punkter påvises. Ved disse punkter er flere magnetiske faser samtidig 
stabile. En svag koncentrations-afhængighed af exchange vekselvirkningen 
kan forklare en eksperimentelt funden lovmæssighed. Også legeringer mel
lem SJ og overgangsmetallerne er blevet undersøgt. Størrelsen og tempera
turafhængigheden af de magnetiske momenter og den bemærkelsesværdige 
koncentrations afhængighed af den magnetiske ordens temperatur kan for
stås på basis af en ganske enkel model. Koncentrationsafhængigheden stam
mer fra en ændring af den elektroniske båndstruktur. I kapitel 6 dem on-
streres, at der forekommer exchange polarisation i et radikal som CO- . 

således at spin tætheden på O og C jonerne er antiparallelle. Beregninger 
af reduktionen af et magnetisk moment i et krystalfelt er også omtalt, r 
kapitel 7 diskuteres indflydelsen af en svag anisotropi på lineformen af 
neutron spectra målt i den paramagnetiske fase og nær det kritiske punkt. 
I kapitel 8 beskrives den første ab initio beregning af exchange vekselvirk
ningen i Gd. Det vises, at elektronernes bølgefunktioner (deres rumlige 
fordeling) spiller en større rolle end deres energi. Det var tidligere an
taget, at den elektroniske energi (eller Fermifladen) var afgørende. 

Det kan konkluderes, at et antal af de magnetiske egenskaber og 
eksitations spektra i anisotrope magneter kan udredes ved hjælp af de her 
forelagte teorier. Størrelsen og formen af den magnetiske vekselvirkning 
i de sjældne jordarters metaller er på dette grundlag klarlagt. Denne 
viden kan enten udnyttes til at forudsige egenskaber af de tekniske vigtige 
legeringer af SJ og overgangsmetaller eller anvendes til at finde frem til 
interessante modelsystemer, som er velegnede til afprøvning af avanceret 
statistiske teorier. Det vil også være en udfordring for fremtidig forsk
ning på dette felt yderligere at afprøve og forfine vores ab initio forståelse 
af de parametre, der bestemmer magnetiske vekselvirkninger. 
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