
CRANFIELD UNIVERSITY

O MUNAUX

CAD INTERFACE AND FRAMEWORK

FOR CURVE OPTIMISATION APPLICATIONS

SIMS

PhD THESIS

CRANFIELD UNIVERSITY

SIMS

O MUNAUX

CAD INTERFACE AND FRAMEWORK

FOR CURVE OPTIMISATION APPLICATIONS

Supervisor: G JARED

September 2004

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

© Cranfield University 2000. All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright owner.

Abstract

Computer Aided Design is currently expanding its boundaries to include more design

features in its processes. Design is identified as an iterative process converging to solutions

satisfying a set of constraints. Its close relation with optimisation indicate that there is strong

potential for the integration of optimisation and CAD. The problem addressed in this thesis

lies in interfacing the geometric representation of design with other non-geometric aspects.

The example of free-form curve modelling is taken to investigate such relationships.

Assumptions are made that Optimisation is powered by Evolutionary Computing algorithms

like Genetic Algorithms (GA).

The geometric definition of curves is commonly supported by NURBS, whose construction

constraints are defined locally at the data points. Here the NURBS formulation is used with

GA in an attempt to provide complementary handles on the curves shape other than the usual

data point coordinates and control points weights. Differential properties are used for

optimising NURBS, Hermite interpolation allows for the definition of higher order

constraints (tangent, normal, bi-normal) at data points. The assignment of parameter values

at the data points, known as parameterisation also provides control of the curve’s shape.

Curve optimisation is also performed at the geometric modelling level. Old mathematical

theorems established by Frénet and further developed by other mathematicians provide

means of defining a curve’s shape with it’s intrinsic equations. Such representation is

possible by using Function Representation (F-rep) algebra available in the ACIS software. F-

rep allows more generic and exact means of interfacing with the curve’s geometry and new

functionality for curve inspection and optimisation are proposed in this thesis.

The integration of optimisation findings and CAD are documented in the definition of a

framework. The framework architecture proposed reconstructs a new CAD environment

from separate elements bolted together in a generic Application Programming Interface

(API) named “Oli interface”. Functionality created to interface optimisation and CAD makes

a requirement list of the work that both sides should undertake to achieve design

optimisation in the CAD environment.

Acknowledgements

Merci á mes parents Longue vie á mes grands parents. Bon rétablissement Thomas.

Bienvenue au second, Karine et Sylvain. Plein de bonheur á tous les amis.

With this dissertation, I would like to take the opportunity to communicate my gratitude to

Graham Jared for his precious help and generosity.

Part of the research presented in this thesis was conducted jointly with other researchers at

Cranfield University. The research includes an industrial project entitled “Flexible

Optimisation within CAD/CAM Environment.” Also known as “Flexo”. The Flexo project

aims to develop a framework for Flexible Optimisation within CAD/CAM Environment. A

PhD thesis in the field of real life optimisation was submitted by co-researcher Ashutosh

Tiwari at Cranfield University. In order to gain a holistic picture of the research presented

here, the reader is also invited to read the volume mentioned above.

The author wish to acknowledge the support of the Engineering and Physical Sciences

Research Council (EPSRC) – Grant No: GR/M 71473, Nissan Technical Centre-Europe

(NTCE) and Structural Dynamics Research Corporation (SDRC) UK.

Contents

Abstract ...4

Acknowledgements...5

Contents ..6

List of Figures ...11

List of Tables ..14

List of Equations ...14

Introduction...1

Part I ...6

Chapter 1 Design...7

1.1 Engineering Design ...7

1.1.1 A Definition of Design ..7

1.1.2 A Design Model ..8

1.1.3 Design Goals ...9

1.2 Review of Design Problems ..9

1.2.1 Design Problems Classification...9

1.2.2 Product Design Classification ...11

1.3 Constraint Based Design ...12

1.4 Evolutionary Design..13

1.4.1 Optimisation of Existing Designs..13

1.4.2 Generic Optimisation of Designs ..13

1.5 Structural Optimisation ...14

1.5.1 Property Optimisation ...15

1.5.2 Shape Optimisation ...15

1.5.3 Topology Optimisation..15

1.6 Summary ...16

Chapter 2 Optimisation ...17

2.1 Optimisation for Engineering Design..18

2.1.1 Optimal Problem Formulation...19

2.1.2 Optimisation Algorithms ...24

2.2 Adaptive Search Techniques ...27

2.3 Genetic Algorithms ...28

2.4 The GA Process...28

2.5 Summary ...33

Chapter 3 Reverse Engineering of Curves and Surfaces...34

3.1 Design Cycle ...34

3.2 Styling ...35

3.3 Reverse Engineering..37

3.4 Dimensional and Geometrical Metrology ...37

3.5 Point Processing ..39

3.6 Surface Generation ..40

3.7 Surface Check ...41

3.8 Surface Optimisation...42

3.9 Discussions..44

Part II ..47

Chapter 4 Geometric Modelling ...48

4.1 Implicit and Parametric Geometry ..49

4.2 Geometric Solid Models..51

4.2.1 Wire-Frame ...52

4.2.2 Set-theoretic Modelling...53

4.2.3 Boundary Representation (B-Rep) ..55

4.3 Function Representation..58

4.4 Summary ...58

Chapter 5 Spline Curve Modelling ...60

5.1 Literature ...60

5.2 Polynomials...61

5.3 Interpolation ..62

5.3.1 Lagrange Interpolation ..62

5.3.2 Hermite Interpolation ..64

5.3.3 Approximation ..65

5.4 The Bernstein-Basis ..66

5.4.1 Bézier Curves ..67

5.4.2 The de Casteljau Algorithm...67

5.4.3 Bernstein form of Bézier Curves ...68

5.4.4 The Matrix Form ...69

5.4.5 The Recursive Form ..70

5.4.6 Some Properties of the Bézier Curves...70

5.5 B-spline Curves ...71

5.5.1 B-spline Blending Function...72

5.5.2 Rational Curves ...72

5.6 Summary ...74

Chapter 6 Differential Geometry of Curves..75

6.1 Frénet Frame ...75

6.1.1 Tangent..77

6.1.2 Principal Normal and Curvature..78

6.1.3 Bi-normal and Torsion ..80

6.1.4 Frénet-Serret Formulae..82

6.2 Differential Properties Interrogation ...83

6.2.1 Interrogation Strategy..83

6.2.2 Continuous Interrogation...84

6.3 Differential Properties Representation ..85

6.3.1 Indirect Methods ...85

6.3.2 Direct Methods ..88

6.3.3 Discussions..92

6.4 Parallel Transport Frame ...92

6.5 Families of Curves...94

6.5.1 Feature Curves...94

6.5.2 Helical Offsets...99

Chapter 7 Spline Curve Construction and Optimisation ...103

7.1 Piecewise Construction ...104

7.1.1 Control Points..104

7.1.2 Knot Construction ...105

7.1.3 Curve Continuity ...109

7.2 Knot Parameter Optimisation ..111

7.3 Energy Formulation...113

7.4 GA Energy Fairing ..118

7.4.1 Variable bounds...118

7.4.2 Validation ..119

7.4.3 Discussion ...126

7.5 Interpolated Splines...127

7.5.1 C2 Cubic Spline ..127

7.5.2 Hermite Interpolation ..129

7.6 Conclusions ...131

Chapter 8 Intrinsic Curve Optimisation ..133

8.1 Curve Projection..134

8.2 Prescribed Curvature Profile ...137

8.2.1 Genetic Algorithm Driven...138

8.2.2 Function Representation Driven..160

8.3 Prescribed Compound Fins..163

8.4 Conclusions ...168

Part III ...170

Chapter 9 Application Programming Interface for Flexible Optimisation..171

9.1 Framework Architecture..172

9.1.1 Conventional Architecture...172

9.1.2 Modular Architecture ..174

9.2 ACIS Interface...178

9.3 Flexo Interface...179

9.4 Graphic and User Interface..179

9.5 Oli Interface...180

9.5.1 Objectives..180

9.5.2 Background ...180

9.5.3 Generic Interface ...181

9.5.4 Scope of the Oli API ...184

Chapter 10 Procedure Definition ..186

10.1 GA Procedures ..186

10.1.1 GA Process...186

10.1.2 GA Translators...189

10.1.3 Parameter Bounds ..190

10.2 Geometric Modeller Procedures..190

10.2.1 Creating Geometry...190

10.2.2 Discrete Curve Interrogation..192

10.2.3 Function Representation Procedures..194

10.2.4 Continuous LAW Interrogation ...196

10.2.5 Parameterisation...200

Conclusions and Further Work ...201

References...209

Appendix 1 Optimisation in Industry..217

1.1 Introduction ...217

1.2 Objectives..217

1.3 Design improvement in Industry ...218

1.3.1 Design Process ..218

1.3.2 Methodologies and Tools ..219

1.3.3 Current Status ..220

1.4 Tools for Design Improvement ...221

1.4.1 Industrial Use of Optimisation Algorithms ...221

1.4.2 Inhibitors ...222

1.5 Need for Flexible Optimisation ...223

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’ ...225

2.1 Array ...226

2.2 Arrayr ..228

2.3 Individual ..230

2.4 Individualr ...234

Appendix 3 Geometric Modelling ..238

3.1 Boundary Representation complements ..238

3.1.1 Topological Hierarchy...238

3.1.2 Euler-Poincaré formula ...244

3.1.3 Graph Theory ..245

3.2 Boolean Operations ...246

3.3 Sweep and Swings...247

3.4 Tessellated Models ..248

3.4.1 Spatial Occupancy Enumeration (S.O.E) ..248

3.4.2 Octree Decomposition...249

3.4.3 Polyhedral Models...250

Appendix 4 Vector Algebra ..252

4.1 Vector Algebra. ...252

4.2 Differentiation of a Vector ..252

Appendix 5 Implementation of Curve Optimisation Application Using GA..254

Appendix 6 GA tests ...263

6.1 Fitness Function Mapping ...263

6.1.1 Pt2 (X variable, Y variable, Z constant) ..264

6.1.2 Pt2 (X variable, Y constant, Z constant); Pt3 (X variable, Y constant, Z constant)265

6.1.3 Pt2 (X constant, Y variable, Z constant); Pt3 (X constant, Y variable, Z constant)266

6.1.4 Pt2 (X constant, Y constant, Z variable); Pt3 (X constant, Y constant, Z variable)267

6.2 Fitness Boosting ..269

6.3 GA Operators ..273

6.3.1 Mutation ..273

6.3.2 Cross-over ...276

Appendix 7 Implementation of Curve Optimisation Application Using F-Rep..279

Appendix 8 HulaHoops User Interface ...283

8.1 Draw an Interpolated Spline..284

8.2 Draw a 3D Bézier curve ..287

8.3 Shape Modification ...290

8.4 Curvature and Torsion Differential Properties ..292

8.5 Combescure Differential Properties ..294

8.6 Frénet Frame Differential Properties...296

8.7 Viewing ...298

List of Figures

Figure 1: Research map [97]...5

Figure 2: Divergent–Convergent design model, Roy [92] ..9

Figure 3: Objective function optima (peak) ..19

Figure 4: A flowchart of the optimal design procedure [37]...20

Figure 5: Optimisation system sensitivity analysis ...21

Figure 6: Population convergence graph...24

Figure 7: A multi-modal function ...25

Figure 8: Multi-objective function ..27

Figure 9: The basic loop of genetic algorithms...29

Figure 10: Objective function boosting...33

Figure 11: Surface design cycle ..35

Figure 12: Clay model from Nissan Micra [79]..36

Figure 13: Point cloud from model digitising ...39

Figure 14: Loss of data quality in the design process, Dankwort [30]..40

Figure 15: Surface quality inspection with highlight lines..42

Figure 16: Six Half Spaces defining a rectangular block..51

Figure 17: Wire frame model..53

Figure 18: Set-theory operators...54

Figure 19: Set-theoretic model..55

Figure 20: Solid object composed of surfaces ..56

Figure 21: Construction of a curve segment with tangents ...65

Figure 22: Curve approximation, n+1 points. The curve is constrained to pass through P0 and Pn.........................66

Figure 23: de Casteljau construction out of two fixed straight line segments and one varying segment.68

Figure 24: Cubic Bézier curve with four-vertex polygon ...69

Figure 25: Rational cubic Bézier curve with W2 varying...73

Figure 26: Frénet frame ..76

Figure 27: Tangent of a curve ...77

Figure 28: Principal normal and curvature..79

Figure 29: Curvature plot..86

Figure 30: Torsion plot ...87

Figure 31: First derivative magnitude against parameter u ...88

Figure 32: Curvature and torsion fins ...90

Figure 33: Normal and bi-normal fins ..91

Figure 34: Normal compound fin..92

Figure 35: Convex curve...95

Figure 36:Convex curve curvature and torsion profiles ..95

Figure 37: Convex space curve...96

Figure 38: Convex space curve curvature and torsion profiles ...96

Figure 39: Planar S-bent curve curvature compound fin ..97

Figure 40: Planar S-bend curvature profile ...98

Figure 41: Space S-bend curvature and torsion compound fins..98

Figure 42: Curvature and torsion profiles ...99

Figure 43: Helix curvature-and torsion compound fins ..100

Figure 44: Helix curvature and torsion profiles ..100

Figure 45: Expanding helix curvature and torsion compound fins ...101

Figure 46: Expanding helix curvature and torsion profiles ...101

Figure 47: Toroidal round helix Frenet frame fins..102

Figure 48: Toroidal helix curvature and torsion profiles ..102

Figure 49: Knotted curve ..106

Figure 50: C0 continuity ...110

Figure 51: G1 continuity ...110

Figure 52: G2 continuity ...111

Figure 53: Cord length knot vector distribution..113

Figure 54: Test curve Example 1 ..114

Figure 55: Energy function mapping Example 1 ..115

Figure 56: Energy Map Cross Section at Knot1 = 0.2 Example 1 ..116

Figure 57: Energy Map Cross Section at Knot1 = 0.4 Example 1 ..116

Figure 58: Energy function mapping Example 2 ..117

Figure 59: Original Example 1..120

Figure 60: Evaluation function mapping Example 1 ...121

Figure 61: Energy GA converge Example 1 ...121

Figure 62: Original Example 2..122

Figure 63: Optimised curve Example 2 ..122

Figure 64: Energy plot Example 2 ...123

Figure 65: Original Example 3..124

Figure 66: Optimised curve Example 3 run 1 ...125

Figure 67: Optimised parameter curve GA run #2..126

Figure 68: Global shape change with spline curves ..128

Figure 69: Piecewise Hermite interpolation with tangent continuity ..129

Figure 70: Hermite interpolant with varying tangent magnitudes...129

Figure 71: Hermite interpolant with varying tangent directions ...130

Figure 72: Curve Bounding Box...135

Figure 73: Projection in the X_Y and Z_X planes..136

Figure 74: Direct modification of projections and reconstruction ..137

Figure 75: Curve Optimisation process with GA..139

Figure 76: Test curve with curvature profile...140

Figure 77: Fitness function test ...144

Figure 78: Convergence ..144

Figure 79: Fitness function boosting with power three...145

Figure 80: Convergence with boosting function ...146

Figure 81: Original curve Example 1..147

Figure 82: Modified curvature profile Example 1 ..147

Figure 83: Convergence graph Example 1..148

Figure 84: Optimised curve Example 1 ..149

Figure 85: Original curve Example 3..152

Figure 86: Modified curvature profile Example 3 ..152

Figure 87: Convergence graph Example 3..153

Figure 88: Optimised curve Example 3 ..154

Figure 89: Original curve Example4...155

Figure 90: Modified curvature profile Example 4 ..155

Figure 91: Convergence graph Example 4..156

Figure 92: Optimised curve Example 4 ..157

Figure 93: Curve reconstruction from curvature profile ...161

Figure 94 Normal fin compounds of curve projections ..165

Figure 95: 3D curve reconstruction from prescribed normal fin compound ...166

Figure 96: Conventional architecture..173

Figure 97: Conventional architecture strategy ..174

Figure 98: Task oriented architecture ...176

Figure 99: Object oriented architecture...177

Figure 100: Typical design cycle ..219

Figure 101: Flexible optimisation wheel...224

Figure 102: Body with four lumps ..239

Figure 103: Lumps..240

Figure 104: Shells ...241

Figure 105: Faces..241

Figure 106: Loops of edges...242

Figure 107: Wire body ..243

Figure 108: Vertices..244

Figure 109: Winged edge data structure ...246

Figure 110: Special cases of Boolean operations..247

Figure 111: Euler operations in Sweeping ..247

Figure 112: Spatial occupancy model ...249

Figure 113: Octree decomposition model ...250

Figure 114: Dirichlet tessellation and Delaunay triangulation..251

List of Tables

Table 1: Chromosome binary coding..30

Table 2: Types of geometric modellers...59

Table 3: Derivative vectors showing curvature discontinuity...109

Table 4: Results Example 1 ..149

Table 5: Convergence graph Example 2 ...150

Table 6: Results Example 2 ..151

Table 7: Results Example 3 ..154

Table 8: Results Example 4 ..157

Table 9: GA performance with increased number of variables...159

Table 10: Optimisation in industry ...221

Table 11: Experiment table ...263

List of Equations

Equation 1 ...76

Equation 2 ...76

Equation 3 ...77

Equation 4 ...78

Equation 5: Tangent function of parameter u..78

Equation 6 ...78

Equation 7 ...79

Equation 8: Normal function of arc s ..79

Equation 9 ...80

Equation 10: Curvature function of arc s ..80

Equation 11: Curvature function of parameter u...80

Equation 12: Bi-normal function of arc s..80

Equation 13 ...81

Equation 14 ...81

Equation 15 ...81

Equation 16: Torsion function of arc s ...81

Equation 17: Torsion function of parameter u ...82

Equation 18: Frénet-Serret formulae...82

Equation 19 ...82

Equation 20: Adapted Frénet-Serret Formulae ..83

Equation 21: Curvature plot ...86

Equation 22: Torsion plot ...87

Equation 23: Curvature fin compound ...89

Equation 24: Torsion fin compound ..89

Equation 25: Normal fin compound..91

Equation 26: Bi-normal fin compound ...91

Equation 27: Bishop Equations...94

Equation 28: Knot sequence calculation ...106

Equation 29: Cord length parameterisation...112

Equation 30: Energy formulation..113

Equation 31: Evaluation function..143

Equation 32: Fitness function ...143

Equation 33: Fitness Boosting ..145

Equation 34 ...160

Equation 35: Numerical integration of
)(tκ

..161

Equation 36: Derivation of 3D normal compound fin ..163

Equation 37: Derivation of 2D normal compound fin ..164

Equation 38 ...167

Equation 39 ...167

Equation 40 ...167

Equation 41
0)()()()()(' =−+ sscsksasb τ

..167

Equation 42
0)()()(' =+ ssbsc τ

..167

Equation 43
1)]()()('1*)[(=−+ sksbsadsds

...167

Equation 44 ...168

Page 1

Introduction

For many companies, cost and built quality is no longer a competitive advantage; new

innovative products must be launched regularly in an attempt to keep up with the market. In

a competitive worldwide market, minimising time to market is essential to business

performance: The focus is on ‘creating new designs quicker’. In addition, product designs

have become more complex with the advance of technology and with the growing

importance of product styling. Manufacturing enterprises are introducing optimisation in

their design processes to reduce design lead-time and investment cost.

At the moment the use of optimisation across industries is limited by its lack of integration

in a design environment. In Appendix 1, a selection of industries using some form of

optimisation in their processes are surveyed to examine the current state of the art in

optimisation. Extensive internet-based search and numerous company visits have

investigated the use of optimisation across engineering industries. The main source of

product design data readily usable for numerical analysis and optimisation is undeniably the

CAD/CAM environment. Paradoxically, the main conclusion drawn from this research is the

lack of integration of optimisation capabilities within the CAD/CAM environment. An

integrated optimisation framework would enable optimisation to interact with the geometric

definition of product designs and subsequently optimise some of the design aspects

described in paragraphs 1.5 and 3.8. The results of this survey, presented in Appendix 1,

identify the need for a framework for design optimisation. In the remainder of this thesis,

optimisation of free form curves is used as example. This choice is not arbitrary, because

curves and surfaces also were also the centre of interest of the Flexo project and therefore

some of the information gathered throughout the project could be used in this research.

The topic of this thesis is the integration of flexible optimisation within the CAD

environment. It assembles knowledge from diverse topic areas such as design optimisation,

evolutionary computing, geometric modelling, differential geometry. The thesis is therefore

organised in three parts each constituting research in its own rights.

Introduction

Page 2

Part I of the thesis proposes a study of design, optimisation, evolutionary computing, and

design and optimisation of free-form curves in order to establish some connectivity between

these subject areas.

Chapter 1 exposes some of the theoretical aspects of design and a definition of design is

established as a divergent-convergent system of finding solutions that satisfy constraints. It

is thought that the design process described above can be mapped onto evolutionary

computing techniques to automate its iteration loop. Hence for optimisation, the top priority

is the representation of the constraints that characterise the design.

Chapter 2 examines the optimal problem formulation together with a review of some

optimisation techniques available for engineering optimisation. Paragraph 2.2 directs the

research towards adaptive search algorithms and evolutionary computing. The basics of

Genetic Algorithms (GA) are reviewed in paragraph 2.3 and an implementation in object-

oriented language C++ is documented in Appendix 2.

Chapter 3 deals with the design processes of free-form curves and surfaces. The study uses

the example of the car manufacturing industry to highlight the difficulties found and the

solutions this research could provide. The shape of finished goods and manufactured

products exhibits a marked emphasis on smooth shapes and free flowing contours. Whether

it is cars, audio equipment, cameras, ergonomic furniture or injection moulded plastic

products, all have smooth contours in their design. However, the production of manufactured

objects from such shapes is not an easy process. Specialised CAD software provide means to

create free form contours for the design and manufacture of artefacts, but it is still a

laborious process. One of the major bottlenecks in current CAD systems is the inefficiency

of representation and manipulation tools for the design of free form, sculpted, three-

dimensional shapes. This is forcing designers to use physical clay models and templates for

generating curves and surfaces which are digitised with 3D coordinate-measuring machines

(CMM) and 3D scanners to gain a computerised geometric definition.

Curve and surface optimisation depicted in paragraph 3.8, is an iterative process which

consists of creating a CAD model, carrying out some analyses, which will give some

indications on the surface quality, modifying the model, and so on, until satisfactory result is

Introduction

Page 3

obtained. It is observed that 80% of the surface development time is spent on fine-tuning or

optimising the geometry. Most commercial CAD/CAM systems have an integrated surfacing

module that enables the user to create free form surfaces with 3D sweeps and lofts as well as

NURBS patches. However free form surfaces are difficult to control because of their

numerous control points and large number of degrees of freedom. As a result, most

companies in the automotive sector use reverse engineering techniques to recreate geometry

from clay or foam models built in styling. The discussion shows that its iterative nature is

proven time consuming and does not always produce satisfactory results as designers are still

faced with the problem of control points. The surface reconstruction process as it stands

today strips geometry of its intrinsic properties like surface normal or curvature. At the same

time, there is currently no possibility of storing surface interrogation results like shading or

reflection lines.

In Part II the research aims to develop methodologies for the optimisation of free-form

curves using geometric modelling, optimisation, and differential geometry.

Chapter 4 reports on theory of solid modelling to come to the topological definition of

geometry. Complementary material is included in Appendix 3. As the focus of the research

is on curve and surface optimisation, Chapter 5 reviews the mathematic foundations of

spline curves. Interpolation methods of Lagrange and Hermite are detailed alongside the

NURBS representation.

Some surface quality evaluation techniques such as curvature profile, reflection lines and

offsetting are already available within CAD/CAM. The quality of the design relies on the

designer’s skill to interpret the line pattern of the surface evaluation and modify the model.

This research aims to develop a process that requires less intervention from the designers

and that can be carried out within the CAD/CAM environment. It proposes to replace the

traditional iterative loop of modification and subsequent evaluation by a reversed process,

which enables the designer to define its design intent and let the application reverse engineer

geometry starting from the designers’ prescribed properties.

Reflection lines, curvature plots, compound fins are applications that use the theorems of

differential geometry laid by French mathematician Frénet. His propositions presented in

Introduction

Page 4

Chapter 6 give a general definition of shape in terms of differential equations. These relate to

the fundamental concept of a curve that is its frame and the speed at which this frame travels

along the curve. This formulation, more generic than NURBS, allows a more systematic

approach to curve optimisation. The applications developed with NURBS in Chapter 7 show

the limitations of NURBS for achieving optimisation, compared with the applications

developed with Frénet in Chapter 8.

The Third part of this thesis aims to define a framework for flexible optimisation within the

CAD environment. Open architecture is the term used in paragraph 9.1 to refer to the

exposure of a systems’ functionality to outside applications. Investigations in these show that

commercial turn-key systems do not comply with the objectives of this research. Rather a

reconstituted framework is produced. The flexible optimisation framework that is proposed

combines functionality from a geometric modeller, ACIS, a geometric editor, Open GL,

ACIS MFC, and an optimisation capability, Flexo toolbox. All of these all have their own

API’s, except the optimisation toolbox which was provided as code only by Tiwari [99].

Typically geometric modelling algorithms are implemented in geometric modelling kernel,

which exposes it’s functionality through a programming interface.

This thesis is a multi-disciplinary research program involving different areas such as Design,

Geometric Modelling and Optimisation. Figure 1 shows the interactions between these

different fields constituting the scope of this research and serves the purpose of mapping the

research framework for the forthcoming thesis. The topics introduced here are briefly

outlined below and are developed further in following chapters.

Ø Design can be described as the process of establishing requirements based on human

needs, transforming then into performance specification and functions, which are then

mapped and converted (subject to constraints) into design solutions (using creativity,

scientific principles, and technical knowledge) that can be economically manufactured

and produced.

Ø Optimisation can be defined as the act of obtaining the best result under given

circumstances.

Ø Geometric modelling is the process of defining the geometry of an object.

Ø API is the application programming interface that exposes a set of procedures that an

application can call to carry out operations.

Introduction

Page 5

Ø CAD is a workspace in which product designs are created, modified and edited.

Ø Design Optimisation is the process of improving a design by manipulating the design

variables.

Figure 1: Research map [97]

Geometric

Modeller

Optimisation Design

Design
Optimisation

Flexo

API

CAD
Variational

Design

Page 6

Part I

Page 7

Chapter 1 Design

Increasing global competition in the manufacturing environment is pushing companies to

improve on product performance This is forcing manufacturing enterprises to seek more

advanced technology for improving product specification at lower cost. Companies are

introducing ‘design optimisation’ in their organisations as an attempt to improve their design

process capability and thus stay competitive in the market place.

This chapter exposes some of the theoretical aspects of design science in order to establish

some relationship between design and optimisation. To begin with, the investigations target

a wide spectrum of product design and later narrow the scope down to curve and surface

design.

1.1 Engineering Design

1.1.1 A Definition of Design

Design activities although performed for many centuries have not generally had any

structure or organisation to them; or perhaps design wasn’t regarded as a discipline in its

own right until after Second World War. With the advance of modern society and mass

production, it became apparent that design as a process should be given more thought. Many

attempts have been made to map its process with complex picture diagram models and even

to establish some form of definition. This has proven a very difficult task since design is

everything but an exact science and is left to each individual designer to interpret the

philosophy of design within a specific context and from his or her own perspective. Several

designers, engineers and researchers, from experience have expressed their views on the

definition of or what they consider design to be. Some of these viewpoints are expressed by

Feilden [47], Finkelstein [50], Luckman [71] Archer [5] and Caldecote [22] In general,

certain key-words and phrases can be noted which have a strong bearing on design. These

include: needs, requirements, solutions, creativity, constraints, scientific principles, technical

Chapter 1 Design

Page 8

information, functions, mapping, transformation, manufacture and economics. Taking into

account all these words, design can be described as the process of establishing requirements

based on human needs, transforming then into performance specification and functions,

which are then mapped and converted (subject to constraints) into design solutions (using

creativity, scientific principles, and technical knowledge) that can be economically

manufactured and produced, Evbuomwan [42].

1.1.2 A Design Model

In the more specific context of engineering, design can be seen as a decision making process

that involves an evolutionary process, where changes (improvements or refinements) are

proposed to the current design in order to move to a better design, Rzevski [104]. As for

every design problem there is an infinite number of options available (also known as design

concepts), the aim of design optimisation is to provide solutions that satisfy best a given set

of constraints, parameters and variables. In the design process, iterative in nature, a common

line of thoughts emerges as designers move from an abstract problem definition to a fully

specified product. These are the divergence, transformation and convergent stages of design,

as formulated below, Evbuomwan [42] and pictured in Figure 2.

Divergence

This is the act of extending the boundary of a design in order to have a large enough search

space. The divergent search approach aims to break the initial design concepts, while

identifying alternative feasible designs. This chaotic phase is most productive in the initial

stages of the design process.

Transformation

This is the stage of pattern making, high level creativity. The objective here is to re-structure

the design thoughts into a more structured search pattern allowing convergence to a single

design solution.

Chapter 1 Design

Page 9

Convergence

The main objective of convergence is to progressively narrow down the design alternatives

through a selection process. The end result of this phase is the reduction of the range of

options to a single chosen design while avoiding setbacks and retreats.

Figure 2: Divergent–Convergent design model, Roy [92]

1.1.3 Design Goals

Design goals can be defined as the purposes for design actions and decision taken in each

step. They guide the choice of what to do at each point during the design process, Mostow

[74]. Design goals represent one or more decision points from a problem solving point of

view, and they define some of the dimensions of the design space, Evbuomwan [42].

1.2 Review of Design Problems

1.2.1 Design Problems Classification

There is in the world of engineering design an infinity of design problems, each one of them

trying to achieve one singular goal. Engineers and designers face different situations; a

classification of design problems is presented below, Juster [66], Cagan [21], Sriram [113],

Pahl [81].

Customer Requirements

Final Design

Possible Design Options

Customer Requirements

Final Design

Possible Design Options

Chapter 1 Design

Page 10

Routine Designs

These designs are derived from existing design prototypes with a common set of variables;

the structure does not change. Here design plans and alternative solutions are known in

advance.

Redesigns

These involve modifying an existing design to satisfy new requirements or improve their

performances under new requirements. The end result of redesigns may also exhibit some

aspects of creative designs or routine designs. Redesigns come in two categories, adaptive

and variant designs, which are discussed below.

Adaptive, configurative or transitional designs are those that involve adapting a known

system to perform a new task. They also involve improvements on a basic design by a series

of ‘detail’ refinements.

Variant, extensional or parametric designs involve using a proven design as a basis for

generating further geometrically similar designs of differing capabilities. Knowledge Based

Engineering (KBE) systems are typical variant design applications. KBE uses library of

predefined geometric entities or assemblies, which are automatically selected, and if

necessary varied, accordingly to the design specification.

Conceptual designs

Non-routine designs, original or new designs are classified into innovative and creative

designs.

With innovative design, new variables or features are introduced, which still bear some

resemblance to existing variables or features. The decomposition of the problem is known

but the alternatives are yet to be synthesised. In other situations, a recombination of the

problems alternatives may produce a new design.

Creative design. In this case new variables or features are introduced, which bear no

similarity to variables or features in the previous prototype and the resulting design has very

little resemblance to existing designs. For creative design, no design plan is known.

Chapter 1 Design

Page 11

1.2.2 Product Design Classification

The end result of any design process is a product or a system. Such product depending on the

engineering discipline or domain, vary in one-way or another. Product variation also arises

depending on the market segment, knowledge available, the design process and

manufacturing capabilities. In the light of general constraints, products can be classified as

either over constrained or under constrained. Depending on the customer demand and market

competition, some products are considered as static or dynamic. These various forms and

classifications are discussed below, Clausing [24], Medland [72]

Static Product Designs

Static products are those that demand remains stable and no changes to the product design

are required. The design concept is already known from existing products, such products are

considered as conceptually static.

Dynamic Product Designs

Dynamic products have a limited life cycle before the next generation supersedes them. Here

development is focused on the product and the design process involves development of new

radical and alternative designs.

Over constrained Product Designs

These products exist in the high technology markets. Here, the design process evolves

around analysing alternative proposals until an acceptable solution is found. Over

constrained products are subjected to several constraints. These include functionality,

environment, performance, materials, manufacturing processes and cost, some of which can

be conflicting one another adding further complication to the system.

Under constrained Product Designs

In the case of under constrained designs, the design activity is centred on bringing products

in the market to satisfy market demands. There are usually not many constraints, and the

designer has ample room for innovation. The focus here is usually on the product concept,

Chapter 1 Design

Page 12

materials and techniques, which are chosen to satisfy the required functions. Most industrial

designs fall into this category, development is on aesthetics, ergonomics and functionality.

1.3 Constraint Based Design

Since the first CAD systems were introduced, there have been on-going attempts to put more

‘design’ into CAD including conceptual design, design embodiment, design for

manufacturing, design for environment, etc. One way to characterise the process of

mechanical design is to describe it as a process of constraint specification and satisfaction,

Thornton [118]. Design can therefore be seen as a constrained optimisation problem that

searches for the best acceptable solution. Consequently the rest of design can be seen as the

search for a solution that best satisfies these constraints.

Numerous researchers also see constraints specification and satisfaction as a key issue in the

design process. Sriram et al. [113] state “Design can be viewed as the process of specifying

a description of an artefact that satisfies constraints arising from a number of sources by

using diverse sources of knowledge”. Serrano [111] also refers to design as constraint

object-oriented.

Researchers have studied a number of different approaches to constraint-based design. Most

of these use of artificial intelligence techniques, which are particularly well suited to

combinational problems defined with discrete variables.

In conceptual design, Thornton et. al [118] use a genetic algorithm in a software support tool

for constraint processing in embodiment design (CADET). Here generic component libraries

are used to automate the specification of design constraints.

In feature modelling, Laakko et al. [68] propose a method integrated with EXTDesign, an

incremental design environment that combines solid and feature modelling, developed at

Helsinki University. The proposed system aims to localise the problem of constraint solving

and maintenance. The constraint algorithm used is based on local techniques to propagate

changes in the constraint graph.

Chapter 1 Design

Page 13

Yet another approach to constraint satisfaction is followed by Buchanan et. al. [20], who

describe a constraint based modelling system called CDS Other applications use computer

algebra techniques for geometric modelling in particular, the geometric algebra system

developed at the university of Bath [15].

1.4 Evolutionary Design

Evolutionary design states that natural evolution is capable of generating new or evolved

designs, evaluating these designs and optimising them as depicted in Bentley et. al. [9]. Only

two aspects of evolutionary design are relevant to this thesis and are outlined below.

1.4.1 Optimisation of Existing Designs

The development of non-generic optimisation systems, capable of optimising selected

aspects of existing designs is a common research area, Parmee [83]. Numerous examples of

design optimisation exist in both academia and industry; many using GAs or other adaptive

search techniques. Examples of such real life design optimisation problems can be found in

Rogero et. al. [89]. The wide variety of optimisations problems tackled by evolutionary

based techniques shows that algorithms could successfully perform optimisation tasks on

many different type of designs. However such optimisation schemes all suffer the same

drawbacks:

Ø They can only optimise existing designs; none of these techniques would be capable of

generating new designs.

Ø They are all application specific; only optimising the type of design they are created

for.

Further analysis of the type of optimisation described above is developed in Appendix 1,

which details the use of optimisation in industry and their inhibitors Roy et. al. [95], [100].

1.4.2 Generic Optimisation of Designs

Generic design optimisation, aims to optimise more than one type of design with a single

system. A generic optimisation toolbox consists of a collection of algorithms capable of

Chapter 1 Design

Page 14

optimising a different range of applications. Generic optimisation is not very common.

However efforts to develop some form of generic optimisation toolbox include, Culley [29].

More recently, research at Cranfield University with Tiwari [99] has pushed in the area of

generic optimisation and establishes definitions and classifications of optimisation

algorithms. His effort has also attempted to define criteria for selection of algorithms. The

selection criteria are based on the features of real optimisation problems. They define the

typical scenarios in real-life optimisation, which in turn identify the ingredients of the ‘tool

box’.

1.5 Structural Optimisation

There are in industry many different techniques used to optimise mechanical product design;

each optimisation technique looks at one particular aspect of the design. Design for

assembly, design for manufacture and design for quality all look at the functionality and

manufacturability of the product. Such optimisation techniques are popular in industry as

they can be performed without complex mathematical analysis and are proven very effective.

Also these optimisations are performed externally to CAD/CAM environment and often after

the completion of the design definition.

Structural optimisation of mechanical components is an activity carried out within the

CAD/CAM environment simultaneously with the product definition. In this paragraph, a

classification of the different types of structural optimisation used for product development

is presented, all of which optimise the geometry of components with various objectives.

Structural optimisation is rapidly becoming an integral part of the product design process.

Considering timing and budget constraints, structural optimisation yields a significantly

superior design than the conventional trial-and-error approach. Structural Optimisation is the

generic term to describe optimisation of geometric entities composing engineering products.

Structural design optimisation problems are classified into three main categories: Sizing,

Shape, and Topology Bremicker et. al. [19]. Alternative classification, can be found in

Raasch [88], here Sizing is described part of a more generic domain termed property

optimisation. In general, the classification of structural optimisation is closely related to the

Chapter 1 Design

Page 15

choice of the design variables. Sizing variables such as cross-sectional area of a truss

member, plate thickness or cross-sectional dimensions of a beam do not change the shape of

a structure. However design variables that govern the shape or geometry of a structure are

referred to as shape design variables. For example coordinates of nodes in solid models or

curve/surface are typically shape design variables.

1.5.1 Property Optimisation

With this type of optimisation, some geometric items are transformed into a property, which

can be changed independently with respect to the rest of the geometry. Examples of property

include size or weight of a component. With property optimisation, the overall shape and

structure of the component remain unchanged. This type of optimisation works on models

such as beams and shells, which are reduced in one or more dimensions by using abstract

mathematical models. For example, sheet metal structures are usually represented by

surfaces, and thickness is a separate item. Due to this, the shell thickness can be changed

independently to improve the functionality of the component. This optimisation is losing its

popularity in industry; it is being replaced by more sophisticated CAD driven analyses like

FEA.

1.5.2 Shape Optimisation

In shape optimisation, the geometry of components’ structure changes from an initial shape

to the optimum shape. Parameterised geometry variables are taken as design variables by the

optimisation algorithm. The model is generally meshed with a FEA/CFD package for

analysis.

1.5.3 Topology Optimisation.

In general, designs have fixed points, or “hard points”, which are defined by the engineering

necessities. Topology optimisation aims to explore the different ways in which the hard

points are linked. Topology defines the overall structure of a component or assembly. Such

study in usually carried out at early in the design process.

Chapter 1 Design

Page 16

1.6 Summary

A definition of design has been established as a divergent-convergent system of finding

solutions that satisfy constraints. It is thought that the design process described above can be

mapped onto evolutionary computing techniques to automate its iteration loop. Hence for

optimisation, the top priority is the representation of the constraints that characterise the

design. For the remaining of this thesis, the choice was made to look into the shape

optimisation of free form curves. This choice is not arbitrary, because curves and surfaces

also was also the centre of interest of the Flexo project and therefore some of the information

gathered throughout the project could be used in this research.

Page 17

Chapter 2 Optimisation

Page 18

This chapter reviews some optimisation techniques available for engineering optimisation.

An implementation of a GA (Genetic Algorithm) written in object-oriented language C++ is

documented in Appendix 2. Reports on the current status of design optimisation in industry

are presented in Appendix 1.

2.1 Optimisation for Engineering Design

In Chapter 1, design is described as an iterative and evolutionary process of changes leading

to a better design for given specifications. This also applies to optimisation, which is

described as the process of attaining a superior design, based on some pre-defined criteria,

from a set of feasible alternative designs. However, as explained in Mussa [76], there is a

precise difference between the process of improvement and the search for an optimum.

Improvement involves subtle human decisions based on the subjective notions of goodness

and badness, which is usually defined by a mathematical objective function. The search for

optima is frequently seen as a convergence method to find the peaks (minimum or

maximum) of a mathematical function representative of the objective, i.e. the best solution to

a problem, Figure 3.

Thus, optimisation is defined as search process through the solution space driven by a human

like decision-making process. The first aspect of optimisation is iterative in nature and can

be carried out either manually or automatically using search algorithms. Furthermore it

relates to the “Divergent and Transformations” phases of design discussed in paragraph 1.1.

The second aspect of optimisation aims to map the designers’ intent in order to represent the

design goals with in mathematical function, which is also called objective function. Also,

proposed solutions are evaluated against the objective and assigned a fitness value, a criteria

upon which the solution is selected or discarded. As for design, this is the converging agent

in the optimisation process.

Page 19

Figure 3: Objective function optima (peak)

2.1.1 Optimal Problem Formulation

As previously discussed, optimisation aims to explore and evaluate a variety of design

solutions within the range of feasibility. Since an optimisation algorithm requires

comparison of a number of design solutions, it is usually time consuming and

computationally expensive, hence the need to formulate the design problem in a format

suitable for an algorithm. The optimal problem formulation is the key to achieving

competitive product design. Since the objective in a design problem and the associated

design parameters vary with products, different techniques are used to define the

mathematical model of the optimal design problem. An outline of the steps typically

involved in an optimal design formulation process, Figure 4, is proposed by Deb [37].

Components of this format are discussed below.

The first step in the formulation is to realise the need for optimisation in a specific design

problem. Next, the designer selects the associated design variables. The formulation involves

other considerations such as constraints, objective function and variable bounds. These terms

are developed in the subsequent paragraphs. The last step of the process deals with the

selection, for a specific problem, of an appropriate optimisation algorithm. Literature on this

particular aspect of optimisation includes Roy et. al. [94]. As shown in Figure 4, there is a

hierarchy in the optimal design process, however each aspect may be influenced by the

others.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1

x, Design Variable

f(x), Objective Function

Optimum Point

Page 20

Figure 4: A flowchart of the optimal design procedure [37]

Design Variables

Identifying the design variables is the first step in the formulation of the optimal design.

Design variables are numerical quantities, which define the design solution and values vary

within bounds during the optimisation process. A design problem usually involves many

design variables, some of which are highly sensitive to the solution output. The least

influential variables are called design parameters, as they often remain constant during the

optimisation process. Prior knowledge may dictate on the choice and ranking of the design

variables. However, it is important to understand that the efficiency and speed of the

algorithm depends to a large extent on the number of variables. The outcome of the

optimisation procedure may indicate whether to include more design variables in a revised

formulation or to replace some initially considered design variables with new variables or

parameters. For a more systematic approach, performing sensitivity analysis on the input-

output system gives accurate feedback information on an adequate choice of variables,

Figure 5. Solution sensitivity analysis varies incrementally the design variables

independently or a group of variables (other parameters remain constant) as input and returns

Need for Optimisation

Choose Design Variables

Formulate Constraints

Formulate Objective Function

Set up Variable Bounds

Choose an Optimisation Algorithm

Obtain Solution(s)

Need for Optimisation

Choose Design Variables

Formulate Constraints

Formulate Objective Function

Set up Variable Bounds

Choose an Optimisation Algorithm

Obtain Solution(s)

Page 21

response fitness values as output. Graphical presentation of the data as well as numerical

analysis might ease interpretation. Sensitivity analysis is used later in this thesis to validate

optimisation algorithms.

Figure 5: Optimisation system sensitivity analysis

Design Constraints

Constraints represent some functional relationships among the design variables and other

design parameters. Design constraints are conditional restrictions that must be satisfied in

order to produce an acceptable design solution. The nature and number of constraints to be

included in the formulation depend on the user and the nature of the application. Constraints

can range from simple conditional statement to complex mathematical definition; in which

case some mechanism to calculate the constraints must be provided to the optimisation

algorithm, Deb [37]. For example for sizing of complex mechanical structures, a finite

element processor is often required to compute the maximum stress load in the structure.

From an optimisation point of view, Deb [37], constraints are of two types: Either Inequality

or equality constraints. Inequality constraints state that the functional relationships among

the design variables are greater than, smaller than or equal to, a set value. These types of

constraints cover most of the engineering problem range. On the contrary, equality

constraints state that the functional relationships among the design variables are equal to a

set value. The later is the most restrictive type of constraints and should be avoided as much

as possible.

Objective Function

Φ(x,y,z)

x

y

z

Parameters

Variable Input Fitness Values

Output

Objective Function

Φ(x,y,z)

x

y

z

Parameters

Variable Input Fitness Values

Output

Page 22

Objective Function

Optimisation requires evaluating every design solution produced. To do so, an evaluation

function representative of the design, which is defined in terms of the design variables and

other design parameters, needs to be formulated, Deb [37]. In engineering problems, most

design objectives are quantitative (cost, weight, life cycle) and are mapped in a mathematical

form. However some design aspects such as aesthetics are difficult to quantify since they are

subjective criteria. Qualitative criteria are used to formulate the objective function where

exact mathematical formulation is not available Roy et. al. [92].

Moreover, in real life applications, more than one objective needs optimising

simultaneously, Deb [36] To date multi objective optimisation methods are still in their early

stages of development but are the centre of attention of many research programs. An

extensive literature survey in the field of multi-objective optimisation is available in Roy et.

al. [94].

Fitness Function

The fitness function is used to accommodate the objective function with the optimisation

algorithm own objective when there is a conflict of interest. For instance algorithms that are

set to converge to a maximum conflict with optimisation problems that are solved by finding

a minimum. In this situation , the invert of the objective function can will phase them if the

division by zero if carefully avoided. Adding one to the denominator will just do that and set

the fitness function definition in the zero-one range. Other operations can be made to the

objective function, there is an example later in this chapter that illustrates that transformation

of the objective value improves optimisation performances.

Fitness Function Mapping

Mapping the fitness function is showing fitness score against variable input in a graph. For

one variable the map is a curve and for two variables it is a surface. For a greater number of

variables, one need more dimensions that are not easy to represent graphically. The map is

used for uncovering the nature of the objective function. Paragraph 2.1.2 reviews some

optimisation problem characterised by their objective function.

Page 23

Variable Bounds

Variable bounds concern the design variables definition range or feasibility range. In

general, all design variables are restricted to lie within the minimum and the maximum

bounds (upper and lower limit). Setting wide variable bounds expands the search space and

consequently enables the algorithm to potentially find more optimum solutions, particularly

in the case of a multi-modal objective function, which is defined in paragraph 2.1.2. The

down side is that it is more computationally expensive. A compromised setting can be

reached by gradually narrowing down variables bounds, while insuring that the optimum

values always lay within that range. An alternative is to reinitialise the algorithm initial

values with an intermediate solution. This will free the algorithm from variable bound

restrictions.

Convergence Graphs

The purpose of convergence graphs is to examine the population’s history in a chronological

order. For each GA run, and each member of the population, the fitness function is recorded.

The aim of such graphs is to judge on the optimisation performance in converging by simple

visual check. A plot of fitness values against GA runs is presented in Figure 6, this example

shows a population that is converging steadily to an optimum value. The drop is constant

from the start to two thousand individuals. After that point the algorithm does not converge

any more, which means that the optimisation loop can stop.

It is noticeable in the graph, Figure 6, that there is a concentration of individuals around at

the lowest values; This band highlighted below the cloud is called the Pareto front. It

presence signifies that the optimisation algorithm is doing well.

Page 24

Figure 6: Population convergence graph

2.1.2 Optimisation Algorithms

The above discussion revealed that the formulation of the optimisation problem in a

mathematical form and subsequently in computer code depends to a large extent on the

nature of the design. This has pushed researchers and developers to create a multitude of

algorithms capable of dealing with real life design problems. Features of real life

optimisation involve multi-variable, multi-modal, multi-objective and constrained

optimisation. For more details on features of real life optimisation, refer to Roy et, al.[94]

Single-variable

The simplest form of optimisation algorithm is single-variable. These types of algorithms

work with one-dimensional problems (characterised by a unique design variable). Although

the majority of engineering problems present more than one variable, single-variable

algorithms are used to conduct a unidirectional search method in a multi-variable problem.

This is particularly useful to carry out sensitivity analysis on design variables.

0 .0 1

0 .1

1

1 0

1 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0

In d iv id u a ls

Pareto Front

Page 25

Multi-variable

Multi-variable algorithms work in a multi-dimensional space. Here more than one variable

are varied simultaneously and solutions come in a set of multiple variables. The case study

on curve optimisation reported in this thesis is an example of multi-variable optimisation

design, it takes 3D point coordinates, 3D vectors input and output. In optimisation jargon, a

so-called “individual” contains a set points which themselves contains the conventional three

coordinate variables x,y,z. If the geometry has four points, the optimisation algorithm will

input twelve variables.

Multi-modal

In the previous section, an example of a single peak function was presented in Figure 3. This

type of function is called uni-modal. Wherever there is more than one peak, the function is

called multi-modal. Multi-modal optimisation can be defined as the problem of locating

several good solutions in the search space. An example of a multi-modal function is shown

in Figure 7.

Figure 7: A multi-modal function

0

5

10

15

20

0 20 40 60 80 100 120 140

Variable X

F
it

n
e

s
s

 V
a

lu
e

Sub-optima

Global optimum

0

5

10

15

20

0 20 40 60 80 100 120 140

Variable X

F
it

n
e

s
s

 V
a

lu
e

Sub-optima

Global optimum

Page 26

Optimum points can be localised by examining the values for which the gradient is equal to

zero. In presence of a multi-modal objective function, we are not only interested in finding

just the best solution (global optimum Deb [37]), but as many as possible (sub-optimum).

The reason behind this is that sub-optimum solutions may present some interesting design

properties that should always be taken into consideration. The sub-optimum solutions are

considered as good solutions in a multi-modal function, Roy et. al. [91].

Multi-objective

Other optimisation problems include the optimisation of several objective functions

simultaneously. This type of scenario is called multi-objective optimisation. At present, the

industrial use of optimisation algorithms is limited mainly to problems involving

maximisation or minimisation of a single measure of performance, or objective. This

prevents them from handling many real-world problems since most of them involve multiple

objectives, which should be optimised simultaneously, Deb [34]. This has encouraged the

growth of research in the field of multi-objective optimisation using evolutionary algorithms

Roy et. al. [94].

The principles of multi-objective optimisation differ widely from those of single objective

optimisation. In a multi-objective optimisation problem, there is more than one objective

function, each of which may have a different individual optimal solution, Steuer [115]. This

gives rise to a set of optimal solutions called non-inferior, non-dominated or Pareto optimal

solutions. These solutions are located on the boundary of the region containing the feasible

solutions. In presence of multi-objective functions, the optimum point lies in the region of

intersection of the functions Pareto fronts. Figure 8 below shows an example of a multi-

objective optimisation problem with two objective functions.

Page 27

Figure 8: Multi-objective function

2.2 Adaptive Search Techniques

Efforts to model, algorithmically, the basic evolutionary principles (population, self-

replication, variation, and selection) go back to the 1950s in the Handbook of evolutionary

Computation, Bäck [6]. Since the 1980s, with the advance of computers, a new class of

search techniques, called adaptive (or stochastic) search techniques, has been developed. The

two best known are genetic algorithms (GAs) and simulated annealing (SA). Both

techniques are loosely based on processes that happen in nature. These two algorithms have

been applied to numerous fields as domain-independent optimisers. Both techniques are

robust and good at finding a global minimum in large complex search spaces, David [31]. In

the context of this research, the focus is on GAs only, due to resource limitations on the one

hand, and also since development work in the area of GAs was made available for use in a

case study involving integration of flexible optimisation within CAD/CAM environment.

As the name stochastic implies, adaptive search techniques have a random aspect to them.

They have a reduced chance of converging to a local optimum because the searches are not

restricted to finding a better solution for each iteration. This diverging property is

particularly suited to design problems, which are, as discussed previously, divergent-

convergent in nature. Adaptive search algorithms contrast with traditional optimisers that

Optimum Point

F1

F2

Variable x

F
n

(x
)

Page 28

present the inconvenience of finding the optimum nearest to the starting point irrespective of

whether it the global optimum or not, Thornton [118].

2.3 Genetic Algorithms

Genetic Algorithms (GA), were first developed by John Holland at the University of

Michigan, USA, and were further developed by his colleagues and students. The goals of

their research were firstly to abstract the adaptive process found with natural species, and

secondly to implement the findings in computer software that replicates the phenomenon of

evolution. The basic implementation of GAs is designed to mimic the theory of evolution

propounded by Charles Darwin in The Origin of Species. He explains the evolution of

species with a natural, but yet ruthless, process of selection and survival of the fittest. Based

on this model of evolution, GAs are capable of finding good solutions to a problem bounded

by constraints. The basis of a new branch in evolutionary computing was formed from the

experiments conducted by Holland. Later, GA applications were used for engineering

purposes such as machine learning Goldberg [55].

In general, GAs are robust techniques that can handle large numbers of parameters as well as

large search spaces. They are often described as providing a good balance between

exploitation and exploration of search spaces. Since its origin, GAs have been applied

successfully in many fields of science. The prime reason for their success is that they

consistently outperform traditional methods.

2.4 The GA Process

As previously explained, prior to performing optimisation, the problem has to be formulated

in a format suitable for optimisation algorithms. This format is defined in terms of design

variables, constraints, objective function(s), fitness function, and variable bounds. With the

formulation of the optimal problem, the optimisation problem has moved from a high level

abstract definition to a formal mathematical representation.

Page 29

At this stage, the formulation is generic, i.e. algorithm independent. This paragraph presents

an implementation of a simple GA using the optimisation problem formulation structure.

The tasks performed in a typical GA cycle loop, shown in Figure 9, are evaluation, selection,

recombination and mutation. These terms are discussed later in this paragraph. It is

important to notice the point of entry in the loop; an initial random population is generated

and evaluated outside the GA loop. There is an issue over the generation of random numbers

that holds potential for arguments. In the context of this research, in-built pseudo random

generation number module rand() along with srand() provided with most C/C++ compilers

is thought to be satisfactory. The initial generation is evaluated before entering the GA

iteration loop. The cycle begins with selecting the mating parameters (chromosomes) for the

GA operators (crossover, mutation) among the individuals constituting the initial population.

Figure 9: The basic loop of genetic algorithms

Binary Coding and Chromosomes

In most optimisation algorithms, the variables being optimised are maintained in an array

labelled subjectively with the object it relates to. Also all objects should be given a tag to

allow their identification.

X={X1, X2,…Xn}

Selecting mating parameters

Recombine

(crossover)

Mutate

Evaluate

Select

(Terminate)

Initial Population

Evaluate

Loop

Page 30

In genetic algorithms, array of parameters, X, are often developed as binary strings (or list of

real numbers) of length nL, where n is the number of parameters and L is the number of

binary bits used the represent each value Xi. In GA terminology, an array of binary coded

variables is called chromosome. The term was borrowed from genetics because of the

analogy with nature where inherited characteristics of living things are encoded in their

genes. An example of variable binary coding is shown in Table 1.

Table 1: Chromosome binary coding

For each individual, the fitness value is evaluated by firstly decoding the individual

chromosomes into separate parameters and secondly feeding the evaluation function with the

parameters values obtained from the GA

Binary coding (and decoding) involves computer-rounding errors and requires careful

examination. Excessive coding precision is unnecessary and computationally expensive.

Typically precision of a thousandth of the unit is adequate. This is also consistent with

engineering applications that are in the worst case bounded with two hundredths of a

millimetre tolerance. However, experiments on GAs in Appendix 6 show that special care

must be taken in the presence of small numbers as rounding errors could mislead the

algorithm into inaccurate solutions.

GA Operators

GA operators comprise of crossover and mutation, which operate on the individual

chromosomes combination, (parents) to create new chromosomes (children). For this reason

GA operators are also called a mating pool. These transforming operators enable the search

Decimal Value

Binary Coding 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

BinaryValue 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0

Chromosome

Gene 1 Gene 2

45 78

Variable 1 Variable 2

Page 31

algorithm to explore new points in the search space while converging towards solution

peaks.

In simple terms, with crossover operator, portions of two individual strings are swapped. As

a result the offspring inherits some characteristic of each parent making up a new individual.

Not all chromosomes swap genes, typically, the crossover probability should range from

60% to 100%. In the case of zero crossover probability, the offspring are a strict replica of

the parents.

In addition to crossover, some algorithms include mutation. This operator randomly changes

values in the chromosome string. This is achieved by changing binary 0 to binary 1. This

supplement operator, more random than crossover, is introduced to boost the exploring

properties of the search algorithm. The mutation probability should be kept in the region of

0% to 10% depending on the nature of the search space. Any higher mutation probability

would introduce too much diversity in the population, hence slow down convergence. The

opposite would resume the algorithm to a systematic exploring of the search space. There are

no standard values that guarantee GAs to perform best, both in exploring and converging. It

is up to the user to try out different settings to reach a compromise. Experiments on GA

operators are included in Appendix 6. On a grand scheme of things, it seems rather ironic to

see a capability such as optimisation, whose sole purpose is removing trial and error from a

given system, actually adds more to it; or perhaps one should imagine optimisation for

optimisers.

Selection Wheel

Prior to the selection process, each individual is evaluated with the help of the objective

function. Genes are decoded into function parameters and passed to the evaluation function

for calculation. From the value returned by the evaluation function, the fitness value that

characterises each individual value with respect to the design objective is obtained. Most

GAs are coded in such way that the individual with the highest score is the fitness. In other

words, GAs converge towards the maximal. Simple mathematical operations are applied to

the fitness value, in order to match the algorithm scheme (minimising or maximising).

Page 32

The roulette wheel selection method simulates a wheel on which the sectors size is

proportionate to each individual’s fitness score. An individual’s selection is attained by

spinning the wheel and picking the individual on which the selector pointer has stopped,

Mussa [77]. Individuals with the highest fitness score take a bigger share of wheel therefore

have a greater chance of being selected for reproduction. This method based on probability

laws replicates the process of survival of the fittest described by Darwin.

Fitness Boosting

Since individuals are selected upon their fitness relatively to the other individuals among the

population, there is competition between individuals to occupy the widest sector on the

wheel. A non-sensitive objective function (low gradient), puts the GA in a difficult position,

high variable variation translates into low fitness value variation. This means that two

individuals with close fitness values would have very different variable values. This type of

scenario is highly undesirable as no convergence to optima is possible. Applying

mathematical functions to the fitness value is a possible answer to the problem of flat

objective functions. The desired effect is boosting the fittest individuals while diminishing

the others. This can be achieved by using a function with exponential gradient. An example

of objective function boosting is presented in Figure 1. Here, a power function is applied to

the objective function.

n) value),objectivepower(1/(1 valuefitness +=

The resulting effects on the solution space are presented in Figure 10, where power indices

are gradually increased form 1 to 10. As the power indices increase, the solution band

becomes narrower with a distinct peak. This gives the GA better chances of converging to an

optimal solution. The example provided here is a single-objective, uni-modal, and one-

variable objective function used in a curve optimisation application. The technique described

above has been developed and applied in the context of this research; further enhancements

and results are discussed in Appendix 6.

Page 33

Figure 10: Objective function boosting

2.5 Summary

Optimisation has been defined as an iterative process of search of optimum through the

solution space. Optimal problem formulation is characterised by the design variables,

variable bounds, design constraints and one or several objective functions. Based on this

description, algorithms are classified in the followings: Single or multi objective, uni or

multi modal and constrained. Genetic algorithms are a kind of adaptive search technique,

which mimics the evolution of species described by Darwin. Its process can be broken down

in the following steps: Selection, mutation, crossover and evaluation.

Experiments on curve optimisation carried out in this research make a real-life test bench of

GAs and evolutionary computing in general. The results will provide indications on the level

of efficiency and accuracy of GAs. However, some predictions can already be made. GAs

are used to give approximate answers to optimisation problems which cannot be solved by

exact mathematical means. In other words there are the last option when every thing else has

failed. Because heuristics return approximate answers, extreme care must be taken not

falling into the inaccuracy trap. If the evaluation function formulation is not correct, the

algorithm will run regardless and give an answer. The validity of the answer must be

examined with most care; it can be tempting to blame inaccuracy to justify unexpected

answers. So it utmost be ensured that the evaluation function is really the representation of

the design constraints. One way of doing that is performing sensitivity analysis on problems

which solution is known in advance.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Individual

F
it
n
e
s
s
 V

a
lu

e

power 1

power 2

power 3

power 5

power 10

Page 34

Chapter 3 Reverse Engineering of

Curves and Surfaces

The shape of finished goods and manufactured products exhibits a marked emphasis on

smooth shapes and free flowing contours. Whether it is cars, audio equipment, cameras,

ergonomic furniture or injection moulded plastic products, all have smooth contours in their

design. However, the production of manufactured objects from such shapes is not an easy

process. Most CAD software provide means to create free form contours for the design and

manufacture of artefacts, but it is still a laborious process. One of the major bottlenecks in

current CAD systems is the inefficiency of representation and manipulation tools for the

design of free form, sculpted, three-dimensional shapes. This is forcing designers to use

physical clay models and templates for generating curves and surfaces which are digitised

with 3D coordinate-measuring machines (CMM) and 3D scanners to gain a computerised

geometric definition. Curves and surfaces modelling specialised software such as

SURFACER [108] provide adequate capabilities for transforming scanned data (point

clouds) into CAD representation.

3.1 Design Cycle

The process of aesthetic design differs from company to company, depending on the styling

job, resources constraints, equipment and tools. Nevertheless a general workflow can be

drawn, in which all the individual steps can be identified as activity centres. There are three

main activity centres involved in the design cycle shown in Figure 11; these are styling,

designing and production. The styling department is in charge of creating a concept model in

accordance with the requirements expressed by other departments such as marketing. The

model is manually digitised and passed on to the design department where the data is

cleaned before being passed on to the surface developer who produces a replicated CAD

model. This model is then reported to the styling department for evaluation. The approved

CAD model is then passed on to production department, which checks the model for

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 35

manufacturability, compliance to regulation and tolerance. The final model is frozen and is

used as a master copy for tooling.

Figure 11: Surface design cycle

3.2 Styling

Concept models are first explored by means of free hand sketches showing general lines and

volumes. More and more Computer Assisted Styling (CAS) systems such as ALIAS are used

simultaneously in the styling process. They allow the designer to sketch a vehicle concept

starting from the “hard points” and onto the outer skin definition. From the CAS model, a

Marketing

Product Specifications

Computer Aided

Styling

Physical Model

CAD Surface Design

customers, competitors

Visual Check

Reverse Engineering

Surface Optimisation

Surface Evaluation

Engineering Design

Tooling

Manufacturing

Styling

Design

Production

Marketing

Product Specifications

Computer Aided

Styling

Physical Model

CAD Surface Design

customers, competitors

Visual Check

Reverse Engineering

Surface Optimisation

Surface Evaluation

Engineering Design

Tooling

Manufacturing

Styling

Design

Production

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 36

first scale plastic model is milled for down stream activities such as costing, digital mock-up,

and aerodynamic evaluation.

Also because other departments such as body engineering design require design data early

on, a full-scale model is simultaneously further developed. Traditionally, working materials

are synthetic clay and hard foam, allowing direct sensory connection between stylist and

model. Surface quality is assessed manually by running a flat hand on the surface or visually

with aluminium foil to visualise the reflection lines under studio lights. Figure 12 shows a

finished clay model from the Nissan Micra [79] under tube light. The bright area pointed by

the arrow is a reflection line. The shape of this reflection is an indicator of the quality of the

surface.

Figure 12: Clay model from Nissan Micra [79]

Manual shape definition is constantly receding because physical models are expensive and

from a process point of view, CAS offers the possibility to obtain a model that is that is

modifiable and that can be evaluated quickly both aesthetically and technically. Accordingly

the designer can develop a greater number of design alternatives, thus enhancing the

efficiency of making design decisions.

Reflection line under

studio lights

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 37

3.3 Reverse Engineering

Reverse engineering in its complete definition refers to the process of creating a completely

engineered prototype that is a clone in form and function, from a physical part, Sinha [112].

In the context of this research, the definition of reverse engineering is to recreate a CAD

model from a set of measurements. Such process is found in design studios where reverse

engineering is used to translate the stylists’ clay work into a computer accessible

representation. It is generally composed of four activities, which are as follows:

3.4 Dimensional and Geometrical Metrology

Metrology is used in reverse engineering to digitise model by means of 3D measuring

machine; which is undoubtedly part of manufacturing technology rather than design. 3D

sensors are broadly classified into two types, contact sensors which touch the object in order

to take measurement of it (coordinate measuring machines) and non-contact sensors which

use laser light beams (3D scanners).

Coordinate Measuring Machine

Coordinate measuring machines are not only used for dimensional and geometrical accuracy

inspection, it can also produce accurate measurements of the shape and position of any

complex work piece features.

In brief, a coordinate measuring machine is a work bench mounted with three orthogonal

axis gantry. These axis, termed X, Y, Z represent a 3D Cartesian coordinate system. The

frame holds a finger probe that makes contact with the measured piece. The displacements of

the probe are registered with a digital length measuring device and transferred to an

electronic control cabinet (more likely to be a PC by today’s standards). These contact

Digitisation Translation Smoothing Surface creation

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 38

sensors collect data by making contact with the part at every measurement location. Hence,

data collection is a long and cumbersome process.

Light Based Sensors

Other coordinate measuring machine include 3D scanners, they provide a fast and easy way

of acquiring 3D information about objects. These hardware equipment produce accurate,

dense point measurement very quickly and are more suited to scanning large surfaces than

touch-probe sensors.

Digitising Strategy

Digitisation of models is not a trivial task as the choice of strategy heavily depends on the

down stream application. Some examples of digitisation applications are given with a brief

description of the digitisation strategy.

Ø Copy Milling: A large number of points on the surface are acquired to facilitate direct

linking to a CNC milling machine via a CAD module. In this case only the

dimensional accuracy is required and is inherent of the CMM capability. Mostly, the

strategy is to define different measuring areas scanned in lines or 2D sections.

Ø Reverse Engineering: In this case the objective is to gain the surface description of the

model. The final accuracy is a combination of two elements.

Ø Geometrical Accuracy: Defined by the intrinsic characteristics of the surface such as

the continuity order C(0), C(1), C(2), and smoothness. This play a crucial role in

reverse engineering for A-class surfaces such as car bodies as it will ease the

reconstruction of the surface for engineering design

An example of a model digitisation performed at NTCE [79] is shown in Figure 13. The

digitisation is performed using a 3D measuring bench mounted with a probe. Each point is a

3D coordinate measurement. These measurements are the basis for producing the curves

necessary for the skinning operations.

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 39

Figure 13: Point cloud from model digitising

3.5 Point Processing

As explained in the previous paragraph, the digitising quality is dependent on the clay

surface finish, the CMM capability as well as the operator skills and experience. However,

point-cloud data always contain undesirable irregularities. The first task consists of

removing the stray points, i.e. the points that stand out from the series of measurements.

Typically the following tolerances must be met: 0.3mm for external surfaces (A-Class) and

0.5mm for trim surfaces (B-Class).

There is a significant drop in data quality between the clay surfaces generated by stylists and

computer reconstructed surfaces. This gap shown in Figure 14 is the result of digitising

surface reconstruction because points do not carry any information on the internal structure

of the part. The FIORES project, Dankwort [30] has addressed these issues and proposed a

revised workflow for reverse engineering. The results suggest that physical models are

avoided in favour of 3D screen visualisation or virtual reality models. This radical approach

presents the advantage of retaining a CAD definition through out the entire design process.

The limitations are that virtual reality can never match physical models properties.

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 40

Figure 14: Loss of data quality in the design process, Dankwort [30]

3.6 Surface Generation

This activity consists of reconstructing model surfaces from the digitised points. Surface

reconstruction, falls into Computer Aided Graphic Design (CAGD) and has vast literature

and an exhaustive review would make this thesis look like an appendix. In basis terms, the

main techniques include with Spline interpolation, Sweeping and Lofting, Triangulated

Surfaces and NURBS.

Skinning

This is the most conventional surface reconstruction method. Surfaces are generated in three

steps:

Ø Curve generation

Ø Smoothing curves

Ø Skinning

CAS

physical
model

CAD

Data Quality

Development Time

Milling
Quality

Design

Freeze
Model

Digitising

Tool
Manufacturing

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 41

First cross-section points are interpolated producing initial low quality curves that contain

inflection points, peaks and troughs. The number of curves is reduced to the minimum

number required to define the final profile. Sections of profiles between inflection points are

initially approximated with known perfect geometries (segment, circle and conic). If that

cannot be accomplished, the designer “splines” the particular profile section. Now begins the

long surface optimisation process. Profiles are smoothed by freeing points, curvature and

tangency. Most surfacing tools are provided with a curve smoothing capability. Quality is

also assessed by looking at curvature profiles. After repeating the process for all the profiles

that define the skeleton, surfaces are created with “lofts” or “Sweeps”.

NURBS Patches

This process described above constitutes a traditional scenario in the automotive industry.

However, the trend in surface design is moving towards a more flexible approach to

deformable objects. The NURBS surface representation presents such characteristics. Instead

of using Spline curves as guides for lofts and sweeps, a surface patch is directly applied

using point cloud data as nodes. This approach is said to be more efficient than the

traditional approach.

3.7 Surface Check

A number of quality checks are performed on the finished surface. Some of these are listed

below.

Ø Studio lights running along the surface

Ø Offsetting, if no distortion appears within 1m offset, the surface is considered

satisfactory

Ø Reflection lines, see Figure 15

Ø Colour code profile for curvature

Using these tests, the designer knows whether the surface needs further development. If so,

modifications are applied to the skeleton curves, followed by skinning and so on.

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 42

Figure 15: Surface quality inspection with highlight lines

3.8 Surface Optimisation

Curve and Surface optimisation can be classified in shape optimisation in the sense that it

changes the surface of a structure. However it differs in many ways: Surface optimisation

does not attempt to modify the internal structure of the component but rather focuses on the

surface properties. The objectives of the optimisation are the aesthetic aspect of the design.

We can distinguish three techniques used for surface development where optimisation

algorithms are used. These techniques are surface reconstruction in reverse engineering,

reflection line, and smoothing and fairing of curves and surfaces.

Surface reconstruction also referred to “reverse engineering” is the creation of a computer

model from data points obtained from an existing object. Optimisation techniques such as

Genetic Algorithms are then used to improve the model definition. Inspection of reflection

line patterns is a standard way to check the quality of free form surfaces. Reflection lines or

silhouette lines are created by the outline contour of the surface seen from a specific angle.

Surface smoothing is a set of techniques used to evaluate the quality of surfaces in terms of

curvature and oscillation. The design of surfaces involves multiple criteria, which are

governed and restrained by a number of geometric constraints. Surface optimisation

techniques are widely used in the automotive industry for the design of ‘A class’ surfaces

including body shells and other exterior components.

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 43

CAD/CAM/CAE systems often obtain suitable designs through an iterative decision making

process. The process is time consuming and involves lot of human intervention. This method

of design improvement is dependent on the skill and experience of the designer, resulting in

a need for a flexible optimisation approach.

Linden and Westberg [69] presented the FANGA (Formela ANGle Analysis) technique and

analysis method developed by Saab-Scania Aircraft division to optimise and assess the

quality of surfaces used in their aircraft and car body design. The fundamentals of which is a

extension of Saab-Scania earlier development of FORMULA, given in Einar and Skappel

[40]. This enables a surface to be refined by the response of a set of angles and directions,

which are easily computed from the surface model. These are then used in a standard

optimisation technique to compute the necessary changes to the parameters of the surface to

produce the required qualities.

Earlier research is reported by Kaufmann et al. [67], with regards to car body design. They

use an algorithm to define reflection lines and family of planes on the surface to represent

surface irregularities. From which new reflection lines are produced and smoother spline and

surface are obtained. This method has been used in the CAD/CAM system Syrko at Daimler-

Benz, with successful results in the improved quality of body designs, coupled with the

emphasis on time efficiency, this method is limited in simplicity and robustness that is

required.

Watebe et al. [119] have introduced a methodology to generate a suitable shape

automatically using genetic algorithms (GA), and by the application of Free-Form

deformation (FFD) technique [110]. Related research is reported by Weinert et al. [121] at

the university of Dortmund, Germany. Their research is aimed at generating optimal smooth

surfaces from digitised point data using evolutionary algorithms. The work presents three

solutions to the problem of reconstructing smooth surfaces using triangular tiles.

Examples of other methods that improve quality of surfaces (smoothness and fairness) are

those proposed by Higashi et al. [59] for the Toyota technological institute, and Szilvasi-

Nagy [116]. A detailed list of procedures for the assessment and analysis of the surface

quality and the detection of undesirable curvature are explained in Hoscheck [61] and

Pottmann [86].

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 44

Fergusson et al. [48] and Anderson et al. [4] illustrate two mathematical means of smooth

surface-control and constrained optimisation. These provide a complex mathematical

approach to controlling the surface definition profile, which conforms to the designers’

qualitative idea and true representation of the object under consideration. Thus, leading to an

automatic mechanism for shape control, and creating convex surfaces with prescribed

smoothness.

3.9 Discussions

Major Problems

There are different types of model representation on different levels. Processing and

translating the representations causes problems mainly because points do not carry any

information beyond pure 3D position coordinates. The surface reconstruction process as it

stands today strips geometry of its intrinsic properties like surface normal or curvature. At

the same time, there is currently no possibility of storing surface interrogation results like

shading or reflection lines. And of course points do not capture design history, functionality

aesthetic aspects or the stylists’ intent, which would dramatically ease the surface

reconstruction. Up to now, semantic information that exists about the objects is not used in

reverse engineering.

Moreover, questions hang over the parameterisation of 3D models as surfaces (Bézier,

NURBS). Representation could use completely different surface parameterisation or even

work directly on point clouds. Perhaps new mathematical approach could avoid the

numerical problems of real-number computer algebra. It is also possible to think of some

representation schemes, which do not need parameterisation as they are used today (for

example: voxel techniques).

Other technical problems are the numerical accuracy of the algorithms used, the handling of

error propagation, the surface representations, insufficient user interface and systems

incompatibility.

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 45

In this thesis, an attempt is made to answer some of the problems highlighted above through

a better representation scheme for curves.

Requirements and Future Trends

Future developments in reverse engineering should include far more aspects of product

designs than it does today. Instead of just focussing on geometry, reverse engineering could

be used to support the entire industrial development and production process from conceptual

design to manufacturing by integrating more high-level semantics. Or on larger scale,

reverse engineering should be supported by a more flexible and integrated development

process. CAD models should be extended to store associated information. History,

functionality, constraints, design intent and design process data could be recorded along side

the geometric representation. As previously seen, this model representation problem is

addressed by the “feature based” and “constraint based” approaches.

Curve developers are not interested in knowing the underlying mathematical issues like

smoothness, curvature or different degrees of continuity invariably associated with

modelling of curves. These issues should be transparent, thus providing designers with tools

powerful enough to manipulate models interactively. The lack of efficiency in the design

process is partly due to inappropriate software, and more importantly user interface.

Commercial CAD systems surveyed by the author, which include SDRC Ideas [109],

IMAGEWARE SURFACER [108], IBM CATIA, Mussa [76], show that tools allowing

constructing curves from desired properties (target driven design) are not (always) present

CAD packages. Designers are left with “tweaking” tangents and control points in an attempt

to match the desired curve characteristics. In the author’s view, this trial and error approach

to curve design is clumsy and shows that CAD vendors have a long way to go before

meeting designers’ requirements. In the light of this, this current research will focus on

further investigate in the curve design area and propose software solution to the lack of

flexibility with currently available commercial CAD packages.

Cooperation

One question that needs addressing is the (lack of) collaboration between universities, CAD

vendors and industry. These three bodies have diverging objectives in nature, which makes

Chapter 3 Reverse Engineering of Curves and Surfaces

Page 46

any collaboration plans difficult. Research institutes are eager to develop new tools and

techniques but need support from CAD vendors to implement these within an existing

system. Developing a system from scratch would simply be a colossal task outside any

research scope. Unfortunately, most commercial CAD systems are so called “closed”

systems, this for confidentiality reasons, making them unsuitable for research purposes.

Researchers in the area of geometric modelling and more generally CAD suffer from the

unavailability of suitable research tools and paradoxically, CAD vendors suffer from a

general lack of innovation. At the other end, industries suffer from a lack of productive tools

in their design processes. Recently, CAD vendors are undertaking a more transparent policy

by “opening” their systems to the outside world. This new trend in software architecture

might put an end to this “catch 22” situation and benefit the world of CAD as a whole.

Page 47

Part II

Page 48

Chapter 4 Geometric Modelling

This part of the research aims to develop methodologies for the optimisation of free-form

curves using geometric modelling, optimisation, and differential geometry. Some fields and

applications related to geometric modelling that are found in Bowyer [18] are presented here

with a short definition. They introduce the tools and topics that are used through out the

research.

Computer Aided Graphic Design

Computer Aided Graphic Design is a discipline dealing the approximation and

representation of ‘free form’ curves and surfaces with computer. The major breakthrough in

CAGD came with the polynomial formulation of curves and surfaces in the Bernstein form

independently developed by pioneers P. Bézier at Renault, P. de Casteljau at Citroen.

Computational Geometry

“Computational geometry is a phrase mostly used to refer to the study of geometrical

algorithms, and particularly their theoretical efficiency, or order”, Bowyer [18].

Geometric Modelling Kernels

The code implementation of Computational Geometry is enclosed in a kernel. Geometrical

algorithms are coded into functions capable of dealing with the geometry. The data structure

of the kernel plays an important part in the way these functions are accessible by peripheral

applications.

An example of this is ACIS 3D Geometric Modeller from Spatial Corporation [1]. ACIS is

an object-oriented three-dimensional (3D) geometric modelling engine designed for use as

the geometry foundation within virtually any end user 3D modelling application. Written in

C++, ACIS provides an open architecture framework for wireframe, surface, and solid

modelling from a common, unified data structure. Parasolid from EDS [82] is another

geometric modelling kernel that offers a similar functionality to ACIS. Paragraph 9.1

Chapter 4 Geometric Modelling

Page 49

expands further on the topics of kernel architecture and interface. In this research, all the

geometric algorithms use ACIS for computation.

Computer Aided Design

Computer Aided Design (CAD) is a rather general engineering term used to describe

computer systems for designing parts. Traditionally CAD systems comprise of a geometric

modeller, a graphic display interface, and a user interface. The so-called ‘turnkey’ systems

combine all these three elements, and some more, into one large system called CAD. In this

research, computer-aided design is used in a more restricted scope, this in order to separate

CAD from its components (application programs, user interfaces, geometric reasoning).

CAD simply is a user interface for editing geometry. ACIS has been used in conjunction

with the Microsoft Foundation Classes (MFC) to develop a user interface, namely

HulaHoops, for the optimisation applications proposed in this thesis.

Optimisation

As previously seen, optimisation aims to obtain better design given a set of design variables

and constraints. Although optimisation is generally not regarded as part of geometric

modelling, there is however material in this thesis on interacting optimisation with geometry

and the advantages it offers.

4.1 Implicit and Parametric Geometry

There are many ways in which geometry can be represented. The simplest, or perhaps the

best-known equation for representing a straight line is its explicit form:

baxy +=

Unfortunately, this is the least useful representation. It is suited for single valued functions

that will not double back on themselves. The explicit form cannot describe vertical straight

line, the gradient a would then be infinite.

Chapter 4 Geometric Modelling

Page 50

A better formulation for geometric modelling is the implicit form of equations. Implicit

equations classify points in space in two categories, so the curve or surface defined is at the

boundary between the two sets. Given a point on the surface or curve, implicit equations

return zero and more or less than zero when the given point lies on either side of the

boundary. Because they divide space into two, they are called Half Spaces.

It is said that Half Spaces are of dimensionality one lower than the space in which they are

embedded, Bowyer [18]. In the plane, implicit equations describe curves; in the three

dimensional space, they describe surfaces and in the four dimensional space, they describe

volumes.

For example, if the six sides of a 3D rectangle block, shown in Figure 16, aligned with the

coordinate axes are:

10

1

0

xx

xx

xx

≥
=
=

10

1

0

yy

yy

yy

≥
=
=

10

1

0

zz

zz

zz

≥
=
=

Six sets of points can be generated from the following inequalities:

1

0

xx

xx

≤
≥

1

0

yy

yy

≤
≥

1

0

zz

zz

≤
≥

And combining them with the intersection Boolean operator ∩:

() () () () () ()101010 zzzzyyyyxxxx ≤∩≥∩≤∩≥∩≤∩≥

Any point that satisfies that inequality lies inside the block, or more precisely on the edges or

corners of the rectangle. Combining implicit equations with Boolean operators is the

foundation of set-theoretic (or constructive solid geometry – CSG), which is further

developed later in this chapter.

() 0x,y,zf =

Chapter 4 Geometric Modelling

Page 51

Figure 16: Six Half Spaces defining a rectangular block

In Parametric Equations, space coordinates (x,y,z) are functions of one or more variables or

parameters. Parametric curves are defined in terms of one single independent variable often

known as t. Similarly parametric surfaces are defined in terms of two variables often known

as u and v.

Parametric equations are well suited for free-form curves and surfaces such as B-splines and

NURBS. These will be further explored in subsequent chapters.

To summarise, Bowyer [18]:

Implicit Equations Classify points in the space Fixed dimensionality

Parametric equations Generate points on the element Any dimensionality

4.2 Geometric Solid Models

In the remaining of this chapter, geometric solid modelling schemes are presented and

discussed. Even though solid modelling is not within the scope of this thesis, it cannot be

omitted because solid modelling encapsulates the topology of models, which is common to

Chapter 4 Geometric Modelling

Page 52

curves and surfaces. In actual fact curve and surface modelling is a special case of geometry

of solids, therefore an overview of solid modelling is needed.

4.2.1 Wire-Frame

This type of representation is probably the earliest used in CAD. 3D wire-frame models are

defined by a set of 3D points (vertices) in the (x,y,z) orthogonal coordinate system linked

together by lines or curves (edges). In wire frame models no surfaces or faces are defined,

keeping the model representation to simplest form. Wire frame does not require difficult

computation and 2D orthographic views are generated by projection of 3D data.

Only two types of information is conveyed with wire frame:

• Metric

• Geometric

Other deficiencies of wire frame representation are outlined below, Jared [63]:

• Ambiguity, one wire frame might have several interpretations

• Nonsense objects cannot be easily detected

• No automatic generation of view dependant information such as silhouette lines

of curves surfaces

• More generally, lack of surface information

Chapter 4 Geometric Modelling

Page 53

Figure 17: Wire frame model

4.2.2 Set-theoretic Modelling

Set-theoretic treats geometry as a three-dimensional Venn diagram. It takes simple shapes

and puts them together to make more complicated ones by using the operators of set-theory.

There are four operators, Bowyer [17]:

• Union gives solid where either or both of the two objects being unioned are

solid, just as the OR operator gives you a 1 when either or both of the two bits

being ORed are 1

• Intersection gives the part of space where the two objects being intersected are

both solid, just as the AND of two bits of data only gives you a 1 when both

bits are 1.

• Difference subtracts one object from the other where the two objects intersect.

In simple terms, Difference implies the set-complement of the subtracting

object.

A-B = A ∩ B

A+B = A ∪ B

A & B = A ∩ B

Chapter 4 Geometric Modelling

Page 54

• Symmetric difference is equivalent to the exclusive OR operator (XOR)

The usual two-dimensional Venn diagram for all these is shown in Figure 18. There is

striking similarity between the operators of set-theory and those of Boolean logic. It is

because of all this that set-theoretic geometric modellers are sometimes called Boolean

modellers or Constructive Solid Geometry (CSG) in the literature.

Figure 18: Set-theory operators

In Set-theoretic modelling, solids are defined in terms of Boolean operations on simple solid

primitives. Primitives are either a combination of half spaces or bounded primitives such as

blocks, spheres, cones. Thus, a model can be conveniently described by a tree data structure

with its terminal nodes representing solid primitives and non-terminal nodes denoting

Boolean operations. An example of a CSG model is presented Figure 19 where the object,

lets say a toilet seat, is constructed by unioning two blocks and subtracting a cylinder

() CBA t Toilet Sea −∪=

A Λ B = (A ∩ B) ∪ (B ∩ A)

Union A∪∪∪∪B Intersection A∩∩∩∩B

Difference A-B Symmetric difference A-B

A B A B

A B A B

Chapter 4 Geometric Modelling

Page 55

Figure 19: Set-theoretic model

Point-Set Membership Classification method allows classifying points inside or outside a

solid object.

If an arbitrary point ()
iii zyx ,,Pi is tested against each element constituting the toilet seat:

Outside CCylinder vsP

Inside BBlock vsP

Inside A Block vsP

i

i

i

→

→

→

lies

lies

lies

The Boolean equations becomes: () Inside Outside Inside Inside →−∪ lies

4.2.3 Boundary Representation (B-Rep)

The principal property of B-rep is to represent the geometry (detailed shape) and the

topology (connectivity) of objects separately. This concept provides the ability to determine

whether a position is inside, outside, or on the boundary of a volume, which distinguishes

solid models from surface or wire frame models. Among Bounded Geometry and Topology

that are included to this chapter, other topics related to boundary representation are presented

in Appendix 3. These are Topological hierarchy, Euler-Poincaré formula, and some

introductory material on Graph Theory.

∪∪∪∪

–

∪∪∪∪

–

A

B

C

Chapter 4 Geometric Modelling

Page 56

Bounded Geometry

Solid models are composed of a collection of surfaces joined together as shown in Figure 20.

Intersecting surfaces give curves, and intersecting curves give points. These three geometric

entities, point, curve and surface, are the basic elements needed to define a solid object.

With the exception of individual points, circles and spheres, analytical geometry only

represents geometry that extends to infinity (unbounded). In order to obtain finite segments

of curves and portions of surfaces, B-rep has to explicitly bound the geometry:

• A curve is bounded by a pair of points

• A surface is bounded by a collection of curves lying on the surface

• A solid is bounded by a collection of surfaces

Figure 20: Solid object composed of surfaces

Chapter 4 Geometric Modelling

Page 57

In order to distinguish between unbounded and bounded geometry, it is convenient to give

the bounded elements different names.

• A connected portion of a surface is a face

• A connected segment of a curve is an edge

• A point at the boundary of an edge is a vertex

Faces, Edges, Vertices are composite entities known as topological entities because they

define how things interconnect.

• The shape of a Face is defined by a Surface whose boundary is represented by a

collection of Edges associated with it.

• The shape of an edge is defined by a curve whose boundary is represented by a

pair of Vertices associated with it.

• The location of a vertex is defined by a Point.

Topology

The remaining task to complete the B-Rep model is to provide means of recording the

arrangements of the points, curves and surfaces. This is known as the topology.

Topology refers to the spatial relationships between the various entities in a model.

Topology describes how geometric entities are connected. On its own, topology defines a

"rubber" model, whose position is not fixed in space. For example, a circular edge and an

elliptical edge are topologically equivalent (but not geometrically). Likewise, a square face

and a rhomboid face are topologically equivalent (but not geometrically). A topological

entity's position is fixed in space when it is associated with a geometric entity. Topology can

be bounded, unbounded, or semi-bounded, allowing for complete and incomplete bodies. A

solid, for example, can have missing faces, and existing faces can have missing edges. Solids

can have internal faces that divide the solid into cells. Bodies such as these are called non-

manifold because they are not physically realizable. The topological information of a B-Rep

model is stored in a graph data structure. Also to be stored in the B-Rep data structure is the

adjacency relationships describing how the elements are connected. Such a network of

relationships can be used to share bounding entities and prevent data duplicates. For example

in a cube, each corner point bounds three edges and each edge bounds two faces.

Chapter 4 Geometric Modelling

Page 58

The boundary representation (B-rep) of a model is a hierarchical decomposition of the

model's topology. The model hierarchy with ACIS is presented in Appendix 3.1.

4.3 Function Representation

The representation of a geometric object by a single real continuous function of several

variables as F(X) >= 0 is called Function Representation or F-rep. It provides symbolic

representations of equations that are parsed in much the same way that equations are. They

provide the ability to solve complex mathematical problems.

In ACIS geometric entities provide methods for querying their properties. However, the data

structures do not explicitly store information such as a point on a curve where the radius of

curvature is a minimum, the tangent vector from a given point on an edge, the normal vector

from a given point on a surface, or the numerical values of the nth derivatives of points

along a curve to determine continuity.

There are also the SvLis [17] and GAS (Geometric Algebra System) [15] systems from Bath

University, that can provide Function Representation modelling capabilities. However the

Svlis modeller is CSG and therefore not much use for dealing with free-form curves, which

is the example used in this thesis. Actually, Berchtold and Bowyer [10] have published on

the problem of supporting NURBS in CSG modellers, but have faced problems with

implicitisation of polynomials.

4.4 Summary

In this chapter, different types of geometric solid schemes have been introduced. Table 2

summarises these in terms of their representation paradigms.

Chapter 4 Geometric Modelling

Page 59

Table 2: Types of geometric modellers

Type Representation

Wire frame Vertices and edges only, no surfaces or faces

Set-theoretic (CSG) Surfaces (i.e. half spaces) only, no vertices or

edges, implicit boundary

Boundary Representation (B-rep) Vertices, edges, faces, explicit boundary

Polyhedral model Only planar geometry, sometimes only

triangular faces

Cellular decomposition (Voxel, Octree) Thousands of cubes arranged in a hierarchy

F-rep Continuous function representation

Page 60

Chapter 5 Spline Curve Modelling

Shape definition is a challenging task in engineering design. Traditionally aesthetic shapes

are generated manually and subsequently translated into computer representation.

Conventional methods for shape design and analysis are not necessarily the best methods for

computer implementation, but have provided insight for new algorithms. In this chapter

some free-form modelling algorithms are introduced.

Surface modelling differs from solid modelling in that surfaces do not have thickness; hence

surfaces have no notion of volume. Free-Form Curves and Surfaces falls into the discipline

called Computer Aided Graphic Design or CAGD, which is concerned with the

representation of curves and surfaces. Recently CAGD has focused most attention and is a

subject area that has more literature than any other subjects in Geometric Computing.

5.1 Literature

A complete reviewing of curves and surfaces from literature would simply be -a- totally

pointless, -b- too long. Therefore, this thesis will be restricted to cover material necessary for

the understanding of the following chapters avoiding to falling into the trap of obscurantism.

Mainstream books, such as Farin [44] and Faux & Pratt [46], give comprehensive

basements for the best-known curves and surfaces methods. Further reading, and more

specialised are these. Choi’s book [23] is from a CAM point of view, but towards the end he

makes some recommendations for the design of a neutral representation (unified) of curves

and surfaces, which holds potential for arguments. Sapidis [106] is a collection of rather

insightful articles, which addresses quality issues with surface design. On NURB curves and

Surfaces, Piegl [84] is certainly the most complete volume available, others include Farin,

[45].

Chapter 5 Spline Curve Modelling

Page 61

5.2 Polynomials

One way to extend parametric equations is to make the function of parameter(s) an arbitrary

polynomial. The polynomial form is more flexible than its monomial equivalents and is

widely used for representing curves and surfaces.

The parametric form is particularly attractive since it is easy to create points on the on the

element and to bound them to a particular range of parameter values.

() () () () ...32 ++++= uDuCuBAuP

In theory it is possible to convert equations from implicit to the parametric form. This

conversion process is called parameterisation; the inverse is called implicitisation.

The Power Basis

A simple parametric polynomial can be written as a weighted combination of a set of powers

of the variable, u.

() []

() 10 with

...

 ...1 32

≤≤=























=

uUAuP

D

C

B

A

uuuuP

In the above equation, []...1 32 uuuU = is called the power basis vector and

[]...DCBAA = is the coefficient vector.

∑∑
= =

==

+++==
m

i

n

j

ji

ij yxcy)f(x

D only; cxbxaf(x)y

0 0

2

integersn m, ;0, : polynomialimplicit

2...:polynomialexplicit

Chapter 5 Spline Curve Modelling

Page 62

5.3 Interpolation

Parametric polynomials have limitations: Extending the definition of a curve implies adding

more high degree terms to the equation. High degree polynomials are sensitive to

inaccuracies and are computational inefficient. Also the coefficients in a polynomial

equation do not bear any physical significance, which makes handling of curves difficult.

This problem can be overcome by defining curves such that the curve satisfies a set of

constraints. For general parametric equations, common constraints are point coordinates and

tangent direction, but others such as higher derivatives or curvature can also be used.

Constructing geometry as a constraint satisfaction problem is called interpolation. The

Hermite and Lagrange interpolation are discussed here.

Going back to the essence of this thesis, Flexible Optimisation in CAD/CAM Environment,

the concept of curve and surface definition as a set of constraints is an appealing one. As

previously discussed, one of the main advantages of evolutionary algorithms is their ability

to represent constraints as a function of variables. This enables an algorithm to perform

operations on geometry without needing to know the underlying representation paradigm.

5.3.1 Lagrange Interpolation

The most obvious interpolation technique is to make the curve pass through a series of

points. This is called Lagrange interpolation. Each point the curve passes through is a

coefficient in the equation. To interpolate a parametric polynomial of degree n to the n+1

data points P(ui), 0 ≤ i ≤ n where ui is a fixed value of the parameter u at Pi,, Farin [44], [52]

() () ()∑
=

=
n

i

ii uLuPuP
0

,0

Where ()uL i,0 are the Lagrange polynomials

()
()
()∏

∏

≠
=

≠
=

−

−
=

n

ij
j ji

n

ij
j j

i

uu

uu

uL
0

0

,0

Chapter 5 Spline Curve Modelling

Page 63

and ∏ is product with respect to the index j.

In simpler terms, the coefficients are evaluated by substitution of the coordinates at each

point and the parameter value at the point in the power basis equation. From the following

polynomial (2D for simplicity):

() () ()
() ()
() ()2

222

2

111

2

ucubay

ucubax

uCuBAuP

++=

++=

++=

that passes through three points equally spaced at the parameters values between zero and 1

2223

1113333

2222

1112222

21

11111

1at),(

4
1

2
1

4
1

2
1

2
1at),(

0at),(

cbay

cbaxtyxP

cbay

cbaxtyxP

ay

axtyxP

++=→

++=→=

++=→

++=→=

=→

=→=

By solving for the three coefficients, we obtain:

3211

3211

11

242

43

xxxc

xxxb

xa

+−=
−+−=

=

3212

3212

12

242

43

yyyc

yyyb

ya

+−=
−+−=

=

Lagrange interpolation produces acceptable results. However for larger values of n, the

interpolated curve tends to wiggle due to the behaviour of higher degree polynomials. The

term “wiggle” means that the curve oscillates between points, which gives slope oscillations.

For this reason Lagrange interpolation is often not satisfactory for smooth and fair curves,

especially for aesthetic purposes. Also as demonstrated in Farin’s book [44], Lagrange

interpolation is said to be ill conditioned. This means that for small changes in the input data

might result in serious changes of the result.

Chapter 5 Spline Curve Modelling

Page 64

5.3.2 Hermite Interpolation

Lagrange interpolation only takes data points as input, another interpolation scheme known

as Hermite Interpolation defines a curve in terms of its derivatives of order n at the point Pi.

Therefore the data are derivative vector ()i

r
uP of order 0 ≤ r≤ n and the curve equation

takes the following form Forrest [52], Farin [44], Faux [46]:

() () ()uLuPuP ir

n

r

i

r

,

0

∑
=

=

where ()uL ir , are the blending functions:

() ()
!

,
r

uu
uL

r

i
ir

−=

In Hermite interpolation, both nth derivative vectors and data points are taken as input, thus

(n+1) as many coefficients as in Lagrange interpolation. For example, cubic interpolation

takes first order derivatives (tangents continuous) and quintic interpolation takes second

order derivatives (curvature continuous).

A smooth curve segment is obtained by joining two end-points Po and P1 together with

specified end-tangents t0 and t1, Figure 21. In order for a cubic P(u) with 0 ≤ u ≤ 1, to meet

these conditions, the following relations must stand:

() ()
() ()1 ; 1

; 0 ; 0

.

11

.

00

PtPP

PtPP

==

==

Where ()uP
•

 is the first derivative of P(u) with respect to u:

() () () ()32 uducubauP +++=

() ()
duucb

du

udP
uP

232 ++==
•

By feeding the above conditions in the cubic, the followings are obtained:

Chapter 5 Spline Curve Modelling

Page 65

() ()
() () dcbPtPP

PtPP

321 d;cba 1

; b0 a; 0

.

11

.

00

++==+++=

====

Which are solved to evaluate the unknown coefficients

1010

1010

0

0

22

233

ttPPd

ttPPc

tb

Pa

++−=
−−+−=

=
=

Figure 21: Construction of a curve segment with tangents

Hermite interpolation has one advantage over other methods (Bézier, B-spline): it stores

interpolation points explicitly. In the B-spline from, they must be computed. In real life,

curve tangents are difficult to measure form a physical model. For this reason Hermite

interpolation is not frequently used, otherwise the tangents must be evaluated in order to

satisfy continuity constraints between adjacent curve segments.

5.3.3 Approximation

In interpolation, a curve is constructed so that it satisfies a set of constraints precisely

(position, tangent…). In some instances, especially with data from digitised models, there

are too many data points to interpolate with a polynomial curve. An alternative to

interpolation is approximation, where the curve does not pass through the points but near

P0 P1

P(u)

t0
t1

Chapter 5 Spline Curve Modelling

Page 66

them (‘near’ is bounded by a tolerance). Figure 22 shows an example of curve

approximation with n+1 points. The curve is constrained to pass through the first and last

point P0 and Pn. The problem becomes finding a curve P(u) such that the distances

)(iii uPPe −= are as small as possible. A least squares approximation is typically used for

this purpose. See Farin’s book [44] for further details.

Figure 22: Curve approximation, n+1 points. The curve is constrained to pass through P0 and

Pn

5.4 The Bernstein-Basis

The previous paragraph has shown that curves can be constructed by interpolating data

points with Lagrange polynomials as well as derivative vectors with Hermite interpolation.

Data fitting with interpolation is convenient for simple curve construction but control over

shape is difficult because derivative vectors have to be completely specified.

As already mentioned, in the power-basis form, the coefficients [A, B, …] do not bear any

apparent geometrical significance. The power-basis formulation is purely algebraic, which is

not suited for design purposes. Also it is numerically unstable, inaccuracy in or computer-

rounding errors lead to great shape variations in the resulting curve. Other techniques such as

Bézier and B-spline provide better control over shape. Both methods are derived from the de

Casteljau construction algorithm. Also the Bernstein polynomials, which form the basis

functions of Bézier and B-splines is presented in this paragraph.

Pi

ei

P0

Pn

Chapter 5 Spline Curve Modelling

Page 67

5.4.1 Bézier Curves

The curves that are known as Bézier curves were independently developed by P. de

Casteljau in 1959 at Citroën and P. Bézier at Renault in 1962. Strangely enough the two

engineers were not aware of each other’s work despite the proximity of the two companies.

Even though P. de Casteljau had first discovered the algorithm, only P. Bézier published his

work, which is in a sense the generalisation of the algorithm. Hence why the curves bear his

name today. The mathematical theory behind Bézier is the concept of Bernstein

polynomials. But it was not before 1970 that R. Forrest from Cambridge University

established the connection between the Bézier curves and the Bernstein polynomials.

5.4.2 The de Casteljau Algorithm

The de Casteljau Algorithm is the fundamental concept in free-form curve design with

polygons. Bézier and B-Splines curves are direct application of this construction method.

A simple curve construction with the de Casteljau algorithm is given here. Let three points,

210 , P, PP in 3D space and u a parameter real. From the generic expression of the straight

line, we can write the three equations of 1

1

1

0 and PP :

() ()
() () 21

1

1

10

1

0

1

1

uPPuuP

uPPuuP

+−=

+−=

Then we create a straight-line segment between the moving points on the first two:

() () 1

1

1

0

2

0 1P uPPuu +−=

and combine the first two equations into the third one, we get:

() () () 2

2

10

22

0 121P PuPuuPuu +−+−=

or in the power basis form it becomes:

() () () 2

210101

2

0 2P uPPPuPPPu +−+++=

Chapter 5 Spline Curve Modelling

Page 68

This is a quadratic expression function of u, which in fact is a parabola. The de Casteljau

construction consists of a repetition of linear interpolation for values of parameter u from

zero to 1, as shown in Figure 23 below.

Figure 23: de Casteljau construction out of two fixed straight line segments and one varying

segment.

The terms u and (1-u) correspond geometrically to equal ratios between each single- and

double-ticked part of each straight-line segment:

() () () ()ttPPPratioPPPratioPPPratio −=== 1,,,,,, 1

1

2

0

1

02

1

111

1

00

5.4.3 Bernstein form of Bézier Curves

Bézier curves can be defined by a recursive algorithm such as the de Casteljau’s. However a

more mathematical definition is often needed. The Bernstein form a Bézier curve, first

established by Forrest [51]. It is not in the scope of this thesis to get in too many

mathematical details, it is discussed elsewhere in Bernstein [11], and its application to Bézier

curves in Faux [46] and Farin [44].

A nth degree Bézier curve is defined by:

() () i

n

i

ni PuBuP ∑
=

=
0

,

0P

1P

2P

u

1

0P

1

1P

2

0P

0 1

Chapter 5 Spline Curve Modelling

Page 69

Where iP are the position vectors of the (n+1) vertices and niB , are the Bernstein

polynomials that are obtained from the Weierstrass theorem and are defined by:

() () ini

ni uu
iin

n
B

−−
−

= 1
!!

!
,

The cubic Bézier curve implemented in Renault’s UNISURF CAD system, is a special case

of this general curve, where n=3 and i=4, Figure 24. In this case, the blending functions are:

()

()

()

() 303

3,3

3212

3,2

3221

3,1

3230

3,0

1
6

6

331
2

6

3631
2

6

3311
6

6

uuuB

uuuuB

uuuuuB

uuuuuB

=−=

−=−=

+−=−=

−+−=−=

Where it is assumed that 1lim
0

=
→

i

i
u .

Figure 24: Cubic Bézier curve with four-vertex polygon

5.4.4 The Matrix Form

The Bernstein polynomials can be conveniently written in a matrix form:

() BPuP =

0P

1P

3P

1

0P

1

1P

2

0P

2P

1

2P

2

1P

3

0P

u

0 1

Chapter 5 Spline Curve Modelling

Page 70

where P is the points matrix, which for a cubic is



















=

3

2

1

0

P

P

P

P

P

and B the Bernstein polynomials

[]3,33,23,13,0 ,,, BBBBB =

The B matrix can be expressed as the product of two other matrices

UBmB =

where

[]123 uuuU =

and Bm is the coefficients of the Bernstein blending functions



















−
−

−−

=

0001

0033

0363

1331

Bm

5.4.5 The Recursive Form

An important property of the Bernstein polynomials is the recursive form, which will prove

useful later for the construction of B-splines.

() () ()() ()()uuBuBuuB dkdini 1,11,, 1 −−− +−=

5.4.6 Some Properties of the Bézier Curves

Any Bézier curve lies within its defining polygon and passes through the first point and last

point. Modification of the polygon vertices will change the global shape of the curve. It can

Chapter 5 Spline Curve Modelling

Page 71

also be refined by elevating the order of the curve (adding more points in the polygon), but

this will induce more computation, and is not an attractive option. Rather, composite Bézier

curves are introduced. Curves may be composed of several Bézier curves in order to

generate more complex shapes that are too complex for a single curve to handle. To achieve

piecewise construction, continuity conditions are required. This leads to the generalisation of

Bézier, called B-splines.

5.5 B-spline Curves

The motivation behind B-splines is that interpolated curves or curves consisting of one

single segment are often inadequate, their shortcomings are:

Ø A high degree is required to satisfy a large number of constraints: an n+1 degree

polynomial is needed to pass through n data points.

Ø Interpolated curves are not well suited to interactively modify shape; Although Bézier

polygons allow this, control is not sufficiently global.

B-splines address these problems by combining both the properties of piecewise data-point

interpolation and Bézier-like control polygon in one fundamental definition.

Ø The degree of the curve is independent of number of control points

Ø Local shape control is possible because individual control points have only local

influence.

The term Spline comes from early engineering applications such as shipbuilding and

airplane. Draftsmen define free-form shapes using flexible stripes of metal or wood. These

splines were distorted by means of weights applied at specific distances along them. The

mechanical properties of the material used offered deformations with second order

continuity, which is a property enclosed in modern mathematical splines. Although physical

splines are rarely used, the underlying principle forms the basis of new algorithms.

In literature, B-splines also called fundamental splines are in some ways the natural

generalisation of Bézier curves, Back [8]. Woodwark’s statement in Bowyer [18] about B-

splines summarises fairly well the situation:

Chapter 5 Spline Curve Modelling

Page 72

“B-splines curves are just pieces of Bézier curve ingeniously knotted together; whatever the

hype, don’t forget this.”

5.5.1 B-spline Blending Function

A B-spline is defined by its polygon vertices also called control points together with an array

of knots where the pieces of curves join, A nth degree B-spline is defined by the following

expression, Farin [44], Piegl [84], Bowyer [18]:

() () i

n

i

ni PuBuP ∑
=

=
0

,

Where iP are the control points and niB , are the recursive basis functions:

() () ()uB
uu

uu
uB

uu

uu
uB ni

ini

ni

ni

ini

i

ni 1,1

11

1

1,

1

, −+
+++

++
−

−+ −
−

+
−

−
=

5.5.2 Rational Curves

The rational form of Bernstein Polynomials, often called NURBS, as Non-Uniform Rational

B-spline, are the latest fashion in free-form curves and surfaces. Standard literature on

NURBS is Piegl [84], Farin [45]. The main advantage over the non-rationals is their

invariant property under projective transformation. This means that the projection of a

rational curve is a rational curve. Also rational polynomials allow representation of shapes

like where traditional non-rationals fail. This is the case of all conics, including circle.

In short, NURBS are defined as the ratio of two polynomials (a spline divided by a spline).

They are represented with rational functions of the form

() ()
() () ()

()uW

uY
uy

uW

uX
ux ==

Where () () ()uWuYuX and , are polynomials, that is, each of the coordinate functions have

the same denominator.

Chapter 5 Spline Curve Modelling

Page 73

Combining the above with the definition of B-splines, a pth degree rational B-spline is

therefore

()
()

()
i

n

i

pi

ii

n

i

pi

wuB

wPuB

uP

∑

∑

=

==

0

,

0

,

As before iP are the polygon vertices, and piB , are the B-spline basis functions. iw are

scalars called weights.

Like with Bézier and B-splines, shape control is achieved by moving the polygon vertices

iP , and in the case of rationals by changing iw values. Figure 25 shows the effect on

changing weight values of one polygon vertex on a cubic Bézier. Weights must be positive

and nonzero.

Figure 25: Rational cubic Bézier curve with W2 varying

0P

1P
2P

3P

W2=3

W2=1/2

W2=2

W2=1

Chapter 5 Spline Curve Modelling

Page 74

5.6 Summary

This chapter has introduced some techniques for modelling of free-form shapes. They can be

classified into two categories: Those that are constructed by interpolating data points

(Lagrange) and some degree of vectors associated with them (Hermite, Spline); and those

that are constructed with the de Casteljau algorithm and modelled with Bernstein

polynomials (Bézier, B-spline, NURBS).

All these curve and surface modelling schemes belong to the same family of curves. It is

common to see geometric modellers representing internally all of these as NURBS, which is

the most generic scheme, the others are seen as a special case of NURBS - only the

modeller’s interface (calling functions) differs. This approach is attractive with regards to

representation homogeneity Choi [23] between modellers present weaknesses.

NURBS is weak for producing quality curves: polynomials of high degree tend to wiggle in

between control points. NURBS representation shows immediate limitations because

constraints are only applicable discretely at the control points. What goes on in between is

function of these, but not always in a predictable manner. The most encouraging formulation

is the Hermite interpolation which explicitly holds high order differential constraints which

can be used as handles on the curve’s shape. These considerations are treated in forthcoming

chapters.

Page 75

Chapter 6 Differential Geometry of

Curves

Before exploring the depths of curve optimisation techniques, this chapter introduces some

aspects of differential geometry necessary for their understanding. The notation details of the

vector algebra used in this chapter is included in Appendix 4.

Early work on differential geometry applied to curves and surfaces dates from the XIXth

century with French mathematicians like Jean Frederic Frénet 1816-1900, Joseph Alfred

Serret 1819-1885, Joseph Louis Bertrand 1822-1900, Victor Mannheim 1831-1906, Jean

Gaston Darboux 1842-1917. More modern literature includes Aminov [3], Gibson [53],

Nutbourne [80], Eisenhart [41].

In describing the geometric character of a curve, six quantities are considered: the position,

tangent, principal normal, bi-normal, curvature and torsion. The definition of curvature and

torsion are central to the discussion of a curve’s shape. The theorems of Existence and

Uniqueness state that the torsion and curvature functions together totally define a curve up to

a motion of Euclidean space. k(u) and τ(u) are called the natural or intrinsic equations of a

curve.

6.1 Frénet Frame

At this stage, it is necessary clarify the term “parameterisation”. It can either mean “choice

of parameter” (as here) or “conversion from implicit to parametric form” (the opposite of

implicitisation). For the purpose of this discussion it is assumed that all example curves are

described using a differentiable vector valued function of the form of Equation 1.

Chapter 6 Differential Geometry of Curves

Page 76

Equation 1

where u is an arbitrary curve parameter, with the restriction that 0||)('|| ≠uP for all u; this is

called the regular parameterisation. An alternative parameterisation called arc length

parameterisation given in Equation 2 is also considered. Under this parameterisation,

1||)('|| =uP everywhere.

Equation 2

For the purpose of the discussions in this thesis, P(u) refers to an arbitrary regular

parameterisation and P(s) refers to an arc length parameterisation.

Figure 26: Frénet frame

∫=
u

a
duuPus ||)('||)(

[]ba,u)}(),(),({)(∈= uzuyuxuP

Norm al
O sculating circle

Centre of curvature

Tangent

B i-Norm al

Rectify
ing P

lane

O sculating Plane

Norm al P lane

Chapter 6 Differential Geometry of Curves

Page 77

The Frénet frame describes a sliding orthogonal coordinate system defined at each point on

the curve. The three unit vectors of the Frénet frame are the tangent (T), normal (N) and bi-

normal (B). These form three planes, which contain the three vectors above. [T,N] form the

osculating plane, [N,B] form the normal plane and [B,T] form the rectifying plane (see

Figure 26).

Because the three vectors making the frame are orthogonal and unit length, the following

relations stand.

Equation 3

6.1.1 Tangent

Figure 27: Tangent of a curve

The curve Figure 27 is a general 3D curve defined by its position vector P = ()uP . The

vector () ()uPuuPP −+= δδ represents the chord P0Q joining the two points P0 and Q with

parameters u and δu. As 0→uδ , the vector uP δδ has a direction that approaches the

direction of the tangent at P0. If the arc length s is the parameter, then the chord length Pδ

and the arc length sδ are equal in the limit, Faux [46], Aminov [3]. In Equation 4, T is a unit

vector of direction the tangent of the curve at point P0.

TBNBNTNTB ×=×=×= ; ;

δs

s

P(u)

P(u+δu)

δP

0

Q

P0

Chapter 6 Differential Geometry of Curves

Page 78

Equation 4

With respect to parameter u, for any point P of the smooth curve ()uP there exist the tangent

to ()uP , and the directing vector of the tangent is T, Aminov [3]. Assuming that the curve

()uP has a derivative function P’(u), the unit tangent can be written as follows:

Equation 5: Tangent function of parameter u

6.1.2 Principal Normal and Curvature

The normal is a unit vector that is perpendicular to the tangent. Evidently there is an infinity

of normals to a curve at a point. Two of these are of particular interest: the normal which lies

on the osculating plane, called the principal normal; and the normal which is perpendicular

to this plane called the bi-normal.

If P(s) is an arc length parameterised curve, then P’(s) is a unit vector, and hence P’(s)

P’(s)=1. Differentiating this relation, gives

Equation 6

Which states that P’’ is orthogonal to the tangent vector, providing that it is not a null vector.

This fact can also be interpreted from the definition of the second derivative P’’(s)

s

P

ds

sdP
sT

s δ
δ

δ 0
lim

)(
)(

→
==

)('
)(

)('
)(uP

uP

uP
uT ==

0''' =(s)(s) .PP

Chapter 6 Differential Geometry of Curves

Page 79

Equation 7

Figure 28: Principal normal and curvature

As shown in Figure 28, the direction of)(')(' sPssP −∆+ becomes perpendicular to the

tangent vector as 0→∆s . The unit vector which has the direction and sense of P’(s) is the

principal normal vector to the curve at s.

Equation 8: Normal function of arc s

Where)(' ssP ∆+ moved from Q to P, then)(' sP ,)(' ssP ∆+ ,)(')(' sPssP −∆+ form an

isosceles triangle (see Figure 28), since)(' sP and)(' ssP ∆+ are unit tangent vectors. Thus

0 as)(''1.)(')(' →∆∆=∆=−∆+ sssPsPssP θ henceκ is the curvature, and its reciprocal

ρ is the radius of curvature at s. It follows that

s

sPssP
sP

s ∆
−∆+=

>−∆

)(')('
lim)(''

0

)('
)('

)('

)(''

)(''
)(sT

sT

sT

sP

sP
sN ===

P

Q

s∆

N

θ∆

)(' ssP ∆+

)(' sP
)(' sP

)(' ssP ∆+

)(')(' sPssP −∆+

θ∆

ρ

Centre of curvature

Chapter 6 Differential Geometry of Curves

Page 80

Equation 9

Equation 10: Curvature function of arc s

With respect to the parameter u, the curvature of a curve involves a vector product of the

curves derivatives

() 3

4
in

)('

)(')('')('
)()(ℜ××=

uP

uPuPuP
uNuκ

2

3
in

)('

)('')('
)()(ℜ×=

uP

uPuP
uNuκ

Equation 11: Curvature function of parameter u

6.1.3 Bi-normal and Torsion

The tangent vector T is a unit vector; the principal normal N are orthogonal to T. The vector

product NT × is called the bi-normal of P, noted B. The bi-normal B is well defined when

the curvature k is non-zero.

Equation 12: Bi-normal function of arc s

κ
ρ

θ ==
∆
∆=

→∆

1
lim)(''

0 s
sP

s

)('')()(sPsNs =κ

)('')('
)('')('

)('')('
)(sPsP

sPsP

sPsP
sB ×=

×
×=

Chapter 6 Differential Geometry of Curves

Page 81

The bi-normal is perpendicular to the osculating plane and its rate of change is expressed by

the vector

() ')()(
)(

)()()(' NT
ds

dN
sTsN

ds

sdT
sNsT

ds

d
sB ×=×+×=×=

)()()(''
)(

 Where sNsksP
ds

sdT ==

Equation 13

Since N is a unit vector N.N=1, and N.N’=0. Therefore N’(s) is parallel to the rectifying

plane (B, T) and N’(s) can be expressed as a linear combination of B and T:

Equation 14

Using Equation 13 and Equation 14,

Equation 15

The torsion of an arc length parameterised curve is defined by the formula

Equation 16: Torsion function of arc s

With respect to the parameter u, the torsion is a function of the first, second and third

derivatives.

BTsN τµ +=)('

())()()()()()()(' sNsBsTsBsTsTsB τττµ −=×=+×=

)(''')(')(sPsPs ×−=τ

Chapter 6 Differential Geometry of Curves

Page 82

Equation 17: Torsion function of parameter u

6.1.4 Frénet-Serret Formulae

The well-known Frénet-Serret formulae are a direct result of the above definitions. They are

defined by Equation 18: Frénet-Serret formulae for any curve that is thrice differentiable

with non-vanishing second derivative.

Equation 18: Frénet-Serret formulae

Some implementation issues are worth mentioning. The above relations are function of the

arc length s, hence are valid with arc length parameterised curves. However in reality curves

are never arc length parameterised. To illustrate this, a plot of the first derivative magnitude

)(' uP against parameter u (Figure 31 paragraph 6.3.1) shows that parameter speed and

curve speed are not uniform. It is therefore necessary to substitute the arc length variable s to

a parameter variable u using Equation 19 obtained by derivation of Equation 2.

Equation 19

The Frénet-Serret Formulae adapted to arbitrary parameterisation are written in a matrix

from below

())(
)(

)()()()(
)(

)()(
)(

)(
)(

sNs
ds

sdB

sBssTsk
ds

sdN

sNsk
ds

sdT

sT
ds

sdP

τ

τ

−=

+−=

=

=

[]
2

)('')('

)('''),(''),('det
)(

uPuP

uPuPuP
u

×
=τ

)(' uP
du

ds =

Chapter 6 Differential Geometry of Curves

Page 83

Equation 20: Adapted Frénet-Serret Formulae

These adapted equations have been implemented with ACIS and give satisfactory results

from a pure mathematical point of view. However the algorithm presents a significant

drawback: It is a succession of derivation and normalisation, and because the normalisation

is achieved with a division, it is inefficient to derive an expression that contains divisions.

For this reason the so-called Frénet-Serret equations are not suitable for implementation

purposes. Instead the relations involving the curve’s derivatives without prior normalisation

should be favoured. These are Equation 5, Equation 11 and Equation 17.

6.2 Differential Properties Interrogation

Interrogation techniques attempt to illuminate curve and surface characteristics that are not

easily discernible using conventional rendering. The characteristics relevant to a curve’s

shape are closely related to indistinct geometric properties such as torsion and curvature.

6.2.1 Interrogation Strategy

Geometric modellers like ACIS [1], Parasolid [82] as well as the Djinn interface [38] exhibit

functionality for differential geometry of curves but are incomplete. With ACIS and

Parasolid, functions that return the tangent, normal and curvature of a curve at a given

parameter value are present. As for the bi-normal and torsion these are non-existent. This

perhaps is because curves are commonly modelled with cubic polynomials, which are

curvature continuous but not necessarily torsion continuous; therefore it is assumed that the

bi-normal and torsion are irrelevant. Djinn however is more complete, at page 313, a

procedure called DJ Edge Curvature outputs all the differential properties defined by the

Frénet-Serret equations of a given edge at a given point coordinate.

































−
−=

















)(

)(

)(

0)(0

)(0)(

0)(0

)('

)('

)('

uB

uN

uT

u

uu

u

du

ds

uB

uN

uT

τ
τκ

κ

Chapter 6 Differential Geometry of Curves

Page 84

All these have limited use because they are discrete functions, which means that they return

values at a given parameter value. However, many of the applications for curve

optimisations developed later in this thesis need T, N, B, k and τ as continuous functions. It

was found that optimisation algorithms in literature have adopted a devious strategy, Jones

[65]. A curve is interrogated for some properties with dense sampling and the point cloud is

used to interpolate a spline curve. The interpolated curve is used as graphic representation of

the curve’s property function, but does not carry mathematical meaning of any sort. Munaux

and Tiwari, Roy et. al. [94], [99] have used this method extensively in curve optimisation

algorithms using genetic algorithm. Their method gave satisfactory results for constructing

curves with prescribed curvature profile but suffered from a lack of rigour and exactness.

The problem with the dense sampling method is that it gives very little information of what

happening between sampled points. The function might be discontinuous there and the

analysis would miss it. This methodology has limited power but permits simple algorithms

to work when no other options are available.

6.2.2 Continuous Interrogation

Recently ACIS has included the LAW class, which is a powerful facility for creating curve

and surface geometry either directly in terms of parametric equation or indirectly by means

of offsets, sweeps, and wraps, Corney [28]. A law is represented internally by a tree of C++

classes that know their dimensions, how to evaluate themselves, and how to take their exact

(symbolic) derivatives with respect to any combination of variables. In addition, law utility

functions numerically integrate, differentiate, and find roots. Many questions can be

answered by knowing where some combination of them is maximal or minimal. The ACIS

law class uses Function Representation for the definition of geometry, see paragraph 4.3, and

enables accessing the true mathematical representation of curves: this is a continuous vector

field function of a single parameter. Better still, these vector fields are differentiable

functions and the result of a derivation is also a continuous differentiable function.

There are a great number of algorithms in the literature for doing curve optimisation, and all

of them are specific to the NURBS representation and are bound to use discrete interrogation

methods like the one described above when inquiring about differential properties. Clearly

F-rep bears some immense potentials as a substitute to NURBS when a more fundamental

Chapter 6 Differential Geometry of Curves

Page 85

description of a curve is needed. Immediate applications of F-rep to curve optimisation are

the fundamental theorems of differential geometry that have been forgotten by the CAD

community since the appearance of NURBS. This thesis reports on attempts to use

fundamental differential geometry to serve the purpose of curve optimisation within CAD

and documents the interface functions created for this purpose. Some of these have been

implemented using the existing ACIS functionality while others, more wishful thinking, are

defined and discussed but have not been implemented purely because of the limited

functionality of the geometric modeller, ACIS.

6.3 Differential Properties Representation

The differential properties of a curve are obtained from the Frénet-Serret equations

developed above. These properties must be represented and conveyed to the designer in

some ways. The properties which are vector valued are best represented geometrically in the

graphic interface. Other information such as discontinuities and topology could be

represented elsewhere in text format. This paragraph presents some several techniques for

graphic representation of differential properties. These are classified into two categories,

indirect and direct, Moreton [73].

6.3.1 Indirect Methods

Indirect methods are characterised by plots of properties separately from the subject curve.

Intrinsic Equation Plots

A typical example of an indirect method is plotting a 2D curve showing curvature k versus

parameter u of a curve P(u); Figure 29 is actually a parametric vector equation of the form:

Chapter 6 Differential Geometry of Curves

Page 86

Equation 21: Curvature plot

Since)(')(uTu =κ ,)(uκ is always positive, Points at which the curvature is zero are

called points of inflection. Nutbourne [80] mentions that if there is an S-bend in the curve,

the vector T’(u) changes sign as the curve passes through a point of inflection. Thus the

vector N(u) is flung from one side of the curve, this also implies that the bi-normal vector

reverses direction. In presence of a planar curve this is not a desirable behaviour and he

suggests an alternative definition of the normal vector to be either in the same direction as

)(' uT or in the reverse direction at some key points and thereafter maintain its presence, even

at a point of inflection without any sudden reversals of direction. An advantage of this

redefinition is that the curvature can now be signed and the graph of k as a function of u may

cross the u axis smoothly. This redefinition of curvature is only valid for planar curves. An

S-bend curve with torsion would not have null curvature at the inflection point, rather the bi-

normal will swing around the curve.

Figure 29: Curvature plot

Parameter u

C
u

rv
a
tu

re
 k

Point of inflection on the parent curve

Parameter u

C
u

rv
a
tu

re
 k

Point of inflection on the parent curve

Point of inflection

Parameter u

















=
0

)()(uk

u

uP

Chapter 6 Differential Geometry of Curves

Page 87

An alternative to curvature is plotting the radii of curvature, which undoubtedly is more

geometrically intuitive than the curvature metric. The main disadvantage with these kinds of

plots is that the radii of curvature tend to vary over a large range. Also if the analysed curve

exhibits flat sections, the radii will be infinite. Therefore it is necessary to limit the range of

the plot.

Planar curves have null torsion however with space curves it is often necessary to look at the

torsion plot. A torsion plot, presented in Figure 30 is obtained analogously to a curvature

plot, its vector functions becomes:

















=
0

)()(u

u

uP τ

Equation 22: Torsion plot

Figure 30: Torsion plot

Derivative Plot

In those applications, it is important to assess the uniformity of a curve’s parameterisation.

For example, in CNC milling operations the tool path should be uniformly parameterised so

that the cutting tool does not speed up or slow down while machining. Evaluation of a curve

for cutter control is achieved by examining the plot of first derivative magnitude against

parameter. The plot of first derivative magnitude, Figure 31, shows that the parameterisation

is continuous but not uniform.

Parameter u

T
o
rs

io
n
 τ

(u
)

Parameter u

T
o
rs

io
n
 τ

(u
)

Chapter 6 Differential Geometry of Curves

Page 88

Figure 31: First derivative magnitude against parameter u

6.3.2 Direct Methods

Direct methods come into two major sub-categories, Moreton [73]: mapping techniques and

compound rendering. Mapping techniques map a curve into a new curve. Polar mapping

produces a curve with cusps that correspond to inflection points in the subject curve. Yet

another measure for planar curves includes K-orthotomics curves, which are well known in

the field of optics, Hoscheck [62]. Compound renderings result from displaying the

geometric measures of a curve combined with the curve itself. It was already established that

any curve could be represented as a continuous vector function. From there, it is easy to

perform the basic vector algebra operations, introduced in Appendix 4. Several examples of

compound rendering techniques are presented here.

The first example discussed is curvature fin. The normal vector of a curve at a given

arbitrary parameter value u0 is in the direction of the centre of the curvature circle. The

product of curvature value k(u0) at this point with the normal N(u0) indicates the curvature

distribution along the curve as well as the normal direction. Because the values of k are

small, it is necessary to scale the product k(u)N(u) by a constant s for visualisation purposes.

Because of the necessary scale factor introduced, in some regions of the curve, the length of

the vector sk(u)N(u) might be greater than the radius of curvature. This causes the compound

curve to make self-intersecting loop. In order to avoid this, the negate of sk(u)N(u) is

Parameter u

F
ir

s
t

D
e

ri
v
a

ti
v
e

 M
a

g
n

it
u
d
e

Parameter u

F
ir

s
t

D
e

ri
v
a

ti
v
e

 M
a

g
n

it
u
d
e

Chapter 6 Differential Geometry of Curves

Page 89

preferable. A compound curvature fin is obtained by adding the curve vector function with

the above product function.

Equation 23: Curvature fin compound

In the more general case of space curves, torsion also determines the curves shape. On the

same basis as the curvature fin presented above, a torsion fin compound is obtained from the

following equation:

Equation 24: Torsion fin compound

It was established in previous chapters that torsion τ(u) is orientated along the bi-normal

B(u) on the rectifying plane. An example of curvature and torsion fins is presented in Figure

32. The curve interrogation is not carried out by discrete sampling but rather by continuous

differentiation. The segment lines joining the subject curve and the compound curves do not

show points where the curve was sampled, they are purely for illustrative purposes.

)()()(fin curvature uNuskuP −=

)()()(fintorsion uBusuP τ+=

Chapter 6 Differential Geometry of Curves

Page 90

Figure 32: Curvature and torsion fins

It should be noted that such techniques are in effect creating a non-uniform offset curve to

the original. Comparing these approaches with the indirect methods, attaching a fin whose

width is proportional to the geometric measure has some advantages. Primarily, the

curvature and torsion convey higher order quality information more clearly. It is possible to

detect regions of undesirable curvature as well as to assess the overall curvature distribution.

The main drawback is that it is necessary to appropriately scale the measures. Moreover it is

difficult to detect inflections in areas of extremely low curvature. Considering only the

normal and bi-normal directions, they produce a uniform offset that is at a constant distance.

Since both vectors are unit (length of one unit) it is also necessary to scale those.

The normal fin is obtained from the equation:

Curvature Fin

Torsion Fin

Subject Curve

Chapter 6 Differential Geometry of Curves

Page 91

Equation 25: Normal fin compound

Similarly, the bi-normal fin is obtained from the equation

Equation 26: Bi-normal fin compound

This method does not convey any information about curvature distribution but shows

inflections when using a sufficient offset distance, see Figure 33.

Figure 33: Normal and bi-normal fins

Bi-normal Finnormal Fin

Subject Curve

Bi-normal Finnormal Fin

Subject Curve

)()(fin normal usNuP −=

)()(fin normal-bi usBuP −=

Chapter 6 Differential Geometry of Curves

Page 92

6.3.3 Discussions

The Frénet-Serret formulae give useful information on high order differential curve

properties, but present limitations. In the presence of vanishing curvature the Frénet frame is

no longer defined. The normal compound fin of a curve with a s-bend the is a null vector at

the points of inflection and therefore the normalisation is not defined. This is a real problem

because the compound fin shows a discontinuity where there is not.

More generally, where a curve has a flat section, its curvature vanishes and the Frénet frame

is not defined. It becomes necessary to find a trihedral orthogonal frame whose orientation is

arbitrary or governed by other laws than the Frénet-Serret equations and that is defined in

regions of null curvature.

Figure 34: Normal compound fin

6.4 Parallel Transport Frame

An alternative approach to the Frénet curve framing is the parallel transport frame proposed

by Bishop [14]. Typical applications of the parallel transport frame include the generation of

ribbons and tubes from 3D space curves, and the generation of forward-facing camera

orientations, Hanson.[58].

parent curve

normal compound fin
discontinuity at inflection point

Chapter 6 Differential Geometry of Curves

Page 93

Parallel Vector Fields

Given a space curve P(s) parameterised by arc length s, a vector field V(s) is normal to the

curve if it is everywhere perpendicular to the curve’s tangent T(s). A normal vector field is

said to be parallel to the curve if it’s derivative is tangential along the curve; that is

V’(s)||T(s). Such a vector field turns only as much as necessary for it to remain normal.

More generally an arbitrary vector field V(s) along a curve P(s) is parallel if its normal

component is parallel and its tangential component is a constant multiple of the unit tangent

field of P(s) The curve)()()(sPsVsQ += is parallel curve of P(s).

Properties of Parallel Vector Fields

A curve P(s), a parallel normal vector field V(s), and the corresponding parallel curve Q(s)

have the following properties:

• V(s) has constant length

• V(s) is perpendicular to both P(s) and Q(s)

• An initial normal vector 0V at a point)(0sP generates a unique parallel field

V(s) on P(s) such that 00)(VsV =

• If normal vectors 0V and 0U generate parallel fields V(s) and U(s) respectively,

the angle between V(s) and U(s) is constant along the curve, that is

00.UVV(s).U(s) = for all s.

Bishop Frame

The basic concept of the parallel transport frame, called Bishop frame here, is to observe that

while)(sT is unique, any convenient basis))(2),(1(sNsN in the plane perpendicular to

)(sT can be chosen at each point. If the derivatives of))(2),(1(sNsN depend only on)(sT

and not on each other,)(1 sN and)(2 sN can vary smoothly through the path regardless of

the curvature. The following equations define the Bishop frame:

Chapter 6 Differential Geometry of Curves

Page 94

































−
−=

















)(

)(

)(

00

00

)()(0

)(

)(

)('

2

1

2

1

21

'

2

'

1

sN

sN

sT

k

k

sksk

du

ds

sN

sN

sT

with

()

dt

sd
s

k

k
s

kks

)(
)(

arctan)(

)()()(

2

1

212

2

2

1

θτ

θ

κ

−=









=

+=

Equation 27: Bishop Equations

6.5 Families of Curves

This paragraph shows a series of curves of different types, with a range of geometric features

analysed with the new differential properties representation approaches. The aim of this

material is to demonstrate how the new approaches can be used to analyse the geometry of

curves. Also it serves the purpose of validating the algorithms implemented in HulaHoops,

the CAD system developed in this research. Detailed information on HulaHoops is presented

in Chapter 9 and Chapter 10.

Later in Chapter 8, the differential properties used to examine the geometry of curves are

implemented in curve optimisation applications, which use these as constraints. The

constraints prescribed by the user are used for recreating optimised curves.

6.5.1 Feature Curves

Feature curves are classified upon their dimension: planar or space and their curvature

convex properties.

Chapter 6 Differential Geometry of Curves

Page 95

Convex Planar Curves

A planar convex curve is a curve embedded in a plane, thus has zero torsion. Its convex

property state that it is monotonous, that is its signed curvature is the same sign every where.

The curvature compound fin in Figure 35 is around the outside of the curve

Figure 35: Convex curve

Figure 36:Convex curve curvature and torsion profiles

Convex Space Curves

Space curves have non-zero curvature and torsion profiles. The curvature profile, Figure 38,

does not come to the zero value and the normal fin compound, Figure 37, does not swing

T
o

rs
io

n

C
u

rv
a

tu
re

0 0 t t

Chapter 6 Differential Geometry of Curves

Page 96

direction, so: the curve is convex. Also the torsion profile is visibly showing a rise in

curvature in the middle of the curve.

Figure 37: Convex space curve

Figure 38: Convex space curve curvature and torsion profiles

S-bend Planar Curves

S-bend curves are curves which change normal direction, this is visible on the curvature

compound fin Figure 39.

T
o

rs
io

n

C
u

rv
a

tu
re

0 0 t t

Chapter 6 Differential Geometry of Curves

Page 97

Figure 39: Planar S-bent curve curvature compound fin

The inflection point is the point where the compound fin crosses the curve. At this point the

normal vector swings around the curve. As discussed in paragraph 6.3.3, this feature curve

shows a deficiency of the Frénet formulation: The normal vector is not defined at the

inflection point because it is the norm of the curvature vector, which is null at this point. The

normal compound fin irregularities at the inflection point proves the presence of a

discontinuity in the function. For this reason, the normal fin compound is not considered for

engineering applications.

The curvature profile in Figure 40 has two picks of curvature on either side of the inflection

point where curvature is zero.

Chapter 6 Differential Geometry of Curves

Page 98

Figure 40: Planar S-bend curvature profile

S-bend Space Curves

Analysis of the S-bent curve with non-zero torsion reveals the behaviour of the torsion

vector on either parts of the inflection point. As the bi-normal vector swings around the

curve, the torsion increases in great proportions with its maximum at the inflection point.

Figure 41: Space S-bend curvature and torsion compound fins

Parameter

C
u

rv
a

tu
re

Chapter 6 Differential Geometry of Curves

Page 99

For the space S-bend curve, the curvature and torsion profiles are plotted on the same graph,

Figure 42. The curvature profile is similar from the previous example, which was a planar S-

bend curve, only this time the curvature profile does not touches the zero line where there

was an inflection point before. This indicates that the curvature is never null. However the

torsion picks where curvature is minimum, so the twist is greater where curvature is lesser.

Figure 42: Curvature and torsion profiles

6.5.2 Helical Offsets

Helical offsets are obtained by controlling the offset distance and the twist along the parent

entity. This offsets allow the construction of helices. Helical curves are special curves

whereby the curvature and the torsion are proportional to each other. Helices give rise to a

great variety of curves, some of their representatives are examined with the new approaches

introduced earlier in this chapter.

Helix

The simplest case is the helix is a curve whose curvature and torsion profiles are non-zero

constant. An example of Helix from Figure 43 shows the curve is drawn on to a cylinder

whose cross-section is a circle. Also the curvature and torsion compound fins indicate that

helix has constant curvature and torsion. This is confirmed by the curvature and torsion plots

in Figure 43. Both plots are constant and torsion is greater than curvature, which means that

the thread twist is more than the curvature radius.

Parameter

C
u

rv
a

tu
re

 a
n

d
 T

o
rs

io
n

Chapter 6 Differential Geometry of Curves

Page 100

Figure 43: Helix curvature-and torsion compound fins

Figure 44: Helix curvature and torsion profiles

Expanding Helix

The expanding helix has an arbitrary curvature profile and a torsion profile that is

proportional to the curvature profile. The compound fins, Figure 45, show that the curvature

and the torsion are greater at the beginning of the curve than at the end, but are proportional.

T
o

rs
io

n

C
u

rv
a

tu
re

0 0 4Π 4Π

Chapter 6 Differential Geometry of Curves

Page 101

Figure 45: Expanding helix curvature and torsion compound fins

Figure 46: Expanding helix curvature and torsion profiles

Toroidal Round Helix

The toroidal round helix is constructed by offsetting a circle by a constant distance. The

result is curve that curls around the parent circle. The curvature and torsion profile in Figure

48, indicate that both profiles are cyclic and are in opposition of phase.

T
o

rs
io

n

C
u

rv
a

tu
re

0 0 4Π 4Π

Chapter 6 Differential Geometry of Curves

Page 102

Figure 47: Toroidal round helix Frénet frame fins

Figure 48: Toroidal helix curvature and torsion profiles

T
o

rs
io

n

C
u

rv
a

tu
re

0 0 2Π 2Π

Page 103

Chapter 7 Spline Curve Construction

and Optimisation

Chapter 7 Spline Curve Construction and Optimisation

Page 104

The construction of piecewise curves implies providing additional data other that the

interpolation points coordinates. These constraints give the opportunity to gain control on the

curve’s shape. This Chapter explores means of constructing spline curve piecewise using

constraints defined at the joining knots. Further, ways of representing the constraints for

optimisation is also proposed. For spline curve optimisation, position, differential and

parameter constraints are considered.

7.1 Piecewise Construction

It is not feasible to make a long curve or complicated surface with one high degree

polynomial. The problems come from difficult parameterisation and that high degree

polynomials are computationally expensive (because of the number of terms). They are

sensitive to inaccuracies and tend to give wiggly curves. To overcome these problems,

parametric curves are best described as a piecewise phenomenon. This means that one curve

is defined by several curves (spans) joined together in a continuous manner. The degree of

continuity achievable between curve spans is one less than the degree of each spans. At best

• Quadratics join with C1 continuity

• Cubic join with C2 continuity

• Quintic join with C3 continuity

7.1.1 Control Points

The degree of the curve is one less than its order; i.e. the number of control points for each

segment. A quadratic is defined by three points, a cubic four, and so on. In other words:

nKiKs −=

curve theof degree

points control ofnumber K

segments ofnumber K where

=
=
=

n

i

s

Chapter 7 Spline Curve Construction and Optimisation

Page 105

In B-spline construction, adjacent segments share control points. The number of common

points is determined by the degree of the curve, thus the type of continuity in which

segments blend.

Unlike Bézier curves which are totally defined by a set of control points, B-splines require

both the degree of the curve and the parameter values at which the segments meet (knots)

before the blending function can be evaluated. It should be noted that Bézier vertices and B-

splines are different, except in certain cases when the whole B-spline is one single cubic

Bézier span.

7.1.2 Knot Construction

Parameterisation

Explicit approximation is often used in applications, but since the geometric entities we are

concerned with at present are of parametric form, parameterisation becomes unavoidable. In

designing free form curves, positions, tangent vectors (and others) are known constraints.

Still when parametric equations are used, a parameter value must be assigned to each data

point. The resulting quality of the curve is heavily dependent on the parameterisation; hence

an appropriate parameterisation method is required. The problem is straight forward in the

case of Lagrange interpolation: The parameter can be evenly spaced along the curve for each

data point, provided that data points are equally spaced, which in practice is never the case.

In general, the problem of parameterisation lies in finding the curve length between two data

points and subsequently assigning parameter values to each of them. In the more general

case of curve fitting through an ordered set of scattered data, an initial cord length

parameterisation is commonly used for parameter estimate of the curve’s arc length.

The cord length parameterisation method works well in most cases but presents weaknesses

with sharp corners Cohen [26]. Alternatives solutions are centripetal and the Foley methods

(see Farin’s Book [44]). Also, in presence of dense data (obtained from digitisation for

example), chord length parameterisation is difficult and other approximation techniques are

favoured.

Chapter 7 Spline Curve Construction and Optimisation

Page 106

Figure 49: Knotted curve

The end point of one span is the start point of the next, these are known as knots, Figure 49.

Each knot has a parameter value associated with it. In order to construct a curve piecewise

construction, a knot sequence must be provided. The knot sequence, often called knot vector,

depends on the number of control points and the degree of the curve:

1−+= nKiKp

curve theof degree

points control ofnumber K

knotsnumber where

=
=
=

n

i

Kp

Equation 28: Knot sequence calculation

The values in the knot sequence must never decrease but can be repeated. The number of

repetitions is referred to as the knot multiplicity. Multiple knot values reduce the degree of

continuity by one for each repeat. This should be avoided as it might create undesirable

discontinuities in the curve. However this property is commonly used in B-spline

construction to make the curve interpolate the start and finish control points. In the case of a

cubic, the first and last three-knot values repeat; it would be the first and last two-knot values

for a quadratic. The highest curve degree possible is one less than the number of control

points. It was mentioned before that Bézier curves are a special case of B-splines. The cubic

Bézier, of degree three, has four control points, one segment, and two knots. Using the

general B-spline formulation, its knot vector is:

{ }1 111000 0t_VectorBezier_kno =

Segment 1 Segment 2

Segment 3

Chapter 7 Spline Curve Construction and Optimisation

Page 107

Illustrations

The following examples demonstrate the effect of parameterisation on a cubic curve created

from the control point vertices below. The start and end parameter values are kept constant,

the internal knot values are variable.

const position pt1 (0, 0, 0);

const position pt2 (10, 25, 0);

const position pt3 (25, 25, 0);

const position pt4 (40, -10,0);

const position pt5 (60, 0, 0);

const position pt6 (60, 10, 0);

Ø This knot vector creates three curve segments of equal parametric range and produce a

smooth curve.

double const knots[nb_knots] = {0,0,0,0.33,0.66,1,1,1}

Ø Here the first and last segments have a short parameter range. This produces a

distorted curve that is concentrated near to the end points and spread in the middle.

double const knots[nb_knots] = {0,0,0,0.1,0.9,1,1,1}

Chapter 7 Spline Curve Construction and Optimisation

Page 108

Ø The first two segments have a long parameter range followed by a long one. The

difference from the previous curve is noticeable.

double const knots[nb_knots] = {0,0,0,0.1,0.2,1,1,1};

Internal Knot Multiplicity

An example of internal knot multiplicity resulting in curve irregularity is presented here. A

general cubic B-spline is generated from six control points as follows:

int const Nb_CtrlPpts = 6;

const position pt1 (0, 0, 0);

const position pt2 (10, 25, 0);

const position pt3 (25, 25, 0);

const position pt4 (40, -10,0);

const position pt5 (60, 0, 0);

const position pt6 (60, 10, 0);

and the following knot vector: the internal knot has a multiplicity of two

int const degree = 3;

int const nb_knots = Nb_CtrlPpts + degree - 1 ;

double const knots[nb_knots] = {0,0,0,0.33,0.33,1,1,1}

The curve is evaluated for first, second and third degree derivatives “ just before”, “on” and

“ just after” the knot where the curve is likely to be discontinuous. The derivative vectors

obtained from the analysis are presented in Table 3. As predicted, the analysis shows that the

second derivative vectors are discontinuous after the knot, however the curve remains C1

continuous at this knot.

Chapter 7 Spline Curve Construction and Optimisation

Page 109

Table 3: Derivative vectors showing curvature discontinuity

7.1.3 Curve Continuity

In a general sense, continuity describes how two items come together. Two types of

continuity are generally discussed: Cn and Gn, where n refers to the nth derivative. Cn

continuity refers to continuity of the nth derivatives of the equations underlying the entities.

This means that the magnitude and direction of the nth derivative must be continuous. Gn

continuity refers to continuity of geometric, or parameterisation-independent, properties,

which means that only the direction of the nth derivative must be continuous. It should be

noted that parameter continuity is not necessarily the same as geometric continuity. This is

because of the arc length parameterisation problem discussed above. The difference between

the two types of continuity is that Gn allows the parameterisation to be changed to achieve

desired continuity. By manipulating the parameterisation of the curve or surface, one can

change the magnitude of vectors. The following list describes what is meant if two items

(e.g., curves) meet with the specified continuity.

C0 continuity

Two entities meet with C0 continuity, when their zero derivatives are the same at their

intersection, Figure 50. In the case of C0 continuity, it may simply be said that the entities

"are continuous": At all points along the intersection, the position of the entities are the

Axis Just before Parameter value = 0,3 Just after

position position position

X 21.65 21.65 21.65

Y 18.35 18.35 18.35

First Derivative Vector First Derivative Vector First Derivative Vector

X 15 15 15

Y -15 -15 -15

Second Derivative Vector Second Derivative Vector Second Derivative Vector

X -460.055 -460.055 155.714

Y -917.355 -917.355 -155.714

Third Derivative Vector Third Derivative Vector Third Derivative Vector

X -1394.11 -1394.11 -531.648

Y -4449.45 -4449.45 930.633

Chapter 7 Spline Curve Construction and Optimisation

Page 110

same. G0 continuity also means that the zero derivatives are the same at their intersection,

but changing the parameterisation of one of the entities does not affect its position.

Figure 50: C0 continuity

C1 continuity

Means that the first derivatives, or tangents, are identical (in addition to C0 continuity). The

tangents of curves and surfaces are vectors, so both the magnitude and direction of the

tangent vectors must be identical.

Figure 51: G1 continuity

C2 continuity

Means that the second derivatives agree (in addition to C1 continuity). Because curvature is

a function of the first and second derivatives, one often says that the curvature is continuous

if entities are C2.

G0

G1

Chapter 7 Spline Curve Construction and Optimisation

Page 111

C2 continuity

Means that just the direction of the second derivatives are identical, Figure 52. The

parameterisation of one of the entities can be changed to get the geometric curvatures

(independent of parameterisation) to agree.

Figure 52: G2 continuity

The derivative level, n, to which an object is continuous, refers to its degree of continuity. If

a given object is continuous at the nth derivative, it is said to have nth degree of continuity

(or degree of continuity n). To state that a given curve has a particular degree of continuity

means that for all points on the curve's interior, the continuity is at least of that degree. The

same holds for surfaces.

7.2 Knot Parameter Optimisation

In paragraph 7.1, it was established that curves can be made by joining knotted curve

segments together. The main difficulty with this is finding an appropriate knot sequence to

satisfy the desired shape of overall curve. Tests made in paragraph 7.1.2 showed the

influence of parameterisation on a curve interpolated through fixed data points.

G2

Chapter 7 Spline Curve Construction and Optimisation

Page 112

A simple application is created to prescribe a knot sequence by graphic representation. The

knots position in the parameter space can be modified interactively to obtain a desired shape

without moving the data points in the Cartesian space.

Given the data point coordinates, a first estimate is made by evaluating cord length

parameterisation. This is evaluating the distance between each knot and getting the ratio of

cumulated distances over the total sum of distances.

const position pt1 (0, 0, 0);

const position pt2 (40,25, 0);

const position pt3 (80, -25, 0);

const position pt4 (120, 0,0);

Equation 29: Cord length parameterisation

For the positions proposed above the chord lengths given by Equation 29 are as follows:

Knot 1 = 0

Knot 2 = 47.16

Knot 3 = 111.20

Knot 4 = 158.7

To gain insight on the significance of these results it is convenient to present them as a ratio

of 1: The start parameter indexed 0 has value 0 and the end parameter indexed n has value 1.

This means that the parameter knot vector is of the form [0, P1, P2,…Pi,…1]. Considering a

unit length segment, the knot vector fractions it into n-1 segments that can be represented

graphically as shown in Figure 53.

knots ofnumber theis

 ,1 ,

1

1

n

ni
cordlength

cordlength
parameter

n

i

i

in

i
<<=

∑
∑

Chapter 7 Spline Curve Construction and Optimisation

Page 113

Figure 53: Cord length knot vector distribution

This technique allows designers to interactively assign parameter values at curve knots thus

exposing control over the internal curve constraints in an attempt to minimise its energy. The

examples presented above, show that parameterisation has some effect on the curve’s shape.

This curve construction method could also be used as a modelling technique implemented in

a CAD environment. However it remains uncertain that designers would benefit from this

application without some level of automation added to the optimisation process. The

problem here is that no design goals are defined, which leaves the user with parameters to

control without any indication on the achievements of his input. This is addressed in the

following paragraph where the total curve energy is formulation is used as a measure of the

design. The knot parameter distribution can be easily controlled manually for curves having

up to two knots. But for a greater number of knots, the knot distribution is difficult to find

manually, this is addressed in paragraph 7.4, where the knot parameter distribution is

optimised by a GA.

7.3 Energy Formulation

The energy formulation is a measure of the curve’s total energy. The formulation is the sum

from start to end parameter of the curve’s second derivative squared. In practice, the energy

is obtained by numerical integration of curvature squared.

()

endsstart

ds
ds

sPd
Energy

start

end

<<









= ∫

 length chord curve theis s

2

2

2

Equation 30: Energy formulation

Parameter value 0

Data point 1 2 3

0.7020.297

4

1

Chapter 7 Spline Curve Construction and Optimisation

Page 114

The energy formulation written in Equation 30 is tested on a range of curves. The aim of

these experiments is to validate of the formulation and this is achieved by establishing the

energy function map for up to two variables.

Example 1

The first example uses the curve shown in Figure 54, it is created from four data point

coordinates, which are as follows:

const position pt1 (0, 0, 0);

const position pt2 (40,25, 0);

const position pt3 (80, -25, 0);

const position pt4 (120, 0,0);

Figure 54: Test curve Example 1

Because it is created from four data points, this curve has two internal knots for which values

must be assigned. They are varied incrementally in a loop algorithm and the energy is

recorded in a 3D graph Figure 55. Because the knot values must be strictly increasing, knot 1

must be inferior to knot 2, hence the triangular shape base of the map. The map indicate that

there is a curve which has a minimum energy for a set a knot values, and this means that the

system is determined.

The overall shape of the map is quite flat in the region of minimum energy, which makes

difficult for an optimisation algorithm to find the optimum. It appears clear on the graph that

the function is symmetrical, due to the point coordinates arrangements. What appears to be a

Chapter 7 Spline Curve Construction and Optimisation

Page 115

symmetry line running diagonally on the graph is also a region of interest because the

surface lines are not smooth. A cross section of the map reveals a sudden fall of energy at

some particular parameter values. Figure 56 is a cross section of the map at Knot1 = 0.2. The

drop of energy is exactly at Knot2 = 0.8. Another cross section is made at Knot1 = 0.4, this

time the drop of curvature is exactly at Knot2 = 0.6. For both cross sections, the drop of

energy happens when two knot values add up to 1. In all cases the curves produced are

regular, and as far as the author is aware, there is no clear cut answer to that phenomenon.

Another test is carried out to find out if the same thing occurs again with a different curve,

asymmetrical.

Figure 55: Energy function mapping Example 1

0
.0

2

0
.1

4

0
.2

6

0
.3

8

0
.5

0
.6

2

0
.7

4

0
.8

60.04

0.22

0.4

0.58

0.76

0.94

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Energy

Knot 2

Knot 1

Energy Map 2 Knots

Chapter 7 Spline Curve Construction and Optimisation

Page 116

Figure 56: Energy Map Cross Section at Knot1 = 0.2 Example 1

Figure 57: Energy Map Cross Section at Knot1 = 0.4 Example 1

Energy Map Cross Section at Knot1 = 0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Knot 2

E
n

e
rg

y

Energy Map Cross Section at Knot1 = 0.4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.4 0.5 0.6 0.7 0.8 0.9 1

Knot 2

E
n

e
rg

y

Chapter 7 Spline Curve Construction and Optimisation

Page 117

Example 2

This test uses an arbitrary convex planar curve constructed out of four control points:

const position pt1 (0, 0, 0);

const position pt2 (40,25, 0);

const position pt3 (80, -40, 0);

const position pt4 (120, 0,0);

The third position is modified to make the curve asymmetrical. Figure 58 reveals that the

energy map is smooth, there is no drop of energy at certain combinations of Knot values as

observed in Example 1 above. There is no scope in this thesis for more investigations, but

further work would map the energy function on greater variety of curves and document the

occurrence of this problem. The curves for which the energy map exhibit any fall of energy

should be closely examined to detect any irregularities in the curve definition. Most

certainly, the problem comes from the ACIS function for interpolating data points with given

knot values, used in this application.

Figure 58: Energy function mapping Example 2

0
.1

4

0
.2

6

0
.3

8

0
.5

0
.6

2

0
.7

4

0
.8

60.04

0.22

0.4

0.58

0.76

0.94

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Energy

Knot 2

Knot 1

Energy Map 2 Knots

Chapter 7 Spline Curve Construction and Optimisation

Page 118

7.4 GA Energy Fairing

The manual parameter optimisation algorithm in the previous paragraph is applied to an

automated optimisation process that finds the optimum knot vector given a set interpolated

set of data points. The optimisation criterion used for evaluation is the curve’s total energy.

On the grounds that a smoother curve has less internal energy than a bumpy curve, the hopes

are that an optimum set of parameter values, which produces a curve whose energy is

minimum, can be found by an optimisation algorithm.

7.4.1 Variable bounds

The knot vector is the GA variables. Initial knot values are the cord length parameterisation,

these are bounded in a manner so that the knot intervals never overlap:

Knot[0]>knot[1]>knot[2]>…..>knots[I]>….>knot[n-1]> Knot[n]

The first and the last knot are kept constant throughout the process, therefore these are not

bounded. The bound definition start at knot[1] and finish at knot[n-1]. The bounds are set as

half the interval between the previous and the next bound minus the smallest value possible,

which is the system resolution, to fulfil the strict inequality constraints.

Arrayr lowerbound(n);

lowerbound[0] = 0;

lowerbound[1] = start_param+resabs;

lowerbound[2] = param[1]+(param[2]-param[1])/2+ resabs;

lowerbound[3] = param[2]+(param[3]-param[2])/2+ resabs;

lowerbound[i] = param[i-1]+ (param[i]-param[i-1])/2)+ resabs;

lowerbound[n] = param[n-1]+ (param[n]-param[n-1])/2+ resabs;

Arrayr upperbound(numvar);

upperbound[0] =0;

upperbound[1] =param[2]-(param[2]-param[1])/2- resabs;

upperbound[2] =param[3]-(param[3]-param[2])/2- resabs;

upperbound[i] =param[i+1]-((param[i+1]-param[1])/2)- resabs;

upperbound[n-1] =end_param-resabs;

upperbound[n] =0;

Some precautions should be taken in the event one or several optimum knots values fall

outside the bounds which are estimated from cord length. The bound should be re-initialised

Chapter 7 Spline Curve Construction and Optimisation

Page 119

through the optimisation, based on the best solution found so far. This can be seen if a

solution is found with knots close to the bounds.

7.4.2 Validation

A series of examples with features are taken to validate the parameter optimisation

algorithm. Curves with high curvature gradient are undoubtedly the most challenging for

Spline modelling. A representative example is of that feature is a curve going through a

sharp 90° corner. The first model is set to interpolate a single knotted curve through three

placed around a corner. The problem increases in complexity by adding interpolation points,

they constrain the curve through more points thus restrain its freedom. The addition of

geometric constraints result in making curves wiggle between points. In this experiment the

number of variables taken by the GA, i.e. knot values, is pushed up to four.

Example 1

The first model is set to interpolate a single knotted curve through three points placed around

a corner.

const position pt1 (0, 0, 0);

const position pt2 (100,0, 0);

const position pt3 (100, 100, 0);

The curve is a cubic spline therefore the curve has one internal knot and therefore is a

convex curve. From the point coordinates, the chord length parameterisation sets the knot

parameter value at the middle of the parameter range.

energy = 0.017471

knot vector = {0,0.5,1}

The curvature compound in Figure 59 shows that the fin is around the outside of the curve

and there is no change in the normal direction, which proves that the example curve is

consistent with its definition.

Chapter 7 Spline Curve Construction and Optimisation

Page 120

Figure 59: Original Example 1

The GA is set to its normal parameters and a test function is created to map the energy

against the parameter value. The plot Figure 60 shows that the minimum energy is in the

region of 0.5 on parameter value scale, which is what chord length parameterisation has

indicated. Also the amplitude of energy between the best and the worst case is less than 0.01

with a ratio of 2. This indicates that the search space has low gradient and that could cause

some problems for the GA.

Figure 61 shows the chronological events of the GA population. The energy recorded for

individual does not seem to decrease. The solutions never are below 0.01 and the population

appears to converge towards that limit which looks like a Pareto front. There are two

possibilities, either the GA finds an optimum very rapidly and the rest of runs are redundant

or the GA does not converge at all solutions are made randomly.

Chapter 7 Spline Curve Construction and Optimisation

Page 121

Figure 60: Evaluation function mapping Example 1

Figure 61: Energy GA converge Example 1

energy map

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5

parameter

e
n

e
rg

y

energy

Energy Converge

0.01

0.1

0 500 1000

Individuals

E
n

e
rg

y

Convergence Example 1

Chapter 7 Spline Curve Construction and Optimisation

Page 122

Example 2

This curve is obtained from five points placed in symmetrical square shape. The curvature

compound fin in Figure 1 shows a concentration of curvature around the sharp corner with a

swing in normal orientation on either side of the corner.

const position pt1 (0, 0, 0);

const position pt2 (50,0, 0);

const position pt3 (100, 0, 0);

const position pt4 (100, 50,0);

const position pt5 (100,100 , 0);

The points are equally spaced along the x and y axis and the chord length parameterisation

for this curve is as follows.

knot vector = {0,0.25,0.5,0.75,1}

Figure 62: Original Example 2 Figure 63: Optimised curve Example 2

Figure 63 shows the best solution found by application on the GA run. It would appear that

the optimised curve is not any better than the original curve, it displays a more pronounced

belly shape before the corner and a tighter line just after the corner.

energy = 0.013016

knot vector = 0,0.286111,0.50371,0.713889,1

The energy values in Figure 64 are grouped in a region of 0.9, and some individuals are

unexpectedly better than the majority. Like in the previous example, the GA does no show

any sign of converging.

Chapter 7 Spline Curve Construction and Optimisation

Page 123

Figure 64: Energy plot Example 2

The best five solutions are these:

energy = 0.0141671

knot vector = 0,0.269206,0.555645,0.781508,1

energy = 0.0135851

knot vector = 0,0.246667,0.511129,0.702619,1

energy = 0.0135633

knot vector = 0,0.286111,0.474032,0.674444,1

energy = 0.013518

knot vector = 0,0.263571,0.466613,0.663175,1

energy = 0.0131302

knot vector = 0,0.252302,0.466613,0.696984,1

energy = 0.0130643

knot vector = 0,0.297381,0.50371,0.730794,1

It is interesting to notice that a significant change of the parameter values results in small

variation of the curve’s energy. And as we know from paragraph 7.2, parameter distribution

has great effect a curve’s overall shape. It could be that the system has too much freedom

and is undetermined. Another experiment with added constraints is needed to validate the

conclusions on this application.

Energy Converge

0.01

0.1

0 500 1000

Individuals

E
n

er
g

y
Convergence Example 2

Chapter 7 Spline Curve Construction and Optimisation

Page 124

Example 3

This curve is similar to the previous example but it is constrained to interpolate one more

point around the corner. The extra constraint should reduce the solution search space, thus

helping the GA to converge but increasing the number of variables.

const position pt1 (0, 0, 0);

const position pt2 (10,0, 0);

const position pt3 (29, 0, 0);

const position pt4 (31, 2,0);

const position pt5 (31, 31, 0);

const position pt6 (31, 41, 0);

The initial chord length parameterisation shown below produces the curve in Figure 65. The

shape is wiggly symmetrically from the doubly constrained corner.

knot vector = {0,0.14,0.4,0.44,0.85,1}

Figure 65: Original Example 3

The GA is set to run 50 individuals for 50 generations. Two of the top five solutions are

studied. The best individual the GA has produced is the knot vector below.

energy = 0.0389927

knot vector = {0,0.125303,0.419407,0.492229,0.777902,1}

Pt1 Pt2 Pt3

Pt4

Pt5

Pt6

Chapter 7 Spline Curve Construction and Optimisation

Page 125

The curve Figure 66 is created from these values shows a reduction in curvature around both

ends while making a sharp turn around the corner. The curve exhibits less of a wiggly shape

than the original cord length parameterised.

Figure 66: Optimised curve Example 3 run 1

Another GA run retuned a different knot vector for quite a similar energy values than the

first run:

energy = 0.0382332

knot vector = {0,0.158246,0.392588,0.439407,0.855499,1}

Chapter 7 Spline Curve Construction and Optimisation

Page 126

Figure 67: Optimised parameter curve GA run #2

The shape obtained from these values is more rounded than that from the first run and yet the

energy is quite similar over the curve. Clearly, the optimisation shows unpredictable results

that can come from the ineffective energy measure. Similar results were found by Mussa

[76] who used an energy fairing algorithm powered by a GA, only in his algorithm, the

curve’s point coordinates were variables.

7.4.3 Discussion

it was observed in the curve construction process, that parameter distribution along the curve

has a strong effect on the result of the construction. Chord length parameterisation is suitable

to most applications, but for industrial purposes more options on the curve parameterisation

must be available.

This application has made an attempt to optimise parameter distribution through a measure

of the total curve energy. The results of experiments have shown that the algorithm fails to

Chapter 7 Spline Curve Construction and Optimisation

Page 127

produce improved shape. It is questionable whether the GA cannot deal with the problem or

the reasoning of this curve optimisation algorithm is flawed. This application is particular in

the way that variables are dependent of each other: one variable change influences the

balance of parameter distribution of the curve, and this is pushing the GA to its limit.

Furthermore there is no guarantee that the optimisation process is sound: Example 3 has

uncovered that individuals with energy close enough to be considered equal can produce

shapes radically different. There is a curve with a minimum energy that satisfies a set of

constraints but a parameter distribution algorithm driven by a genetic algorithm has not

found it.

 Still, as shown in paragraph 7.2, the interactive manual optimisation gives control on the

shape modification and produces consistent results. It could be envisaged to convey the

curve’s total energy to the user as he modifies the knot values on the screen. This would give

the user some information on the achievement of the optimisation. Because the total energy

measure does not reflect the curvature distribution, it is necessary to look at the curvature

compound fin as well.

7.5 Interpolated Splines

7.5.1 C2 Cubic Spline

Because of the equations binding the number of knots and control points in a spline curve, its

construction from a given set of knots and associated knot vector leads to an

underdetermined system of linear equations, Farin [45]:

number of knots = number points + curve degree – 1

In the case of a cubic, the above equation results in two undetermined unknown. In order to

add more equations to the system, end conditions are specified. Intuitively, it is apparent that

something is missing: with cubics, the slope of the curve at each joint is determined from the

continuity constraints between the two spans meeting at the knot. But what happens at the

end points, where there is no continuity. The answer to that problem is to define vectors at

the end points that will emulate continuity.

Chapter 7 Spline Curve Construction and Optimisation

Page 128

There are several possible ways of defining end conditions. The clamped end condition

corresponds to the prescription of two derivatives that are taken from first two control points.

Another end condition called natural specifies that the second order derivative is zero at the

end points. Yet another technique called Bessel fits a quadratic through the first three data

points and uses the first derivative of the quadratic as an end vector for the cubic.

The choice of end condition in cubic spline interpolation only affects the curve near to the

end points. They do not matter so much in the interior.

Interpolated splines have the property that changing the position of one of the interpolated

points will result in changing the overall shape of the curve, Figure 68, although the

amplitude of this change reduces fairly quickly with distance from the change point. This

can be a problem when trying to optimise a curve: Some improvements in one place might

destroy it in others. We shall see later how a heuristic optimisation algorithm copes with

that. Other curve construction methods especially those with Bézier control polygons allow

local changes. These techniques are now reviewed in the following paragraphs

Figure 68: Global shape change with spline curves

Chapter 7 Spline Curve Construction and Optimisation

Page 129

7.5.2 Hermite Interpolation

In paragraph 5.3.2, it was established that Hermite polynomials hold differential constraints

explicitly. It is therefore possible to construct piecewise curves with guaranteed continuity

between curve segments, as shown in Figure 69.

Figure 69: Piecewise Hermite interpolation with tangent continuity

Unlike the B-spline model, Hermite interpolation allows modifying the internal constraints;

hence offers more control on the curve’s shapes. An example of this is illustrated in Figure

70 and Figure 71, where the tangents at the knots are modified both in magnitude and

direction.

Figure 70: Hermite interpolant with varying tangent magnitudes

Segment 1
Segment 2

Segment 3

Chapter 7 Spline Curve Construction and Optimisation

Page 130

Figure 71: Hermite interpolant with varying tangent directions

In practice a cubic Hermite segment []ba, requires the positions coordinates, the first

derivative and the second derivative vectors at a and b. Because of the arbitrary

parameterisation, the derivative vectors are not unit vectors and further are not representative

of the tangent and normal respectively. Therefore some jugglery is needed to represent the

constraints as tangents and normals graphically, so that they can be modified from the

graphic interface.

• Input the position constraints

• Interpolate a cubic spline through these

• Get the first and second derivatives (b)(a), P(b), P(a), PP ''''''

• Evaluate the magnitude of the derivatives (b)P, (a)P, (b)P, (aP ''''')'

• Reparameterise and normalise the derivatives to get the tangents T(a), T(b), and the

normals N(a), N(b)

• Scale the tangents and normals

(b)Pb, N(a)Pa, N(b)Pb, T(aPaT '')('')(')()')(

• Display as line segments the constraints which can be modified both in direction with

a rotation and magnitude with a scalar

Chapter 7 Spline Curve Construction and Optimisation

Page 131

• Apply the rotation and scale transformations to the derivatives

(b)(a), P(b), P(a), PP '''''' and construct a polynomial that satisfies the prescribed

constraints.

7.6 Conclusions

This chapter has concentrated on the optimisation of construction constraints such as

parameterisation and differential properties. This has led the research to propose algorithms

that can give extra control on the curves shape.

The first idea put forward is providing handles on knot values through the graphic interface.

It has the advantage of providing an easy straight forward handles on the parameterisation of

curves. The major difficulty for the user it to have an idea of result before changing some

values. The total energy measure is brought in the application to give an indication on the

outcome of the optimisation: a smooth curve has less energy than a curve with sharp corners.

An optimum parameter distribution can be easily found with curves that embrace one or two

variables, but with more variables the problem can get too complex to be dealt with

manually. Some problems more specific to the knot interpolation functionality have been

uncovered. Irregularities in the energy map were found with symmetrical curves

parameterised in the way that the sum of the knots internal knots equals the value of the last

knot. Further investigations on the matter are needed to establish the root of this problem.

To answer the problem of complexity, an automated parameter optimisation driven by a GA

is proposed uses the total energy formulation as evaluation criterion. This method however

gave poor results and it has proven difficult to establish the exact cause of the problem. The

examples have opened questions on the GA’s ability to deal with problem features such as

interactive variables as well as on the validity of the total energy formulation.

Other internal constraints are put forward to the user through the graphic interface. These are

the curves differential properties at the knots points, which are used as constraints in Hermite

interpolation. There is nothing new here, similar methods are present in CAD systems like

SURFACER [108].

Chapter 7 Spline Curve Construction and Optimisation

Page 132

The work undertaken in this chapter leads to the conclusion that the NURBS formulation is

most useful for interpolating data point coordinates together with other internal constraints

such as parameter distribution and derivative constraints. However tweaking the NURBS

construction constraints has limited scope: The construction constraints identified as

influential on curves’ geometry are applicable at discrete points. The curve optimisation

applications laid in this chapter have gambled on the fact that handles on curves’ constraints

would achieve better control on their shape. It was proven that more advance shape control

could be achieved, but they are not necessarily helping the fact that NURBS are difficult to

control. This is not all for curve optimisation, the alternative to NURBS representation is

Function Representation (F-Rep), introduced in paragraph 4.3, supports global constraints.

In the next Chapter, new curve optimisation applications are created using F-Rep for

representing curves and constraints.

Page 133

Chapter 8 Intrinsic Curve

Optimisation

Chapter 8 Intrinsic Curve Optimisation

Page 134

Despite efforts to broaden NURBS geometric handles in Chapter 7, NURBS is thought to be

limited because constraints are applied locally and interpolated. The curve optimisation

applications showed that the NURBS representation was not satisfactory to achieve

optimisation and this chapter proposes alternative curve optimisation schemes using

continuous vector functions for the representation of the differential properties. The basic

idea carried out in this chapter is to use function representation of differential constraints in

curve optimisation processes.

8.1 Curve Projection

Visualising three-dimensional geometry on a conventional 2D monitor screens can be

difficult, and projecting three-dimensional objects onto two-dimensional planes can help

understanding better the design.

Projection

Given a parametric space curve P(u)={X(u), Y(u), Z(u)}, Three 2D curves are created by

setting in turn one of the components to null as follows.

















=
0

)(

)(

 _ uY

uX

projectionYX

















=
)(

)(

0

 _

uZ

uYprojectionZY

















=
)(

0

)(

 _

uZ

uX

projectionXZ

Boxing

A bounding box parallel to the X,Y,Z axis that totally encloses the curve is created, This box

is used to determine the faces on which the curve is projected.

Chapter 8 Intrinsic Curve Optimisation

Page 135

Figure 72: Curve Bounding Box

Implementation

Each component of the curve vector are extracted and copied in separate LAWs using the

trem_law() ACIS LAW class member function. The arguments are the curve’s LAW

position_vector followed by a number that indicates which vector component (term) is

returned; 1 is X, 2 is Y, 3 is Z.

law* x_comp = new term_law(position_vector, 1);

law* y_comp = new term_law(position_vector, 2);

law* z_comp = new term_law(position_vector, 3);

New arrays of LAWs are created from two extracted vector components and a third one set

to zero. These arrays are used to create new vectors that represent the projected curves.

Chapter 8 Intrinsic Curve Optimisation

Page 136

X_Y_projection

law* x_y_array[3] = {x_comp, y_comp, zero};

law* x_y_proj = new vector_law (x_y_array,3);

Y_Z_projection

law* y_z_array[3] = {zero, y_comp, z_comp};

law* y_z_proj = new vector_law (y_z_array,3);

Z_X_projection

law* z_x_array[3] = {x_comp, zero, z_comp};

law* z_x_proj = new vector_law (z_x_array,3);

Figure 73 illustrates the results of the projection algorithm described above.

Figure 73: Projection in the X_Y and Z_X planes

Reconstruction

With the help of a geometric editor, one can modify a projection curve, i.e. two vector

components, and subsequently reconstruct a curve from these and the third unchanged

component. Only one projected curve should be modified at the time to ensure that one

vector component is not modified in different projections. Also the projected curve should

remain planar throughout modification, otherwise the third vector component would also be

changed. This would cause a problem for reconstruction because the third component

modification would not be taken into account. Figure 74 shows an example of direct

modification of a curve’s projection in the Z_X plane. Here the Y vector component is kept

unchanged, while the X and Z components are modified.

3D curve

X_Y projection

Z_X projection

Chapter 8 Intrinsic Curve Optimisation

Page 137

Figure 74: Direct modification of projections and reconstruction

Discussion

The projection technique is useful to visualise on three planes the path of a 3D curve. It

enables to see how much curvature and how much torsion there is. Also it is possible to

change one of the projections and recreate a 3D curve. However this technique has obvious

limitations with helical curves, the projection of one of these would not be helpful

8.2 Prescribed Curvature Profile

It is common engineering practice to visualise the curvature plot to detect imperfections or

judge on the quality of curves. Designers have to modify the curve manually and check the

curve again, this loop is repeated until a satisfactory result is achieved. This paragraph aims

to produce algorithms that can reconstruct a curve back from its intrinsic definition. The

purpose of developing this modelling tool is to make reverse engineered curves from

curvature and torsion profiles, hence cutting down the development time of curved models.

Modified

Z_X projection

Optimised

Curve

Original

Curve

Unchanged

X_Y projection

Chapter 8 Intrinsic Curve Optimisation

Page 138

The theorem of existence and uniqueness introduced in Chapter 6 guarantee that given a

non-vanishing curvature and torsion function, a solution curve exists and it is unique, up to a

motion in space. Also null torsion curves are planar, and their shape is defined solely by the

curvature profile, Aminov [3], Eisenhart [41], Weatherburn [120]. Two different methods are

investigated and implemented in programs. The first application’s strategy is to generate a

curve whose curvature profile matches the objective profile. For this a great number of

curves are generated and tested against the objective profile. The optimum solution search is

powered by a genetic algorithm plugged on the data points coordinates. The second

approach is making use of function representation for modelling the curve’s intrinsic

properties. New prescribed properties become constraints and algebraic algorithms can

return to the curve definition.

8.2.1 Genetic Algorithm Driven

A GA driven optimisation algorithm for reconstructing curves from a prescribed curvature

profile as constraint is proposed here. A complete listing of the programming details is

included in Appendix 5 followed by tests performed on the optimisation process in

Appendix 6. The objective of the optimisation is a target curvature profile prescribed by the

user. A number of solutions named individuals are generated by the GA and are compared

against the objective. The outcome of the algorithm is the best match to the objective.

Optimisation Process

Figure 75 describes in a flow chart the curve optimisation process with a GA. An initial

curve is created by some means, typically by interpolating data points with a given tolerance.

The curvature is evaluated at close parameter values and a general spline is interpolated

through those points. A so-called curvature profile is then created and subsequently modified

allowing capture of designer’s intent. The modified curvature profile becomes the target. The

remaining tasks are finding a curve that comes close to the target profile. This is achieved by

modifying iteratively the data point coordinates. The iteration is loop is a heuristic of the GA

type. The optimisation process reveals that the algorithm is an automated trial and error

approach to solve the problem.

Chapter 8 Intrinsic Curve Optimisation

Page 139

Figure 75: Curve Optimisation process with GA

Constraints

Because of the theorems of existence and uniqueness, we know that one curvature profile

can have a multitude of curves, all the same but with a different orientation in space. A

motion composed of a translation and a rotation can give the curve its original orientation

Eisenhart [41], Gibson [53]. Because the optimisation process works on a parametric model,

some constraints are introduced to reduce down its freedom of movement. The constraints

are applied to the curve construction data in order to orientate the model in space.

• One fixed point stops 3 translations

• One vector stops 3 rotations

As a result of this, one point with the tangent direction at this point need to remain constant

to ensure the orientation of the model. The starting point and its tangent are chosen to remain

constant through out the process. Because tangent direction and curvature are related,

keeping the start tangent constant the curvature profile start value must remain constant as

well.

Start
Model

Analysis

Designer’s

Intent

Optimisation
(GA)

GA Model
Recreation

GA Model
Evaluation

Optimised
Models

Viewing

GA Process

Model

Creation

•3D Point coordinates

•Interpolated 3D B-Spline

•Attributes

•Properties

•Constraints

•Sampling method

•Curvature / Tangent Analysis

•Plot Analysis results

•Interpolated 3D B-Spline

•Graphic Interaction

•Modification of Analysis Plot

•Variables

•Variable Bounds

•Random Generation

•Constraints

•Resolution

•GA_Data

•Interpolate 3D B-Spline

•Properties

•Constraints

•Attributes

•Fitness Evaluation •Selection

•Crossover

•Mutation

•New Variables Creation

•Optimised Variables

•Properties

•Constraints

•Attributes

•Model display

•Model selection

•Model Update

End

Chapter 8 Intrinsic Curve Optimisation

Page 140

Test Curve

A test curve is used through out the development phase of the algorithm. It is an

interpolated cubic planar curve obtained from the following data points. The end tangent

directions are kept null (natural ends with zero curvature). This curve is s-bent, the curvature

profile is goes to zero before making a sharp turn with high curvature. Also to simplifies

maters, the curve is 2D, the components in the Z axis are kept constant null.

position pt1 (0, 0, 0);

position pt2 (16,20, 0);

position pt3 (20, 30, 0);

position pt4 (40, 0, 0);

Figure 76: Test curve with curvature profile

Variable bounds

GA variables are bounded by an upper limit and a lower limit. This restricts the GA to

generate points within these bounds. The GA variables minimum and maximum values are

set in the GA process for each component of the points coordinates. A wider variable bound

results in a bigger search map and more work for the GA to converge. A null variable bond

constrains the variable to remain constant. The listing below is the bounding of four data

points.

Parameter

C
u
rv

a
tu

re

Original curve

Chapter 8 Intrinsic Curve Optimisation

Page 141

double upper_limit [] = { 0, 0, 0, // pt1, fixed point

 5, 5, 0, // pt2, Z fixed

 5, 5, 0, // pt3, Z fixed

 5, 5, 0}; // pt4, Z fixed

double lower_limit [] = { 0, 0, 0, // pt1, fixed point

 5, 5, 0, // pt2, Z fixed

 5, 5, 0, // pt3, Z fixed

 5, 5, 0}; // pt4, Z fixed

Given an optimisation objective, it is not guaranteed that the optimum solution lies within

the variable bounds. The obvious answer to this problem is to set sufficiently large variable

bounds and hope that it encloses the solution. Still there is little way of checking that the

algorithm has found the best solution or it has been constrained by the variable bounds

outside the optimum. In the optimisation process paragraph 7.4.1, it is suggested that the GA

is run more than once each new GA run takes the best results of the previous run as initial

variable values with the same variable bounds.

An experiment is set up to illustrate the problem of variables bounds. The algorithm is set to

find a curve that is known in advance. First the GA is initialised with values and bounds that

fall outside the solution. Second the GA is reinitialised with the values recorded from the

first run.

The target solution taken from the test curve is composed of four construction points:

Target solution

position pt1 (0, 0, 0);

position pt2 (16,20, 0);

position pt3 (20, 30, 0);

position pt4 (40, 0, 0);

The initial GA values together with their lower and upper bounds are chosen to fall outside

the target solution.

Initial values

position pt1_ga (0, 0, 0);

position pt2_ga (10,28, 0);

position pt3_ga (23, 22, 0);

position pt4_ga (40, 0, 0);

Chapter 8 Intrinsic Curve Optimisation

Page 142

The intermediate solution, returned after the first run is shown bellow, clearly the variable

bounds have prevented the GA from converging any closer to the solution. However when

applying the variable bounds defined above, it is within range of the solution.

Intermediate solution

average_distance = 31.9274

pt1_ga (0, 0, 0.)

pt2_ga (14.8434, 23.1832, 0.

pt3_ga (18.4668, 26.8695, 0)

pt4_ga (40.3795, 0, 0)

Now GA is re-initialised with the intermediate solution and the best solution returned after

the second run is 10% off the known solution and the fitness values, average distance is

reduced ten times. The GA should be able, in theory, to find the solution because it lies

within the variable bounds.

Final solution

average_distance = 3.17459

pt1_sol (0, 0, 0) // fixed poit

pt2_sol (14.7779, 18.3042, 0.1208) (7.64%, 8.48%, fixed)

pt3_sol (19.9686, 30.461, 0.17876) (0.16%, 1.54%, fixed)

pt4_sol (39.9934, 0.2498, 0) (0.02%, -, fixed)

Reinitialising the GA with an intermediate solution has proven adequate to come out of the

variable bound restrictions. Still it, in a real-life scenario where there is no prior knowledge

of the solution, it is not possible to determine how many times the GA should be reinitialised

so that its bounded variables enclose the solution. Also in reverse engineering applications, a

tolerance of half a millimetre is usually required on data points obtained from clay model

digitising, if the user inputs a curvature profile that creates a curve outside the variable

bounds, the input is not valid. There should be ways to constrain the curvature to ensure the

solution curve fulfils the engineering tolerances. Under the current definition of the problem

, there is no way to establish a relationship between the objective and the solution. And if

there was such relationship, it would be used to find the solution directly

Fitness and Evaluation Function

the evaluation function is the sum of the distances computed between the curvature profile of

the solution curve)(uf and the target curvature profile)(uF . The distance between the two

Chapter 8 Intrinsic Curve Optimisation

Page 143

curves is computed by dense sampling and averaging over the number of evaluation points,

Equation 31.

n

uFuf

Evaluation

n

u

)()(
0

−
=
∑

=

Equation 31: Evaluation function

The GA used in this application works to maximise the fitness: an individual with a high

fitness value is close to the optimum. On the contrary, the objective of this optimisation

algorithm is to minimise the average distance between two curves. For this reason, the

fitness function is written as the invert of the evaluation function, Equation 32. Assuming

that the average distance can be infinite, the fitness exists in the interval [0-1], 0 score is the

worst and one score is the best.

Evaluation
Fitness

+
=

1

1

Equation 32: Fitness function

In order to establish the design variable sensitivity, a test case was set up:

Ø The optimum solution is known in advance, and these initials values are the optimum.

Ø The variables are modified incrementally and the fitness score is recorded for each of

these. Only two variables are varied at the time.

In Figure 77, the two variables in the bottom axes are data points and the fitness function is

in the vertical axis. The fitness map shows the characteristics of a uni-modal optimisation

problem. The test function is equal to one at it’s nominal values. As the variables move away

from these values, the fitness values decrease. However it was found that the fitness function

map was not steep enough: Great variation in variable values lead to small change in fitness

value. And the GA convergence graph Figure 78, is not showing signs of convergence.

Chapter 8 Intrinsic Curve Optimisation

Page 144

Figure 77: Fitness function test

Figure 78: Convergence

0

0
.2

0
.4

0
.6

0
.8

1

0

0
.2

0
.4

0
.6

0
.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fitness

X pt3
X pt2

Convergence

0,01

0,1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

E
v
a

lu
a

ti
o

n
 F

u
n

c
io

n

Chapter 8 Intrinsic Curve Optimisation

Page 145

Power Boost

Since the solution range varies from zero to one, and sing the results from 2.4, the fitness

function map can be made steeper by applying a power function.

n










+
=

distance average1

1
Fitness

Equation 33: Fitness Boosting

A series of experiments, presented in Appendix 6.2, have studied the influence of fitness

boosting on the GA performance. It was found that a the best results are produced for a

power of three applied to the fitness.

Figure 77 shows the effects of such boosting with a power three. The map shows a much

steeper slope around the optimum. This will help giving the best individuals a much greater

chance of selection and reproduction.

Figure 79: Fitness function boosting with power three

0

0
.2

0
.4

0
.6

0
.81

0

0
.2

0
.4

0
.6

0
.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fitness

X pt3
X pt2

Chapter 8 Intrinsic Curve Optimisation

Page 146

The effect of the power boost on the GA convergence, illustrated in Figure 80, is

considerable. The Pareto front is more pronounced and drops rapidly. Here the best solutions

have an average distance in the region of 0.1 compared with 1 previously. The power boost

has managed to reduce by a factor of 10 the average distance between the two curvature

profiles.

Figure 80: Convergence with boosting function

Validation

The aim of this section id to demonstrate how this algorithm is used to generate improved

geometry. The feature curves introduced in paragraph 6.5.1 are used here to validate this GA

driven curve optimisation algorithm. The following example curves exhibit features

including planar and space curves, convex and S-bend. For each example, the GA

convergence graphs are used to bench mark the GA performance. In addition, point

coordinates are recoded in tables that show the modifications the algorithm has made to the

curves.

Convergence with Power three Boosting

0,01

0,1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

E
v

a
lu

a
ti

o
n

 F
u

n
c
ti

o
n

Chapter 8 Intrinsic Curve Optimisation

Page 147

Example 1

The first example is the simplest curve that can be made. It is constructed by interpolating a

cubic spline through three data points located in a plane. The fitted curve is convex and has

natural conditions on either ends, so the curvature is zero at these points.

position pt1 (0, 0, 0);

position pt2 (5,20, 0);

position pt3 (40, 0, 0);

Figure 81: Original curve Example 1

The curvature profile of the original curve, Figure 82, shows a concentration of curvature in

the first half of the curve. The profile is modified to shift curvature in the second half of the

curve.

Figure 82: Modified curvature profile Example 1

Parameter

C
u

rv
a

tu
re

Original profile

Modified profile

Chapter 8 Intrinsic Curve Optimisation

Page 148

The variable bounds are set to constrain the first and the last point as constant and all points

‘z’ coordinate axis as constant. The bounds on the internal variable point are set wide

compared with the coordinate values, this is for ensuring the solution is within the variable

definition range. This should not damage the GA performance since there are only four

variables in total.

double upper_limit [9] = { 0, 0, 0,

 50, 50, 0,

 0, 0, 0};

double lower_limit [9] = { 0, 0, 0,

 50, 50, 0,

 0, 0, 0};

The convergence graph, Figure 83, shows a rapid conversion with a limit at one tenth of the

unit.

Figure 83: Convergence graph Example 1

Converge Example 1

0.01

0.1

1

10

100

0 200 400 600 800 1000

Individuals

E
v

a
lu

a
ti

o
n

Convergence Example 1

Chapter 8 Intrinsic Curve Optimisation

Page 149

Figure 84: Optimised curve Example 1

The optimised curve drawn in Figure 84 has kept the same but it a mirror of the original. The

curvature profile prescribed to shift the curvature at the end of the curve and the GA

responded by moving the internal data point on the ‘x’ coordinate axis.

Table 4: Results Example 1

Original Curve

Optimised Curve

pt1_ga pt2_ga pt3_ga

X 0.0000 30.4741 40.0000

Y 0.0000 19.1301 0.0000

Z 0.0000 0.0000 0.0000

Original points

pt1 pt2 pt3

X 0.0000 5.0000 40.0000

Y 0.0000 20.0000 0.0000

Z 0.0000 0.0000 0.0000

Difference

pt1 pt2 pt3

X 0.0000 -25.4741 0.0000

Y 0.0000 0.8699 0.0000

Z 0.0000 0.0000 0.0000

GA points

Chapter 8 Intrinsic Curve Optimisation

Page 150

Example 2

This example is the same set up as the previous example: The start and end points are

constant only this time the internal point coordinates are all variable. This means that the GA

can try to have non-zero ‘z’ coordinate and thus introducing torsion in the curve. No torsion

profile has been prescribed therefore the solution curve is planar and the ‘z’ component

value should be zero.

double upper_limit [9] = { 0, 0, 0,

 50, 50, 50,

 0, 0, 0};

double lower_limit [9] = { 0, 0, 0,

 50, 50, 0,

 0, 0, 0};

The GA convergence is affected a great deal from this change of variables. Even though it

has one more variable to deal with, the graph in shows that the GA converges to the

optimum more rapidly than in the previous example

Table 5: Convergence graph Example 2

Converge Example 2

0.01

0.1

1

10

100

0 200 400 600 800 1000

Individuals

E
v

a
lu

a
ti

o
n

Convergence Example 2

Chapter 8 Intrinsic Curve Optimisation

Page 151

Table 6: Results Example 2

The difference table shows that the second point ‘z’ component is nearly zero, the GA has

found the correct answer with reasonable accuracy.

pt1_ga pt2_ga pt3_ga

X 0.0000 35.0491 40.0000

Y 0.0000 19.4622 0.0000

Z 0.0000 0.2163 0.0000

Original points

pt1 pt2 pt3

X 0.0000 5.0000 40.0000

Y 0.0000 20.0000 0.0000

Z 0.0000 0.0000 0.0000

Difference

pt1 pt2 pt3

X 0.0000 -30.0491 0.0000

Y 0.0000 0.5378 0.0000

Z 0.0000 -0.2163 0.0000

GA points

Chapter 8 Intrinsic Curve Optimisation

Page 152

Example 3

This curve is a planar S-bend curve made from the four following interpolated data points,

see Figure 85.

position pt1 (0, 0, 0);

position pt2 (16,20, 0);

position pt3 (20, -30, 0);

position pt4 (40, 0, 0);

Figure 85: Original curve Example 3

Figure 86: Modified curvature profile Example 3

Parameter

C
u

rv
a

tu
re

Original profile

Modified profile

Chapter 8 Intrinsic Curve Optimisation

Page 153

The original curvature profile, in plain line Figure 86, shows two picks of curvature and one

point of inflection. The profile is modified to reduce the first curvature pick, in doted line.

The modifications are applied locally to the curvature profile, only the first half of the

curvature profile is modified, second half is kept the same.

The variable bounds constrain the start point as a fixed point and all the points the z

components to zero.

double upper_limit [] = { 0, 0, 0,

 10, 10, 0,

 10, 10, 0,

 10, 10, 0};

double lower_limit [] = { 0, 0, 0,

 10, 10, 0,

 10, 10, 0,

 10, 10, 0};

The convergence graph, Figure 87 indicate that the algorithm converges, with some

solutions evaluated below the one line.

Figure 87: Convergence graph Example 3

Converge Example 3

0.1

1

10

100

0 500 1000

Individuals

E
v

a
lu

a
ti

o
n

Convergence Example 3

Chapter 8 Intrinsic Curve Optimisation

Page 154

The optimised curve, Figure 88, has a more rounded crest than the original curve, which was

the desired outcome. Only the point in the affected area is modified, the optimised data

points are recorded in Table 7, the difference with the original points show that the second

point coordinates have been changed while the others are close of their original values.

Figure 88: Optimised curve Example 3

Table 7: Results Example 3

Original Curve

Optimised Curve

pt1_ga pt2_ga pt3_ga pt4_ga

X 0.0000 12.7524 19.0729 38.6048

Y 0.0000 13.5537 -30.4664 -0.9365

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 16.0000 20.0000 40.0000

Y 0.0000 20.0000 -30.0000 0.0000

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 3.2476 0.9271 1.3952

Y 0.0000 6.4463 0.4664 0.9365

Z 0.0000 0.0000 0.0000 0.0000

GA points

Original points

Difference

Chapter 8 Intrinsic Curve Optimisation

Page 155

Example 4

This curve is a space S-bend curve made from the four following points:

position pt1 (0, 0, 0);

position pt2 (10,10, 0);

position pt3 (20, -10, 2);

position pt4 (40, 0, 8);

The inflection point is located in the middle of the curve and the torsion is concentrated at

the end of the curve.

Figure 89: Original curve Example4

Figure 90: Modified curvature profile Example 4

Parameter

C
u

rv
a

tu
re

Original profile

Modified profile

Chapter 8 Intrinsic Curve Optimisation

Page 156

The original curve’s curvature profile, Figure 90is not smooth and a more satisfactory profile

is prescribed. The new profile, drawn in dotted line in Figure 90, accentuates the curvature

picks and makes the profile more symmetric.

The variable bounds constrain the start point as a fixed point but all coordinate components

are bounded variables.

double upper_limit [12] = { 0.02, 0.02, 0.02,

 5, 5, 5,

 5, 5, 5,

 5, 5, 5};

 double lower_limit [12] = { 0.02, 0.02, 0.02,

 5, 5, 5,

 5, 5, 5,

 5, 5, 5};

The GA convergence Figure 91 is less evident than in the previous example. In this example

torsion has been introduced in the curve and the z axis data point components have been set

as variables.

Figure 91: Convergence graph Example 4

Parameter

Converge Example 4

0.1

1

10

100

0 500 1000

Individuals

E
v

a
lu

a
ti

o
n

Convergence Example 4

Chapter 8 Intrinsic Curve Optimisation

Page 157

Table 8: Results Example 4

The changes of point coordinates summarised in Table 8 unveil that the ‘y’ axis component

of the second and third points are modified. The other variable have a lesser variation.

 Figure 92: Optimised curve Example 4

The result curve is in accordance with the prescribed curvature profile despite that the

algorithm did not converge as much as it should to guarantee an accurate result. Because the

curve is allowed to twist, there the torsion profile should also be formulated in the evaluation

function. As it stands there is no facility in the GA to include a second, independent

pt1_ga pt2_ga pt3_ga pt4_ga

X 0.0000 10.0070 20.0177 38.6048

Y 0.0000 4.8101 -5.8936 -0.9365

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 10.0000 20.0000 40.0000

Y 0.0000 10.0000 -10.0000 0.0000

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 -0.0070 -0.0177 1.3952

Y 0.0000 5.1899 -4.1064 0.9365

Z 0.0000 0.0000 0.0000 0.0000

GA points

Original points

Difference

Original Curve

Optimised Curve

Chapter 8 Intrinsic Curve Optimisation

Page 158

evaluation function. A compromise can be set up where by the two evaluation functions are

merged in one larger evaluation function. This could be achieved by adding or multiplying

the two evaluation functions, but it is uncertain it would produce the right results. This

strategy is off course far from the definition of multi-objective optimisation.

Discussion

This optimisation algorithm works well and produce almost acceptable results. However the

run time is too long to envisage this algorithm to be incorporated in a design process. It is

doubtful that industrial designers would accept waiting nearly one minute every time they

modify a curvature profile. Also a lot of adjustments to the GA’s parameters are required

before it converges anywhere close to a solution. This point was mentioned earlier: it seems

that another GA is needed to optimise the settings of the first GA. It was found, that if

variables change decimal from one problem to another, the GA changes its behaviour

noticeably and new settings are required. This is because of the way numbers are represented

in a GA. The conversion from decimal to binary certainly causes problems. From the

experiments conducted on this algorithm, it appears clear that the GA’s performance drops

as the problem complexity increases.

As it happens, during the development process of this algorithm, a little programming error

was made in the evaluation function. In normal circumstances errors are easily spotted, a

geometric modeller systematically returns error messages or returns a flag indicating the

level of success achieved by a procedure, but in evolutionary computing, things are not as

straight forward. In actual fact heuristics are able to do anything they are asked, even when

the optimisation model is not mathematically sound, and it is incapable of telling if the

operations it has made are valid or not. In this case, the optimisation algorithm was returning

geometrically valid answers but that did not make much sense in the optimisation logic. For

this reason countless tests on the evaluation function were made to try to understand the

behaviour of the GA.

A range of curves with features is used to validate this curve optimisation application. Quite

noticeably, the more variables the GA is dealing with the less it converges. This can be seen

in Table 9, which summarises the GA performance with increased number of variables. A

nine variable problem is performing one hundred times less than a four variable problem.

Chapter 8 Intrinsic Curve Optimisation

Page 159

Engineering applications such as curve reconstruction from digitised data can have cross

section curves made out of several thousand points. In the light of the present results, the GA

will not cope with that many variables, only pieces of curves can be optimised at a time. This

is not an advantage, because designers want to be able to work on the whole curve not on

fractions of it.

Table 9: GA performance with increased number of variables

The curves which are planar give better results than space curves for the same experiment

configuration. While planar curves are solely defined by curvature functions, space curves

are defined by the curvature and torsion functions. The application in its present form does

not include torsion functions in its algorithm because the GA used here does not permit it.

Including torsion function in the process would make the evaluation function double: one

evaluation function for the curvature profile and another independent evaluation function

from the torsion profile. And according to Roy et al. [99], we are in the presence of two

evaluation functions, and the problem can be seen as multi-objective. On paper evolutionary

computing is said to have wonderful capabilities: multi-objective, multi-modal, constrained

(see Chapter 2). Researchers in the field Roy et al.[99] have shed light on real life

optimisation promising a toolbox capable of handling a wide spectrum of problems.

Unfortunately it has not been possible to find in Tiwari’s work [99] procedures dealing with

multi-objective optimisation problems needed for the example space curves optimisation.

Also the techniques developed in the present research on the convergence of solutions is

nowhere mentioned in his work.

Number of Variables 2 4 6 9

Best Solution 0.08 0.1 0.9 10

Chapter 8 Intrinsic Curve Optimisation

Page 160

8.2.2 Function Representation Driven

The disappointing conclusions on evolutionary computing have led the research to seek

alternative means for doing curve optimisation. It was established in paragraph 6.2.2 that

function representation was suited to the representation of differential properties, thus for

optimising curves. In this paragraph, the problem of the determination of a curve given the

curvature and torsion functions is discussed. The answer leads to finding a solution to the

Frénet formulae. Approaches for both planar and space curves are considered.

Planar Curves

A procedure for finding the position vector JsYIsXsP)()()(+= from the curvature profile

is proposed by Nutbourne [80] as follows:

Equation 34

X(s) is measured along the initial tangent T(0) and Y(s) is measured along the initial normal

N(0).

Implementing Equation 34 with ACIS poses some problems since it is not possible to

perform symbolic integration of functions; the functionality offered by ACIS is limited to

numerical integration. Equation 34 have been adapted to suit numerical integration: the first

integral is replaced by a sum loop with an incremental parameter for s.

σκ

σκ

σ

σ

dtsY

dtsX

s

s

∫ ∫

∫ ∫





=





=

0 0

0 0

)(sin)(

)(cos)(

Chapter 8 Intrinsic Curve Optimisation

Page 161

Equation 35: Numerical integration of)(tκ

The problem with numerical integration is that approximation errors in X(s) and Y(s) are

cumulated because of the sum as s increases, (see Figure 93). However it is clear that it

would be possible to make an application that would reconstruct a curve from given

curvature function with the procedure established by Nutbourne if symbolic integration was

made available in a F-rep modeller.

Figure 93: Curve reconstruction from curvature profile

Space curves

The case of space curves with non-null torsion function is more challenging, but several

possible solutions have been found.

The first approach to finding solutions to the Frénet-Serret formulae, proposed by Nutbourne

[80], is to set up a third differential equation for the normal N(s) by eliminating the tangent

T(s) and the Bi-normal B(s) from the Frénet-Serret relations. When the solution to the

equation is found, the position vector can also be found by integration of the tangent T(s).

σκ

σκ

σ

σ

dtsY

dtsX

s

s

∑ ∫

∑ ∫





=





=

0
0

0
0

)(sin)(

)(cos)(

Reconstructed Curve

Original Curve

Initial point {X((0), Y(0)}

Initial direction T(0)

Chapter 8 Intrinsic Curve Optimisation

Page 162

This can also be achieved by writing three orthogonal complex vectors which components

are the vectors of a moving frame of the Frénet type. The solution is found by solving an

equation of the Ricatti form. Mathematical details are available from differential geometry

volumes, Aminov [3], Gibson [53], Eisenhart [41].

The coordinates of a curve P can be expressed with Taylor expansion theorem, Weatherburn

[120], Farin [44]. In practice it is not possible to implement this, the Taylor expansion can

only serve as ground for theoretical reasoning.

Yet another NURBS approximation method is proposed by Wolters [122]. The technique

attempts to approximate a curve by minimizing a metric defined in terms of curvature and

torsion. This method is thought to be too complex to be implemented as it involved a lot of

arithmetic due to the NURB representation.

Discussion

This attempt to recreate curves from prescribed curvature profiles was partially successful

because the functionality exposed by the geometric modeller did not allow to accurately

implement the theory in a functional application. Under the current functionality of ACIS,

there is no possibility to perform symbolic integration. An substitute algorithm to symbolic

integration was made up from incremental numerical integration, but could not perform well

enough to produce acceptable results. However, given the right tools for the job, these

algorithms have potential for success.

With the example of curves, a generic representation takes the natural equations (curvature

and torsion), which give a unique solution independent of the coordinate system. Function

representation avoids polynomial interpolation and provides a true definition of the

geometry. From an optimisation point of view, this scheme is attractive as it implicitly holds

properties that can be accessed directly without having to perform any property interrogation

procedures. It was said that function representation is not efficient but the efficiency lost

with the representation is largely regained when doing optimisation.

Chapter 8 Intrinsic Curve Optimisation

Page 163

8.3 Prescribed Compound Fins

In paragraph 6.3.2 compound fins were introduced. The aim of this paragraph is to illustrate

techniques prescribing compound fins and finding in reverse the corresponding curve.

Unfortunately given a 3D curve, the normal vector of its normal fin compound is not in the

same direction as the normal vector of the curve. The calculus below shows the

mathematical details of this. Given a general space curve P(u) and with the assumption that

the representative function is continuous at every point on the curve, the normal fin

compound is obtained from Equation 25 and is called normal fin here for simplicity.

)()(fin normal usNuP −=

The tangent of the normal fin is obtained by derivation of the normal fin.

By substitution with the help of the Frénet formulae,

Equation 36: Derivation of 3D normal compound fin

Equation 36 shows that the tangent of the normal fin compound has a term in the direction of

the bi-normal of the curve itself. This system of equations has one too many unknowns;

consequently it cannot be solved. The same problem occurs with the bi-normal fin

compound.

Curves for which the normals of the normal compound fin are in the same direction as the

parent curve have been studied by Bertrand and Mannheim. These curves have curvature and

torsion profile dependent, thus they are classifies as helices Nutbourne [80]. It is

demonstrated in this paragraph that planar curves also have parallel normals with their

normal compound fin. Therefore the projection technique introduced in paragraph 8.1 is

used to reduce the dimensionality of space curves to planar curves. Finally, the

()
du

)()(d
 fin normaltangent

usNuP −=

() () ()()
()() ()uBsSKuT

ukTuBsuT

τ
τ

−+=
−−=

1

fin normaltangent

Chapter 8 Intrinsic Curve Optimisation

Page 164

transformation of Combescure [80] is considered for with general space curves with

independent curvature and torsion profiles.

Projection Technique

The problem of modification of compound fins stated above is tackled in here using

projection techniques. The first step is projecting the subject curve into the three planes

forming the orthogonal reference x, y and z as shown in Figure 94. Using Equation 25 given

in paragraph 6.3, a normal fin compound can be applied to each of the projections. Because

the projections are planar, the compounds obtained are in the same plane as the projections

hence the bi-normal is constant null.

At this stage the user can modify the profile of one compound at a time and it must remain in

the same plane as the original compound and the curve. This later condition can be

maintained by projecting the modified compound on the required plane. The compound

modification allows the capture of the so-called designers’ intent. This means that a design

can be generated from a prescribed normal vector distribution. From the prescribed

compound, a new projected curve is produced. This is achieved by manipulating the Frénet

formulae.

formulaFrenet theof help eon with thsubstitutiBy

Equation 37: Derivation of 2D normal compound fin

()
du

)()(d
 fin normaltangent

)()(fin normal

usNuP

usNuP

−=

−=

() () ()()
()

()()
() ()uKN

d

SKuT

uB

ukTuBSuT

==

+=

−−=

du

fin normaltangent
fin normal normal

1fin normaltangent

 thereforenull, is

fin normaltangent τ

Chapter 8 Intrinsic Curve Optimisation

Page 165

Figure 94 Normal fin compounds of curve projections

Equation 37 proves that with planar offsets, the normal vector field of a curve’s normal fin

compound is in the same direction as the normal vector field of the original curve’s

projection. The reciprocity explained above enables the reconstruction of a curve’s

projection from a prescribed planar compound fin. By scaling the normal vector by the same

factor and subtracting this from the prescribed compound, a curve in the projection plane is

reconstructed and has for normal compound fin the normal compound fin prescribed by the

user. The remaining task of reconstructing a 3D curve is achieved by constructing a 3D

vector from the two vector components prescribed and the third unchanged component.

Figure 95 illustrates the optimisation process.

y

x
z

Normal
Compound fin

X Z Curve Projection

Subject

Curve

Chapter 8 Intrinsic Curve Optimisation

Page 166

Figure 95: 3D curve reconstruction from prescribed normal fin compound

Combescure Transformation

The name of Ed. Combescure was found in the archives in “Comptes rendus des séances de

l’académie des sciences”. In the algebra section, Combescure writes on a theorem by M.

Hermite relating to the transformation of equations [27]; it is the only reference to

Combescure that could be found. Nutbourne [80] also state that he could not trace the name

to any mathematicians and there is no evidence that M. Ed. Combescure is the originator of

the transformation theorem presented in this paragraph, but there is a possibility because

other volumes dated around the publication date of [27] include articles by Manheim,

Bertrand, Chasles, Frénet and others whom are know for their work on differential geometry

of curves and surfaces. Further research in the archive of the “académie des sciences” in

Paris could uncover the mystery author’s identity.

The Combescure transformation is applicable to deal with a wider range of curves. The basic

idea is that the compound curve shares the same set of tangent vectors as the parent curve.

From this property follows that the normal and bi-normal vectors are also parallel to that of

the parent curve for points that are in one to one correspondence.

Prescribed Normal
Compound fin

 Reconstructed
X Z Curve Projection

Reconstructed
Curve

y

x
z

Chapter 8 Intrinsic Curve Optimisation

Page 167

The Combescure compound fin vector Q(s) is described as a function of s and is obtained by

adding the parent curve vector function with the Combescure transformation vector R(s).

Equation 38

The Combescure transformation vector can be expressed in the curve’s Frénet frame

coordinate system.

Equation 39

Where a(s), b(s), c(s) are functions of the arc length of the parent curve. Differencing

Equation 39 gives

Equation 40

The tangents have to be parallel so the following conditions must be met:

Equation 41 0)()()()()(' =−+ sscsksasb τ

Equation 42 0)()()(' =+ ssbsc τ

Equation 43 1)]()()('1*)[(=−+ sksbsadsds

The character * denotes the compound fin.

A particular example where b(s)=0 is of particular interest:

)()()(sRsPsQ +=

)()()()()()()(sBscsNsbsTsasR ++=

)()]()()('[)()]()()()()('[)()]()()('[)(' sBssbscsNsscsksasbsTsksbsasR ττ ++−++−=

Chapter 8 Intrinsic Curve Optimisation

Page 168

From Equation 39,)()()()()(sBscsTsasC += , and because b(s)=0, from Equation 42

c’(s)=0 so c(s)=C a constant. And therefore from Equation 41)()()(ssCsa κτ= .

Substituting these results in Equation 39 gives

Equation 44

Each point on the parent curve are moved in the rectifying plane along the vector R(s).

Further more it is easy to see from the demonstration above that the inverse of the

Combescure transformation applied to the compound fin is the parent curve. However the

Combescure transformation does not work for planar curves or in sections of null curvature

because of the fraction in Equation 44.

Discussion

The examples of reverse engineering of compound fins described above, all suffer from the

same drawback, that is the reconstruction of curves from higher differential order curves

may induce irregularities rather than removing them. For example if the compound curve has

a dent, the resulting curve from the reverse process will inevitably swing direction at the

points of inflection. For this reason the compound fins should only be limited to curve

inspection. For the purpose of optimisation, the curvature and torsion profiles are more

appropriate.

8.4 Conclusions

In this chapter, intrinsic curve optimisation algorithms have been established as Curve

Projection in paragraph 8.1, Prescribed Curvature Profile in paragraph 8.2 and Prescribed

Compound Fins in paragraph 8.3. These algorithms have demonstrated the implementation

of interactive curve optimisation using the fundamental theorems of differential geometry

introduced in Chapter 6. Compared with other curve optimisation methods available in

literature Farin [44], Sapidis [106], Ferguson [48], Anderson [4], Jones [65] and the

)]()()}(/)([{)(sBsTsksCsR += τ

Chapter 8 Intrinsic Curve Optimisation

Page 169

application called Prescribed Curvature Profile driven by Genetic Algorithm which uses

NURBS, the proposed use F-Rep for exact vector representation of curves, hence avoiding

dealing with control points and the problems of interpolation.

Compared with NURBS, continuous vector functions are more computationally expensive,

but this drawback is largely overcome by the fact that the result of optimisation is guaranteed

to be what the designer wants the first time. As far as the author is aware the proposed

method is new and constitutes a small but significant advance in the field of curve

optimisation. The F-Rep modelling functionality provided by ACIS did not fulfil the

requirements for the applications implemented in this thesis. The limitations are justified by

the fact that the F-Rep modelling capabilities in ACIS are designed for performing sweeps.

The functionality needed for the curve optimisation applications have been created from

existing functionality available within ACIS and the outcome is quite satisfactory. However

for the purpose of curve recreation from prescribed intrinsic properties, symbolic integration

is required, paragraph 8.2.2, and is not available from ACIS. In order to complete this work

section, other math-specific tools combined with ACIS would provide the functionality

needed to perform symbolic integration. Software like MATHLAB could be considered for

this purpose. MATHLAB exhibits a C++ interface as well as a specific language interface.

This reinforces the idea of flexible generic API put forward in this thesis

Some of the algorithms presented in this chapter have been implemented according to the

three-circle diagram presented in Figure 1. The applications make use of foreign

functionality borrowed from different satellite function libraries. The functionality needed by

the application is made available through an application programming interface. Beyond the

potential usefulness of the curve optimisation applications developed within the framework,

they have demonstrated the need for appropriate flexible interfacing between applications

and functionality suppliers.

.

Page 170

Part III

Page 171

Chapter 9 Application Programming

Interface for Flexible Optimisation

The areas of design optimisation, geometric modelling, differential geometry have been

identified early on as first-role actors of the framework. A first synthesis has been produced

by innovative research in the optimisation of free form curves which required a combination

of the three areas. These experiments have uncovered the need for flexibility in the

framework architecture to integrate functionality from different sources into the framework.

Studies in the interaction between the constituting fields has led to the determination,

mapping and documentation of the requirements and solutions for the design of the

framework. This part of the thesis contributes to further establish knowledge in the

integration of flexible optimisation in the CAD environment through programming

interfaces.

The remaining work of this research is going towards a computer implementation of the

framework. It was found that optimisation could be represented by evolutionary computing

algorithms; still questions remain. A better possibility for optimisation is given by

representing geometry with arithmetic functions. The geometric representation is

encapsulated in a geometric modeller such as ACIS. As for CAD, after investigation the

solution to create a new user interface using the Microsoft Foundation Classes together with

ACIS was retained. A running application called HulaHoops was created to demonstrate the

research findings, a description of the user interface in the form of a user manual is included

in Appendix 8.

The inter-disciplinary nature of this research has lead the research to study in ways to

interface the constituting members of the framework. In the forthcoming discussions, these

are called modules. The discussions that emerged from the work on design optimisation,

geometric modelling and curve optimisation together with the solid modelling, interface

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 172

found in Djinn, Bowyer et. al. [16], provide a design framework of the Oli application

programming interface (API).

9.1 Framework Architecture

This paragraph presents a survey of selected CAD systems’ architecture. Based on the

requirements placed by the framework and the tasks set to perform, architectures models are

proposed and discussed.

9.1.1 Conventional Architecture

At the initial stages, it was thought that a main stream turn-key CAD system would be used

as a base framework for the research. Various CAD systems’ architectures have been

investigated for this purpose. The results drawn from this experience are reported here.

The UNIX platform was favoured over Microsoft, and the reasons put forward were

processor speed and stability needed to run genetic algorithms. The down side of UNIX is

the level of expertise required to set-up the environment. For example, setting-up the SDRC

IDEAS open interface is a major task best left to professionals. The question of processor

speed is relevant to conventional users that use a particular CAD system professionally for

creating large 3D models. However for the purpose of research and development, flexibility

is central. The Microsoft environment, far from being perfect, is flexible and intuitive, which

are the qualities required for doing a research project. Another product from SDRC,

IMAGEWARE SURFACER was considered as a replacement to IDEAS and this time the

Microsoft environment was retained. Likewise the results were not satisfactory because of

the architecture system’s architecture that is not suitable for doing advanced application

development.

The architecture of IDEAS as described in the documentation is presented in Figure 96.

According to the diagram the open interface gives access to both the CAD model and the

CAD system. In actual fact the so called open interface exposes the function headers of the

user interface, but does not expose the geometric kernel. Some of the functionality necessary

for doing optimisation was not available from the API. In particular interrogation

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 173

functionality and differential geometry was missing. This is was also found in other

commercial CAD systems like and AUTOCAD and generally with old systems whose

geometric kernel was originally developed in C language and have not been re-written in an

object-oriented language such as C++.

Figure 96: Conventional architecture

Moreover, the absence of real API is confirmed by the presence of obsolete data

communication protocols “client server” like CORBA or COM. In the eventuality such

systems had to be used for this research, Figure 97 shows what the framework architecture

would look like. The CAD system (and its geometric kernel) is separated from the

application (in this case the Flexo project) by a wrapper software, which is in actual fact a

communication protocol wrapped in patch code to establish the link between the two parties.

This scenario is far from satisfactory to achieve integration of flexible optimisation within

the CAD environment.

CAD Session

CAD System

Application

Programming

Interface

Custom

Application

CAD Session

CAD System

Application

Programming

Interface

Custom

Application

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 174

Figure 97: Conventional architecture strategy

Under those circumstances, It was proven impossible to develop a working application for

design optimisation. This discussion joins what has already been said in paragraph 3.8 about

cooperation between CAD vendors and researchers.

9.1.2 Modular Architecture

In order to achieve the objectives of the research, another approach is undertaken: “kit

CAD”, so to speak. This concept is a concept borrowed from the car industry, where a car is

made of bits taken from different car models and assembled together to make a custom car.

In the context of CAD, a kit CAD is made from various systems each of them serving a

specific purpose. As already stated, ACIS is the underlying geometric modeller, an Open GL

graphic interface supported by the Microsoft foundation classes (MFC), the Flexo

optimisation toolbox and the Oli API for interfacing all these. In effect this strategy is

exploding the traditional CAD environment into smaller systems independent from each

other. The current trend in CAD is going towards this type of architecture; CAD vendors

have understood that one CAD system could not enclose all the functionality required by the

vast field of mechanical engineering. A new terminology called Computer Aided

Engineering (CAE) has recently emerged out of the concept of the multidisciplinary

Flexo A
P

I

User Interface

A
P

I

User Interface

USER

W
ra

p
p
e
r

S
o
ft

w
a
re Geometric

Kernel

CAD
Model

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 175

requirements of engineering. Notably CATIA is structured in modules that the user can

acquire on demand to perform some specific tasks. Nonetheless the API exposure remains

limited making flexible interaction with outside applications difficult.

Process Oriented Architecture

In the Process oriented architecture, the applications processes are placed at the cross roads

of all modules. Figure 98 shows that all modules have their own APIs, which exposes their

functionality to applications. In this configuration, the applications are responsible for

providing the modules with the right data. This involves making data type conversions every

time the information is passed between modules. For example in the curve optimisation

applications with GA in paragraph 8.2.1, the curves data points are represented as 3D

coordinates in ACIS and as an array of variables in the GA. So the applications have to

translate the data from the ACIS type to the GA type and vice versa.

The problem with the process oriented architecture is that modules live independently and

have no awareness of each other. For example an object’s geometric definition is stored in

the geometric modeller but is also stored as an individual in the optimisation module and as

a render in the graphic interface. The multiple existence of object representations without

connection records causes some problems. If an object is deleted in one module, it won’t

necessarily be in the others. In the best case it will cause a repetition of function calls for a

query that has been already made before. Further, in the worse case applications or modules

will make a function call on an object that has been deleted elsewhere. Similarly objects can

be left without knowledge of their existence by the applications in some modules, the

memory requested for these objects cannot be recovered and technically speaking the

application is creating a memory leak.

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 176

Figure 98: Task oriented architecture

Object Oriented Architecture

The object oriented architecture takes advantage of the principles of object orientation to

design a centralised interface. Unlike with the task-oriented architecture, the applications are

no longer central. The central core is occupied by a collection of generic objects common to

all modules, see, Figure 99.

The common interface to all modules works like a switch board, establishing connections

between modules on request. It is not necessary to store data in the interface, rather pointers

to the data stored in the modules is recorded in the interface. The independent aspect of the

interface is proven particularly useful to gain in flexibility. In some instances, curves are

represented as NURBS or as functions for the purpose of optimisation. It is even possible

that these two representations are implemented in different modellers. The discussions in

Chapter 8 highlighted the fact that more than one modeller was needed and suggested using

MATHLAB in conjunction with ACIS for differential calculus.

This discussion corroborates the need for an interface independent of a particular modeller.

A proposition is made to define interface objects on the basis of their geometric nature. The

objects are not defined in terms of a particular representation paradigm, rather the API

Application

Processes

Graphic

Interface

Optimisation

Toolbox

Geometric

Modeller

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 177

supports associations with the objects representations across the framework. Access to the

data is provided by attributes attached to the objects. As previously seen, the curve object

can be represented geometrically as NURBS or as vector functions, which can be a

differential representation of the curve (curvature, torsion). Non-geometric data are also

supported, for example in the GA optimisation process, curves are evaluated upon some

criteria and are given fitness values. This information is also included in the list of attributes.

Figure 99: Object oriented architecture

Top and Bottom Interface

In the object oriented architecture model, the top interface is the first interface that is

exposed to applications and modules. It is defined in terms of abstract geometric data and

procedures. The implementation of these data is achieved by the functionality of the modules

through their own APIs. This way the applications are not tied to any of the modules but to

the generic interface. This guarantees that the applications still exist even if the modules are

removed or replaced by others.

Generic

Objects

Graphic

Interface

Optimisation

Toolbox

Geometric

Modeller

Application

Processes

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 178

Discussion

At the moment, commercial turn-key systems are not adequate for developing applications

because their architecture is not designed for this purpose. Their APIs expose high level

functionality, closer to the user interface than the geometric modeller. The limited

functionality together with inappropriate documentation make these systems unsuitable for

research exercises. The alternative to turnkey CAD systems is the making a custom

environment out of separate pieces. The elements are chosen upon their API functionality

and documentations. The needs to have a generic interface independent of all representations

(geometric, optimisation, graphic) has been established. The forthcoming paragraphs are

about the definition and elaboration of the interface proposed above.

9.2 ACIS Interface

The ACIS geometric modeller provides the geometry foundation for applications. These may

interface to ACIS through Application Procedural Interface (API), C++ classes and in some

cases Direct Interface (DI) functions. AICS also provides an interface to Microsoft

Foundation Classes (MFC) for Microsoft Windows platform applications.

API functions provide the main interface between applications and ACIS. An API is a

function that an application calls to create, change, or retrieve data. An API function

combines modelling functionality with application support features such as argument error

checking and roll back . When an error occurs in an API routine, ACIS automatically rolls

the model back to the state before that API routine was called. This ensures that the model is

left in an uncorrupted state. ACIS guarantees API functions to remain consistent from

release to release, regardless of modification to low-level ACIS data structures or functions.

The class interface is a set of C++ classes that are used to define the ACIS model geometry,

topology and other characteristics. The classes may be used by applications to directly

interact with ACIS through their public and protected data members and methods. The

ENTITY class is a base from which many ACIS classes are derived. It implements common

data and functionality that is mandatory in all classes that are permanent objects in the

model, although ENTITY does not itself represent any specific object. The ATTRIB class

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 179

which is derived from ENTITY, is used to derive specific attribute classes for the system and

user attributes.

Direct Interface functions provide access to modeller functionality without the additional

application support features of an API. Unlike APIs, these functions are not guaranteed to

remain consistent from release to release. DI functions are not available to access all of the

functionality in ACIS. They are generally used for performing operations that do not change

the model, such as enquiries.

9.3 Flexo Interface

The documentation written by Tiwari presented in Appendix 2 references the GA

programming structure, but does not reveal the existence of an interface for the optimisation

toolbox. The GA experiments produced in this research have shed light on functionality

needed for GAs. These functions which name begin with prefix Flexo also have for origin

the experiments on GAs reported in this thesis.

9.4 Graphic and User Interface

Microsoft Foundation Classes (MFC) consist of hundreds of classes designed to make

Windows programming easier and quicker. MFC offers the convenience of reusable code,

because many of the tasks common to all Windows applications are provided.

The ACIS Microsoft Foundation Classes (AMFC) provide the code necessary to interface

from ACIS to the Microsoft Foundation Classes. Most of the classes are derived from MFC

classes with hooks into ACIS. In addition, several tool classes exist to facilitate operations

that most applications require, such as camera movement, mouse movement, dragging

operations, Boolean operations, and drawing lines, circles, and fillets. AMFC also contains

wrapper functions to ACIS API functions.

AMFC provides powerful means of creating the barebones structure of an ACIS based

application. AMFC has been used in this research to create an ACIS based application called

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 180

HulaHoops. This application aims to validate the research findings reported in this thesis.

These comprise of curve optimisation algorithms and the programming interface for flexible

optimisation presented in this chapter. This contradicts slightly with the framework

architecture model presented in paragraph 9.1 in the sense that AMFC shortcuts the

independent Oli interface which makes the application tools dependent of the geometric

modeller. This concerns the mouse event handler, the graphic display, the file manager.

However the concepts of a generic interface and modular architecture remain valid.

9.5 Oli Interface

9.5.1 Objectives

The Oli interface aims to define a set of abstract geometric data and procedures that different

types of modellers can support in an uniform way. The primary purpose of the interface is to

document the requirements placed by optimisation on it. The Oli API has focused on the

functionality required for the optimisation of free-form curves. The underpinning

implementation of the proposed API is proposed whenever the modules functionality

allowed it. In the contrary, an abstract implementation is maintained but the routine takes no

action.

9.5.2 Background

The Djinn interface [38] is a representation independent geometric interface for solid

modelling. Djinn is has been designed and documented by consensus of application

researchers and the UK Geometric Modelling Society.

Djinn is a representation independent API in the sense that it is not written for a specific

underlying geometric modeller. The novel aspect of Djinn is the specification of operations

on point-sets. It supports a version of ‘cellular modelling’ in which there is no boundary

representation or CSG structure visible at the API. Thus the Djinn API is specified purely in

terms of the required functionality and data abstraction needed to support it; it is left to the

underlying implementation to define how the that requirement is met. On the same ground,

Djinn is not meant to support a particular application, but rather provides functionality for a

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 181

wide range of applications across the CAD/CAM environment. Djinn is a collection of

documented functions that can support calls from applications to the modeller.

The Djinn interface is used in this research as a guide line for the definition of the Oli

interface. Some of the issues addressed by Djinn, which are shown to be relevant to the

design of the present API are re-formulated for the purpose of this research. The scope of the

Djinn interface has more width than depth: at the moment no implementation has been

proposed, which leaves opportunities to further the research, especially in the area of

optimisation and free-form curves.

The Djinn specification identified that the diversity of representations of free-form geometry

made the generic formulation of them a challenging task. Therefore it has chosen to provide

support import of reference to external data through the top interface, and interrogation

through the bottom interface. A set of procedures part of Djinn allow properties such as

surface normals to be discovered. The discussions put forward in this paragraph 9.1 certainly

go in that direction. Several representations of curves are needed by applications. NURBS is

the most accepted format for curves and surfaces and is a convenient way to perform local

operations on shape but is not suitable for a more formal approach to curve design and

optimisation. Function representation (F-rep) is thought to hold more promises for

systematic curve interrogation and reconstruction from prescribed properties. The opinion

here is that F-rep is a far more generic representation paradigm than NURBS and it could

very well serve the purpose of a generic interface for curve and surface modelling.

9.5.3 Generic Interface

The generic aspects of the Oli interface are formulated in the definitions, stated below,

required for the functioning of the present framework regardless of the particular

requirements of specific applications. However the discussion uses examples of research

applications including the curve optimisation applications from the previous chapters.

Precision and Formality in the definition of the API

The Oli API is the specification of procedures that supports calls between a CAD modeller

and some outside applications. The precision in the procedure definition is an issue that

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 182

needs looking at. The Procedures can be defined in different languages and levels of

formality. The functional requirements placed by the application on the API and vice versa

are documented; the procedures are defined with their implementation in computer language

C++.

Procedure Hiding

The interface takes advantage of object oriented programming for hiding procedure

implementations at the API. The interface exposes a list of functions and classes that

applications can invoke and pass parameters to it.

State

The API state is defined by a single variable. A state variable is recorded each time a call is

made to the API. This state variable allows the API can go back to its last recorded state at

any point in time. It can also be used to return the original API’s state after a procedure was

called and forced the API to an undesirable state. In some languages procedures need

initialisation and finalisation, the state variable can provide state information to the

procedures.

Side-effects

Procedures are said to have no ‘side effects’ when no data except arguments are accessed or

altered. Arguments can either be input parameters or output parameters. Input parameters

cannot be modified by a procedure, while data present in output parameters may be

overwritten when a procedure is called.

This issue is addressed by the Oli API since the Flexo toolbox extracts parameters from the

geometry, modify the parameters and subsequently return them with new values. It is

essential that parameters integrity is maintained when travelling through the API.

Error Reporting

It is essential in API design to look at error reporting. Some feed back information must be

provided to report on the level of success achieved by any of the procedures.

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 183

Labels

In the geometric modeller, pointers refer to each entity created and some memory space is

allocated to store the entities. It is not good practice to give applications direct access to

pointers; instead entities are named with labels referring to the objects. Interfacing object

with labels is a safety measure to prevent applications doing illegal operations on the

geometry and preserve the integrity of the model.

Applications perform operations that might change the structure of the model. For instance,

what happens when a Boolean operation is applied on an entity and the result of the Boolean

is two separate objects? The application needs to keep track of the changes otherwise it

might show the label referring to an object that does not exist anymore, or has been split into

two.

Looking back to Figure 99, which part of the model should take care of the labelling? One

possible option is to assign a part of the API to labelling. Labels are made available to the

applications to read only. Applications retrieve from the API (not the modeller) up-to-date

information on the labels. This way, applications are kept independent of the modeller,

easing implementation issues.

Persistence

It is expected that the API has some mechanism to remember its state as well as other data

such as labels. The problem of persistence occurs when the API need to restoring its state

when a new session is started. At another level, persistence is an issue since the API is

modeller independent and different modellers might use different labelling conventions. A

model imported from a different CAD system might reference entities otherwise than the

implemented system. The API needs to be consistent in labelling and independent of

geometric modellers.

To overcome the problem of non-existing functionality from the Kernel API, Oli has

concentrated on combining existing procedures as an attempt to make-up some functionality.

The aim is to reduce the number of procedure definitions and therefore minimise the

memory usage and increase efficiency. Moreover, combining procedures also reduces

development time.

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 184

9.5.4 Scope of the Oli API

Geometric Objects

Geometric entities such as curve, surface and solid are considered for the generic

specification of the Oli API. At an implementation level, free-form curve geometry is

considered, this serves the purpose of case study for validating the API.

Geometric Operations

The geometric operations supported by the Oli API consist of curve modification

procedures. For NURBS the geometric operations mainly consist of modification of the

control points coordinates, tangency conditions at control points and parameterisation. For F-

rep curves geometric operations are offset transformations like the Frénet frame or the

Combescure transformation.

Properties

Applications make calls to the modeller to interrogate object properties. Examples of

properties for curves are curvature and torsion, Frénet frame and mass, moment of inertia for

solids. Property interrogation is done through successive API function calls.

Constraints

Constraints are present everywhere in the framework. Constraints of geometric nature are the

data points coordinates, tangency conditions, curvature, torsion. The geometric constraints

are supported by the geometric modeller but their representation is defined at the API level.

Attributes

In the proposed framework, attributes are used for making associations between the abstract

definition of objects in the interface and external data such as their geometric

representations, optimisation definition and constraints.

Chapter 9 Application Programming Interface for Flexible Optimisation

Page 185

Variables

Variables are modifiable values that define the model geometry. The nature of variables

varies with the type of geometry the application is dealing with. The optimisation application

works on variables extracted from the model. The job of the API is to make variables

accessible to applications. Optimisation places requirements on the API in terms of the

number and nature of variables that are passed across.

Page 186

Chapter 10 Procedure Definition

This chapter summarises the definition of the principal procedures implemented in this

research. They are classified in two sections: those regarding GA optimisation and those

regarding geometric operations. These procedures are used by the application software

HulaHoops proposed by the author for demonstrating the findings of the present research.

10.1 GA Procedures

This list is the input / output parameters of the GA module. Note that a method for

translating from the type position (inherited from ACIS) of 3D points to the type arrayr

(array of real values).

10.1.1 GA Process

Input

GA operators

integer umber of generations

integer Population sisze

double Cross over probability

integer Cross over level

double Mutation probability

Integer Mutation level

Variables

Integer Number of variables

double resolution

Translate (position vertices, array variables)

Translate (initial vertices, array initial population)

double upper limit

Arrayr lower limit

Chapter 10 Procedure Definition

Page 187

Fitness function

fitness function

double power boosting start

double power boosting end

Output

Individuals

Translate (array variables, position vertices)

double fitness value

Solutions

Translate (array variables, position vertices)

Error error message

File Debug files

GA process Implementation

This function takes in all the parameters to run the GA process and returns optimised

variables. At the bottom the fitness function and fitness data methods are mentioned. These

are invoqued by the algorithm to evaluate each individual. Inside these, the fitness function

and evaluation function are inserted. As they are specific to an optimisation problem, the

definition of the evaluation function is done by the application.

void flexo_GA_optimiser(

//input

//GA operators

 int nogen, //number of generations

 int popsize, //Population sisze

double crossp, //cross over probability

 int prcrossp, //Cross over level

 double mutp, //Mutation probability

 int prmutp, //Mutation level

 //Variables

int nvertices, //Number of variables vertices

 double res, //resolution (default resab

 //inherited from geom kernel)

 position initial_vertices[],//array of initial positions

 double upper_limit[], //array of limits upper

 double lower_limit[], //array of limits upper

 double power_start,

Chapter 10 Procedure Definition

Page 188

 double power_finish,

 //Output

 position opt_vertices[], //array of optimised vertices

 char const* final_curve, //debug file

 char const* converge //debug file

){

 ofstream outconverge (converge, ios::out);

 if (!outconverge) { // overloaded ! operator

 cerr << "File could not be opened" << endl;

 exit (1); // prototype in stdlib.h

 }

 Individual *oldpop[100];

 Individual *intpop[100];

 Individual *newpop[100];

 double power = power_start;

 int lenstr = 0;

 int maxdecpt = 0;

 srand(67); // generates true random numbers

 int numvar = nvertices * 3;

 input_parameters(popsize, nogen, crossp, prcrossp, mutp, prmutp, numvar);

Arrayr lowerbound(numvar);

Arrayr upperbound(numvar);

Array lenvar(numvar);

create_bounds_from_positions(upperbound,

 lowerbound,

 numvar,

 initial_vertices,

 upper_limit,

 lower_limit);

matrices(lenvar, upperbound, lowerbound, numvar, lenstr, maxdecpt);

 initialise(popsize, oldpop, lenvar, upperbound, lowerbound, lenstr);

 initialise(popsize, intpop, lenvar, upperbound, lowerbound, lenstr);

 initialise(popsize, newpop, lenvar, upperbound, lowerbound, lenstr);

 for (int i = 0; i < nogen; i++) {

 roulette(oldpop, intpop, popsize, maxdecpt);

reproduction(intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp);

 for (int j = 0; j < popsize; j++) {

 *oldpop[j] = *newpop[j];

 outconverge << newpop[j]->fitdata() <<endl;

 }

 power = power + (double (power_finish) - double (power_start)) / double (nogen);

Chapter 10 Procedure Definition

Page 189

}

}

double Individual::fitdata() const{}

double Individual::fitfun() const{}

10.1.2 GA Translators

GA translators are used to transform data from position type (3D data points inherited by

geometric modeller) the to Arrayr type defined in the GA data structure and vice versa.

The oli_create_positions_from_GA_variables() extracts positions from single element

(index) of the GA population

void oli_create_positions_from_GA_variables(

 int nb_points,

 Arrayr &Varval,

 position new_positions[]

) {

 for (int i=0; i<nb_points; i++){

 new_positions[i].coordinate(0) = Varval[3*i];

 new_positions[i].coordinate(1) = Varval[3*i+1];

 new_positions[i].coordinate(2) = Varval[3*i+2];

 }

}

The oli_create_bounds_from_positions finction takes initial point coordinates and returns

bounded GA variables.

void oli_create_bounds_from_positions(

 Arrayr &upperbound,

 Arrayr &lowerbound,

 int numvar,

 position vertices_ga[],

 double upper_limit[],

 double lower_limit[]

) {

 for(int i = 0; i<numvar; i+=3){

 upperbound[i] = vertices_ga [i/3].coordinate (0) + upper_limit[i];

 upperbound[i+1] = vertices_ga [i/3].coordinate (1) + upper_limit[i+1];

 upperbound[i+2] = vertices_ga [i/3].coordinate (2) + upper_limit[i+2];

Chapter 10 Procedure Definition

Page 190

 lowerbound[i] = vertices_ga [i/3].coordinate (0) - lower_limit[i];

 lowerbound[i+1] = vertices_ga [i/3].coordinate (1) - lower_limit[i+1];

 lowerbound[i+2] = vertices_ga [i/3].coordinate (2) - lower_limit[i+2];

 }

}

10.1.3 Parameter Bounds

The Parameter Bounds function is used by the GA, it takes an array of knots and returns two

arrays of bounded parameters.

void flexo_parameter_bounds(

 int npts,

 double param[],

 Arrayr lowerbound[],

 Arrayr upperbound[]

){

for(int i =0;i<npts;i++){

lowerbound[i] = param[i-1]+ (param[i]-param[i-1])/2)+ resabs;

upperbound[i] =param[i+1]-((param[i+1]-param[1])/2)- resabs;

 }

}

10.2 Geometric Modeller Procedures

10.2.1 Creating Geometry

Create Curve

The Create Curve procedure take an array of data points, two unit vectors for start and end

directions and a tolerance resolution. The procedure returns a curve of type bs3_curve

inherited from ACIS that is reparameterised from 0 to 1.

void oli_create_curve (int nb_points,

 position positions[],

 unit_vector start_dir,

 unit_vector end_dir,

 double fitol,

 double &actual_tol,

 bs3_curve &bs3_label

Chapter 10 Procedure Definition

Page 191

) {

 bs3_label = bs3_curve_interp (

 nb_points,

 positions,

 start_dir,

 end_dir,

 fitol,

 actual_tol

);

 double start = 0; // start parameter

 double end = 1; // end parameter

 bs3_curve_reparam (

 start,

 end,

 bs3_label

);

}

Interpolate Knots

The procedure takes an array of points to interpolate with an array of corresponding knot

values and tangent directions at the start and end curve as input. It returns an ACIS curve of

type bs3_curve.

void oli_interpolate_knots(int nb_points,

 position positions[],

 double knots[],

 vector start_dir,

 vector end_dir,

 bs3_curve &bs3_label

) {

 bs3_label = bs3_curve_interp_knots (

 nb_points,

 positions,

 knots,

 start_dir,

 end_dir

);

Chapter 10 Procedure Definition

Page 192

 double start = 0; // start parameter

 double end = 1; // end parameter

 bs3_curve_reparam (

 start,

 end,

 bs3_label

);

}

10.2.2 Discrete Curve Interrogation

The discrete procedures for curve optimisation are the procedures that are used for spline

representation curves. They are called discrete because they interrogate the geometry at a

given parameter value.

Curvature Analysis

Given a number of points to sample, the curvature analysis procedure returns an array

vectors on the curve that point in the direction of the normal of the curve and are curvature

length.

void oli_curvature_analysis(

 int eval_pts,

 vector curvature[],

 position point[],

 bs3_curve &bs3_label

){

 double param_value = 0;

 //evaluate curvature of 'myCurve' at a given parameter value

 for (int param_index = 0; param_index < eval_pts; param_index ++)

 {

 //returns position coordinates at a given parameter value

 point [param_index] = bs3_curve_position (

 param_value,

 bs3_label

);

 // curvature evaluation at same parameter value

Chapter 10 Procedure Definition

Page 193

 curvature [param_index] = bs3_curve_curvature (

 param_value,

 bs3_label

);

 //increment parameter value

 param_value = param_value + 1/double (eval_pts - 1) ;

 }

}

Curve Offset

Curve Offset procedure take an array of points an vectors an returns a array of points that are

the transformation of the initial points by the vectors. This procedure is used for making the

compound fin properties of a curve after interrogation. For better visuals, a scale factor

multiplies the magnitude of the vectors.

void oli_curve_offset(

 int eval_pts,

 double scale_factor,

 position point [],

 vector analysis_vect [],

 position new_point []

){

 for (int param_index=0; param_index<eval_pts; param_index++){

 new_point [param_index] =

 point [param_index] += (analysis_vect [param_index]*scale_factor);

 }

}

Position Distance

The Position Distance procedure computes the distance between two curve at a given

parameter value. This procedure is used in the optimisation process for evaluating a solution

curve against a reference curve. The procedure returns an average of the sampled points

distance as well as averages in x,y,z directions.

Chapter 10 Procedure Definition

Page 194

void oli_position_distance(

 int eval_pts,

 position point_ref [],

 position point_var [],

 double &average_distance,

 double &average_distance_X,

 double &average_distance_Y,

 double &average_distance_Z,

 double scale_factor

){

 for (int i=0; i<eval_pts; i++){

 average_distance =

 average_distance +

 fabs(((point_ref[i] - point_var[i]).len())*scale_factor);

 average_distance_X =

 average_distance_X +

 fabs((point_ref[i].x() - point_var[i].x())*scale_factor);

 average_distance_Y =

 average_distance_Y +

 fabs((point_ref[i].y() - point_var[i].y())*scale_factor);

 average_distance_Z =

 average_distance_Z +

 fabs((point_ref[i].z() - point_var[i].z())*scale_factor);

 }

 average_distance = average_distance / eval_pts;

 average_distance_X = average_distance_X / eval_pts;

 average_distance_Y = average_distance_Y / eval_pts;

 average_distance_Z = average_distance_Z / eval_pts;

}

10.2.3 Function Representation Procedures

Edge to Law

Assuming that the starting point of the optimisation is an EDGE enclosing a general space

curve created by standard means of interpolation, it is possible to generate a function

representation of the EDGE. First, the underlying curve (geometry definition) of an edge

Chapter 10 Procedure Definition

Page 195

(topology definition) is obtained. The curve object is converted to a LAW object via some

data wrapper. The implementation is enclosed in a function referenced ‘oli_edge_to_law().

void oli_edge_to_law(EDGE* edge_label,

 curve_law*& my_curve_law){

double start = edge_label->start_param();

double end = edge_label->end_param();

// Get a copy of the curve

curve *my_curve = edge_label->geometry()->trans_curve();

// Create a curve_law_data wrapper.

curve_law_data *my_c_law_data = new curve_law_data(*my_curve, start, end);

// Create a curve law

my_curve_law = new curve_law(my_c_law_data);

};

Law to Edge

This function is the invert of oli_edge_to_law(), it takes a LAW function and returns the

corresponding EDGE.

void oli_law_to_edge(

 law* my_curve_law,

 double start,

 double end,

 EDGE*& edge_label

){

int law_number =0; // for future use

law** other_laws =NULL;

CK_OK(api_edge_law (

 my_curve_law,

 start,

 end,

 edge_label,

 law_number,

 other_laws))

}

Natural Representation of Curves

The natural representation of curves introduced in paragraph 0 could not be implemented

with ACIS because of the absence of integration capability on LAWs. However a virtual

Chapter 10 Procedure Definition

Page 196

function is documented here. This function takes curvature and torsion LAWs, a starting

point (for positioning in coordinate space) as input and returns a curve LAW as output.

Oli_curve_natural_rep(

 law* curvature_law,

 law* torsion_law,

 position start_point,

 law* curve_law)

10.2.4 Continuous LAW Interrogation

Frénet Frame

At this stage a function representation of the curve is available, many operations can be

carried out with the help of the LAW class methods and functions. An implementation of

The Frénet-Serret algorithm in paragraph 6.1.4 is presented below. The outcome of the

function is four continuous functions including curve direction, curvature vector, curvature,

torsion vector and torsion.

void oli_Frenet_frame_law(law * position_vector,

 law *&tangent,

 law *&curvature_vector,

 law *&curvature,

 law *&torsion_vector,

 law *&torsion){

// get the first derivative

int which =0;

law *first_deriv = position_vector-> derivative (which);

//the tangent nomalised vector is:

tangent = new norm_law(first_deriv);

// ds/du = ||P'(u)||

law* point_five = new constant_law(0.5);

law* ds_du = new dot_law (first_deriv,first_deriv);

ds_du = new exponent_law(ds_du, point_five);

// dT / ds = kN

law* dT_ds = tangent->derivative (which);

//dT/du

law* dT_du = new division_law (dT_ds, ds_du);

Chapter 10 Procedure Definition

Page 197

curvature_vector = dT_du;

law* normal = new norm_law (dT_du);

oli_law_length(dT_du, curvature);

// dN/ds = tB - kT

law* dN_ds = normal->derivative(which);

law* dN_du = new division_law(dN_ds, ds_du);

law* kT = new times_law(curvature, tangent);

law* tB = new plus_law(dN_du, kT);

torsion_vector = tB;

law* bi_normal = new norm_law(tB);

oli_law_length(tB, torsion);

// dB/ds = -tN

law* dB_ds = bi_normal->derivative(which);

law* dB_du = new division_law(dB_ds, ds_du);

law* torsion_check = NULL;

oli_law_length(dB_du, torsion_check);

logical Error = torsion==(torsion_check);

torsion_check = new negate_law(torsion_check);

if (Error = false){cout << "Error <Torsion not determined>"<<endl;}

}

Vector Length

A function that computes the length of a vector is also created.

void oli_law_length(law* in_law, law*& out_law){

law* x_term = new term_law(in_law,1);

law* y_term = new term_law(in_law,2);

law* z_term = new term_law(in_law,3);

law* two = new constant_law(2);

law* x_term_sq = new exponent_law(x_term, two);

law* y_term_sq = new exponent_law(y_term, two);

law* z_term_sq = new exponent_law(z_term, two);

law* plus_1 = new plus_law (x_term_sq, y_term_sq);

law* plus_2 = new plus_law (plus_1, z_term_sq);

law * point_five = new constant_law (0.5);

out_law = new exponent_law (plus_2, point_five);

}

Chapter 10 Procedure Definition

Page 198

Singularities

Also it is desirable to implement some mechanism that checks if the derivative of the

function actually exists. This ACIS LAW class method is used to specify where in the given

law there might be discontinuities. The array notes where the discontinuity occurred. The

type indicates 0 if there is a discontinuity, 1 if the discontinuity in the 1st derivative, and any

integer n if the discontinuity is in the n-th derivative. -1 means that it is not defined. In

presence of a discontinuous function, an error message is retuned.

public: virtual int law::singularities (

double** where, // where discontinuity exist

int** type, // type of discontinuity

double start = -DBL_MAX, // start

double end = DBL_MAX, // end

double** period = NULL // period

) const;

Projection

The projection procedure takes a multidimensional LAW function as input. The X,Y,Z terms

are extracted from the LAW for constructing three projections in the X_Y, Y_Z and Z_X

planes as outputs.

void oli_projection (law* in_law,

 law*& x_y_proj,

 law*& y_z_proj,

 law*& z_x_proj,

){

law* x_comp = new term_law(in_law, 1);

law* y_comp = new term_law(in_law, 2);

law* z_comp = new term_law(in_law, 3);

law* zero = new constant_law (0);

//law* zero = NULL;

law* x_y_array[3] = {NULL};

x_y_array[0] = x_comp;

x_y_array[1] = y_comp;

x_y_array[2] = zero;

x_y_proj = new vector_law (x_y_array,3);

Chapter 10 Procedure Definition

Page 199

law* y_z_array[3] = {zero, y_comp, z_comp};

y_z_proj = new vector_law (y_z_array,3);

law* z_x_array[3] = {z_comp, zero,x_comp};

z_x_proj = new vector_law (z_x_array,3);

}

Energy Formulation

This function takes a pointer to an entity of type EDGE, gets its LAW representation,

evaluate its curvature and numerically integrate the squared curvature from the parameter

bounds.

double oli_curve_energy(

EDGE *edge_label,

double start, //start parameter for energy eval

 double &energy, //end parameter for energy eval

 double fitol

){

law *my_curve_law = NULL;

oli_edge_to_law(edge_label, my_curve_law);

law *my_curve_law = new curve_law(my_c_law_data);

//make curvature law

law *my_curvature_law = new curvature_law(my_c_law_data);

//make it squared

law *energy_law = new times_law(my_curvature_law,my_curvature_law);

int min_level=2; // optional minimum

int* used_level =NULL; // optional number of

api_integrate_law (my_curvature_law,

 start,

 end,

 energy,

 fitol,

 min_level,

 used_level

);

// clean up memory.

my_c_law_data->remove();

my_curve_law->remove();

my_curvature_law->remove();

Chapter 10 Procedure Definition

Page 200

energy_law->remove();

return energy;

};

10.2.5 Parameterisation

Cord Length Parameterisation

This function takes an array of points and returns an array of knot parameters for the cord

length parameterisation.

void oli_cord_length_parameterisation(

 int *Nb_CtrlPpts,

 position vertices[], //array of Nb_CtrlPpts points

 cord_length_knot[], //array of Nb_CtrlPpts knots

){

double sum_distance[*&Nb_CtrlPpts-1];

for(int i=0; i<Nb_CtrlPpts-1;i++){

 sum_distance[i] = sum_distance[i-1]+(vertices[i+1]-vertices[i]).len();

 }

doule param[*&Nb_CtrlPpts-2];

for(i=0; i<Nb_CtrlPpts-2;i++){

 param[i] = sum_distance[i]/sum_distance[Nb_CtrlPpts-2];

 }

cord_length_knot[0] = 0;

cord_length_knot[Nb_CtrlPpts-1]=1;

for (i = 0; i < Nb_CtrlPpts-2; i++) {

 cord_length_knot[i+1] = param[i];

 }

}

Page 201

Conclusions and Further Work

This thesis has covered in depth material concerning the three constituting fields of the

optimisation framework, which constitutes the foundation of the research. The exhaustive

coverage has been necessary to the understanding of the disciplines involved in this research.

In depth knowledge of these have permitted looking at ways of combining functionality

originating from different sources; thus making more powerful assemblies capable of dealing

with a wider range of engineering problems. Conclusions regarding the framework modules

are regrouped under their respective headings below.

NURBS Curve Optimisation

NURBS Curve Optimisation is achieved by tweaking the curves’ construction constraints to

reach the level of quality required by the designers.

The modelling technique, developed in paragraph 7.2, has exposed complementary handles

on a curve’s shape to the user interface. The handles give interactive control over the curves’

internal knot parameter values. The examples provided demonstrate the influence of

parameterisation on curves’ shape. This curve construction method could also be used as a

modelling technique implemented in a CAD environment. However it remains uncertain that

designers would benefit from this application without some level of automation added to the

optimisation process. The low level of automation, is perhaps the main drawback of this

particular application.

This is addressed by another application which drives uses the curve’s total energy in an

attempt to find an optimum set of knot values which will result in the minimum energy curve

satisfying the same interpolation data. The results of experiments have shown that the

algorithm fails to produce improved shape. It is questionable whether the GA cannot deal

with the problem or the reasoning of this curve optimisation algorithm is flawed. This

application is particular in the way that variables are dependent of each other: one variable

change influences the balance of parameter distribution of the curve, and this is pushing the

Conclusions and Further Work

Page 202

GA to its limit. Furthermore there is no guarantee that the optimisation process is sound.

Further work on this algorithm ought to investigate in the formulation of total energy to find

a measure that is more representative of the curve’s energy. The existing algorithm can also

be checked with a more powerful GA that can handle interactive variables.

Other internal constraints are put forward to the user through the graphic interface. These are

the curves differential properties at the knots points, which are used as constraints in Hermite

interpolation. This modelling feature already exists in some CAD systems but is limited to

tangent input. Higher degree deferential constraints input like normal and bi-normal should

be considered in further developments.

The research made an attempt to find innovative ideas for graphic manipulation of NURBS,

and has succeeded in implementing tools that give complementary handles on the curves’

shape by representing internal constraints at the programming interface first and finally

graphic interface. However NURBS based algorithms showed immediate limitations because

constraints are only applicable discretely at the control points. What goes on in between is

function of these, but not always in a predictable manner. NURBS is adequate for

interpolating construction points but is not suitable for producing high quality curves.

Intrinsic Curve Optimisation

Another group of curve applications are using a different representation scheme other than

NURBS. F-rep is a continuous geometric description of curves by vector functions.

In F-rep curves are defined by three independent functions for the X,Y,Z coordinates.

Combinations of two these functions are used in an application, paragraph 8.1, for projecting

curve onto planes. The projection technique is useful to visualise on three planes the path of

a 3D curve. It enables to see how much curvature and how much torsion there is. Also it is

possible to change one of the projections and recreate a 3D curve. However this technique

has obvious limitations with helical curves. The projection of one of these would not be

helpful.

F-rep functions are differentiable and this has permitted the development of new curve

optimisation algorithms. These are based on fundamental differential geometry theorems

discovered in the XIXth centuary. Six measures out defined in the Frénet-Serret relations,

Conclusions and Further Work

Page 203

they define an orthogonal mobile frame that slides along the curve. The Frénet frame is

composed of three unit vectors namely tangent, normal and bi-normal. They also define two

measures: Curvature is the invert of the radius of curvature oriented by the normal and

torsion is the amount of twist in the direction of the bi-normal.

Using the results of the Frénet-Serret relations, the research has developed a variety of tools

designed for curve quality inspection. The quality is assessed by visualising the graphic

representation of curves intrinsic properties. This is achieved by creating offsets curve for a

direct representation of the Frénet frame or by plotting the curvature and torsion magnitude

profiles for an indirect representation of the curve’s intrinsic properties. These tools have

been successfully implemented in the HulaHoops CAD framework and tested on a

representative selection of curves feature curves. They proved to be adequate tools for

analysing the geometric definition of curves as well as detecting irregularities.

Frénet’s proposition for the description of curves’ shape is closely related to its intrinsic

equations. A proposition was made is this thesis to implement an algorithm which allows the

construction of a curve given its curvature and torsion profile. This implies finding a solution

to the Frénet-Serret relations. Many approaches are put forwards as feasible algorithms, but

in all cases, at least one integration is necessary. The implementation was partially

successful because the functionality exposed by the geometric modeller did not allow to

accurately implement the theory in a functional application. Under the current functionality

of ACIS, there is no possibility to perform symbolic integration. An substitute algorithm to

symbolic integration was made up from incremental numerical integration, but could not

perform well enough to produce acceptable results. However, given the right tools for the

job, these algorithms have potential for success.

The Frénet frame together with curvature and torsion profiles have demonstrated that old

pieces of mathematics could be brought back to life with the help of F-rep geometric algebra.

The Function Representation paradigm give a more generic and more exact definition of

curves than NURBS, thus it should be systematically incorporated in geometric modellers

along side with NURBS.

Conclusions and Further Work

Page 204

Optimisation

Other conclusions regard optimisation. The primary aim of this research was to demonstrate

the possible integration of optimisation with CAD. Sadly little effort was spent on

developing an optimisation toolbox with suitable interaction mechanisms necessary for

constituting a so-called optimisation framework. Perhaps the research in the field is still at its

infancy and the focus is still on developing new algorithms rather than enhancing its

interactivity.

The results drawn from optimisation could be examined by researchers in the field to

orientate their activities on the representation of constraints. GAs must provide mechanisms

to deal with constraints or the algorithm is at risk of producing non-sensical or corrupted

geometry. A brief intrusion in the representation of constraints was made in creating

functions for bounding variables coming from NURBS data point coordinates, [paragraph

8.2.1] and parameter values, [paragraph 0]. This functionality fulfilled the immediate needs

encountered in this research, but more effort should go in this area of work.

Advance in the convergence of GAs was also proposed in this thesis. Paragraph 8.2.1

demonstrates the benefits of fitness function boosting to improve their speed of convergence.

It was also found necessary to proceed to a fitness function test to validate the formulation of

the evaluation function. This was achieved by creating loop algorithms isolating one variable

at the time [paragraph 8.2.1]. Another observation is the absence in the Toolbox of indicator

on the level of achievement of the algorithm. This could take the form of a measure of speed

of convergence evaluated by the slope of the Paretto front.

The experiments reported in this thesis show that evolutionary computing is incapable of

adapting to real life engineering problems. It is inaccurate and shameless to produce non-

sense solutions, for example a curve that double backs on itself is a solution, but not a valid

solution. This problem could be resolved by constraining the variables and as it stands,

variable constraint is limited to the bounding of the upper and lower values. Something in

that direction was proposed in paragraph where knot values are constrained so that they

never overlap and cause a system failure. The inaccuracy side effect is caused by the binary

coding of variables and is perhaps inherent to the algorithm. Roy et. al. [99], [102] have

published on real coding in GAs, the results predict a reduction of coding error in an

Conclusions and Further Work

Page 205

algorithm that takes its variables in decimal format; no implementation was proposed. This

leads one to question whether the results given in the papers cited above have been

adequately checked.

Geometric Modelling

The geometric modeller used for the research, namely ACIS, is well suited to application

development. ACIS is structured in components regrouped under a wide common API. The

documentation is satisfactory for the main API functions but is sometimes too brief on

classes and methods.

Its structure in components enclose functionality purposely designed for specialised

operations. The LAW component of ACIS which provides the functionality for curve

function representation is independent from the NURBS component, but both have the

ENTITY class as common parent. It is possible from an ENTITY that is a curve to get to F-

rep representations via NURBS: a long route inside the ACIS interface. Also there are

question marks over the conversion from F-rep to NURBS. The variety of shapes that can be

obtained with F-rep is much greater than with NURBS. This shows while converting the

model from the former to the latter that it could take tens of control points to describe a basic

shape. It was also noticed that the control points are more dense in the regions of high

curvature. It takes more precision and more constraints to define a shape that has high

accelerations than a flat section. The conversion of a NURBS curve to F-rep and back to

NURBS could improve the distribution of the control points along the curve. This is valuable

gain for model digitisation, which is made at regular intervals, regardless of the curvature

[paragraph 3.2]. Maybe it is the case, but it has not been possible to establish this as a fact.

The LAW component in ACIS was intended for sweeps with twists, nowhere is mentioned

functionality designed for the specific purpose of curve optimisation. In the light of the

results achieved by this research, it could be envisaged that the functionality requirements

documented in this thesis is met by the LAW component in the future. In most cases it has

been possible to create the functionality out of what was available, but in one instance the

experimentations came to halt because it was not possible to proceed to symbolic integration

of functions. The solutions to this could be placing a request at Spatial’s desk to provide this

functionality or finding a third party module that could do this; MATHLAB is under

Conclusions and Further Work

Page 206

consideration. Some of the functionality needed is present in SVLIS [17] but that has the

drawback of being CSG, so there is still no solution available off the shelf.

The philosophy of ACIS is compatible with the idea of a generic interface for the CAD

environment. Many of the features making the Oli generic interface, deployed in paragraph

9.5.3 are available from the ACIS API. This has facilitated the design of the Oli interface

which could use the functionality already existing in ACIS. For example, generic attributes

are implemented in ACIS for making associations with external data. There also is the

possibility of making API functions supporting API features like state records, roll-backs

and error checks. The need for a generic interface still remains strong. Since recent

acquisition of Spatial by Dassault Systemes, they propose a connection interface between

CATIA and ACIS. The internal details of this product deserve investigating to establish the

nature of its API and the perspectives it offers.

Oli Interface

The concepts of flexible optimisation, together with generic interfacing are slowly emerging

from the recent restructuring of CAD vendors. This research has demonstrated that with

appropriate interfacing of packages that are designed with open doors to the outside world,

more systems could integrate frameworks, thus providing engineers with the possibility of

using a panel of engineering design tools. This thesis aimed at documenting the requirements

placed by optimisation on an API. Some fresh ideas are thrown in the pot, but much work

remains untouched. New projects in this area need to come up and push forward some of the

concepts elaborated in this thesis.

Framework

It has been necessary to create a new “kit CAD system from scratch in order to integrate

flexible optimisation in it. In this instance both parties share the responsibility for this

inconvenience. On one hand CAD systems are closed to research applications and on the

other hand optimisation has not come yet to this level of research sufficient to support an

API.

Conclusions and Further Work

Page 207

The new environment is composed of modules that provide functionality to the framework.

The boundary line between interfaces modules and applications is a blurred one. All

modules play an important part in the picture, but the delegation of responsibilities across the

framework is subjective. The division of labour should follow the principles of interfacing.

For example, some of the functionality absent from the Flexo toolbox was replaced by

functionality implemented in Oli between its top and the bottom interface. In an ideal

situation the generic API should remain abstract, that is a barebones data structure, but

should not be the host of function implementations, they must be supported by the modules.

The aim of interfacing is to create functionality at its simplest form. Data is gradually

reduced through a succession of interfaces which provide clients with the least data as

possible. Thus, the objective of interfacing is to delegate as much labour as possible to the

interface below it. Requirements at the API level as well as at implementation level have

been documented and in some instances, an implementation if these requirements have been

proposed. From this point it is down to the geometric modelling community and researchers

in optimisation to answer to the calls this thesis has made.

Further Work

The optimisation of NURBS construction parameters was carried out using a GA, the

outcome of the application developed have shown that the GA used in this research is

struggling in some instances: Interactive variable problems, paragraph 7.4 and high number

of variables, paragraph 8.2.1. The aim of further work on GAs is to broaden the problem

spectrum it can handle. A lot more work is necessary before optimisation can claim to be

integrated within any sort of framework. The implementation in the Flexo project has simply

pushed back many of its responsibilities on to the Oli interface and applications rather than

designing a real optimisation framework. These observations and propositions deserve

further study by optimisation people, the results drawn from this thesis can give some

indications for the direction of further developments.

It was found that curve optimisation could be performed through reconstruction from

prescribed differential properties. These applications were partly successful because of the

current limitations of ACIS functionality regarding symbolic integration. This functionality

should take ACIS LAW functions as input and return the primitive LAW functions of the

Conclusions and Further Work

Page 208

input. This would enable application researchers to implement algorithms for the recreation

of curves back from their differential properties without the help of GAs.

This thesis has developed examples for the purpose of curve optimisation and most

particularly their aesthetic aspects. Application researchers could make direct usage of the

algorithms proposed in this thesis for other purposes. For instance curve framing could be

useful to the study of fluid mechanics. More generally, F-rep together with differential

geometry could find applications in other fields. Corney [28] gives a study example of a

mechanical cam design. Recently the author has started on the study of a variable geometry

car suspension, where the wheel camber varies with the steering angle to overcome the tyre

deformation under cornering.

Page 209

References

[1] ACIS Version 6.3 online ducumentation. Web page available from http://www.spatial.com

[2] Altair Engineering, “OPTISTRUCT” [WWW page]. Altair Engineering Inc., 1999 [cited 22

June 2000]. Available from < http://www.altair.com/>

[3] Aminov, Y., Differential Geometry and Tpology of Curves. Gordon and Breach Science

Publishers, 2000.

[4] Anderson, E., Anderson, R., Boman, M., Elmroth, T., Dahlberg, B. & Johansson, B. (1988).

Automatic construction of surface with prescribed shape, In: Computer Aided Design, Vol.

20, No. 6, 317-324.

[5] Archer, L.B., Systematic Method for designers. In Development in Design Methodology (Ed.

N. Cross), 1984, pp. 57-82 (John Wiley, London).

[6] Bäck T., et al., 1997, Handbook of Evolutionary Computation, Oxford University Press, New

York

[7] Bäck, T., Hammel, U. and Schwefel, H.P. (1997). ‘Evolutionary computation: comments on

the history and current state’. I.E.E.E. trans. on evolutionary computation, vol. 1, no. 1, 3-17.

[8] Barry, P.J. and Goldman, R.N., 1989. What is the natural generalisation of Bézier curves? In

Mathematical Methods in Computer Aided Geometric Design. Tom Lyche and Larry L.

Shumaker (eds), pp. 71-85.

[9] Bentley, P.J., Wakefield, J.P., Generic Evolutionary Design.

[10] Berchtold, J., Bowyer, A., Bézier surfaces in set theoretic geometric modelling,

www.bath.ac.uk/~ensab/.

[11] Bernstein, S., 1912. Démonstration du théorème de Weierstrass fondée sur le calcul des

probabilités. Harkov Soobs. Matem ob-va, 13:1-2.

[12] Bézier, P., 1966. Définition numérique des courbes et surfaces I. Automatisme XI, pp. 625-

632.

[13] Bézier, P., 1967. Définition numérique des courbes et surfaces II. Automatisme XII, pp. 17-

21

[14] Bishop, R., L., There is more than one way to frame a curve. Amer. Math. Monthly 82, 3

(March 1975), 246-251.

[15] Bowyer, A. Davenport, J.H., Milne, P., Padget, J., and Wallis, A.F., 1989. A geometric

algebra system. In Woodwork, J. (Ed) Geometric Reasoning Clarendon Press, UK.. pp. 1-28.

References

Page 210

[16] Bowyer, A., Cameron, S. A., Jared, G. E. M., Martin, R. R., Middleditch, A. E., Sabin, M. A.

& Woodwark, J. R. (1997). Ten questions that arose in designing the Djinn API for solid

modelling, In: Proc. 1997 International Conference on Shape Modelling and Applications,

Aizu-Wakamatsu, Japan.

[17] Bowyer, A., SvLis, Introduction and User Manual. Information Geometers,

www.bath.ac.uk/~ensab/.

[18] Bowyer, A., Woodwark, J., 1993. An Introduction to Computing with Geometry.

Information Geometers Ltd.

[19] Bremicker, M., Chirehdast, M., Kikuchi, N., Papalampos, P.Y., !991. Integrated Topology

and Shape Optimisation in Structural Design. Mechanics of Structures and Machines, Vol.

19, No. 4, pp. 551-587.

[20] Buchanan, S.A., De Pennington, A., 1993. Constraint Definition System: a computer-algebra

based approach to solving geometric-constraint problems. Computer Aided Design, 25(12),

pp. 741-750.

[21] Cagan, J., Agogino, A.M., 1991. Dimensional, variable expansion – A formal approach to

innovative design. Res. in Engng Des.

[22] Caldecote, V. The design Team in Relation to the individual Designer. The Practice of and

Education for Engineering Design. Proc. Instn. Mech. Engrs, 1963-4, 178(B), 16,19.

[23] Choi, B.K., Surface Modelling for CAD/CAM, Advances in Industrial Engineering. Elsevier,

1991.

[24] Clausing, D.P., 1994. Total quality development – The development of competitive products.

American society of mechanical engineers Press. New York.

[25] Coello, C.A.C. (1999). An updated survey of evolutionary multiobjective optimization

techniques: state of the art and future trends. In: 1999 congress on evolutionary computation.

I.E.E.E., Washington, D.C. (U.S.A.).

[26] Cohen, E.and O’Dell, C.L., 1989. A data Independent Parameterisation for Spline

Approximation. In Mathematical Methods in Computer Aided Geometric Design. Tom

Lyche and Larry L. Shumaker (eds), pp. 155-166.

[27] Combescure, E., Comptes Rendus des Séances de l’Académie des Sciences, Tome soixante-

quatrieme, janvier-juin 1867.

[28] Corney. J. Lim. T., 2001. 3D Modelling with ACIS. Saxe-coburg publications.

[29] Culley, S.J., Wallace, A.P., 1994. Optimum Design of Assemblies with Standard

Components. Proc. Of Adaptive Computing in Engineering Design and Control ’94.

Plymouth, UK.

[30] Dankwort, C.W., Podehl, G., 1998. A new aesthetic design workflow – Results from the

European project FIORES. Dagstuhl Seminar 98461: CAD Tools and Algorithms for Product

Design. International Conference and Research Centre for Computer Science, Schloss

Dagsthul, Warden, Nov. 1998.

References

Page 211

[31] David, B. T., 1987, “Multi-Expert Systems for CAD,” Intelligent CAD Systems I:

Theoreticaland Methodological Aspects, Springer –Verlag, Noordwijkerhout, the

Netherlands, pp. 57-67.

[32] de Boor, C., 1972. On calculating with B-splines. Journal Approx. Theory 6, pp.19-42.

[33] De Casteljau, P., 1959. Outillages méthodes Calacul. Technical report, A. Citroën, Paris.

[34] Deb, K. (1999). Evolutionary algorithms for multi-criterion optimization in engineering

design. In: Miettinen, K., Makela, M.M., Neittaanmaki, P. and Periaux, J. (eds.).

Evolutionary algorithms in engineering and computer science. John Wiley & Sons Ltd., U.K.

[35] Deb, K. (1999A). Evolutionary algorithms for multi-criterion optimization in engineering

design. In: Miettinen, K., Makela, M.M., Neittaanmaki, P. and Periaux, J. (eds.).

Evolutionary algorithms in engineering and computer science. John Wiley & Sons Ltd.,

U.K.

[36] Deb, K. (1999B). ‘Multi-objective genetic algorithms: problem difficulties and construction

of test problems’. Evolutionary computation, vol. 7, no. 3, 205-230.

[37] Deb, K., Optimisation for Engineering Design, Algorithms and Examples. Prentice Hall of

India, New Delhi, 1995.

[38] Djinn: A geometric interface for solid modelling. Specification and Report. The Geometric

Modelling Society. Information Geometers Ltd, 2000.

[39] Edelsbrunner,H, Algorithms in Combinatorial Geometry. Springer-Verlag,1987.

[40] Einar, H., Skappel, E., “FORMELA, 1973. A general design and production data system for

sculpted products,” in ComputerAided Design, Vol. 5, No. 2, pp. 68-76

[41] Eisenhart, L. P., A Treatise on the Differential Geometry of Curves and Surfaces. Ginn and

Co.

[42] Evbuomwan, N. F. O., Sivaloganathan, S., Jebb, A. A survey of design philosaphies, models,

methods and systems. Pro. Of the institution of mechanical engineers. 1996, pp. 301-320 B4.

[43] Farin, G., 2002. A history of curves surfaces in CAD. In Farin, G., Kim, M.S. and Hoscheck,

J. (eds), Handbook of 3D modelling and graphics, pp. 1-22. Elsevier.

[44] Farin, G., Curves and Surfaces for CAGD, a practical guide. Fifth Edition. Morgan

Kaufmanm Publishers, 2002.

[45] Farin, G., NURB Curves and Surfaces, from Projective Geometry to Practical Use. A K

Peters, 1995.

[46] Faux, I.D., Pratt, M.J., Computational Geometry for Design and Manufacture. Ellis

Horwood, 1979.

[47] Feilden, G. B. R., et al. Engineering Design (The Feilden’s Report’), 1963 (Her Majesty’s

Stationary Office London)

References

Page 212

[48] Ferguson, D., Frank, P., Jones, K., 1988. “Surface shape control using constrained

optimisation on the B-spline representation,” in Computer Aided Geometric Design, Vol. 5,

No. 2, pp. 87-103,

[49] Ferguson, J.C., 1964. Multivariable curve interpolation. Journal ACM II/2, pp.221-228.

[50] Finkelstein, L. and Finkelstein, A. C. W., Review of Design Methodology. IEE Proc., June

1983, 130 (Part A, No 4).

[51] Forrest, A.R., 1972. Interactive Interpolation and Approximation of Bézier polynomials.

Computer Journal, Vol.15 No.1, pp. 71-79.

[52] Forrest, A.R., 1972. Mathematical Principles for Curve and Surface Representation. In

Curved Surfaces in Engineering, computer methods for design and manufacture, 15
th
-17

th

March 1972 Churchill College, Cambridge.

[53] Gibson, C.G., Elementary Geometry of Differentiable Curves, an undergraduate

introduction. Cambridge University Press 2001.

[54] Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine learning.

Addison-Wesley Publishing Company, Massachusetts (U.S.A.).

[55] Goldberg, D.E., 1989, Genetic Algorithms in Search, Optimisation, and Machine learning,

Addison-Wesley Publishing company, inc., Reading, MA.

[56] Goodman, T.N.T, 1989. Shape Preserving Representations. In Mathematical Methods in

Computer Aided Geometric Design. Tom Lyche and Larry L. Shumaker (eds), pp. 333-351.

[57] Gordon, W. and Riesenfeld, R.E., 1974. B-spline curves and surfaces. In Barnhill et al. ’74,

pp.95,126.

[58] Hanson, A., J., and Ma, H., Parallel Transport Approach to Curve Framing. Department of

Computer Science, Indiana University, 1995.

[59] Higashi, M., Kohji, K., Mosaka, M. “Generation of high quality curve and surface with

smoothly varying curvature,” in EUROGRAPHICS’88 Conference, pp. 79-92

[60] Holland, J.H., 1975. Adaptation in Natural and Artificial Systems, MIT Press.

[61] Hoscheck, J., 1984. “Detecting regions with undesirable curvature,” in Computer Aided

Geometric Design, Vol. 1, No2, pp. 183-193.

[62] Hoscheck, J., 1985. Smoothing of curves and surfaces. Computer Aided Geometric Design 2,

pp. 97-105, North Holland.

[63] Jared, G. Geometric Modelling Lecture Notes. Cranfield University.

[64] Jared, G., Roy, R., Grau, J. and Buchannan, T. (1998). ‘Flexible optimisation within the

CAD/CAM environment’. Proceedings of the C.I.R.P. international seminar on intelligent

computation in manufacturing engineering. Capri (Italy), 1-3 July, 503-508.

References

Page 213

[65] Jones, A. K., 1994. Curvature Integration through Constrained Optimisation. In Sapidis, N.,

(eds), Designing Fair Curves and Surfaces. Shape Quality in Geometric Modelling and

Computer Aided Design. SIAM conference, 1994.

[66] Juster, N..P., 1985. The design process and methodologies. Technical report, University of

Leeds, UK.

[67] Kaufman, E., Klass R., 1988. “Smoothing surfacesusing reflection lines for families of

splines,” in Computer Aided Design, Vol. 20, No. 2, pp. 73-78.

[68] Laakko, T., Mäntylä, M., 1993. Feature modelling by incremental feature Recognition.

Computer Aided Design, 25(8), pp. 479,492.

[69] Linden, G., Westberg, S., 1993. “Fairing of Surfaces with Optimisation Techniques using

FANGA curves as Quality Criterion,” in Computer Aided Design, Vol. 25, No. 7, pp. 411-

420,

[70] Liu, X., Bregg, D.W. and Fishwick, R.J. (1998). Genetic approach to optimal

topology/controller design of adaptive structures. International Journal for Numerical

Methods in Engineering 41, 815-830.

[71] Luckman, J., An Aproach to the Management of Design. In Developments in Design

Methodology (Ed. N. Cross), 1984, pp. 83-97 (John Wiley, London).

[72] Medland, A.J., 1986. The computer based design process.Kogan page London.

[73] Moreton, H.P., 1995. Simplified curve and surface interrogation via mathematical packages

and graphic libraries and hardware. In Computer Aided Design, Elsevier Science Ltd. vol.

27, No. 7, pp. 523-543.

[74] Mostow, J., 1985. Towards better models of the design process. AI Mag., Spring 1985, pp.

44-57

[75] Mussa, R. Roy, R. and Jared, G. “Surface Optimisation within a CAD/CAM environment

using genetic algorithms”, in WSC3, Cyberspace, 21-30 June 1998

[76] Mussa, R., “Integration of Genetic Algorithm into CATIA for Surface Optimisation”, M.SC.

Thesis, Cranfield University, 1998.

[77] Mussa, R., Roy, R. and Jared, G. (1998). Surface optimisation within the CAD/CAM

environment using genetic algorithms. In: Roy, R., Furuhashi, T. and Chawdhry, P. K. (eds.).

Advances in soft computing. Springer, London (U.K.).

[78] Neilson, G.M., Foley, T.A., 1989. A survey of Applications of an Affine Invariant Norm. In

Mathematical Methods in Computer Aided Geometric Design. Tom Lyche and Larry L.

Shumaker (eds), pp. 445-467.

[79] Nissan Technical Centre Europe (NTCE), Cranfield, UK, 1999

[80] Nutbourne, A., Martin, R., Differential Geometry Applied to Curve and Surface Design,

Volume 1: Foundations. Ellis Horwood Limited

References

Page 214

[81] Pahl, G., Beitz, W., 1971. Engineering Design. Original German Edition, 1
st
 edition 1971;

English edition (Ed K. Wallace), 1984 (The Design Council London).

[82] Parasolid version 13.2.152 online ducumentation. Web page available from

http://www.parasolid.com

[83] Parmee, I.C., Denham, M.J., 1994. The Integration of Adaptive Search Techniques with

Current Engineering Design pratice. Proc. Of Adaptive Computing in Engineering Design

and Control ’94, Plymouth, Uk.

[84] Piegl, L., Tiller, W., The NURBS Book, Monograph in Visual Communication. Second

edition. Springer, 1997.

[85] Porta, C.G., Fröwis, R., and Kleindienst, U. An Introduction to Sculpted Metrology

(Holometry). in Reverse Engineering. J. Hoschek and W. Dankwort, Verlag Ullstein

GMGH, 1996, pp. 109-124

[86] Pottmann, H., 1889. “Visualising curvature discontinuities of free-form surfaces,” in

EUROGRAPHICS’89 Conference, pp. 529-536.

[87] Preparata, F.P. and Shamos, M.I, Computational Geometry, an introduction. Springer-

Verlag, 1985.

[88] Raasch, “Structural optimisation and it’s influence on the design process,” in Reverse

Engineering. J. Hoschek and W. Dankwort, Verlag Ullstein GMGH, 1996, pp. 109-124

[89] Rogero, J.M., Tiwari, A., Munaux, O., Rubini, P.A., Roy, R. and Jared, G. (2000).

Applications of evolutionary algorithms for solving real-life design optimisation problems.

In: 6
th
 international conference on parallel problem solving from nature (P.P.S.N. VI)

workshop, Paris (France), 16-20 September.

[90] Roy, R. (1997). Adaptive search and the preliminary design of gas turbine blade cooling

system. PhD. Dissertation, Engineering Design Centre, University of Plymouth, Plymouth

(U.K.).

[91] Roy, R. and Parmee, I.C. (1997). An overview of evolutionary computing for multimodal

function optimisation. In: Chawdhry, P.K., Roy, R. and Pant, R.K. (eds.). Soft computing in

engineering design and manufacturing. Springer, U.K.

[92] Roy, R., Engineering Design Optimisation. Lecture notes 1, Cranfield University, 2000.

[93] Roy, R., Jared, G., Grau, J. and Buchannan, T. (1998). Adaptive design decision support

within CAD environment. In: Sivalogonathan, S. and Shahin, T.M.M. (eds.). Design reuse.

Professional engineering publishing, 255-262.

[94] Roy, R., Jared, G., Tiwari, A. and Munaux, O. (2000) An Overview of Evolutionary-based

Multi-objective, Multi-modal and Constrained Optimisation Techniques. Cranfield, UK:

Technical Report Cranfield University, Flexo Report – 2.

[95] Roy, R., Jared, G., Tiwari, A. and Munaux, O. (2000). Design Optimisation: A Survey of

Industries. Technical Report Cranfield University, Cranfield, U.K., Flexo Report - 5.

References

Page 215

[96] Roy, R., Jared, G., Tiwari, A. and Munaux, O. (2000). Families of design. Cranfield, UK:

Technical Report Cranfield University, Flexo Report – 3.

[97] Roy, R., Jared, G., Tiwari, A. and Munaux, O. (2000). Flexo, project scope definition,

Cranfield, UK: Technical Report Cranfield University, Flexo Report – 1.

[98] Roy, R., Jared, G., Tiwari, A. and Munaux, O. (2000). Specification of Flexible Optimisation

Framework. Technical Report Cranfield University, Cranfield, U.K., Flexo Report - 6.

[99] Roy, R., Jared, G., Tiwari, A., and Munaux, O. (2000). Development of ‘Tool Box’ for Real-

life Engineering Design Optimisatiom. Cranfield, UK: Technical Report Cranfield

University, Flexo Report – 8.

[100] Roy, R., Jared, G., Tiwari, A., and Munaux, O. (2000). Industrial Requirements for Flexible

Optimisation. Cranfield, UK: Technical Report Cranfield University, Flexo Report – 4.

[101] Roy, R., Parmee, I., Purchase, G. 1996. “Sensitivity Analysis of Engineering Design Using

TAGUCHI’s Methodology,” In: Proceedings of the 1996 ASME Design Engineering

Technical Conferences, August 18-22, 1996. Irvine, California.

[102] Roy, R., Tiwari, A., Munaux, O. and Jared. G. (2000). Real-life engineering design

optimisation: features and techniques. In: 5
th
 online world conference on soft computing in

industrial applications (W.S.C.5). Cyberspace, 4-18 September.

[103] Roy, R., Tiwari, A., Munaux, O. and Jared. G. (2000C). Real-life engineering design

optimisation: features and techniques. In: Martikainen, J. and Tanskanen, J. (eds.). CDROM

Proceedings of the 5th online world conference on soft computing in industrial applications

(W.S.C.5) – ISBN 951-22-5205-8, IEEE, Finland.

[104] Rzevski, G., On the design of a design methodology. In Design: Science: Method,

Proceedings of the 1980 Design Research Society Conference (Ed. R. Jacques and J. A.

Powell), 1981, pp. 6-17 (Westbury House, Guildford Surrey).

[105] Sabin, M., 1989. Open Questions in the Application of Multivariate B-splines. In

Mathematical Methods in Computer Aided Geometric Design. Tom Lyche and Larry L.

Shumaker (eds), pp. 529-537.

[106] Sapidis, N., (eds), Designing Fair Curves and Surfaces. Shape Quality in Geometric

Modelling and Computer Aided Design. SIAM conference, 1994.

[107] Schwefel, H.P. (1995). Evolution and optimum seeking. John Wiley & Sons, Inc., New York

(U.S.A.).

[108] SDRC Imageware SURFACER, User Manual Software version 10.0, 2000

[109] SDRC Ideas, User Manual Software version 8.x, 2000

[110] Sederberg, T., Parry, S., 1986. “Free-Form deformation of solid geometric models,” in

SIGGRAPH’86, Vol. 20, No. 10, pp. 151-160.

[111] Serrano, D., 1984. Constraints Management in Conceptual Design. Ph.D. Thesis,

Massachusetts Intitute of technology, Cambridge USA.

References

Page 216

[112] Sinha, S., Seneviratne, P. Part to art. in Reverse Engineering. J. Hoschek and W. Dankwort,

Verlag Ullstein GMGH, 1996, pp. 8-17.

[113] Sriram, D., et al., 1989. Knowledge based system applications in engineering design:

research at MIT. AI Mag., 10(3), 79-96.

[114] Stanley, T.J. and Mudge, T. (1995). A parallel genetic algorithm for multiobjective

microprocessor design. Proceedings of the Sixth International Conference on Genetic

Algorithms, 597-604.

[115] Steuer, R.E. (1986). Multiple criteria optimization: theory, computation, and application.

Wiley, New York (U.S.A.).

[116] Szilvasi-Nagy, M., 1997. “Detecting regions with undesirable curvature,” in Computer Aided

Geometric Design, Vol. 14, No. 8, pp. 699-706.

[117] The concise Oxford dictionary. Ninth Edition. Clarendon Press, Oxford.

[118] Thornton, C. “CADET: Software Support Tool for Design Constraints,”Cambridge

University, Massachusetts, USA.

[119] Watabe, H., Okino, N., 1993. “A study on genetic shape design,” in S. Forrest, ed.,

Proceedings of the fifth International Conference on Genetic Algorithms, Morgan Kaufmann,

pp. 445-450.

[120] Weatherburn, C., E., Differential Geometry of Three Dimentions, Vol 1, Cambridge

University Press, 1939.

[121] Weinert, K., Mehnen, J., and Prestifilippo, “Optimal surface reconstruction from digitized

point data using CI methods,” Technical report No. CI-5/97, Dortmund University, Germany

[122] Wolters, H.J., Farin, G., “Geometric Curve Approximation,” Computer Aided Design 14 pp.

499-513, 1997.

Page 217

Appendix 1 Optimisation in Industry

The aim of this chapter is to discuss the current status of design optimisation in industry in

order to provide a framework for the present research. The details provided in this

document are based on the information collected from designers in industry. This

document addresses the following issues related to design optimisation.

Ø To make a study of design processes in manufacturing industry: This includes the

study of the current status of design optimisation in industry, the drivers,

methodology and tools for design improvement are also outlined.

Ø To identify the tools for design improvement: This constitutes the identification of

the main optimisation algorithms and their industrial use. The factors inhibiting the

industrial use of these algorithms are also discussed.

Ø To identify the need for flexible optimisation: Based on industrial requirements, this

highlights the functionality sought in the flexible optimisation framework.

1.1 Introduction

The introduction of lean production techniques in manufacturing industry has greatly

enhanced the efficiency of its operations. However, the full potential of lean manufacturing

could only be attained if attempts are made to obtain best possible results with the given

resources. This warrants the introduction of optimisation techniques in the product design

cycle. This industry survey, which is detailed in Roy et. al. [100], forms the basis of this

chapter.

1.2 Objectives

This section addresses the following issues related to design improvement.

Appendix 1 Optimisation in Industry

Page 218

Ø To make a study of design processes in the manufacturing industry: This includes the

study of current status of design optimisation in industry, the drivers, methodologies

and tools for design improvement are also outlined.

Ø To identify the tools for design improvement: This constitutes the identification of

main optimisation algorithms and their industrial use. The factors inhibiting the

industrial use of these algorithms are also discussed.

Ø To identify the need for flexible optimisation: Based on industrial requirements, this

highlights the functionality sought in the flexible optimisation framework.

Ø The document begins with a brief explanation of the methodology adopted for the

investigation whose results have been summarised in this document.

1.3 Design improvement in Industry

This section explains the design process in industry in terms of the drivers, methodology,

tools and current status of design improvement.

1.3.1 Design Process

Design requirements are obtained on the basis of the information from customers and

competitors collected by the marketing department. These requirements are converted into

conceptual design followed by detailed design, which in most cases is represented on

CAD/CAM systems. A prototype is built for experimental testing on a full-scale model

before the design is sent for manufacturing. The feedback from design analysis, prototype

testing and manufacturing is manually incorporated in the design requirements, conceptual

and detailed designs. In a typical product life cycle, the design goes around these feedback

loops several times for optimisation before being manufactured and dispatched. This

iterative process contributes significantly to lengthening the design cycle, and depends

critically on the skills of the designers.

Appendix 1 Optimisation in Industry

Page 219

Figure 100: Typical design cycle

1.3.2 Methodologies and Tools

The methodologies adopted for design improvement in many industry sectors are guided

by the design tools that are being used. Each of these design tools looks at a particular

aspect of design, for example manufacturability, functionality, etc. It was observed that the

following design tools are the most popular in industry.

Ø Design for assembly: This is mainly used by companies whose products are

composed of several components, e.g., automotive components like Anti-lock

Breaking Systems (ABS) and Vehicle Stability Controls (VSC).

Ø Design for manufacture: Mostly the companies that are involved in mass production

use design for manufacture. This is particularly true for small to medium sized

components, which require automation for production, e.g., anti-vibration and

electronic components.

Ø Design for performance: This is observed in production of high performance, high

value components, e.g., racing cars and digital photocopiers.

Ø Design for quality: In modern industry, it is observed that most of the companies use

this design tool.

Marketing

Design Requirements

Conceptual Design

Design Analysis

Prototype Testing

Manufacturing

Detailed Design

Final Product

customers, competitors

Appendix 1 Optimisation in Industry

Page 220

Ø Structural optimisation: This is particularly seen in components subjected to stress,

e.g., engine mounting brackets, crashworthiness designs, multi- body systems and

metal forming.

The above-mentioned design tools, with the exception of structural optimisation, can be

effectively applied without complex mathematical analysis. These tools are usually applied

externally to the CAD/CAM environment, after the completion of the design definition

phase. On the other hand, the aim of structural optimisation, which enjoys a very important

place in the automotive industry, is to improve the external shape and structure of

components within the CAD/CAM environment simultaneously with the product definition

phase. Structural optimisation is a generic term to describe optimisation of geometric

entities that make the engineering products.

1.3.3 Current Status

It was observed that design optimisation in industry is an iterative process of creating a

model, using a CAD system, carrying out some analyses which give indications of how to

improve the design and then modifying the model and repeating the process. This manual

process contributes significantly to lengthening the design cycle and depends critically for

its success on the skill of the designer. Trial-and-error finds widespread use in industry for

improving the design. On the other hand, parametric modelling and optimisation

algorithms are rarely used. The industry visits coupled with an Internet-based study

enabled the identification of design drivers used in different industry sectors. Table 10

summarises the findings of this study in a 2D matrix depicting some product families

against design drivers. Each product family uses one or several design drivers that are

identified from specification requirements. The presence of a design driver in a given

product family is depicted by ‘1’ in the relevant box of the table.

Appendix 1 Optimisation in Industry

Page 221

Table 10: Optimisation in industry

1.4 Tools for Design Improvement

This section outlines the features of design improvement in industry. It discusses the

potential of optimisation algorithms and their industrial use. Finally, it explains the factors

that inhibit the use of optimisation algorithms in industry.

1.4.1 Industrial Use of Optimisation Algorithms

Despite the immense potential of optimisation algorithms in handling industrial design

optimisation problems, it was observed that they are not used by any of the surveyed

companies. Some commercial optimisation packages like OPTISTRUCT from Altair

Engineering [2], or DOT from Vanderplaats Research and Development, Inc are proven

adequate in many engineering applications but can only be operated outside the

CAD/CAM Environment. These capabilities are rarely used in industry since they provide

only one type of optimisation algorithms to tackle all types of problems. Although most of

these packages are provided externally to the CAD/CAM environment, some of them like

the surfacing tools in CATIA, and the FEA and CFD tools in I-DEAS are integrated with

the CAD/CAM systems.

A
u

to
m

o
ti

v
e

 W
h

e
e

l

T
y

re
s

P
ro

d
u

c
ti

o
n

 C
a

r
B

o
d

y
 S

h
e

ll

M
o

to
r

R
a

c
in

g
 B

o
d

y
 S

h
e

ll

F
a

n
 B

la
d

e

A
ir

 F
o

il

S
h

ip
 H

u
ll

S
a

il
in

g
 B

o
a

ts

M
a

c
h

in
e

 T
o

o
l

C
u

tt
in

g
 T

o
o

l

H
i

F
i

S
p

e
a

k
e

rs

R
u

b
b

e
r

C
o

m
p

o
n

e
n

ts

Sress 1 1 1 1 1 1 1 1 1

Manufacturability 1 1 1

Weight 1 1 1 1 1

Vibration 1 1 1 1 1 1 1

Aesthetics 1 1

Fluid Dynamics 1 1 1 1

Acoustics 1 1 1 1

Thermodynamics 1 1 1

Aerodynamics 1 1 1

Product Families

D
e

s
ig

n
 D

ri
v

e
rs

Appendix 1 Optimisation in Industry

Page 222

The study of literature in the field of real-life optimisation shows that optimisation

algorithms have the potential of handling a number of real-life design problems. On the

other hand, as revealed in this section, optimisation algorithms are rarely used in industry.

This contradiction in the use of optimisation algorithms in industry and research indicates

the presence of factors inhibiting the industrial applications of optimisation algorithms.

These inhibitors are discussed in detail in the next section.

1.4.2 Inhibitors

Extensive internet-based search and numerous company visits have been used to

investigate the use of optimisation algorithm across engineering industries Roy et. al.

[100]. The survey shows that optimisation in general in not widely used. However some

large technology leading make use of optimisation techniques with a limited scope. This is

the case of British Aerospace which is involved in research programs with the aim of

optimising gas-turbine blade for jet engines, Rogero [89]. The research shows that both

classical evolutionary optimisation techniques are not popular in industry, the use of these

techniques is yet very limited as the complexity of real-life optimisation problems has

prevented the industry from exploiting the potential of optimisation algorithms Roy et. al.

[100]. The industry has, therefore, relied on either trial-and-error or over-simplification for

dealing with its optimisation problems independently of the design tools. There are a

number of factors inhibiting the industrial use of optimisation algorithms. Some of these

factors are outlined below:

The first and the foremost inhibitor to the use of optimisation algorithms in industry is the

important role of skills and experience in the design improvement process. In design

activities, there are often a large number of parameters influencing the design performance.

Most of these parameters are difficult to control, so the designers prefer using their skills

and experience with a trial-and-error strategy to guide the search towards optimum

solutions. This makes the design process difficult to be encoded in an algorithmic form.

The features of real-life optimisation problems, especially the presence of qualitative issues

and lack of prior problem knowledge, also inhibit the successful application of

optimisation algorithms to industrial problems.

Appendix 1 Optimisation in Industry

Page 223

The lack of robust optimisers that can deal with a variety of engineering problems also

prevents the use of optimisation algorithms. This is particularly true for industries that deal

with a wide range of designs.

All the currently available optimisation packages are not integrated within CAD/CAM

systems making their use cumbersome. The designers need to extract the design

parameters from CAD models, input these into the optimisation packages and bring the

optimised parameters back to the CAD system. There are a number of difficulties

associated with this off-line optimisation, which prevents the designers from using the

optimisation algorithms. The extraction and transfer of data between the CAD/CAM

system and the optimisation package is manual or semi-automatic. The data transfer often

leads to loss of quality and information, which makes the optimisation process inaccurate.

This off-line scenario of optimisation also makes designers lose control over the design

process. Finally, the inflexible nature of the scenario makes the process iterative and time

consuming.

1.5 Need for Flexible Optimisation

In order to attain a holistic view of real-life optimisation, it is essential to develop a

flexible optimisation framework that allows the selection of appropriate techniques and

parameters for a design optimisation problem. In the recent past, some work carried out in

the field of flexible optimisation. Roy et. al. [93], Jared [64] and Mussa [75] specifically

addressed the issue of enhancing the optimisation capabilities of existing CAD/CAM

systems. However, the above-mentioned work has limited scope in terms of the types of

optimisation techniques employed, integration with CAD/CAM systems, and incorporation

of designers’ intent. Therefore, in contrast to this research, the previous work has adopted a

tactical rather than a strategic view of the concept of flexible optimisation.

The framework, in this research, is developed based on the industrial requirements for

flexible optimisation. The flexible optimisation wheel, shown in Figure 101 depicts the

different combinations possible within the flexible optimisation framework. This

framework provides a platform for dealing with various settings of design tools and

techniques, geometry representation schemes and optimisation algorithms.

Appendix 1 Optimisation in Industry

Page 224

Figure 101: Flexible optimisation wheel

The research involves the development of a toolbox containing engineered multi-objective

optimisation algorithms, Deb [34], capable of solving a variety of real-life design

problems. In order to provide the optimisation capability online, it is essential for the

flexible optimisation toolbox to be integrated within the CAD/CAM environment.

Design Tool

CAD &

CAGD

CFD

FEA CAM

Optimisation Technique

Evolutionary

Algorithms

Classical

Algorithms

Design of
Experiments

Representation Scheme

SOLID

(CSG,

B-Rep)

SURFACE
(Bésier,

B-Spline,

NURBS)

WIRE-FRAME

Generic InterfaceGeneric Interface

Page 225

Appendix 2 Documentation of Flexible

Optimisation ‘Toolbox’

This Appendix presents the first version of the documentation for the optimisation ‘toolbox’.

All the classes and functions used in the ‘toolbox’ are documented here. These classes and

functions have so far been used for the C++ coding of Non-dominated Sorting Genetic

Algorithm (NSGA) II and Generalised Regression Genetic Algorithm (GRGA). Both these

techniques form part of the optimisation ‘toolbox’.

The main features of this code can be summarised as follows:

Ø Binary and real coding.

Ø Tournament and roulette wheel selection for binary coding.

Ø Tournament selection for real coding.

Ø Single point and uniform crossover for binary coding.

Ø Simulated binary crossover for real coding.

Ø Interactive setting of control parameters.

Ø Self-reliant classes having appropriate data members and member functions:

• Array class for integers.

• Arrayr class for reals.

• Individual class for binary solutions.

• Individualr class for real solutions.

Ø Generalised functions in main program for:

• Ranking.

• Fitness assignment.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 226

• Fitness sharing.

• Selection.

• Elitism.

Ø Extensive re-use of classes and functions is possible in future.

The classes and functions used in this code are listed below.

2.1 Array

This class is used to create, manipulate and destroy the binary GA chromosomes. This

includes input, output, assignment and comparison of chromosomes. It also gives

information regarding the existing chromosomes. The various member functions that form

part of this class are as follows:

Array(int, bool)
Default constructor.

Input 1: Size of the array.

Input 2: ‘True’ for an array having only 0’s and ‘False’ for an array having randomly placed

0's and 1’s.

Array(const Array &)
Copy constructor.

Input: Array that has to be copied to form a new array.

~Array()
Destructor.

static int getArrayCount()
Returns count of arrays instantiated.

Output: Number of arrays instantiated.

int getSize() const
Returns size.

Output: Size of an array.

const Array &operator=(const Array &)

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 227

Overloaded assignment operator.

Input: Array that has to be copied to the given array.

Output: Modified given array.

bool operator==(const Array &) const
Determines if two arrays are equal.

Input: Array that has to be compared with the given array.

Output: ‘True’ if arrays are equal and ‘False’ if they are unequal.

bool operator!=(const Array &) const
Determines if two arrays are unequal.

Input: Array that has to be compared with the given array.

Output: ‘True’ if arrays are unequal, otherwise ‘False’.

int &operator[](int)
Overloaded subscript operator for non-constant arrays.

Input: Subscript value.

Output: Value stored at given array location.

const int &operator[](int) const
Overloaded subscript operator for constant arrays.

Input: Subscript value.

Output: Value stored at given array location.

friend ostream &operator<<(ostream &, const Array &)
Overloaded output operator.

Input 1: Reference to ‘ostream’ object, like ‘cout’

Input 2: Source array.

Output: Reference to ‘ostream’ object, like ‘cout’.

friend istream &operator>>(istream &, Array &)
Overloaded input operator.

Input 1: Reference to ‘istream’ object, like ‘cin’.

Input 2: Target array.

Output: Reference to ‘istream’ object, like ‘cin’.

In addition to the above functions that can be accessed by the user, there are also some data

members that are hidden from the users. These data members are listed below:

int *ptr
Pointer to the first element of the array.

static int arrayCount

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 228

Number of Arrays instantiated.

int size
Size of the array.

2.2 Arrayr

This class is used to create, manipulate and destroy the real GA chromosomes and other real

arrays. This includes input, output, assignment and comparison of chromosomes. It also

gives information regarding the existing chromosomes. The various member functions that

form part of this class are as follows:

Arrayr(int, int, bool)
Default constructor for arrays that do not have bounds on their entries.

Input 1: Size of the array.

Input 2: Accuracy of array entries in terms of number of significant places after the decimal

point.

Input 3: ‘True’ for an array having only 0’s and ‘False’ for an array having random real

numbers.

Arrayr(const Arrayr &, const Arrayr &, int, int)
Default constructor for arrays that have bounds on their entries.

Input 1: Array storing upper-bound value for each entry of the array that needs to be

constructed.

Input 2: Array storing lower-bound value for each entry of the array that needs to be

constructed.

Input 3: Size of the array.

Input 4: Accuracy of array entries in terms of number of significant places after the decimal

point.

Arrayr(const Arrayr &)
Copy constructor.

Input: Array that has to be copied to form a new array.

~Arrayr()
Destructor.

static int getArrayCount()
Returns count of arrays instantiated.

Output: Number of arrays instantiated.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 229

int getSize() const
Returns size.

Output: Size of the array.

const Arrayr &operator=(const Arrayr &)
Overloaded assignment operator.

Input: Array that has to be copied to the given array.

Output: Modified given array.

bool operator==(const Arrayr &) const
Determines if two arrays are equal.

Input: Array that has to be compared with the given array.

Output: ‘True’ if arrays are equal and ‘False’ if they are unequal.

bool operator!=(const Arrayr &) const
Determines if two arrays are unequal.

Input: Array that has to be compared with the given array.

Output: ‘True’ if arrays are unequal, otherwise ‘False’.

double &operator[](int)
Overloaded subscript operator for non-constant arrays.

Input: Subscript value.

Output: Value stored at given array location.

const double &operator[](int) const
Overloaded subscript operator for constant arrays.

Input: Subscript value.

Output: Value stored at given array location.

friend ostream &operator<<(ostream &, const Arrayr &)
Overloaded output operator.

Input 1: Reference to ‘ostream’ object, like ‘cout’

Input 2: Source array.

Output: Reference to ‘ostream’ object, like ‘cout’.

friend istream &operator>>(istream &, Array &)
Overloaded input operator.

Input 1: Reference to ‘istream’ object, like ‘cin’.

Input 2: Target array.

Output: Reference to ‘istream’ object, like ‘cin’.

In addition to the above functions that can be accessed by the user, there are also some data

members that are hidden from the users. These data members are listed below:

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 230

double *ptr
Pointer to the first element of the array.

static int arrayCount
Number of Arrays instantiated.

int size
Size of the array.

2.3 Individual

This class defines a solution in terms of the binary chromosome, parents, decoding

information and objective function values. It can decode the chromosome into its decision

variables, calculate number and values of constraints, and evaluate the degree of violation of

constraints by a solution. It can also perform single point crossover, uniform crossover,

mutation and assignment operations involving problem solutions. This class can also be used

to extract information regarding a solution in terms of the chromosome, parents, variable

values and objective function values. On the same grounds, it can also be used to modify a

solution with respect to the chromosome, parents and variables.

Individual(int, Array &, Arrayr &, Arrayr &)
Default constructor for creating random individuals.

Input 1: Length of the chromosome.

Input 2: Array storing the number of chromosome bits corresponding to each problem

variable.

Input 3: Array storing upper-bound value for each variable of the problem.

Input 4: Array storing lower-bound value for each variable of the problem.

Individual(Array, Array, Array)
Default constructor for creating individuals when the chromosome and parents are specified.

Input 1: Array representing the chromosome.

Input 2: Array representing the first parent.

Input 3: Array representing the second parent.

Individual(const Individual &)
Copy constructor.

Input: Individual that has to be copied to create a new individual.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 231

Arrayr confun() const
Returns the values of constraints.

Output: Array containing the constraint values.

void crossover(Individual &, Individual &, Individual &,
double, int) const
Performs single point crossover operation between the given individual and the individual

specified in the parameter list.

Input 1: First individual created by the crossover operation.

Input 2: Second individual created by the crossover operation.

Input 3: Crossover partner of the given individual.

Input 4: Probability of performing crossover operation.

Input 5: Accuracy of crossover probability.

double error() const
Evaluates the degree of violation of constraints corresponding to the given individual.

Output: Degree of violation of constraints.

const Array &getChrom() const
Returns the chromosome corresponding to an individual.

Output: Array representing the chromosome of the given individual.

int getChromlen() const
Returns the chromosome length of the given individual.

Output: Length of the given individual’s chromosome.

static Arrayr getLowerbound()
Gets the lower-bound value for each problem variable.

Output: Array storing lower-bound value for each variable.

int getNumcon() const
Returns the number of constraints.

Output: Number of constraints.

int getNumfun() const
Returns the number of objective functions.

Output: Number of objective functions.

int getNumvar() const
Returns the number of variables in the problem.

Output: Number of variables.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 232

const Array &getParent1() const
Returns the chromosome corresponding to the first parent of the given individual.

Output: Array representing the chromosome of the first parent.

const Array &getParent2() const
Returns the chromosome corresponding to the second parent of the given individual.

Output: Array representing the chromosome of the second parent.

static Arrayr getUpperbound()
Gets the upper-bound value for each problem variable.

Output: Array storing upper-bound value for each variable.

static Array getVarlen()
Returns the number of bits in an individual’s chromosome, corresponding to each problem

variable.

Output: Array storing the number of chromosome bits corresponding to each variable.

Arrayr getVarval() const
Returns the variable values corresponding to the given individual.

Output: Array storing the values of problem variables.

Individual &mutation(double, int)
Performs mutation operation on the given individual.

Input 1: Probability of performing mutation operation.

Input 2: Accuracy of mutation probability.

Output: Individual after mutation.

Arrayr obja() const
Returns the calculated values of objective functions.

Output: Array containing the objective function values.

Arrayr objfun() const
Returns the stored values of objective functions.

Output: Array containing the objective function values.

const Individual &operator=(const Individual &)
Overloaded assignment operator.

Input: Individual that has to be copied to the given individual.

Output: Individual after assignment.

void setChrom(Array &)
Allows the modification of an individual’s chromosome.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 233

Input: Chromosome array that replaces the existing one to form a new chromosome.

static void setLowerbound(Arrayr &)
Allows the modification of lower-bounds of variables.

Input: Array storing the updated lower-bound value for each variable of the problem.

void setParents(Array &, Array &)
Allows the modification of an individual’s parents.

Input 1: Array representing the new first parent.

Input 2: Array representing the new second parent.

static void setUpperbound(Arrayr &)
Allows the modification of upper-bounds of variables.

Input: Array storing the updated upper-bound value for each variable of the problem.

static void setVarlen(Array &)
Allows the modification of the distribution of chromosome bits allotted for the

representation of each variable.

Input: Updated array storing the number of chromosome bits corresponding to each variable.

void unicross(Individual &, Individual &, Individual &,
double, int) const
Performs uniform crossover operation between the given individual and the individual

specified in the parameter list.

Input 1: First individual created by the crossover operation.

Input 2: Second individual created by the crossover operation.

Input 3: Crossover partner of the given individual.

Input 4: Probability of performing crossover operation.

Input 5: Accuracy of crossover probability.

In addition to the above functions that can be assessed by the user, there are also some data

members that are hidden from the users. These data members are listed below:

Array chrom
Chromosome of the individual.

static Arrayr lowerbound
Lower-bounds of problem variables.

Arrayr obj
Values of objective functions.

Array parent1

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 234

First parent chromosome of the individual.

Array parent2
Second parent chromosome of the individual.

static Arrayr upperbound
Upper-bounds of problem variables.

static Array varlen
Number of chromosome bits corresponding to each variable.

2.4 Individualr

This class defines a solution in terms of the real chromosome, parents, precision information,

bounds and objective function values. It can calculate the number and values of constraints,

and evaluate the degree of violation of constraints by a solution. It can also perform

simulated binary crossover, mutation and assignment operations involving problem

solutions. This class can also be used to extract information regarding a solution in terms of

the chromosome, parents, variable values and objective function values. On the same

grounds, it can also be used to modify a solution with respect to the chromosome, parents

and variables.

Individualr(int, int)
Default constructor for creating random individuals when the bounds on variables are not

specified.

Input 1: Length of the chromosome.

Input 2: Accuracy of variable values in terms of number of significant places after the

decimal point.

Individualr(Arrayr &, Arrayr &, int, int)
Default constructor for creating random individuals when the bounds on variables are

specified.

Input 1: Array storing upper-bound value for each variable of the problem.

Input 2: Array storing lower-bound value for each variable of the problem.

Input 3: Length of the chromosome.

Input 4: Accuracy of variable values in terms of number of significant places after the

decimal point.

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 235

Individualr(Arrayr &, Arrayr &, Arrayr &)
Default constructor for creating individuals when the chromosome and parents are specified.

Input 1: Array representing the chromosome.

Input 2: Array representing the first parent.

Input 3: Array representing the second parent.

Individualr(const Individualr &)
Copy constructor.

Input: Individual that has to be copied to create a new individual.

Arrayr confun() const
Returns the values of constraints.

Output: Array containing the constraint values.

void crossover(Individualr &, Individualr &, Individualr &,
double, int, double) const
Performs simulated binary crossover operation between the given individual and the

individual specified in the parameter list.

Input 1: First individual created by the crossover operation.

Input 2: Second individual created by the crossover operation.

Input 3: Crossover partner of the given individual.

Input 4: Probability of performing crossover operation.

Input 5: Accuracy of crossover probability.

Input 6: Distribution index for crossover.

double error() const
Evaluates the degree of violation of constraints corresponding to the given individual.

Output: Degree of violation of constraints.

const Arrayr &getChrom() const
Returns the chromosome corresponding to an individual.

Output: Array representing the chromosome of the given individual.

int getChromlen() const
Returns the chromosome length of the given individual.

Output: Length of the given individual’s chromosome.

static Arrayr getLowerbound()
Gets the lower-bound value for each problem variable.

Output: Array storing lower-bound value for each variable.

int getNumcon() const

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 236

Returns the number of constraints.

Output: Number of constraints.

int getNumfun() const
Returns the number of objective functions.

Output: Number of objective functions.

int getNumvar() const
Returns the number of variables in the problem.

Output: Number of variables.

const Arrayr &getParent1() const
Returns the chromosome corresponding to the first parent of the given individual.

Output: Array representing the chromosome of the first parent.

const Arrayr &getParent2() const
Returns the chromosome corresponding to the second parent of the given individual.

Output: Array representing the chromosome of the second parent.

static Arrayr getUpperbound()
Gets the upper-bound value for each problem variable.

Output: Array storing upper-bound value for each variable.
Arrayr getVarval() const

Returns the variable values corresponding to the given individual.

Output: Array storing the values of problem variables.

Individualr &mutation(double, int, double)
Performs mutation operation on the given individual.

Input 1: Probability of performing mutation operation.

Input 2: Accuracy of mutation probability.

Input 3: Distribution index for mutation.

Output: Individual after mutation.

Arrayr obja() const
Returns the calculated values of objective functions.

Output: Array containing the objective function values.

Arrayr objfun() const
Returns the stored values of objective functions.

Output: Array containing the objective function values.

const Individualr &operator=(const Individualr &)

Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’

Page 237

Overloaded assignment operator.

Input: Individual that has to be copied to the given individual.

Output: Individual after assignment.

void setChrom(Arrayr &)
Allows the modification of an individual’s chromosome.

Input: Chromosome array that replaces the existing one to form a new chromosome.

static void setLowerbound(Arrayr &)
Allows the modification of lower-bounds of variables.

Input: Array storing the updated lower-bound value for each variable of the problem.

void setParents(Arrayr &, Arrayr &)
Allows the modification of an individual’s parents.

Input 1: Array representing the new first parent.

Input 2: Array representing the new second parent.

static void setUpperbound(Arrayr &)
Allows the modification of upper-bounds of variables.

Input: Array storing the updated upper-bound value for each variable of the problem.

In addition to the above functions that can be assessed by the user, there are also some data

members that are hidden from the users. These data members are listed below:

Arrayr chrom
Chromosome of the individual.

static Arrayr lowerbound
Lower-bounds of problem variables.

Static int maxdecpt
Maximum accuracy of variable values in terms of number of significant places after the

decimal point.
Arrayr obj

Values of objective functions.

Arrayr parent1
First parent chromosome of the individual.

Arrayr parent2
Second parent chromosome of the individual..

Page 238

Appendix 3 Geometric Modelling

3.1 Boundary Representation complements

3.1.1 Topological Hierarchy

The boundary representation (B-rep) of a model is a hierarchical decomposition of the

model's topology:

• Body: The highest level of model object, and is composed of lumps.

• Lump: A 1D, 2D, or 3D set of points in space that is disjoint with all other

lumps. It is bounded by shells.

• Shell: A set of connected faces and wires, and can bound the outside of a solid

or an internal void (hollow).

• Face: A connected portion of a surface bounded by a set of loops.

• Loop: A connected series of coedges. Generally, loops are closed, having no

actual start or end point.

• Wire: A connected series of coedges that are not attached to a face.

• Coedge: Represents the use of an edge by a face.

• Edge: A curve bounded by vertices.

Bodies

Bodies are the highest-level entities in ACIS solid models. Typically, a body is a single solid

or sheet component, such as a washer, a stripped-down engine block, a zero thickness plate,

or a cross section. A body can also be made of several disjoint bodies treated as one. Figure

102 shows an example of a body with more than one lump. When a square block (solid

lines) is cleared by a cylinder (dashed lines) whose diameter is slightly larger than the length

Appendix 3 Geometric Modelling

Page 239

of a side of the block, the block is separated into four lumps. Although the four lumps are

not physically joined, they are still treated as a single body in ACIS.

Figure 102: Body with four lumps

Lumps

A lump represents a bounded, connected region in space. A lump is an entire connected set

of points, whether the set is 3D, 2D, 1D, or a combination of dimensions. Thus, a solid block

with a dangling outside face is one lump, as is a solid block with an internal cavity. Two

disconnected sheets are represented as two lumps. A body contains zero or more lumps, each

of which represents a set of points that are disjoint from those represented by all other lumps

in the body. Figure 103 illustrates a body with two solid lumps. The large block represents

one solid lump that completely encloses a void (dotted line). The second lump (small block

with solid lines) is completely enclosed in the void.

Appendix 3 Geometric Modelling

Page 240

Figure 103: Lumps

Shells

A shell, Figure 104, is an entire connected set of faces and/or wires, including connections

through a nonmanifold vertex. Faces are connected together along common edges or at

common vertices; wires may be connected to faces at end vertices. A solid block with a

dangling sheet is one shell, but a block with a cavity is two shells. A solid block with many

embedded faces that are all connected through some path to the exterior faces is one shell,

but a solid block with a disconnected "floating" embedded face is two shells (but one lump).

The most common type of shell is made up only of complete, finite single-sided faces, two

of which meet at every edge, with compatible insides and outsides.

Appendix 3 Geometric Modelling

Page 241

Figure 104: Shells

Faces

A face is a portion of a single geometric surface in space, the two-dimensional analogue of

the body. Zero or more loops of edges constitute the boundary of a face. Figure 105 shows a

loop of the top face (there are six faces) of a rectangular block.

Figure 105: Faces

Appendix 3 Geometric Modelling

Page 242

Loops

A loop represents a connected portion of the boundary of a face. It consists of a set of

coedges linked in a doubly linked chain, which may be circular or open-ended. If either end

of an open-ended loop is at a finite point, then the face containing the loop is necessarily

incomplete. If either end is at infinity, then the face is infinite. The illustration in Figure 106

contains three closed loops. Each loop is the boundary of a complete, finite face. In the

actual physical structure, the adjacent parallel lines are coincident.

Figure 106: Loops of edges

Edges

An edge is the topology associated with a curve. The direction of an edge can be either the

same direction as its underlying curve, or it can be the opposite direction. If it is the same as

the curve direction, the edge's sense relative to the underlying curve is forward; otherwise,

its sense is reversed. Each edge contains a record of its sense relative to its underlying curve.

An edge is bounded by one or more vertices, referring to one vertex at each end.

Coedges

A coedge records the occurrence of an edge in a loop of a face. The introduction of coedges

permits edges to occur in one, two or more faces, and so makes possible the modelling of

Appendix 3 Geometric Modelling

Page 243

sheets and solids (manifold or not). In a manifold solid body shell, each edge is adjacent to

exactly two faces; therefore, the edge has two coedges, each associated with a loop in one of

the faces (the two faces can be the same, and even the loops can be the same). In this case,

the two coedges always go in opposite directions along the edge. In a nonmanifold body

shell, there may be more than two coedges associated with an edge.

Wires

A wire is a connected collection of edges that are not attached to faces and do not enclose

any volume. Wires may represent abstract items like profiles, construction lines and

centerlines, or idealizations of rod or beam-like objects or internal passages. They are also

commonly used to form wire frames to be surfaced to form solid-bounding shells.

Figure 107: Wire body

A shell may contain a single wire or faces with multiple wires attached to them at vertices. A

shell with just a wire is called a wire shell, a lump with only a wire shell is a wire lump, and

a body with only wire lumps is a wire body.

Each wire is classified as being exterior representing an infinitesimally thin piece of

material, or interior representing an infinitesimally thin passageway within bulk material.

Appendix 3 Geometric Modelling

Page 244

Vertices

Vertex (Figure 108) refers to a point in object space and to the edges that it bounds.

Figure 108: Vertices

3.1.2 Euler-Poincaré formula

More generally, B-Rep complies with the Euler-Poincaré formula. Along with his other

endeavours, Leonard Euler worked on body topology relationships. There are many versions

in existence of his equations for managing topology. For instance, one of Euler's most

famous equations for what he considered to be a valid manifold object was that the number

of faces in an object minus the number of edges in that object plus the number of vertices in

that object must always equal the number two (2). A more complete formulation of the

equation, given below, includes hole loops and genus.

The Following properties of the Euler-Poincaré formula should be noted.

V – E + F – H = 2 (M – G)

V - Vertices

E - Edges

F - Faces

H - Hole Loops

M - Multiplicity

G - Genus

Appendix 3 Geometric Modelling

Page 245

• Integer values of V,E,F etc

• V,E,F,H,M,G all ≥0

• If V=E=F=H=M=0, then G=M=0

• If M>0 then V≥ and F≥M

• E-P formula defines ‘6D LATTICE’ Euler operators

3.1.3 Graph Theory

A graph is a mathematical abstraction of relationships. Many real-world situations can

conveniently be described through a diagram or graph consisting of a set of points (nodes or

vertices) together with lines (edges) joining various pairs of these points. This graphical

representation helps us understand connectivity relationships and is the basis for graph

theory.

Graph diagrams tell whether or not two given points are joined by a line and the manner in

which they are joined. There is no unique way of drawing a graph.

One use of graph theory in geometric modelling is to abstract a given model's cells into a

graph. Each cell of the geometric model becomes a point of the graph. Points of the graph

are connected with lines (or edges) only if the cells of the geometric model are adjacent with

faces. Last sentence is not clear at all

Another use of graph theory is to abstract a given model's faces into a graph. Each face of

the geometric model becomes a point of the graph. Points of the graph are connected with

lines (or edges) only if the faces of the geometric model are adjacent.

In classical B-Rep modelling, adjacency relationships are defined by the well known

winged-edge data structure, Figure 111, in which the following data structure are stored for

each edge:

• Two vertices defining the edge,

• Two faces F1 and F2 that meet at the edge, and

• Four of its adjacent edges: the “next edge” in a counter-clockwise or clockwise

traversal about either F1 or F2.

Appendix 3 Geometric Modelling

Page 246

Figure 109: Winged edge data structure

3.2 Boolean Operations

The four regular Boolean operations, union, intersection, difference and symmetric

difference, were previously introduced in set-theoretic modellingFigure 18. In this

paragraph, some special cases and non-regular Boolean operations are presented:

E

E

V

E

E

V

E

Right Edge

Clockwise
Left Edge

Counter-Clockwise

Next Vertex

Prev. Vertex

Right Edge

Counter-Clockwise

Left Edge

Clockwise

Appendix 3 Geometric Modelling

Page 247

Figure 110: Special cases of Boolean operations

3.3 Sweep and Swings

The Euler-Poincaré formula given earlier in this chapter is also useful in creating solids from

profile surfaces. These are sweeps (translational) and swings (rotational).

Figure 111 is an example of Euler operations in sweeping. A solid is obtained from a face

with vertices by successively changing the values of M, F, V, E.

Figure 111: Euler operations in Sweeping

A B

A ∪ B
Tangency

A B

A ∪ B
Touching (non-manifold)

A

B

B - A

Non-manifold

M E V M F E

Appendix 3 Geometric Modelling

Page 248

3.4 Tessellated Models

The Oxford dictionary [117] gives the following definition to tessellation:

“An arrangement of polygons without gaps or overlapping especially in a repeated pattern”

This paragraph introduces and discuses some tessellation techniques used in geometric

modelling. These are Spatial Occupancy (S.O.E.), Octree and Triangulation.

3.4.1 Spatial Occupancy Enumeration (S.O.E)

In spatial occupancy enumeration, the 3D space is divided into identical cubical cells and at

a particular resolution, as shown in Figure 112. To avoid dividing the entire space into

cubes, the model is first bounded in a box. Each cube coordinates are recorded with a logical

one if the cube is filled or zero if it isn’t. Its application domain is large but has a number of

drawbacks:

• Not an exact representation

• Needs a large amount of storage for reasonable resolution

Appendix 3 Geometric Modelling

Page 249

Figure 112: Spatial occupancy model

3.4.2 Octree Decomposition

Similarly to S.O.E, octree models decompose solids in a list of cells, but the cells are not

necessarily identical. The octree decomposition method is said to be adaptive because cells

are divided unevenly until each cell contains solid or void only. In theory, this recursive

division loop can go on forever, unless some resolution limit is set. This method is more

efficient than S.O.E and needs less storage space.

Appendix 3 Geometric Modelling

Page 250

Figure 113: Octree decomposition model

3.4.3 Polyhedral Models

Unlike S.O.E, which is imposed upon the data and octree, which adapts to it, Polyhedral

tessellation is derived from the data. The two best-known methods are Dirichlet tessellation

(also known as Voronoi Diagrams) and Delaunay triangulations.

Suppose a finite set of scattered data points unevenly distributed (site), as shown in Figure

114. Dirichlet tessellation defines, for each data point, a plane region that is closest to the

data point than any other point (bold lines). In fact it expresses the proximity information of

a set of objects in space. This tessellation is obtained from intersecting point-pairs

equidistant lines (dashed lines). The fine lines joining data points to each other are the

Delaunay triangulation. More detailed information on tessellated models is available in [18],

[87] and [39].

Also triangulated tessellations are particularly suited to surface reconstruction in reverse

engineering and finite element analysis meshing: [78], [105].

Appendix 3 Geometric Modelling

Page 251

Figure 114: Dirichlet tessellation and Delaunay triangulation

Page 252

Appendix 4 Vector Algebra

4.1 Vector Algebra.

bababa zzyyxxBA ++=•

babababababa xyyxxzzxyzzyBA −−−=× , ,

()CCC •=

CCnormC =

4.2 Differentiation of a Vector

If a vector a is function of a parameter u, then its components are also function of u:

() () () ()zuayuaxuaua 321 ++=

And if the derivatives of () () ()uauaua 321 ,, exist, the derivative of a is as follows:

z
du

ad
y

du

ad
x

du

ad

du

ad
i

i

i

i

i

i

i

i

321 ++=

Consequently, with any vectors () ()tbta , and any scalar function ()tk the following

properties are deduced, which will come useful at later stage for the purpose of curve

analysis and optimisation:

Appendix 4 Vector Algebra

Page 253

()

()

()

()
du

db
ab

du

da
ba

du

d

du

db
ab

du

da
ba

du

d

du

da
ka

du

dk
ka

du

d

du

db

du

da
ba

du

d

×+×=×

+=

+=

+=+

...

N.B: ()ba × denotes the cross product of a with b

In addition, if a(t) is a unit vector, then a.a=1. Thus

()
0.2

. ==
du

da
a

du

aad

and for a unit vector a,

0. =
du

da
a

This means that a and
du

da
 are perpendicular.

Page 254

Appendix 5 Implementation of Curve

Optimisation Application Using GA

The listing below is the C++ code implementation of the application for curve reconstruction

from prescribed curvature using genetic algorithm presented in paragraph 8.2.1.

// GA_main.cpp

// created by Olivier Munaux and Ashutosh Tiwari, 06/09/01 Cranfield University

// main driver file for Flexo

#include "wot.h" // include Flexo interface header

#include "Translators.h" // include Translators function library header

#include <math.h>

//**************** Data Initialisation ******************************

double average_dist = 0;

double average_dist_old = 10000;

double average_dist_X = 0;

double average_dist_Y = 0;

double average_dist_Z = 0;

Individual *oldpop[];

Individual *intpop[];

Individual *newpop[];

position new_points [];

int l = 0;

int popsize = 0;

int nogen = 0;

double crossp = 0;

int prcrossp = 0;

double mutp = 0;

int prmutp = 0;

int power_start = 3;

int power_finish = 5;

double power = power_start;

int rank_derivative = 0;

int match_accuracy =0;

position curve_point [];

vector vect_deriv [];

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 255

position transform_curve_point [];

position curve_point_ga [];

vector vect_deriv_ga [];

position transform_curve_point_ga [];

double scale_factor =0;

double fitness = 0;

bs3_curve bs3_ga = NULL;

bs3_curve bs3_ga_old = NULL;

EDGE *ed_ga_old = NULL;

int npts_ga;

double fitol = RESAB;

double actual_tol = 0;

//creates unit vectors for start direction

unit_vector start_dir(0, 0, 0);

unit_vector end_dir (0, 0, 0);

int main()

{

 oli_ACIS_library_initialise(); //Initialise library

//**************** user input *************************

cout << "**** Spline Definition ****" <<endl;

 cout <<endl;

 cout << "Enter number of data point" <<endl;

 int npts = 0;

 cin >> npts;

 npts_ga = npts;

 double X,Y,Z;

 position vertices [100];

 position vertices_ga [100];

 int k;

 for (k=0; k<npts; k++){

 cout << "Enter point " << k+1 << " coordinates" <<endl;

 cout << "X: ";

 cin >> X;

 cout << "Y: ";

 cin >> Y;

 cout << "Z: ";

 cin >> Z;

 position pos (X,Y,Z);

 position pos_ga (X,Y,Z);

 vertices [k] = pos;

 vertices_ga [k] = pos;

 }

 cout <<endl;

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 256

 cout << "Enter start tangent" <<endl;

 cout << "X: ";

 cin >> X;

 start_dir.component(0) = X;

 cout << "Y: ";

 cin >> Y;

 start_dir.component(0) = Y;

 cout << "Z: ";

 cin >> Z;

 start_dir.component(0) = Z;

 cout <<endl;

 cout << "Enter end tangent" <<endl;

 cout << "X: ";

 cin >> X;

 end_dir.component(0) = X;

 cout << "Y: ";

 cin >> Y;

 end_dir.component(0) = Y;

 cout << "Z: ";

 cin >> Z;

 end_dir.component(0) = Z;

//************* create original curve ****************************

 bs3_curve bs3_original = NULL;

 EDGE *ed_original = NULL;

 oli_create_curve (

 npts,

 vertices, // positions[]

 start_dir, // start_dir

 end_dir, // end_dir

 fitol, // fitol

 actual_tol, // actual_tol

 bs3_original, // bs3_label

 ed_original

);

char *sat_name = "original.sat"; // save into SAT file

oli_save_entity(sat_name, ed_original);

//********************* analysis definition ******************

 cout << "**** analysis definition ****" <<endl;

 cout <<endl;

 cout << "Enter derivative rank" <<endl;

 cin >> rank_derivative;

cout << "Enter Scale Factor" <<endl;

 cin >> scale_factor;

 oli_input_sample_pitch (match_accuracy);

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 257

 oli_curve_nderiv(

 match_accuracy,

 bs3_original,

 curve_point,

 vect_deriv,

 rank_derivative

);

oli_vector_normal_position_transform(

 match_accuracy,

 scale_factor,

 curve_point,

 vect_deriv,

 transform_curve_point);

 bs3_curve bs3_curvature = NULL;

 EDGE *ed_curvature = NULL;

 oli_create_curve (match_accuracy,

 transform_curve_point, // positions[]

 start_dir, // start_dir

 end_dir, // end_dir

 fitol, // fitol

 actual_tol, // actual_tol

 bs3_curvature, // bs3_label

 ed_curvature);

oli_save_entity(sat_name, ed_curvature);

//*************** optimisation definition **********************

cout << "**** optimisation definition ****" <<endl;

 double upper_limit [12] = { 0.02, 0.02, 0.02,

 10, 10, 10,

 10, 10, 10,

 0.02, 0.02, 0.02};

 double lower_limit [12] = { 0.02, 0.02, 0.02,

 10, 10, 10,

 10, 10, 10,

 0.02, 0.02, 0.02};

 int numvar = 0;

 int lenstr = 0;

 int maxdecpt = 0;

 srand(67); // generates true random numbers

 numvar = npts_ga * 3;

 input_parameters(popsize, nogen, crossp, prcrossp, mutp, prmutp, numvar);

 Arrayr lowerbound(numvar);

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 258

Arrayr upperbound(numvar);

Arrar lenvar(numvar);

 create_bounds_from_positions(

 upperbound,

 lowerbound,

 numvar,

 vertices_ga,

 upper_limit,

 lower_limit);

 outtestFile << upperbound << endl;

 outtestFile << lowerbound << endl;

matrices(lenvar, upperbound, lowerbound, numvar, lenstr, maxdecpt);

 initialise(popsize, oldpop, lenvar, upperbound, lowerbound, lenstr);

 initialise(popsize, intpop, lenvar, upperbound, lowerbound, lenstr);

 initialise(popsize, newpop, lenvar, upperbound, lowerbound, lenstr);

 for (int i = 0; i < nogen; i++) {

 roulette(oldpop, intpop, popsize, maxdecpt);

 reproduction(intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp);

 for (int j = 0; j < popsize; j++) {

 *oldpop[j] = *newpop[j];

 outDistanceFile << newpop[j]->fitdata() <<endl;

 }

 power = power + (double (power_finish) - double (power_start)) / double (nogen);

 }

//******************* statistics *************************

 for (int j=0; j<popsize; j++){

 outtestFile <<endl;

 outtestFile <<"Individual "<< j <<endl;

 outtestFile <<"fitness function value ="<< newpop[j]->fitfun() <<endl;

 outtestFile <<"distance value ="<< newpop[j]->fitdata() <<endl;

 for (int i=0; i<npts_ga; i++){

 outtestFile<< "X" << i << " = "<< newpop[j]->getVarval()[3*i] <<endl;

 outtestFile<< "Y" << i << " = "<< newpop[j]->getVarval()[3*i+1] <<endl;

 outtestFile<< "Z" << i << " = "<< newpop[j]->getVarval()[3*i+2] <<endl;

}

 }

char const* leader = "";

FILE *fp;

 if (!(fp = fopen("final_curve.txt", "w")))

 {fprintf(stderr, "fopen() failed \n");}

bs3_curve_debug (bs3_ga_old,

 leader,

 fp);

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 259

int dim ;

int deg ;

logical rat;

int num_ctrlpts;

position *ctrlpts [];

double* weights [];

int num_knots;

double* knots [];

bs3_curve_to_array (

 bs3_ga_old, // given curve

 dim, // returned dimension

 deg, // returned degree

 rat, // returned rational

 num_ctrlpts, // returned number of control points

 ctrlpts, // returned control points

weights, // returned weights

num_knots, // returned number of knots

 knots // knot);

outFinalCurve << "returned dimension " << *& dim <<endl;

outFinalCurve << "returned degree " << *& deg <<endl;

outFinalCurve << "returned rational " << *& rat <<endl;

outFinalCurve << "returned number of control points " << *& num_ctrlpts <<endl;

for (i=0; i<num_ctrlpts; i++){

 outFinalCurve << "returned control points " << ctrlpts[i] <<endl;

 outFinalCurve << "returned weights " << weights[i] << endl;

}

outFinalCurve << "returned number of knots " << *& num_knots <<endl;

for (i=0; i<num_ctrlpts; i++){

 outFinalCurve << "returned knots " << *& knots[i] <<endl;

}

outFinalCurve << endl;

oli_ACIS_curve (bs3_ga_old, // bs3_label

 ed_ga_old // edge_label*

);

sat_name = "ga_curve.sat";

oli_save_entity(sat_name, ed_ga_old);

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 260

oli_curve_nderiv(

 match_accuracy,

 bs3_ga_old ,

 curve_point,

 vect_deriv,

 rank_derivative

);

oli_vector_normal_position_transform(

 match_accuracy,

 scale_factor,

 curve_point,

 vect_deriv,

 transform_curve_point

);

 bs3_curve bs3_curvature_final = NULL;

 EDGE *ed_curvature_final = NULL;

 oli_create_curve (match_accuracy,

 transform_curve_point,

start_dir,

 end_dir,

fitol,

 actual_tol,

 bs3_curvature_final,

 ed_curvature_final);

sat_name = "curvature_final.sat";

oli_save_entity(sat_name, ed_curvature_final);

return 0;

}

//*************** fitness value **************************

double Individual::fitdata() const{

 Arrayr Varval(getNumvar());

for (int i = 0; i < getNumvar(); i++) {

 Varval[i] = getVarval()[i];

 }

 create_positions_from_GA_variables(

 npts_ga,

 Varval,

 new_points);

 bs3_ga = bs3_curve_interp (

 npts_ga,

 new_points,

 start_dir,

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 261

 end_dir,

 fitol,

 actual_tol

);

 double start = 0; // start parameter

 double end = 1; // end parameter

 bs3_curve_reparam (

 start,

 end,

 bs3_ga);

 oli_curve_nderiv(

 match_accuracy,

 bs3_ga,

 curve_point_ga,

 vect_deriv_ga,

 rank_derivative);

 oli_vector_normal_position_transform(

 match_accuracy,

 scale_factor,

 curve_point_ga,

 vect_deriv_ga,

 transform_curve_point_ga);

 oli_position_distance(

 match_accuracy,

 transform_curve_point,

 transform_curve_point_ga,

 average_dist,

 average_dist_X,

 average_dist_Y,

 average_dist_Z,

 scale_factor);

 if (average_dist >= average_dist_old){

 bs3_curve_delete (bs3_ga);

 else{

 average_dist_old = average_dist;

 bs3_curve_delete (bs3_ga_old);

 bs3_ga_old = bs3_curve_copy (bs3_ga);

 bs3_curve_delete (bs3_ga);}

 cout<< average_dist <<endl;

 return average_dist;}

Appendix 5 Implementation of Curve Optimisation Application Using GA

Page 262

//**

//************* Fitness Function *********************

double Individual::fitfun() const{

 fitness = pow((1/(1 + fitdata())), power);

 return fitness;

}

Page 263

Appendix 6 GA tests

6.1 Fitness Function Mapping

The first series of tests performed are the mapping of the fitness function. These tests are a

record of the fitness values returned by the fitness function plotted in a graph showing the

scores against data point coordinates moving away incrementally and positively from their

nominal values. The nominal values are in effectively a solution known in advance for which

the fitness value is maximum.

The mapping of the fitness function is one way of visualising the solution space. This also

helps to determine the nature of the optimisation problem that guides the choice of the

algorithm for the problem. The curve used here is a spline interpolated through 4 data points

and the optimisation is carried on the curvature property as objective function. Since the

visual space is limited to three axes, one or two point coordinates maximum are variable, the

others are maintained as constant as shown in Table 11.

Point Pt 2 Pt 3

Coordinate X Y Z X Y Z

6.1.1 üüüü üüüü

6.1.2 üüüü üüüü

6.1.3 üüüü üüüü

6.1.4 üüüü üüüü

The cells ticked are the point coordinates set as variables

Table 11: Experiment table

In this experiment, the coordinates vary one unit of their nominal value with an increment of

0.1 of the unit. The implementation of each test is presented below with its table value and

graph analysis in subsequent paragraphs.

Appendix 6 GA tests

Page 264

These tests show that for all variables, the fitness function exhibits a high response within

0.2 of the unit out from the nominal value. This means that the optimisation algorithm will

converge quickly and accurately towards the optimum solution. Also in all the maps it is

observed that there is a unique peak, which means that the function is uni-modal.

6.1.1 Pt2 (X variable, Y variable, Z constant)

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (k+10, l+5, 5);

position pt3_ga (20, 30, 10);

position pt4_ga (40, 0, 7);

}

}

Y X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.374 0.230 0.166 0.130 0.106 0.090 0.078 0.069 0.062 0.056

0.1 0.418 0.408 0.253 0.180 0.139 0.113 0.095 0.082 0.072 0.064 0.058

0.2 0.265 0.333 0.257 0.187 0.144 0.117 0.098 0.085 0.074 0.066 0.059

0.3 0.195 0.243 0.237 0.187 0.148 0.120 0.101 0.087 0.076 0.068 0.061

0.4 0.154 0.186 0.202 0.180 0.148 0.122 0.103 0.089 0.078 0.069 0.062

0.5 0.128 0.150 0.168 0.164 0.144 0.122 0.104 0.090 0.079 0.070 0.063

0.6 0.109 0.126 0.141 0.146 0.136 0.120 0.104 0.090 0.080 0.071 0.064

0.7 0.095 0.108 0.121 0.128 0.125 0.115 0.102 0.090 0.080 0.071 0.064

0.8 0.085 0.095 0.105 0.113 0.115 0.109 0.099 0.089 0.080 0.072 0.065

0.9 0.077 0.085 0.093 0.101 0.104 0.102 0.096 0.087 0.079 0.072 0.065

1 0.070 0.076 0.084 0.090 0.095 0.095 0.091 0.085 0.078 0.071 0.065

Appendix 6 GA tests

Page 265

6.1.2 Pt2 (X variable, Y constant, Z constant); Pt3 (X variable,
Y constant, Z constant)

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (k+10, 5, 5);

position pt3_ga (l+20, 30, 10);

position pt4_ga (40, 0, 7);

}

}

0

0
.2

0
.4

0
.6

0
.8

1

0

0.3

0.6

0.9

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

fi
tn

e
s
s
 v

a
lu

e

Y pt2

X pt2

Fitness Function = 1/(1+distance)

Pt2 (X variable, Y variable, Z constant)

Y X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.371 0.228 0.164 0.128 0.105 0.089 0.078 0.068 0.061 0.055

0.1 0.479 0.362 0.236 0.171 0.133 0.109 0.092 0.080 0.070 0.063 0.057

0.2 0.315 0.297 0.221 0.168 0.133 0.110 0.093 0.081 0.071 0.064 0.058

0.3 0.235 0.239 0.198 0.159 0.130 0.109 0.093 0.081 0.072 0.064 0.058

0.4 0.187 0.195 0.175 0.148 0.124 0.106 0.092 0.081 0.072 0.064 0.058

0.5 0.156 0.164 0.154 0.136 0.118 0.102 0.090 0.079 0.071 0.064 0.058

0.6 0.133 0.140 0.136 0.124 0.110 0.098 0.087 0.077 0.070 0.063 0.058

0.7 0.117 0.122 0.121 0.113 0.103 0.093 0.083 0.075 0.068 0.062 0.057

0.8 0.104 0.108 0.108 0.104 0.096 0.088 0.080 0.073 0.066 0.061 0.056

0.9 0.093 0.097 0.098 0.095 0.089 0.083 0.076 0.070 0.064 0.059 0.055

1 0.085 0.088 0.089 0.087 0.083 0.078 0.073 0.067 0.062 0.058 0.054

Appendix 6 GA tests

Page 266

6.1.3 Pt2 (X constant, Y variable, Z constant); Pt3 (X constant,
Y variable, Z constant)

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (10, k+5, 5);

position pt3_ga (20, l+30, 10);

position pt4_ga (40, 0, 7);

}

}

00.10.20.30.40.50.60.70.80.91

0

0
.2

0
.4

0
.6

0
.8

1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

F
it

n
e
s
s
 v

a
lu

e

X pt3

X pt2

Fitness Function = 1/(1+distance)

Pt2 (X variable, Y constant, Z constant)

Pt3 (X variable, Y constant, Z constant)

Appendix 6 GA tests

Page 267

6.1.4 Pt2 (X constant, Y constant, Z variable); Pt3 (X constant,
Y constant, Z variable)

Y X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.417 0.264 0.193 0.153 0.127 0.108 0.095 0.084 0.076 0.069

0.1 0.522 0.514 0.308 0.217 0.168 0.137 0.116 0.100 0.089 0.079 0.072

0.2 0.353 0.472 0.346 0.241 0.183 0.147 0.123 0.106 0.093 0.083 0.075

0.3 0.267 0.351 0.341 0.261 0.198 0.158 0.131 0.112 0.098 0.087 0.078

0.4 0.214 0.269 0.309 0.262 0.210 0.168 0.139 0.118 0.102 0.090 0.081

0.5 0.179 0.217 0.257 0.249 0.212 0.175 0.146 0.124 0.107 0.094 0.084

0.6 0.154 0.182 0.213 0.230 0.205 0.177 0.151 0.129 0.111 0.098 0.087

0.7 0.135 0.156 0.180 0.202 0.196 0.174 0.152 0.132 0.115 0.101 0.090

0.8 0.120 0.137 0.156 0.175 0.183 0.168 0.151 0.134 0.118 0.104 0.093

0.9 0.108 0.122 0.137 0.153 0.166 0.161 0.147 0.133 0.119 0.107 0.095

1 0.098 0.109 0.122 0.135 0.148 0.152 0.142 0.130 0.119 0.107 0.097

00.10.20.30.40.50.60.70.80.91

0

0
.2

0
.4

0
.6

0
.8

1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

F
it

n
e
s
s
 v

a
lu

e

Y pt3

Y pt2

Fitness Function =1/(1+distance)

Pt2 (X constant, Y variable, Z constant)

Pt3 (X constant, Y variable, Z constant)

Appendix 6 GA tests

Page 268

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (10, 5, k+5);

position pt3_ga (20, 30, l+10);

position pt4_ga (40, 0, 7);

}

}

00.10.20.30.40.50.60.70.80.91

0

0
.2

0
.4

0
.6

0
.8

1

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

F
it

n
e
s
s
 V

a
lu

e

Z pt3

Z pt2

Fitness Function =1/(1+distance)

Pt2 (X constant, Y constant, Z variable)

Pt3 (X constant, Y constant, Z variable)

Y X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.358 0.218 0.157 0.123 0.101 0.085 0.074 0.065 0.059 0.053

0.1 0.483 0.476 0.270 0.183 0.138 0.111 0.093 0.079 0.070 0.062 0.056

0.2 0.319 0.433 0.312 0.212 0.156 0.122 0.101 0.086 0.074 0.066 0.059

0.3 0.238 0.338 0.304 0.232 0.174 0.135 0.110 0.092 0.079 0.070 0.062

0.4 0.190 0.257 0.276 0.231 0.185 0.146 0.119 0.099 0.085 0.074 0.065

0.5 0.158 0.204 0.240 0.218 0.185 0.153 0.126 0.106 0.090 0.078 0.069

0.6 0.135 0.169 0.203 0.202 0.179 0.154 0.131 0.111 0.095 0.082 0.072

0.7 0.118 0.143 0.172 0.184 0.170 0.151 0.132 0.114 0.099 0.086 0.076

0.8 0.105 0.125 0.148 0.164 0.160 0.145 0.130 0.115 0.101 0.089 0.079

0.9 0.094 0.110 0.129 0.145 0.148 0.139 0.127 0.114 0.102 0.091 0.081

1 0.086 0.099 0.114 0.129 0.136 0.132 0.122 0.112 0.102 0.092 0.083

Appendix 6 GA tests

Page 269

6.2 Fitness Boosting

The general concept of the fitness boosting technique is introduced in paragraph 0, this

appendix documents the experiments carried out during the development.

This experiment uses the same test function as in appendix 6.1 above. Here a power function

is applied to the fitness function for boosting. The power is incremented from a start value to

an end value at every generation as shown in the implementation below. It is desirable to

proceed with an increment on the power value to prevent penalising average solutions in

order to leave enough genetic diversity within the population. A series of test are presented

below, the setting values are given for each experiment in a frame above each graph.

Implementation

int power_start = 1; //start power value

int power_finish = 8; //end power value

double power = power_start; //initialise power at start value

int nogen = 50; //number of generations

int popsize = 50; //population size

for (int i = 0; i < nogen; i++) {

 roulette(oldpop, intpop, popsize, maxdecpt);

 reproduction(intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp);

 for (int j = 0; j < popsize; j++) {

 *oldpop[j] = *newpop[j];

 outDistanceFile << newpop[j]->fitdata() <<endl;

 outpower<<power<<endl;

 }

 power = power + (double (power_finish) - double (power_start)) / double (nogen);}

Appendix 6 GA tests

Page 270

Settings

Experiments

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02,

gen 50

pop 50

xover 0.8

xover level 2

mutation 0.02

mtation level 2

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10,

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10,

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02,

RUN 1

Start power = 1

End power = 1

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average
distance
power

Appendix 6 GA tests

Page 271

RUN 3

Start power = 1

End power = 2

0.01

0.1

1

10

100

0 1000 2000 3000

Individuals

average
distance
power

RUN 2

Start power = 1

End power = 2

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average

distance

power

Appendix 6 GA tests

Page 272

RUN 4
Start power = 1

End power = 8

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average
distance
power

RUN 5

Start power = 1

End power = 16

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average

distance
power

Appendix 6 GA tests

Page 273

Observations

The main observation that can be drawn from this experiment is that power applied to the

fitness function results in better convergence of the GA. This is true up to certain limit. With

a power range of 1 to 16 the solution band becomes too narrow, and population diversity is

too small to allow the GA to converge towards an optimum. The best results are obtained

with a power range of 1 to 8, which are the settings retained for the application of curve

optimisation.

6.3 GA Operators

For the tests on GA operators, the best power settings found previously are selected here and

kept constant all the way through the experiments.

6.3.1 Mutation

The mutation operator has two settings: the probability mutation occurs on an individual and

the chromosome level mutation is applied. Both settings are explored in this experiment

starting with the mutation probability.

Settings

Graphs

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02,

gen 50

pop 50

xover 0.8

xover level 2

power start 1

power finish 8

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02,

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10,

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10,

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};

Appendix 6 GA tests

Page 274

Run 1
Mutation probability = 0.005

Mutation Level = 2

0.01

0.1

1

10

100

0 1000 2000 3000

Individuals

average
distance

Run 2

Mutation probability = 0.01

Mutation Level = 2

0.01

0.1

1

10

100

0 1000 2000 3000

Individuals

average
distance

Appendix 6 GA tests

Page 275

Run 3

Mutation probability = 0.04

Mutation Level = 2

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average
distance

Run 4

Mutation probability = 0.001

Mutation Level = 1

0.01

0.1

1

10

100

0 500 1000 1500 2000 2500 3000

Individuals

average
distance

power

Appendix 6 GA tests

Page 276

Observations

As the probability increases, the solution band gets wider with a Paretto front less

pronounced, the solutions are more spread out. The GA is able to explore the search space

and find solutions towards the optimum quickly. However with a probability of 0.04, it is

observed that too much mutation is introduced to the population results of a weak Paretto

front: not enough solutions are close to the front and the GA has difficulty to converge.

Like for the probability, the mutation level, it has the effect of concentrating solutions

towards the Paretto front as it increases. This is an interesting property because it is

preferable to have a solution band following the trend of the Paretto front. The settings

retained after this experiment are a probability of 0.01 and a level of 2.

6.3.2 Cross-over

Settings

Run 5

Mutation probability = 0.001

Mutation Level = 3

0.01

0.1

1

10

0 500 1000 1500 2000 2500

Individuals

average

distance

power

Appendix 6 GA tests

Page 277

Graphs

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02,

gen 50

pop 50

mutation 0.01

mtation level 2

power start 1

power finish 8

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10,

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10,

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02,

Run 1

probability = 0.5

level = 2

0.1

1

10

100

0 500 1000 1500 2000 2500

Individuals

average

distance

power

Appendix 6 GA tests

Page 278

Observations

It is observed that with an increasing cross-over probability the GA converges better, in

actual fact the best result is obtained with a probability of 1. As for the cross over level it is

no effect on the convergence.

Run 2

probability = 1

level = 2

0.1

1

10

100

0 500 1000 1500 2000 2500

Individuals

average

distance

power

Page 279

Appendix 7 Implementation of Curve

Optimisation Application Using F-Rep

Appendix 7 Implementation of Curve Optimisation Application Using F-Rep

Page 280

The code presented below traces out the curvature fin, Equation 23, the torsion fin,

Equation 24, the curvature plot, Equation 11, and the torsion plot, Equation 17 of a space

curve.

#include <iostream.h>

#include <stdio.h>

#include <math.h>

#include "wot.h"

int main()

{

ENTITY_LIST *curve_bs3 = new ENTITY_LIST;

ENTITY_LIST *u_c_list = new ENTITY_LIST;

ENTITY_LIST *u_t_list = new ENTITY_LIST;

//Initialise modeler and LAW class library

oli_ACIS_library_initialise();

initialize_law ();

// Construct a curve from control points

int const Nb_CtrlPpts = 4;

position pt1 (40, 40, 40);

position pt2 (45, 120, 120);

position pt3 (85,10, 80);

position pt4 (100, 70, 30);

position vertices[*&Nb_CtrlPpts] = {pt1, pt2, pt3, pt4};//,pt5};//,pt6};

bs3_curve bs3_label = NULL;

int const degree = 3;

int const nb_knots = Nb_CtrlPpts + degree - 1 ;

double const knots[nb_knots] = {0,0,0,1,1,1}; //that makes a cubic Bezier

double weights[nb_knots]= {(double)NULL}; //it's not a rational

double fitol = resabs;

logical rational = FALSE;

logical closed = FALSE;

logical periodic = FALSE;

int dimension = 3;

bs3_label = bs3_curve_from_ctrlpts (

 degree,

 rational,

 closed,

 periodic,

 Nb_CtrlPpts,

 vertices,

 weights,

 fitol,

Appendix 7 Implementation of Curve Optimisation Application Using F-Rep

Page 281

 nb_knots,

 knots,

 fitol,

 dimension

);

//reparameterise the bs3_curve from 0 to 1...

double start =0;

double end =1;

bs3_curve_reparam (start,end,bs3_label);

// saves the curve into a SAT file

EDGE* edge_label = NULL;

oli_ACIS_curve (bs3_label, edge_label);

oli_add_entity_List(edge_label, curve_bs3);

curve_law* position_vector = NULL;

law *tangent = NULL;

law *curvature_vector = NULL;

law *curvature = NULL;

law *torsion_vector = NULL;

law *torsion = NULL;

// gets the LAW representation of the curve

oli_edge_to_law(edge_label, position_vector);

// gets the Frenet frame

oli_Frenet_frame_law (

 position_vector,

 tangent,

 curvature_vector,

 curvature,

 torsion_vector,

 torsion

);

//Trace the Curvature fin

law *scale_factor_curvature = new constant_law(10);

law *curvature_scaled = new times_law(normal, scale_factor_curvature);

law *curvature_fin = new minus_law(position_vector, curvature_scaled);

//Trace the Torsion fin

law *scale_factor_torsion = new constant_law(10);

law *torsion_scaled = new times_law(bi_normal, scale_factor_torsion);

law *torsion_fin = new plus_law(position_vector, torsion_scaled);

// Curvature Vs parameter plot

int in_which = 0;

char *in_name ="u";

Appendix 7 Implementation of Curve Optimisation Application Using F-Rep

Page 282

law* u = new identity_law (In_which, *in_name);

law* zero = new constant_law(0);

law *u_c_array[3] = {u, curvature,zero};

law *u_c = new vector_law(u_c_array, 3);

law *u_c_plot = u_c;

//Torsion Vs parameter

law *u_t_array[3] = {u, torsion,zero};

law *u_t = new vector_law(u_t_array, 3);

law *u_t_plot = u_t;

// MAKE EGDES AND SAVE INTO SAT FILES

EDGE* curvature_fin_edge = NULL;

oli_law_to_edge(

 curvature_fin,

 start,

 end,

 curvature_fin_edge

);

oli_add_entity_List(curvature_fin_edge, frenet_frame_list);

EDGE* torsion_fin_edge = NULL;

oli_law_to_edge(

 torsion_fin,

 start,

 end,

 torsion_fin_edge);

oli_add_entity_List(torsion_fin_edge, frenet_frame_list);

EDGE* u_c_plot_edge = NULL;

oli_law_to_edge(

 u_c_plot,

 start,

 end,

 u_c_plot_edge);

oli_add_entity_List(u_c_plot_edge, u_c_list);

EDGE* u_t_plot_edge = NULL;

oli_law_to_edge(

 u_t_plot,

 start,

 end,

 u_t_plot_edge);

oli_add_entity_List(u_t_plot_edge, u_t_list);

return 0;

_t_list);

Page 283

Appendix 8 HulaHoops User Interface

Appendix 8 HulaHoops User Interface

Page 284

8.1 Draw an Interpolated Spline

• Click on ‘S’ icon or

• Menu ‘Draw’ ‘Curve’ ‘Spline’

• • Left click to select data points

• • Right click to finish

Appendix 8 HulaHoops User Interface

Page 285

• •Left click to enter start tangent

• • Right click for NULL (natural tangent with zero curvature)

• •Left click to enter end tangent

• • Right click for NULL (natural tangent with zero curvature)

Appendix 8 HulaHoops User Interface

Page 286

• •Here is the result

• • Note that this Spline is planar in the X-Y plane because the default view is
TOP

Appendix 8 HulaHoops User Interface

Page 287

8.2 Draw a 3D Bézier curve

• •Click on ‘B’ icon or

• • Menu ‘Draw’ ‘Curve’ ‘Bezier’

• •Left clicks to input 3 of 4 polygon points

Appendix 8 HulaHoops User Interface

Page 288

• •Change to FRONT view: click on FRT icon

• •Input 4th polygon point in the Z-X plane

Appendix 8 HulaHoops User Interface

Page 289

• •That’s done it

• • Go back to TOP view

Appendix 8 HulaHoops User Interface

Page 290

8.3 Shape Modification

• Menu ‘Modify’ ‘Edge’

• •Left click to select a curve

• • The control points now appear on screen

Appendix 8 HulaHoops User Interface

Page 291

• •Left button down to drag a point

• •The Bézier polygon shows colour white

• •Right click to exit the modification tool

Appendix 8 HulaHoops User Interface

Page 292

8.4 Curvature and Torsion Differential
PropertiesMenu ‘Frame’ ‘ Compound’ ‘curv & torsion’

• •Menu ‘Frame’ ‘ Compound’ ‘curv & torsion’

• • Left click to select a curve, it should go blue

Appendix 8 HulaHoops User Interface

Page 293

• Right click to validate

• The curvature and torsion compound fins are now on screen

• Note that if the inquired curve was planar, only the curvature would be
returned

Appendix 8 HulaHoops User Interface

Page 294

8.5 Combescure Differential PropertiesMenu ‘Frame’

Compound’ ‘Combescure’

• Select a curve, it should go blue

Appendix 8 HulaHoops User Interface

Page 295

• Right click to confirm

Appendix 8 HulaHoops User Interface

Page 296

8.6 Frénet Frame Differential Properties

• Menu ‘Frame ’ Compound’ ‘Frenet frame’

• •Left click to select a curve, it should go blue

• • Right click to validate

Appendix 8 HulaHoops User Interface

Page 297

• The Frenet frame normal and bi-normal compound fins show on screen

• If the curve is planar, only the normal fin is given

• The normal and bi-normal fins can be obtained separately from Menu
‘Frame’ ‘Compound’ ‘Normal’ or ‘Bi-normal’

• The Frenet frame is valid for any curves with non vanishing curvature

• Right click to exit the tool, the fins and hair are destroyed

Appendix 8 HulaHoops User Interface

Page 298

8.7 Viewing

• Menu ‘View’ ‘Orbit’ or

• Bent arrow icon

• Left button down to rotate the model

• Right click to exit the tool

Appendix 8 HulaHoops User Interface

Page 299

• •Menu ‘View’ ‘Pan’ or cross arrow icon

• • Left button down to move the model in the view plane

• • Right click to exit the tool

