
CRANFIELD UNIVERSITY 

 

 

O MUNAUX 

 

 

 

CAD INTERFACE AND FRAMEWORK  

FOR CURVE OPTIMISATION APPLICATIONS 

 

 

 

 

SIMS 

 

 

 

 

PhD THESIS



CRANFIELD UNIVERSITY 

SIMS 

 

 

O MUNAUX 

 

CAD INTERFACE AND FRAMEWORK  

FOR CURVE OPTIMISATION APPLICATIONS 

 

 

Supervisor:                        G JARED 

September 2004 

 

 

 

This thesis is submitted in partial fulfilment of the requirements 

for the degree of Doctor of Philosophy 

© Cranfield University 2000.  All rights reserved.  No part of this publication may be 

reproduced without the written permission of the copyright owner.





Abstract 

Computer Aided Design is currently expanding its boundaries to include more design 

features in its processes. Design is identified as an iterative process converging to solutions 

satisfying a set of constraints. Its close relation with optimisation indicate that there is strong 

potential for the integration of optimisation and CAD. The problem addressed in this thesis 

lies in interfacing the geometric representation of design with other non-geometric aspects. 

The example of free-form curve modelling is taken to investigate such relationships. 

Assumptions are made that Optimisation is powered by Evolutionary Computing algorithms 

like Genetic Algorithms (GA). 

The geometric definition of curves is commonly supported by NURBS, whose construction 

constraints are defined locally at the data points. Here the NURBS formulation is used with 

GA in an attempt to provide complementary handles on the curves shape other than the usual 

data point coordinates and control points weights. Differential properties are used for 

optimising NURBS, Hermite interpolation allows for the definition of higher order 

constraints (tangent, normal, bi-normal) at data points. The assignment of parameter values 

at the data points, known as parameterisation also provides control of the curve’s shape. 

Curve optimisation is also performed at the geometric modelling level. Old mathematical 

theorems established by Frénet and further developed by other mathematicians provide 

means of defining a curve’s shape with it’s intrinsic equations. Such representation is 

possible by using Function Representation (F-rep) algebra available in the ACIS software. F-

rep allows more generic and exact means of interfacing with the curve’s geometry and new 

functionality for curve inspection and optimisation are proposed in this thesis. 

The integration of optimisation findings and CAD are documented in the definition of a 

framework. The framework architecture proposed reconstructs a new CAD environment 

from separate elements bolted together in a generic Application Programming Interface 

(API) named “Oli interface”. Functionality created to interface optimisation and CAD makes 

a requirement list of the work that both sides should undertake to achieve design 

optimisation in the CAD environment. 
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Introduction

For many companies, cost and built quality is no longer a competitive advantage; new 

innovative products must be launched regularly in an attempt to keep up with the market. In 

a competitive worldwide market, minimising time to market is essential to business 

performance: The focus is on ‘creating new designs quicker’. In addition, product designs 

have become more complex with the advance of technology and with the growing 

importance of product styling. Manufacturing enterprises are introducing optimisation in 

their design processes to reduce design lead-time and investment cost. 

At the moment the use of optimisation across industries is limited by its lack of integration 

in a design environment. In Appendix 1, a selection of industries using some form of 

optimisation in their processes are surveyed to examine the current state of the art in 

optimisation. Extensive internet-based search and numerous company visits have 

investigated the use of optimisation across engineering industries. The main source of 

product design data readily usable for numerical analysis and optimisation is undeniably the 

CAD/CAM environment. Paradoxically, the main conclusion drawn from this research is the 

lack of integration of optimisation capabilities within the CAD/CAM environment. An 

integrated optimisation framework would enable optimisation to interact with the geometric 

definition of product designs and subsequently optimise some of the design aspects 

described in paragraphs 1.5 and 3.8. The results of this survey, presented in Appendix 1, 

identify the need for a framework for design optimisation. In the remainder of this thesis, 

optimisation of free form curves is used as example. This choice is not arbitrary, because 

curves and surfaces also were also the centre of interest of the Flexo project and therefore 

some of the information gathered throughout the project could be used in this research.  

The topic of this thesis is the integration of flexible optimisation within the CAD 

environment. It assembles knowledge from diverse topic areas such as design optimisation, 

evolutionary computing, geometric modelling, differential geometry. The thesis is therefore 

organised in three parts each constituting research in its own rights.  
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Part I of the thesis proposes a study of design, optimisation, evolutionary computing, and 

design and optimisation of free-form curves in order to establish some connectivity between 

these subject areas.  

Chapter 1 exposes some of the theoretical aspects of design and a definition of design is 

established as a divergent-convergent system of finding solutions that satisfy constraints. It 

is thought that the design process described above can be mapped onto evolutionary 

computing techniques to automate its iteration loop. Hence for optimisation, the top priority 

is the representation of the constraints that characterise the design.  

Chapter 2 examines the optimal problem formulation together with a review of some 

optimisation techniques available for engineering optimisation. Paragraph 2.2 directs the 

research towards adaptive search algorithms and evolutionary computing. The basics of 

Genetic Algorithms (GA) are reviewed in paragraph 2.3 and an implementation in object-

oriented language C++ is documented in Appendix 2. 

Chapter 3 deals with the design processes of free-form curves and surfaces. The study uses 

the example of the car manufacturing industry to highlight the difficulties found and the 

solutions this research could provide. The shape of finished goods and manufactured 

products exhibits a marked emphasis on smooth shapes and free flowing contours. Whether 

it is cars, audio equipment, cameras, ergonomic furniture or injection moulded plastic 

products, all have smooth contours in their design. However, the production of manufactured 

objects from such shapes is not an easy process. Specialised CAD software provide means to 

create free form contours for the design and manufacture of artefacts, but it is still a 

laborious process. One of the major bottlenecks in current CAD systems is the inefficiency 

of representation and manipulation tools for the design of free form, sculpted, three-

dimensional shapes. This is forcing designers to use physical clay models and templates for 

generating curves and surfaces which are digitised with 3D coordinate-measuring machines 

(CMM) and 3D scanners to gain a computerised geometric definition. 

Curve and surface optimisation depicted in paragraph 3.8, is an iterative process which 

consists of creating a CAD model, carrying out some analyses, which will give some 

indications on the surface quality, modifying the model, and so on, until satisfactory result is 
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obtained. It is observed that 80% of the surface development time is spent on fine-tuning or 

optimising the geometry. Most commercial CAD/CAM systems have an integrated surfacing 

module that enables the user to create free form surfaces with 3D sweeps and lofts as well as 

NURBS patches. However free form surfaces are difficult to control because of their 

numerous control points and large number of degrees of freedom. As a result, most 

companies in the automotive sector use reverse engineering techniques to recreate geometry 

from clay or foam models built in styling. The discussion shows that its iterative nature is 

proven time consuming and does not always produce satisfactory results as designers are still 

faced with the problem of control points. The surface reconstruction process as it stands 

today strips geometry of its intrinsic properties like surface normal or curvature. At the same 

time, there is currently no possibility of storing surface interrogation results like shading or 

reflection lines.  

In Part II the research aims to develop methodologies for the optimisation of free-form 

curves using geometric modelling, optimisation, and differential geometry. 

Chapter 4 reports on theory of solid modelling to come to the topological definition of 

geometry. Complementary material is included in Appendix 3. As the focus of the research 

is on curve and surface optimisation, Chapter 5 reviews the mathematic foundations of 

spline curves. Interpolation methods of Lagrange and Hermite are detailed alongside the 

NURBS representation. 

Some surface quality evaluation techniques such as curvature profile, reflection lines and 

offsetting are already available within CAD/CAM. The quality of the design relies on the 

designer’s skill to interpret the line pattern of the surface evaluation and modify the model. 

This research aims to develop a process that requires less intervention from the designers 

and that can be carried out within the CAD/CAM environment. It proposes to replace the 

traditional iterative loop of modification and subsequent evaluation by a reversed process, 

which enables the designer to define its design intent and let the application reverse engineer 

geometry starting from the designers’ prescribed properties.  

Reflection lines, curvature plots, compound fins are applications that use the theorems of 

differential geometry laid by French mathematician Frénet. His propositions presented in 
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Chapter 6 give a general definition of shape in terms of differential equations. These relate to 

the fundamental concept of a curve that is its frame and the speed at which this frame travels 

along the curve. This formulation, more generic than NURBS, allows a more systematic 

approach to curve optimisation. The applications developed with NURBS in Chapter 7 show 

the limitations of NURBS for achieving optimisation, compared with the applications 

developed with Frénet in Chapter 8.  

The Third part of this thesis aims to define a framework for flexible optimisation within the 

CAD environment. Open architecture is the term used in paragraph 9.1 to refer to the 

exposure of a systems’ functionality to outside applications. Investigations in these show that 

commercial turn-key systems do not comply with the objectives of this research. Rather a 

reconstituted framework is produced. The flexible optimisation framework that is proposed 

combines functionality from a geometric modeller, ACIS, a geometric editor, Open GL, 

ACIS MFC, and an optimisation capability, Flexo toolbox. All of these all have their own 

API’s, except the optimisation toolbox which was provided as code only by Tiwari [99]. 

Typically geometric modelling algorithms are implemented in geometric modelling kernel, 

which exposes it’s functionality through a programming interface. 

This thesis is a multi-disciplinary research program involving different areas such as Design, 

Geometric Modelling and Optimisation. Figure 1 shows the interactions between these 

different fields constituting the scope of this research and serves the purpose of mapping the 

research framework for the forthcoming thesis. The topics introduced here are briefly 

outlined below and are developed further in following chapters. 

Ø  Design can be described as the process of establishing requirements based on human 

needs, transforming then into performance specification and functions, which are then 

mapped and converted (subject to constraints) into design solutions (using creativity, 

scientific principles, and technical knowledge) that can be economically manufactured 

and produced. 

Ø  Optimisation can be defined as the act of obtaining the best result under given 

circumstances. 

Ø  Geometric modelling is the process of defining the geometry of an object. 

Ø  API is the application programming interface that exposes a set of procedures that an 

application can call to carry out operations. 
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Ø   CAD is a workspace in which product designs are created, modified and edited. 

Ø  Design Optimisation is the process of improving a design by manipulating the design 

variables. 

Figure 1: Research map [97] 

Geometric 

Modeller

Optimisation Design

Design
Optimisation

Flexo

API

CAD
Variational

Design



 

Page 6 

Part I 



 

Page 7 

Chapter 1 Design 

Increasing global competition in the manufacturing environment is pushing companies to 

improve on product performance This is forcing manufacturing enterprises to seek more 

advanced technology for improving product specification at lower cost. Companies are 

introducing ‘design optimisation’ in their organisations as an attempt to improve their design 

process capability and thus stay competitive in the market place. 

This chapter exposes some of the theoretical aspects of design science in order to establish 

some relationship between design and optimisation. To begin with, the investigations target 

a wide spectrum of product design and later narrow the scope down to curve and surface 

design. 

1.1 Engineering Design 

1.1.1 A Definition of Design 

Design activities although performed for many centuries have not generally had any 

structure or organisation to them; or perhaps design wasn’t regarded as a discipline in its 

own right until after Second World War. With the advance of modern society and mass 

production, it became apparent that design as a process should be given more thought. Many 

attempts have been made to map its process with complex picture diagram models and even 

to establish some form of definition. This has proven a very difficult task since design is 

everything but an exact science and is left to each individual designer to interpret the 

philosophy of design within a specific context and from his or her own perspective. Several 

designers, engineers and researchers, from experience have expressed their views on the 

definition of or what they consider design to be. Some of these viewpoints are expressed by 

Feilden [47], Finkelstein [50], Luckman [71] Archer [5] and Caldecote [22] In general, 

certain key-words and phrases can be noted which have a strong bearing on design. These 

include: needs, requirements, solutions, creativity, constraints, scientific principles, technical 
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information, functions, mapping, transformation, manufacture and economics. Taking into 

account all these words, design can be described as the process of establishing requirements 

based on human needs, transforming then into performance specification and functions, 

which are then mapped and converted (subject to constraints) into design solutions (using 

creativity, scientific principles, and technical knowledge) that can be economically 

manufactured and produced, Evbuomwan [42]. 

1.1.2 A Design Model 

In the more specific context of engineering, design can be seen as a decision making process 

that involves an evolutionary process, where changes (improvements or refinements) are 

proposed to the current design in order to move to a better design, Rzevski [104]. As for 

every design problem there is an infinite number of options available (also known as design 

concepts), the aim of design optimisation is to provide solutions that satisfy best a given set 

of constraints, parameters and variables. In the design process, iterative in nature, a common 

line of thoughts emerges as designers move from an abstract problem definition to a fully 

specified product. These are the divergence, transformation and convergent stages of design, 

as formulated below, Evbuomwan [42] and pictured in Figure 2. 

Divergence 

This is the act of extending the boundary of a design in order to have a large enough search 

space. The divergent search approach aims to break the initial design concepts, while 

identifying alternative feasible designs. This chaotic phase is most productive in the initial 

stages of the design process. 

Transformation 

This is the stage of pattern making, high level creativity. The objective here is to re-structure 

the design thoughts into a more structured search pattern allowing convergence to a single 

design solution. 
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Convergence 

The main objective of convergence is to progressively narrow down the design alternatives 

through a selection process. The end result of this phase is the reduction of the range of 

options to a single chosen design while avoiding setbacks and retreats. 

Figure 2: Divergent–Convergent design model, Roy [92] 

1.1.3 Design Goals 

Design goals can be defined as the purposes for design actions and decision taken in each 

step. They guide the choice of what to do at each point during the design process, Mostow 

[74]. Design goals represent one or more decision points from a problem solving point of 

view, and they define some of the dimensions of the design space, Evbuomwan [42]. 

1.2 Review of Design Problems 

1.2.1 Design Problems Classification 

There is in the world of engineering design an infinity of design problems, each one of them 

trying to achieve one singular goal. Engineers and designers face different situations; a 

classification of design problems is presented below, Juster [66], Cagan [21], Sriram [113], 

Pahl [81]. 

Customer Requirements

Final Design

Possible Design Options

Customer Requirements

Final Design

Possible Design Options



Chapter 1 Design 

Page 10 

Routine Designs 

These designs are derived from existing design prototypes with a common set of variables; 

the structure does not change. Here design plans and alternative solutions are known in 

advance.  

Redesigns 

These involve modifying an existing design to satisfy new requirements or improve their 

performances under new requirements. The end result of redesigns may also exhibit some 

aspects of creative designs or routine designs. Redesigns come in two categories, adaptive 

and variant designs, which are discussed below. 

Adaptive, configurative or transitional designs are those that involve adapting a known 

system to perform a new task. They also involve improvements on a basic design by a series 

of ‘detail’ refinements. 

Variant, extensional or parametric designs involve using a proven design as a basis for 

generating further geometrically similar designs of differing capabilities. Knowledge Based 

Engineering (KBE) systems are typical variant design applications. KBE uses library of 

predefined geometric entities or assemblies, which are automatically selected, and if 

necessary varied, accordingly to the design specification. 

Conceptual designs 

Non-routine designs, original or new designs are classified into innovative and creative 

designs. 

With innovative design, new variables or features are introduced, which still bear some 

resemblance to existing variables or features. The decomposition of the problem is known 

but the alternatives are yet to be synthesised. In other situations, a recombination of the 

problems alternatives may produce a new design.  

Creative design. In this case new variables or features are introduced, which bear no 

similarity to variables or features in the previous prototype and the resulting design has very 

little resemblance to existing designs. For creative design, no design plan is known. 
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1.2.2 Product Design Classification 

The end result of any design process is a product or a system. Such product depending on the 

engineering discipline or domain, vary in one-way or another. Product variation also arises 

depending on the market segment, knowledge available, the design process and 

manufacturing capabilities. In the light of general constraints, products can be classified as 

either over constrained or under constrained. Depending on the customer demand and market 

competition, some products are considered as static or dynamic. These various forms and 

classifications are discussed below, Clausing [24], Medland [72]  

Static Product Designs 

Static products are those that demand remains stable and no changes to the product design 

are required. The design concept is already known from existing products, such products are 

considered as conceptually static. 

Dynamic Product Designs 

Dynamic products have a limited life cycle before the next generation supersedes them. Here 

development is focused on the product and the design process involves development of new 

radical and alternative designs. 

Over constrained Product Designs 

These products exist in the high technology markets. Here, the design process evolves 

around analysing alternative proposals until an acceptable solution is found. Over 

constrained products are subjected to several constraints. These include functionality, 

environment, performance, materials, manufacturing processes and cost, some of which can 

be conflicting one another adding further complication to the system.  

Under constrained Product Designs 

In the case of under constrained designs, the design activity is centred on bringing products 

in the market to satisfy market demands. There are usually not many constraints, and the 

designer has ample room for innovation. The focus here is usually on the product concept, 
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materials and techniques, which are chosen to satisfy the required functions. Most industrial 

designs fall into this category, development is on aesthetics, ergonomics and functionality. 

1.3 Constraint Based Design 

Since the first CAD systems were introduced, there have been on-going attempts to put more 

‘design’ into CAD including conceptual design, design embodiment, design for 

manufacturing, design for environment, etc. One way to characterise the process of 

mechanical design is to describe it as a process of constraint specification and satisfaction, 

Thornton [118]. Design can therefore be seen as a constrained optimisation problem that 

searches for the best acceptable solution. Consequently the rest of design can be seen as the 

search for a solution that best satisfies these constraints. 

Numerous researchers also see constraints specification and satisfaction as a key issue in the 

design process. Sriram et al. [113] state “Design can be viewed as the process of specifying 

a description of an artefact that satisfies constraints arising from a number of sources by 

using diverse sources of knowledge”. Serrano [111] also refers to design as constraint 

object-oriented. 

Researchers have studied a number of different approaches to constraint-based design. Most 

of these use of artificial intelligence techniques, which are particularly well suited to 

combinational problems defined with discrete variables.  

In conceptual design, Thornton et. al [118] use a genetic algorithm in a software support tool 

for constraint processing in embodiment design (CADET). Here generic component libraries 

are used to automate the specification of design constraints. 

In feature modelling, Laakko et al. [68] propose a method integrated with EXTDesign, an 

incremental design environment that combines solid and feature modelling, developed at 

Helsinki University. The proposed system aims to localise the problem of constraint solving 

and maintenance. The constraint algorithm used is based on local techniques to propagate 

changes in the constraint graph. 
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Yet another approach to constraint satisfaction is followed by Buchanan et. al. [20], who 

describe a constraint based modelling system called CDS Other applications use computer 

algebra techniques for geometric modelling in particular, the geometric algebra system 

developed at the university of Bath [15]. 

1.4 Evolutionary Design 

Evolutionary design states that natural evolution is capable of generating new or evolved 

designs, evaluating these designs and optimising them as depicted in Bentley et. al. [9]. Only 

two aspects of evolutionary design are relevant to this thesis and are outlined below. 

1.4.1 Optimisation of Existing Designs 

The development of non-generic optimisation systems, capable of optimising selected 

aspects of existing designs is a common research area, Parmee [83]. Numerous examples of 

design optimisation exist in both academia and industry; many using GAs or other adaptive 

search techniques. Examples of such real life design optimisation problems can be found in 

Rogero et. al. [89]. The wide variety of optimisations problems tackled by evolutionary 

based techniques shows that algorithms could successfully perform optimisation tasks on 

many different type of designs. However such optimisation schemes all suffer the same 

drawbacks: 

Ø  They can only optimise existing designs; none of these techniques would be capable of 

generating new designs. 

Ø  They are all application specific; only optimising the type of design they are created 

for. 

Further analysis of the type of optimisation described above is developed in Appendix 1, 

which details the use of optimisation in industry and their inhibitors Roy et. al. [95], [100]. 

1.4.2 Generic Optimisation of Designs 

Generic design optimisation, aims to optimise more than one type of design with a single 

system. A generic optimisation toolbox consists of a collection of algorithms capable of 
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optimising a different range of applications. Generic optimisation is not very common. 

However efforts to develop some form of generic optimisation toolbox include, Culley [29]. 

More recently, research at Cranfield University with Tiwari [99] has pushed in the area of 

generic optimisation and establishes definitions and classifications of optimisation 

algorithms. His effort has also attempted to define criteria for selection of algorithms. The 

selection criteria are based on the features of real optimisation problems. They define the 

typical scenarios in real-life optimisation, which in turn identify the ingredients of the ‘tool 

box’. 

1.5 Structural Optimisation 

There are in industry many different techniques used to optimise mechanical product design; 

each optimisation technique looks at one particular aspect of the design. Design for 

assembly, design for manufacture and design for quality all look at the functionality and 

manufacturability of the product. Such optimisation techniques are popular in industry as 

they can be performed without complex mathematical analysis and are proven very effective. 

Also these optimisations are performed externally to CAD/CAM environment and often after 

the completion of the design definition. 

Structural optimisation of mechanical components is an activity carried out within the 

CAD/CAM environment simultaneously with the product definition. In this paragraph, a 

classification of the different types of structural optimisation used for product development 

is presented, all of which optimise the geometry of components with various objectives. 

Structural optimisation is rapidly becoming an integral part of the product design process. 

Considering timing and budget constraints, structural optimisation yields a significantly 

superior design than the conventional trial-and-error approach. Structural Optimisation is the 

generic term to describe optimisation of geometric entities composing engineering products. 

Structural design optimisation problems are classified into three main categories: Sizing, 

Shape, and Topology Bremicker et. al. [19]. Alternative classification, can be found in 

Raasch [88], here Sizing is described part of a more generic domain termed property 

optimisation. In general, the classification of structural optimisation is closely related to the 
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choice of the design variables. Sizing variables such as cross-sectional area of a truss 

member, plate thickness or cross-sectional dimensions of a beam do not change the shape of 

a structure. However design variables that govern the shape or geometry of a structure are 

referred to as shape design variables. For example coordinates of nodes in solid models or 

curve/surface are typically shape design variables. 

1.5.1 Property Optimisation 

With this type of optimisation, some geometric items are transformed into a property, which 

can be changed independently with respect to the rest of the geometry. Examples of property 

include size or weight of a component. With property optimisation, the overall shape and 

structure of the component remain unchanged. This type of optimisation works on models 

such as beams and shells, which are reduced in one or more dimensions by using abstract 

mathematical models. For example, sheet metal structures are usually represented by 

surfaces, and thickness is a separate item. Due to this, the shell thickness can be changed 

independently to improve the functionality of the component. This optimisation is losing its 

popularity in industry; it is being replaced by more sophisticated CAD driven analyses like 

FEA. 

1.5.2 Shape Optimisation 

In shape optimisation, the geometry of components’ structure changes from an initial shape 

to the optimum shape. Parameterised geometry variables are taken as design variables by the 

optimisation algorithm. The model is generally meshed with a FEA/CFD package for 

analysis. 

1.5.3 Topology Optimisation. 

In general, designs have fixed points, or “hard points”, which are defined by the engineering 

necessities. Topology optimisation aims to explore the different ways in which the hard 

points are linked. Topology defines the overall structure of a component or assembly. Such 

study in usually carried out at early in the design process. 
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1.6 Summary 

A definition of design has been established as a divergent-convergent system of finding 

solutions that satisfy constraints. It is thought that the design process described above can be 

mapped onto evolutionary computing techniques to automate its iteration loop. Hence for 

optimisation, the top priority is the representation of the constraints that characterise the 

design. For the remaining of this thesis, the choice was made to look into the shape 

optimisation of free form curves. This choice is not arbitrary, because curves and surfaces 

also was also the centre of interest of the Flexo project and therefore some of the information 

gathered throughout the project could be used in this research. 
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Chapter 2 Optimisation
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This chapter reviews some optimisation techniques available for engineering optimisation. 

An implementation of a GA (Genetic Algorithm) written in object-oriented language C++ is 

documented in Appendix 2. Reports on the current status of design optimisation in industry 

are presented in Appendix 1. 

2.1 Optimisation for Engineering Design 

In Chapter 1, design is described as an iterative and evolutionary process of changes leading 

to a better design for given specifications. This also applies to optimisation, which is 

described as the process of attaining a superior design, based on some pre-defined criteria, 

from a set of feasible alternative designs. However, as explained in Mussa [76], there is a 

precise difference between the process of improvement and the search for an optimum. 

Improvement involves subtle human decisions based on the subjective notions of goodness 

and badness, which is usually defined by a mathematical objective function. The search for 

optima is frequently seen as a convergence method to find the peaks (minimum or 

maximum) of a mathematical function representative of the objective, i.e. the best solution to 

a problem, Figure 3. 

Thus, optimisation is defined as search process through the solution space driven by a human 

like decision-making process. The first aspect of optimisation is iterative in nature and can 

be carried out either manually or automatically using search algorithms. Furthermore it 

relates to the “Divergent and Transformations” phases of design discussed in paragraph 1.1. 

The second aspect of optimisation aims to map the designers’ intent in order to represent the 

design goals with in mathematical function, which is also called objective function. Also, 

proposed solutions are evaluated against the objective and assigned a fitness value, a criteria 

upon which the solution is selected or discarded. As for design, this is the converging agent 

in the optimisation process. 
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Figure 3: Objective function optima (peak) 

2.1.1 Optimal Problem Formulation 

As previously discussed, optimisation aims to explore and evaluate a variety of design 

solutions within the range of feasibility. Since an optimisation algorithm requires 

comparison of a number of design solutions, it is usually time consuming and 

computationally expensive, hence the need to formulate the design problem in a format 

suitable for an algorithm. The optimal problem formulation is the key to achieving 

competitive product design. Since the objective in a design problem and the associated 

design parameters vary with products, different techniques are used to define the 

mathematical model of the optimal design problem. An outline of the steps typically 

involved in an optimal design formulation process, Figure 4, is proposed by Deb [37]. 

Components of this format are discussed below. 

The first step in the formulation is to realise the need for optimisation in a specific design 

problem. Next, the designer selects the associated design variables. The formulation involves 

other considerations such as constraints, objective function and variable bounds. These terms 

are developed in the subsequent paragraphs. The last step of the process deals with the 

selection, for a specific problem, of an appropriate optimisation algorithm. Literature on this 

particular aspect of optimisation includes Roy et. al. [94]. As shown in Figure 4, there is a 

hierarchy in the optimal design process, however each aspect may be influenced by the 

others. 
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Figure 4: A flowchart of the optimal design procedure [37] 

Design Variables 

Identifying the design variables is the first step in the formulation of the optimal design. 

Design variables are numerical quantities, which define the design solution and values vary 

within bounds during the optimisation process. A design problem usually involves many 

design variables, some of which are highly sensitive to the solution output. The least 

influential variables are called design parameters, as they often remain constant during the 

optimisation process. Prior knowledge may dictate on the choice and ranking of the design 

variables. However, it is important to understand that the efficiency and speed of the 

algorithm depends to a large extent on the number of variables. The outcome of the 

optimisation procedure may indicate whether to include more design variables in a revised 

formulation or to replace some initially considered design variables with new variables or 

parameters. For a more systematic approach, performing sensitivity analysis on the input-

output system gives accurate feedback information on an adequate choice of variables, 

Figure 5. Solution sensitivity analysis varies incrementally the design variables 

independently or a group of variables (other parameters remain constant) as input and returns 
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response fitness values as output. Graphical presentation of the data as well as numerical 

analysis might ease interpretation. Sensitivity analysis is used later in this thesis to validate 

optimisation algorithms. 

Figure 5: Optimisation system sensitivity analysis 
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Constraints represent some functional relationships among the design variables and other 

design parameters. Design constraints are conditional restrictions that must be satisfied in 

order to produce an acceptable design solution. The nature and number of constraints to be 

included in the formulation depend on the user and the nature of the application. Constraints 

can range from simple conditional statement to complex mathematical definition; in which 

case some mechanism to calculate the constraints must be provided to the optimisation 

algorithm, Deb [37]. For example for sizing of complex mechanical structures, a finite 

element processor is often required to compute the maximum stress load in the structure. 

From an optimisation point of view, Deb [37], constraints are of two types: Either Inequality 

or equality constraints. Inequality constraints state that the functional relationships among 

the design variables are greater than, smaller than or equal to, a set value. These types of 

constraints cover most of the engineering problem range. On the contrary, equality 
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set value. The later is the most restrictive type of constraints and should be avoided as much 
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Objective Function 

Optimisation requires evaluating every design solution produced. To do so, an evaluation 

function representative of the design, which is defined in terms of the design variables and 

other design parameters, needs to be formulated, Deb [37]. In engineering problems, most 

design objectives are quantitative (cost, weight, life cycle) and are mapped in a mathematical 

form. However some design aspects such as aesthetics are difficult to quantify since they are 

subjective criteria. Qualitative criteria are used to formulate the objective function where 

exact mathematical formulation is not available Roy et. al. [92]. 

Moreover, in real life applications, more than one objective needs optimising 

simultaneously, Deb [36] To date multi objective optimisation methods are still in their early 

stages of development but are the centre of attention of many research programs. An 

extensive literature survey in the field of multi-objective optimisation is available in Roy et. 

al. [94]. 

Fitness Function 

The fitness function is used to accommodate the objective function with the optimisation 

algorithm own objective when there is a conflict of interest. For instance algorithms that are 

set to converge to a maximum conflict with optimisation problems that are solved by finding 

a minimum. In this situation , the invert of the objective function can will phase them if the 

division by zero if carefully avoided. Adding one to the denominator will just do that and set 

the fitness function definition in the zero-one range. Other operations can be made to the 

objective function, there is an example later in this chapter that illustrates that transformation 

of the objective value improves optimisation performances. 

Fitness Function Mapping 

Mapping the fitness function is showing fitness score against variable input in a graph. For 

one variable the map is a curve and for two variables it is a surface. For a greater number of 

variables, one need more dimensions that are not easy to represent graphically. The map is 

used for uncovering the nature of the objective function. Paragraph 2.1.2 reviews some 

optimisation problem characterised by their objective function. 
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Variable Bounds 

Variable bounds concern the design variables definition range or feasibility range. In 

general, all design variables are restricted to lie within the minimum and the maximum 

bounds (upper and lower limit). Setting wide variable bounds expands the search space and 

consequently enables the algorithm to potentially find more optimum solutions, particularly 

in the case of a multi-modal objective function, which is defined in paragraph 2.1.2. The 

down side is that it is more computationally expensive. A compromised setting can be 

reached by gradually narrowing down variables bounds, while insuring that the optimum 

values always lay within that range. An alternative is to reinitialise the algorithm initial 

values with an intermediate solution. This will free the algorithm from variable bound 

restrictions. 

Convergence Graphs 

The purpose of convergence graphs is to examine the population’s history in a chronological 

order. For each GA run, and each member of the population, the fitness function is recorded. 

The aim of such graphs is to judge on the optimisation performance in converging by simple 

visual check. A plot of fitness values against GA runs is presented in Figure 6, this example 

shows a population that is converging steadily to an optimum value. The drop is constant 

from the start to two thousand individuals. After that point the algorithm does not converge 

any more, which means that the optimisation loop can stop.  

It is noticeable in the graph, Figure 6, that there is a concentration of individuals around at 

the lowest values; This band highlighted below the cloud is called the Pareto front. It 

presence signifies that the optimisation algorithm is doing well. 
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Figure 6: Population convergence graph 

2.1.2 Optimisation Algorithms 

The above discussion revealed that the formulation of the optimisation problem in a 

mathematical form and subsequently in computer code depends to a large extent on the 

nature of the design. This has pushed researchers and developers to create a multitude of 

algorithms capable of dealing with real life design problems. Features of real life 

optimisation involve multi-variable, multi-modal, multi-objective and constrained 

optimisation. For more details on features of real life optimisation, refer to Roy et, al.[94] 

Single-variable 

The simplest form of optimisation algorithm is single-variable. These types of algorithms 

work with one-dimensional problems (characterised by a unique design variable). Although 

the majority of engineering problems present more than one variable, single-variable 

algorithms are used to conduct a unidirectional search method in a multi-variable problem. 

This is particularly useful to carry out sensitivity analysis on design variables. 
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Multi-variable 

Multi-variable algorithms work in a multi-dimensional space. Here more than one variable 

are varied simultaneously and solutions come in a set of multiple variables. The case study 

on curve optimisation reported in this thesis is an example of multi-variable optimisation 

design, it takes 3D point coordinates, 3D vectors input and output. In optimisation jargon, a 

so-called “individual” contains a set points which themselves contains the conventional three 

coordinate variables x,y,z. If the geometry has four points, the optimisation algorithm will 

input twelve variables. 

Multi-modal 

In the previous section, an example of a single peak function was presented in Figure 3. This 

type of function is called uni-modal. Wherever there is more than one peak, the function is 

called multi-modal. Multi-modal optimisation can be defined as the problem of locating 

several good solutions in the search space. An example of a multi-modal function is shown 

in Figure 7. 

Figure 7: A multi-modal function 
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Optimum points can be localised by examining the values for which the gradient is equal to 

zero. In presence of a multi-modal objective function, we are not only interested in finding 

just the best solution (global optimum Deb [37]), but as many as possible (sub-optimum). 

The reason behind this is that sub-optimum solutions may present some interesting design 

properties that should always be taken into consideration. The sub-optimum solutions are 

considered as good solutions in a multi-modal function, Roy et. al. [91]. 

Multi-objective 

Other optimisation problems include the optimisation of several objective functions 

simultaneously. This type of scenario is called multi-objective optimisation. At present, the 

industrial use of optimisation algorithms is limited mainly to problems involving 

maximisation or minimisation of a single measure of performance, or objective. This 

prevents them from handling many real-world problems since most of them involve multiple 

objectives, which should be optimised simultaneously, Deb [34]. This has encouraged the 

growth of research in the field of multi-objective optimisation using evolutionary algorithms 

Roy et. al. [94]. 

The principles of multi-objective optimisation differ widely from those of single objective 

optimisation. In a multi-objective optimisation problem, there is more than one objective 

function, each of which may have a different individual optimal solution, Steuer [115]. This 

gives rise to a set of optimal solutions called non-inferior, non-dominated or Pareto optimal 

solutions. These solutions are located on the boundary of the region containing the feasible 

solutions. In presence of multi-objective functions, the optimum point lies in the region of 

intersection of the functions Pareto fronts. Figure 8 below shows an example of a multi-

objective optimisation problem with two objective functions. 
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Figure 8: Multi-objective function 

2.2 Adaptive Search Techniques 

Efforts to model, algorithmically, the basic evolutionary principles (population, self-

replication, variation, and selection) go back to the 1950s in the Handbook of evolutionary 

Computation, Bäck [6]. Since the 1980s, with the advance of computers, a new class of 
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present the inconvenience of finding the optimum nearest to the starting point irrespective of 

whether it the global optimum or not, Thornton [118]. 

2.3 Genetic Algorithms 

Genetic Algorithms (GA), were first developed by John Holland at the University of 

Michigan, USA, and were further developed by his colleagues and students. The goals of 

their research were firstly to abstract the adaptive process found with natural species, and 

secondly to implement the findings in computer software that replicates the phenomenon of 

evolution. The basic implementation of GAs is designed to mimic the theory of evolution 

propounded by Charles Darwin in The Origin of Species. He explains the evolution of 

species with a natural, but yet ruthless, process of selection and survival of the fittest. Based 

on this model of evolution, GAs are capable of finding good solutions to a problem bounded 

by constraints. The basis of a new branch in evolutionary computing was formed from the 

experiments conducted by Holland. Later, GA applications were used for engineering 

purposes such as machine learning Goldberg [55]. 

In general, GAs are robust techniques that can handle large numbers of parameters as well as 

large search spaces. They are often described as providing a good balance between 

exploitation and exploration of search spaces. Since its origin, GAs have been applied 

successfully in many fields of science. The prime reason for their success is that they 

consistently outperform traditional methods. 

2.4  The GA Process 

As previously explained, prior to performing optimisation, the problem has to be formulated 

in a format suitable for optimisation algorithms. This format is defined in terms of design 

variables, constraints, objective function(s), fitness function, and variable bounds. With the 

formulation of the optimal problem, the optimisation problem has moved from a high level 

abstract definition to a formal mathematical representation.  
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At this stage, the formulation is generic, i.e. algorithm independent. This paragraph presents 

an implementation of a simple GA using the optimisation problem formulation structure. 

The tasks performed in a typical GA cycle loop, shown in Figure 9, are evaluation, selection, 

recombination and mutation. These terms are discussed later in this paragraph. It is 

important to notice the point of entry in the loop; an initial random population is generated 

and evaluated outside the GA loop. There is an issue over the generation of random numbers 

that holds potential for arguments. In the context of this research, in-built pseudo random 

generation number module rand() along with srand() provided with most C/C++ compilers 

is thought to be satisfactory. The initial generation is evaluated before entering the GA 

iteration loop. The cycle begins with selecting the mating parameters (chromosomes) for the 

GA operators (crossover, mutation) among the individuals constituting the initial population. 

Figure 9: The basic loop of genetic algorithms 
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In genetic algorithms, array of parameters, X, are often developed as binary strings (or list of 

real numbers) of length nL, where n is the number of parameters and L is the number of 

binary bits used the represent each value Xi. In GA terminology, an array of binary coded 

variables is called chromosome. The term was borrowed from genetics because of the 

analogy with nature where inherited characteristics of living things are encoded in their 

genes. An example of variable binary coding is shown in Table 1. 

Table 1: Chromosome binary coding 

For each individual, the fitness value is evaluated by firstly decoding the individual 

chromosomes into separate parameters and secondly feeding the evaluation function with the 

parameters values obtained from the GA 

Binary coding (and decoding) involves computer-rounding errors and requires careful 

examination. Excessive coding precision is unnecessary and computationally expensive. 

Typically precision of a thousandth of the unit is adequate. This is also consistent with 

engineering applications that are in the worst case bounded with two hundredths of a 

millimetre tolerance. However, experiments on GAs in Appendix 6 show that special care 

must be taken in the presence of small numbers as rounding errors could mislead the 

algorithm into inaccurate solutions. 

GA Operators 

GA operators comprise of crossover and mutation, which operate on the individual 

chromosomes combination, (parents) to create new chromosomes (children). For this reason 

GA operators are also called a mating pool. These transforming operators enable the search 

Decimal Value

Binary Coding 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

BinaryValue 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0

Chromosome

Gene 1 Gene 2

45 78

Variable 1 Variable 2
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algorithm to explore new points in the search space while converging towards solution 

peaks. 

In simple terms, with crossover operator, portions of two individual strings are swapped. As 

a result the offspring inherits some characteristic of each parent making up a new individual. 

Not all chromosomes swap genes, typically, the crossover probability should range from 

60% to 100%. In the case of zero crossover probability, the offspring are a strict replica of 

the parents. 

In addition to crossover, some algorithms include mutation. This operator randomly changes 

values in the chromosome string. This is achieved by changing binary 0 to binary 1. This 

supplement operator, more random than crossover, is introduced to boost the exploring 

properties of the search algorithm. The mutation probability should be kept in the region of 

0% to 10% depending on the nature of the search space. Any higher mutation probability 

would introduce too much diversity in the population, hence slow down convergence. The 

opposite would resume the algorithm to a systematic exploring of the search space. There are 

no standard values that guarantee GAs to perform best, both in exploring and converging. It 

is up to the user to try out different settings to reach a compromise. Experiments on GA 

operators are included in Appendix 6. On a grand scheme of things, it seems rather ironic to 

see a capability such as optimisation, whose sole purpose is removing trial and error from a 

given system, actually adds more to it; or perhaps one should imagine optimisation for 

optimisers. 

Selection Wheel 

Prior to the selection process, each individual is evaluated with the help of the objective 

function. Genes are decoded into function parameters and passed to the evaluation function 

for calculation. From the value returned by the evaluation function, the fitness value that 

characterises each individual value with respect to the design objective is obtained. Most 

GAs are coded in such way that the individual with the highest score is the fitness. In other 

words, GAs converge towards the maximal. Simple mathematical operations are applied to 

the fitness value, in order to match the algorithm scheme (minimising or maximising). 
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The roulette wheel selection method simulates a wheel on which the sectors size is 

proportionate to each individual’s fitness score. An individual’s selection is attained by 

spinning the wheel and picking the individual on which the selector pointer has stopped, 

Mussa [77]. Individuals with the highest fitness score take a bigger share of wheel therefore 

have a greater chance of being selected for reproduction. This method based on probability 

laws replicates the process of survival of the fittest described by Darwin. 

Fitness Boosting 

Since individuals are selected upon their fitness relatively to the other individuals among the 

population, there is competition between individuals to occupy the widest sector on the 

wheel. A non-sensitive objective function (low gradient), puts the GA in a difficult position, 

high variable variation translates into low fitness value variation. This means that two 

individuals with close fitness values would have very different variable values. This type of 

scenario is highly undesirable as no convergence to optima is possible. Applying 

mathematical functions to the fitness value is a possible answer to the problem of flat 

objective functions. The desired effect is boosting the fittest individuals while diminishing 

the others. This can be achieved by using a function with exponential gradient. An example 

of objective function boosting is presented in Figure 1. Here, a power function is applied to 

the objective function. 

n) value),objectivepower(1/(1   valuefitness +=  

The resulting effects on the solution space are presented in Figure 10, where power indices 

are gradually increased form 1 to 10. As the power indices increase, the solution band 

becomes narrower with a distinct peak. This gives the GA better chances of converging to an 

optimal solution. The example provided here is a single-objective, uni-modal, and one-

variable objective function used in a curve optimisation application. The technique described 

above has been developed and applied in the context of this research; further enhancements 

and results are discussed in Appendix 6. 
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Figure 10: Objective function boosting 

2.5 Summary 

Optimisation has been defined as an iterative process of search of optimum through the 

solution space. Optimal problem formulation is characterised by the design variables, 

variable bounds, design constraints and one or several objective functions. Based on this 

description, algorithms are classified in the followings: Single or multi objective, uni or 

multi modal and constrained. Genetic algorithms are a kind of adaptive search technique, 

which mimics the evolution of species described by Darwin. Its process can be broken down 

in the following steps: Selection, mutation, crossover and evaluation. 

Experiments on curve optimisation carried out in this research make a real-life test bench of 

GAs and evolutionary computing in general. The results will provide indications on the level 

of efficiency and accuracy of GAs. However, some predictions can already be made. GAs 

are used to give approximate answers to optimisation problems which cannot be solved by 

exact mathematical means. In other words there are the last option when every thing else has 

failed. Because heuristics return approximate answers, extreme care must be taken not 

falling into the inaccuracy trap. If the evaluation function formulation is not correct, the 

algorithm will run regardless and give an answer. The validity of the answer must be 

examined with most care; it can be tempting to blame inaccuracy to justify unexpected 

answers. So it utmost be ensured that the evaluation function is really the representation of 

the design constraints. One way of doing that is performing sensitivity analysis on problems 

which solution is known in advance. 
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Chapter 3 Reverse Engineering of 

Curves and Surfaces

The shape of finished goods and manufactured products exhibits a marked emphasis on 

smooth shapes and free flowing contours. Whether it is cars, audio equipment, cameras, 

ergonomic furniture or injection moulded plastic products, all have smooth contours in their 

design. However, the production of manufactured objects from such shapes is not an easy 

process. Most CAD software provide means to create free form contours for the design and 

manufacture of artefacts, but it is still a laborious process. One of the major bottlenecks in 

current CAD systems is the inefficiency of representation and manipulation tools for the 

design of free form, sculpted, three-dimensional shapes. This is forcing designers to use 

physical clay models and templates for generating curves and surfaces which are digitised 

with 3D coordinate-measuring machines (CMM) and 3D scanners to gain a computerised 

geometric definition. Curves and surfaces modelling specialised software such as 

SURFACER [108] provide adequate capabilities for transforming scanned data (point 

clouds) into CAD representation. 

3.1 Design Cycle 

The process of aesthetic design differs from company to company, depending on the styling 

job, resources constraints, equipment and tools. Nevertheless a general workflow can be 

drawn, in which all the individual steps can be identified as activity centres. There are three 

main activity centres involved in the design cycle shown in Figure 11; these are styling, 

designing and production. The styling department is in charge of creating a concept model in 

accordance with the requirements expressed by other departments such as marketing. The 

model is manually digitised and passed on to the design department where the data is 

cleaned before being passed on to the surface developer who produces a replicated CAD 

model. This model is then reported to the styling department for evaluation. The approved 

CAD model is then passed on to production department, which checks the model for 
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manufacturability, compliance to regulation and tolerance. The final model is frozen and is 

used as a master copy for tooling. 

Figure 11: Surface design cycle  

3.2 Styling 

Concept models are first explored by means of free hand sketches showing general lines and 

volumes. More and more Computer Assisted Styling (CAS) systems such as ALIAS are used 

simultaneously in the styling process. They allow the designer to sketch a vehicle concept 

starting from the “hard points” and onto the outer skin definition. From the CAS model, a 
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first scale plastic model is milled for down stream activities such as costing, digital mock-up, 

and aerodynamic evaluation.  

Also because other departments such as body engineering design require design data early 

on, a full-scale model is simultaneously further developed. Traditionally, working materials 

are synthetic clay and hard foam, allowing direct sensory connection between stylist and 

model. Surface quality is assessed manually by running a flat hand on the surface or visually 

with aluminium foil to visualise the reflection lines under studio lights. Figure 12 shows a 

finished clay model from the Nissan Micra [79] under tube light. The bright area pointed by 

the arrow is a reflection line. The shape of this reflection is an indicator of the quality of the 

surface. 

Figure 12: Clay model from Nissan Micra [79] 

Manual shape definition is constantly receding because physical models are expensive and 

from a process point of view, CAS offers the possibility to obtain a model that is that is 

modifiable and that can be evaluated quickly both aesthetically and technically. Accordingly 

the designer can develop a greater number of design alternatives, thus enhancing the 

efficiency of making design decisions. 

Reflection line under 

studio lights 



Chapter 3  Reverse Engineering of Curves and Surfaces 

Page 37 

3.3 Reverse Engineering 

Reverse engineering in its complete definition refers to the process of creating a completely 

engineered prototype that is a clone in form and function, from a physical part, Sinha [112]. 

In the context of this research, the definition of reverse engineering is to recreate a CAD 

model from a set of measurements. Such process is found in design studios where reverse 

engineering is used to translate the stylists’ clay work into a computer accessible 

representation. It is generally composed of four activities, which are as follows:  

3.4 Dimensional and Geometrical Metrology 

Metrology is used in reverse engineering to digitise model by means of 3D measuring 

machine; which is undoubtedly part of manufacturing technology rather than design. 3D 

sensors are broadly classified into two types, contact sensors which touch the object in order 

to take measurement of it (coordinate measuring machines) and non-contact sensors which 

use laser light beams (3D scanners). 

Coordinate Measuring Machine 

Coordinate measuring machines are not only used for dimensional and geometrical accuracy 

inspection, it can also produce accurate measurements of the shape and position of any 

complex work piece features.  

In brief, a coordinate measuring machine is a work bench mounted with three orthogonal 

axis gantry. These axis, termed X, Y, Z represent a 3D Cartesian coordinate system. The 

frame holds a finger probe that makes contact with the measured piece. The displacements of 

the probe are registered with a digital length measuring device and transferred to an 

electronic control cabinet (more likely to be a PC by today’s standards). These contact 

Digitisation Translation Smoothing Surface creation
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sensors collect data by making contact with the part at every measurement location. Hence, 

data collection is a long and cumbersome process. 

Light Based Sensors 

Other coordinate measuring machine include 3D scanners, they provide a fast and easy way 

of acquiring 3D information about objects. These hardware equipment produce accurate, 

dense point measurement very quickly and are more suited to scanning large surfaces than 

touch-probe sensors. 

Digitising Strategy 

Digitisation of models is not a trivial task as the choice of strategy heavily depends on the 

down stream application. Some examples of digitisation applications are given with a brief 

description of the digitisation strategy. 

Ø  Copy Milling: A large number of points on the surface are acquired to facilitate direct 

linking to a CNC milling machine via a CAD module. In this case only the 

dimensional accuracy is required and is inherent of the CMM capability. Mostly, the 

strategy is to define different measuring areas scanned in lines or 2D sections. 

Ø  Reverse Engineering: In this case the objective is to gain the surface description of the 

model. The final accuracy is a combination of two elements. 

Ø  Geometrical Accuracy: Defined by the intrinsic characteristics of the surface such as 

the continuity order C(0), C(1), C(2), and smoothness. This play a crucial role in 

reverse engineering for A-class surfaces such as car bodies as it will ease the 

reconstruction of the surface for engineering design 

An example of a model digitisation performed at NTCE [79] is shown in Figure 13. The 

digitisation is performed using a 3D measuring bench mounted with a probe. Each point is a 

3D coordinate measurement. These measurements are the basis for producing the curves 

necessary for the skinning operations. 
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Figure 13: Point cloud from model digitising  

3.5 Point Processing 

As explained in the previous paragraph, the digitising quality is dependent on the clay 

surface finish, the CMM capability as well as the operator skills and experience. However, 

point-cloud data always contain undesirable irregularities. The first task consists of 

removing the stray points, i.e. the points that stand out from the series of measurements. 

Typically the following tolerances must be met: 0.3mm for external surfaces (A-Class) and 

0.5mm for trim surfaces (B-Class). 

There is a significant drop in data quality between the clay surfaces generated by stylists and 

computer reconstructed surfaces. This gap shown in Figure 14 is the result of digitising 

surface reconstruction because points do not carry any information on the internal structure 

of the part. The FIORES project, Dankwort [30] has addressed these issues and proposed a 

revised workflow for reverse engineering. The results suggest that physical models are 

avoided in favour of 3D screen visualisation or virtual reality models. This radical approach 

presents the advantage of retaining a CAD definition through out the entire design process. 

The limitations are that virtual reality can never match physical models properties. 
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Figure 14: Loss of data quality in the design process, Dankwort [30] 

3.6 Surface Generation 

This activity consists of reconstructing model surfaces from the digitised points. Surface 

reconstruction, falls into Computer Aided Graphic Design (CAGD) and has vast literature 

and an exhaustive review would make this thesis look like an appendix. In basis terms, the 

main techniques include with Spline interpolation, Sweeping and Lofting, Triangulated 

Surfaces and NURBS.  

Skinning 

This is the most conventional surface reconstruction method. Surfaces are generated in three 

steps: 

Ø  Curve generation 

Ø  Smoothing curves 

Ø  Skinning 
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First cross-section points are interpolated producing initial low quality curves that contain 

inflection points, peaks and troughs. The number of curves is reduced to the minimum 

number required to define the final profile. Sections of profiles between inflection points are 

initially approximated with known perfect geometries (segment, circle and conic). If that 

cannot be accomplished, the designer “splines” the particular profile section. Now begins the 

long surface optimisation process. Profiles are smoothed by freeing points, curvature and 

tangency. Most surfacing tools are provided with a curve smoothing capability. Quality is 

also assessed by looking at curvature profiles. After repeating the process for all the profiles 

that define the skeleton, surfaces are created with “lofts” or “Sweeps”.  

NURBS Patches 

This process described above constitutes a traditional scenario in the automotive industry. 

However, the trend in surface design is moving towards a more flexible approach to 

deformable objects. The NURBS surface representation presents such characteristics. Instead 

of using Spline curves as guides for lofts and sweeps, a surface patch is directly applied 

using point cloud data as nodes. This approach is said to be more efficient than the 

traditional approach. 

3.7 Surface Check 

A number of quality checks are performed on the finished surface. Some of these are listed 

below. 

Ø   Studio lights running along the surface 

Ø   Offsetting, if no distortion appears within 1m offset, the surface is considered 

satisfactory 

Ø  Reflection lines, see Figure 15 

Ø  Colour code profile for curvature 

Using these tests, the designer knows whether the surface needs further development. If so, 

modifications are applied to the skeleton curves, followed by skinning and so on. 
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Figure 15: Surface quality inspection with highlight lines  

3.8 Surface Optimisation 

Curve and Surface optimisation can be classified in shape optimisation in the sense that it 

changes the surface of a structure. However it differs in many ways: Surface optimisation 

does not attempt to modify the internal structure of the component but rather focuses on the 

surface properties. The objectives of the optimisation are the aesthetic aspect of the design. 

We can distinguish three techniques used for surface development where optimisation 

algorithms are used. These techniques are surface reconstruction in reverse engineering, 

reflection line, and smoothing and fairing of curves and surfaces.  

Surface reconstruction also referred to “reverse engineering” is the creation of a computer 

model from data points obtained from an existing object. Optimisation techniques such as 

Genetic Algorithms are then used to improve the model definition. Inspection of reflection 

line patterns is a standard way to check the quality of free form surfaces. Reflection lines or 

silhouette lines are created by the outline contour of the surface seen from a specific angle. 

Surface smoothing is a set of techniques used to evaluate the quality of surfaces in terms of 

curvature and oscillation. The design of surfaces involves multiple criteria, which are 

governed and restrained by a number of geometric constraints. Surface optimisation 

techniques are widely used in the automotive industry for the design of ‘A class’ surfaces 

including body shells and other exterior components.  
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CAD/CAM/CAE systems often obtain suitable designs through an iterative decision making 

process. The process is time consuming and involves lot of human intervention. This method 

of design improvement is dependent on the skill and experience of the designer, resulting in 

a need for a flexible optimisation approach.  

Linden and Westberg [69] presented the FANGA (Formela ANGle Analysis) technique and 

analysis method developed by Saab-Scania Aircraft division to optimise and assess the 

quality of surfaces used in their aircraft and car body design. The fundamentals of which is a 

extension of Saab-Scania earlier development of FORMULA, given in Einar and Skappel 

[40]. This enables a surface to be refined by the response of a set of angles and directions, 

which are easily computed from the surface model. These are then used in a standard 

optimisation technique to compute the necessary changes to the parameters of the surface to 

produce the required qualities. 

Earlier research is reported by Kaufmann et al. [67], with regards to car body design. They 

use an algorithm to define reflection lines and family of planes on the surface to represent 

surface irregularities. From which new reflection lines are produced and smoother spline and 

surface are obtained. This method has been used in the CAD/CAM system Syrko at Daimler-

Benz, with successful results in the improved quality of body designs, coupled with the 

emphasis on time efficiency, this method is limited in simplicity and robustness that is 

required. 

Watebe et al. [119] have introduced a methodology to generate a suitable shape 

automatically using genetic algorithms (GA), and by the application of Free-Form  

deformation (FFD) technique [110]. Related research is reported by Weinert et al. [121] at 

the university of Dortmund, Germany. Their research is aimed at generating optimal smooth 

surfaces from digitised point data using evolutionary algorithms. The work presents three 

solutions to the problem of reconstructing smooth surfaces using triangular tiles. 

Examples of other methods that improve quality of surfaces (smoothness and fairness) are 

those proposed by Higashi et al. [59] for the Toyota technological institute, and Szilvasi-

Nagy [116]. A detailed list of procedures for the assessment and analysis of the surface 

quality and the detection of undesirable curvature are explained in Hoscheck [61] and 

Pottmann [86]. 
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Fergusson et al. [48] and Anderson et al. [4] illustrate two mathematical means of smooth 

surface-control and constrained optimisation. These provide a complex mathematical 

approach to controlling the surface definition profile, which conforms to the designers’ 

qualitative idea and true representation of the object under consideration. Thus, leading to an 

automatic mechanism for shape control, and creating convex surfaces with prescribed 

smoothness. 

3.9 Discussions 

Major Problems 

There are different types of model representation on different levels. Processing and 

translating the representations causes problems mainly because points do not carry any 

information beyond pure 3D position coordinates. The surface reconstruction process as it 

stands today strips geometry of its intrinsic properties like surface normal or curvature. At 

the same time, there is currently no possibility of storing surface interrogation results like 

shading or reflection lines. And of course points do not capture design history, functionality 

aesthetic aspects or the stylists’ intent, which would dramatically ease the surface 

reconstruction. Up to now, semantic information that exists about the objects is not used in 

reverse engineering. 

Moreover, questions hang over the parameterisation of 3D models as surfaces (Bézier, 

NURBS). Representation could use completely different surface parameterisation or even 

work directly on point clouds. Perhaps new mathematical approach could avoid the 

numerical problems of real-number computer algebra. It is also possible to think of some 

representation schemes, which do not need parameterisation as they are used today (for 

example: voxel techniques). 

Other technical problems are the numerical accuracy of the algorithms used, the handling of 

error propagation, the surface representations, insufficient user interface and systems 

incompatibility. 
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In this thesis, an attempt is made to answer some of the problems highlighted above through 

a better representation scheme for curves. 

Requirements and Future Trends 

Future developments in reverse engineering should include far more aspects of product 

designs than it does today. Instead of just focussing on geometry, reverse engineering could 

be used to support the entire industrial development and production process from conceptual 

design to manufacturing by integrating more high-level semantics. Or on larger scale, 

reverse engineering should be supported by a more flexible and integrated development 

process. CAD models should be extended to store associated information. History, 

functionality, constraints, design intent and design process data could be recorded along side 

the geometric representation. As previously seen, this model representation problem is 

addressed by the “feature based” and “constraint based” approaches. 

Curve developers are not interested in knowing the underlying mathematical issues like 

smoothness, curvature or different degrees of continuity invariably associated with 

modelling of curves. These issues should be transparent, thus providing designers with tools 

powerful enough to manipulate models interactively. The lack of efficiency in the design 

process is partly due to inappropriate software, and more importantly user interface. 

Commercial CAD systems surveyed by the author, which include SDRC Ideas [109], 

IMAGEWARE SURFACER [108], IBM CATIA, Mussa [76], show that tools allowing 

constructing curves from desired properties (target driven design) are not (always) present 

CAD packages. Designers are left with “tweaking” tangents and control points in an attempt 

to match the desired curve characteristics. In the author’s view, this trial and error approach 

to curve design is clumsy and shows that CAD vendors have a long way to go before 

meeting designers’ requirements. In the light of this, this current research will focus on 

further investigate in the curve design area and propose software solution to the lack of 

flexibility with currently available commercial CAD packages. 

Cooperation 

One question that needs addressing is the (lack of) collaboration between universities, CAD 

vendors and industry. These three bodies have diverging objectives in nature, which makes 
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any collaboration plans difficult. Research institutes are eager to develop new tools and 

techniques but need support from CAD vendors to implement these within an existing 

system. Developing a system from scratch would simply be a colossal task outside any 

research scope. Unfortunately, most commercial CAD systems are so called “closed” 

systems, this for confidentiality reasons, making them unsuitable for research purposes. 

Researchers in the area of geometric modelling and more generally CAD suffer from the 

unavailability of suitable research tools and paradoxically, CAD vendors suffer from a 

general lack of innovation. At the other end, industries suffer from a lack of productive tools 

in their design processes. Recently, CAD vendors are undertaking a more transparent policy 

by “opening” their systems to the outside world. This new trend in software architecture 

might put an end to this “catch 22” situation and benefit the world of CAD as a whole. 
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Part II 
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Chapter 4 Geometric Modelling

This part of the research aims to develop methodologies for the optimisation of free-form 

curves using geometric modelling, optimisation, and differential geometry. Some fields and 

applications related to geometric modelling that are found in Bowyer [18] are presented here 

with a short definition. They introduce the tools and topics that are used through out the 

research.  

Computer Aided Graphic Design 

Computer Aided Graphic Design is a discipline dealing the approximation and 

representation of ‘free form’ curves and surfaces with computer. The major breakthrough in 

CAGD came with the polynomial formulation of curves and surfaces in the Bernstein form 

independently developed by pioneers P. Bézier at Renault, P. de Casteljau at Citroen.  

Computational Geometry 

“Computational geometry is a phrase mostly used to refer to the study of geometrical 

algorithms, and particularly their theoretical efficiency, or order”, Bowyer [18]. 

Geometric Modelling Kernels 

The code implementation of Computational Geometry is enclosed in a kernel. Geometrical 

algorithms are coded into functions capable of dealing with the geometry. The data structure 

of the kernel plays an important part in the way these functions are accessible by peripheral 

applications. 

An example of this is ACIS 3D Geometric Modeller from Spatial Corporation [1]. ACIS is 

an object-oriented three-dimensional (3D) geometric modelling engine designed for use as 

the geometry foundation within virtually any end user 3D modelling application. Written in 

C++, ACIS provides an open architecture framework for wireframe, surface, and solid 

modelling from a common, unified data structure. Parasolid from EDS [82] is another 

geometric modelling kernel that offers a similar functionality to ACIS. Paragraph 9.1 
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expands further on the topics of kernel architecture and interface. In this research, all the 

geometric algorithms use ACIS for computation. 

Computer Aided Design 

Computer Aided Design (CAD) is a rather general engineering term used to describe 

computer systems for designing parts. Traditionally CAD systems comprise of a geometric 

modeller, a graphic display interface, and a user interface. The so-called ‘turnkey’ systems 

combine all these three elements, and some more, into one large system called CAD. In this 

research, computer-aided design is used in a more restricted scope, this in order to separate 

CAD from its components (application programs, user interfaces, geometric reasoning). 

CAD simply is a user interface for editing geometry. ACIS has been used in conjunction 

with the Microsoft Foundation Classes (MFC) to develop a user interface, namely 

HulaHoops, for the optimisation applications proposed in this thesis. 

Optimisation 

As previously seen, optimisation aims to obtain better design given a set of design variables 

and constraints. Although optimisation is generally not regarded as part of geometric 

modelling, there is however material in this thesis on interacting optimisation with geometry 

and the advantages it offers. 

4.1 Implicit and Parametric Geometry 

There are many ways in which geometry can be represented. The simplest, or perhaps the 

best-known equation for representing a straight line is its explicit form: 

baxy +=  

Unfortunately, this is the least useful representation. It is suited for single valued functions 

that will not double back on themselves. The explicit form cannot describe vertical straight 

line, the gradient a would then be infinite. 
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A better formulation for geometric modelling is the implicit form of equations. Implicit 

equations classify points in space in two categories, so the curve or surface defined is at the 

boundary between the two sets. Given a point on the surface or curve, implicit equations 

return zero and more or less than zero when the given point lies on either side of the 

boundary. Because they divide space into two, they are called Half Spaces. 

It is said that Half Spaces are of dimensionality one lower than the space in which they are 

embedded, Bowyer [18]. In the plane, implicit equations describe curves; in the three 

dimensional space, they describe surfaces and in the four dimensional space, they describe 

volumes. 

For example, if the six sides of a 3D rectangle block, shown in Figure 16, aligned with the 

coordinate axes are: 
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Six sets of points can be generated from the following inequalities: 
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And combining them with the intersection Boolean operator ∩: 

( ) ( ) ( ) ( ) ( ) ( )101010 zzzzyyyyxxxx ≤∩≥∩≤∩≥∩≤∩≥
 

Any point that satisfies that inequality lies inside the block, or more precisely on the edges or 

corners of the rectangle. Combining implicit equations with Boolean operators is the 

foundation of set-theoretic (or constructive solid geometry – CSG), which is further 

developed later in this chapter. 

( ) 0x,y,zf =
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Figure 16: Six Half Spaces defining a rectangular block  

In Parametric Equations, space coordinates (x,y,z) are functions of one or more variables or 

parameters. Parametric curves are defined in terms of one single independent variable often 

known as t. Similarly parametric surfaces are defined in terms of two variables often known 

as u and v. 

Parametric equations are well suited for free-form curves and surfaces such as B-splines and 

NURBS. These will be further explored in subsequent chapters. 

To summarise, Bowyer [18]: 

Implicit Equations Classify points in the space Fixed dimensionality 

Parametric equations Generate points on the element Any dimensionality 

4.2 Geometric Solid Models 

In the remaining of this chapter, geometric solid modelling schemes are presented and 

discussed. Even though solid modelling is not within the scope of this thesis, it cannot be 

omitted because solid modelling encapsulates the topology of models, which is common to 
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curves and surfaces. In actual fact curve and surface modelling is a special case of geometry 

of solids, therefore an overview of solid modelling is needed. 

4.2.1 Wire-Frame 

This type of representation is probably the earliest used in CAD. 3D wire-frame models are 

defined by a set of 3D points (vertices) in the (x,y,z) orthogonal coordinate system linked 

together by lines or curves (edges). In wire frame models no surfaces or faces are defined, 

keeping the model representation to simplest form. Wire frame does not require difficult 

computation and 2D orthographic views are generated by projection of 3D data. 

Only two types of information is conveyed with wire frame: 

• Metric 

• Geometric 

Other deficiencies of wire frame representation are outlined below, Jared [63]: 

• Ambiguity, one wire frame might have several interpretations 

• Nonsense objects cannot be easily detected 

• No automatic generation of view dependant information such as silhouette lines 

of curves surfaces 

• More generally, lack of surface information 
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Figure 17: Wire frame model 

4.2.2 Set-theoretic Modelling 

Set-theoretic treats geometry as a three-dimensional Venn diagram. It takes simple shapes 

and puts them together to make more complicated ones by using the operators of set-theory. 

There are four operators, Bowyer [17]: 

• Union gives solid where either or both of the two objects being unioned are 

solid, just as the OR operator gives you a 1 when either or both of the two bits 

being ORed are 1 

• Intersection gives the part of space where the two objects being intersected are 

both solid, just as the AND of two bits of data only gives you a 1 when both 

bits are 1. 

• Difference subtracts one object from the other where the two objects intersect. 

In simple terms, Difference implies the set-complement of the subtracting 

object.  

A-B = A ∩ B

A+B = A ∪ B

A & B = A ∩ B
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• Symmetric difference is equivalent to the exclusive OR operator (XOR)  

The usual two-dimensional Venn diagram for all these is shown in Figure 18. There is 

striking similarity between the operators of set-theory and those of Boolean logic. It is 

because of all this that set-theoretic geometric modellers are sometimes called Boolean 

modellers or Constructive Solid Geometry (CSG) in the literature. 

Figure 18: Set-theory operators 

In Set-theoretic modelling, solids are defined in terms of Boolean operations on simple solid 

primitives. Primitives are either a combination of half spaces or bounded primitives such as 

blocks, spheres, cones. Thus, a model can be conveniently described by a tree data structure 

with its terminal nodes representing solid primitives and non-terminal nodes denoting 

Boolean operations. An example of a CSG model is presented Figure 19 where the object, 

lets say a toilet seat, is constructed by unioning two blocks and subtracting a cylinder  

( ) CBA t Toilet Sea −∪=  

A Λ B = (A ∩ B) ∪ (B ∩ A)

Union  A∪∪∪∪B Intersection  A∩∩∩∩B

Difference  A-B Symmetric difference  A-B

A B A B

A B A B
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Figure 19: Set-theoretic model 

Point-Set Membership Classification method allows classifying points inside or outside a 

solid object. 

If an arbitrary point ( )
iii zyx ,,Pi is tested against each element constituting the toilet seat: 

Outside    CCylinder   vsP

Inside        BBlock   vsP

Inside  A     Block   vsP

i

i

i

→

→

→

lies

lies

lies

 

The Boolean equations becomes: ( ) Inside  Outside Inside  Inside →−∪ lies
 

4.2.3 Boundary Representation (B-Rep) 

The principal property of B-rep is to represent the geometry (detailed shape) and the 

topology (connectivity) of objects separately. This concept provides the ability to determine 

whether a position is inside, outside, or on the boundary of a volume, which distinguishes 

solid models from surface or wire frame models. Among Bounded Geometry and Topology 

that are included to this chapter, other topics related to boundary representation are presented 

in Appendix 3. These are Topological hierarchy, Euler-Poincaré formula, and some 

introductory material on Graph Theory.  

∪∪∪∪

–
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–

A

B

C
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Bounded Geometry 

Solid models are composed of a collection of surfaces joined together as shown in Figure 20. 

Intersecting surfaces give curves, and intersecting curves give points. These three geometric 

entities, point, curve and surface, are the basic elements needed to define a solid object. 

With the exception of individual points, circles and spheres, analytical geometry only 

represents geometry that extends to infinity (unbounded). In order to obtain finite segments 

of curves and portions of surfaces, B-rep has to explicitly bound the geometry: 

• A curve is bounded by a pair of points 

• A surface is bounded by a collection of curves lying on the surface 

• A solid is bounded by a collection of surfaces 

Figure 20: Solid object composed of surfaces 
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In order to distinguish between unbounded and bounded geometry, it is convenient to give 

the bounded elements different names. 

• A connected portion of a surface is a face 

• A connected segment of a curve is an edge 

• A point at the boundary of an edge is a vertex 

Faces, Edges, Vertices are composite entities known as topological entities because they 

define how things interconnect. 

• The shape of a Face is defined by a Surface whose boundary is represented by a 

collection of Edges associated with it. 

• The shape of an edge is defined by a curve whose boundary is represented by a 

pair of Vertices associated with it. 

• The location of a vertex is defined by a Point. 

Topology 

The remaining task to complete the B-Rep model is to provide means of recording the 

arrangements of the points, curves and surfaces. This is known as the topology. 

Topology refers to the spatial relationships between the various entities in a model. 

Topology describes how geometric entities are connected. On its own, topology defines a 

"rubber" model, whose position is not fixed in space. For example, a circular edge and an 

elliptical edge are topologically equivalent (but not geometrically). Likewise, a square face 

and a rhomboid face are topologically equivalent (but not geometrically). A topological 

entity's position is fixed in space when it is associated with a geometric entity. Topology can 

be bounded, unbounded, or semi-bounded, allowing for complete and incomplete bodies. A 

solid, for example, can have missing faces, and existing faces can have missing edges. Solids 

can have internal faces that divide the solid into cells. Bodies such as these are called non-

manifold because they are not physically realizable. The topological information of a B-Rep 

model is stored in a graph data structure. Also to be stored in the B-Rep data structure is the 

adjacency relationships describing how the elements are connected. Such a network of 

relationships can be used to share bounding entities and prevent data duplicates. For example 

in a cube, each corner point bounds three edges and each edge bounds two faces. 



Chapter 4  Geometric Modelling 

Page 58 

The boundary representation (B-rep) of a model is a hierarchical decomposition of the 

model's topology. The model hierarchy with ACIS is presented in Appendix 3.1. 

4.3 Function Representation 

The representation of a geometric object by a single real continuous function of several 

variables as F(X) >= 0 is called Function Representation or F-rep. It provides symbolic 

representations of equations that are parsed in much the same way that equations are. They 

provide the ability to solve complex mathematical problems. 

In ACIS geometric entities provide methods for querying their properties. However, the data 

structures do not explicitly store information such as a point on a curve where the radius of 

curvature is a minimum, the tangent vector from a given point on an edge, the normal vector 

from a given point on a surface, or the numerical values of the nth derivatives of points 

along a curve to determine continuity. 

There are also the SvLis [17] and GAS (Geometric Algebra System) [15] systems from Bath 

University, that can provide Function Representation modelling capabilities. However the 

Svlis modeller is CSG and therefore not much use for dealing with free-form curves, which 

is the example used in this thesis. Actually, Berchtold and Bowyer [10] have published on 

the problem of supporting NURBS in CSG modellers, but have faced problems with 

implicitisation of polynomials. 

4.4 Summary 

In this chapter, different types of geometric solid schemes have been introduced. Table 2 

summarises these in terms of their representation paradigms. 
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Table 2: Types of geometric modellers 

Type Representation

Wire frame Vertices and edges only, no surfaces or faces

Set-theoretic (CSG) Surfaces (i.e. half spaces) only, no vertices or

edges, implicit boundary

Boundary Representation (B-rep) Vertices, edges, faces, explicit boundary

Polyhedral model Only planar geometry, sometimes only

triangular faces

Cellular decomposition (Voxel, Octree) Thousands of cubes arranged in a hierarchy

F-rep Continuous function representation
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Chapter 5 Spline Curve Modelling

Shape definition is a challenging task in engineering design. Traditionally aesthetic shapes 

are generated manually and subsequently translated into computer representation. 

Conventional methods for shape design and analysis are not necessarily the best methods for 

computer implementation, but have provided insight for new algorithms. In this chapter 

some free-form modelling algorithms are introduced. 

Surface modelling differs from solid modelling in that surfaces do not have thickness; hence 

surfaces have no notion of volume. Free-Form Curves and Surfaces falls into the discipline 

called Computer Aided Graphic Design or CAGD, which is concerned with the 

representation of curves and surfaces. Recently CAGD has focused most attention and is a 

subject area that has more literature than any other subjects in Geometric Computing. 

5.1 Literature 

A complete reviewing of curves and surfaces from literature would simply be -a- totally 

pointless, -b- too long. Therefore, this thesis will be restricted to cover material necessary for 

the understanding of the following chapters avoiding to falling into the trap of obscurantism. 

Mainstream books, such as Farin [44] and Faux & Pratt [46], give comprehensive 

basements for the best-known curves and surfaces methods. Further reading, and more 

specialised are these. Choi’s book [23] is from a CAM point of view, but towards the end he 

makes some recommendations for the design of a neutral representation (unified) of curves 

and surfaces, which holds potential for arguments. Sapidis [106] is a collection of rather 

insightful articles, which addresses quality issues with surface design. On NURB curves and 

Surfaces, Piegl [84] is certainly the most complete volume available, others include Farin, 

[45]. 
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5.2 Polynomials 

One way to extend parametric equations is to make the function of parameter(s) an arbitrary 

polynomial. The polynomial form is more flexible than its monomial equivalents and is 

widely used for representing curves and surfaces. 

The parametric form is particularly attractive since it is easy to create points on the on the 

element and to bound them to a particular range of parameter values. 

( ) ( ) ( ) ( ) ...32 ++++= uDuCuBAuP  

In theory it is possible to convert equations from implicit to the parametric form. This 

conversion process is called parameterisation; the inverse is called implicitisation. 

The Power Basis 

A simple parametric polynomial can be written as a weighted combination of a set of powers 

of the variable, u. 
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5.3 Interpolation 

Parametric polynomials have limitations: Extending the definition of a curve implies adding 

more high degree terms to the equation. High degree polynomials are sensitive to 

inaccuracies and are computational inefficient. Also the coefficients in a polynomial 

equation do not bear any physical significance, which makes handling of curves difficult. 

This problem can be overcome by defining curves such that the curve satisfies a set of 

constraints. For general parametric equations, common constraints are point coordinates and 

tangent direction, but others such as higher derivatives or curvature can also be used. 

Constructing geometry as a constraint satisfaction problem is called interpolation. The 

Hermite and Lagrange interpolation are discussed here. 

Going back to the essence of this thesis, Flexible Optimisation in CAD/CAM Environment, 

the concept of curve and surface definition as a set of constraints is an appealing one. As 

previously discussed, one of the main advantages of evolutionary algorithms is their ability 

to represent constraints as a function of variables. This enables an algorithm to perform 

operations on geometry without needing to know the underlying representation paradigm. 

5.3.1 Lagrange Interpolation 

The most obvious interpolation technique is to make the curve pass through a series of 

points. This is called Lagrange interpolation. Each point the curve passes through is a 

coefficient in the equation. To interpolate a parametric polynomial of degree n to the n+1 

data points P(ui), 0 ≤ i ≤ n where ui is a fixed value of the parameter u at Pi,, Farin [44], [52] 
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and ∏ is product with respect to the index j. 

In simpler terms, the coefficients are evaluated by substitution of the coordinates at each 

point and the parameter value at the point in the power basis equation. From the following 

polynomial (2D for simplicity): 
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that passes through three points equally spaced at the parameters values between zero and 1 
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By solving for the three coefficients, we obtain: 
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Lagrange interpolation produces acceptable results. However for larger values of n, the 

interpolated curve tends to wiggle due to the behaviour of higher degree polynomials. The 

term “wiggle” means that the curve oscillates between points, which gives slope oscillations. 

For this reason Lagrange interpolation is often not satisfactory for smooth and fair curves, 

especially for aesthetic purposes. Also as demonstrated in Farin’s book [44], Lagrange 

interpolation is said to be ill conditioned. This means that for small changes in the input data 

might result in serious changes of the result. 
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5.3.2 Hermite Interpolation 

Lagrange interpolation only takes data points as input, another interpolation scheme known 

as Hermite Interpolation defines a curve in terms of its derivatives of order n at the point Pi. 

Therefore the data are derivative vector ( )i

r
uP  of order 0 ≤ r≤ n and the curve equation 

takes the following form Forrest [52], Farin [44], Faux [46]: 
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In Hermite interpolation, both nth derivative vectors and data points are taken as input, thus 

(n+1) as many coefficients as in Lagrange interpolation. For example, cubic interpolation 

takes first order derivatives (tangents continuous) and quintic interpolation takes second 

order derivatives (curvature continuous). 

A smooth curve segment is obtained by joining two end-points Po and P1 together with 

specified end-tangents t0 and t1, Figure 21. In order for a cubic P(u) with 0 ≤ u ≤ 1, to meet 

these conditions, the following relations must stand: 
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 is the first derivative of P(u) with respect to u: 
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By feeding the above conditions in the cubic, the followings are obtained: 
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Which are solved to evaluate the unknown coefficients 
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Figure 21: Construction of a curve segment with tangents 

Hermite interpolation has one advantage over other methods (Bézier, B-spline): it stores 

interpolation points explicitly. In the B-spline from, they must be computed. In real life, 

curve tangents are difficult to measure form a physical model. For this reason Hermite 

interpolation is not frequently used, otherwise the tangents must be evaluated in order to 

satisfy continuity constraints between adjacent curve segments. 

5.3.3 Approximation 

In interpolation, a curve is constructed so that it satisfies a set of constraints precisely 

(position, tangent…). In some instances, especially with data from digitised models, there 

are too many data points to interpolate with a polynomial curve. An alternative to 

interpolation is approximation, where the curve does not pass through the points but near 

P0 P1

P(u)

t0
t1
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them (‘near’ is bounded by a tolerance). Figure 22 shows an example of curve 

approximation with n+1 points. The curve is constrained to pass through the first and last 

point P0 and Pn. The problem becomes finding a curve P(u) such that the distances 

)( iii uPPe −=  are as small as possible. A least squares approximation is typically used for 

this purpose. See Farin’s book [44] for further details. 

Figure 22: Curve approximation, n+1 points. The curve is constrained to pass through P0 and 

Pn 

5.4 The Bernstein-Basis 

The previous paragraph has shown that curves can be constructed by interpolating data 

points with Lagrange polynomials as well as derivative vectors with Hermite interpolation. 

Data fitting with interpolation is convenient for simple curve construction but control over 

shape is difficult because derivative vectors have to be completely specified. 

As already mentioned, in the power-basis form, the coefficients [A, B, …] do not bear any 

apparent geometrical significance. The power-basis formulation is purely algebraic, which is 

not suited for design purposes. Also it is numerically unstable, inaccuracy in or computer-

rounding errors lead to great shape variations in the resulting curve. Other techniques such as 

Bézier and B-spline provide better control over shape. Both methods are derived from the de 

Casteljau construction algorithm. Also the Bernstein polynomials, which form the basis 

functions of Bézier and B-splines is presented in this paragraph. 

Pi
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5.4.1 Bézier Curves 

The curves that are known as Bézier curves were independently developed by P. de 

Casteljau in 1959 at Citroën and P. Bézier at Renault in 1962. Strangely enough the two 

engineers were not aware of each other’s work despite the proximity of the two companies. 

Even though P. de Casteljau had first discovered the algorithm, only P. Bézier published his 

work, which is in a sense the generalisation of the algorithm. Hence why the curves bear his 

name today. The mathematical theory behind Bézier is the concept of Bernstein 

polynomials. But it was not before 1970 that R. Forrest from Cambridge University 

established the connection between the Bézier curves and the Bernstein polynomials. 

5.4.2 The de Casteljau Algorithm 

The de Casteljau Algorithm is the fundamental concept in free-form curve design with 

polygons. Bézier and B-Splines curves are direct application of this construction method. 

A simple curve construction with the de Casteljau algorithm is given here. Let three points, 

210 , P, PP  in 3D space and u a parameter real. From the generic expression of the straight 

line, we can write the three equations of 1

1

1

0  and PP : 
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Then we create a straight-line segment between the moving points on the first two: 
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and combine the first two equations into the third one, we get: 
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or in the power basis form it becomes: 
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This is a quadratic expression function of u, which in fact is a parabola. The de Casteljau 

construction consists of a repetition of linear interpolation for values of parameter u from 

zero to 1, as shown in Figure 23 below. 

Figure 23: de Casteljau construction out of two fixed straight line segments and one varying 

segment.  

The terms u and (1-u) correspond geometrically to equal ratios between each single- and 

double-ticked part of each straight-line segment: 

( ) ( ) ( ) ( )ttPPPratioPPPratioPPPratio −=== 1,,,,,, 1
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5.4.3 Bernstein form of Bézier Curves 

Bézier curves can be defined by a recursive algorithm such as the de Casteljau’s. However a 

more mathematical definition is often needed. The Bernstein form a Bézier curve, first 

established by Forrest [51]. It is not in the scope of this thesis to get in too many 

mathematical details, it is discussed elsewhere in Bernstein [11], and its application to Bézier 

curves in Faux [46] and Farin [44]. 

A nth degree Bézier curve is defined by: 
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Where iP  are the position vectors of the (n+1) vertices and niB ,  are the Bernstein 

polynomials that are obtained from the Weierstrass theorem and are defined by: 

( ) ( ) ini

ni uu
iin

n
B

−−
−

= 1
!!

!
,  

The cubic Bézier curve implemented in Renault’s UNISURF CAD system, is a special case 

of this general curve, where n=3 and i=4, Figure 24. In this case, the blending functions are: 

( )

( )

( )

( ) 303

3,3

3212

3,2

3221

3,1

3230

3,0

1
6

6

331
2

6

3631
2

6

3311
6

6

uuuB

uuuuB

uuuuuB

uuuuuB

=−=

−=−=

+−=−=

−+−=−=

Where it is assumed that 1lim
0

=
→

i

i
u . 

Figure 24: Cubic Bézier curve with four-vertex polygon 

5.4.4 The Matrix Form 

The Bernstein polynomials can be conveniently written in a matrix form:  
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where P is the points matrix, which for a cubic is 
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and B the Bernstein polynomials 

[ ]3,33,23,13,0 ,,, BBBBB =  

The B matrix can be expressed as the product of two other matrices 

UBmB =  

where 

[ ]123 uuuU =  

and Bm is the coefficients of the Bernstein blending functions 
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5.4.5 The Recursive Form 

An important property of the Bernstein polynomials is the recursive form, which will prove 

useful later for the construction of B-splines. 

( ) ( ) ( )( ) ( )( )uuBuBuuB dkdini 1,11,, 1 −−− +−=  

5.4.6 Some Properties of the Bézier Curves 

Any Bézier curve lies within its defining polygon and passes through the first point and last 

point. Modification of the polygon vertices will change the global shape of the curve. It can 
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also be refined by elevating the order of the curve (adding more points in the polygon), but 

this will induce more computation, and is not an attractive option. Rather, composite Bézier 

curves are introduced. Curves may be composed of several Bézier curves in order to 

generate more complex shapes that are too complex for a single curve to handle. To achieve 

piecewise construction, continuity conditions are required. This leads to the generalisation of 

Bézier, called B-splines. 

5.5 B-spline Curves 

The motivation behind B-splines is that interpolated curves or curves consisting of one 

single segment are often inadequate, their shortcomings are: 

Ø  A high degree is required to satisfy a large number of constraints: an n+1 degree 

polynomial is needed to pass through n data points. 

Ø  Interpolated curves are not well suited to interactively modify shape; Although Bézier 

polygons allow this, control is not sufficiently global. 

B-splines address these problems by combining both the properties of piecewise data-point 

interpolation and Bézier-like control polygon in one fundamental definition. 

Ø  The degree of the curve is independent of number of control points 

Ø  Local shape control is possible because individual control points have only local 

influence. 

The term Spline comes from early engineering applications such as shipbuilding and 

airplane. Draftsmen define free-form shapes using flexible stripes of metal or wood. These 

splines were distorted by means of weights applied at specific distances along them. The 

mechanical properties of the material used offered deformations with second order 

continuity, which is a property enclosed in modern mathematical splines. Although physical 

splines are rarely used, the underlying principle forms the basis of new algorithms. 

In literature, B-splines also called fundamental splines are in some ways the natural 

generalisation of Bézier curves, Back [8]. Woodwark’s statement in Bowyer [18] about B-

splines summarises fairly well the situation: 



Chapter 5 Spline Curve Modelling 

Page 72 

“B-splines curves are just pieces of Bézier curve ingeniously knotted together; whatever the 

hype, don’t forget this.” 

5.5.1 B-spline Blending Function 

A B-spline is defined by its polygon vertices also called control points together with an array 

of knots where the pieces of curves join, A nth degree B-spline is defined by the following 

expression, Farin [44], Piegl [84], Bowyer [18]: 
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Where iP  are the control points and niB , are the recursive basis functions: 
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5.5.2 Rational Curves 

The rational form of Bernstein Polynomials, often called NURBS, as Non-Uniform Rational 

B-spline, are the latest fashion in free-form curves and surfaces. Standard literature on 

NURBS is Piegl [84], Farin [45]. The main advantage over the non-rationals is their 

invariant property under projective transformation. This means that the projection of a 

rational curve is a rational curve. Also rational polynomials allow representation of shapes 

like where traditional non-rationals fail. This is the case of all conics, including circle. 

In short, NURBS are defined as the ratio of two polynomials (a spline divided by a spline). 

They are represented with rational functions of the form 

( ) ( )
( ) ( ) ( )

( )uW

uY
uy

uW

uX
ux ==             

Where ( ) ( ) ( )uWuYuX   and    ,  are polynomials, that is, each of the coordinate functions have 

the same denominator. 
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Combining the above with the definition of B-splines, a pth degree rational B-spline is 

therefore 
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As before iP  are the polygon vertices, and piB ,  are the B-spline basis functions. iw are 

scalars called weights. 

Like with Bézier and B-splines, shape control is achieved by moving the polygon vertices 

iP , and in the case of rationals by changing iw values. Figure 25 shows the effect on 

changing weight values of one polygon vertex on a cubic Bézier. Weights must be positive 

and nonzero. 

Figure 25: Rational cubic Bézier curve with W2 varying 
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5.6 Summary 

This chapter has introduced some techniques for modelling of free-form shapes. They can be 

classified into two categories: Those that are constructed by interpolating data points 

(Lagrange) and some degree of vectors associated with them (Hermite, Spline); and those 

that are constructed with the de Casteljau algorithm and modelled with Bernstein 

polynomials (Bézier, B-spline, NURBS). 

All these curve and surface modelling schemes belong to the same family of curves. It is 

common to see geometric modellers representing internally all of these as NURBS, which is 

the most generic scheme, the others are seen as a special case of NURBS - only the 

modeller’s interface (calling functions) differs. This approach is attractive with regards to 

representation homogeneity Choi [23] between modellers present weaknesses.  

NURBS is weak for producing quality curves: polynomials of high degree tend to wiggle in 

between control points. NURBS representation shows immediate limitations because 

constraints are only applicable discretely at the control points. What goes on in between is 

function of these, but not always in a predictable manner. The most encouraging formulation 

is the Hermite interpolation which explicitly holds high order differential constraints which 

can be used as handles on the curve’s shape. These considerations are treated in forthcoming 

chapters. 
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Chapter 6 Differential Geometry of 

Curves

Before exploring the depths of curve optimisation techniques, this chapter introduces some 

aspects of differential geometry necessary for their understanding. The notation details of the 

vector algebra used in this chapter is included in Appendix 4. 

Early work on differential geometry applied to curves and surfaces dates from the XIXth 

century with French mathematicians like Jean Frederic Frénet 1816-1900, Joseph Alfred 

Serret 1819-1885, Joseph Louis Bertrand 1822-1900, Victor Mannheim 1831-1906, Jean 

Gaston Darboux 1842-1917. More modern literature includes Aminov [3], Gibson [53], 

Nutbourne [80], Eisenhart [41]. 

In describing the geometric character of a curve, six quantities are considered: the position, 

tangent, principal normal, bi-normal, curvature and torsion. The definition of curvature and 

torsion are central to the discussion of a curve’s shape. The theorems of Existence and 

Uniqueness state that the torsion and curvature functions together totally define a curve up to 

a motion of Euclidean space. k(u) and τ(u) are called the natural or intrinsic equations of a 

curve. 

6.1 Frénet Frame 

At this stage, it is necessary clarify the term “parameterisation”. It can either mean “choice 

of parameter” (as here) or “conversion from implicit to parametric form” (the opposite of 

implicitisation). For the purpose of this discussion it is assumed that all example curves are 

described using a differentiable vector valued function of the form of Equation 1. 
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Equation 1 

where u is an arbitrary curve parameter, with the restriction that 0||)('|| ≠uP for all u; this is 

called the regular parameterisation. An alternative parameterisation called arc length 

parameterisation given in Equation 2 is also considered. Under this parameterisation, 

1||)('|| =uP  everywhere. 

Equation 2 

For the purpose of the discussions in this thesis, P(u) refers to an arbitrary regular 

parameterisation and P(s) refers to an arc length parameterisation.  

Figure 26: Frénet frame 
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The Frénet frame describes a sliding orthogonal coordinate system defined at each point on 

the curve. The three unit vectors of the Frénet frame are the tangent (T), normal (N) and bi-

normal (B). These form three planes, which contain the three vectors above. [T,N] form the 

osculating plane, [N,B] form the normal plane and [B,T] form the rectifying plane (see 

Figure 26). 

Because the three vectors making the frame are orthogonal and unit length, the following 

relations stand. 

Equation 3 

6.1.1 Tangent 

Figure 27: Tangent of a curve 

The curve Figure 27 is a general 3D curve defined by its position vector P = ( )uP . The 

vector ( ) ( )uPuuPP −+= δδ  represents the chord P0Q joining the two points P0 and Q with 

parameters u and δu. As 0→uδ , the vector uP δδ has a direction that approaches the 

direction of the tangent at P0. If the arc length s is the parameter, then the chord length Pδ  

and the arc length sδ are equal in the limit, Faux [46], Aminov [3]. In Equation 4, T is a unit 

vector of direction the tangent of the curve at point P0. 
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Equation 4 

With respect to parameter u, for any point P of the smooth curve ( )uP  there exist the tangent 

to ( )uP , and the directing vector of the tangent is T, Aminov [3]. Assuming that the curve 

( )uP  has a derivative function P’(u), the unit tangent can be written as follows:  

Equation 5: Tangent function of parameter u 

6.1.2 Principal Normal and Curvature 

The normal is a unit vector that is perpendicular to the tangent. Evidently there is an infinity 

of normals to a curve at a point. Two of these are of particular interest: the normal which lies 

on the osculating plane, called the principal normal; and the normal which is perpendicular 

to this plane called the bi-normal. 

If P(s) is an arc length parameterised curve, then P’(s) is a unit vector, and hence P’(s) 

P’(s)=1. Differentiating this relation, gives 

Equation 6 

Which states that P’’ is orthogonal to the tangent vector, providing that it is not a null vector. 

This fact can also be interpreted from the definition of the second derivative P’’(s) 
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Equation 7 

Figure 28: Principal normal and curvature 

As shown in Figure 28, the direction of )(')(' sPssP −∆+  becomes perpendicular to the 

tangent vector as 0→∆s . The unit vector which has the direction and sense of P’(s) is the 

principal normal vector to the curve at s. 

Equation 8: Normal function of arc s 

Where )(' ssP ∆+  moved from Q to P, then )(' sP , )(' ssP ∆+ , )(')(' sPssP −∆+  form an 

isosceles triangle (see Figure 28), since )(' sP  and )(' ssP ∆+  are unit tangent vectors. Thus 

0 as )(''1.)(')(' →∆∆=∆=−∆+ sssPsPssP θ  henceκ is the curvature, and its reciprocal 

ρ  is the radius of curvature at s. It follows that 
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Equation 9 

Equation 10: Curvature function of arc s 

With respect to the parameter u, the curvature of a curve involves a vector product of the 

curves derivatives 
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Equation 11: Curvature function of parameter u 

6.1.3 Bi-normal and Torsion 

The tangent vector T is a unit vector; the principal normal N are orthogonal to T. The vector 

product NT ×  is called the bi-normal of P, noted B. The bi-normal B is well defined when 

the curvature k is non-zero. 

Equation 12: Bi-normal function of arc s 
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The bi-normal is perpendicular to the osculating plane and its rate of change is expressed by 

the vector 

( ) ')()(
)(

)()()(' NT
ds

dN
sTsN

ds

sdT
sNsT

ds

d
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)()()(''
)(

      Where sNsksP
ds

sdT ==  

Equation 13 

Since N is a unit vector N.N=1, and N.N’=0. Therefore N’(s) is parallel to the rectifying 

plane (B, T) and N’(s) can be expressed as a linear combination of B and T: 

Equation 14 

Using Equation 13 and Equation 14, 

Equation 15 

The torsion of an arc length parameterised curve is defined by the formula 

Equation 16: Torsion function of arc s  

With respect to the parameter u, the torsion is a function of the first, second and third 

derivatives. 

BTsN τµ +=)('
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Equation 17: Torsion function of parameter u  

6.1.4 Frénet-Serret Formulae 

The well-known Frénet-Serret formulae are a direct result of the above definitions. They are 

defined by Equation 18: Frénet-Serret formulae for any curve that is thrice differentiable 

with non-vanishing second derivative. 

Equation 18: Frénet-Serret formulae 

Some implementation issues are worth mentioning. The above relations are function of the 

arc length s, hence are valid with arc length parameterised curves. However in reality curves 

are never arc length parameterised. To illustrate this, a plot of the first derivative magnitude 

)(' uP  against parameter u (Figure 31 paragraph 6.3.1) shows that parameter speed and 

curve speed are not uniform. It is therefore necessary to substitute the arc length variable s to 

a parameter variable u using Equation 19 obtained by derivation of Equation 2. 

Equation 19 

The Frénet-Serret Formulae adapted to arbitrary parameterisation are written in a matrix 

from below  
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Equation 20: Adapted Frénet-Serret Formulae  

These adapted equations have been implemented with ACIS and give satisfactory results 

from a pure mathematical point of view. However the algorithm presents a significant 

drawback: It is a succession of derivation and normalisation, and because the normalisation 

is achieved with a division, it is inefficient to derive an expression that contains divisions. 

For this reason the so-called Frénet-Serret equations are not suitable for implementation 

purposes. Instead the relations involving the curve’s derivatives without prior normalisation 

should be favoured. These are Equation 5, Equation 11 and Equation 17. 

6.2 Differential Properties Interrogation 

Interrogation techniques attempt to illuminate curve and surface characteristics that are not 

easily discernible using conventional rendering. The characteristics relevant to a curve’s 

shape are closely related to indistinct geometric properties such as torsion and curvature.  

6.2.1 Interrogation Strategy 

Geometric modellers like ACIS [1], Parasolid [82] as well as the Djinn interface [38] exhibit 

functionality for differential geometry of curves but are incomplete. With ACIS and 

Parasolid, functions that return the tangent, normal and curvature of a curve at a given 

parameter value are present. As for the bi-normal and torsion these are non-existent. This 

perhaps is because curves are commonly modelled with cubic polynomials, which are 

curvature continuous but not necessarily torsion continuous; therefore it is assumed that the 

bi-normal and torsion are irrelevant. Djinn however is more complete, at page 313, a 

procedure called DJ Edge Curvature outputs all the differential properties defined by the 

Frénet-Serret equations of a given edge at a given point coordinate. 
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All these have limited use because they are discrete functions, which means that they return 

values at a given parameter value. However, many of the applications for curve 

optimisations developed later in this thesis need T, N, B, k and τ as continuous functions. It 

was found that optimisation algorithms in literature have adopted a devious strategy, Jones 

[65]. A curve is interrogated for some properties with dense sampling and the point cloud is 

used to interpolate a spline curve. The interpolated curve is used as graphic representation of 

the curve’s property function, but does not carry mathematical meaning of any sort. Munaux 

and Tiwari, Roy et. al. [94], [99] have used this method extensively in curve optimisation 

algorithms using genetic algorithm. Their method gave satisfactory results for constructing 

curves with prescribed curvature profile but suffered from a lack of rigour and exactness. 

The problem with the dense sampling method is that it gives very little information of what 

happening between sampled points. The function might be discontinuous there and the 

analysis would miss it. This methodology has limited power but permits simple algorithms 

to work when no other options are available. 

6.2.2 Continuous Interrogation 

Recently ACIS has included the LAW class, which is a powerful facility for creating curve 

and surface geometry either directly in terms of parametric equation or indirectly by means 

of offsets, sweeps, and wraps, Corney [28]. A law is represented internally by a tree of C++ 

classes that know their dimensions, how to evaluate themselves, and how to take their exact 

(symbolic) derivatives with respect to any combination of variables. In addition, law utility 

functions numerically integrate, differentiate, and find roots. Many questions can be 

answered by knowing where some combination of them is maximal or minimal. The ACIS 

law class uses Function Representation for the definition of geometry, see paragraph 4.3, and 

enables accessing the true mathematical representation of curves: this is a continuous vector 

field function of a single parameter. Better still, these vector fields are differentiable 

functions and the result of a derivation is also a continuous differentiable function. 

There are a great number of algorithms in the literature for doing curve optimisation, and all 

of them are specific to the NURBS representation and are bound to use discrete interrogation 

methods like the one described above when inquiring about differential properties. Clearly 

F-rep bears some immense potentials as a substitute to NURBS when a more fundamental 



Chapter 6 Differential Geometry of Curves 

Page 85 

description of a curve is needed. Immediate applications of F-rep to curve optimisation are 

the fundamental theorems of differential geometry that have been forgotten by the CAD 

community since the appearance of NURBS. This thesis reports on attempts to use 

fundamental differential geometry to serve the purpose of curve optimisation within CAD 

and documents the interface functions created for this purpose. Some of these have been 

implemented using the existing ACIS functionality while others, more wishful thinking, are 

defined and discussed but have not been implemented purely because of the limited 

functionality of the geometric modeller, ACIS. 

6.3 Differential Properties Representation 

The differential properties of a curve are obtained from the Frénet-Serret equations 

developed above. These properties must be represented and conveyed to the designer in 

some ways. The properties which are vector valued are best represented geometrically in the 

graphic interface. Other information such as discontinuities and topology could be 

represented elsewhere in text format. This paragraph presents some several techniques for 

graphic representation of differential properties. These are classified into two categories, 

indirect and direct, Moreton [73]. 

6.3.1 Indirect Methods 

Indirect methods are characterised by plots of properties separately from the subject curve.  

Intrinsic Equation Plots 

A typical example of an indirect method is plotting a 2D curve showing curvature k versus 

parameter u of a curve P(u); Figure 29 is actually a parametric vector equation of the form: 
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Equation 21: Curvature plot  

Since )(')( uTu =κ , )(uκ  is always positive, Points at which the curvature is zero are 

called points of inflection. Nutbourne [80] mentions that if there is an S-bend in the curve, 

the vector T’(u) changes sign as the curve passes through a point of inflection. Thus the 

vector N(u) is flung from one side of the curve, this also implies that the bi-normal vector 

reverses direction. In presence of a planar curve this is not a desirable behaviour and he 

suggests an alternative definition of the normal vector to be either in the same direction as 

)(' uT or in the reverse direction at some key points and thereafter maintain its presence, even 

at a point of inflection without any sudden reversals of direction. An advantage of this 

redefinition is that the curvature can now be signed and the graph of k as a function of u may 

cross the u axis smoothly. This redefinition of curvature is only valid for planar curves. An 

S-bend curve with torsion would not have null curvature at the inflection point, rather the bi-

normal will swing around the curve.  

Figure 29: Curvature plot 
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An alternative to curvature is plotting the radii of curvature, which undoubtedly is more 

geometrically intuitive than the curvature metric. The main disadvantage with these kinds of 

plots is that the radii of curvature tend to vary over a large range. Also if the analysed curve 

exhibits flat sections, the radii will be infinite. Therefore it is necessary to limit the range of 

the plot. 

Planar curves have null torsion however with space curves it is often necessary to look at the 

torsion plot. A torsion plot, presented in Figure 30 is obtained analogously to a curvature 

plot, its vector functions becomes: 
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Equation 22: Torsion plot 

Figure 30: Torsion plot 
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For example, in CNC milling operations the tool path should be uniformly parameterised so 

that the cutting tool does not speed up or slow down while machining. Evaluation of a curve 

for cutter control is achieved by examining the plot of first derivative magnitude against 

parameter. The plot of first derivative magnitude, Figure 31, shows that the parameterisation 

is continuous but not uniform. 
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Figure 31: First derivative magnitude against parameter u 

6.3.2 Direct Methods 

Direct methods come into two major sub-categories, Moreton [73]: mapping techniques and 

compound rendering. Mapping techniques map a curve into a new curve. Polar mapping 

produces a curve with cusps that correspond to inflection points in the subject curve. Yet 

another measure for planar curves includes K-orthotomics curves, which are well known in 

the field of optics, Hoscheck [62]. Compound renderings result from displaying the 

geometric measures of a curve combined with the curve itself. It was already established that 

any curve could be represented as a continuous vector function. From there, it is easy to 

perform the basic vector algebra operations, introduced in Appendix 4. Several examples of 

compound rendering techniques are presented here. 

The first example discussed is curvature fin. The normal vector of a curve at a given 

arbitrary parameter value u0 is in the direction of the centre of the curvature circle. The 

product of curvature value k(u0) at this point with the normal N(u0) indicates the curvature 

distribution along the curve as well as the normal direction. Because the values of k are 

small, it is necessary to scale the product k(u)N(u) by a constant s for visualisation purposes. 

Because of the necessary scale factor introduced, in some regions of the curve, the length of 

the vector sk(u)N(u) might be greater than the radius of curvature. This causes the compound 

curve to make self-intersecting loop. In order to avoid this, the negate of sk(u)N(u) is 

Parameter u

F
ir

s
t 

D
e

ri
v
a

ti
v
e

 M
a

g
n

it
u
d
e

Parameter u

F
ir

s
t 

D
e

ri
v
a

ti
v
e

 M
a

g
n

it
u
d
e



Chapter 6 Differential Geometry of Curves 

Page 89 

preferable. A compound curvature fin is obtained by adding the curve vector function with 

the above product function. 

Equation 23: Curvature fin compound  

In the more general case of space curves, torsion also determines the curves shape. On the 

same basis as the curvature fin presented above, a torsion fin compound is obtained from the 

following equation: 

Equation 24: Torsion fin compound  

It was established in previous chapters that torsion τ(u) is orientated along the bi-normal 

B(u) on the rectifying plane. An example of curvature and torsion fins is presented in Figure 

32. The curve interrogation is not carried out by discrete sampling but rather by continuous 

differentiation. The segment lines joining the subject curve and the compound curves do not 

show points where the curve was sampled, they are purely for illustrative purposes. 

)()()( fin curvature uNuskuP −=

)()()( fintorsion uBusuP τ+=
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Figure 32: Curvature and torsion fins 

It should be noted that such techniques are in effect creating a non-uniform offset curve to 

the original. Comparing these approaches with the indirect methods, attaching a fin whose 

width is proportional to the geometric measure has some advantages. Primarily, the 

curvature and torsion convey higher order quality information more clearly. It is possible to 

detect regions of undesirable curvature as well as to assess the overall curvature distribution. 

The main drawback is that it is necessary to appropriately scale the measures. Moreover it is 

difficult to detect inflections in areas of extremely low curvature. Considering only the 

normal and bi-normal directions, they produce a uniform offset that is at a constant distance. 

Since both vectors are unit (length of one unit) it is also necessary to scale those. 

The normal fin is obtained from the equation: 

Curvature Fin

Torsion Fin

Subject Curve
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Equation 25: Normal fin compound 

Similarly, the bi-normal fin is obtained from the equation 

Equation 26: Bi-normal fin compound 

This method does not convey any information about curvature distribution but shows 

inflections when using a sufficient offset distance, see Figure 33. 

Figure 33: Normal and bi-normal fins 

 

Bi-normal Finnormal Fin

Subject Curve

Bi-normal Finnormal Fin

Subject Curve

)()( fin normal usNuP −=

)()( fin normal-bi usBuP −=
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6.3.3 Discussions  

The Frénet-Serret formulae give useful information on high order differential curve 

properties, but present limitations. In the presence of vanishing curvature the Frénet frame is 

no longer defined. The normal compound fin of a curve with a s-bend the is a null vector at 

the points of inflection and therefore the normalisation is not defined. This is a real problem 

because the compound fin shows a discontinuity where there is not. 

More generally, where a curve has a flat section, its curvature vanishes and the Frénet frame 

is not defined. It becomes necessary to find a trihedral orthogonal frame whose orientation is 

arbitrary or governed by other laws than the Frénet-Serret equations and that is defined in 

regions of null curvature. 

Figure 34: Normal compound fin 

6.4 Parallel Transport Frame 

An alternative approach to the Frénet curve framing is the parallel transport frame proposed 

by Bishop [14]. Typical applications of the parallel transport frame include the generation of 

ribbons and tubes from 3D space curves, and the generation of forward-facing camera 

orientations, Hanson.[58]. 

parent curve

normal compound fin
discontinuity at inflection point
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Parallel Vector Fields 

Given a space curve P(s) parameterised by arc length s, a vector field V(s) is normal to the 

curve if it is everywhere perpendicular to the curve’s tangent T(s). A normal vector field is 

said to be parallel to the curve if it’s derivative is tangential along the curve; that is 

V’(s)||T(s). Such a vector field turns only as much as necessary for it to remain normal. 

More generally an arbitrary vector field V(s) along a curve P(s) is parallel if its normal 

component is parallel and its tangential component is a constant multiple of the unit tangent 

field of P(s) The curve )()()( sPsVsQ +=  is parallel curve of P(s). 

Properties of Parallel Vector Fields 

A curve P(s), a parallel normal vector field V(s), and the corresponding parallel curve Q(s) 

have the following properties: 

• V(s) has constant length 

• V(s) is perpendicular to both P(s) and Q(s) 

• An initial normal vector 0V  at a point )( 0sP  generates a unique parallel field 

V(s) on P(s) such that 00)( VsV =  

• If normal vectors 0V  and 0U  generate parallel fields V(s) and U(s) respectively, 

the angle between V(s) and U(s) is constant along the curve, that is 

00.UVV(s).U(s) =  for all s. 

Bishop Frame 

The basic concept of the parallel transport frame, called Bishop frame here, is to observe that 

while )(sT  is unique, any convenient basis ))(2),(1( sNsN  in the plane perpendicular to 

)(sT  can be chosen at each point. If the derivatives of ))(2),(1( sNsN  depend only on )(sT  

and not on each other, )(1 sN  and )(2 sN  can vary smoothly through the path regardless of 

the curvature. The following equations define the Bishop frame: 
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Equation 27: Bishop Equations 

6.5 Families of Curves 

This paragraph shows a series of curves of different types, with a range of geometric features 

analysed with the new differential properties representation approaches. The aim of this 

material is to demonstrate how the new approaches can be used to analyse the geometry of 

curves. Also it serves the purpose of validating the algorithms implemented in HulaHoops, 

the CAD system developed in this research. Detailed information on HulaHoops is presented 

in Chapter 9 and Chapter 10. 

Later in Chapter 8, the differential properties used to examine the geometry of curves are 

implemented in curve optimisation applications, which use these as constraints. The 

constraints prescribed by the user are used for recreating optimised curves. 

6.5.1 Feature Curves 

Feature curves are classified upon their dimension: planar or space and their curvature 

convex properties. 
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Convex Planar Curves 

A planar convex curve is a curve embedded in a plane, thus has zero torsion. Its convex 

property state that it is monotonous, that is its signed curvature is the same sign every where. 

The curvature compound fin in Figure 35 is around the outside of the curve 

Figure 35: Convex curve 

Figure 36:Convex curve curvature and torsion profiles 

Convex Space Curves 

Space curves have non-zero curvature and torsion profiles. The curvature profile, Figure 38, 

does not come to the zero value and the normal fin compound, Figure 37, does not swing 
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direction, so: the curve is convex. Also the torsion profile is visibly showing a rise in 

curvature in the middle of the curve.  

Figure 37: Convex space curve 

Figure 38: Convex space curve curvature and torsion profiles 

S-bend Planar Curves 

S-bend curves are curves which change normal direction, this is visible on the curvature 

compound fin Figure 39.  
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Figure 39: Planar S-bent curve curvature compound fin 

The inflection point is the point where the compound fin crosses the curve. At this point the 

normal vector swings around the curve. As discussed in paragraph 6.3.3, this feature curve 

shows a deficiency of the Frénet formulation: The normal vector is not defined at the 

inflection point because it is the norm of the curvature vector, which is null at this point. The 

normal compound fin irregularities at the inflection point proves the presence of a 

discontinuity in the function. For this reason, the normal fin compound is not considered for 

engineering applications.  

The curvature profile in Figure 40 has two picks of curvature on either side of the inflection 

point where curvature is zero.  
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Figure 40: Planar S-bend curvature profile 

S-bend Space Curves 

Analysis of the S-bent curve with non-zero torsion reveals the behaviour of the torsion 

vector on either parts of the inflection point. As the bi-normal vector swings around the 

curve, the torsion increases in great proportions with its maximum at the inflection point.  

Figure 41: Space S-bend curvature and torsion compound fins 
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For the space S-bend curve, the curvature and torsion profiles are plotted on the same graph, 

Figure 42. The curvature profile is similar from the previous example, which was a planar S-

bend curve, only this time the curvature profile does not touches the zero line where there 

was an inflection point before. This indicates that the curvature is never null. However the 

torsion picks where curvature is minimum, so the twist is greater where curvature is lesser. 

Figure 42: Curvature and torsion profiles 

6.5.2 Helical Offsets 

Helical offsets are obtained by controlling the offset distance and the twist along the parent 

entity. This offsets allow the construction of helices. Helical curves are special curves 

whereby the curvature and the torsion are proportional to each other. Helices give rise to a 

great variety of curves, some of their representatives are examined with the new approaches 

introduced earlier in this chapter. 

Helix 

The simplest case is the helix is a curve whose curvature and torsion profiles are non-zero 

constant. An example of Helix from Figure 43 shows the curve is drawn on to a cylinder 

whose cross-section is a circle. Also the curvature and torsion compound fins indicate that 

helix has constant curvature and torsion. This is confirmed by the curvature and torsion plots 

in Figure 43. Both plots are constant and torsion is greater than curvature, which means that 

the thread twist is more than the curvature radius. 
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Figure 43: Helix curvature-and torsion compound fins 

Figure 44: Helix curvature and torsion profiles 

Expanding Helix 

The expanding helix has an arbitrary curvature profile and a torsion profile that is 

proportional to the curvature profile. The compound fins, Figure 45, show that the curvature 

and the torsion are greater at the beginning of the curve than at the end, but are proportional. 
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Figure 45: Expanding helix curvature and torsion compound fins 

Figure 46: Expanding helix curvature and torsion profiles 

Toroidal Round Helix 

The toroidal round helix is constructed by offsetting a circle by a constant distance. The 

result is curve that curls around the parent circle. The curvature and torsion profile in Figure 

48, indicate that both profiles are cyclic and are in opposition of phase. 
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Figure 47: Toroidal round helix Frénet frame fins 

Figure 48: Toroidal helix curvature and torsion profiles 
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Chapter 7 Spline Curve Construction 

and Optimisation
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The construction of piecewise curves implies providing additional data other that the 

interpolation points coordinates. These constraints give the opportunity to gain control on the 

curve’s shape. This Chapter explores means of constructing spline curve piecewise using 

constraints defined at the joining knots. Further, ways of representing the constraints for 

optimisation is also proposed. For spline curve optimisation, position, differential and 

parameter constraints are considered. 

7.1 Piecewise Construction 

It is not feasible to make a long curve or complicated surface with one high degree 

polynomial. The problems come from difficult parameterisation and that high degree 

polynomials are computationally expensive (because of the number of terms). They are 

sensitive to inaccuracies and tend to give wiggly curves. To overcome these problems, 

parametric curves are best described as a piecewise phenomenon. This means that one curve 

is defined by several curves (spans) joined together in a continuous manner. The degree of 

continuity achievable between curve spans is one less than the degree of each spans. At best 

• Quadratics join with C1 continuity 

• Cubic join with C2 continuity 

• Quintic join with C3 continuity 

7.1.1 Control Points 

The degree of the curve is one less than its order; i.e. the number of control points for each 

segment. A quadratic is defined by three points, a cubic four, and so on. In other words: 

nKiKs −=  

curve  theof degree            

points control ofnumber  K           

segments ofnumber  K where

=
=
=

n
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In B-spline construction, adjacent segments share control points. The number of common 

points is determined by the degree of the curve, thus the type of continuity in which 

segments blend. 

Unlike Bézier curves which are totally defined by a set of control points, B-splines require 

both the degree of the curve and the parameter values at which the segments meet (knots) 

before the blending function can be evaluated. It should be noted that Bézier vertices and B-

splines are different, except in certain cases when the whole B-spline is one single cubic 

Bézier span. 

7.1.2 Knot Construction 

Parameterisation 

Explicit approximation is often used in applications, but since the geometric entities we are 

concerned with at present are of parametric form, parameterisation becomes unavoidable. In 

designing free form curves, positions, tangent vectors (and others) are known constraints. 

Still when parametric equations are used, a parameter value must be assigned to each data 

point. The resulting quality of the curve is heavily dependent on the parameterisation; hence 

an appropriate parameterisation method is required. The problem is straight forward in the 

case of Lagrange interpolation: The parameter can be evenly spaced along the curve for each 

data point, provided that data points are equally spaced, which in practice is never the case. 

In general, the problem of parameterisation lies in finding the curve length between two data 

points and subsequently assigning parameter values to each of them. In the more general 

case of curve fitting through an ordered set of scattered data, an initial cord length 

parameterisation is commonly used for parameter estimate of the curve’s arc length. 

The cord length parameterisation method works well in most cases but presents weaknesses 

with sharp corners Cohen [26]. Alternatives solutions are centripetal and the Foley methods 

(see Farin’s Book [44]). Also, in presence of dense data (obtained from digitisation for 

example), chord length parameterisation is difficult and other approximation techniques are 

favoured. 
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Figure 49: Knotted curve 

The end point of one span is the start point of the next, these are known as knots, Figure 49. 

Each knot has a parameter value associated with it. In order to construct a curve piecewise 

construction, a knot sequence must be provided. The knot sequence, often called knot vector, 

depends on the number of control points and the degree of the curve: 

1−+= nKiKp  

curve  theof degree            

points control ofnumber  K           

knotsnumber   where

=
=
=

n

i
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Equation 28: Knot sequence calculation 

The values in the knot sequence must never decrease but can be repeated. The number of 

repetitions is referred to as the knot multiplicity. Multiple knot values reduce the degree of 

continuity by one for each repeat. This should be avoided as it might create undesirable 

discontinuities in the curve. However this property is commonly used in B-spline 

construction to make the curve interpolate the start and finish control points. In the case of a 

cubic, the first and last three-knot values repeat; it would be the first and last two-knot values 

for a quadratic. The highest curve degree possible is one less than the number of control 

points. It was mentioned before that Bézier curves are a special case of B-splines. The cubic 

Bézier, of degree three, has four control points, one segment, and two knots. Using the 

general B-spline formulation, its knot vector is: 

{ }1     111000    0t_VectorBezier_kno =  

Segment 1 Segment 2

Segment 3
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Illustrations 

The following examples demonstrate the effect of parameterisation on a cubic curve created 

from the control point vertices below. The start and end parameter values are kept constant, 

the internal knot values are variable.  

const position pt1  (0, 0, 0); 

const position pt2  (10, 25, 0); 

const position pt3  (25, 25, 0); 

const position pt4  (40, -10,0); 

const position pt5  (60, 0, 0); 

const position pt6  (60, 10, 0); 

Ø  This knot vector creates three curve segments of equal parametric range and produce a 

smooth curve. 

double const knots[nb_knots] = {0,0,0,0.33,0.66,1,1,1} 

Ø  Here the first and last segments have a short parameter range. This produces a 

distorted curve that is concentrated near to the end points and spread in the middle. 

double const knots[nb_knots] = {0,0,0,0.1,0.9,1,1,1} 
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Ø  The first two segments have a long parameter range followed by a long one. The 

difference from the previous curve is noticeable. 

double const knots[nb_knots] = {0,0,0,0.1,0.2,1,1,1}; 

Internal Knot Multiplicity 

An example of internal knot multiplicity resulting in curve irregularity is presented here. A 

general cubic B-spline is generated from six control points as follows: 

int const Nb_CtrlPpts = 6; 

const position pt1  (0, 0, 0); 

const position pt2  (10, 25, 0); 

const position pt3  (25, 25, 0); 

const position pt4  (40, -10,0); 

const position pt5  (60, 0, 0); 

const position pt6  (60, 10, 0); 

and the following knot vector: the internal knot has a multiplicity of two 

int const degree = 3; 

int const nb_knots = Nb_CtrlPpts + degree - 1 ; 

double const knots[nb_knots] = {0,0,0,0.33,0.33,1,1,1} 

The curve is evaluated for first, second and third degree derivatives “ just before”, “on” and 

“ just after” the knot where the curve is likely to be discontinuous. The derivative vectors 

obtained from the analysis are presented in Table 3. As predicted, the analysis shows that the 

second derivative vectors are discontinuous after the knot, however the curve remains C1 

continuous at this knot. 
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Table 3: Derivative vectors showing curvature discontinuity 

7.1.3 Curve Continuity 

In a general sense, continuity describes how two items come together. Two types of 

continuity are generally discussed: Cn and Gn, where n refers to the nth derivative. Cn 

continuity refers to continuity of the nth derivatives of the equations underlying the entities. 

This means that the magnitude and direction of the nth derivative must be continuous. Gn 

continuity refers to continuity of geometric, or parameterisation-independent, properties, 

which means that only the direction of the nth derivative must be continuous. It should be 

noted that parameter continuity is not necessarily the same as geometric continuity. This is 

because of the arc length parameterisation problem discussed above. The difference between 

the two types of continuity is that Gn allows the parameterisation to be changed to achieve 

desired continuity. By manipulating the parameterisation of the curve or surface, one can 

change the magnitude of vectors. The following list describes what is meant if two items 

(e.g., curves) meet with the specified continuity. 

C0 continuity 

Two entities meet with C0 continuity, when their zero derivatives are the same at their 

intersection, Figure 50. In the case of C0 continuity, it may simply be said that the entities 

"are continuous": At all points along the intersection, the position of the entities are the 

Axis Just before Parameter value = 0,3 Just after

position position position

X 21.65 21.65 21.65

Y 18.35 18.35 18.35

First Derivative Vector First Derivative Vector First Derivative Vector

X 15 15 15

Y -15 -15 -15

Second Derivative Vector Second Derivative Vector Second Derivative Vector

X -460.055 -460.055 155.714

Y -917.355 -917.355 -155.714

Third Derivative Vector Third Derivative Vector Third Derivative Vector

X -1394.11 -1394.11 -531.648

Y -4449.45 -4449.45 930.633
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same. G0 continuity also means that the zero derivatives are the same at their intersection, 

but changing the parameterisation of one of the entities does not affect its position. 

Figure 50: C0 continuity 

C1 continuity  

Means that the first derivatives, or tangents, are identical (in addition to C0 continuity). The 

tangents of curves and surfaces are vectors, so both the magnitude and direction of the 

tangent vectors must be identical. 

Figure 51: G1 continuity 

C2 continuity  

Means that the second derivatives agree (in addition to C1 continuity). Because curvature is 

a function of the first and second derivatives, one often says that the curvature is continuous 

if entities are C2. 

G0

G1
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C2 continuity  

Means that just the direction of the second derivatives are identical, Figure 52. The 

parameterisation of one of the entities can be changed to get the geometric curvatures 

(independent of parameterisation) to agree. 

Figure 52: G2 continuity 

The derivative level, n, to which an object is continuous, refers to its degree of continuity. If 

a given object is continuous at the nth derivative, it is said to have nth degree of continuity 

(or degree of continuity n). To state that a given curve has a particular degree of continuity 

means that for all points on the curve's interior, the continuity is at least of that degree. The 

same holds for surfaces. 

7.2 Knot Parameter Optimisation 

In paragraph 7.1, it was established that curves can be made by joining knotted curve 

segments together. The main difficulty with this is finding an appropriate knot sequence to 

satisfy the desired shape of overall curve. Tests made in paragraph 7.1.2 showed the 

influence of parameterisation on a curve interpolated through fixed data points. 

G2
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A simple application is created to prescribe a knot sequence by graphic representation. The 

knots position in the parameter space can be modified interactively to obtain a desired shape 

without moving the data points in the Cartesian space. 

Given the data point coordinates, a first estimate is made by evaluating cord length 

parameterisation. This is evaluating the distance between each knot and getting the ratio of 

cumulated distances over the total sum of distances. 

const position pt1  (0, 0, 0); 

const position pt2  (40,25, 0); 

const position pt3  (80, -25, 0); 

const position pt4  (120, 0,0); 

Equation 29: Cord length parameterisation 

For the positions proposed above the chord lengths given by Equation 29 are as follows: 

Knot 1 = 0 

Knot 2 = 47.16 

Knot 3 = 111.20 

Knot 4 = 158.7 

To gain insight on the significance of these results it is convenient to present them as a ratio 

of 1: The start parameter indexed 0 has value 0 and the end parameter indexed n has value 1. 

This means that the parameter knot vector is of the form [0, P1, P2,…Pi,…1]. Considering a 

unit length segment, the knot vector fractions it into n-1 segments that can be represented 

graphically as shown in Figure 53. 
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Figure 53: Cord length knot vector distribution 

This technique allows designers to interactively assign parameter values at curve knots thus 

exposing control over the internal curve constraints in an attempt to minimise its energy. The 

examples presented above, show that parameterisation has some effect on the curve’s shape. 

This curve construction method could also be used as a modelling technique implemented in 

a CAD environment. However it remains uncertain that designers would benefit from this 

application without some level of automation added to the optimisation process. The 

problem here is that no design goals are defined, which leaves the user with parameters to 

control without any indication on the achievements of his input. This is addressed in the 

following paragraph where the total curve energy is formulation is used as a measure of the 

design. The knot parameter distribution can be easily controlled manually for curves having 

up to two knots. But for a greater number of knots, the knot distribution is difficult to find 

manually, this is addressed in paragraph 7.4, where the knot parameter distribution is 

optimised by a GA. 

7.3 Energy Formulation 

The energy formulation is a measure of the curve’s total energy. The formulation is the sum 

from start to end parameter of the curve’s second derivative squared. In practice, the energy 

is obtained by numerical integration of curvature squared.  
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Equation 30: Energy formulation 

Parameter value 0

Data point 1 2 3

0.7020.297

4

1
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The energy formulation written in Equation 30 is tested on a range of curves. The aim of 

these experiments is to validate of the formulation and this is achieved by establishing the 

energy function map for up to two variables.  

Example 1 

The first example uses the curve shown in Figure 54, it is created from four data point 

coordinates, which are as follows: 

const position pt1  (0, 0, 0); 

const position pt2  (40,25, 0); 

const position pt3  (80, -25, 0); 

const position pt4  (120, 0,0); 

Figure 54: Test curve Example 1 

Because it is created from four data points, this curve has two internal knots for which values 

must be assigned. They are varied incrementally in a loop algorithm and the energy is 

recorded in a 3D graph Figure 55. Because the knot values must be strictly increasing, knot 1 

must be inferior to knot 2, hence the triangular shape base of the map. The map indicate that 

there is a curve which has a minimum energy for a set a knot values, and this means that the 

system is determined.  

The overall shape of the map is quite flat in the region of minimum energy, which makes 

difficult for an optimisation algorithm to find the optimum. It appears clear on the graph that 

the function is symmetrical, due to the point coordinates arrangements. What appears to be a 
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symmetry line running diagonally on the graph is also a region of interest because the 

surface lines are not smooth. A cross section of the map reveals a sudden fall of energy at 

some particular parameter values. Figure 56 is a cross section of the map at Knot1 = 0.2. The 

drop of energy is exactly at Knot2 = 0.8. Another cross section is made at Knot1 = 0.4, this 

time the drop of curvature is exactly at Knot2 =  0.6. For both cross sections, the drop of 

energy happens when two knot values add up to 1. In all cases the curves produced are 

regular, and as far as the author is aware, there is no clear cut answer to that phenomenon. 

Another test is carried out to find out if the same thing occurs again with a different curve, 

asymmetrical. 

Figure 55: Energy function mapping Example 1 
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Figure 56: Energy Map Cross Section at Knot1 = 0.2 Example 1 

Figure 57: Energy Map Cross Section at Knot1 = 0.4 Example 1 
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Example 2 

This test uses an arbitrary convex planar curve constructed out of four control points: 

const position pt1  (0, 0, 0); 

const position pt2  (40,25, 0); 

const position pt3  (80, -40, 0); 

const position pt4  (120, 0,0); 

The third position is modified to make the curve asymmetrical. Figure 58 reveals that the 

energy map is smooth, there is no drop of energy at certain combinations of Knot values as 

observed in Example 1 above. There is no scope in this thesis for more investigations, but 

further work would map the energy function on greater variety of curves and document the 

occurrence of this problem. The curves for which the energy map exhibit any fall of energy 

should be closely examined to detect any irregularities in the curve definition. Most 

certainly, the problem comes from the ACIS function for interpolating data points with given 

knot values, used in this application. 

Figure 58: Energy function mapping Example 2 
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7.4 GA Energy Fairing 

The manual parameter optimisation algorithm in the previous paragraph is applied to an 

automated optimisation process that finds the optimum knot vector given a set interpolated 

set of data points. The optimisation criterion used for evaluation is the curve’s total energy. 

On the grounds that a smoother curve has less internal energy than a bumpy curve, the hopes 

are that an optimum set of parameter values, which produces a curve whose energy is 

minimum, can be found by an optimisation algorithm. 

7.4.1 Variable bounds 

The knot vector is the GA variables. Initial knot values are the cord length parameterisation, 

these are bounded in a manner so that the knot intervals never overlap:  

Knot[0]>knot[1]>knot[2]>…..>knots[I]>….>knot[n-1]> Knot[n] 

The first and the last knot are kept constant throughout the process, therefore these are not 

bounded. The bound definition start at knot[1] and finish at knot[n-1]. The bounds are set as 

half the interval between the previous and the next bound minus the smallest value possible, 

which is the system resolution, to fulfil the strict inequality constraints. 

Arrayr lowerbound(n); 

lowerbound[0] = 0; 

lowerbound[1] = start_param+resabs; 

lowerbound[2] = param[1]+(param[2]-param[1])/2+ resabs; 

lowerbound[3] = param[2]+(param[3]-param[2])/2+ resabs; 

lowerbound[i] = param[i-1]+ (param[i]-param[i-1])/2)+ resabs; 

lowerbound[n] = param[n-1]+ (param[n]-param[n-1])/2+ resabs; 

Arrayr upperbound(numvar);  

upperbound[0] =0; 

upperbound[1] =param[2]-(param[2]-param[1])/2- resabs; 

upperbound[2] =param[3]-(param[3]-param[2])/2- resabs; 

upperbound[i] =param[i+1]-((param[i+1]-param[1])/2)- resabs; 

upperbound[n-1] =end_param-resabs; 

upperbound[n] =0; 

Some precautions should be taken in the event one or several optimum knots values fall 

outside the bounds which are estimated from cord length. The bound should be re-initialised 
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through the optimisation, based on the best solution found so far. This can be seen if a 

solution is found with knots close to the bounds. 

7.4.2 Validation 

A series of examples with features are taken to validate the parameter optimisation 

algorithm. Curves with high curvature gradient are undoubtedly the most challenging for 

Spline modelling. A representative example is of that feature is a curve going through a 

sharp 90° corner. The first model is set to interpolate a single knotted curve through three 

placed around a corner. The problem increases in complexity by adding interpolation points, 

they constrain the curve through more points thus restrain its freedom. The addition of 

geometric constraints result in making curves wiggle between points. In this experiment the 

number of variables taken by the GA, i.e. knot values, is pushed up to four.  

Example 1 

The first model is set to interpolate a single knotted curve through three points placed around 

a corner. 

const position pt1  (0, 0, 0); 

const position pt2  (100,0, 0); 

const position pt3  (100, 100, 0); 

The curve is a cubic spline therefore the curve has one internal knot and therefore is a 

convex curve. From the point coordinates, the chord length parameterisation sets the knot 

parameter value at the middle of the parameter range.  

energy = 0.017471 

knot vector = {0,0.5,1} 

The curvature compound in Figure 59 shows that the fin is around the outside of the curve 

and there is no change in the normal direction, which proves that the example curve is 

consistent with its definition.  



Chapter 7 Spline Curve Construction and Optimisation 

Page 120 

Figure 59: Original Example 1 

The GA is set to its normal parameters and a test function is created to map the energy 

against the parameter value. The plot Figure 60 shows that the minimum energy is in the 

region of 0.5 on parameter value scale, which is what chord length parameterisation has 

indicated. Also the amplitude of energy between the best and the worst case is less than 0.01 

with a ratio of 2. This indicates that the search space has low gradient and that could cause 

some problems for the GA. 

Figure 61 shows the chronological events of the GA population. The energy recorded for 

individual does not seem to decrease. The solutions never are below 0.01 and the population 

appears to converge towards that limit which looks like a Pareto front. There are two 

possibilities, either the GA finds an optimum very rapidly and the rest of runs are redundant 

or the GA does not converge at all solutions are made randomly.  
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Figure 60: Evaluation  function mapping Example 1 

Figure 61: Energy GA converge Example 1 
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Example 2 

This curve is obtained from five points placed in symmetrical square shape. The curvature 

compound fin in Figure 1 shows a concentration of curvature around the sharp corner with a 

swing in normal orientation on either side of the corner. 

const position pt1  (0, 0, 0); 

const position pt2  (50,0, 0); 

const position pt3  (100, 0, 0); 

const position pt4  (100, 50,0); 

const position pt5  (100,100 , 0); 

The points are equally spaced along the x and y axis and the chord length parameterisation 

for this curve is as follows.  

knot vector = {0,0.25,0.5,0.75,1} 

Figure 62: Original Example 2 Figure 63: Optimised curve Example 2 

Figure 63 shows the best solution found by application on the GA run. It would appear that 

the optimised curve is not any better than the original curve, it displays a more pronounced 

belly shape before the corner and a tighter line just after the corner. 

energy = 0.013016 

knot vector = 0,0.286111,0.50371,0.713889,1 

The energy values in Figure 64 are grouped in a region of 0.9, and some individuals are 

unexpectedly better than the majority. Like in the previous example, the GA does no show 

any sign of converging.  
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Figure 64: Energy plot  Example 2 

The best five solutions are these: 

energy = 0.0141671 

knot vector = 0,0.269206,0.555645,0.781508,1 

energy = 0.0135851 

knot vector = 0,0.246667,0.511129,0.702619,1 

energy = 0.0135633 

knot vector = 0,0.286111,0.474032,0.674444,1 

energy = 0.013518 

knot vector = 0,0.263571,0.466613,0.663175,1 

energy = 0.0131302 

knot vector = 0,0.252302,0.466613,0.696984,1 

energy = 0.0130643 

knot vector = 0,0.297381,0.50371,0.730794,1 

It is interesting to notice that a significant change of the parameter values results in small 

variation of the curve’s energy. And as we know from paragraph 7.2, parameter distribution 

has great effect a curve’s overall shape. It could be that the system has too much freedom 

and is undetermined. Another experiment with added constraints is needed to validate the 

conclusions on this application.  
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Example 3 

This curve is similar to the previous example but it is constrained to interpolate one more 

point around the corner. The extra constraint should reduce the solution search space, thus 

helping the GA to converge but increasing the number of variables.  

const position pt1  (0, 0, 0);   

const position pt2  (10,0, 0);   

const position pt3  (29, 0, 0);   

const position pt4  (31, 2,0);   

const position pt5  (31, 31, 0);   

const position pt6  (31, 41, 0);   

The initial chord length parameterisation shown below produces the curve in Figure 65. The 

shape is wiggly symmetrically from the doubly constrained corner.  

knot vector = {0,0.14,0.4,0.44,0.85,1} 

Figure 65: Original Example 3 

The GA is set to run 50 individuals for 50 generations. Two of the top five solutions are 

studied. The best individual the GA has produced is the knot vector below. 

energy = 0.0389927 

knot vector = {0,0.125303,0.419407,0.492229,0.777902,1} 
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The curve Figure 66 is created from these values shows a reduction in curvature around both 

ends while making a sharp turn around the corner. The curve exhibits less of a wiggly shape 

than the original cord length parameterised. 

Figure 66: Optimised curve Example 3 run 1 

Another GA run retuned a different knot vector for quite a similar energy values than the 

first run: 

energy = 0.0382332 

knot vector = {0,0.158246,0.392588,0.439407,0.855499,1} 
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Figure 67: Optimised parameter curve GA run #2 

The shape obtained from these values is more rounded than that from the first run and yet the 

energy is quite similar over the curve. Clearly, the optimisation shows unpredictable results 

that can come from the ineffective energy measure. Similar results were found by Mussa 

[76] who used an energy fairing algorithm powered by a GA, only in his algorithm, the 

curve’s point coordinates were variables. 

7.4.3 Discussion 

it was observed in the curve construction process, that parameter distribution along the curve 

has a strong effect on the result of the construction. Chord length parameterisation is suitable 

to most applications, but for industrial purposes more options on the curve parameterisation 

must be available. 

This application has made an attempt to optimise parameter distribution through a measure 

of the total curve energy. The results of experiments have shown that the algorithm fails to 
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produce improved shape. It is questionable whether the GA cannot deal with the problem or 

the reasoning of this curve optimisation algorithm is flawed. This application is particular in 

the way that variables are dependent of each other: one variable change influences the 

balance of parameter distribution of the curve, and this is pushing the GA to its limit. 

Furthermore there is no guarantee that the optimisation process is sound: Example 3 has 

uncovered that individuals with energy close enough to be considered equal can produce 

shapes radically different. There is a curve with a minimum energy that satisfies a set of 

constraints but a parameter distribution algorithm driven by a genetic algorithm has not 

found it. 

 Still, as shown in paragraph 7.2, the interactive manual optimisation gives control on the 

shape modification and produces consistent results. It could be envisaged to convey the 

curve’s total energy to the user as he modifies the knot values on the screen. This would give 

the user some information on the achievement of the optimisation. Because the total energy 

measure does not reflect the curvature distribution, it is necessary to look at the curvature 

compound fin as well.  

7.5 Interpolated Splines 

7.5.1 C2 Cubic Spline 

Because of the equations binding the number of knots and control points in a spline curve, its 

construction from a given set of knots and associated knot vector leads to an 

underdetermined system of linear equations, Farin [45]: 

number of knots = number points + curve degree – 1 

In the case of a cubic, the above equation results in two undetermined unknown. In order to 

add more equations to the system, end conditions are specified. Intuitively, it is apparent that 

something is missing: with cubics, the slope of the curve at each joint is determined from the 

continuity constraints between the two spans meeting at the knot. But what happens at the 

end points, where there is no continuity. The answer to that problem is to define vectors at 

the end points that will emulate continuity. 
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There are several possible ways of defining end conditions. The clamped end condition 

corresponds to the prescription of two derivatives that are taken from first two control points. 

Another end condition called natural specifies that the second order derivative is zero at the 

end points. Yet another technique called Bessel fits a quadratic through the first three data 

points and uses the first derivative of the quadratic as an end vector for the cubic. 

The choice of end condition in cubic spline interpolation only affects the curve near to the 

end points. They do not matter so much in the interior. 

Interpolated splines have the property that changing the position of one of the interpolated 

points will result in changing the overall shape of the curve, Figure 68, although the 

amplitude of this change reduces fairly quickly with distance from the change point. This 

can be a problem when trying to optimise a curve: Some improvements in one place might 

destroy it in others. We shall see later how a heuristic optimisation algorithm copes with 

that. Other curve construction methods especially those with Bézier control polygons allow 

local changes. These techniques are now reviewed in the following paragraphs 

Figure 68: Global shape change with spline curves 
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7.5.2 Hermite Interpolation 

In paragraph 5.3.2, it was established that Hermite polynomials hold differential constraints 

explicitly. It is therefore possible to construct piecewise curves with guaranteed continuity 

between curve segments, as shown in Figure 69. 

Figure 69: Piecewise Hermite interpolation with tangent continuity 

Unlike the B-spline model, Hermite interpolation allows modifying the internal constraints; 

hence offers more control on the curve’s shapes. An example of this is illustrated in Figure 

70 and Figure 71, where the tangents at the knots are modified both in magnitude and 

direction. 

Figure 70: Hermite interpolant with varying tangent magnitudes 

Segment 1
Segment 2

Segment 3
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Figure 71: Hermite interpolant with varying tangent directions 

In practice a cubic Hermite segment [ ]ba, requires the positions coordinates, the first 

derivative and the second derivative vectors at a and b. Because of the arbitrary 

parameterisation, the derivative vectors are not unit vectors and further are not representative 

of the tangent and normal respectively. Therefore some jugglery is needed to represent the 

constraints as tangents and normals graphically, so that they can be modified from the 

graphic interface. 

• Input the position constraints 

• Interpolate a cubic spline through these 

• Get the first and second derivatives (b)(a), P(b), P(a), PP ''''''  

• Evaluate the magnitude of the derivatives (b)P, (a)P, (b)P, (aP ''''')'  

• Reparameterise and normalise the derivatives to get the tangents T(a), T(b), and the 

normals N(a), N(b) 

• Scale the tangents and normals 

(b)Pb, N(a)Pa, N(b)Pb, T(aPaT '')('')(')()')(  

• Display as line segments the constraints which can be modified both in direction with 

a rotation and magnitude with a scalar 
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• Apply the rotation and scale transformations to the derivatives 

(b)(a), P(b), P(a), PP ''''''  and construct a polynomial that satisfies the prescribed 

constraints. 

7.6 Conclusions 

This chapter has concentrated on the optimisation of construction constraints such as 

parameterisation and differential properties. This has led the research to propose algorithms 

that can give extra control on the curves shape.  

The first idea put forward is providing handles on knot values through the graphic interface. 

It has the advantage of providing an easy straight forward handles on the parameterisation of 

curves. The major difficulty for the user it to have an idea of result before changing some 

values. The total energy measure is brought in the application to give an indication on the 

outcome of the optimisation: a smooth curve has less energy than a curve with sharp corners. 

An optimum parameter distribution can be easily found with curves that embrace one or two 

variables, but with more variables the problem can get too complex to be dealt with 

manually. Some problems more specific to the knot interpolation functionality have been 

uncovered. Irregularities in the energy map were found with symmetrical curves 

parameterised in the way that the sum of the knots internal knots equals the value of the last 

knot. Further investigations on the matter are needed to establish the root of this problem.  

To answer the problem of complexity, an automated parameter optimisation driven by a GA 

is proposed uses the total energy formulation as evaluation criterion. This method however 

gave poor results and it has proven difficult to establish the exact cause of the problem. The 

examples have opened questions on the GA’s ability to deal with problem features such as 

interactive variables as well as on the validity of the total energy formulation. 

Other internal constraints are put forward to the user through the graphic interface. These are 

the curves differential properties at the knots points, which are used as constraints in Hermite 

interpolation. There is nothing new here, similar methods are present in CAD systems like 

SURFACER [108]. 
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The work undertaken in this chapter leads to the conclusion that the NURBS formulation is 

most useful for interpolating data point coordinates together with other internal constraints 

such as parameter distribution and derivative constraints. However tweaking the NURBS 

construction constraints has limited scope: The construction constraints identified as 

influential on curves’ geometry are applicable at discrete points. The curve optimisation 

applications laid in this chapter have gambled on the fact that handles on curves’ constraints 

would achieve better control on their shape. It was proven that more advance shape control 

could be achieved, but they are not necessarily helping the fact that NURBS are difficult to 

control. This is not all for curve optimisation, the alternative to NURBS representation is 

Function Representation (F-Rep), introduced in paragraph 4.3, supports global constraints. 

In the next Chapter, new curve optimisation applications are created using F-Rep for 

representing curves and constraints. 
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Despite efforts to broaden NURBS geometric handles in Chapter 7, NURBS is thought to be 

limited because constraints are applied locally and interpolated. The curve optimisation 

applications showed that the NURBS representation was not satisfactory to achieve 

optimisation and this chapter proposes alternative curve optimisation schemes using 

continuous vector functions for the representation of the differential properties. The basic 

idea carried out in this chapter is to use function representation of differential constraints in 

curve optimisation processes.  

8.1 Curve Projection 

Visualising three-dimensional geometry on a conventional 2D monitor screens can be 

difficult, and projecting three-dimensional objects onto two-dimensional planes can help 

understanding better the design.  

Projection 

Given a parametric space curve P(u)={X(u), Y(u), Z(u)}, Three 2D curves are created by 

setting in turn one of the components to null as follows. 
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Boxing 

A bounding box parallel to the X,Y,Z axis that totally encloses the curve is created, This box 

is used to determine the faces on which the curve is projected. 
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Figure 72: Curve Bounding Box 

Implementation 

Each component of the curve vector are extracted and copied in separate LAWs using the 

trem_law() ACIS LAW class member function. The arguments are the curve’s LAW 

position_vector followed by a number that indicates which vector component (term) is 

returned; 1 is X, 2 is Y, 3 is Z. 

law* x_comp = new term_law(position_vector, 1); 

law* y_comp = new term_law(position_vector, 2); 

law* z_comp = new term_law(position_vector, 3); 

New arrays of LAWs are created from two extracted vector components and a third one set 

to zero. These arrays are used to create new vectors that represent the projected curves. 
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X_Y_projection 

law* x_y_array[3] = {x_comp, y_comp, zero}; 

law* x_y_proj = new vector_law (x_y_array,3); 

Y_Z_projection 

law* y_z_array[3] = {zero, y_comp, z_comp}; 

law* y_z_proj = new vector_law (y_z_array,3); 

Z_X_projection 

law* z_x_array[3] = {x_comp, zero, z_comp}; 

law* z_x_proj = new vector_law (z_x_array,3); 

Figure 73 illustrates the results of the projection algorithm described above. 

Figure 73: Projection in the X_Y and Z_X planes 

Reconstruction 

With the help of a geometric editor, one can modify a projection curve, i.e. two vector 

components, and subsequently reconstruct a curve from these and the third unchanged 

component. Only one projected curve should be modified at the time to ensure that one 

vector component is not modified in different projections. Also the projected curve should 

remain planar throughout modification, otherwise the third vector component would also be 

changed. This would cause a problem for reconstruction because the third component 

modification would not be taken into account. Figure 74 shows an example of direct 

modification of a curve’s projection in the Z_X plane. Here the Y vector component is kept 

unchanged, while the X and Z components are modified. 

3D curve

X_Y projection

Z_X projection
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Figure 74: Direct modification of projections and reconstruction 

Discussion 

The projection technique is useful to visualise on three planes the path of a 3D curve. It 

enables to see how much curvature and how much torsion there is. Also it is possible to 

change one of the projections and recreate a 3D curve. However this technique has obvious 

limitations with helical curves, the projection of one of these would not be helpful  

8.2 Prescribed Curvature Profile 

It is common engineering practice to visualise the curvature plot to detect imperfections or 

judge on the quality of curves. Designers have to modify the curve manually and check the 

curve again, this loop is repeated until a satisfactory result is achieved. This paragraph aims 

to produce algorithms that can reconstruct a curve back from its intrinsic definition. The 

purpose of developing this modelling tool is to make reverse engineered curves from 

curvature and torsion profiles, hence cutting down the development time of curved models. 

Modified

Z_X projection
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Curve
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The theorem of existence and uniqueness introduced in Chapter 6 guarantee that given a 

non-vanishing curvature and torsion function, a solution curve exists and it is unique, up to a 

motion in space. Also null torsion curves are planar, and their shape is defined solely by the 

curvature profile, Aminov [3], Eisenhart [41], Weatherburn [120]. Two different methods are 

investigated and implemented in programs. The first application’s strategy is to generate a 

curve whose curvature profile matches the objective profile. For this a great number of 

curves are generated and tested against the objective profile. The optimum solution search is 

powered by a genetic algorithm plugged on the data points coordinates. The second 

approach is making use of function representation for modelling the curve’s intrinsic 

properties. New prescribed properties become constraints and algebraic algorithms can 

return to the curve definition. 

8.2.1 Genetic Algorithm Driven 

A GA driven optimisation algorithm for reconstructing curves from a prescribed curvature 

profile as constraint is proposed here. A complete listing of the programming details is 

included in Appendix 5 followed by tests performed on the optimisation process in 

Appendix 6. The objective of the optimisation is a target curvature profile prescribed by the 

user. A number of solutions named individuals are generated by the GA and are compared 

against the objective. The outcome of the algorithm is the best match to the objective.  

Optimisation Process 

Figure 75 describes in a flow chart the curve optimisation process with a GA. An initial 

curve is created by some means, typically by interpolating data points with a given tolerance. 

The curvature is evaluated at close parameter values and a general spline is interpolated 

through those points. A so-called curvature profile is then created and subsequently modified 

allowing capture of designer’s intent. The modified curvature profile becomes the target. The 

remaining tasks are finding a curve that comes close to the target profile. This is achieved by 

modifying iteratively the data point coordinates. The iteration is loop is a heuristic of the GA 

type. The optimisation process reveals that the algorithm is an automated trial and error 

approach to solve the problem. 
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Figure 75: Curve Optimisation process with GA 

Constraints 

Because of the theorems of existence and uniqueness, we know that one curvature profile 

can have a multitude of curves, all the same but with a different orientation in space. A 

motion composed of a translation and a rotation can give the curve its original orientation 

Eisenhart [41], Gibson [53]. Because the optimisation process works on a parametric model, 

some constraints are introduced to reduce down its freedom of movement. The constraints 

are applied to the curve construction data in order to orientate the model in space. 

• One fixed point stops 3 translations 

• One vector stops 3 rotations 

As a result of this, one point with the tangent direction at this point need to remain constant 

to ensure the orientation of the model. The starting point and its tangent are chosen to remain 

constant through out the process. Because tangent direction and curvature are related, 

keeping the start tangent constant the curvature profile start value must remain constant as 

well. 
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Test Curve 

A test curve is used through out the development phase of the algorithm. It is an  

interpolated cubic planar curve obtained from the following data points. The end tangent 

directions are kept null (natural ends with zero curvature). This curve is s-bent, the curvature 

profile is goes to zero before making a sharp turn with high curvature. Also to simplifies 

maters, the curve is 2D, the components in the Z axis are kept constant null. 

position pt1  (0, 0, 0); 

position pt2  (16,20, 0); 

position pt3  (20, 30, 0); 

position pt4  (40, 0, 0); 

Figure 76: Test curve with curvature profile 

Variable bounds 

GA variables are bounded by an upper limit and a lower limit. This restricts the GA to 

generate points within these bounds. The GA variables minimum and maximum values are 

set in the GA process for each component of the points coordinates. A wider variable bound 

results in a bigger search map and more work for the GA to converge. A null variable bond 

constrains the variable to remain constant. The listing below is the bounding of four data 

points. 
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double upper_limit [ ] = { 0, 0, 0,    // pt1, fixed point 

    5, 5, 0,   // pt2, Z fixed 

    5, 5, 0,    // pt3, Z fixed 

    5, 5, 0};   // pt4, Z fixed 

 

double lower_limit [ ] = { 0, 0, 0,    // pt1, fixed point 

    5, 5, 0,   // pt2, Z fixed 

    5, 5, 0,    // pt3, Z fixed 

    5, 5, 0};   // pt4, Z fixed 

 

Given an optimisation objective, it is not guaranteed that the optimum solution lies within 

the variable bounds. The obvious answer to this problem is to set sufficiently large variable 

bounds and hope that it encloses the solution. Still there is little way of checking that the 

algorithm has found the best solution or it has been constrained by the variable bounds 

outside the optimum. In the optimisation process paragraph 7.4.1, it is suggested that the GA 

is run more than once each new GA run takes the best results of the previous run as initial 

variable values with the same variable bounds.  

An experiment is set up to illustrate the problem of variables bounds. The algorithm is set to 

find a curve that is known in advance. First the GA is initialised with values and bounds that 

fall outside the solution. Second the GA is reinitialised with the values recorded from the 

first run. 

The target solution taken from the test curve is composed of four construction points: 

Target solution 

position pt1  (0, 0, 0); 

position pt2  (16,20, 0); 

position pt3  (20, 30, 0); 

position pt4  (40, 0, 0); 

The initial GA values together with their lower and upper bounds are chosen to fall outside 

the target solution.  

Initial values 

position pt1_ga  (0, 0, 0); 

position pt2_ga  (10,28, 0); 

position pt3_ga  (23, 22, 0); 

position pt4_ga  (40, 0, 0); 
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The intermediate solution, returned after the first run is shown bellow, clearly the variable 

bounds have prevented the GA from converging any closer to the solution. However when 

applying the variable bounds defined above, it is within range of the solution. 

Intermediate solution 

average_distance = 31.9274 

pt1_ga (0, 0, 0.) 

pt2_ga (14.8434, 23.1832, 0. 

pt3_ga (18.4668, 26.8695, 0) 

pt4_ga (40.3795, 0, 0) 

Now GA is re-initialised with the intermediate solution and the best solution returned after 

the second run is 10% off the known solution and the fitness values, average distance is 

reduced ten times. The GA should be able, in theory, to find the solution because it lies 

within the variable bounds.  

Final solution 

average_distance = 3.17459 

pt1_sol (0, 0, 0)    // fixed poit 

pt2_sol (14.7779, 18.3042, 0.1208) (7.64%, 8.48%, fixed) 

pt3_sol (19.9686, 30.461, 0.17876) (0.16%, 1.54%, fixed) 

pt4_sol (39.9934, 0.2498, 0)  (0.02%, -, fixed) 

Reinitialising the GA with an intermediate solution has proven adequate to come out of the 

variable bound restrictions. Still it, in a real-life scenario where there is no prior knowledge 

of the solution, it is not possible to determine how many times the GA should be reinitialised 

so that its bounded variables enclose the solution. Also in reverse engineering applications, a 

tolerance of half a millimetre is usually required on data points obtained from clay model 

digitising, if the user inputs a curvature profile that creates a curve outside the variable 

bounds, the input is not valid. There should be ways to constrain the curvature to ensure the 

solution curve fulfils the engineering tolerances. Under the current definition of the problem 

, there is no way to establish a relationship between the objective and the solution. And if 

there was such relationship, it would be used to find the solution directly 

Fitness and Evaluation Function 

the evaluation function is the sum of the distances computed between the curvature profile of 

the solution curve )(uf  and the target curvature profile )(uF . The distance between the two 
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curves is computed by dense sampling and averaging over the number of evaluation points, 

Equation 31. 

n

uFuf

Evaluation

n

u

)()(
0

−
=
∑

=  

Equation 31: Evaluation function 

The GA used in this application works to maximise the fitness: an individual with a high 

fitness value is close to the optimum. On the contrary, the objective of this optimisation 

algorithm is to minimise the average distance between two curves. For this reason, the 

fitness function is written as the invert of the evaluation function, Equation 32. Assuming 

that the average distance can be infinite, the fitness exists in the interval [0-1], 0 score is the 

worst and one score is the best. 

Evaluation
Fitness

+
=

1

1
 

Equation 32: Fitness function 

In order to establish the design variable sensitivity, a test case was set up: 

Ø  The optimum solution is known in advance, and these initials values are the optimum. 

Ø  The variables are modified incrementally and the fitness score is recorded for each of 

these. Only two variables are varied at the time. 

In Figure 77, the two variables in the bottom axes are data points and the fitness function is 

in the vertical axis. The fitness map shows the characteristics of a uni-modal optimisation 

problem. The test function is equal to one at it’s nominal values. As the variables move away 

from these values, the fitness values decrease. However it was found that the fitness function 

map was not steep enough: Great variation in variable values lead to small change in fitness 

value. And the GA convergence graph Figure 78, is not showing signs of convergence.  
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Figure 77: Fitness function test 

Figure 78: Convergence 
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Power Boost 

Since the solution range varies from zero to one, and sing the results from 2.4, the fitness 

function map can be made steeper by applying a power function.  

n










+
=

distance average1

1
Fitness  

Equation 33: Fitness Boosting 

A series of experiments, presented in Appendix 6.2, have studied the influence of fitness 

boosting on the GA performance. It was found that a the best results are produced for a 

power of three applied to the fitness. 

Figure 77 shows the effects of such boosting with a power three. The map shows a much 

steeper slope around the optimum. This will help giving the best individuals a much greater 

chance of selection and reproduction. 

Figure 79: Fitness function boosting with power three 
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The effect of the power boost on the GA convergence, illustrated in Figure 80, is 

considerable. The Pareto front is more pronounced and drops rapidly. Here the best solutions 

have an average distance in the region of 0.1 compared with 1 previously. The power boost 

has managed to reduce by a factor of 10 the average distance between the two curvature 

profiles.  

Figure 80: Convergence with boosting function 
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The aim of this section id to demonstrate how this algorithm is used to generate improved 

geometry. The feature curves introduced in paragraph 6.5.1 are used here to validate this GA 

driven curve optimisation algorithm. The following example curves exhibit features 

including planar and space curves, convex and S-bend. For each example, the GA 

convergence graphs are used to bench mark the GA performance. In addition, point 

coordinates are recoded in tables that show the modifications the algorithm has made to the 

curves. 
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Example 1 

The first example is the simplest curve that can be made. It is constructed by interpolating a 

cubic spline through three data points located in a plane. The fitted curve is convex and has 

natural conditions on either ends, so the curvature is zero at these points.  

position pt1  (0, 0, 0); 

position pt2  (5,20, 0); 

position pt3  (40, 0, 0); 

Figure 81: Original curve Example 1 

The curvature profile of the original curve, Figure 82, shows a concentration of curvature in 

the first half of the curve. The profile is modified to shift curvature in the second half of the 

curve. 

Figure 82: Modified curvature profile Example 1 
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The variable bounds are set to constrain the first and the last point as constant and all points 

‘z’ coordinate axis as constant. The bounds on the internal variable point are set wide 

compared with the coordinate values, this is for ensuring the solution is within the variable 

definition range. This should not damage the GA performance since there are only four 

variables in total. 

double upper_limit [9] = { 0, 0, 0,  

    50, 50, 0, 

    0, 0, 0}; 

 

double lower_limit [9] = { 0, 0, 0,  

    50, 50, 0, 

    0, 0, 0}; 

The convergence graph, Figure 83, shows a rapid conversion with a limit at one tenth of the 

unit. 

Figure 83: Convergence graph Example 1 
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Figure 84: Optimised curve Example 1 

The optimised curve drawn in Figure 84 has kept the same but it a mirror of the original. The 

curvature profile prescribed to shift the curvature at the end of the curve and the GA 

responded by moving the internal data point on the ‘x’ coordinate axis.  

Table 4: Results Example 1 

Original Curve 

Optimised Curve 

pt1_ga pt2_ga pt3_ga

X 0.0000 30.4741 40.0000

Y 0.0000 19.1301 0.0000

Z 0.0000 0.0000 0.0000

Original points

pt1 pt2 pt3

X 0.0000 5.0000 40.0000

Y 0.0000 20.0000 0.0000

Z 0.0000 0.0000 0.0000

Difference

pt1 pt2 pt3

X 0.0000 -25.4741 0.0000

Y 0.0000 0.8699 0.0000

Z 0.0000 0.0000 0.0000

GA points
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Example 2 

This example is the same set up as the previous example: The start and end points are 

constant only this time the internal point coordinates are all variable. This means that the GA 

can try to have non-zero ‘z’ coordinate and thus introducing torsion in the curve. No torsion 

profile has been prescribed therefore the solution curve is planar and the ‘z’ component 

value should be zero. 

double upper_limit [9] = { 0, 0, 0,  

    50, 50, 50, 

    0, 0, 0}; 

 

double lower_limit [9] = { 0, 0, 0,  

    50, 50, 0, 

    0, 0, 0}; 

The GA convergence is affected a great deal from this change of variables. Even though it 

has one more variable to deal with, the graph in  shows that the GA converges to the 

optimum more rapidly than in the previous example  

Table 5: Convergence graph Example 2 
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Table 6: Results Example 2 

The difference table shows that the second point ‘z’ component is nearly zero, the GA has 

found the correct answer with reasonable accuracy.  

pt1_ga pt2_ga pt3_ga

X 0.0000 35.0491 40.0000

Y 0.0000 19.4622 0.0000

Z 0.0000 0.2163 0.0000

Original points

pt1 pt2 pt3

X 0.0000 5.0000 40.0000

Y 0.0000 20.0000 0.0000

Z 0.0000 0.0000 0.0000

Difference

pt1 pt2 pt3

X 0.0000 -30.0491 0.0000

Y 0.0000 0.5378 0.0000

Z 0.0000 -0.2163 0.0000

GA points
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Example 3 

This curve is a planar S-bend curve made from the four following interpolated data points, 

see Figure 85. 

position pt1  (0, 0, 0); 

position pt2  (16,20, 0); 

position pt3  (20, -30, 0); 

position pt4  (40, 0, 0); 

Figure 85: Original curve Example 3 

Figure 86: Modified curvature profile Example 3 
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The original curvature profile, in plain line Figure 86, shows two picks of curvature and one 

point of inflection. The profile is modified to reduce the first curvature pick, in doted line. 

The modifications are applied locally to the curvature profile, only the first half of the 

curvature profile is modified, second half is kept the same. 

The variable bounds constrain the start point as a fixed point and all the points the z 

components to zero. 

double upper_limit [  ] = { 0, 0, 0,  

    10, 10, 0, 

    10, 10, 0,  

    10, 10, 0}; 

double lower_limit [  ] = { 0, 0, 0,  

    10, 10, 0, 

    10, 10, 0,  

    10, 10, 0}; 

The convergence graph, Figure 87 indicate that the algorithm converges, with some 

solutions evaluated below the one line. 

Figure 87: Convergence graph Example 3 
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The optimised curve, Figure 88, has a more rounded crest than the original curve, which was 

the desired outcome. Only the point in the affected area is modified, the optimised data 

points are recorded in Table 7, the difference with the original points show that the second 

point coordinates have been changed while the others are close of their original values.  

Figure 88: Optimised curve Example 3 

Table 7: Results Example 3 

Original Curve 

Optimised Curve 

pt1_ga pt2_ga pt3_ga pt4_ga

X 0.0000 12.7524 19.0729 38.6048

Y 0.0000 13.5537 -30.4664 -0.9365

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 16.0000 20.0000 40.0000

Y 0.0000 20.0000 -30.0000 0.0000

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 3.2476 0.9271 1.3952

Y 0.0000 6.4463 0.4664 0.9365

Z 0.0000 0.0000 0.0000 0.0000

GA points

Original points

Difference
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Example 4 

This curve is a space S-bend curve made from the four following points: 

position pt1  (0, 0, 0); 

position pt2  (10,10, 0); 

position pt3  (20, -10, 2); 

position pt4  (40, 0, 8); 

The inflection point is located in the middle of the curve and the torsion is concentrated at 

the end of the curve. 

Figure 89: Original curve Example4 

Figure 90: Modified curvature profile Example 4 
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The original curve’s curvature profile, Figure 90is not smooth and a more satisfactory profile 

is prescribed. The new profile, drawn in dotted line in Figure 90, accentuates the curvature 

picks and makes the profile more symmetric. 

The variable bounds constrain the start point as a fixed point but all coordinate components 

are bounded variables. 

double upper_limit [12] = { 0.02, 0.02, 0.02,  

    5, 5, 5, 

    5, 5, 5,  

    5, 5, 5}; 

 

 double lower_limit [12] = { 0.02, 0.02, 0.02,  

    5, 5, 5, 

    5, 5, 5,  

    5, 5, 5}; 

The GA convergence Figure 91 is less evident than in the previous example. In this example 

torsion has been introduced in the curve and the z axis data point components have been set 

as variables.  

Figure 91: Convergence graph Example 4 

Parameter 

Converge Example 4

0.1

1

10

100

0 500 1000

Individuals

E
v

a
lu

a
ti

o
n

Convergence Example 4 



Chapter 8 Intrinsic Curve Optimisation 

Page 157 

Table 8: Results Example 4 

The changes of point coordinates summarised in Table 8 unveil that the ‘y’ axis component 

of the second and third points are modified. The other variable have a lesser variation. 

 Figure 92: Optimised curve Example 4 

The result curve is in accordance with the prescribed curvature profile despite that the 

algorithm did not converge as much as it should to guarantee an accurate result. Because the 

curve is allowed to twist, there the torsion profile should also be formulated in the evaluation 

function. As it stands there is no facility in the GA to include a second, independent 

pt1_ga pt2_ga pt3_ga pt4_ga

X 0.0000 10.0070 20.0177 38.6048

Y 0.0000 4.8101 -5.8936 -0.9365

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 10.0000 20.0000 40.0000

Y 0.0000 10.0000 -10.0000 0.0000

Z 0.0000 0.0000 0.0000 0.0000

pt1 pt2 pt3 pt4

X 0.0000 -0.0070 -0.0177 1.3952

Y 0.0000 5.1899 -4.1064 0.9365

Z 0.0000 0.0000 0.0000 0.0000

GA points

Original points

Difference

Original Curve 

Optimised Curve 
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evaluation function. A compromise can be set up where by the two evaluation functions are 

merged in one larger evaluation function. This could be achieved by adding or multiplying 

the two evaluation functions, but it is uncertain it would produce the right results. This 

strategy is off course far from the definition of multi-objective optimisation. 

Discussion 

This optimisation algorithm works well and produce almost acceptable results. However the 

run time is too long to envisage this algorithm to be incorporated in a design process. It is 

doubtful that industrial designers would accept waiting nearly one minute every time they 

modify a curvature profile. Also a lot of adjustments to the GA’s parameters are required 

before it converges anywhere close to a solution. This point was mentioned earlier: it seems 

that another GA is needed to optimise the settings of the first GA. It was found, that if 

variables change decimal from one problem to another, the GA changes its behaviour 

noticeably and new settings are required. This is because of the way numbers are represented 

in a GA. The conversion from decimal to binary certainly causes problems. From the 

experiments conducted on this algorithm, it appears clear that the GA’s performance drops 

as the problem complexity increases. 

As it happens, during the development process of this algorithm, a little programming error 

was made in the evaluation function. In normal circumstances errors are easily spotted, a 

geometric modeller systematically returns error messages or returns a flag indicating the 

level of success achieved by a procedure, but in evolutionary computing, things are not as 

straight forward. In actual fact heuristics are able to do anything they are asked, even when 

the optimisation model is not mathematically sound, and it is incapable of telling if the 

operations it has made are valid or not. In this case, the optimisation algorithm was returning 

geometrically valid answers but that did not make much sense in the optimisation logic. For 

this reason countless tests on the evaluation function were made to try to understand the 

behaviour of the GA. 

A range of curves with features is used to validate this curve optimisation application. Quite 

noticeably, the more variables the GA is dealing with the less it converges. This can be seen 

in Table 9, which summarises the GA performance with increased number of variables. A 

nine variable problem is performing one hundred times less than a four variable problem. 
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Engineering applications such as curve reconstruction from digitised data can have cross 

section curves made out of several thousand points. In the light of the present results, the GA 

will not cope with that many variables, only pieces of curves can be optimised at a time. This 

is not an advantage, because designers want to be able to work on the whole curve not on 

fractions of it. 

Table 9: GA performance with increased number of variables 

The curves which are planar give better results than space curves for the same experiment 

configuration. While planar curves are solely defined by curvature functions, space curves 

are defined by the curvature and torsion functions. The application in its present form does 

not include torsion functions in its algorithm because the GA used here does not permit it. 

Including torsion function in the process would make the evaluation function double: one 

evaluation function for the curvature profile and another independent evaluation function 

from the torsion profile. And according to Roy et al. [99], we are in the presence of two 

evaluation functions, and the problem can be seen as multi-objective. On paper evolutionary 

computing is said to have wonderful capabilities: multi-objective, multi-modal, constrained 

(see Chapter 2). Researchers in the field Roy et al.[99] have shed light on real life 

optimisation promising a toolbox capable of handling a wide spectrum of problems. 

Unfortunately it has not been possible to find in Tiwari’s work [99] procedures dealing with 

multi-objective optimisation problems needed for the example space curves optimisation. 

Also the techniques developed in the present research on the convergence of solutions is 

nowhere mentioned in his work. 

Number of Variables 2 4 6 9

Best Solution 0.08 0.1 0.9 10
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8.2.2 Function Representation Driven 

The disappointing conclusions on evolutionary computing have led the research to seek 

alternative means for doing curve optimisation. It was established in paragraph 6.2.2 that 

function representation was suited to the representation of differential properties, thus for 

optimising curves. In this paragraph, the problem of the determination of a curve given the 

curvature and torsion functions is discussed. The answer leads to finding a solution to the 

Frénet formulae. Approaches for both planar and space curves are considered. 

Planar Curves 

A procedure for finding the position vector JsYIsXsP )()()( +=  from the curvature profile 

is proposed by Nutbourne [80] as follows: 

Equation 34 

X(s) is measured along the initial tangent T(0) and Y(s) is measured along the initial normal 

N(0). 

Implementing Equation 34 with ACIS poses some problems since it is not possible to 

perform symbolic integration of functions; the functionality offered by ACIS is limited to 

numerical integration. Equation 34 have been adapted to suit numerical integration: the first 

integral is replaced by a sum loop with an incremental parameter for s. 
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Equation 35: Numerical integration of )(tκ  

The problem with numerical integration is that approximation errors in X(s) and Y(s) are 

cumulated because of the sum as s increases, (see Figure 93). However it is clear that it 

would be possible to make an application that would reconstruct a curve from given 

curvature function with the procedure established by Nutbourne if symbolic integration was 

made available in a F-rep modeller. 

Figure 93: Curve reconstruction from curvature profile 

Space curves 

The case of space curves with non-null torsion function is more challenging, but several 

possible solutions have been found. 

The first approach to finding solutions to the Frénet-Serret formulae, proposed by Nutbourne 

[80], is to set up a third differential equation for the normal N(s) by eliminating the tangent 

T(s) and the Bi-normal B(s) from the Frénet-Serret relations. When the solution to the 

equation is found, the position vector can also be found by integration of the tangent T(s). 
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This can also be achieved by writing three orthogonal complex vectors which components 

are the vectors of a moving frame of the Frénet type. The solution is found by solving an 

equation of the Ricatti form. Mathematical details are available from differential geometry 

volumes, Aminov [3], Gibson [53], Eisenhart [41]. 

The coordinates of a curve P can be expressed with Taylor expansion theorem, Weatherburn 

[120], Farin [44]. In practice it is not possible to implement this, the Taylor expansion can 

only serve as ground for theoretical reasoning. 

Yet another NURBS approximation method is proposed by Wolters [122]. The technique 

attempts to approximate a curve by minimizing a metric defined in terms of curvature and 

torsion. This method is thought to be too complex to be implemented as it involved a lot of 

arithmetic due to the NURB representation. 

Discussion 

This attempt to recreate curves from prescribed curvature profiles was partially successful 

because the functionality exposed by the geometric modeller did not allow to accurately 

implement the theory in a functional application. Under the current functionality of ACIS, 

there is no possibility to perform symbolic integration. An substitute algorithm to symbolic 

integration was made up from incremental numerical integration, but could not perform well 

enough to produce acceptable results. However, given the right tools for the job, these 

algorithms have potential for success. 

With the example of curves, a generic representation takes the natural equations (curvature 

and torsion), which give a unique solution independent of the coordinate system. Function 

representation avoids polynomial interpolation and provides a true definition of the 

geometry. From an optimisation point of view, this scheme is attractive as it implicitly holds 

properties that can be accessed directly without having to perform any property interrogation 

procedures. It was said that function representation is not efficient but the efficiency lost 

with the representation is largely regained when doing optimisation. 
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8.3 Prescribed Compound Fins 

In paragraph 6.3.2 compound fins were introduced. The aim of this paragraph is to illustrate 

techniques prescribing compound fins and finding in reverse the corresponding curve. 

Unfortunately given a 3D curve, the normal vector of its normal fin compound is not in the 

same direction as the normal vector of the curve. The calculus below shows the 

mathematical details of this. Given a general space curve P(u) and with the assumption that 

the representative function is continuous at every point on the curve, the normal fin 

compound is obtained from Equation 25 and is called normal fin here for simplicity. 

)()( fin normal usNuP −=  

The tangent of the normal fin is obtained by derivation of the normal fin. 

By substitution with the help of the Frénet formulae, 

Equation 36: Derivation of 3D normal compound fin 

Equation 36 shows that the tangent of the normal fin compound has a term in the direction of 

the bi-normal of the curve itself. This system of equations has one too many unknowns; 

consequently it cannot be solved. The same problem occurs with the bi-normal fin 

compound. 

Curves for which the normals of the normal compound fin are in the same direction as the 

parent curve have been studied by Bertrand and Mannheim. These curves have curvature and 

torsion profile dependent, thus they are classifies as helices Nutbourne [80]. It is 

demonstrated in this paragraph that planar curves also have parallel normals with their 

normal compound fin. Therefore the projection technique introduced in paragraph 8.1 is 

used to reduce the dimensionality of space curves to planar curves. Finally, the 
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transformation of Combescure [80] is considered for with general space curves with 

independent curvature and torsion profiles. 

Projection Technique 

The problem of modification of compound fins stated above is tackled in here using 

projection techniques. The first step is projecting the subject curve into the three planes 

forming the orthogonal reference x, y and z as shown in Figure 94. Using Equation 25 given 

in paragraph 6.3, a normal fin compound can be applied to each of the projections. Because 

the projections are planar, the compounds obtained are in the same plane as the projections 

hence the bi-normal is constant null. 

At this stage the user can modify the profile of one compound at a time and it must remain in 

the same plane as the original compound and the curve. This later condition can be 

maintained by projecting the modified compound on the required plane. The compound 

modification allows the capture of the so-called designers’ intent. This means that a design 

can be generated from a prescribed normal vector distribution. From the prescribed 

compound, a new projected curve is produced. This is achieved by manipulating the Frénet 

formulae.  

formulaFrenet   theof help eon with thsubstitutiBy  

Equation 37: Derivation of 2D normal compound fin 
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Figure 94 Normal fin compounds of curve projections 

Equation 37 proves that with planar offsets, the normal vector field of a curve’s normal fin 

compound is in the same direction as the normal vector field of the original curve’s 

projection. The reciprocity explained above enables the reconstruction of a curve’s 

projection from a prescribed planar compound fin. By scaling the normal vector by the same 

factor and subtracting this from the prescribed compound, a curve in the projection plane is 

reconstructed and has for normal compound fin the normal compound fin prescribed by the 

user. The remaining task of reconstructing a 3D curve is achieved by constructing a 3D 

vector from the two vector components prescribed and the third unchanged component. 

Figure 95 illustrates the optimisation process. 

y

x
z

Normal 
Compound fin

X Z Curve Projection

Subject 

Curve



Chapter 8 Intrinsic Curve Optimisation 

Page 166 

Figure 95: 3D curve reconstruction from prescribed normal fin compound 

Combescure Transformation 

The name of Ed. Combescure was found in the archives in “Comptes rendus des séances de 

l’académie des sciences”. In the algebra section, Combescure writes on a theorem by M. 

Hermite relating to the transformation of equations [27]; it is the only reference to 

Combescure that could be found. Nutbourne [80] also state that he could not trace the name 

to any mathematicians and there is no evidence that M. Ed. Combescure is the originator of 

the transformation theorem presented in this paragraph, but there is a possibility because 

other volumes dated around the publication date of [27] include articles by Manheim, 

Bertrand, Chasles, Frénet and others whom are know for their work on differential geometry 

of curves and surfaces. Further research in the archive of the “académie des sciences” in 

Paris could uncover the mystery author’s identity. 

The Combescure transformation is applicable to deal with a wider range of curves. The basic 

idea is that the compound curve shares the same set of tangent vectors as the parent curve. 

From this property follows that the normal and bi-normal vectors are also parallel to that of 

the parent curve for points that are in one to one correspondence. 
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The Combescure compound fin vector Q(s) is described as a function of s and is obtained by 

adding the parent curve vector function with the Combescure transformation vector R(s). 

Equation 38 

The Combescure transformation vector can be expressed in the curve’s Frénet frame 

coordinate system. 

Equation 39 

Where a(s), b(s), c(s) are functions of the arc length of the parent curve. Differencing 

Equation 39 gives 

Equation 40 

The tangents have to be parallel so the following conditions must be met: 

Equation 41  0)()()()()(' =−+ sscsksasb τ  

Equation 42   0)()()(' =+ ssbsc τ  

Equation 43   1)]()()('1*)[( =−+ sksbsadsds  

The character * denotes the compound fin. 

A particular example where b(s)=0 is of particular interest: 
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From Equation 39, )()()()()( sBscsTsasC += , and because b(s)=0, from Equation 42 

c’(s)=0 so c(s)=C a constant. And therefore from Equation 41 )()()( ssCsa κτ= . 

Substituting these results in Equation 39 gives 

Equation 44 

Each point on the parent curve are moved in the rectifying plane along the vector R(s). 

Further more it is easy to see from the demonstration above that the inverse of the 

Combescure transformation applied to the compound fin is the parent curve. However the 

Combescure transformation does not work for planar curves or in sections of null curvature 

because of the fraction in Equation 44. 

Discussion 

The examples of reverse engineering of compound fins described above, all suffer from the 

same drawback, that is the reconstruction of curves from higher differential order curves 

may induce irregularities rather than removing them. For example if the compound curve has 

a dent, the resulting curve from the reverse process will inevitably swing direction at the 

points of inflection. For this reason the compound fins should only be limited to curve 

inspection. For the purpose of optimisation, the curvature and torsion profiles are more 

appropriate. 

8.4 Conclusions 

In this chapter, intrinsic curve optimisation algorithms have been established as Curve 

Projection in paragraph 8.1, Prescribed Curvature Profile in paragraph 8.2 and Prescribed 

Compound Fins in paragraph 8.3. These algorithms have demonstrated the implementation 

of interactive curve optimisation using the fundamental theorems of differential geometry 

introduced in Chapter 6. Compared with other curve optimisation methods available in 

literature Farin [44], Sapidis [106], Ferguson [48], Anderson [4], Jones [65] and the 

)]()()}(/)([{)( sBsTsksCsR += τ
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application called Prescribed Curvature Profile driven by Genetic Algorithm which uses 

NURBS, the proposed use F-Rep for exact vector representation of curves, hence avoiding 

dealing with control points and the problems of interpolation. 

Compared with NURBS, continuous vector functions are more computationally expensive, 

but this drawback is largely overcome by the fact that the result of optimisation is guaranteed 

to be what the designer wants the first time. As far as the author is aware the proposed 

method is new and constitutes a small but significant advance in the field of curve 

optimisation. The F-Rep modelling functionality provided by ACIS did not fulfil the 

requirements for the applications implemented in this thesis. The limitations are justified by 

the fact that the F-Rep modelling capabilities in ACIS are designed for performing sweeps. 

The functionality needed for the curve optimisation applications have been created from 

existing functionality available within ACIS and the outcome is quite satisfactory. However 

for the purpose of curve recreation from prescribed intrinsic properties, symbolic integration 

is required, paragraph 8.2.2, and is not available from ACIS. In order to complete this work 

section, other math-specific tools combined with ACIS would provide the functionality 

needed to perform symbolic integration. Software like MATHLAB could be considered for 

this purpose. MATHLAB exhibits a C++ interface as well as a specific language interface. 

This reinforces the idea of flexible generic API put forward in this thesis 

Some of the algorithms presented in this chapter have been implemented according to the 

three-circle diagram presented in Figure 1. The applications make use of foreign 

functionality borrowed from different satellite function libraries. The functionality needed by 

the application is made available through an application programming interface. Beyond the 

potential usefulness of the curve optimisation applications developed within the framework, 

they have demonstrated the need for appropriate flexible interfacing between applications 

and functionality suppliers. 

. 
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Chapter 9 Application Programming 

Interface for Flexible Optimisation

The areas of design optimisation, geometric modelling, differential geometry have been 

identified early on as first-role actors of the framework. A first synthesis has been produced 

by innovative research in the optimisation of free form curves which required a combination 

of the three areas. These experiments have uncovered the need for flexibility in the 

framework architecture to integrate functionality from different sources into the framework. 

Studies in the interaction between the constituting fields has led to the determination, 

mapping and documentation of the requirements and solutions for the design of the 

framework. This part of the thesis contributes to further establish knowledge in the 

integration of flexible optimisation in the CAD environment through programming 

interfaces. 

The remaining work of this research is going towards a computer implementation of the 

framework. It was found that optimisation could be represented by evolutionary computing 

algorithms; still questions remain. A better possibility for optimisation is given by 

representing geometry with arithmetic functions. The geometric representation is 

encapsulated in a geometric modeller such as ACIS. As for CAD, after investigation the 

solution to create a new user interface using the Microsoft Foundation Classes together with 

ACIS was retained. A running application called HulaHoops was created to demonstrate the 

research findings, a description of the user interface in the form of a user manual is included 

in Appendix 8. 

The inter-disciplinary nature of this research has lead the research to study in ways to 

interface the constituting members of the framework. In the forthcoming discussions, these 

are called modules. The discussions that emerged from the work on design optimisation, 

geometric modelling and curve optimisation together with the solid modelling, interface 



Chapter 9 Application Programming Interface for Flexible Optimisation 

Page 172 

found in Djinn, Bowyer et. al. [16], provide a design framework of the Oli application 

programming interface (API). 

9.1 Framework Architecture 

This paragraph presents a survey of selected CAD systems’ architecture. Based on the 

requirements placed by the framework and the tasks set to perform, architectures models are 

proposed and discussed. 

9.1.1 Conventional Architecture 

At the initial stages, it was thought that a main stream turn-key CAD system would be used 

as a base framework for the research. Various CAD systems’ architectures have been 

investigated for this purpose. The results drawn from this experience are reported here. 

The UNIX platform was favoured over Microsoft, and the reasons put forward were 

processor speed and stability needed to run genetic algorithms. The down side of UNIX is 

the level of expertise required to set-up the environment. For example, setting-up the SDRC 

IDEAS open interface is a major task best left to professionals. The question of processor 

speed is relevant to conventional users that use a particular CAD system professionally for 

creating large 3D models. However for the purpose of research and development, flexibility 

is central. The Microsoft environment, far from being perfect, is flexible and intuitive, which 

are the qualities required for doing a research project. Another product from SDRC, 

IMAGEWARE SURFACER was considered as a replacement to IDEAS and this time the 

Microsoft environment was retained. Likewise the results were not satisfactory because of 

the architecture system’s architecture that is not suitable for doing advanced application 

development.  

The architecture of IDEAS as described in the documentation is presented in Figure 96. 

According to the diagram the open interface gives access to both the CAD model and the 

CAD system. In actual fact the so called open interface exposes the function headers of the 

user interface, but does not expose the geometric kernel. Some of the functionality necessary 

for doing optimisation was not available from the API. In particular interrogation 
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functionality and differential geometry was missing. This is was also found in other 

commercial CAD systems like and AUTOCAD and generally with old systems whose 

geometric kernel was originally developed in C language and have not been re-written in an 

object-oriented language such as C++. 

Figure 96: Conventional architecture 

Moreover, the absence of real API is confirmed by the presence of obsolete data 

communication protocols “client server” like CORBA or COM. In the eventuality such 

systems had to be used for this research, Figure 97 shows what the framework architecture 

would look like. The CAD system (and its geometric kernel) is separated from the 

application (in this case the Flexo project) by a wrapper software, which is in actual fact a 

communication protocol wrapped in patch code to establish the link between the two parties. 

This scenario is far from satisfactory to achieve integration of flexible optimisation within 

the CAD environment. 
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Figure 97: Conventional architecture strategy 

Under those circumstances, It was proven impossible to develop a working application for 

design optimisation. This discussion joins what has already been said in paragraph 3.8 about 

cooperation between CAD vendors and researchers. 

9.1.2 Modular Architecture 

In order to achieve the objectives of the research, another approach is undertaken: “kit 

CAD”, so to speak. This concept is a concept borrowed from the car industry, where a car is 

made of bits taken from different car models and assembled together to make a custom car. 

In the context of CAD, a kit CAD is made from various systems each of them serving a 

specific purpose. As already stated, ACIS is the underlying geometric modeller, an Open GL 

graphic interface supported by the Microsoft foundation classes (MFC), the Flexo 

optimisation toolbox and the Oli API for interfacing all these. In effect this strategy is 

exploding the traditional CAD environment into smaller systems independent from each 

other. The current trend in CAD is going towards this type of architecture; CAD vendors 

have understood that one CAD system could not enclose all the functionality required by the 

vast field of mechanical engineering. A new terminology called Computer Aided 

Engineering (CAE) has recently emerged out of the concept of the multidisciplinary 

Flexo A
P

I

User Interface

A
P

I

User Interface

USER

W
ra

p
p
e
r 

S
o
ft

w
a
re Geometric

Kernel

CAD 
Model



Chapter 9 Application Programming Interface for Flexible Optimisation 

Page 175 

requirements of engineering. Notably CATIA is structured in modules that the user can 

acquire on demand to perform some specific tasks. Nonetheless the API exposure remains 

limited making flexible interaction with outside applications difficult. 

Process Oriented Architecture 

In the Process oriented architecture, the applications processes are placed at the cross roads 

of all modules. Figure 98 shows that all modules have their own APIs, which exposes their 

functionality to applications. In this configuration, the applications are responsible for 

providing the modules with the right data. This involves making data type conversions every 

time the information is passed between modules. For example in the curve optimisation 

applications with GA in paragraph 8.2.1, the curves data points are represented as 3D 

coordinates in ACIS and as an array of variables in the GA. So the applications have to 

translate the data from the ACIS type to the GA type and vice versa. 

The problem with the process oriented architecture is that modules live independently and 

have no awareness of each other. For example an object’s geometric definition is stored in 

the geometric modeller but is also stored as an individual in the optimisation module and as 

a render in the graphic interface. The multiple existence of object representations without 

connection records causes some problems. If an object is deleted in one module, it won’t 

necessarily be in the others. In the best case it will cause a repetition of function calls for a 

query that has been already made before. Further, in the worse case applications or modules 

will make a function call on an object that has been deleted elsewhere. Similarly objects can 

be left without knowledge of their existence by the applications in some modules, the 

memory requested for these objects cannot be recovered and technically speaking the 

application is creating a memory leak.  
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Figure 98: Task oriented architecture 

Object Oriented Architecture 

The object oriented architecture takes advantage of the principles of object orientation to 

design a centralised interface. Unlike with the task-oriented architecture, the applications are 

no longer central. The central core is occupied by a collection of generic objects common to 

all modules, see, Figure 99. 

The common interface to all modules works like a switch board, establishing connections 

between modules on request. It is not necessary to store data in the interface, rather pointers 

to the data stored in the modules is recorded in the interface. The independent aspect of the 

interface is proven particularly useful to gain in flexibility. In some instances, curves are 

represented as NURBS or as functions for the purpose of optimisation. It is even possible 

that these two representations are implemented in different modellers. The discussions in 

Chapter 8 highlighted the fact that more than one modeller was needed and suggested using 

MATHLAB in conjunction with ACIS for differential calculus.  

This discussion corroborates the need for an interface independent of a particular modeller. 

A proposition is made to define interface objects on the basis of their geometric nature. The 

objects are not defined in terms of a particular representation paradigm, rather the API 
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supports associations with the objects representations across the framework. Access to the 

data is provided by attributes attached to the objects. As previously seen, the curve object 

can be represented geometrically as NURBS or as vector functions, which can be a 

differential representation of the curve (curvature, torsion). Non-geometric data are also 

supported, for example in the GA optimisation process, curves are evaluated upon some 

criteria and are given fitness values. This information is also included in the list of attributes. 

Figure 99: Object oriented architecture 

Top and Bottom Interface 

In the object oriented architecture model, the top interface is the first interface that is 

exposed to applications and modules. It is defined in terms of abstract geometric data and 

procedures. The implementation of these data is achieved by the functionality of the modules 

through their own APIs. This way the applications are not tied to any of the modules but to 

the generic interface. This guarantees that the applications still exist even if the modules are 

removed or replaced by others. 
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Discussion 

At the moment, commercial turn-key systems are not adequate for developing applications 

because their architecture is not designed for this purpose. Their APIs expose high level 

functionality, closer to the user interface than the geometric modeller. The limited 

functionality together with inappropriate documentation make these systems unsuitable for 

research exercises. The alternative to turnkey CAD systems is the making a custom 

environment out of separate pieces. The elements are chosen upon their API functionality 

and documentations. The needs to have a generic interface independent of all representations 

(geometric, optimisation, graphic) has been established. The forthcoming paragraphs are 

about the definition and elaboration of the interface proposed above. 

9.2 ACIS Interface 

The ACIS geometric modeller provides the geometry foundation for applications. These may 

interface to ACIS through Application Procedural Interface (API), C++ classes and in some 

cases Direct Interface (DI) functions. AICS also provides an interface to Microsoft 

Foundation Classes (MFC) for Microsoft Windows platform applications. 

API functions provide the main interface between applications and ACIS. An API is a 

function that an application calls to create, change, or retrieve data. An API function 

combines modelling functionality with application support features such as argument error 

checking and roll back . When an error occurs in an API routine, ACIS automatically rolls 

the model back to the state before that API routine was called. This ensures that the model is 

left in an uncorrupted state. ACIS guarantees API functions to remain consistent from 

release to release, regardless of modification to low-level ACIS data structures or functions. 

The class interface is a set of C++ classes that are used to define the ACIS model geometry, 

topology and other characteristics. The classes may be used by applications to directly 

interact with ACIS through their public and protected data members and methods. The 

ENTITY class is a base from which many ACIS classes are derived. It implements common 

data and functionality that is mandatory in all classes that are permanent objects in the 

model, although ENTITY does not itself represent any specific object. The ATTRIB class 
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which is derived from ENTITY, is used to derive specific attribute classes for the system and 

user attributes. 

Direct Interface functions provide access to modeller functionality without the additional 

application support features of an API. Unlike APIs, these functions are not guaranteed to 

remain consistent from release to release. DI functions are not available to access all of the 

functionality in ACIS. They are generally used for performing operations that do not change 

the model, such as enquiries. 

9.3 Flexo Interface 

The documentation written by Tiwari presented in Appendix 2 references the GA 

programming structure, but does not reveal the existence of an interface for the optimisation 

toolbox. The GA experiments produced in this research have shed light on functionality 

needed for GAs. These functions which name begin with prefix Flexo also have for origin 

the experiments on GAs reported in this thesis. 

9.4 Graphic and User Interface 

Microsoft Foundation Classes (MFC) consist of hundreds of classes designed to make 

Windows programming easier and quicker. MFC offers the convenience of reusable code, 

because many of the tasks common to all Windows applications are provided. 

The ACIS Microsoft Foundation Classes (AMFC) provide the code necessary to interface 

from ACIS to the Microsoft Foundation Classes. Most of the classes are derived from MFC 

classes with hooks into ACIS. In addition, several tool classes exist to facilitate operations 

that most applications require, such as camera movement, mouse movement, dragging 

operations, Boolean operations, and drawing lines, circles, and fillets. AMFC also contains 

wrapper functions to ACIS API functions. 

AMFC provides powerful means of creating the barebones structure of an ACIS based 

application. AMFC has been used in this research to create an ACIS based application called 
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HulaHoops. This application aims to validate the research findings reported in this thesis. 

These comprise of curve optimisation algorithms and the programming interface for flexible 

optimisation presented in this chapter. This contradicts slightly with the framework 

architecture model presented in paragraph 9.1 in the sense that AMFC shortcuts the 

independent Oli interface which makes the application tools dependent of the geometric 

modeller. This concerns the mouse event handler, the graphic display, the file manager. 

However the concepts of a generic interface and modular architecture remain valid. 

9.5 Oli Interface 

9.5.1 Objectives 

The Oli interface aims to define a set of abstract geometric data and procedures that different 

types of modellers can support in an uniform way. The primary purpose of the interface is to 

document the requirements placed by optimisation on it. The Oli API has focused on the 

functionality required for the optimisation of free-form curves. The underpinning 

implementation of the proposed API is proposed whenever the modules functionality 

allowed it. In the contrary, an abstract implementation is maintained but the routine takes no 

action. 

9.5.2 Background 

The Djinn interface [38] is a representation independent geometric interface for solid 

modelling. Djinn is has been designed and documented by consensus of application 

researchers and the UK Geometric Modelling Society. 

Djinn is a representation independent API in the sense that it is not written for a specific 

underlying geometric modeller. The novel aspect of Djinn is the specification of operations 

on point-sets. It supports a version of ‘cellular modelling’ in which there is no boundary 

representation or CSG structure visible at the API. Thus the Djinn API is specified purely in 

terms of the required functionality and data abstraction needed to support it; it is left to the 

underlying implementation to define how the that requirement is met. On the same ground, 

Djinn is not meant to support a particular application, but rather provides functionality for a 
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wide range of applications across the CAD/CAM environment. Djinn is a collection of 

documented functions that can support calls from applications to the modeller. 

The Djinn interface is used in this research as a guide line for the definition of the Oli 

interface. Some of the issues addressed by Djinn, which are shown to be relevant to the 

design of the present API are re-formulated for the purpose of this research. The scope of the 

Djinn interface has more width than depth: at the moment no implementation has been 

proposed, which leaves opportunities to further the research, especially in the area of 

optimisation and free-form curves. 

The Djinn specification identified that the diversity of representations of free-form geometry 

made the generic formulation of them a challenging task. Therefore it has chosen to provide 

support import of reference to external data through the top interface, and interrogation 

through the bottom interface. A set of procedures part of Djinn allow properties such as 

surface normals to be discovered. The discussions put forward in this paragraph 9.1 certainly 

go in that direction. Several representations of curves are needed by applications. NURBS is 

the most accepted format for curves and surfaces and is a convenient way to perform local 

operations on shape but is not suitable for a more formal approach to curve design and 

optimisation. Function representation (F-rep) is thought to hold more promises for 

systematic curve interrogation and reconstruction from prescribed properties. The opinion 

here is that F-rep is a far more generic representation paradigm than NURBS and it could 

very well serve the purpose of a generic interface for curve and surface modelling. 

9.5.3 Generic Interface 

The generic aspects of the Oli interface are formulated in the definitions, stated below, 

required for the functioning of the present framework regardless of the particular 

requirements of specific applications. However the discussion uses examples of research 

applications including the curve optimisation applications from the previous chapters. 

Precision and Formality in the definition of the API 

The Oli API is the specification of procedures that supports calls between a CAD modeller 

and some outside applications. The precision in the procedure definition is an issue that 
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needs looking at. The Procedures can be defined in different languages and levels of 

formality. The functional requirements placed by the application on the API and vice versa 

are documented; the procedures are defined with their implementation in computer language 

C++.  

Procedure Hiding 

The interface takes advantage of object oriented programming for hiding procedure 

implementations at the API. The interface exposes a list of functions and classes that 

applications can invoke and pass parameters to it. 

State 

The API state is defined by a single variable. A state variable is recorded each time a call is 

made to the API. This state variable allows the API can go back to its last recorded state at 

any point in time. It can also be used to return the original API’s state after a procedure was 

called and forced the API to an undesirable state. In some languages procedures need 

initialisation and finalisation, the state variable can provide state information to the 

procedures. 

Side-effects 

Procedures are said to have no ‘side effects’ when no data except arguments are accessed or 

altered. Arguments can either be input parameters or output parameters. Input parameters 

cannot be modified by a procedure, while data present in output parameters may be 

overwritten when a procedure is called. 

This issue is addressed by the Oli API since the Flexo toolbox extracts parameters from the 

geometry, modify the parameters and subsequently return them with new values. It is 

essential that parameters integrity is maintained when travelling through the API. 

Error Reporting 

It is essential in API design to look at error reporting. Some feed back information must be 

provided to report on the level of success achieved by any of the procedures.  



Chapter 9 Application Programming Interface for Flexible Optimisation 

Page 183 

Labels 

In the geometric modeller, pointers refer to each entity created and some memory space is 

allocated to store the entities. It is not good practice to give applications direct access to 

pointers; instead entities are named with labels referring to the objects. Interfacing object 

with labels is a safety measure to prevent applications doing illegal operations on the 

geometry and preserve the integrity of the model. 

Applications perform operations that might change the structure of the model. For instance, 

what happens when a Boolean operation is applied on an entity and the result of the Boolean 

is two separate objects? The application needs to keep track of the changes otherwise it 

might show the label referring to an object that does not exist anymore, or has been split into 

two.  

Looking back to Figure 99, which part of the model should take care of the labelling? One 

possible option is to assign a part of the API to labelling. Labels are made available to the 

applications to read only. Applications retrieve from the API (not the modeller) up-to-date 

information on the labels. This way, applications are kept independent of the modeller, 

easing implementation issues. 

Persistence 

It is expected that the API has some mechanism to remember its state as well as other data 

such as labels. The problem of persistence occurs when the API need to restoring its state 

when a new session is started. At another level, persistence is an issue since the API is 

modeller independent and different modellers might use different labelling conventions. A 

model imported from a different CAD system might reference entities otherwise than the 

implemented system. The API needs to be consistent in labelling and independent of 

geometric modellers. 

To overcome the problem of non-existing functionality from the Kernel API, Oli has 

concentrated on combining existing procedures as an attempt to make-up some functionality. 

The aim is to reduce the number of procedure definitions and therefore minimise the 

memory usage and increase efficiency. Moreover, combining procedures also reduces 

development time.  
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9.5.4 Scope of the Oli API 

Geometric Objects 

Geometric entities such as curve, surface and solid are considered for the generic 

specification of the Oli API. At an implementation level, free-form curve geometry is 

considered, this serves the purpose of case study for validating the API. 

Geometric Operations 

The geometric operations supported by the Oli API consist of curve modification 

procedures. For NURBS the geometric operations mainly consist of modification of the 

control points coordinates, tangency conditions at control points and parameterisation. For F-

rep curves geometric operations are offset transformations like the Frénet frame or the 

Combescure transformation.  

Properties 

Applications make calls to the modeller to interrogate object properties. Examples of 

properties for curves are curvature and torsion, Frénet frame and mass, moment of inertia for 

solids. Property interrogation is done through successive API function calls.  

Constraints 

Constraints are present everywhere in the framework. Constraints of geometric nature are the 

data points coordinates, tangency conditions, curvature, torsion. The geometric constraints 

are supported by the geometric modeller but their representation is defined at the API level.  

Attributes 

In the proposed framework, attributes are used for making associations between the abstract 

definition of objects in the interface and external data such as their geometric 

representations, optimisation definition and constraints. 
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Variables 

Variables are modifiable values that define the model geometry. The nature of variables 

varies with the type of geometry the application is dealing with. The optimisation application 

works on variables extracted from the model. The job of the API is to make variables 

accessible to applications. Optimisation places requirements on the API in terms of the 

number and nature of variables that are passed across. 
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Chapter 10 Procedure Definition

This chapter summarises the definition of the principal procedures implemented in this 

research. They are classified in two sections: those regarding GA optimisation and those 

regarding geometric operations. These procedures are used by the application software 

HulaHoops proposed by the author for demonstrating the findings of the present research.  

10.1 GA Procedures 

This list is the input / output parameters of the GA module. Note that a method for 

translating from the type position (inherited from ACIS) of 3D points to the type arrayr 

(array of real values). 

10.1.1 GA Process 

Input 

GA operators 

integer umber of generations 

integer Population sisze 

double Cross over probability 

integer Cross over level 

double Mutation probability 

Integer Mutation level 

Variables 

Integer Number of variables 

double resolution 

Translate (position vertices, array variables) 

Translate (initial vertices, array initial population) 

double upper limit 

Arrayr lower limit 
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Fitness function 

fitness function 

double power boosting start 

double power boosting end 

Output 

Individuals 

Translate (array variables, position vertices) 

double fitness value 

Solutions 

Translate (array variables, position vertices) 

Error error message 

File Debug files 

GA process Implementation 

This function takes in all the parameters to run the GA process and returns optimised 

variables. At the bottom the fitness function and fitness data methods are mentioned. These 

are invoqued by the algorithm to evaluate each individual. Inside these, the fitness function 

and evaluation function are inserted. As they are specific to an optimisation problem, the 

definition of the evaluation function is done by the application. 

void flexo_GA_optimiser( 

//input 

//GA operators 

 int nogen,  //number of generations 

 int popsize,  //Population sisze 

double crossp,  //cross over probability 

 int prcrossp,  //Cross over level 

 double mutp,  //Mutation probability 

 int prmutp,  //Mutation level 

    //Variables 

int nvertices,   //Number of variables vertices 

 double res,   //resolution (default resab  

     //inherited from geom kernel) 

 position initial_vertices[],//array of  initial positions 

 double upper_limit[],  //array of limits upper 

 double lower_limit[],  //array of limits upper 

 double power_start, 
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 double power_finish, 

     //Output 

 position opt_vertices[], //array of optimised vertices 

 char const* final_curve, //debug file 

 char const* converge  //debug file 

 ){ 

 ofstream outconverge (converge, ios::out ); 

 if ( !outconverge) {  // overloaded ! operator 

  cerr << "File could not be opened" << endl; 

  exit ( 1 );    // prototype in stdlib.h 

 } 

 

 Individual *oldpop[ 100 ]; 

 Individual *intpop[ 100 ]; 

 Individual *newpop[ 100 ]; 

 

 double power = power_start; 

 int lenstr = 0; 

 int maxdecpt = 0; 

 srand( 67 );          // generates true random numbers 

 int numvar = nvertices * 3; 

 

 input_parameters(popsize, nogen, crossp, prcrossp, mutp, prmutp, numvar); 

 

Arrayr lowerbound(numvar); 

Arrayr upperbound(numvar);     

Array lenvar(numvar); 

create_bounds_from_positions( upperbound,  

      lowerbound,  

      numvar,  

      initial_vertices,  

      upper_limit,  

      lower_limit); 

 

matrices( lenvar, upperbound, lowerbound, numvar, lenstr, maxdecpt ); 

 initialise( popsize, oldpop, lenvar, upperbound, lowerbound, lenstr );  

 initialise( popsize, intpop, lenvar, upperbound, lowerbound, lenstr ); 

 initialise( popsize, newpop, lenvar, upperbound, lowerbound, lenstr ); 

 for ( int i = 0; i < nogen; i++ ) { 

 roulette( oldpop, intpop, popsize, maxdecpt ); 

reproduction( intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp ); 

  for (int  j = 0; j < popsize; j++ ) { 

  *oldpop[j] = *newpop[j]; 

  outconverge << newpop[j]->fitdata() <<endl; 

  } 

  power = power + (double (power_finish) - double (power_start)) / double (nogen); 
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} 

} 

 

double Individual::fitdata() const{} 

double Individual::fitfun() const{} 

10.1.2 GA Translators 

GA translators are used to transform data from position type (3D data points inherited by 

geometric modeller) the to Arrayr type defined in the GA data structure and vice versa.  

The oli_create_positions_from_GA_variables() extracts positions from single element 

(index) of the GA population 

void oli_create_positions_from_GA_variables( 

 int nb_points, 

 Arrayr &Varval, 

 position new_positions[] 

 ) { 

  

 for (int i=0; i<nb_points; i++){ 

   new_positions[i].coordinate(0) = Varval[3*i]; 

   new_positions[i].coordinate(1) = Varval[3*i+1]; 

   new_positions[i].coordinate(2) = Varval[3*i+2]; 

 } 

} 

The oli_create_bounds_from_positions finction takes initial point coordinates and returns 

bounded GA variables.  

void oli_create_bounds_from_positions( 

 Arrayr &upperbound,  

 Arrayr &lowerbound,  

 int numvar,  

 position vertices_ga[],  

 double upper_limit[],  

 double lower_limit[] 

 ) { 

 

 for(int i = 0; i<numvar; i+=3){ 

   

 upperbound[i] = vertices_ga [i/3].coordinate (0) + upper_limit[i]; 

 upperbound[i+1] = vertices_ga [i/3].coordinate (1) + upper_limit[i+1]; 

 upperbound[i+2] = vertices_ga [i/3].coordinate (2) + upper_limit[i+2]; 
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 lowerbound[i] = vertices_ga [i/3].coordinate (0) - lower_limit[i]; 

 lowerbound[i+1] = vertices_ga [i/3].coordinate (1) - lower_limit[i+1]; 

 lowerbound[i+2] = vertices_ga [i/3].coordinate (2) - lower_limit[i+2]; 

 } 

} 

10.1.3 Parameter Bounds 

The Parameter Bounds function is used by the GA, it takes an array of knots and returns two 

arrays of bounded parameters.  

void flexo_parameter_bounds( 

        int npts, 

        double param[], 

        Arrayr lowerbound[], 

        Arrayr upperbound[] 

        ){ 

for(int i =0;i<npts;i++){ 

lowerbound[i] = param[i-1]+ (param[i]-param[i-1])/2)+ resabs; 

upperbound[i] =param[i+1]-((param[i+1]-param[1])/2)- resabs; 

 } 

} 

10.2 Geometric Modeller Procedures 

10.2.1 Creating Geometry 

Create Curve  

The Create Curve procedure take an array of data points, two unit vectors for start and end 

directions and a tolerance resolution. The procedure returns a curve of type bs3_curve 

inherited from ACIS that is reparameterised from 0 to 1. 

void oli_create_curve ( int nb_points, 

      position positions[], 

      unit_vector start_dir, 

      unit_vector end_dir, 

      double fitol, 

      double &actual_tol, 

      bs3_curve &bs3_label 
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      ) { 

  

 

 bs3_label = bs3_curve_interp (  

        nb_points, 

        positions, 

        start_dir, 

        end_dir, 

        fitol, 

        actual_tol 

        ); 

  

 double start = 0;  // start parameter 

 double end = 1;   // end parameter 

  

 bs3_curve_reparam ( 

       start, 

       end, 

       bs3_label 

       ); 

} 

Interpolate Knots 

The procedure takes an array of points to interpolate with an array of corresponding knot 

values and  tangent directions at the start and end curve as input. It returns an ACIS curve of 

type bs3_curve. 

void oli_interpolate_knots( int nb_points, 

       position positions[], 

       double knots[], 

       vector start_dir, 

       vector end_dir, 

       bs3_curve &bs3_label 

       ) { 

 

 bs3_label = bs3_curve_interp_knots (  

      nb_points, 

      positions,     
  

      knots, 

      start_dir, 

      end_dir 

      ); 
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 double start = 0;  // start parameter 

 double end = 1;   // end parameter 

  

 bs3_curve_reparam ( 

       start, 

       end, 

       bs3_label 

       ); 

} 

10.2.2 Discrete Curve Interrogation 

The discrete procedures for curve optimisation are the procedures that are used for spline 

representation curves. They are called discrete because they interrogate the geometry at a 

given parameter value. 

Curvature Analysis 

Given a number of points to sample, the curvature analysis procedure returns an array 

vectors on the curve that point in the direction of the normal of the curve and are curvature 

length. 

void oli_curvature_analysis( 

     int eval_pts, 

     vector curvature[], 

     position point[], 

     bs3_curve &bs3_label 

       ){ 

 

 double param_value = 0; 

 //evaluate curvature of 'myCurve' at a given parameter value 

 for ( int param_index = 0; param_index < eval_pts; param_index ++ ) 

  { 

  //returns position coordinates at a given parameter value 

  point [param_index] = bs3_curve_position ( 

      param_value, 

      bs3_label 

      ); 

 

  // curvature evaluation at same parameter value 
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  curvature [param_index] = bs3_curve_curvature (  

     param_value, 

     bs3_label 

     ); 

     

  //increment parameter value 

  param_value = param_value + 1/double (eval_pts - 1) ; 

 } 

} 

Curve Offset 

Curve Offset procedure take an array of points an vectors an returns a array of points that are 

the transformation of the initial points by the vectors. This procedure is used for making the 

compound fin properties of a curve after interrogation. For better visuals, a scale factor 

multiplies the magnitude of the vectors. 

void oli_curve_offset( 

   int eval_pts, 

   double scale_factor, 

   position point [], 

   vector analysis_vect [], 

   position new_point [] 

   ){ 

 

 for (int param_index=0; param_index<eval_pts; param_index++){ 

  new_point [param_index] =  

  point [param_index] += (analysis_vect [param_index]*scale_factor); 

 } 

} 

Position Distance 

The Position Distance procedure computes the distance between two curve at a given 

parameter value. This procedure is used in the optimisation process for evaluating a solution 

curve against a reference curve. The procedure returns an average of the sampled points 

distance as well as averages in x,y,z directions. 
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void oli_position_distance( 

       int eval_pts, 

       position point_ref [], 

       position point_var [], 

       double &average_distance, 

       double &average_distance_X, 

       double &average_distance_Y, 

       double &average_distance_Z, 

       double scale_factor 

       ){ 

 

  

 for (int i=0; i<eval_pts; i++){ 

  average_distance =  

  average_distance +  

  fabs(((point_ref[i] - point_var[i]).len())*scale_factor); 

   

  average_distance_X =  

  average_distance_X +  

  fabs((point_ref[i].x() - point_var[i].x())*scale_factor); 

   

  average_distance_Y =  

  average_distance_Y +  

  fabs((point_ref[i].y() - point_var[i].y())*scale_factor); 

   

  average_distance_Z =  

  average_distance_Z +  

  fabs((point_ref[i].z() - point_var[i].z())*scale_factor); 

 } 

 average_distance = average_distance / eval_pts; 

 average_distance_X = average_distance_X / eval_pts; 

 average_distance_Y = average_distance_Y / eval_pts; 

 average_distance_Z = average_distance_Z / eval_pts; 

} 

10.2.3 Function Representation Procedures 

Edge to Law 

Assuming that the starting point of the optimisation is an EDGE enclosing a general space 

curve created by standard means of interpolation, it is possible to generate a function 

representation of the EDGE. First, the underlying curve (geometry definition) of an edge 
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(topology definition) is obtained. The curve object is converted to a LAW object via some 

data wrapper. The implementation is enclosed in a function referenced ‘oli_edge_to_law(). 

void oli_edge_to_law(EDGE* edge_label, 

 curve_law*& my_curve_law){ 

double start = edge_label->start_param(); 

double end = edge_label->end_param(); 

// Get a copy of the curve 

curve *my_curve = edge_label->geometry()->trans_curve();   

// Create a curve_law_data wrapper. 

curve_law_data *my_c_law_data = new curve_law_data(*my_curve, start, end); 

// Create a curve law 

my_curve_law = new curve_law(my_c_law_data); 

}; 

Law to Edge 

This function is the invert of oli_edge_to_law(), it takes a LAW function and returns the 

corresponding EDGE.  

void oli_law_to_edge( 

      law* my_curve_law, 

      double start, 

      double end, 

      EDGE*& edge_label 

      ){ 

 

int law_number =0; // for future use   

law** other_laws =NULL; 

CK_OK(api_edge_law (  

    my_curve_law, 

    start, 

    end, 

    edge_label, 

    law_number, 

    other_laws)) 

} 

Natural Representation of Curves 

The natural representation of curves introduced in paragraph 0 could not be implemented 

with ACIS because of the absence of integration capability on LAWs. However a virtual 
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function is documented here. This function takes curvature and torsion LAWs, a starting 

point (for positioning in coordinate space) as input and returns a curve LAW as output. 

Oli_curve_natural_rep( 

   law* curvature_law, 

   law* torsion_law, 

   position start_point, 

   law* curve_law) 

10.2.4 Continuous LAW Interrogation 

Frénet Frame 

At this stage a function representation of the curve is available, many operations can be 

carried out with the help of the LAW class methods and functions. An implementation of 

The Frénet-Serret algorithm in paragraph 6.1.4 is presented below. The outcome of the 

function is four continuous functions including curve direction, curvature vector, curvature, 

torsion vector and torsion.  

void oli_Frenet_frame_law(     law * position_vector, 

        law *&tangent, 

        law *&curvature_vector, 

        law *&curvature, 

        law *&torsion_vector, 

        law *&torsion){ 

 

// get the first derivative 

int which =0; 

law *first_deriv = position_vector-> derivative ( which); 

//the tangent nomalised vector is: 

tangent = new norm_law(first_deriv); 

 

// ds/du = ||P'(u)|| 

law* point_five = new constant_law(0.5); 

law* ds_du = new dot_law (first_deriv,first_deriv); 

ds_du = new exponent_law(ds_du, point_five); 

 

// dT / ds = kN 

law* dT_ds = tangent->derivative (which); 

 

//dT/du 

law* dT_du = new division_law (dT_ds, ds_du); 
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curvature_vector = dT_du; 

law* normal = new norm_law (dT_du); 

oli_law_length(dT_du, curvature); 

 

// dN/ds = tB - kT 

law* dN_ds = normal->derivative(which); 

law* dN_du = new division_law(dN_ds, ds_du); 

law* kT = new times_law(curvature, tangent); 

law* tB = new plus_law(dN_du, kT);  

torsion_vector = tB; 

law* bi_normal = new norm_law(tB); 

oli_law_length(tB, torsion); 

 

// dB/ds = -tN 

law* dB_ds = bi_normal->derivative(which); 

law* dB_du = new division_law(dB_ds, ds_du); 

law* torsion_check = NULL; 

oli_law_length(dB_du, torsion_check); 

logical Error = torsion==(torsion_check); 

torsion_check = new negate_law(torsion_check); 

if (Error = false ){cout << "Error <Torsion not determined>"<<endl;} 

} 

Vector Length 

A function that computes the length of a vector is also created. 

void oli_law_length(law* in_law, law*& out_law){ 

 

law* x_term = new term_law(in_law,1); 

law* y_term = new term_law(in_law,2); 

law* z_term = new term_law(in_law,3); 

 

law* two = new constant_law(2); 

law* x_term_sq = new exponent_law(x_term, two); 

law* y_term_sq = new exponent_law(y_term, two); 

law* z_term_sq = new exponent_law(z_term, two); 

 

law* plus_1 = new plus_law (x_term_sq, y_term_sq); 

law* plus_2 = new plus_law (plus_1, z_term_sq); 

 

law * point_five = new constant_law (0.5); 

out_law = new exponent_law (plus_2, point_five); 

} 
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Singularities 

Also it is desirable to implement some mechanism that checks if the derivative of the 

function actually exists. This ACIS LAW class method is used to specify where in the given 

law there might be discontinuities. The array notes where the discontinuity occurred. The 

type indicates 0 if there is a discontinuity, 1 if the discontinuity in the 1st derivative, and any 

integer n if the discontinuity is in the n-th derivative. -1 means that it is not defined. In 

presence of a discontinuous function, an error message is retuned. 

public: virtual int law::singularities ( 

double** where,    // where discontinuity exist 

int** type,     // type of discontinuity  

double start = -DBL_MAX,   // start  

double end = DBL_MAX,   // end  

double** period = NULL   // period 

 ) const; 

Projection 

The projection procedure takes a multidimensional LAW function as input. The X,Y,Z terms 

are extracted from the LAW for constructing three projections in the X_Y, Y_Z and Z_X 

planes as outputs. 

void oli_projection ( law* in_law, 

   law*& x_y_proj, 

   law*& y_z_proj, 

   law*& z_x_proj, 

   ){ 

 

law* x_comp = new term_law(in_law, 1); 

law* y_comp = new term_law(in_law, 2); 

law* z_comp = new term_law(in_law, 3); 

 

law* zero = new constant_law (0); 

//law* zero = NULL; 

 

law* x_y_array[3] = {NULL}; 

x_y_array[0] = x_comp; 

x_y_array[1] = y_comp; 

x_y_array[2] = zero; 

 

x_y_proj = new vector_law (x_y_array,3); 
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law* y_z_array[3] = {zero, y_comp, z_comp}; 

y_z_proj = new vector_law (y_z_array,3); 

 

law* z_x_array[3] = {z_comp, zero,x_comp}; 

z_x_proj = new vector_law (z_x_array,3); 

} 

Energy Formulation 

This function takes a pointer to an entity of type EDGE, gets its LAW representation, 

evaluate its curvature and numerically integrate the squared curvature from the parameter 

bounds. 

double oli_curve_energy( 

EDGE *edge_label, 

double start, //start parameter for energy eval  

  double &energy, //end parameter for energy eval 

  double fitol 

  ){ 

 

law *my_curve_law = NULL;  

oli_edge_to_law(edge_label, my_curve_law); 

law *my_curve_law = new curve_law(my_c_law_data);  

 

//make curvature law 

law *my_curvature_law = new curvature_law(my_c_law_data);  

 

//make it squared 

law *energy_law = new times_law(my_curvature_law,my_curvature_law); 

 

int min_level=2;  // optional minimum   

int* used_level =NULL;  // optional number of   

  

api_integrate_law ( my_curvature_law, 

       start, 

       end, 

       energy, 

       fitol, 

       min_level, 

       used_level 

       ); 

// clean up memory.   

my_c_law_data->remove(); 

my_curve_law->remove(); 

my_curvature_law->remove(); 
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energy_law->remove(); 

 

return energy; 

}; 

10.2.5 Parameterisation 

Cord Length Parameterisation 

This function takes an array of points and returns an array of knot parameters for the cord 

length parameterisation.  

void oli_cord_length_parameterisation( 

       int *Nb_CtrlPpts, 

       position vertices[], //array of Nb_CtrlPpts points 

       cord_length_knot[], //array of Nb_CtrlPpts knots 

       ){ 

 

double sum_distance[*&Nb_CtrlPpts-1]; 

 

for(int i=0; i<Nb_CtrlPpts-1;i++){ 

 sum_distance[i] = sum_distance[i-1]+(vertices[i+1]-vertices[i]).len(); 

 } 

 

doule param[*&Nb_CtrlPpts-2]; 

for( i=0; i<Nb_CtrlPpts-2;i++){ 

 param[i] = sum_distance[i]/sum_distance[Nb_CtrlPpts-2]; 

 } 

cord_length_knot[0] = 0; 

cord_length_knot[Nb_CtrlPpts-1]=1;  

  

for ( i = 0; i < Nb_CtrlPpts-2; i++ ) { 

  cord_length_knot[i+1] = param[i]; 

 }  

} 
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Conclusions and Further Work

This thesis has covered in depth material concerning the three constituting fields of the 

optimisation framework, which constitutes the foundation of the research. The exhaustive 

coverage has been necessary to the understanding of the disciplines involved in this research. 

In depth knowledge of these have permitted looking at ways of combining functionality 

originating from different sources; thus making more powerful assemblies capable of dealing 

with a wider range of engineering problems. Conclusions regarding the framework modules 

are regrouped under their respective headings below. 

NURBS Curve Optimisation 

NURBS Curve Optimisation is achieved by tweaking the curves’ construction constraints to 

reach the level of quality required by the designers. 

The modelling technique, developed in paragraph 7.2, has exposed complementary handles 

on a curve’s shape to the user interface. The handles give interactive control over the curves’ 

internal knot parameter values. The examples provided demonstrate the influence of 

parameterisation on curves’ shape. This curve construction method could also be used as a 

modelling technique implemented in a CAD environment. However it remains uncertain that 

designers would benefit from this application without some level of automation added to the 

optimisation process. The low level of automation, is perhaps the main drawback of this 

particular application.  

This is addressed by another application which drives uses the curve’s total energy in an 

attempt to find an optimum set of knot values which will result in the minimum energy curve 

satisfying the same interpolation data. The results of experiments have shown that the 

algorithm fails to produce improved shape. It is questionable whether the GA cannot deal 

with the problem or the reasoning of this curve optimisation algorithm is flawed. This 

application is particular in the way that variables are dependent of each other: one variable 

change influences the balance of parameter distribution of the curve, and this is pushing the 
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GA to its limit. Furthermore there is no guarantee that the optimisation process is sound. 

Further work on this algorithm ought to investigate in the formulation of total energy to find 

a measure that is more representative of the curve’s energy. The existing algorithm can also 

be checked with a more powerful GA that can handle interactive variables. 

Other internal constraints are put forward to the user through the graphic interface. These are 

the curves differential properties at the knots points, which are used as constraints in Hermite 

interpolation. This modelling feature already exists in some CAD systems but is limited to 

tangent input. Higher degree deferential constraints input like normal and bi-normal should 

be considered in further developments. 

The research made an attempt to find innovative ideas for graphic manipulation of NURBS, 

and has succeeded in implementing tools that give complementary handles on the curves’ 

shape by representing internal constraints at the programming interface first and finally 

graphic interface. However NURBS based algorithms showed immediate limitations because 

constraints are only applicable discretely at the control points. What goes on in between is 

function of these, but not always in a predictable manner. NURBS is adequate for 

interpolating construction points but is not suitable for producing high quality curves. 

Intrinsic Curve Optimisation 

Another group of curve applications are using a different representation scheme other than 

NURBS. F-rep is a continuous geometric description of curves by vector functions. 

In F-rep curves are defined by three independent functions for the X,Y,Z coordinates. 

Combinations of two these functions are used in an application, paragraph 8.1, for projecting  

curve onto planes. The projection technique is useful to visualise on three planes the path of 

a 3D curve. It enables to see how much curvature and how much torsion there is. Also it is 

possible to change one of the projections and recreate a 3D curve. However this technique 

has obvious limitations with helical curves. The projection of one of these would not be 

helpful. 

F-rep functions are differentiable and this has permitted the development of new curve 

optimisation algorithms. These are based on fundamental differential geometry theorems 

discovered in the XIXth centuary. Six measures out defined in the Frénet-Serret relations, 
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they define an orthogonal mobile frame that slides along the curve. The Frénet frame is 

composed of three unit vectors namely tangent, normal and bi-normal. They also define two 

measures: Curvature is the invert of the radius of curvature oriented by the normal and 

torsion is the amount of twist in the direction of the bi-normal.  

Using the results of the Frénet-Serret relations, the research has developed a variety of tools 

designed for curve quality inspection. The quality is assessed by visualising the graphic 

representation of curves intrinsic properties. This is achieved by creating offsets curve for a 

direct representation of the Frénet frame or by plotting the curvature and torsion magnitude 

profiles for an indirect representation of the curve’s intrinsic properties. These tools have 

been successfully implemented in the HulaHoops CAD framework and tested on a 

representative selection of curves feature curves. They proved to be adequate tools for 

analysing the geometric definition of curves as well as detecting irregularities.  

Frénet’s proposition for the description of curves’ shape is closely related to its intrinsic 

equations. A proposition was made is this thesis to implement an algorithm which allows the 

construction of a curve given its curvature and torsion profile. This implies finding a solution 

to the Frénet-Serret relations. Many approaches are put forwards as feasible algorithms, but 

in all cases, at least one integration is necessary. The implementation was partially 

successful because the functionality exposed by the geometric modeller did not allow to 

accurately implement the theory in a functional application. Under the current functionality 

of ACIS, there is no possibility to perform symbolic integration. An substitute algorithm to 

symbolic integration was made up from incremental numerical integration, but could not 

perform well enough to produce acceptable results. However, given the right tools for the 

job, these algorithms have potential for success.  

The Frénet frame together with curvature and torsion profiles have demonstrated that old 

pieces of mathematics could be brought back to life with the help of F-rep geometric algebra. 

The Function Representation paradigm give a more generic and more exact definition of 

curves than NURBS, thus it should be systematically incorporated in geometric modellers 

along side with NURBS. 
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Optimisation 

Other conclusions regard optimisation. The primary aim of this research was to demonstrate 

the possible integration of optimisation with CAD. Sadly little effort was spent on 

developing an optimisation toolbox with suitable interaction mechanisms necessary for 

constituting a so-called optimisation framework. Perhaps the research in the field is still at its 

infancy and the focus is still on developing new algorithms rather than enhancing its 

interactivity. 

The results drawn from optimisation could be examined by researchers in the field to 

orientate their activities on the representation of constraints. GAs must provide mechanisms 

to deal with constraints or the algorithm is at risk of producing non-sensical or corrupted 

geometry. A brief intrusion in the representation of constraints was made in creating 

functions for bounding variables coming from NURBS data point coordinates, [paragraph 

8.2.1] and parameter values, [paragraph 0]. This functionality fulfilled the immediate needs 

encountered in this research, but more effort should go in this area of work.  

Advance in the convergence of GAs was also proposed in this thesis. Paragraph 8.2.1 

demonstrates the benefits of fitness function boosting to improve their speed of convergence. 

It was also found necessary to proceed to a fitness function test to validate the formulation of 

the evaluation function. This was achieved by creating loop algorithms isolating one variable 

at the time [paragraph 8.2.1]. Another observation is the absence in the Toolbox of indicator 

on the level of achievement of the algorithm. This could take the form of a measure of speed 

of convergence evaluated by the slope of the Paretto front.  

The experiments reported in this thesis show that evolutionary computing is incapable of 

adapting to real life engineering problems. It is inaccurate and shameless to produce non-

sense solutions, for example a curve that double backs on itself is a solution, but not a valid 

solution. This problem could be resolved by constraining the variables and as it stands, 

variable constraint is limited to the bounding of the upper and lower values. Something in 

that direction was proposed in paragraph  where knot values are constrained so that they 

never overlap and cause a system failure. The inaccuracy side effect is caused by the binary 

coding of variables and is perhaps inherent to the algorithm. Roy et. al. [99], [102] have 

published on real coding in GAs, the results predict a reduction of coding error in an 
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algorithm that takes its variables in decimal format; no implementation was proposed. This 

leads one to question whether the results given in the papers cited above have been 

adequately checked. 

Geometric Modelling 

The geometric modeller used for the research, namely ACIS, is well suited to application 

development. ACIS is structured in components regrouped under a wide common API. The 

documentation is satisfactory for the main API functions but is sometimes too brief on 

classes and methods.  

Its structure in components enclose functionality purposely designed for specialised 

operations. The LAW component of ACIS which provides the functionality for curve 

function representation is independent from the NURBS component, but both have the 

ENTITY class as common parent. It is possible from an ENTITY that is a curve to get to F-

rep representations via NURBS: a long route inside the ACIS interface. Also there are 

question marks over the conversion from F-rep to NURBS. The variety of shapes that can be 

obtained with F-rep is much greater than with NURBS. This shows while converting the 

model from the former to the latter that it could take tens of control points to describe a basic 

shape. It was also noticed that the control points are more dense in the regions of high 

curvature. It takes more precision and more constraints to define a shape that has high 

accelerations than a flat section. The conversion of a NURBS curve to F-rep and back to 

NURBS could improve the distribution of the control points along the curve. This is valuable 

gain for model digitisation, which is made at regular intervals, regardless of the curvature 

[paragraph 3.2]. Maybe it is the case, but it has not been possible to establish this as a fact. 

The LAW component in ACIS was intended for sweeps with twists, nowhere is mentioned 

functionality designed for the specific purpose of curve optimisation. In the light of the 

results achieved by this research, it could be envisaged that the functionality requirements 

documented in this thesis is met by the LAW component in the future. In most cases it has 

been possible to create the functionality out of what was available, but in one instance the 

experimentations came to halt because it was not possible to proceed to symbolic integration 

of functions. The solutions to this could be placing a request at Spatial’s desk to provide this 

functionality or finding a third party module that could do this; MATHLAB is under 



Conclusions and Further Work 

Page 206 

consideration. Some of the functionality needed is present in SVLIS [17] but that has the 

drawback of being CSG, so there is still no solution available off the shelf. 

The philosophy of ACIS is compatible with the idea of a generic interface for the CAD 

environment. Many of the features making the Oli generic interface, deployed in paragraph 

9.5.3 are available from the ACIS API. This has facilitated the design of the Oli interface 

which could use the functionality already existing in ACIS. For example, generic attributes 

are implemented in ACIS for making associations with external data. There also is the 

possibility of making API functions supporting API features like state records, roll-backs 

and error checks. The need for a generic interface still remains strong. Since recent 

acquisition of Spatial by Dassault Systemes, they propose a connection interface between 

CATIA and ACIS. The internal details of this product deserve investigating to establish the 

nature of its API and the perspectives it offers. 

Oli Interface 

The concepts of flexible optimisation, together with generic interfacing are slowly emerging 

from the recent restructuring of CAD vendors. This research has demonstrated that with 

appropriate interfacing of packages that are designed with open doors to the outside world, 

more systems could integrate frameworks, thus providing engineers with the possibility of 

using a panel of engineering design tools. This thesis aimed at documenting the requirements 

placed by optimisation on an API. Some fresh ideas are thrown in the pot, but much work 

remains untouched. New projects in this area need to come up and push forward some of the 

concepts elaborated in this thesis. 

Framework 

It has been necessary to create a new “kit CAD system from scratch in order to integrate 

flexible optimisation in it. In this instance both parties share the responsibility for this 

inconvenience. On one hand CAD systems are closed to research applications and on the 

other hand optimisation has not come yet to this level of research sufficient to support an 

API. 
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The new environment is composed of modules that provide functionality to the framework. 

The boundary line between interfaces modules and applications is a blurred one. All 

modules play an important part in the picture, but the delegation of responsibilities across the 

framework is subjective. The division of labour should follow the principles of interfacing. 

For example, some of the functionality absent from the Flexo toolbox was replaced by 

functionality implemented in Oli between its top and the bottom interface. In an ideal 

situation the generic API should remain abstract, that is a barebones data structure, but 

should not be the host of function implementations, they must be supported by the modules. 

The aim of interfacing is to create functionality at its simplest form. Data is gradually 

reduced through a succession of interfaces which provide clients with the least data as 

possible. Thus, the objective of interfacing is to delegate as much labour as possible to the 

interface below it. Requirements at the API level as well as at implementation level have 

been documented and in some instances, an implementation if these requirements have been 

proposed. From this point it is down to the geometric modelling community and researchers 

in optimisation to answer to the calls this thesis has made. 

Further Work 

The optimisation of NURBS construction parameters was carried out using a GA, the 

outcome of the application developed have shown that the GA used in this research is 

struggling in some instances: Interactive variable problems, paragraph 7.4 and high number 

of variables, paragraph 8.2.1. The aim of further work on GAs is to broaden the problem 

spectrum it can handle. A lot more work is necessary before optimisation can claim to be 

integrated within any sort of framework. The implementation in the Flexo project has simply 

pushed back many of its responsibilities on to the Oli interface and applications rather than 

designing a real optimisation framework. These observations and propositions deserve 

further study by optimisation people, the results drawn from this thesis can give some 

indications for the direction of further developments. 

It was found that curve optimisation could be performed through reconstruction from 

prescribed differential properties. These applications were partly successful because of the 

current limitations of ACIS functionality regarding symbolic integration. This functionality 

should take ACIS LAW functions as input and return the primitive LAW functions of the 
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input. This would enable application researchers to implement algorithms for the recreation 

of curves back from their differential properties without the help of GAs. 

This thesis has developed examples for the purpose of curve optimisation and most 

particularly their aesthetic aspects. Application researchers could make direct usage of the 

algorithms proposed in this thesis for other purposes. For instance curve framing could be 

useful to the study of fluid mechanics. More generally, F-rep together with differential 

geometry could find applications in other fields. Corney [28] gives a study example of a 

mechanical cam design. Recently the author has started on the study of a variable geometry 

car suspension, where the wheel camber varies with the steering angle to overcome the tyre 

deformation under cornering. 
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Appendix 1 Optimisation in Industry

The aim of this chapter is to discuss the current status of design optimisation in industry in 

order to provide a framework for the present research. The details provided in this 

document are based on the information collected from designers in industry. This 

document addresses the following issues related to design optimisation. 

Ø  To make a study of design processes in manufacturing industry: This includes the 

study of the current status of design optimisation in industry, the drivers, 

methodology and tools for design improvement are also outlined. 

Ø  To identify the tools for design improvement: This constitutes the identification of 

the main optimisation algorithms and their industrial use. The factors inhibiting the 

industrial use of these algorithms are also discussed. 

Ø  To identify the need for flexible optimisation: Based on industrial requirements, this 

highlights the functionality sought in the flexible optimisation framework. 

1.1 Introduction 

The introduction of lean production techniques in manufacturing industry has greatly 

enhanced the efficiency of its operations. However, the full potential of lean manufacturing 

could only be attained if attempts are made to obtain best possible results with the given 

resources. This warrants the introduction of optimisation techniques in the product design 

cycle. This industry survey, which is detailed in Roy et. al. [100], forms the basis of this 

chapter. 

1.2 Objectives 

This section addresses the following issues related to design improvement. 
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Ø  To make a study of design processes in the manufacturing industry: This includes the 

study of current status of design optimisation in industry, the drivers, methodologies 

and tools for design improvement are also outlined. 

Ø  To identify the tools for design improvement: This constitutes the identification of 

main optimisation algorithms and their industrial use. The factors inhibiting the 

industrial use of these algorithms are also discussed. 

Ø  To identify the need for flexible optimisation: Based on industrial requirements, this 

highlights the functionality sought in the flexible optimisation framework. 

Ø  The document begins with a brief explanation of the methodology adopted for the 

investigation whose results have been summarised in this document. 

1.3 Design improvement in Industry 

This section explains the design process in industry in terms of the drivers, methodology, 

tools and current status of design improvement. 

1.3.1 Design Process 

Design requirements are obtained on the basis of the information from customers and 

competitors collected by the marketing department. These requirements are converted into 

conceptual design followed by detailed design, which in most cases is represented on 

CAD/CAM systems. A prototype is built for experimental testing on a full-scale model 

before the design is sent for manufacturing. The feedback from design analysis, prototype 

testing and manufacturing is manually incorporated in the design requirements, conceptual 

and detailed designs. In a typical product life cycle, the design goes around these feedback 

loops several times for optimisation before being manufactured and dispatched. This 

iterative process contributes significantly to lengthening the design cycle, and depends 

critically on the skills of the designers. 
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Figure 100: Typical design cycle 

1.3.2 Methodologies and Tools 

The methodologies adopted for design improvement in many industry sectors are guided 

by the design tools that are being used. Each of these design tools looks at a particular 

aspect of design, for example manufacturability, functionality, etc. It was observed that the 

following design tools are the most popular in industry. 

Ø  Design for assembly: This is mainly used by companies whose products are 

composed of several components, e.g., automotive components like Anti-lock 

Breaking Systems (ABS) and Vehicle Stability Controls (VSC). 

Ø  Design for manufacture: Mostly the companies that are involved in mass production 

use design for manufacture. This is particularly true for small to medium sized 

components, which require automation for production, e.g., anti-vibration and 

electronic components. 

Ø  Design for performance: This is observed in production of high performance, high 

value components, e.g., racing cars and digital photocopiers.  

Ø  Design for quality: In modern industry, it is observed that most of the companies use 

this design tool. 
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Ø  Structural optimisation: This is particularly seen in components subjected to stress, 

e.g., engine mounting brackets, crashworthiness designs, multi- body systems and 

metal forming. 

The above-mentioned design tools, with the exception of structural optimisation, can be 

effectively applied without complex mathematical analysis. These tools are usually applied 

externally to the CAD/CAM environment, after the completion of the design definition 

phase. On the other hand, the aim of structural optimisation, which enjoys a very important 

place in the automotive industry, is to improve the external shape and structure of 

components within the CAD/CAM environment simultaneously with the product definition 

phase. Structural optimisation is a generic term to describe optimisation of geometric 

entities that make the engineering products. 

1.3.3 Current Status 

It was observed that design optimisation in industry is an iterative process of creating a 

model, using a CAD system, carrying out some analyses which give indications of how to 

improve the design and then modifying the model and repeating the process. This manual 

process contributes significantly to lengthening the design cycle and depends critically for 

its success on the skill of the designer. Trial-and-error finds widespread use in industry for 

improving the design. On the other hand, parametric modelling and optimisation 

algorithms are rarely used. The industry visits coupled with an Internet-based study 

enabled the identification of design drivers used in different industry sectors. Table 10 

summarises the findings of this study in a 2D matrix depicting some product families 

against design drivers. Each product family uses one or several design drivers that are 

identified from specification requirements. The presence of a design driver in a given 

product family is depicted by ‘1’ in the relevant box of the table.  
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Table 10: Optimisation in industry 

1.4 Tools for Design Improvement 

This section outlines the features of design improvement in industry. It discusses the 

potential of optimisation algorithms and their industrial use. Finally, it explains the factors 

that inhibit the use of optimisation algorithms in industry. 

1.4.1 Industrial Use of Optimisation Algorithms 

Despite the immense potential of optimisation algorithms in handling industrial design 

optimisation problems, it was observed that they are not used by any of the surveyed 

companies. Some commercial optimisation packages like OPTISTRUCT from Altair 

Engineering [2], or DOT from Vanderplaats Research and Development, Inc are proven 

adequate in many engineering applications but can only be operated outside the 

CAD/CAM Environment. These capabilities are rarely used in industry since they provide 

only one type of optimisation algorithms to tackle all types of problems. Although most of 

these packages are provided externally to the CAD/CAM environment, some of them like 

the surfacing tools in CATIA, and the FEA and CFD tools in I-DEAS are integrated with 

the CAD/CAM systems. 
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The study of literature in the field of real-life optimisation shows that optimisation 

algorithms have the potential of handling a number of real-life design problems. On the 

other hand, as revealed in this section, optimisation algorithms are rarely used in industry. 

This contradiction in the use of optimisation algorithms in industry and research indicates 

the presence of factors inhibiting the industrial applications of optimisation algorithms. 

These inhibitors are discussed in detail in the next section. 

1.4.2 Inhibitors 

Extensive internet-based search and numerous company visits have been used to 

investigate the use of optimisation algorithm across engineering industries Roy et. al. 

[100]. The survey shows that optimisation in general in not widely used. However some 

large technology leading make use of optimisation techniques with a limited scope. This is 

the case of British Aerospace which is involved in research programs with the aim of 

optimising gas-turbine blade for jet engines, Rogero [89]. The research shows that both 

classical evolutionary optimisation techniques are not popular in industry, the use of these 

techniques is yet very limited as the complexity of real-life optimisation problems has 

prevented the industry from exploiting the potential of optimisation algorithms Roy et. al. 

[100]. The industry has, therefore, relied on either trial-and-error or over-simplification for 

dealing with its optimisation problems independently of the design tools. There are a 

number of factors inhibiting the industrial use of optimisation algorithms. Some of these 

factors are outlined below: 

The first and the foremost inhibitor to the use of optimisation algorithms in industry is the 

important role of skills and experience in the design improvement process. In design 

activities, there are often a large number of parameters influencing the design performance. 

Most of these parameters are difficult to control, so the designers prefer using their skills 

and experience with a trial-and-error strategy to guide the search towards optimum 

solutions. This makes the design process difficult to be encoded in an algorithmic form. 

The features of real-life optimisation problems, especially the presence of qualitative issues 

and lack of prior problem knowledge, also inhibit the successful application of 

optimisation algorithms to industrial problems. 
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The lack of robust optimisers that can deal with a variety of engineering problems also 

prevents the use of optimisation algorithms. This is particularly true for industries that deal 

with a wide range of designs. 

All the currently available optimisation packages are not integrated within CAD/CAM 

systems making their use cumbersome. The designers need to extract the design 

parameters from CAD models, input these into the optimisation packages and bring the 

optimised parameters back to the CAD system. There are a number of difficulties 

associated with this off-line optimisation, which prevents the designers from using the 

optimisation algorithms. The extraction and transfer of data between the CAD/CAM 

system and the optimisation package is manual or semi-automatic. The data transfer often 

leads to loss of quality and information, which makes the optimisation process inaccurate. 

This off-line scenario of optimisation also makes designers lose control over the design 

process. Finally, the inflexible nature of the scenario makes the process iterative and time 

consuming. 

1.5 Need for Flexible Optimisation 

In order to attain a holistic view of real-life optimisation, it is essential to develop a 

flexible optimisation framework that allows the selection of appropriate techniques and 

parameters for a design optimisation problem. In the recent past, some work carried out in 

the field of flexible optimisation. Roy et. al. [93], Jared [64] and Mussa [75] specifically 

addressed the issue of enhancing the optimisation capabilities of existing CAD/CAM 

systems. However, the above-mentioned work has limited scope in terms of the types of 

optimisation techniques employed, integration with CAD/CAM systems, and incorporation 

of designers’ intent. Therefore, in contrast to this research, the previous work has adopted a 

tactical rather than a strategic view of the concept of flexible optimisation. 

The framework, in this research, is developed based on the industrial requirements for 

flexible optimisation. The flexible optimisation wheel, shown in Figure 101 depicts the 

different combinations possible within the flexible optimisation framework. This 

framework provides a platform for dealing with various settings of design tools and 

techniques, geometry representation schemes and optimisation algorithms. 
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Figure 101: Flexible optimisation wheel 

The research involves the development of a toolbox containing engineered multi-objective 

optimisation algorithms, Deb [34], capable of solving a variety of real-life design 

problems. In order to provide the optimisation capability online, it is essential for the 

flexible optimisation toolbox to be integrated within the CAD/CAM environment.  
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Appendix 2  Documentation of Flexible 

Optimisation ‘Toolbox’

This Appendix presents the first version of the documentation for the optimisation ‘toolbox’. 

All the classes and functions used in the ‘toolbox’ are documented here. These classes and 

functions have so far been used for the C++ coding of Non-dominated Sorting Genetic 

Algorithm (NSGA) II and Generalised Regression Genetic Algorithm (GRGA). Both these 

techniques form part of the optimisation ‘toolbox’. 

The main features of this code can be summarised as follows: 

Ø  Binary and real coding. 

Ø  Tournament and roulette wheel selection for binary coding. 

Ø  Tournament selection for real coding. 

Ø  Single point and uniform crossover for binary coding. 

Ø  Simulated binary crossover for real coding. 

Ø  Interactive setting of control parameters. 

Ø  Self-reliant classes having appropriate data members and member functions: 

• Array class for integers. 

• Arrayr class for reals. 

• Individual class for binary solutions. 

• Individualr class for real solutions. 

Ø  Generalised functions in main program for: 

• Ranking. 

• Fitness assignment. 



Appendix 2 Documentation of Flexible Optimisation ‘Toolbox’ 

Page 226 

• Fitness sharing. 

• Selection. 

• Elitism. 

Ø  Extensive re-use of classes and functions is possible in future. 

The classes and functions used in this code are listed below. 

2.1 Array 

This class is used to create, manipulate and destroy the binary GA chromosomes. This 

includes input, output, assignment and comparison of chromosomes. It also gives 

information regarding the existing chromosomes. The various member functions that form 

part of this class are as follows: 

Array( int, bool ) 
Default constructor. 

Input 1: Size of the array. 

Input 2: ‘True’ for an array having only 0’s and ‘False’ for an array having randomly placed 

0's and 1’s. 

Array( const Array & ) 
Copy constructor. 

Input: Array that has to be copied to form a new array. 

~Array() 
Destructor. 

static int getArrayCount() 
Returns count of arrays instantiated. 

Output: Number of arrays instantiated. 

int getSize() const 
Returns size. 

Output: Size of an array. 

const Array &operator=( const Array & ) 
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Overloaded assignment operator. 

Input: Array that has to be copied to the given array. 

Output: Modified given array. 

bool operator==( const Array & ) const 
Determines if two arrays are equal. 

Input: Array that has to be compared with the given array. 

Output: ‘True’ if arrays are equal and ‘False’ if they are unequal. 

bool operator!=( const Array & ) const 
Determines if two arrays are unequal. 

Input: Array that has to be compared with the given array. 

Output: ‘True’ if arrays are unequal, otherwise ‘False’. 

int &operator[]( int ) 
Overloaded subscript operator for non-constant arrays. 

Input: Subscript value. 

Output: Value stored at given array location. 

const int &operator[]( int ) const 
Overloaded subscript operator for constant arrays. 

Input: Subscript value. 

Output: Value stored at given array location. 

friend ostream &operator<<( ostream &, const Array & ) 
Overloaded output operator. 

Input 1: Reference to ‘ostream’ object, like ‘cout’ 

Input 2: Source array. 

Output: Reference to ‘ostream’ object, like ‘cout’. 

friend istream &operator>>( istream &, Array & ) 
Overloaded input operator. 

Input 1: Reference to ‘istream’ object, like ‘cin’. 

Input 2: Target array. 

Output: Reference to ‘istream’ object, like ‘cin’. 

In addition to the above functions that can be accessed by the user, there are also some data 

members that are hidden from the users. These data members are listed below: 

int *ptr 
Pointer to the first element of the array. 

static int arrayCount 
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Number of Arrays instantiated. 

int size 
Size of the array. 

2.2 Arrayr 

This class is used to create, manipulate and destroy the real GA chromosomes and other real 

arrays. This includes input, output, assignment and comparison of chromosomes. It also 

gives information regarding the existing chromosomes. The various member functions that 

form part of this class are as follows: 

Arrayr( int, int, bool ) 
Default constructor for arrays that do not have bounds on their entries. 

Input 1: Size of the array. 

Input 2: Accuracy of array entries in terms of number of significant places after the decimal 

point. 

Input 3: ‘True’ for an array having only 0’s and ‘False’ for an array having random real 

numbers. 

Arrayr( const Arrayr &, const Arrayr &, int, int ) 
Default constructor for arrays that have bounds on their entries. 

Input 1: Array storing upper-bound value for each entry of the array that needs to be 

constructed. 

Input 2: Array storing lower-bound value for each entry of the array that needs to be 

constructed. 

Input 3: Size of the array. 

Input 4: Accuracy of array entries in terms of number of significant places after the decimal 

point. 

Arrayr( const Arrayr & ) 
Copy constructor. 

Input: Array that has to be copied to form a new array. 

~Arrayr()  
Destructor. 

static int getArrayCount() 
Returns count of arrays instantiated. 

Output: Number of arrays instantiated. 
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int getSize() const 
Returns size. 

Output: Size of the array. 

const Arrayr &operator=( const Arrayr & )  
Overloaded assignment operator. 

Input: Array that has to be copied to the given array. 

Output: Modified given array. 

bool operator==( const Arrayr & ) const 
Determines if two arrays are equal. 

Input: Array that has to be compared with the given array. 

Output: ‘True’ if arrays are equal and ‘False’ if they are unequal. 

bool operator!=( const Arrayr & ) const 
Determines if two arrays are unequal. 

Input: Array that has to be compared with the given array. 

Output: ‘True’ if arrays are unequal, otherwise ‘False’. 

double &operator[]( int ) 
Overloaded subscript operator for non-constant arrays. 

Input: Subscript value. 

Output: Value stored at given array location. 

const double &operator[]( int ) const 
Overloaded subscript operator for constant arrays. 

Input: Subscript value. 

Output: Value stored at given array location. 

friend ostream &operator<<( ostream &, const Arrayr & ) 
Overloaded output operator. 

Input 1: Reference to ‘ostream’ object, like ‘cout’ 

Input 2: Source array. 

Output: Reference to ‘ostream’ object, like ‘cout’. 

friend istream &operator>>( istream &, Array & ) 
Overloaded input operator. 

Input 1: Reference to ‘istream’ object, like ‘cin’. 

Input 2: Target array. 

Output: Reference to ‘istream’ object, like ‘cin’. 

In addition to the above functions that can be accessed by the user, there are also some data 

members that are hidden from the users. These data members are listed below: 
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double *ptr 
Pointer to the first element of the array. 

static int arrayCount 
Number of Arrays instantiated. 

int size 
Size of the array. 

2.3 Individual 

This class defines a solution in terms of the binary chromosome, parents, decoding 

information and objective function values. It can decode the chromosome into its decision 

variables, calculate number and values of constraints, and evaluate the degree of violation of 

constraints by a solution. It can also perform single point crossover, uniform crossover, 

mutation and assignment operations involving problem solutions. This class can also be used 

to extract information regarding a solution in terms of the chromosome, parents, variable 

values and objective function values. On the same grounds, it can also be used to modify a 

solution with respect to the chromosome, parents and variables. 

Individual( int, Array &, Arrayr &, Arrayr & ) 
Default constructor for creating random individuals. 

Input 1: Length of the chromosome. 

Input 2: Array storing the number of chromosome bits corresponding to each problem 

variable. 

Input 3: Array storing upper-bound value for each variable of the problem. 

Input 4: Array storing lower-bound value for each variable of the problem. 

Individual( Array, Array, Array )  
Default constructor for creating individuals when the chromosome and parents are specified. 

Input 1: Array representing the chromosome. 

Input 2: Array representing the first parent. 

Input 3: Array representing the second parent. 

Individual( const Individual & )  
Copy constructor. 

Input: Individual that has to be copied to create a new individual. 
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Arrayr confun() const 
Returns the values of constraints. 

Output: Array containing the constraint values. 

void crossover( Individual &, Individual &, Individual &, 
double, int ) const 
Performs single point crossover operation between the given individual and the individual 

specified in the parameter list. 

Input 1: First individual created by the crossover operation. 

Input 2: Second individual created by the crossover operation. 

Input 3: Crossover partner of the given individual. 

Input 4: Probability of performing crossover operation. 

Input 5: Accuracy of crossover probability. 

double error() const 
Evaluates the degree of violation of constraints corresponding to the given individual. 

Output: Degree of violation of constraints. 

const Array &getChrom() const 
Returns the chromosome corresponding to an individual. 

Output: Array representing the chromosome of the given individual. 

int getChromlen() const 
Returns the chromosome length of the given individual. 

Output: Length of the given individual’s chromosome. 

static Arrayr getLowerbound() 
Gets the lower-bound value for each problem variable. 

Output: Array storing lower-bound value for each variable. 

int getNumcon() const 
Returns the number of constraints. 

Output: Number of constraints. 

int getNumfun() const 
Returns the number of objective functions. 

Output: Number of objective functions. 

int getNumvar() const 
Returns the number of variables in the problem. 

Output: Number of variables. 
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const Array &getParent1() const 
Returns the chromosome corresponding to the first parent of the given individual. 

Output: Array representing the chromosome of the first parent. 

const Array &getParent2() const 
Returns the chromosome corresponding to the second parent of the given individual. 

Output: Array representing the chromosome of the second parent. 

static Arrayr getUpperbound() 
Gets the upper-bound value for each problem variable. 

Output: Array storing upper-bound value for each variable. 

static Array getVarlen()  
Returns the number of bits in an individual’s chromosome, corresponding to each problem 

variable. 

Output: Array storing the number of chromosome bits corresponding to each variable. 

Arrayr getVarval() const 
Returns the variable values corresponding to the given individual. 

Output: Array storing the values of problem variables. 

Individual &mutation( double, int ) 
Performs mutation operation on the given individual. 

Input 1: Probability of performing mutation operation. 

Input 2: Accuracy of mutation probability. 

Output: Individual after mutation. 

Arrayr obja() const 
Returns the calculated values of objective functions. 

Output: Array containing the objective function values. 

Arrayr objfun() const 
Returns the stored values of objective functions. 

Output: Array containing the objective function values. 

const Individual &operator=( const Individual & ) 
Overloaded assignment operator. 

Input: Individual that has to be copied to the given individual. 

Output: Individual after assignment. 

void setChrom( Array & ) 
Allows the modification of an individual’s chromosome. 
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Input: Chromosome array that replaces the existing one to form a new chromosome. 

static void setLowerbound( Arrayr & ) 
Allows the modification of lower-bounds of variables. 

Input: Array storing the updated lower-bound value for each variable of the problem. 

void setParents( Array &, Array & ) 
Allows the modification of an individual’s parents. 

Input 1: Array representing the new first parent. 

Input 2: Array representing the new second parent. 

static void setUpperbound( Arrayr & ) 
Allows the modification of upper-bounds of variables. 

Input: Array storing the updated upper-bound value for each variable of the problem. 

static void setVarlen( Array & ) 
Allows the modification of the distribution of chromosome bits allotted for the 

representation of each variable. 

Input: Updated array storing the number of chromosome bits corresponding to each variable. 

void unicross( Individual &, Individual &, Individual &, 
double, int) const 
Performs uniform crossover operation between the given individual and the individual 

specified in the parameter list. 

Input 1: First individual created by the crossover operation. 

Input 2: Second individual created by the crossover operation. 

Input 3: Crossover partner of the given individual. 

Input 4: Probability of performing crossover operation. 

Input 5: Accuracy of crossover probability. 

In addition to the above functions that can be assessed by the user, there are also some data 

members that are hidden from the users. These data members are listed below: 

Array chrom 
Chromosome of the individual. 

static Arrayr lowerbound  
Lower-bounds of problem variables. 

Arrayr obj  
Values of objective functions. 

Array parent1 
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First parent chromosome of the individual. 

Array parent2 
Second parent chromosome of the individual. 

static Arrayr upperbound  
Upper-bounds of problem variables. 

static Array varlen  
Number of chromosome bits corresponding to each variable. 

2.4 Individualr 

This class defines a solution in terms of the real chromosome, parents, precision information, 

bounds and objective function values. It can calculate the number and values of constraints, 

and evaluate the degree of violation of constraints by a solution. It can also perform 

simulated binary crossover, mutation and assignment operations involving problem 

solutions. This class can also be used to extract information regarding a solution in terms of 

the chromosome, parents, variable values and objective function values. On the same 

grounds, it can also be used to modify a solution with respect to the chromosome, parents 

and variables. 

Individualr( int, int ) 
Default constructor for creating random individuals when the bounds on variables are not 

specified. 

Input 1: Length of the chromosome. 

Input 2: Accuracy of variable values in terms of number of significant places after the 

decimal point. 

Individualr( Arrayr &, Arrayr &, int, int )  
Default constructor for creating random individuals when the bounds on variables are 

specified. 

Input 1: Array storing upper-bound value for each variable of the problem. 

Input 2: Array storing lower-bound value for each variable of the problem. 

Input 3: Length of the chromosome. 

Input 4: Accuracy of variable values in terms of number of significant places after the 

decimal point. 
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Individualr( Arrayr &, Arrayr &, Arrayr & )  
Default constructor for creating individuals when the chromosome and parents are specified. 

Input 1: Array representing the chromosome. 

Input 2: Array representing the first parent. 

Input 3: Array representing the second parent. 

Individualr( const Individualr & )  
Copy constructor. 

Input: Individual that has to be copied to create a new individual. 

Arrayr confun() const 
Returns the values of constraints. 

Output: Array containing the constraint values. 

void crossover( Individualr &, Individualr &, Individualr &, 
double, int, double ) const 
Performs simulated binary crossover operation between the given individual and the 

individual specified in the parameter list. 

Input 1: First individual created by the crossover operation. 

Input 2: Second individual created by the crossover operation. 

Input 3: Crossover partner of the given individual. 

Input 4: Probability of performing crossover operation. 

Input 5: Accuracy of crossover probability. 

Input 6: Distribution index for crossover. 

double error() const 
Evaluates the degree of violation of constraints corresponding to the given individual. 

Output: Degree of violation of constraints. 

const Arrayr &getChrom() const 
Returns the chromosome corresponding to an individual. 

Output: Array representing the chromosome of the given individual. 

int getChromlen() const 
Returns the chromosome length of the given individual. 

Output: Length of the given individual’s chromosome. 

static Arrayr getLowerbound() 
Gets the lower-bound value for each problem variable. 

Output: Array storing lower-bound value for each variable. 

int getNumcon() const 
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Returns the number of constraints. 

Output: Number of constraints. 

int getNumfun() const 
Returns the number of objective functions. 

Output: Number of objective functions. 

int getNumvar() const 
Returns the number of variables in the problem. 

Output: Number of variables. 

const Arrayr &getParent1() const 
Returns the chromosome corresponding to the first parent of the given individual. 

Output: Array representing the chromosome of the first parent. 

const Arrayr &getParent2() const 
Returns the chromosome corresponding to the second parent of the given individual. 

Output: Array representing the chromosome of the second parent. 

static Arrayr getUpperbound() 
Gets the upper-bound value for each problem variable. 

Output: Array storing upper-bound value for each variable. 
Arrayr getVarval() const  

Returns the variable values corresponding to the given individual. 

Output: Array storing the values of problem variables. 

Individualr &mutation( double, int, double ) 
Performs mutation operation on the given individual. 

Input 1: Probability of performing mutation operation. 

Input 2: Accuracy of mutation probability. 

Input 3: Distribution index for mutation. 

Output: Individual after mutation. 

Arrayr obja() const 
Returns the calculated values of objective functions. 

Output: Array containing the objective function values. 

Arrayr objfun() const 
Returns the stored values of objective functions. 

Output: Array containing the objective function values. 

const Individualr &operator=( const Individualr & ) 
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Overloaded assignment operator. 

Input: Individual that has to be copied to the given individual. 

Output: Individual after assignment. 

void setChrom( Arrayr & ) 
Allows the modification of an individual’s chromosome. 

Input: Chromosome array that replaces the existing one to form a new chromosome. 

static void setLowerbound( Arrayr & ) 
Allows the modification of lower-bounds of variables. 

Input: Array storing the updated lower-bound value for each variable of the problem. 

void setParents( Arrayr &, Arrayr & ) 
Allows the modification of an individual’s parents. 

Input 1: Array representing the new first parent. 

Input 2: Array representing the new second parent. 

static void setUpperbound( Arrayr & ) 
Allows the modification of upper-bounds of variables. 

Input: Array storing the updated upper-bound value for each variable of the problem. 

In addition to the above functions that can be assessed by the user, there are also some data 

members that are hidden from the users. These data members are listed below: 

Arrayr chrom 
Chromosome of the individual. 

static Arrayr lowerbound  
Lower-bounds of problem variables. 

Static int maxdecpt 
Maximum accuracy of variable values in terms of number of significant places after the 

decimal point. 
Arrayr obj   

Values of objective functions. 

Arrayr parent1 
First parent chromosome of the individual. 

Arrayr parent2 
Second parent chromosome of the individual..
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Appendix 3 Geometric Modelling

3.1 Boundary Representation complements 

3.1.1 Topological Hierarchy 

The boundary representation (B-rep) of a model is a hierarchical decomposition of the 

model's topology: 

• Body: The highest level of model object, and is composed of lumps. 

• Lump: A 1D, 2D, or 3D set of points in space that is disjoint with all other 

lumps. It is bounded by shells. 

• Shell: A set of connected faces and wires, and can bound the outside of a solid 

or an internal void (hollow). 

• Face: A connected portion of a surface bounded by a set of loops.  

• Loop: A connected series of coedges. Generally, loops are closed, having no 

actual start or end point. 

• Wire: A connected series of coedges that are not attached to a face. 

• Coedge: Represents the use of an edge by a face. 

• Edge: A curve bounded by vertices. 

Bodies 

Bodies are the highest-level entities in ACIS solid models. Typically, a body is a single solid 

or sheet component, such as a washer, a stripped-down engine block, a zero thickness plate, 

or a cross section. A body can also be made of several disjoint bodies treated as one. Figure 

102 shows an example of a body with more than one lump. When a square block (solid 

lines) is cleared by a cylinder (dashed lines) whose diameter is slightly larger than the length 
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of a side of the block, the block is separated into four lumps. Although the four lumps are 

not physically joined, they are still treated as a single body in ACIS. 

Figure 102: Body with four lumps 

Lumps 

A lump represents a bounded, connected region in space. A lump is an entire connected set 

of points, whether the set is 3D, 2D, 1D, or a combination of dimensions. Thus, a solid block 

with a dangling outside face is one lump, as is a solid block with an internal cavity. Two 

disconnected sheets are represented as two lumps. A body contains zero or more lumps, each 

of which represents a set of points that are disjoint from those represented by all other lumps 

in the body. Figure 103 illustrates a body with two solid lumps. The large block represents 

one solid lump that completely encloses a void (dotted line). The second lump (small block 

with solid lines) is completely enclosed in the void. 
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Figure 103: Lumps 

Shells 

A shell, Figure 104, is an entire connected set of faces and/or wires, including connections 

through a nonmanifold vertex. Faces are connected together along common edges or at 

common vertices; wires may be connected to faces at end vertices. A solid block with a 

dangling sheet is one shell, but a block with a cavity is two shells. A solid block with many 

embedded faces that are all connected through some path to the exterior faces is one shell, 

but a solid block with a disconnected "floating" embedded face is two shells (but one lump). 

The most common type of shell is made up only of complete, finite single-sided faces, two 

of which meet at every edge, with compatible insides and outsides. 
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Figure 104: Shells 

Faces 

A face is a portion of a single geometric surface in space, the two-dimensional analogue of 

the body. Zero or more loops of edges constitute the boundary of a face. Figure 105 shows a 

loop of the top face (there are six faces) of a rectangular block. 

Figure 105: Faces 
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Loops 

A loop represents a connected portion of the boundary of a face. It consists of a set of 

coedges linked in a doubly linked chain, which may be circular or open-ended. If either end 

of an open-ended loop is at a finite point, then the face containing the loop is necessarily 

incomplete. If either end is at infinity, then the face is infinite. The illustration in Figure 106 

contains three closed loops. Each loop is the boundary of a complete, finite face. In the 

actual physical structure, the adjacent parallel lines are coincident. 

Figure 106: Loops of edges 

Edges 

An edge is the topology associated with a curve. The direction of an edge can be either the 

same direction as its underlying curve, or it can be the opposite direction. If it is the same as 

the curve direction, the edge's sense relative to the underlying curve is forward; otherwise, 

its sense is reversed. Each edge contains a record of its sense relative to its underlying curve. 

An edge is bounded by one or more vertices, referring to one vertex at each end. 

Coedges 

A coedge records the occurrence of an edge in a loop of a face. The introduction of coedges 

permits edges to occur in one, two or more faces, and so makes possible the modelling of 
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sheets and solids (manifold or not). In a manifold solid body shell, each edge is adjacent to 

exactly two faces; therefore, the edge has two coedges, each associated with a loop in one of 

the faces (the two faces can be the same, and even the loops can be the same). In this case, 

the two coedges always go in opposite directions along the edge. In a nonmanifold body 

shell, there may be more than two coedges associated with an edge. 

Wires 

A wire is a connected collection of edges that are not attached to faces and do not enclose 

any volume. Wires may represent abstract items like profiles, construction lines and 

centerlines, or idealizations of rod or beam-like objects or internal passages. They are also 

commonly used to form wire frames to be surfaced to form solid-bounding shells.  

Figure 107: Wire body 

A shell may contain a single wire or faces with multiple wires attached to them at vertices. A 

shell with just a wire is called a wire shell, a lump with only a wire shell is a wire lump, and 

a body with only wire lumps is a wire body.  

Each wire is classified as being exterior representing an infinitesimally thin piece of 

material, or interior representing an infinitesimally thin passageway within bulk material. 
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Vertices 

Vertex (Figure 108) refers to a point in object space and to the edges that it bounds. 

Figure 108: Vertices 

3.1.2 Euler-Poincaré formula 

More generally, B-Rep complies with the Euler-Poincaré formula. Along with his other 

endeavours, Leonard Euler worked on body topology relationships. There are many versions 

in existence of his equations for managing topology. For instance, one of Euler's most 

famous equations for what he considered to be a valid manifold object was that the number 

of faces in an object minus the number of edges in that object plus the number of vertices in 

that object must always equal the number two (2). A more complete formulation of the 

equation, given below, includes hole loops and genus. 

The Following properties of the Euler-Poincaré formula should be noted. 

V – E + F – H = 2 (M – G)

V - Vertices

E - Edges

F - Faces

H - Hole Loops

M - Multiplicity

G - Genus



Appendix 3 Geometric Modelling 

Page 245 

• Integer values of V,E,F etc 

• V,E,F,H,M,G all ≥0 

• If V=E=F=H=M=0, then G=M=0 

• If M>0 then V≥ and F≥M 

• E-P formula defines ‘6D LATTICE’ Euler operators 

3.1.3 Graph Theory 

A graph is a mathematical abstraction of relationships. Many real-world situations can 

conveniently be described through a diagram or graph consisting of a set of points (nodes or 

vertices) together with lines (edges) joining various pairs of these points. This graphical 

representation helps us understand connectivity relationships and is the basis for graph 

theory. 

Graph diagrams tell whether or not two given points are joined by a line and the manner in 

which they are joined. There is no unique way of drawing a graph.  

One use of graph theory in geometric modelling is to abstract a given model's cells into a 

graph. Each cell of the geometric model becomes a point of the graph. Points of the graph 

are connected with lines (or edges) only if the cells of the geometric model are adjacent with 

faces. Last sentence is not clear at all 

Another use of graph theory is to abstract a given model's faces into a graph. Each face of 

the geometric model becomes a point of the graph. Points of the graph are connected with 

lines (or edges) only if the faces of the geometric model are adjacent.  

In classical B-Rep modelling, adjacency relationships are defined by the well known 

winged-edge data structure, Figure 111, in which the following data structure are stored for 

each edge: 

• Two vertices defining the edge, 

• Two faces F1 and F2 that meet at the edge, and 

• Four of its adjacent edges: the “next edge” in a counter-clockwise or clockwise 

traversal about either F1 or F2. 
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Figure 109: Winged edge data structure 

3.2 Boolean Operations  

The four regular Boolean operations, union, intersection, difference and symmetric 

difference, were previously introduced in set-theoretic modellingFigure 18. In this 

paragraph, some special cases and non-regular Boolean operations are presented: 

E
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E
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Figure 110: Special cases of Boolean operations 

3.3 Sweep and Swings 

The Euler-Poincaré formula given earlier in this chapter is also useful in creating solids from 

profile surfaces. These are sweeps (translational) and swings (rotational). 

Figure 111 is an example of Euler operations in sweeping. A solid is obtained from a face 

with vertices by successively changing the values of M, F, V, E. 

Figure 111: Euler operations in Sweeping 
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3.4 Tessellated Models 

The Oxford dictionary [117] gives the following definition to tessellation: 

“An arrangement of polygons without gaps or overlapping especially in a repeated pattern” 

This paragraph introduces and discuses some tessellation techniques used in geometric 

modelling. These are Spatial Occupancy (S.O.E.), Octree and Triangulation. 

3.4.1 Spatial Occupancy Enumeration (S.O.E) 

In spatial occupancy enumeration, the 3D space is divided into identical cubical cells and at 

a particular resolution, as shown in Figure 112. To avoid dividing the entire space into 

cubes, the model is first bounded in a box. Each cube coordinates are recorded with a logical 

one if the cube is filled or zero if it isn’t. Its application domain is large but has a number of 

drawbacks: 

• Not an exact representation 

• Needs a large amount of storage for reasonable resolution 
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Figure 112: Spatial occupancy model 

3.4.2 Octree Decomposition 

Similarly to S.O.E, octree models decompose solids in a list of cells, but the cells are not 

necessarily identical. The octree decomposition method is said to be adaptive because cells 

are divided unevenly until each cell contains solid or void only. In theory, this recursive 

division loop can go on forever, unless some resolution limit is set. This method is more 

efficient than S.O.E and needs less storage space. 
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Figure 113: Octree decomposition model 

3.4.3 Polyhedral Models 

Unlike S.O.E, which is imposed upon the data and octree, which adapts to it, Polyhedral 

tessellation is derived from the data. The two best-known methods are Dirichlet tessellation 

(also known as Voronoi Diagrams) and Delaunay triangulations. 

Suppose a finite set of scattered data points unevenly distributed (site), as shown in Figure 

114. Dirichlet tessellation defines, for each data point, a plane region that is closest to the 

data point than any other point (bold lines). In fact it expresses the proximity information of 

a set of objects in space. This tessellation is obtained from intersecting point-pairs 

equidistant lines (dashed lines). The fine lines joining data points to each other are the 

Delaunay triangulation. More detailed information on tessellated models is available in [18], 

[87] and [39]. 

Also triangulated tessellations are particularly suited to surface reconstruction in reverse 

engineering and finite element analysis meshing: [78], [105]. 
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Figure 114: Dirichlet tessellation and Delaunay triangulation 

 



 

Page 252 

Appendix 4 Vector Algebra

4.1 Vector Algebra. 

bababa zzyyxxBA ++=•  

babababababa xyyxxzzxyzzyBA −−−=×   ,  ,  

( )CCC •=  

CCnormC =  

4.2 Differentiation of a Vector 

If a vector a is function of a parameter u, then its components are also function of u: 

( ) ( ) ( ) ( )zuayuaxuaua 321 ++=  

And if the derivatives of ( ) ( ) ( )uauaua 321 ,, exist, the derivative of a is as follows: 

z
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321 ++=  

Consequently, with any vectors ( ) ( )tbta ,  and any scalar function ( )tk  the following 

properties are deduced, which will come useful at later stage for the purpose of curve 

analysis and optimisation: 
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N.B: ( )ba ×  denotes the cross product of a with b 

In addition, if a(t) is a unit vector, then a.a=1. Thus 
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and for a unit vector a, 

0. =
du
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a  

This means that a and 
du

da
 are perpendicular. 
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Appendix 5 Implementation of Curve 

Optimisation Application Using GA

The listing below is the C++ code implementation of the application for curve reconstruction 

from prescribed curvature using genetic algorithm presented in paragraph 8.2.1. 

// GA_main.cpp  

// created by Olivier Munaux and Ashutosh Tiwari, 06/09/01 Cranfield University 

// main driver file for Flexo 

 

#include "wot.h"   // include Flexo interface header 

#include "Translators.h"  // include Translators function library header 

#include <math.h> 

 

//****************    Data Initialisation    ****************************** 

 

double average_dist = 0; 

double average_dist_old = 10000; 

double average_dist_X = 0; 

double average_dist_Y = 0; 

double average_dist_Z = 0; 

Individual *oldpop[ ]; 

Individual *intpop[ ]; 

Individual *newpop[ ]; 

position new_points [ ]; 

int l = 0; 

int popsize = 0; 

int nogen = 0; 

double crossp = 0; 

int prcrossp = 0; 

double mutp = 0; 

int prmutp = 0; 

int power_start = 3; 

int power_finish = 5;  

double power = power_start; 

int rank_derivative = 0; 

int match_accuracy =0; 

position curve_point [ ]; 

vector vect_deriv [ ]; 
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position transform_curve_point [ ]; 

position curve_point_ga [ ]; 

vector vect_deriv_ga [ ]; 

position transform_curve_point_ga [ ]; 

double scale_factor =0;  

double fitness = 0; 

bs3_curve bs3_ga = NULL; 

bs3_curve bs3_ga_old = NULL; 

EDGE *ed_ga_old = NULL; 

int npts_ga; 

double fitol = RESAB; 

double actual_tol = 0; 

//creates unit vectors for start direction 

unit_vector start_dir(0, 0, 0); 

unit_vector end_dir (0, 0, 0); 

 

int main() 

{ 

 oli_ACIS_library_initialise();  //Initialise library 

 

//****************   user input    ************************* 

  

cout << "**** Spline Definition ****" <<endl; 

 cout <<endl; 

 cout << "Enter number of data point" <<endl; 

 int npts = 0; 

 cin >> npts; 

 npts_ga = npts; 

 double X,Y,Z; 

 position vertices [100]; 

 position vertices_ga [100]; 

 int k; 

 for (k=0; k<npts; k++){ 

 cout << "Enter point " << k+1 << " coordinates" <<endl; 

 cout << "X: "; 

 cin >> X; 

 cout << "Y: "; 

 cin >> Y; 

 cout << "Z: "; 

 cin >> Z; 

 position pos (X,Y,Z); 

 position pos_ga (X,Y,Z); 

 vertices [k] = pos; 

 vertices_ga [k] = pos; 

 } 

 cout <<endl; 
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 cout << "Enter start tangent" <<endl; 

 cout << "X: "; 

 cin >> X; 

 start_dir.component(0) = X; 

 cout << "Y: "; 

 cin >> Y; 

 start_dir.component(0) = Y; 

 cout << "Z: "; 

 cin >> Z; 

 start_dir.component(0) = Z; 

 cout <<endl; 

 cout << "Enter end tangent" <<endl; 

 cout << "X: "; 

 cin >> X; 

 end_dir.component(0) = X; 

 cout << "Y: "; 

 cin >> Y; 

 end_dir.component(0) = Y; 

 cout << "Z: "; 

 cin >> Z; 

 end_dir.component(0) = Z; 

 

//*************   create original curve   **************************** 

 bs3_curve bs3_original = NULL; 

 EDGE *ed_original = NULL; 

 oli_create_curve (  

      npts, 

      vertices,  // positions[] 

      start_dir,  // start_dir 

      end_dir,  // end_dir 

      fitol,   // fitol 

      actual_tol,  // actual_tol 

      bs3_original, // bs3_label 

      ed_original 

      ); 

char *sat_name = "original.sat";  // save into SAT file 

oli_save_entity(sat_name, ed_original); 

 

//********************* analysis definition     ****************** 

 cout << "**** analysis definition ****" <<endl; 

 cout <<endl; 

 cout << "Enter derivative rank" <<endl; 

 cin >> rank_derivative; 

cout << "Enter Scale Factor" <<endl; 

 cin >> scale_factor; 

 oli_input_sample_pitch (match_accuracy); 
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 oli_curve_nderiv( 

      match_accuracy, 

      bs3_original, 

      curve_point, 

      vect_deriv, 

      rank_derivative 

      ); 

oli_vector_normal_position_transform( 

       match_accuracy, 

       scale_factor, 

       curve_point, 

       vect_deriv, 

       transform_curve_point); 

 bs3_curve bs3_curvature = NULL; 

 EDGE *ed_curvature = NULL; 

 

 oli_create_curve ( match_accuracy, 

    transform_curve_point, // positions[] 

    start_dir,    // start_dir 

    end_dir,    // end_dir 

    fitol,     // fitol 

    actual_tol,    // actual_tol 

    bs3_curvature,   // bs3_label 

    ed_curvature); 

 

oli_save_entity(sat_name, ed_curvature); 

 

//***************   optimisation definition      ********************** 

cout << "**** optimisation definition ****" <<endl; 

  

 double upper_limit [12] = { 0.02, 0.02, 0.02,  

        10, 10, 10, 

        10, 10, 10,  

        0.02, 0.02, 0.02}; 

 double lower_limit [12] = { 0.02, 0.02, 0.02,  

        10, 10, 10, 

        10, 10, 10,  

        0.02, 0.02, 0.02}; 

  

 int numvar = 0; 

 int lenstr = 0; 

 int maxdecpt = 0; 

 srand( 67 );          // generates true random numbers 

 numvar = npts_ga * 3; 

 input_parameters(popsize, nogen, crossp, prcrossp, mutp, prmutp, numvar); 

 Arrayr lowerbound(numvar); 



Appendix 5 Implementation of Curve Optimisation Application Using GA 

Page 258 

Arrayr upperbound(numvar); 

Arrar lenvar(numvar); 

 create_bounds_from_positions( 

     upperbound,  

    lowerbound,  

     numvar,  

     vertices_ga,  

     upper_limit,  

     lower_limit); 

 

 outtestFile << upperbound << endl; 

 outtestFile << lowerbound << endl; 

matrices( lenvar, upperbound, lowerbound, numvar, lenstr, maxdecpt ); 

 initialise( popsize, oldpop, lenvar, upperbound, lowerbound, lenstr );  

 initialise( popsize, intpop, lenvar, upperbound, lowerbound, lenstr ); 

 initialise( popsize, newpop, lenvar, upperbound, lowerbound, lenstr ); 

 

 for ( int i = 0; i < nogen; i++ ) { 

 roulette( oldpop, intpop, popsize, maxdecpt ); 

 reproduction( intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp ); 

  for (int  j = 0; j < popsize; j++ ) { 

  *oldpop[j] = *newpop[j]; 

  outDistanceFile << newpop[j]->fitdata() <<endl; 

  } 

  power = power + (double (power_finish) - double (power_start)) / double (nogen); 

 } 

 

//*******************    statistics    ************************* 

 for (int j=0; j<popsize; j++){ 

 outtestFile <<endl; 

 outtestFile <<"Individual "<< j <<endl; 

 outtestFile <<"fitness function value ="<< newpop[j]->fitfun() <<endl; 

 outtestFile <<"distance value ="<< newpop[j]->fitdata() <<endl; 

 for (int i=0; i<npts_ga; i++){ 

 outtestFile<< "X" << i << " = "<< newpop[j]->getVarval()[3*i] <<endl; 

 outtestFile<< "Y" << i << " = "<< newpop[j]->getVarval()[3*i+1] <<endl; 

 outtestFile<< "Z" << i << " = "<< newpop[j]->getVarval()[3*i+2] <<endl; 

} 

  } 

char const* leader = ""; 

FILE *fp; 

 if (!(fp = fopen("final_curve.txt", "w"))) 

 {fprintf(stderr, "fopen() failed \n");} 

bs3_curve_debug ( bs3_ga_old, 

     leader, 

     fp); 
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int dim ; 

int deg ; 

logical rat; 

int num_ctrlpts; 

position *ctrlpts [ ]; 

double* weights [ ]; 

int num_knots; 

double* knots [ ]; 

 

bs3_curve_to_array (  

  bs3_ga_old,  // given curve  

  dim,   // returned dimension  

  deg,   // returned degree  

  rat,   // returned rational  

 num_ctrlpts,  // returned number of  control points  

  ctrlpts,   // returned control points  

weights,  // returned weights  

num_knots,  // returned number of  knots  

  knots   // knot); 

 

outFinalCurve << "returned dimension " << *& dim <<endl; 

outFinalCurve << "returned degree " << *& deg <<endl; 

outFinalCurve << "returned rational " << *& rat <<endl; 

outFinalCurve << "returned number of control points " << *& num_ctrlpts <<endl; 

 

for (i=0; i<num_ctrlpts; i++){ 

 outFinalCurve << "returned control points " << ctrlpts[i] <<endl; 

 outFinalCurve << "returned weights " << weights[i] << endl; 

} 

 

outFinalCurve << "returned number of knots " << *& num_knots <<endl; 

 

for (i=0; i<num_ctrlpts; i++){ 

 outFinalCurve << "returned knots " << *& knots[i] <<endl; 

} 

  

outFinalCurve << endl; 

 

oli_ACIS_curve (bs3_ga_old,  // bs3_label 

    ed_ga_old // edge_label* 

    ); 

 

sat_name = "ga_curve.sat"; 

oli_save_entity(sat_name, ed_ga_old); 
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oli_curve_nderiv( 

      match_accuracy, 

      bs3_ga_old , 

      curve_point, 

      vect_deriv, 

      rank_derivative 

      ); 

oli_vector_normal_position_transform( 

       match_accuracy, 

       scale_factor, 

       curve_point, 

       vect_deriv, 

       transform_curve_point 

       ); 

   

 bs3_curve bs3_curvature_final = NULL; 

 EDGE *ed_curvature_final = NULL; 

 

 oli_create_curve ( match_accuracy, 

      transform_curve_point, 

start_dir, 

      end_dir, 

fitol, 

      actual_tol, 

     bs3_curvature_final, 

 ed_curvature_final); 

sat_name = "curvature_final.sat"; 

oli_save_entity(sat_name, ed_curvature_final); 

return 0; 

} 

 

//***************    fitness value    ************************** 

double Individual::fitdata() const{ 

 Arrayr Varval(getNumvar()); 

for (int i = 0; i < getNumvar(); i++ ) { 

  Varval[i] = getVarval()[i]; 

 } 

 create_positions_from_GA_variables( 

      npts_ga, 

      Varval, 

      new_points); 

 

 bs3_ga = bs3_curve_interp ( 

       npts_ga, 

       new_points, 

       start_dir, 
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       end_dir, 

       fitol, 

       actual_tol 

       ); 

 double start = 0;  // start parameter 

 double end = 1;   // end parameter 

 

 bs3_curve_reparam ( 

     start, 

     end, 

     bs3_ga); 

 

 oli_curve_nderiv( 

      match_accuracy, 

      bs3_ga, 

      curve_point_ga, 

      vect_deriv_ga, 

      rank_derivative); 

 

 oli_vector_normal_position_transform( 

       match_accuracy, 

       scale_factor, 

       curve_point_ga, 

       vect_deriv_ga, 

       transform_curve_point_ga); 

 

 oli_position_distance( 

    match_accuracy, 

    transform_curve_point, 

    transform_curve_point_ga, 

    average_dist, 

    average_dist_X, 

    average_dist_Y,  

    average_dist_Z, 

    scale_factor); 

  

 if (average_dist >= average_dist_old){ 

  

 bs3_curve_delete ( bs3_ga ); 

 else{ 

 average_dist_old = average_dist; 

 bs3_curve_delete (bs3_ga_old); 

 bs3_ga_old = bs3_curve_copy ( bs3_ga ); 

 bs3_curve_delete ( bs3_ga );} 

 cout<< average_dist <<endl; 

 return average_dist;} 
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//**************************************************** 

//*************    Fitness Function     ********************* 

 

double Individual::fitfun() const{ 

 fitness = pow((1/(1 + fitdata())), power); 

 return fitness; 

} 
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Appendix 6 GA tests

6.1 Fitness Function Mapping 

The first series of tests performed are the mapping of the fitness function. These tests are a 

record of the fitness values returned by the fitness function plotted in a graph showing the 

scores against data point coordinates moving away incrementally and positively from their 

nominal values. The nominal values are in effectively a solution known in advance for which 

the fitness value is maximum. 

The mapping of the fitness function is one way of visualising the solution space. This also 

helps to determine the nature of the optimisation problem that guides the choice of the 

algorithm for the problem. The curve used here is a spline interpolated through 4 data points 

and the optimisation is carried on the curvature property as objective function. Since the 

visual space is limited to three axes, one or two point coordinates maximum are variable, the 

others are maintained as constant as shown in Table 11. 

Point Pt 2   Pt 3   

Coordinate X Y Z X Y Z 

6.1.1 üüüü     üüüü         

6.1.2 üüüü      üüüü        

6.1.3  üüüü       üüüü      

6.1.4  üüüü        üüüü     

The cells ticked are the point coordinates set as variables 

Table 11: Experiment table 

In this experiment, the coordinates vary one unit of their nominal value with an increment of 

0.1 of the unit. The implementation of each test is presented below with its table value and 

graph analysis in subsequent paragraphs. 
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These tests show that for all variables, the fitness function exhibits a high response within 

0.2 of the unit out from the nominal value. This means that the optimisation algorithm will 

converge quickly and accurately towards the optimum solution. Also in all the maps it is 

observed that there is a unique peak, which means that the function is uni-modal. 

6.1.1 Pt2 (X variable, Y variable, Z constant) 

 

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (k+10, l+5, 5);

position pt3_ga (20, 30, 10);

position pt4_ga (40, 0, 7);

}

}

Y            X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.374 0.230 0.166 0.130 0.106 0.090 0.078 0.069 0.062 0.056

0.1 0.418 0.408 0.253 0.180 0.139 0.113 0.095 0.082 0.072 0.064 0.058

0.2 0.265 0.333 0.257 0.187 0.144 0.117 0.098 0.085 0.074 0.066 0.059

0.3 0.195 0.243 0.237 0.187 0.148 0.120 0.101 0.087 0.076 0.068 0.061

0.4 0.154 0.186 0.202 0.180 0.148 0.122 0.103 0.089 0.078 0.069 0.062

0.5 0.128 0.150 0.168 0.164 0.144 0.122 0.104 0.090 0.079 0.070 0.063

0.6 0.109 0.126 0.141 0.146 0.136 0.120 0.104 0.090 0.080 0.071 0.064

0.7 0.095 0.108 0.121 0.128 0.125 0.115 0.102 0.090 0.080 0.071 0.064

0.8 0.085 0.095 0.105 0.113 0.115 0.109 0.099 0.089 0.080 0.072 0.065

0.9 0.077 0.085 0.093 0.101 0.104 0.102 0.096 0.087 0.079 0.072 0.065

1 0.070 0.076 0.084 0.090 0.095 0.095 0.091 0.085 0.078 0.071 0.065
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6.1.2 Pt2 (X variable, Y constant, Z constant); Pt3 (X variable, 
Y constant, Z constant) 

 

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (k+10, 5, 5);

position pt3_ga (l+20, 30, 10);

position pt4_ga (40, 0, 7);

}

}
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Y               X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.371 0.228 0.164 0.128 0.105 0.089 0.078 0.068 0.061 0.055

0.1 0.479 0.362 0.236 0.171 0.133 0.109 0.092 0.080 0.070 0.063 0.057

0.2 0.315 0.297 0.221 0.168 0.133 0.110 0.093 0.081 0.071 0.064 0.058

0.3 0.235 0.239 0.198 0.159 0.130 0.109 0.093 0.081 0.072 0.064 0.058

0.4 0.187 0.195 0.175 0.148 0.124 0.106 0.092 0.081 0.072 0.064 0.058

0.5 0.156 0.164 0.154 0.136 0.118 0.102 0.090 0.079 0.071 0.064 0.058

0.6 0.133 0.140 0.136 0.124 0.110 0.098 0.087 0.077 0.070 0.063 0.058

0.7 0.117 0.122 0.121 0.113 0.103 0.093 0.083 0.075 0.068 0.062 0.057

0.8 0.104 0.108 0.108 0.104 0.096 0.088 0.080 0.073 0.066 0.061 0.056

0.9 0.093 0.097 0.098 0.095 0.089 0.083 0.076 0.070 0.064 0.059 0.055

1 0.085 0.088 0.089 0.087 0.083 0.078 0.073 0.067 0.062 0.058 0.054
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6.1.3 Pt2 (X constant, Y variable, Z constant); Pt3 (X constant, 
Y variable, Z constant) 

 

//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (10, k+5, 5);

position pt3_ga (20, l+30, 10);

position pt4_ga (40, 0, 7);

}

}
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6.1.4 Pt2 (X constant, Y constant, Z variable); Pt3 (X constant, 
Y constant, Z variable) 

Y              X
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.417 0.264 0.193 0.153 0.127 0.108 0.095 0.084 0.076 0.069

0.1 0.522 0.514 0.308 0.217 0.168 0.137 0.116 0.100 0.089 0.079 0.072

0.2 0.353 0.472 0.346 0.241 0.183 0.147 0.123 0.106 0.093 0.083 0.075

0.3 0.267 0.351 0.341 0.261 0.198 0.158 0.131 0.112 0.098 0.087 0.078

0.4 0.214 0.269 0.309 0.262 0.210 0.168 0.139 0.118 0.102 0.090 0.081

0.5 0.179 0.217 0.257 0.249 0.212 0.175 0.146 0.124 0.107 0.094 0.084

0.6 0.154 0.182 0.213 0.230 0.205 0.177 0.151 0.129 0.111 0.098 0.087

0.7 0.135 0.156 0.180 0.202 0.196 0.174 0.152 0.132 0.115 0.101 0.090

0.8 0.120 0.137 0.156 0.175 0.183 0.168 0.151 0.134 0.118 0.104 0.093

0.9 0.108 0.122 0.137 0.153 0.166 0.161 0.147 0.133 0.119 0.107 0.095

1 0.098 0.109 0.122 0.135 0.148 0.152 0.142 0.130 0.119 0.107 0.097
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//curvature analysis (2nd derivative)

PROJECT: curvature_fitness_fun_1

double fitness = sum_dist;

for (double k=0; k<1; k+=0.1) {

for (double l=0; l<1; l+=0.1) {

int npts_ga = 4;

position pt1_ga (0, 0, 0);

position pt2_ga (10, 5, k+5);

position pt3_ga (20, 30, l+10);

position pt4_ga (40, 0, 7);

}

}
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Y               X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 1.000 0.358 0.218 0.157 0.123 0.101 0.085 0.074 0.065 0.059 0.053

0.1 0.483 0.476 0.270 0.183 0.138 0.111 0.093 0.079 0.070 0.062 0.056

0.2 0.319 0.433 0.312 0.212 0.156 0.122 0.101 0.086 0.074 0.066 0.059

0.3 0.238 0.338 0.304 0.232 0.174 0.135 0.110 0.092 0.079 0.070 0.062

0.4 0.190 0.257 0.276 0.231 0.185 0.146 0.119 0.099 0.085 0.074 0.065

0.5 0.158 0.204 0.240 0.218 0.185 0.153 0.126 0.106 0.090 0.078 0.069

0.6 0.135 0.169 0.203 0.202 0.179 0.154 0.131 0.111 0.095 0.082 0.072

0.7 0.118 0.143 0.172 0.184 0.170 0.151 0.132 0.114 0.099 0.086 0.076

0.8 0.105 0.125 0.148 0.164 0.160 0.145 0.130 0.115 0.101 0.089 0.079

0.9 0.094 0.110 0.129 0.145 0.148 0.139 0.127 0.114 0.102 0.091 0.081

1 0.086 0.099 0.114 0.129 0.136 0.132 0.122 0.112 0.102 0.092 0.083
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6.2 Fitness Boosting 

The general concept of the fitness boosting technique is introduced in paragraph 0, this 

appendix documents the experiments carried out during the development. 

This experiment uses the same test function as in appendix 6.1 above. Here a power function 

is applied to the fitness function for boosting. The power is incremented from a start value to 

an end value at every generation as shown in the implementation below. It is desirable to 

proceed with an increment on the power value to prevent penalising average solutions in 

order to leave enough genetic diversity within the population. A series of test are presented 

below, the setting values are given for each experiment in a frame above each graph. 

Implementation 

int power_start = 1;   //start power value 

int power_finish = 8;    //end power value 

double power = power_start;  //initialise power at start value 

int nogen = 50;   //number of generations 

int popsize = 50;   //population size 

 

for ( int i = 0; i < nogen; i++ ) { 

 roulette( oldpop, intpop, popsize, maxdecpt ); 

 reproduction( intpop, newpop, popsize, crossp, prcrossp, mutp, prmutp ); 

   for (int  j = 0; j < popsize; j++ ) { 

  *oldpop[j] = *newpop[j]; 

   

  outDistanceFile << newpop[j]->fitdata() <<endl; 

  outpower<<power<<endl; 

  } 

  

 power = power + (double (power_finish) - double (power_start)) / double (nogen);} 
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Settings 

Experiments 

 

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02, 

gen 50

pop 50

xover 0.8

xover level 2

mutation 0.02

mtation level 2

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10, 

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10, 

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02, 

RUN 1

Start power = 1

End power = 1
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RUN 3

Start power = 1

End power = 2
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RUN 4
Start power = 1

End power = 8
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Observations 

The main observation that can be drawn from this experiment is that power applied to the 

fitness function results in better convergence of the GA. This is true up to certain limit. With 

a power range of 1 to 16 the solution band becomes too narrow, and population diversity is 

too small to allow the GA to converge towards an optimum. The best results are obtained 

with a power range of 1 to 8, which are the settings retained for the application of curve 

optimisation. 

6.3 GA Operators 

For the tests on GA operators, the best power settings found previously are selected here and 

kept constant all the way through the experiments. 

6.3.1 Mutation 

The mutation operator has two settings: the probability mutation occurs on an individual and 

the chromosome level mutation is applied. Both settings are explored in this experiment 

starting with the mutation probability. 

Settings 

Graphs 

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02, 

gen 50

pop 50

xover 0.8

xover level 2

power start 1

power finish 8

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02, 

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10, 

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10, 

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};
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Run 1
Mutation probability = 0.005
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Run 3

Mutation probability = 0.04

Mutation Level = 2
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Observations 

As the probability increases, the solution band gets wider with a Paretto front less 

pronounced, the solutions are more spread out. The GA is able to explore the search space 

and find solutions towards the optimum quickly. However with a probability of 0.04, it is 

observed that too much mutation is introduced to the population results of a weak Paretto 

front: not enough solutions are close to the front and the GA has difficulty to converge. 

Like for the probability, the mutation level, it has the effect of concentrating solutions 

towards the Paretto front as it increases. This is an interesting property because it is 

preferable to have a solution band following the trend of the Paretto front. The settings 

retained after this experiment are a probability of 0.01 and a level of 2. 

6.3.2 Cross-over 

Settings 

Run 5

Mutation probability = 0.001

Mutation Level = 3
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Graphs 

 

point 50 double lower_limit [12] = { 0.02, 0.02, 0.02, 

gen 50

pop 50

mutation 0.01

mtation level 2

power start 1

power finish 8

0.02, 0.02, 0.02};

position pt3 (20, 30, 10); 10, 10, 10, 

position pt4 (40, 0, 0); 0.02, 0.02, 0.02};

position pt2 (10, 5, 5); 10, 10, 10,

10, 10, 10,

10, 10, 10, 

position pt1 (0, 0, 0);

position pt2 (10, 5, 5);

position pt1 (0, 0, 0); double upper_limit [12] = { 0.02, 0.02, 0.02, 

Run 1

probability = 0.5

level = 2

0.1

1

10

100

0 500 1000 1500 2000 2500

Individuals

average

distance

power



Appendix 6 GA tests 

Page 278 

 

Observations 

It is observed that with an increasing cross-over probability the GA converges better, in 

actual fact the best result is obtained with a probability of 1. As for the cross over level it is 

no effect on the convergence. 

Run 2

probability = 1

level = 2
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Appendix 7 Implementation of Curve 

Optimisation Application Using F-Rep
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The code presented below traces out the curvature fin, Equation 23, the torsion fin, 

Equation 24, the curvature plot, Equation 11, and the torsion plot, Equation 17 of a space 

curve. 

#include <iostream.h> 

#include <stdio.h> 

#include <math.h> 

#include "wot.h" 

 

int main() 

{ 

ENTITY_LIST *curve_bs3 = new ENTITY_LIST; 

ENTITY_LIST *u_c_list = new ENTITY_LIST; 

ENTITY_LIST *u_t_list = new ENTITY_LIST; 

//Initialise modeler and LAW class library 

oli_ACIS_library_initialise(); 

initialize_law (); 

 

// Construct a curve from control points 

int const Nb_CtrlPpts = 4; 

position pt1  (40, 40, 40); 

position pt2  (45, 120, 120); 

position pt3  (85,10, 80); 

position pt4  (100, 70, 30); 

position  vertices[*&Nb_CtrlPpts] = {pt1, pt2, pt3, pt4};//,pt5};//,pt6}; 

bs3_curve bs3_label = NULL; 

int const degree = 3; 

int const nb_knots = Nb_CtrlPpts + degree - 1 ; 

double const knots[nb_knots] = {0,0,0,1,1,1}; //that makes a cubic Bezier 

double weights[nb_knots]= {(double)NULL}; //it's not a rational 

double fitol = resabs; 

logical rational = FALSE; 

logical closed = FALSE; 

logical periodic = FALSE; 

int dimension = 3; 

 

bs3_label = bs3_curve_from_ctrlpts   ( 

      degree, 

      rational, 

      closed, 

      periodic, 

      Nb_CtrlPpts, 

      vertices, 

      weights, 

      fitol, 
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      nb_knots, 

      knots, 

      fitol, 

      dimension 

      ); 

 

//reparameterise the bs3_curve from  0 to 1... 

double start =0; 

double end =1; 

bs3_curve_reparam ( start,end,bs3_label); 

// saves the curve into a SAT file 

EDGE* edge_label = NULL; 

oli_ACIS_curve (bs3_label, edge_label); 

oli_add_entity_List(edge_label, curve_bs3); 

 

curve_law* position_vector = NULL; 

law *tangent = NULL; 

law *curvature_vector = NULL; 

law *curvature = NULL; 

law *torsion_vector = NULL; 

law *torsion = NULL; 

// gets the LAW representation of the curve 

oli_edge_to_law(edge_label, position_vector); 

// gets the Frenet frame  

oli_Frenet_frame_law (     

      position_vector, 

      tangent, 

      curvature_vector, 

      curvature, 

      torsion_vector, 

      torsion 

      ); 

 

//Trace the Curvature fin 

law *scale_factor_curvature = new constant_law(10); 

law *curvature_scaled = new times_law(normal, scale_factor_curvature); 

law *curvature_fin = new minus_law(position_vector, curvature_scaled); 

 

//Trace the Torsion fin 

law *scale_factor_torsion = new constant_law(10); 

law *torsion_scaled = new times_law(bi_normal, scale_factor_torsion); 

law *torsion_fin = new plus_law(position_vector, torsion_scaled); 

 

// Curvature Vs parameter plot 

int in_which = 0; 

char *in_name ="u"; 
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law* u = new identity_law ( In_which, *in_name); 

law* zero = new constant_law(0); 

law *u_c_array[3] = {u, curvature,zero}; 

law *u_c = new vector_law(u_c_array, 3); 

law *u_c_plot = u_c; 

 

//Torsion Vs parameter 

law *u_t_array[3] = {u, torsion,zero}; 

law *u_t = new vector_law(u_t_array, 3); 

law *u_t_plot = u_t; 

 

// MAKE EGDES AND SAVE INTO SAT FILES 

EDGE* curvature_fin_edge = NULL; 

oli_law_to_edge( 

      curvature_fin, 

      start, 

      end, 

      curvature_fin_edge 

      ); 

oli_add_entity_List(curvature_fin_edge, frenet_frame_list); 

EDGE* torsion_fin_edge = NULL; 

oli_law_to_edge( 

      torsion_fin, 

      start, 

      end, 

      torsion_fin_edge ); 

 

oli_add_entity_List(torsion_fin_edge, frenet_frame_list); 

EDGE* u_c_plot_edge = NULL; 

oli_law_to_edge( 

      u_c_plot, 

      start, 

      end, 

      u_c_plot_edge ); 

 

oli_add_entity_List(u_c_plot_edge, u_c_list); 

EDGE* u_t_plot_edge = NULL; 

oli_law_to_edge( 

      u_t_plot, 

      start, 

      end, 

      u_t_plot_edge ); 

oli_add_entity_List(u_t_plot_edge, u_t_list); 

return 0; 

_t_list);
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8.1 Draw an Interpolated Spline  

• Click on ‘S’ icon or  

• Menu ‘Draw’ ‘Curve’ ‘Spline’ 

• • Left click to select data points  

• • Right click to finish  
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• •Left click to enter start tangent  

• • Right click for NULL (natural tangent with zero curvature)  

• •Left click to enter end tangent  

• • Right click for NULL (natural tangent with zero curvature)  
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• •Here is the result 

• • Note that this Spline is planar in the X-Y plane because the default view is 
TOP
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8.2 Draw a 3D Bézier curve 

• •Click on ‘B’ icon or 

• • Menu ‘Draw’ ‘Curve’ ‘Bezier’ 

• •Left clicks to input 3 of 4 polygon points  
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• •Change to FRONT view: click on FRT icon  

• •Input 4th polygon point in the Z-X plane  
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• •That’s done it  

• • Go back to TOP view  
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8.3 Shape Modification 

• Menu ‘Modify’ ‘Edge’  

• •Left click to select a curve 

• • The control points now appear on screen  
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• •Left button down to drag a point 

• •The Bézier polygon shows colour white 

• •Right click  to exit the modification tool 



Appendix 8 HulaHoops User Interface 

Page 292 

8.4 Curvature and Torsion Differential 
PropertiesMenu ‘Frame’ ‘ Compound’ ‘curv & torsion’  

• •Menu ‘Frame’ ‘ Compound’ ‘curv & torsion’ 

• • Left click  to select a curve, it should go blue 
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• Right click to validate 

• The curvature and torsion compound fins are now on screen 

• Note that if the inquired curve was planar, only the curvature would be 
returned  

 



Appendix 8 HulaHoops User Interface 

Page 294 

8.5 Combescure Differential PropertiesMenu ‘Frame’ 

Compound’ ‘Combescure’  

• Select a curve, it should go blue 
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• Right click to confirm 
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8.6 Frénet Frame Differential Properties 

• Menu ‘Frame ’ Compound’ ‘Frenet frame’ 

• •Left click to select a curve, it should go blue 

• • Right click to validate  
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• The Frenet frame normal and bi-normal compound fins show on screen 

• If the curve is planar, only the normal fin is given 

• The normal and bi-normal fins can be obtained separately from Menu 
‘Frame’ ‘Compound’ ‘Normal’ or ‘Bi-normal’ 

• The Frenet frame is valid for any curves with non vanishing curvature 

• Right click to exit the tool, the fins and hair are destroyed 
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8.7 Viewing 

• Menu ‘View’ ‘Orbit’ or 

•  Bent arrow icon 

• Left button down to rotate the model 

• Right click to exit the tool 
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• •Menu ‘View’ ‘Pan’ or cross arrow icon 

• •  Left button down to move the model in the view plane 

• • Right click to exit the tool  


