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Introduction

Increasing Oil demand
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Introduction

An Offshore Oil Reservoir
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Introduction

Closed-loop reservoir management

(after Jansen 2005)
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Introduction

Water Flooding Modeled by a Two-Phase Flow Model

The mass conservation of water (i ≡ w) and
oil (i ≡ o)

∂

∂t
Ci(Pi, Si) = −∇ · Fi(Pi, Si) +Qi

The mass concentrations

Ci = φρi(Pi)Si

Fluxes through the porous medium

Fi = ρi(Pi)ui(Pi, Si)

Darcy’s law

ui(Pi, Si) = −Kkri(Si)

µi

(
∇Pi − ρi(Pi)g∇z

)
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3 4

k
min

:0.024 Darcy,   k
max
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A general formulation of the
two-phase flow problem

d

dt
g(x(t)) = f(x(t), u(t))
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Optimal Control Problem

Continuous form

Consider the continuous-time constrained optimal control problem in the
Bolza form

min
x(t),u(t)

J = Φ̂(x(tb)) +

∫ tb

ta

Φ(x(t), u(t))dt (1a)

subject to

x(ta) = x0 (1b)

d

dt
g
(
x(t)

)
= f(x(t), u(t)), t ∈ [ta, tb], (1c)

u(t) ∈ U(t) (1d)

x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu is the control vector. The
time interval I = [ta, tb] as well as the initial state, x0, are assumed to be
fixed.
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Optimal Control Problem

Path constraints

Path constraints
η(x(t), u(t)) ≥ 0 (2)

are included as soft constraints using the following smooth approximation

χi(x(t), u(t)) =
1

2

(√
ηi(x(t), u(t))2 + βi

2 − ηi(x(t), u(t)

)
(3)

to the exact penalty function max(0,−ηi(x(t))) for i ∈ {1, . . . , nη}.With
this approximation of the path constraints, the resulting stage cost,
Φ(x(t), u(t)), used in (11) consist of the inherent stage cost,
Φ̃(x(t), u(t)), and terms penalizing violation of the path constraints (2)

Φ(x, u) = Φ̃(x, u) + ‖χ(x, u)‖1,Q1 +
1

2
‖χ(x, u)‖22,Q2

(4)
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Optimal Control Problem

Single Shooting Discretization

We introduce the function

ψ({uk}N−1k=0 , x0) =

{
J =

∫ tb

ta

Φ(x(t), u(t))dt+ Φ̂(x(tb)) : x(t0) = x0,

d

dt
g(x(t)) = f(x(t), u(t)), ta ≤ t ≤ tb,

u(t) = uk, tk ≤ t < tk+1, k ∈ N = 0, .., N − 1

}
(5)

such that (1) can be approximated with the finite dimensional constrained
optimization problem

min
y:={uk}N−1

k=0

ψ = ψ(y, x0) (6a)

s.t. umin ≤ uk ≤ umax k ∈ N (6b)

∆umin ≤ ∆uk ≤ ∆umax k ∈ N (6c)

ck(uk) ≥ 0 k ∈ N (6d)

with N = {0, 1, . . . , N − 1}.
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Optimal Control Problem

Sequential Quadratic Programming

We solve the NLP (6) iteratively improving a given estimate yi of the
solution by

yi+1 = yi + αipi (7)

where αi (0 < α ≤ 1) is determined by a linesearch (LS) strategy based on
Powell’s exact l1-merit function. The search direction pi is given by solving
the KKT solution (pi, λi, µi) of a quadratic approximation to (6)

min
p

1

2
p′H ip′ +∇ψ(yi)′p

s.t ∇h(yi)′p = −h(yi)

∇c̄(yi) ≥ −c̄(yi)

(8)

where H i ∈ Rn×n is an approximation for the Hessian ∇2
yL of the

lagrangian function L(y, λ, µ) = ψ(y)− λh(y)− µc̄(y) which starting from
an initial estimate H0, is updated after every step using BFGS.
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ESDIRK integration methods

Runge-Kutta ESDIRK Methods

We use an embedded
ESDIRK method

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
. . .

1 b1 b2 b3 · · · γ

xn+1 b1 b2 b3 · · · γ

x̂n+1 b̂1 b̂2 b̂3 · · · b̂s

1 Solve implicit system

Ti = tn + hnci, i ∈ 2, . . . , s

g(Xi) = g(xn) + hn

s∑
j=1

aijf(Tj , Xj , u)

2 Compute xn+1 = Xs

3 Compute the error/tolerance ratio

en+1 = g(xn+1)− g(x̂n+1)

= hn

s∑
j=1

(bj − b̂j)f(Tj , Xj , u)

rn+1 =
1
√
nx

∥∥∥∥ en+1

atol + |g(xn+1)|rtol

∥∥∥∥
2
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ESDIRK integration methods

Temporal step size controller performance

(after Völcker 2010)
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Continuous Adjoint Method

Proposition (Gradients based on Continuous Adjoints)

Consider the function ψ = ψ({uk}N−1k=0 ;x0) defined by (5).
The gradients, ∂ψ/∂uk, may be computed as

∂ψ

∂uk
=

∫ tk+1

tk

(
∂Φ

∂u
− λT ∂f

∂u

)
dt k = 0, 1, . . . , N − 1 (9)

in which x(t) is computed by solution of (1b)-(1c) and λ(t) is computed
by solution of the adjoint equations

dλT

dt

∂g

∂x
+ λT

∂f

∂x
− ∂Φ

∂x
= 0 (10a)

∂Φ̂

∂x
(x(tb)) + λT (tb)

∂g

∂x
(x(tb)) = 0 (10b)

Remember that the dynamic model is given as

d

dt
g(x(t)) = f(x(t), u(t))
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Production Optimization for a Conventional Oil Field

Test case for waterflooding optimization

squared reservoir of size 450m × 450m × 10m
uniform cartesian grid of 25x25x1 grid blocks
no flow boundaries, 4 injectors and 1 producer (rate controlled)
We maximize an economic value for different discount factors
b ∈ 0, 0.06, 0.12

min
x(t),u(t)

J(tb) = −NPV(tb) =

∫ tb

ta

Φ̃(x(t), u(t))dt

Φ̃ = − 1

(1 + b)t/365

∑
j∈P

(ro(1− fw,j)− fw,jrw) qj(t)
(11)

where fw = λw/(λw + λo), λi = ρikkri/µi, i ∈ {w, o}

1 2

3 4

k
min

:0.024 Darcy,   k
max

:11.312 Darcy
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Production Optimization for a Conventional Oil Field

Constraints

The manipulated variable at time period k ∈ N is

uk = {{qw,i,k}i∈I , {qi,k}i∈P} (12)

with I being the set of injectors and P being the set of producers.

qw,i,k injection rate (m3/day) of water at injector i ∈ I
qi,k total flow rate (m3/day) at producer i ∈ P

Bound constraints

0 ≤ qw,i,k ≤ qmax i ∈ I, k ∈ N (13a)

0 ≤ qi,k ≤ qmax i ∈ P, k ∈ N (13b)

Rate constraints

|qi,k − qi,k−1| ≤ 5 i ∈ I ∪ P, k ∈ N (14a)

|qw,i,k − qw,i,k−1| ≤ 5 i ∈ I, k ∈ N (14b)
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Production Optimization for a Conventional Oil Field

Constraints (2)

voidage replacement constraint∑
i∈I

qi,k =
∑
i∈I

qw,i,k =
∑
i∈P

qi,k k ∈ N (15)

total injection constraint∑
i∈I

qw,i,k = qmax k ∈ N (16)

We set qmax = 100 m3/day, tb = 4270 days, Ts = 35 days hence
N = 122 periods.

Injection of 1.05 pore volume during operation of the reservoir

We consider as a reference case a fixed water injection of 100/4 = 25
m3/day from each injector.

The prediction horizon tb is optimal in the reference case
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Production Optimization for a Conventional Oil Field

Optimal solution
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(a) Optimal solution (b = 0).
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(b) Reference solution.

Oil saturations at different times for the optimal solution and the reference
solution.
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Production Optimization for a Conventional Oil Field

Cumulative oil and water production for different discount
factors
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(a) Discount factor b = 0.
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(b) Discount factor b =
0.06.
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(c) Discount factor b =
0.12.

Cumulative oil and water productions for different discount factors, b.
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Production Optimization for a Conventional Oil Field

NPV, Water cut, Water fraction
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(b) Water cut.
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The net present value (NPV), water cut (accumulated water production per
produced fluid), and the water fraction as function of time for the scenarios
considered.
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Production Optimization for a Conventional Oil Field

Optimal input trajectories
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Production Optimization for a Conventional Oil Field

Improvement table

Table: Key indicators for the optimized cases. Improvements are compared to the
base case.

b NPV ∆NPV Cum. Oil ∆Oil Cum. water ∆Water
106 USD % 105 m3 % 105 m3 %

0 28.0 +8.7 3.05 +6.5 0.122 −13.2
0.06 22.1 +5.6 3.01 +5.2 0.126 −10.5
0.12 18.3 +4.8 2.98 +4.1 0.129 −8.2

b Oil Rec. factor ∆Oil Rec. factor
% %-point

0 83.7 +5.2
0.06 82.6 +4.1
0.12 81.7 +3.2
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Conclusions

Conclusions

A novel algorithm for large scale optimal control based on

a novel formulation of the differential equations

an ESDIRK method for integration of differential equations

the continuous adjoint method for gradient computation

the SQP method for optimization

the single shooting principle

This algorithm is applied for production optimization of oil reservoirs. For
this field, optimal control improves the NPV by 8.7%.

Optimal control and nonlinear model predictive control can potentially
have a very big impact in oil reservoir management.
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Conclusions
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