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ABSTRACT

The thesis covers data fusion for aircraft navigation systems in distributed sensor
systems. Data fusion methodologies are developed for the design, development,
analysis and simulation of multisensor aircraft navigation systems. The problems of
sensor failure detection and isolation (FDI), distributed data fusion algorithms and
inertial state integrity monitoring in inertial network systems are studied.

Various existing integrated navigation systems and Kalman filter architectures are
reviewed and a new generalised multisensor data fusion model is presented for the
design and development of multisensor navigation systems. Normalised navigation
algorithms are described for data fusion filter design of inertial network systems.

A normalised measurement model of skewed redundant inertial measurement units
(SRIMU) is presented and performance criteria are developed to evaluate optimal
configurations of SRIMUs in terms of the measurement accuracy and FDI capability.
Novel sensor error compensation filters are designed for the correction of SRIMU
measurement errors. Generalised likelihood ratio test (GLRT) methods are improved
to detect various failure modes, including short time and sequential moving-window
GLRT algorithms.

State-identical and state-associated fusion algorithms are developed for two forms of
distributed sensor network systems. In particular, innovative inertial network sensing
models and inertial network fusion algorithms are developed to provide estimates of
inertial vector states and similar node states. Fusion filter-based integrity monitoring
algorithms are also presented to detect network sensor failures and to examine the
consistency of node state estimates in the inertial network system.

The FDI and data fusion algorithms developed in this thesis are tested and their
performance is evaluated using a multisensor software simulation system developed
during this study programme. The moving-window GLRT algorithms for optimal
SRIMU configurations are shown to perform well and are also able to detect jump
and drift failures in an inertial network system. It is concluded that the inertial
network fusion algorithms could be used in a low-cost inertial network system and

are capable of correctly estimating the inertial vector states and the node states.
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INTRODUCTION

1.1 Aircraft Navigation Sensors/Systems

Chapter 1

INTRODUCTION

1.1 Aircraft Navigation Sensors/Systems

The purpose of aircraft navigation is to determine significant position, velocity,
attitude, and time (PVAT) information of an aircraft with respect to reference frames.
These PVAT parameters are referred as to the navigation states in this thesis.

Aircraft navigational sensor systems, which measure the dynamic motion of an
aircraft with reference to specific frames, provide continuous inertial data and other
measurement information that is required by onboard avionics systems for the
implementation of various functions, including aircraft flight control and guidance,
navigation computation and attitude determination, flight management and display,
local motion compensation and inertial system correction and alignment, as well as
air traffic management. A navigational sensor measures quantities related to one or
more elements of the navigation states. A set of navigational sensors, which is able to
determine all the navigation states by using appropriate navigation algorithms, makes
up a navigation system.

An aircraft navigation system combines all the measurement information from
the navigational sensor systems of an aircraft to determine the following parameters
and information:

e Kinematic parameters (accelerations and angular rates)

e Navigation states

e Trajectory and track parameters
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e System health status information.

The main navigation sensors/systems used by aircraft are summarised in Table

1-1 from the literature survey. These aircraft navigation sensors/systems can be

categorised as two types: self-contained navigation systems and external aiding

navigation systems. The self-contained navigation systems perform the navigation

functions independent of external signals. In contrast, the external aiding navigation

systems implement the navigation functions through reception of signals from and/or

transmission of signals to external systems. These two types of navigation systems

are examined in the following subsections.

Table 1-1 Aircraft Navigation Sensors/Systems

Navigation System Sensors Coordinates
Systems Subsystems Derived States Sensors Raw Data Raw
Measurements
INS, Position Inertial sensors | Accelerations | Inertial
Velocity and angular instrument
Acceleration rates frame
AHRS Attitude
Self- Air Data Mach Air data sensor, | Static and Air mass/wind
Contained System Airspeed Baro-altimeter, | dynamic reference
Navigation Pressure Air speed pressures, air | frame
Systems altitude sensor speed
Heading Heading Magnetic Earth magnetic
Indicator heading sensor | field
components
Radar Height above | Radar altimeter | Range Radar antenna
Altimeter ground frame
Doppler Radar | Ground Doppler radar Relative LOS | Radar antenna
velocity range rate frame
Space-Based Position GNSS receiver | LOS range WGS84
Navigation Velocity and range reference
Systems Time, Attitude rate frame
External Ground-Based | Location VOR, LORAN, | Relative Relative
Aiding Navigation Height VOR/DME, range and reference
Navigation System Angles ILS angle frame
Systems Relative Position MIDS (JTIDS) | Relative WGS-84 and
Navigation Velocity PLRS range and Relative grid
System range rate frame

1.1.1 Self-Contained Navigation Systems

A self-contained navigation system is a system that computes aircraft position,

velocity and attitude relative to a reference frame by means of dead-reckoning (DR)

techniques without reception of externally generated signals. Using DR techniques,
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aircraft velocities are determined by integrating the measured aircraft accelerations
from known initial velocities. Aircraft position is obtained by integrating the aircraft
velocity from a known initial position. Typical DR procedure for a single axis case is
illustrated in Figure 1.1 where all initial values are zero. Position and velocity errors
caused by white noise sensor errors are shown in Figure 1.1(c). This DR procedure
continuously accumulates sensor errors so that the navigation state errors grow over
time and are unbounded unless they are constrained by aiding navigation systems.

This characteristic is a vital limitation of all self-contained navigation systems.

. J. Velocity= J- Position 0; ’A\ ?A/\ /\A M/\ AA
g A i AA A
: 0 LY \N V\/ V \/\/ SV \/ J. \VN
Noise ; ‘
o
(a) Integrating Acceleration Twice E’ 3
:
Z] H
o O
v J- —> Position %2 1
mO 20 40 @ O 100
Noise Tire

(b) Integrating Velocity (c) DR Errors caused by white noise

Figure 1.1 Dead Reckoning Procedure

The sensor systems applied for self-contained navigation systems are typically
inertial sensor systems, air data sensor systems and Doppler radar. An air data system
provides altitude with respect to mean sea level and true air speed. Doppler radar can
measure aircraft velocity relative to the ground by transmitting a radar beam to and
receiving the echo beam from the ground. But, Doppler radar signals are susceptible
to interference from external signals or the environment. Doppler radar and air data
system cannot provide all the navigation states, whereas an inertial system alone can
determine all the navigation states.

Two basic inertial mechanisations are used to implement an inertial navigation

system (INS). The first method is known as a stable platform system where a set of
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mutually orthogonal accelerometers is mounted on a gimballed gyro platform. The
gyros sense the angular rate of the platform and control the gimbal servos so that the
platform maintains a stable platform orientation with respect to a known reference
frame irrespective of the aircraft rotation. The gimbal angles provide a direct readout
of aircraft attitude angles. The accelerometer triad on the platform provides aircraft
accelerations relative to the known reference frame. Integration of the accelerations
can derive the velocity and position of an aircraft. The second method is referred to
as strapdown inertial system where gyros and accelerometers are mounted on a rigid
frame that is strapped down to an aircraft. The inertial sensors measure accelerations
and angular rates of the aircraft relative to inertial space. The aircraft attitude angles
are then derived by performing a so-called analytical platform algorithm, commonly
known as the strapdown attitude determination algorithm. The accelerometer outputs
are transformed to this analytical platform frame and are then integrated to obtain the
velocity and position in a navigation reference frame.

Although inertial systems exhibit some disadvantages of the dead reckoning
method, their high dynamic characteristics and short-term measurement accuracy are
ideal for aircraft attitude determination and flight control systems. In addition, other
airborne avionics systems require inertial information to stabilise and compensate for

local motion.

1.1.2 External Aiding Navigation Systems

An external aiding navigation system is a radio navigation system and consists
of two parts: airborne subsystems and external signal source systems. An airborne
subsystem is a signal-processing unit, which receives and processes the coded signals
transmitted by external signal sources to facilitate position fixing. An external signal
source system is typically a network of transmitters that transmit coded signals and
can be further classified as ground-based radio navaid systems (e.g., VOR/DME, ILS
and LORAN) and space-based navigation systems, also known as Global Navigation
Satellite Systems (GNSS). Two communication modes are used in external aiding

navigation systems: one-way and two-way modes. In the one-way communication
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mode, an airborne subsystem passively receives signals and data from an external
signal source system whereas in the two-way mode, an airborne subsystem actively
transmits signals and receives replies from external signal sources. External aiding
navigation systems are usually based on an algebraic geometry principle to determine
the aircraft navigation states. The geometry is shaped by lines of sight (LOS) or lines
of position (LOP) from external signal sources to an airborne receiver, as depicted in
Figure 1.2(a) and (b). The coordinates of the points, which are the positions of the
aircraft and external transmitters, are represented by a set of nonlinear or linear
algebraic equations. The forms of and the constraints on the algebraic equations
depend on the navigation mechanisms of external aiding navigation systems.

Navigation mechanisms applied to external aiding navigation systems are
primarily based on the timing/ranging techniques, angle measurement and Doppler
techniques. The angle measuring technique measures the azimuth angle of an aircraft
with respect to an external reference transmitter and is usually used in ground-based
radio navaid systems. In other words, this method computes the direction of a radial
line from the transmitter to the aircraft; that is, the coefficient of a linear algebraic
equation, as illustrated in Figure 1.2 (b). Therefore, the position of an aircraft is the
solution of a set of linear algebraic equations. Two transmitters provide a unique fix
in angle measuring systems. As a result, the uncertainty of aircraft location caused by
the measurement errors increase with distance from the aircraft to the transmitters, as
shown in Figure 1.2(d). VOR/DME is a typical angle/range measurement navigation
system.

The Doppler positioning technique, which measures the rates of changes of the
relative ranges along the signal LOS between an aircraft and external signal sources,
was used in the first generation of GNSS, known as the Transit system. The Doppler
technique can provide an accurate velocity measurement. However, the uncertainties
of position solutions, caused by integrating the Doppler measurement errors, increase
over time. For example, the positioning accuracy of the Transit system degraded with

time.
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Figure 1.2 Principles of External Aiding Navigation Systems

The timing/ranging techniques use the principle of elapsed time measurement
as the basis for the LOS range measurements. The elapsed time is the time difference
between the time at which the ranging signal is transmitted by an external transmitter

and the time at which it is detected by an airborne receiver. Several timing/ranging
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techniques have been applied to ground-based radio navigation systems and space-
based navigation systems, including LORAN and GPS. The LOP geometry of GPS is
the surface of a sphere whereas the LORAN system is a location hyperbola. Hence,
the position of an aircraft is computed in terms of the solution of nonlinear algebraic
equations.

In comparison with dead reckoning techniques, a significant advantage of the
timing/ranging techniques is that the accuracy of the navigation systems based on the
timing/ranging techniques does not degrade over time or distance because the
navigation states are derived from a set of nonlinear algebraic equations rather than a
set of integral equations. Moreover, the uncertainty of a position solution is restricted
to a circle or hyperbola of location or the surface of a position sphere instead of the
radial line in the angle measuring systems. The Doppler positioning technique can be
also combined with the timing/ranging techniques used in GNSS navigation systems.
Consequently, GNSS affords long-term stability of accuracy for the position and
velocity solution. A GNSS receiver is inexpensive, small size and low power. It is
these advantages that make GNSS an ideal external navigation system to aid all self-
contained navigation systems, particularly inertial systems.

The accuracy of external aiding navigation systems is affected by the geometry
of the positions of aircraft and external transmitters'). In space-based navigation
systems, the radio ranging signals transmitted by satellites propagate through the
atmosphere to airborne receivers, the signal dispersion and refraction caused by the
ionosphere and troposphere introduce signal propagation path delays in the range
measurements, as shown in Figure 1.2 (c). In addition, the uncertainty of satellite
orbits, and satellite and receiver clock errors also introduce range measurement
errors. As a result, the measured time difference is not perfect and the resultant range
is known as the pseudorange.

External aiding navigation systems and other self-contained navigation systems
(such as Doppler radar) are generally used to aid inertial navigation systems. Such

systems are referred to as navaid systems in this thesis.
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1.1.3 Required Navigation Performance

The concept of Required Navigation Performance (RNP) was established by
the International Civil Aviation Organization (ICAO) to develop aircraft navigation
standards for all phases of aircraft operations. In ICAO Document 9650, RNP is
defined as a statement of the navigation performance accuracy, integrity, continuity
and availability necessary for operations within a defined airspace. RNP can include
both performance and functional requirements, which is indicated by the RNP type.
The RNP types specify the minimum navigation performance accuracy required in an
airspace. These standards are intended for system designers, manufacturers, and
installers of avionics equipment, as well as service providers and users of the systems
for global operations. Four primary parameters are used to define RNP requirements:
accuracy, integrity, continuity and availability, and their definitions in this thesis are
based on published descriptions®/P14I],

RNP accuracy is defined in terms of the total system error (TSE) with respect
to the reference flight trajectory required for each phase of flight. The TSE comprises
two error components: flight technical errors and navigation system errors. The
accuracy requirement is for the TSE to remain within a normal performance region,
under fault-free conditions, at least 95% of the time.

RNP integrity is defined as a measure of the trust which can be placed on the
correctness of the information supplied by a navigation system. Integrity includes the
ability of a navigation system to provide timely and valid alerts to flight crew when
the navigation system must not be used for its intended purpose. Integrity risk is the
probability that an undetected failure results in the TSE exceeding the containment
region.

RNP continuity is the ability of a navigation system to perform navigation
functions without interruption during a certain period of time. Continuity risk is the
probability that a navigation system will be interrupted and will be unable to provide
navigation information over the intended period of operation. More specially,
continuity is the probability that the navigation system will be available for the

duration of operation.
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RNP availability is an indication of the ability of a navigation system to supply
usable service within a specified coverage area, and is defined as the portion of time
that reliable navigation information is presented to the flight crew. Availability is
specified in terms of the probability of the navigation function being available at the
beginning of the intended operation.

RNP accuracy and integrity are achieved by developing innovative data fusion
methods while RNP continuity and availability are satisfied by fault-tolerant design.
In this thesis, fault tolerance is the ability of an aircraft navigation system to continue
satisfactory operation in the presence of one or more hardware or software failures.

The aim of this thesis is to investigate data fusion methodologies for the design
and development of aircraft multisensor navigation systems in order to fulfil the RNP

requirements.
1.2 Multisensor Data Fusion

1.2.1 The Concept of Multisensor Data Fusion

Data fusion refers to the combination of data from a variety of sensors that are
able to act in cooperation such that the total effect is greater than the sum of effects
taken independently. The concept of multisensor data fusion (MSDF) was initially
developed for military applications[6'8] and afterwards applied to civil industries”® %,
including battlefield surveillance, automatic multi-target tracking and recognition,
guidance and control of autonomous vehicles and robotic systems. Traditionally,
multisensor data fusion is considered as a data/information processing technology,
covering a wide range of disciplines, for example, estimation and identification
theory, control engineering, statistics and decision theory, signal processing and
pattern recognition, artificial intelligence and knowledge engineering. Owing to the
multidisciplinary nature of multisensor data fusion and a wide range of applications,
researchers have described the concept of multisensor data fusion from diverse

perspectives, focusing on either the description of functions to be completed or data

processing methods used by multisensor data fusion systems. In order to improve
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communications among researchers and system developers, the US Joint Directors of
Laboratories (JDL) Data Fusion Working Group has developed a functional model of
multisensor data fusion and defined multisensor data fusion as a multilevel,
multifaceted process dealing with the automatic detection, association, correlation,
estimation, and combination of data and information from single and multiple
sources™. The JDL model and definition have been accepted by many data fusion
researchers and primarily served for military applications, for example, command,
control, communication, computer and intelligence (C*I) systems. Other application-
oriented MSDF models!'”"!"! established by the US National Institute of Standard
and Technology (NIST), are mostly used for industrial control systems and
intelligent systems, such as robotic systems. The JDL and NIST models, as well as
other models are summarised by Kokar and Kim'"?, who have identified three major
sources of misunderstanding about multisensor data fusion, including lack of precise
methods and standards to represent multisensor data fusion architectures, low-level
design solutions against the common practice of software engineering and definitions
of multisensor data fusion.

However, these proposed models are not directly applicable to the design of
multisensor aircraft navigation systems because they ignore the consideration of
selections of sensor systems and architectures that are the basis of fault tolerance of
aircraft navigation systems. Moreover, the functional descriptions are not concerned

with methods to fulfil the RNP requirements.

1.2.2 Data Fusion for Aircraft Navigation Systems

Traditionally, the terms integrated (integration), combined (combination) and
hybridised (hybridisation) are used to describe multisensor-based aircraft navigation
systems. Integration (or combination) of multiple independent navigation systems for

aircraft navigation is referred to as fault-tolerant design'"’!

and the resultant system is
known as a fault-tolerant navigation system. The integration of multiple cooperative
sensors to form a navigation system is known as an integrated navigation system.

These two forms of aircraft navigation systems have been developed since the 1970s.

10
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More interests have also been given to both the development of fault-tolerant system

[14-23]

architectures and the improvement of integrated filter architectures and filtering

algorithms!***4

. However, the traditional fault-tolerant navigation systems are a
static fault tolerance design where multiple navigation systems are structured in a
federated architecture and the system fault detection is completed by use of simple
weighted mean methods or majority voting methods. This traditional approach to
design cannot effectively exploit the advantages of redundant sensor systems and a
fault-tolerant system cannot be dynamically reconfigured by using redundant sensor
systems.

A recent approach is the use of distributed modular avionics architecture where
multiple inertial sensor systems are located in several positions in an aircraft in order
to increase survivability and provide the localised compensation for other airborne
avionic systems[zo][33 I This distributed architecture affords an enhanced level of fault
tolerance by reconfiguration and sharing spare computing resources, which can be
dynamically allocated to functioning sensor systems.

The term multisensor data fusion used in aircraft navigation applications has
appeared in recent years with the advent of

e Low-cost, small-size and low-mass navigation sensors (e.g. optical gyros,

MEMS inertial sensors and GNSS sensors),

e High-speed, large memories and embedded microprocessors, and

¢ Distributed and integrated modular avionics architectures.

Significant advancements in the inertial sensor technologies and predictable
improvements in the performance, low cost, small size and low mass of the new
generation of inertial sensors will enable widespread use of inertial sensor networks
integrated with navaid systems (especially GNSS) in many commercial and military
aircraft systems. The use of an inertial network architecture not only improves the
accuracy and fault tolerance of aircraft navigation systems, but also increases the
survivability of the navigation system and provides local motion compensation and
stabilisation for other avionic systems. The novel integration of emerging navigation
sensor technologies and distributed modular avionics architectures based on high-

speed data buses and embedded microprocessors will change the traditional methods

11
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used in the design and development of aircraft navigation systems.

However, the literature survey undertaken in this thesis has not identified any
rational definitions or comprehensive MSDF models, which can be used to guide
researchers and engineers to develop aircraft multisensor navigation systems. For

™ in the book Avionics Navigation

example, Kayton and Friend, Huddle and Brown
System, describes multisensor navigation as a process of estimating the navigation
variables of position, velocity, and attitude from a sequence of measurement from
more than one navigation sensor. Obviously this definition implies development of
various novel state estimate algorithms, but it does not clearly indicate how to design
and develop an aircraft multisensor navigation system.

This thesis treats multisensor data fusion as a system engineering methodology
that can guide system developers, by using appropriate sensor allocations, failure
detection and isolation techniques and data fusion algorithms, to design, develop and
implement a highly reliable multisensor-based navigation system in order to obtain
required navigation system performance in terms of accuracy, integrity, continuity

and availability. This definition covers the whole system design process from system

requirements to system architecture design.

1.3 Aims

As the existing multisensor data fusion models are either application-oriented
intelligent systems or military C'I systems, it is proposed to develop a generalised
MSDF model for aircraft navigation systems. This model will provide a framework
for system engineers and researchers to design and develop multisensor navigation
systems.

A further motivation for this study is the emerging concepts and technologies
in aviation, including seamless navigation/positioning and free flight concepts, and
the applications of MEMS inertial technologies and integrated modular avionics
architectures. A major development, which underpins the recent developments in
navigation systems, is global navigation satellite systems (GNSS). These concepts

and technologies will be used in future Air Traffic Management/Communication

12
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Navigation Surveillance (ATM/CNS) systems. The core of these innovative concepts
is the techniques for high precision positioning. It is expected that modern navigation
systems, based on the fusion of various multiple redundant navigation sensors, can
provide 10 degree-of-freedom (DOF) parameters in a 4-dimensional space, including
time, position and velocity, and attitude values. In addition, techniques developed for
the MSDF-based navigation systems can also be applied to the spacecraft industries
and intelligent transportation systems.

Recently, a great deal of interest has arisen in manufacturing processes that
allow the monolithic integration of MEMS with driving, controlling, and signal
processing electronics. With the development of MEMS inertial sensors and high-
speed and large memory microprocessor, complex data fusion algorithms and multi-
state sensor error dynamic models will be able to be implemented in a single
microprocessor in a distributed integrated modular avionics architecture.

This study also originated from an EU Framework 5 project, the SHINE (smart
hybridised integrated navigation equipment) programme, which was to develop a
low-cost redundant inertial/GNSS-based attitude integrated navigation system for
aircraft. In this project, the author was responsible for performing the SHINE system
safety analysis, evaluation of the different SRIMU configurations, and development
and simulation of multi-model Kalman filtering algorithms and FDI algorithms for
SHINE system. During my PhD study, these researches were further extended into
the development of inertial network data fusion algorithms for wider applications of
airborne distributed inertial systems. Most research results obtained from this PhD

programme were delivered into the SHINE project.

1.4 Research Objectives

This thesis examines the problem of multisensor data fusion for aircraft
navigation in distributed sensor network systems and investigates data fusion
methodologies for the design, analysis, development and simulation of multisensor
aircraft navigation systems. It is expected that such multisensor navigation systems

can improve the system reliability and the navigation performance in terms of

13
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accuracy, integrity, availability and continuity and enhance the fault tolerance of

aircraft navigation systems by using FDI and integrity monitoring techniques. The

specific objectives of the study programme are:

To gain a theoretical understanding of the problems of multisensor data fusion
for aircraft navigation and to develop a generalised multisensor data fusion
model for aircraft navigation systems.

To investigate methods for evaluation and analysis of various architectures of
redundant sensor configurations and to develop error dynamic models for
skewed redundant inertial measurement units (SRIMU).

To establish the normalised navigation and attitude determination equations of
inertial reference systems and other navaid systems, and to analyse their error
dynamics.

To develop methods for the detection and isolation of various sensor failures
and for monitoring of the integrity of the navigation states and inertial vector
state in inertial network systems in order to ensure the safety of multisensor
aircraft navigation systems.

To develop innovative distributed data fusion algorithms in order to enhance
the accuracy of the distributed inertial states and navigation states estimates.
To develop a simulation system for the evaluation of the performance of
inertial sensors of varying quality in an inertial network system, and FDI and
distributed data fusion filter algorithms developed in this thesis.

To undertake a series of case studies and simulations of sensor configurations.

This thesis will contribute new understanding to the design methodologies used

in the integration of distributed low cost sensors for aircraft navigation. The research

programme will cover the development of software tools for multisensor data fusion

and performance analysis, and provide insight into the effectiveness of these systems

in the form of simulation models of sensor systems and navigation systems.

14



INTRODUCTION

1.5 Outline of the Thesis

1.5 Outline of the Thesis

Chapter 2 reviews traditional data fusion methods and architectures applied to
integrated navigation systems, including various fault-tolerant navigation system
architectures, data fusion filter architectures and filtering algorithms, sensor failure
detection and isolation techniques and integrity monitoring methods. The advantages
and disadvantages of these traditional methods and architectures are summarised and
compared. Based on the literature survey, a generalised MSDF model is presented as
a frame for development of multisensor aircraft navigation system in this thesis.

Chapter 3 introduces the mathematical formulations of statistical estimation
theory and hypothesis testing theory, which are required in this thesis to understand
the development of multisensor data fusion algorithms for multisensor aircraft
navigation systems. Estimation theory is a powerful mathematical tool that has been
used in various engineering fields to accurately estimate the states of complex
dynamic systems and to implement the most effective control of the systems. This
chapter first introduces conventional Kalman filter algorithms, including linear and
extended Kalman filters. The information form of the Kalman filter is then given in
order to deduce various distributed data fusion filter algorithms.

Statistical testing theory is an auxiliary tool that is used to further confirm the
validity of sensor data and the estimated system states. This chapter also introduces
Bayesian detection and Newman-Pearson detection problems and the statistics of the
Kalman estimate errors and residuals (innovations).

Chapter 4 first introduces various coordinate systems used in this thesis and
evolution of the inertial technology, and examines the performance of different-grade
inertial sensors. The major efforts of this chapter are to establish the normalised
navigation equations of major navigation systems and to analyse their error dynamic
models, including inertial systems and global navigation satellite systems (GNSS).
These normalised navigation, attitude determination and error dynamic equations
constitute the mathematical foundations to design, develop and simulate multisensor
data fusion filters.

Chapter S analyses and evaluates redundant sensor system configurations and

15
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develops sensor-level data fusion methods. The main purpose of sensor-level data
fusion is to provide highly reliable and accurate sensor data for subsequent system—
level data fusion modules and an ability to detect sensor failures and reconfigure
SRIMU systems and inertial state vectors in sensor network systems in the event of
sensors failures. Two detection methods are developed to improve the generalised
likelihood ratio test (GLRT) method for monitoring sensor failures of different
modes. This chapter also presents SRIMU error compensation filters to enhance the
performance of the GLRT-based methods. This chapter provides the basis for the
design of fault-tolerant navigation systems with highly reliable integrity.

Chapter 6 addresses the problem of distributed sensor network systems and
develops data fusion methods for distributed sensor network systems, including
inertial measurement (data) algorithms, state fusion algorithms and inertial network
integrity monitoring algorithms. For the first time, this chapter presents inertial
network sensing models and develops dynamic relationships among the inertial
network nodes. Two kinds of inertial sensor network architectures are identified in
this chapter, each with two different communication modes. In the first kind of the
distributed systems, all of the sensor systems directly or indirectly measure identical
system states. In the second kind of distributed systems, different sensor subsystems
observe their local states. However, all of the local system states are dynamically
related though dynamic relationships. For these different distributed systems, four
distributed data fusion filters are presented in this chapter.

Chapter 7 develops a simulation system environment to test and evaluate the
FDI and integrity monitoring algorithms, and the data fusion algorithms developed
during this study programme. For this purpose, this chapter describes the overall
architecture of this software simulation system and the sub-architectures of the
inertial simulation system and the GPS simulation system. The results of simulation
studies are presented in this chapter.

Chapter 8 summarises the work of this thesis and provides final conclusions.

Finally, areas of further work are recommended.
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Chapter 2

MULTISENSOR DATA FUSION FOR AIRCRAFT
NAVIGATION: OVERVIEW & METHODOLOGY

2.1 Introduction

This chapter reviews existing fault-tolerant navigation system architectures and
data fusion methods for the development of multiple sensor navigation systems. In
Section 2.2, conventional fault-tolerant architectures used for the design of aircraft
navigation systems are outlined and briefly compared. The progression of various
Kalman filter architectures and filtering algorithms employed in many integrated
aircraft navigation systems are assessed and their advantages and disadvantages are
summarised in Section 2.3. Section 2.4 examines the evolution of sensor failure
detection and isolation (FDI) and integrity monitoring techniques, which are used in
GNSS and inertial sensor systems. On the basis of the literature survey, Section 2.5
presents a generalised multisensor data fusion model (MSDF), which will be used for

the development of future aircraft multisensor navigation systems.

2.2 Overview of Fault-Tolerant Navigation Systems

Fault-tolerant navigation systems have been in use for over 30 years. The
design methods incorporate fault-tolerant strategies and data fusion techniques to
enhance the reliability and safety and also to improve the performance of aircraft

navigation systems. During this development, three forms of redundancy have been
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proposed: hardware redundancy, software redundancy and analytical redundancy.
Figure 2.1 outlines the fault-tolerant design methods used in aircraft navigation.
Hardware redundancy takes advantage of multiple navigation sensors/systems to
achieve fault tolerance and to improve the performance of a navigation system. This
approach is based on the fact that measurements from various sensor systems may be
independent, redundant, complementary or cooperative. These different types of
measurements can be fused by means of sensor data fusion algorithms so that the
overall system performance is better than that each system can obtain independently.
Hardware redundancy techniques have been widely applied to many avionics
systems[21'23].

Software redundancy makes use of different software versions to increase the
safety and reliability of navigation solutions by avoiding possible errors caused by

software design and computing failures. However, software redundancy cannot

increase the accuracy of navigation solutions.

Software Redundancy

Hardware Redundancy Analytic Redundancy

] Mathematical
Dissimilar Systems/ . . Models
Sensors Similar Navigation Termaleriamal
INS, GPS, radio nav, Air Systems Dynamics,
data system, Doppler Dual, triple or Rotational
radar, magnetic heading quadruple INSs Kinematics

Figure 2.1 Hierarchical Structure of Fault-Tolerant Design Methods
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Analytical redundancy is based on the knowledge of rotational kinematics and

[24]

translational dynamics of an aircraft to enhance hardware redundancy ", and is

usually used to generate additional redundant information for the diagnosis of sensor/
system failures rather than the improvement of accuracy of navigation systems!>.
Therefore, the analytical redundancy is considered as a failure detection method in
many practical systems.

Hardware redundancy plays an essential role in the design of fault-tolerant
navigation systems and the level of fault tolerance depends on both the architectures
of hardware redundant systems and the data fusion methods implemented. Two types
of hardware redundancy have been developed for the design of fault-tolerant aircraft

navigation systems, system-level redundancy and sensor-level redundancy, which are

described in the following subsections.

2.2.1 System-Level Redundancy

A system-level redundancy architecture is illustrated in Figure 2.2 where each
INS in a triplex or quadruplex system must operate independently. It is also known
as an independent system architecture because there is no data communication
between these INSs. Each inertial system can also be integrated with other navaid
systems to improve the navigation accuracy and to control the accumulation of
inertial sensor errors with time. Fault-tolerant management checks the consistency of
the outputs of all INSs to diagnose a failed inertial system, typically by using a
majority-voting method or a weighted-mean method. In order to provide fail-
operational/fail-safe operation, the fault-tolerant navigation system must have at least
three INSs. In other words, nine pairs of inertial sensors (accelerometers and gyros)
are needed where each INS is a conventional orthogonal configuration.

The main advantages of this architecture are that the design and integration are
simple and that it does not need complex fault-tolerant techniques for diagnosis of
system failures. However, if any one sensor in one INS fails, then this INS has to be
removed from the fault-tolerant architecture. As a result, this architecture cannot

exploit the benefits of redundant inertial sensors to dynamically reconfigure an
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aircraft navigation system in the event of one INS failure.

Inertial Inertial
System-2 System-3
\ \

Navigation States Outputs

v

Figure 2.2 System-Level Redundancy Architecture

This traditional redundant architecture is still used in many current military and

[26]

commercial avionic systems . But, it is expensive and the duplication of INS

modules results in a significant increase in mass.

2.2.2 Sensor-Level Redundancy

Sensor-level redundant architectures were developed with the advent of high-
speed, large memory embedded microprocessors and low-cost, small-size and low-
mass inertial measurement units (IMU). Several redundant schemes have been
proposed?’ ! including IMU-level redundancy and multisensor redundancy.

An IMU-level redundant architecture is depicted in Figure 2.3 where duplex or
triplex conventional IMUs are configured in a federated architecture to provide fault
tolerance. Each IMU can be skewed with respect to the aircraft body axes when it is
mounted in the aircraft to reduce the number of IMUs #2131,

In principle, a fault-tolerant navigation system consisting of two IMUs affords
the fail-operational/fail-operational/fail-safe operation if one of the IMUs is skewed
relative to the aircraft body axes, or a non-orthogonal configuration. Then, six pairs
of inertial sensors can achieve a higher level of fault tolerance in comparison with
three independent INSs. Each navigation processor can combine the outputs of all
IMUs with data from navaid systems to estimate the aircraft motion states, and to
perform sensor failure detection and isolation, as well as navigation system

reconfiguration. This IMU-level architecture significantly increases the level of fault
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tolerance and effectively makes use of existing IMU equipment. But, the resultant
fault-tolerant system is still expensive. Considerable efforts are being made to reduce

volume, weight and cost.

A
IMU-2

IMU
Measurements

Nav
Processor-2

Navigation States Outputs

Figure 2.3 IMU-Level Redundancy Architecture

I
Multisensor Outputs

Nav Nav
Processor-2 Processor-3
I —

Navigation States Outputs

v

Figure 2.4 Multisensor Redundancy Architecture

A recent development is to integrate multiple inertial sensors in a single suite
in the form of non-orthogonal configurations[zg]m], known as skewed redundant IMU
(SRIMU) configurations. One multisensor suite can thus replace multiple IMUs to
reduce the volume, weight and power required for an aircraft navigation system. A

representative architecture of a multisensor fault-tolerant system is depicted in Figure
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2.4 where the multisensor suite consists of a dodecahedron configuration. Six inertial
sensors are installed perpendicular to the parallel faces of a regular dodecahedron.
Outputs from the multisensor suite are sent to several redundant processors, which
individually perform navigation and attitude computations, sensor FDI functions and
navigation system reconfiguration.

Multisensor redundancy is a cost-effective method that exploits the benefits of
emerging inertial sensor technologies and high-speed embedded microprocessor
systems. Multisensor technology provides the basis for the future generations of

navigation systems.

2.2.3 Distributed Redundant Architecture

The distributed redundant architecture is a new fault-tolerant concept, which
was developed with the introduction of distributed and integrated modular avionics
architectures. For example, a current combat platform may have a total of twelve
traditional IMUs of various quality providing the inertial state vector information
required by avionics systems and weapon systemsm]. In this architecture, inertial
sensor systems are mounted at several locations in an aircraft not only to meet the
fault tolerance requirements of navigation systems but also to provide highly
accurate local inertial data for other systems, for example, weapon system controls,
radar stabilization and motion compensation. The concept of an inertial network used
for aircraft avionics was initially proposed by Kelley, Carlson and Berning"®* in 1994
and then further developed by Berning, Howe and Jenkins"*!in 1996 and by Kaiser,
Beck and Berning™* in 1998.

However, the research published to date does not provide a systematic study of
this inertial network architecture, specially in terms of data fusion methods, dynamic
alignment and correction of distributed inertial sensor systems, and distributed sensor
failure detection and isolation techniques. Therefore, there is a need for systematic
investigation of data fusion methodologies in the design, development and simulation
of fault-tolerant aircraft navigation system based on distributed inertial network

architectures.
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2.3 Data Fusion Filter Architectures

Kalman filtering techniques have been developed for applications in aircraft
navigation, control and guidance since the 1970s. During this period, various Kalman
filter architectures and filtering algorithms have been proposed as prime data fusion
methods for fusing multiple navigation sensors/systems in order to achieve the
required navigation performance. The data fusion filter architectures currently used
in aircraft integrated navigation systems can be categorised as four types: centralised,

cascaded, federated and distributed data fusion architectures.

2.3.1 Centralised Filter Architecture

The centralised filter architecture is shown in Figure 2.5. Measurements or data
from all navigation sensors/systems are processed in a central data fusion filter to
obtain the accurate estimates of the navigation states. It is the most common filter

design implemented in current integrated navigation systems, for example, INS/GPS/

[36] [37]

, Doppler/GPS integrated systems™'' and almost all

[35][381[39]

Doppler integrated systems
tightly-coupled GPS/inertial systems where raw GPS measurements and INS
outputs are combined in a centralised filter to estimate the navigation state errors and
sensor errors, including the GPS receiver clock errors, inertial sensor errors and baro-
altimeter errors.

Numerous covariance analysis methods and numerical computations of the
standard and extended Kalman filters have been reported **!!. Theoretically, the
centralised filter can obtain optimal estimates of the aircraft motion states. However,
with the increasing numbers of sensor systems in aircraft, the filtering algorithms can
be quite complex and the centralised filter computation can be time-consuming as a
result of the large state dimension in the dynamic models of the filter. Accordingly,
the centralised filter may not necessarily be a proper approach to the development of
fault-tolerant multisensor navigation systems'*” 7l To overcome the weaknesses

of the centralised filter, other filter architectures have been proposed in the recent

years.
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Figure 2.5 Centralised Data Fusion Architecture

2.3.2 Cascaded Filter Architecture

The cascaded filter architecture is depicted in Figure 2.6 where the outputs of
one filter are used as inputs to a subsequent filter. The filter outputs include the
estimates of the system states and their error covariances. This filter architecture has
been especially proposed for integration of existing navigation systems that contain

their own Kalman filters.
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Figure 2.6 Cascaded Data Fusion Architecture
The cascaded filter can improve the accuracy of integrated navigation systems
and perform in-flight calibration or transfer alignment between an INS/GNSS
integrated system and an INS or attitude heading reference system (AHRS). This

architecture has been used in several GPS/INS/terrain aided navigation systems[42'45 ]
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and loosely coupled GPS/INS integrated navigation systems where the GPS-based
navigation solutions derived by an GPS internal filter and INS data are combined in a
separate cascaded filter external to the GPS receiver to estimate the navigation state
errors and the inertial sensor errors. The GPS filter estimates the GPS receiver clock
errors. However, the GPS filter is usually based on a simplified model and may not
output computed error covariances. Consequently, the cascaded filter may not have
access to covariance information.

Schlee et al** develop a cascaded filtering algorithm to improve the accuracy
of an existing GPS/inertial system, known as a master INS, which utilised an internal
GPS filter to estimate the master INS navigation solutions and the GPS clock errors.
This cascaded algorithm also provides transfer alignment between the master INS
and a second inertial system. This study has shown that improvement in the accuracy
of the master INS and the obtainable accuracy of the transfer alignment largely
depend on the update rate of the cascaded filter. However, correlations of the state
errors caused by the internal GPS filter are ignored in the measurement noise matrix
of the cascaded filter. From Kalman filter theory, the non-diagonal elements of the
state error covariance matrix of the GPS filter (which represent the correlations) can
only be ignored if the filter contains highly accurate estimates of the navigation states
and the values of non-diagonal elements are far less than the main diagonal elements.
Otherwise, the performance of the cascaded filter may be degraded as a result of
ignoring the correlation.

Wade and Grewal'*’! analyse the effect of this correlation on the accuracy of
cascaded GPS/INS systems and their results show that the accuracy of the cascaded
systems depends on the correlation matrix in many cases. When the state errors
estimated by the internal GPS filter are closely correlated, the cascaded filter may
incorrectly estimate the navigation state errors and the inertial sensor errors. Wade
and Grewal further suggested adjusting the measurement noise matrix by using
adaptive process noise in the cascaded filter. However, development of this adaptive
process and identification of the measurement noise matrix are not reported.

In order to improve the robustness of the cascaded filter to input conditions and

adverse environments, Karatsinides'*"! proposes two methods for dealing with the
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GPS position biases and identifying the statistical values of the measurement noise
for the cascaded filter. The GPS positioning solution contains bias resulting from
satellite clock errors, ephemeris errors, ranging signal propagation delay and the
geometry of satellites. Although this GPS position bias is unobservable and cannot
be estimated in the GPS filter, it can influence the accuracy of cascaded GPS/INS
systems through the error covariance matrix. The first method models the GPS
position biases as a first-order Gauss-Markov process and then uses these biases as
the consider-states of a Schmidt-Kalman filter. But, the part of the Schmidt-Kalman
gain matrix related to the consider-states is set to zero in order to ignore the
estimated consider-states. The second method computes the variances and
covariances of the errors of the navigation states derived by the GPS filter using
conventional computation equations of variance and covariances provided that the
update rate of the cascaded filter is less than the GPS filter.

The cascaded filter architecture is readily implemented by means of existing
navigation systems and needs minimisation of required modifications for customised
applications. In practice, most existing navigation systems do not output covariance
data of the navigation state errors. Consequently, the cascaded filter is extremely
dependent upon the methods that are used to estimate covariances of the primary
filter and the performance of the primary filter. Moreover, tuning of the primary filter

is of critical importance to the performance of the cascaded filter'**.

2.3.3 Federated Filter Architecture

The federated filter architecture was initially recommended by Carlson*® for
integrating multiple navigation sensor systems in order to provide a high level of
fault tolerance and accuracy. This is actually a two-stage filtering architecture, as
shown in Figure 2.7 where all parallel local filters combine their own sensor systems
with a common reference system, usually an inertial navigation system, to obtain the
local estimates of the system states. These local estimates are subsequently fused in a
master filter to achieve the global estimations. By using a common reference system,

all parallel filters have a common state vector. The federated filter is generally
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designed on the basis of two different strategies[46][47]. In the first method, the local
filters are designed independent of the global performance of the federated filter and
estimate n sets of local state vectors and their associated covariances by using their
own local measurements. These n sets of the local state estimates are then weighted
by their error covariances to obtain the global state estimates. The second method is
based on the global optimality of the federated filter and the local filters are derived
from the global model of the federated filter and estimate n versions of the global
states from local sensor measurements. These n versions of estimates are weighted
by their error covariances to obtain the global optimality. The master filter is a
weighted least-squares estimator. Furthermore, Carlson**! developed a square-root
form of the federated filtering algorithm to increase the computational precision and

the numerical stability of the federated filter.

Sensor n

Figure 2.7 Federated Data Fusion Architecture
A significant feature of the federated filtering process is that a reference INS
must be used to create the common system states in the local and master filters,
which are the aircraft navigation states. Therefore, each local filter can obtain the
suboptimal global navigation states. A comparison of the federated and centralised
filters'*” has shown that the federated architecture offers improvements in failure
detection, isolation and recovery (FDIR) and the fault tolerance over the centralised

filter.
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Levy[SO]

uses dual state suboptimal analysis to model the true world state vector
and develops covariance analysis algorithms for assessing the suboptimality of both
the cascaded and the federated filters. The dual state contains the states of the first
and second filters in the case of the cascaded filter (or the states of all parallel filters
and the master filter in the case of the federated filter). Levy’s results have shown
that the cascaded and federated filters are seldom optimal in comparison with the
centralised Kalman filter. As the master filter updates become sparser, the actual
performance of the federated filter degrades in comparison with the centralised filter.
The federated filter is only optimal (or equivalent to the centralised filter) when the
full global state is modelled in each local filter and the master filter is run at the
update rate of the local filters.

Tupysev®!! develops a federated filtering algorithm based on the principles of
state vector augmentation and the rejection of partial information. Unlike Carlson’s
filter, the global state model that is used to derive the parallel local filters contains a
common state vector plus individual local bias state vectors instead of all the states
of the local filters. The local state is a subset of the global states.

However, the use of a reference navigation system as a common information
source of all local filters in the federated filter architecture means that common mode
failures in the reference system can corrupt the performance of these filters. This
influence can further degrade the level of fault tolerance and FDIR functions. This
problem seems to have been ignored in current designs of federated integrated
navigation systems. In addition, this federated filter architecture and corresponding
filtering algorithms are not applicable to integration of distributed inertial sensor
systems with navaid systems because there are no common system states in the
distributed inertial sensor systems.

The federated filter has been applied to several multisensor navigation systems,
for example, GPS/INS/SAR/terrain aided navigation and tracking systems”>>* and
is sometimes referred to as the decentralised filter™'*®. To avoid confusion, the term

decentralised is used as a synonym of distributed in this thesis.
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2.3.4 Distributed Filter Architecture

The distributed filter architecture was originally developed for target tracking
and identification where distributed sensor systems (possibly in different platforms)
are combined in order to estimate and identify various moving targets in military

57 Liggins et al®® give a comprehensive survey of the distributed

applications
fusion architectures for target tracking. Distributed filtering techniques used for the
design and development of fault-tolerant navigation systems have appeared since the
19905, Different from the filter architectures described above, distributed filter
architectures have no standard model. From the perspective of use of information,
there are two main data fusion approaches to the design of distributed filters, known
as measurement fusion and state fusion. In state fusion, the local states estimated by
the local filters are fused in a central filter to obtain global estimations. By contrast,
in measurement fusion, various subsets of all the sensor measurements are fused by
means of a bank of Kalman filters to obtain multiple state estimation versions of the
global system states, which are compared or weighted to obtain the more accurate
global state estimation and to detect sensor or system failures. However, there may
be no central data fusion in a fully distributed multisensor data fusion system. In fact,
the distributed filter architecture offers the most flexible scheme in the design of
multisensor navigation systems.

Kerr®*! proposes a decentralised filtering structure which uses a voter/monitor
method to check outputs of all local filters for failure detection, but the distributed
filter algorithms developed for this structure are not explained in detail. In terms of
the filter architecture, Kerr’s version is similar to the federated filter architecture
given by Carlson™®. The differences between them are the individual methods used
for detection and isolation of subsystem failures. For example, Carlson’s filter uses
filter residuals to detect sensor and subsystem failures whereas Kerr’s filter uses the
voter/monitoring methods based on Gaussian confidence regions of the estimated
states. However, some filtering algorithms, for example, Speyer’s parallel filtering

[62]

algorithms"™* or others, may be used for this decentralised structure. Strictly, Kerr's

structure is not a distributed filter architecture and it lacks systematic study on the
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corresponding filtering algorithms.

Brumback and Srinath™®” describe a distributed filtering mechanism. This is a
hierarchical filtering architecture where the local filters fuse different subsets of all
measurements for local state estimates and failure detection and isolation. A master
filter combines the outputs of failure-free local filters to yield the global estimation.
The local filters in the distributed filter architecture can have system models, which
are different from the global model. The cascaded and federated filter algorithms are
special cases of the distributed filter architectures.

Several distributed filtering algorithms have been developed since the 1980s
for the design of various distributed control systems, target tracking systems and

160091~ Speyer'®! designed a distributed filtering algorithm in

navigation systems
which each of K local filters has its own local sensor measurements and the same
state model. Each local filter computes the global estimate of the system state vector.
The information shared between these local filters consists of the local estimates, the
local error covariances, and an additional (locally computed) data-dependent term,
which is a dynamic compensation to account for the correlation between the local
estimates. Speyer’s filter is a fully distributed filtering architecture and has a high
level of fault tolerance. However, by using the same state model, this filtering
algorithm cannot be used in a distributed inertial sensor system where the local state
vector is needed for specialised purposes, for example, local motion compensation.
Willsky et al®! consider a problem where two local filters have state models
which are different from the global model. Each local filter processes its local
measurements and a fusion algorithm (based on the global model) computes a
dynamic correlation correction term, combining the local estimates to obtain the
global estimate. A necessary and sufficient condition for recovering the global state
from the local states is that a relationship must exist between the observation matrix
of the global state model and that of the local state models. This relationship is
explained as a static matrix transformation. In other words, the local state vector is a
subset of components of the global state vector. This algorithm has been extended to
the design of a multisensor navigation system”. However, these algorithms imply

that the local and the global states are represented in the same coordinate system and
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this is not necessarily true for distributed inertial sensor systems.

Hashemipour et all®

introduce decentralised Kalman filtering algorithms for
three types of multisensor networks: sensors collected, time sequential measurements
and a hybridisation of these two types. In Hashemipour’s filter, each local filter has
the same state model as the central filter and the observation matrix of each local
model corresponds to one sub-matrix of the observation matrix of the global model.
Each local filter computes the global estimation and the local error covariance that
are subsequently fused in a central filter to obtain the global optimal estimation.
Accordingly, this filtering algorithm is similar to Speyer’s filter. But it uses the
information form of the Kalman filter and does not need feedback from the central
filter to the local filters. Although this algorithm can be used to solve target-tracking
problems, it cannot be used for distributed multisensor navigation systems because
the local subsystem states are different in a distributed inertial sensor system.

Hong[63][64]

introduces a distributed multisensor integration algorithm in which
the local measurements, together with the previous global estimate obtained via the
communication network, are locally processed to obtain the local state estimate and
the local error covariance. These local estimates (state and covariance) are fused in a
central filter to obtain the global estimate. Because the local state and covariance
predictions are derived from the previous global estimates, the local filters have no
the state models. However, the rotation matrixes and the translation transformations
are introduced to establish the relationships between the local states and the global
(central) state. Moreover, this algorithm was designed to minimise the uncertainties
of these transformations. It should be noted that the same relationships are also used
for measurement transformations from the local nodes to the central node. This is not
necessarily true in distributed inertial sensor systems, especially when a nonlinear
relationship exists between the measurements and the states. In comparison with
Speyer’s filtering algorithm, this method simplifies the complexity of the distributed
filtering algorithms. However, the local states greatly depend on the global states
because this method lacks local dynamic models.

Roy et all® proposes a square root filtering structure where parallel local filters

have a smaller dimension than the global filter. Paik et al®® develops a gain fusion
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algorithm for decentralised parallel Kalman filters to obtain computation-efficient
suboptimal estimation results. Raol et al'”! describe a decentralised square-root
information filtering scheme where all information fusion is processed locally at each
node and there is no central fusion. These algorithms improve the computational
precision and numerical stability of the existing distributed filtering algorithms.

A fully distributed filtering architecture and information fusion algorithm are
developed, where no central data fusion centre is needed'*®®°!. Each local filter has
its own local system model and processes the local measurements and information
assimilated from other filters to obtain a global estimate of the system state.
However, there is still a key problem to be considered; the dynamic relation between
the local states must be determined, especially if the local state models are different.
Berg et al’"! describe the static relation between the local states and the global state
by an approach similar to Speyer’s method!®”!.

Multisensor data fusion for aircraft navigation aims at the improvements of the
performance in terms of the three aspects:

e Aircraft navigation system RNP parameters;

¢ Fault tolerance of navigation system; and

e Estimation of local motion states.

The majority of previous developments have generally focused on the first two
aspects. In other words, existing distributed filtering algorithms have preserved the
global optimality of the navigation states, which is a desirable feature and serves as a
benchmark for other avionic systems. However, these methods rarely consider the
dynamics of the local subsystems and the dynamic relationships between the local
subsystems. Some algorithms still require extensive computations of local and global
inverse covariances. Very few studies have addressed estimation of the local states.
In fact, distributed inertial sensor systems consisting of several IMUs mounted in an
aircraft affords both redundant inertial measurement information and distributed
inertial state vectors, which can be used both for aircraft navigation, guidance and
control, and also for the implementation of local motion compensation functions.
These IMUs measure local motion with reference to specific coordinate frames

defined by their installation positions, and have individual error dynamics. Therefore,
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the local states must be accurately estimated to determine the local dynamic motion.
The development of distributed filtering algorithms can also be used to investigate
methods for dynamic alignment and calibration of distributed IMUs. Problems
related to these considerations have not been addressed in the open literature and this
thesis addresses the solutions of these problems by developing innovative distributed

data fusion filters algorithms.

2.4 Multisensor Navigation System Integrity

Multisensor aircraft navigation systems can be subject to unforeseen changes
resulting from sensor failures, the uncertainty of system models and variations in the
operating conditions, which can lead to the degradation of the overall navigation
performance. Such changes are known as failures even if they may not represent
actual failures of physical sensors or components. In order to ensure the reliability of
an aircraft navigation system, the data fusion mechanism has to detect and isolate
sensor or system failures from the navigation system and also monitor the integrity of
the navigation states derived by the fusion filter. These two important procedures are
usually known as sensor/system failure detection and isolation (FDI) and navigation
solution integrity monitoring (NSIM). Both functions must check the consistency and
availability of data. The FDI procedure assesses data from sensor systems and issues
a confidence range of the sensor data. The NSIM procedure confirms the integrity of
the navigation solutions and provides alarms and system status information to flight
crew.

A typical FDI or NISM algorithm has in general two objectives:

e To detect the failures,

e To isolate the failed sensors or components.

In some cases, an additional objective may be included to estimate the failure
signals. FDI and NISM procedures rely on redundant data provided by hardware and
software and analytical redundancy to fulfil the above objectives. A representative
FDI or NSIM procedure usually consists of three steps, as shown in Figure 2.8. The

first step, the Residual Generator, processes redundant data to generate a decision
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function (referred to as test statistic), which is a function of the data residual and a
measure of the inconsistency of redundant data. Ideally, the decision function is
independent of the true navigation states or measured states. To decrease the
influence of noise on the decision function, a pre-processing filter may be used to
enlarge the signal-to-noise ratio of the failure signals so that failure signals can be
more easily detected and identified. The second step, the Statistical Test, establishes
a decision threshold on the basis of certain criteria that are a measure of both the
performance of the FDI/NISM algorithms and the accuracy of sensor measurements
or the navigation states. The third step is a decision-making procedure that compares
the test statistic with the decision threshold to verify if a sensor or component failure
has occurred or if there are abnormalities in the navigation states or sensor data.

Depending on the form of the decision functions, the statistical testing procedure can

be performed by using Gaussian, Rayleigh, 3 - or ¢ -distribution statistical tests.

Failures

Residuals Signatures
Statistical

—_— Test

Residual
Generator

Redundant
data

Figure 2.8 A Typical FDI/NSIM Procedure

There are numerous approaches to the generation of residuals. But, the three
commonly used methods are parity matrix transformation, least-squares residuals and
data fusion filter residuals (or innovation).

The FDI and NSIM performance is generally characterised by the probabilities
of two decision errors: false alarms and missed alarms, which are the functions of the
decision thresholds and are also related to the requirement of the navigation system
accuracy.

All FDI and NSIM techniques can be categorised as either snapshot techniques
or sequential techniques. The snapshot techniques use a single sample to detect and/
or isolate instantaneous sensor failures, typically for relatively large magnitudes of
failures. The sequential techniques employ the cumulative information provided by

the complete data history to detect drift failures and other soft failures, normally for
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smaller magnitude failure signals. The snapshot technique has the advantage that it
does not rely on any assumptions on how a data fusion filter attains its current state
whereas the sequential technique can improve the FDI reliability because it uses

history data of the system.

2.5 Snapshot FDI Techniques

Many snapshot FDI algorithms have been developed over the past decades and
the majority of these methods are based on the parity vector/space techniques. Evans

1 introduce a test matrix method and Gilmore and Mckern'’?

and Wilcox present a
parity equations comparison method. Both methods are used to detect and isolate
failures of redundant inertial sensor systems in a dodecahedron configuration. The
parity equations comparison tests a set of 15 parity equations each containing output
values of four sensors while the test matrix method uses a 15x6-dimensional matrix
with each row consisting of coefficients of one parity equation and performing a test
on a different subset of four sensors. By minimising the maximum measurement
residual magnitude, Potter and Deckert!”?! develop a so-called minimax FDI
algorithm for non-orthogonal redundant inertial systems in which any set of four
sensors are tested and compared. Generally, these methods all need to compute and
compare each parity equation and employ a least-squares estimator to estimate the
measured states. Obviously, it becomes a time-expensive procedure for a large
number of redundant sensors.

Wilcox!™ gives comparisons of eight earlier FDI algorithms for strapdown
redundant inertial systems in a dodecahedron configuration. The differences between
these algorithms are in the approaches used to generate test signals. One method uses
a Kalman-Bucy filter for failure correction while all the other algorithms compute
the measured states by means of weighted least-squares estimators. However, these
algorithms did not link the integrity of the navigation system to the performance of
the FDI algorithms.

To overcome the shortcomings of earlier FDI methods, generalised likelihood

ratio test (GLRT) methods!''"®! have been introduced for the detection and isolation
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of failures in redundant inertial sensor systems. The GLRT methods are based on the
maximum likelihood estimate of residual magnitudes where the resultant test statistic
is a function of the parity vector. One of the advantages of GLRT algorithms is that
the performance of the FDI algorithms is related to the integrity performance of the
navigation system and the failed signals can theoretically be estimated. However, the
GLRT algorithms are not able to detect two simultaneous sensor failures.

Hall et al’”! designed a 12-state Kalman filter to compensate the parity vector
by eliminating the effects of normal sensor errors on test signals. This compensation
technique enhances the effect of true failure signals on the resultant parity vector and
improves the GLRT performance. However, after the parity space transformation, the
filter state represents a combination of the sensor errors rather than physical sensor
errors. In other words, the state estimates no longer correspond to physical sensor
errors and consequently, the practical sensor errors cannot be dynamically corrected.

Sturza ™™ describes the parity vector approach to the detection of jump
failures of skewed redundant inertial systems and GPS signals, as well as statistical
methods for the determination of detection thresholds of RAIM and FDI algorithms.
Brown and Sturza™” further analysed the effect of geometry of the GPS satellites on
the parity vector-based RAIM.

Sturza and Brown!®!

give two RAIM algorithms CFAR (constant false alarm
rate) and CPOD (constant probability of detection) for GPS integrity monitoring. In
the CFAR algorithm, the detection threshold is based on a constant false alarm rate.
In the CPOD algorithm, the detection threshold varies in order to provide a constant
missed alarm rate. Clearly, these methods are not suited to SRIMU configurations
because the measured states and the navigation states are the same for GPS RAIM.
For SRIMU FDI, the navigation states are derived from the measured states by
solving a set of differential equations.

The mathematical background of the RAIM methods is given by van Diggelen

[82]

and Brown"~. A number of GPS signal failure detection algorithms, known as

receiver autonomous integrity monitoring (RAIM) methods, are based on the parity

vector technique[83].

36



OVERVIEW & METHODOLOGY

2.5 Snapshot FDI Techniques

These proposed parity vector-based FDI or RAIM algorithms can effectively
detect jump failures of navigation sensor systems or GPS signals. However, they are
not able to detect any soft failures arising from drifts or two or more simultaneous

sensor failures.

2.5.1 Sequential FDI Techniques

Several sequential FDI algorithms have also been developed to detect both
jump and time-drift failures in dynamic systems. Sequential FDI techniques can be
classified as two types. One type directly uses the history data of the sensor outputs.
Wald originally introduced a sequential probability ratio test (SPRT) algorithm to
make a binary decision of one mode (degradation) against an alternative mode

(normal). Chien and Adams®

present an improved SPRT algorithm whose design
criterion is based on the minimization of the mean detection time to detect system
failures subject to constraints on the false alarm and missed alarm probabilities. The
time minimization is implemented using positive feedback control of the likelihood
function. It is also used for the detection of jump mode failures.

The other type implicitly employs the history data of system outputs. This type
of sequential FDI method is usually based on analytical redundancy techniques that
require the development of dynamic models of detected systems and this FDI method
is known as a model-based FDI method. Willsky and Jones'® describe an improved
GLRT method for detecting abrupt changes in linear dynamic systems by using the
sequential system outputs. Willsky™®™, Gertler®™ and Patton'® summarise various
FDI methods used in dynamic systems. The majority of these model-based FDI
methods apply various GLRTs to test the Kalman residuals for the presence of sensor
failures or abrupt change of system states. They may also detect system degradation
but cannot detect time-drift sensor failures. From a survey of the literature, many
existing sequential or model-based FDI algorithms are often used to detect jump
failures.

Kerr'®"! proposes a method known as the two-confidence region comparison

approach to failure detection. One confidence region is determined by the Kalman
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predictor and is centred about the expected unfailed state and reflects the uncertainty
of the system noise. The other confidence region is created by the Kalman estimator
and is centred about the Kalman estimate. This region reflects the uncertainties of the
system states and the measurement noise. A failure is detected by comparing these
two confidence regions. As Kerr states in his paper, as long as the two confidence
intervals overlap, the true state may be in both confidence intervals; however, when
both confidence intervals are disjoint, the true state cannot be in both intervals
simultaneously and a failure is declared. However, the increasing number of sensors
makes the computation of failure thresholds very complex. In addition, because an
identical system dynamic model is used in the state predictor and the state estimator,
uncertainties of the filter dynamic model may cause false alarms. In the design of an
INS/GNSS integrated filter, the filter dynamic model can be derived by disturbing
the inertial navigation equation about the nominal navigation states. In this case, the
sensor drift failures can contribute to errors in the nominal navigation states. This
disturbance error further affects both the predictor and estimator. This effect may
lead to missed alarms. Accordingly, this method does not apply to error dynamic
models where the errors of the navigation states are used as the filter state rather than
the navigation states.

NSIM methods are based on sequential FDI techniques, which analyse the
covariance matrix and residuals (or innovations) of the data fusion filter. The most
direct method is to compare different versions of the navigation states estimated by a
bank of Kalman filters. For example, Brenner'®®! proposes a solution separation
method for GPS/INS integrated system. In this method, a bank of Kalman filters is
used to obtain both full-set solutions and sub-set solutions. The test statistic and the
decision thresholds are determined on the basis of the horizontal separations between
the full-set solution and sub-set solutions, and the Kalman filter covariance matrices.

Diesel et al'®!

give an autonomous integrity monitored extrapolation (AIME)
algorithm used in the Litton GPS/IRS integrated system. AIME is an open control
system using range differential measurements as the filter observables, which are the
differences between the observed GPS pseudoranges and the computed ranges based

on the predicted navigation states and the satellite positions. The difference between
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the time-updated (predicted) state and the measurement-updated (estimated) state of
a Kalman filter are used as the test statistic to monitor the navigation states. Hanlon

and Maybeck[go]

analyse the effects of mismodelled input matrix, output matrix and
state transition matrix on the residuals resulting from a bank of Kalman filters, each
using a different filter model to describe the same dynamic system. They also
develop a hypothesis testing algorithm using these residuals to detect failure status of
a flight control system and to estimate the true system model. Although this method
has advantages in the design of a reliable flight control system, it cannot be used in
distributed inertial sensor systems. However, this method may be suitable for the
federated filter architecture or traditional multisensor-based navigation systems
where the main purpose is to estimate the centralised navigation states.

All of the published sensor FDI algorithms that have been located are capable
of detecting hard sensor failures in clustered inertial sensor system architectures.
Although some of these FDI algorithms can enhance the performance of sensor FDI,
they cannot improve the accuracy of an SRIMU system. Earlier NSIM methods were
developed for special GPS/INS integrated navigation systems with a centralised
filtering architecture. However, they are not amenable to expansion and cannot be
used in distributed inertial network systems. In this thesis, several improved FDI and
NSIM methods are presented to detect the drift sensor failures and the navigation
state abnormalities in distributed inertial network systems. The compensation filters

are developed for the correction of SRIMU measurements.

2.6 Multisensor Fusion Model for Navigation Systems

Multisensor data fusion covers fault-tolerant design and data fusion methods.
As identified in Chapter 1, the JPL MSDF model and other models do not apply to
the development of distributed multisensor navigation systems. From the definition
of multisensor data fusion given in Chapter 1, a multisensor data fusion model for
aircraft navigation systems is a conceptualised framework in which sensor network
topology architecture, data communication mechanism, system functions and related

operational modes are defined. The data fusion methodologies are then developed to
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implement the required system functions and operational modes. This thesis presents
a generalised MSDF model for the design, analysis, development and simulation of

multisensor aircraft navigation systems, as illustrated in Figure 2.9.
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Figure 2.9 Generalised MSDF Model for Aircraft Navigation Systems
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2.6.1 Sensor Topology Network

The sensor topology network provides a hardware foundation for the design
and development of multisensor navigation systems and describes distributions and
allocations of various sensor systems in the network. The architecture of a sensor
topology network is specified according to the system design requirements. A sensor
network topology can be a serial, parallel or hybridised architecture; or a completely
packaged, distributed network or combination of both. Parallel and distributed sensor
network architectures are the most commonly used sensor topologies in modern
aircraft.

Optimisation of the topological architectures of a sensor network determines
the optimal sensor system configurations and allocations in an aircraft navigation
system. The allocations of sensor systems depend on the requirements of both the

aircraft navigation system (e.g. survivability and fault tolerance) and other avionics

40



OVERVIEW & METHODOLOGY

2.6 Multisensor Fusion Model for Navigation Systems

systems for the inertial and navigation states. For example, many avionics systems
require highly reliable, continuous inertial data to implement individual functions, as
stated in Section 1.1. Some inertial systems must be located close to specific avionics
systems to provide the precise local motion states for stabilisation of specific
avionics systems, such as weapon pointing systems and imaging radars.

The data communication specifies the architecture of a communication
network and the requirements for data buses in order to exchange data among
individual sensor systems and to transmit data to other avionics systems. The data
protocol and transfer speed must be selected so that the data communication network
can meet the requirements that data fusion algorithms require from sensor data.

The evaluation of technology obsolescence is a key to the mitigation of ageing
technologies and to the application of emerging technologies to meet the long-term
operational lifetime requirements for aircraft navigation systems.

Data fusion methodologies can then be developed so that the resultant data
fusion algorithms, in combination with a data communication network, can fuse
various sensor data to achieve the required performance for aircraft navigation and

other airborne applications.

2.6.2 Sensor-Level Data Fusion

Sensor-level data fusion is preliminary data fusion. It analyses and qualifies all
sensor measurements to provide highly reliable sensor data for subsequent system-
level data fusion. It can also transmit health status information of all sensor systems
to the sensor management. At this level, the following functions are performed:

e Sensor corrections and compensations to obtain accurate sensor data;

e Data alignment in time and space to ensure that associated measurements

of all sensor systems are time-synchronised and common-coordinated;

e Detection of sensor failures and isolation of failed sensors if necessary;

e Reconfiguration of sensor systems based on certain sensor reconfiguration

strategies.

Sensor failure detection and isolation (FDI) is the core of this functional module.
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2.6.3 System-Level Data Fusion

System-level data fusion is the kernel of a multisensor data fusion system. It
fuses data from sensors and subsystems in terms of optimised data fusion algorithms
to estimate the required system states and to monitor the integrity of the estimated
states by performing specific error covariance analysis and statistical tests. At this
level, the following functions are undertaken:

e State estimation. This function covers the design and development of both
data fusion filter architectures on the basis of the topological architecture of
sensor network and optimal data fusion algorithms suitable for the filter
architectures;

e Navigation solution integrity monitoring and system FDI. These functions
are required in order to obtain the integrity of the navigation system. They
are concerned with analysis and evaluation of the state error covariance and
residual information of the data fusion filter;

e Alignment and correction of inertial systems in distributed sensor network.
This function is concerned with development of data fusion algorithms to
dynamically align and correct distributed inertial systems.

® Reconfiguration of system models. This function implements fault-tolerant
design in a multisensor navigation system. It is provided to fulfil system

reconfiguration strategies and operational modes.

2.6.4 Sensor/System Management

Sensor/system management performs three types of management functions:
sensor network system management, data communication management and human-
machine interface management. According to the health status information from the
sensor-level data fusion and system-level data fusion modules, and command inputs
from the pilot, the sensor network system management determines the operational
modes and reconfiguration strategies of the navigation system, and transmits the

associated commands to the two data fusion modules. The sensor-level data fusion
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module and the system-level data fusion module then separately reconfigure the
sensor systems and navigation system to meet the required navigation performance
and fault tolerance of the navigation system. Sensor/system management strategies
are specific to the architecture of sensor network and fault tolerance requirements.

Data communication management manages the data exchange among the
nodes of the sensor network system according to the sensor/system reconfiguration
strategies and external commands. Communication management strategies allow
sensor systems to be added or failed sensor systems to be removed from the sensor
network architecture without affecting the data communication architecture and
operation of the complete system. Human-machine interface management provides a
user-friendly interface for flight crew.

In operation, the sensor/system management dynamically allocates tasks to the
functionary sensor systems and software components to execute the required system
functions.

Investigations to be performed in this thesis will follow this generalised MSDF

model.

2.7 Summary

This chapter has reviewed developments of fault-tolerant aircraft navigation
systems and data fusion methods based on a wide range of literature survey. The
main issues covered in this chapter are as follows:

1. Review of three fault-tolerant navigation system architectures, which have

been employed in aircraft navigation systems.

2. Analysis and comparison of four forms of data fusion filter architectures,

which are currently used in integrated aircraft navigation systems.

3. Description of FDI and NSIM techniques applied to inertial sensor systems

and GNSS.

4. Development of a generalised multisensor data fusion model, which will be

used to design and develop future aircraft multisensor navigation systems.

5. Identification of several main problems existing in the design of current
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multisensor fusion navigation systems, including detection of time-drift
sensor/system failures, SRIMU error compensation, and multisensor data
fusion methods and distributed state vector integrity monitoring strategies
for distributed dynamic systems, especially inertial network systems. This

PhD study will address the solutions of these problems.
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Chapter 3

STATISTICAL ESTIMATION AND TESTING
THEORIES

3.1 Introduction

This chapter introduces mathematical formulations on statistical estimation
theory and hypothesis testing theory, which are required in this thesis to understand
the development of multisensor data fusion algorithms. Estimation theory is a
powerful mathematical tool, which has been used in various engineering fields to
accurately estimate the states of complex dynamic systems and to implement the
effective control of the systems. Statistical testing theory is an auxiliary tool that is
used to further confirm the validity of sensor data and the estimated system states. In
aerospace engineering, these theories have successfully applied to the development
of aircraft guidance, navigation and control systems. Section 3.2 introduces the
conventional Kalman filter algorithms and analyses the statistical characteristics of
the Kalman filter. Section 3.3 gives the information filter and Section 3.4 describes

statistical hypothesis testing methods. Finally, a summary is given in Section 3.5.

3.2 The Kalman Filter

3.2.1 Stochastic Process Model

Since the Kalman filter was originally presented by R. E. Kalman, it has
become a standard estimation method that is widely used in the development of

navigation systems. In order to develop various forms of Kalman filter algorithms,
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the dynamic model of a stochastic process (system) must be constructed in the form
of state space representations. In this thesis, the Kalman filter is used as a state
estimator and does not perform any control functions. Therefore, the control input to
the system is not considered in the system model.

The stochastic process model develops dynamic relations between the states of
a stochastic process. It consists of a set of the first-order differential equations driven
by random input noise, which describe the evolution of the stochastic system state in
time. It can be represented in a generalised formulation in the continuous-time form
as follows:

x(t) =f[x(t),t]+ G[x(),tIn(?); x(t,) =X, (3.1)
where f is an n—known function vector, ¢ denotes time, X(¢) is an n —system state
vector at time ¢ with the initial value of Xx,, n(¢) is an g— additive process noise

vector and G[x(¢,),,] is an nX g function matrix. The process noise n(¢) takes into

account the perturbations to the system.
The discrete-time form of this continuous-time system model is needed for the

computer implementation of the Kalman filter and can be formulated as follows:
X(t,,,) =f[x(t,),t,,,.t, 1+ G[x(t,),t, In(z, ); x(t,) =X, (3.2)
where 1, is the sampling time.

The discrete-time process model can be deduced by integrating the continuous-
time process model between successive sampling times. The associated process noise
and control input vectors must also be redefined to reflect the integration!*!"!.
Hereafter, only the discrete-time process model will be considered in this thesis.

For the stochastic process model, the Kalman filter assumes that the sequence

of the process noise n(z, ) is a white Gaussian process with zero mean and known
covariance, and is independent of the system state x(#, ) . The sequence of the system
states x(f,) is a Gauss-Markov process. The initial system state x(f,) has known

mean and covariance. Therefore, the following assumptions”

X(tk ) ~ N(ﬁ(tk )’ P(tk ))

are given:
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E{[x(r,) = X(t)1[x(r,) = %t )]" } = P(z,)

n(,) ~ N(0,Q(z,))

Eln(r,)n’ (7,)] = Q(t,)d,,

E[n(t,)x' (#,)]=0
where A represents the Gaussian (normal) distribution, X(#, ) is the estimate or mean
value of x(¢,), P(¢,)is the symmetric, positive semidefinite covariance matrix of the
state errors, E[-] denotes the expectation operator, Q(z,)is a covariance matrix of the

process noise, which is positive semidefinite and o,; is the Kronecker delta function.

3.2.2 Stochastic Measurement Model

The stochastic measurement model develops the relations between the system
states and physical quantities measured by the sensor systems. It can be represented

in a generalised formulation in the discrete-time form as follows:
z(t,)=h[x(,),t, ]+ w(t,) 3.3)
where h is an m—known function vector, and the vectors z(f,) and w(z,) are an

m — measurement vector of a sensor system and an m — additive measurement noise
vector, respectively. The measurement noise accounts for effects of the measurement
system errors on the measured physical quantities.

For the stochastic measurement model, the Kalman filter assumes that z(¢,) is

a Gaussian distributed random variable at each sampling time and the sequence of

the noise w(z,) is a white Gaussian process with zero mean and known covariance
and is independent of n(¢,) and x(¢,), separately. The following assumptions”'! are
then given:

w(t,) ~ A(O,R(z,))

Blw(t,)w" (t,)1=R(,)J,
E[w(z, )X (t)1=0

E[w(t,)n' (1,)]=0
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where R(#,)1is a positive definite covariance matrix of the measurement noise.
However, in some stochastic processes and measurement systems, it may be

not appropriate to represent both the process noise and the measurement noise by
using a white Gaussian process. Hence, state augmentation techniques are frequently

used to adjust the system model and the measurement model to fit the requirements

of the Kalman filter'*"1°!,

3.2.3 Stochastic Estimation Model

The Kalman filter estimates the state of a stochastic process using the process

and measurement models with the assumptions given in Sections 3.2.1 and 3.2.2.
Two estimates of the state are distinguished: the estimate of the state x(z,), X(,), is
a conditional estimate conditioned on the measurement history up to the current time
t,, whereas the estimate of the state x(,), X(, ), is an estimate conditioned on the
measurement history up through the previous sample time ¢, ,. X(¢, ) is known as the

predicted state derived from the process model with the time update. The associated

conditional mean and covariances are defined as follows:
X(r;) = BIx(t,)|{z(1,)}]
X(r;) = BIx(t, |{2(1,,)}]
Defining the errors corresponding to these two estimates as
X(t;) = x(t,) —X(1)
X(1,) =x(1,)—X(1;)
then the covariances of these errors can be defined as follows:
P(t;) = BIX(t))X" (1)) = B{[x(t,) = R(OIX(,) = K@) {z(1) 1)
P(;) = BIR())R (1) = BUX(, ) — RODIX(,) — K61 (20 )
The estimation process of the Kalman filter is illustrated in Figure 3.1 where

the predicated state and the current measurement are combined by the Kalman filter

to obtain the current state estimate.
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X(;)

x(t, )

z(t,)

Measurement Model

Figure 3.1 The Estimation Process

3.2.4 Linear Kalman Filter

The linear Kalman filter is a standard Kalman filter applicable to linear

stochastic processes. The Kalman filter models are formulated as follows:
x(t,) =P, t,_)x(t,_)+G(_n(,_,) (3.4)
z(t,) =H( )x(t,) + w(t,) (3.5)

where @ is an nXn state transition matrix and H is an m X n measurement matrix.

The predicted state and measurement are computed as follows!*'!:

R(1;) = D(1,..1,_X(1;) (3.6)
2(t;) = H(t, R(1}) (3.7)
then the covariance of the predicted state error is:
P(7,) = B[X(1,)X" (1;)]
= E([x(1,) = X)X, — X(6)] {21, )}
= E{[®(t,., 1, )X(t,) + G, (1, DRt 1, )X(5 ) + Gt )n (@, )T}
According to the assumptions given in Sections 3.2.1 and 3.2.2, the above equation

can be simplified as follows:

P(t,) =®(@,,t, PE )P (.1, )+ G, Q)G (t,.,) (3.8)
Defining the innovation r(z, ) as

r(t,)=z(t,)—2@, )=H( )X, )+ w(t,) (3.9)

then the covariance of the innovation is computed as:
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S(1,) = E[r(r,)r' (1,)]

(3.10)
= H(, PH" (1) +R(1,)

And the covariances of the innovation and predicted state error are

S, (t,) = Elr(t,)X" (1, )] = H(z, )P(z, ) (3.11)

Sg (1) =E[X(t)r' (1)1 =P, )H' (1,) (3.12)
Therefore, S_.(t,)=SL (t,)

With the assumption that the prior state and measurement X(#, ) and Z(z, ) are
known, the current measurement z(¢, ) can be used to update the prior state estimate
in accordance with the following equation

X(t,))=x(t, )+ K@, )r(,) (3.13)

X)) =x@t,))+ K@)z, - 2(t,)]
or (3.14)
=[I1-K( )H(,)Ix(z, )+ K(,)z(t,)

where K(z,) is a blending factor to be determined. Then, the error covariance of the

updated state estimate X(¢; ), P(#,), can be computed as follows:

P(t) =EB[X))X' (t])]
= B{[x(r,) — X(;)1[x(t, ) —x@tH]" )
= B{[I-KH)X(t; ) - Kw()I[A- KH)X(t, ) - K, )w(t,)]"}

Note that the a priori estimation error X(, )is independent of the measurement noise
w(t, ), therefore,

P(1;) =[1-K( )HC )P I -K()HOT + K@ )R )K (¢,)  (3.15)
An optimal blending factor K(z, ), which minimise the mean-square estimation error

and is known as the Kalman gain, can be obtained by the optimisation of Eq. (3.15)

as follows™!!

K1) =Pt )H (1)S7'(1,) (3.16)
Expanding Eq. (3.15) and substituting Eq. (3.16) into the resultant equation leads to
P(t;) =P(1,) - K@ )HI)P(t,) (3.17)

or  P(})=[1-K()HI)IP(;) (3.18)
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or  P(r))=P(t;)-K(,)S )K" (z,) (3.19)
These three expressions for P(z,) fail to assure both the positive definiteness and

symmetry of the error covariance update, and are valid only for the Kalman optimal
gain. In contrast, Eq. (3.15), known as the Joseph form, can maintain the symmetry
and the positive definiteness of the error covariance propagation and is valid for any
value of gain.
The mechanism of the standard Kalman filter algorithm is summarised in Table
3-1.
Table 3-1 Standard Kalman Filter Algorithms
Step 1: Initialisation
Pi,)=P,; X(t,) =X,
Step 2: Time update (effect of dynamics)
X(1,) =Pt 1, )R(1)

P(t,)=®(,,t, )Pt )P (1,1, )+ G, )QE, )G (¢, ,)
Step 3: Measurement update (effect of measurement)

r(t,) =z(t,)-Ht)X@,), S@t,) =H(,)Pt)H' (1) +R(#,)

K(t,) =P )H" (1,)87'(1,)
(1) =X(r)) + Kt )r (). P()) = P(r;) — K(t, H(r, )P(r;)

3.2.5 Extended Kalman Filter

The extended Kalman filter is used to handle the estimation problems which
occur in non-linear stochastic processes. A typical non-linear process model can be

written in the form:

x(t,) =f[x(t,_)).t, .1, 1+ G[x(¢,_).t,_, In(,_,) (3.20)

z(t,)=h[x(t,),t, ]+ w(z,) (3.21)
where f and h are known non-linear functions.

To apply the Kalman filter to estimation problems in a nonlinear process, these
nonlinear models must be linearised. Two methods can be used to linearise nonlinear

models. One method linearises the nonlinear models about some nominal trajectory

in the state space, which is independent of the measurements. The nominal trajectory
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is pre-computable. The resultant filter is referred to as a linearised Kalman filter. The
other method linearises the non-linear models about an estimated trajectory that is
continuously updated by the state estimates resulting from the measurements. The
filter is known as an extended Kalman filter.

The predicted state and measurement are computed as

x(t,) =f[x(¢,_ )1, .1, ] (3.22)

2(t,) =h[x(1;).1,] (3.23)
Consider the perturbation of the current state from the predicted state X(z,,). The
system model in Eq. (3.20) can be approximated by expanding about X(7, ) as

follows:

x(t,) = f[X(t] )1, .1, 1+ PR, 1,1, X))

(3.24)
+G[x(t, ).t In(t, )

where the higher terms of the Taylor series expansion have been ignored and

E—
DRt _ af[X(tk_l )’tk ,tk_1]| axl - ax”
X))t )= 5 =| _: oo
X X(t_)=R (1) afn . afn
ox, ox,

X(t) =x(t, ) —X(t;)
Subtracting Eq. (3.22) from Eq. (3.24), the predicted state error is derived as follows:

X(t) = PR )ty 1 X))+ GIX() I, ) (3.25)
where

X(1,) =x(t,) = X(1;)
From Eq.(3.25), the associated error covariance is computed as:

P(t;) = DRG0, TP )DPTRG) 11, ]

+GIx(1),1,.1Q( )G [x(1 )it ]
Now consider the perturbation of the measurement model from the predicted

state X(7, ). The measurement model in Eq. (3.21) can be approximated as follows:

z(t,) = h[Xx(@, ).t 1+ H[X(z,),t, 1X(t, ) + w(z,) (3.26)
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where the higher terms of the Taylor series expansion have been ignored and

ox ox

" oh[x(t,),t o o
H[x(zk>,tk]=—["é") :] o
X X(1)=R(7) oh,, N oh,,

ox, ox,

Subtracting Eq. (3.23) from Eq. (3.26), the measurement innovation is given by
r(t,)=z(,)—2(t, ) = H[X(t, )1, 1X(t,) +wW(t,) (3.27)
then the covariance of the measurement innovation is computed as:

S(t,) =E[r(z,)r" (t,)]

) - (3.28)
=H[x(, ).t 1P, )H [x(7, )7, [+ R(z, )

Applying the standard Kalman filter to the linearised models given in Egs. (3.25) and

(3.27), the measurement updates are computed by
X(t))=x(@, )+ K@, )r(t,) (3.29)
P(:)) =P(t,) - K H[X(, ),t, 1P(t,) (3.30)
where K(z,) is the Kalman filter gain matrix.
K(t,) =P ) H" [&(,),t,1S7'(¢,) (3.31)
The extended Kalman filter algorithm is summarised in Table 3-2.
In this thesis, the linear and extended Kalman filter algorithms are referred to
as conventional Kalman filter algorithms. An iterative modular algorithm structure

for the conventional Kalman filter algorithm is shown in Figure 3.2 where the three

modules are initialisation, predictor and estimator.
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Table 3-2 The Extended Kalman Filter Algorithm

Step 1: Initialisation
Pi,)=P,; X(t,) =X,
Step 2: Time update (effect of dynamics)
x(t,) =f[X(¢, )1, .1, ]
P(t;) = PR ).t .1, JPE )P [R(E ).t o1, ]

+GIx(t; )1, 1Q,_ G [t 1, ]

EE
ox, ox,
q)(ﬁ(t/:—_l)’tk ’tk—l) = afn . afn
ox, ox,
L Ixt=xi )

Step 3: Measurement update (effect of measurement)
r(t,) =z(t,) —h[Xx(,),t,]
S@t,) =H[x(t,),t, Pt OH'[X(t, ), 1+ R(z,)
K(t,) =P, H [X(t,),1, 187 (1)
X(t))=x(@, )+ K@, )r(t,)
P(t)) =P(t,) - K@ ) HIX(,),t, 1P(t,)

(oh 9y |
ox, ox,
H[x(7,),1,1=] : :
ah m ah m
ox, ox,
L Ax(1,)=%(1;)
Initialisation:

—

Pi,)=P,, X(t)) =X,

Estimator:

X(1;) =%, )+ K@, )r(t,)

P(t)) =P(t,) - K@ )H({, )P(,)
where

K(t,) =P )H 1,)87'(1,)

!
Predictor:
(1) =P 1R
P(1;) =D, .1, P )P (1,.1,,)
+G(1,_ Q)G (7))
r(t,) =z(t,) —H{, )R(,)
S(1,) = H(t, P(r)H (1) + R(t,)

z(t,)

A 4

A 4

St

X(t,)

Figure 3.2 Conventional Kalman Filter Algorithm Structure
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3.2.6 Statistics of Kalman Estimation Errors and Residuals

The conventional Kalman filter algorithm has been used as a standard means of
optimal or near-optimal estimation of the states of a stochastic system. By examining
the predictor and the estimator given in Figure 3.2, the filter algorithm also provides
very useful statistical information that can be used to monitor both the convergence
and the consistency of the filter estimation procedure. As illustrated in Figure 3.3,

these statistics can be obtained by generating information at different stages of the

filter algorithm.
Covariance Transition
D(t,,t,_ P _ )P (t,,t,) [
Unit Delay
Q1) T P@,) I
t—l t](—l G (tk—l) —
> G Q) 1 [1-K(,)H(@)P(;)

P(t)

D e EELEEEEEEEEE 7

Rt H(t, )Pt H" (1,)+R(t,) = S(1,) S P(,)H' (1,)S™(1,)=>K(,)
4-----------------------------------------.'
‘ )
K(,) i >

Unit Delay

State Transition
N At
voX(1,) D(t,,1,)X(1, )

s
—~
=~
~

A

Figure 3.3 Kalman Filter Outputs

The outputs of the filter predictor r(¢,) and S(¢,) are the filter innovation and
the filter innovation covariance, respectively. The outputs of the filter estimatorr(z; )
and S(z;) are the filter residual and the filter residual covariance as follows:

r(t;) =z(1,) - H@ X))

S(t;) =H )Pe,)H" (1,) +R(1,)

Theoretically, it has been shown that the filter innovation and residual processesw]
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are a zero-mean white Gaussian random process of the given covariance. This feature
can be exploited in the analysis of the Kalman filter integrity for some practical
purposes, for example, consistency checking of the measurement data, sensor failure
detection and analysis of the filter divergence.

Defining a normalised quadratic innovation function by the following terms
NQI(t,)=r"(t,)S™'(t,)r(t,) (3.32)
then, the NQI(t,) is a measure of the inconsistency of the measurement data or the

filter innovation (residual) and is a y -distributed random variable with m degrees of
freedom where m is the number of statistically independent measurements. Testing
NQI(t,) for consistency of the filter innovation can be used to detect sensor failure.

The output of the filter estimator P(¢;) is a measure of the uncertainty of the

filter state estimate X(¢; ). The uncertainties along the different state space directions

can be represented geometrically as follows:
[x(t,) =K@ P (¢ )[x(t,) —%(1;)] =1 (3.33)

For a 2-dimensional state vector, it is given by an ellipse shown in Figure 3.4.

x,(t,)
A

X)) |-

A+
x,(t)

Figure 3.4 The Ellipsoid of Estimate Uncertainty

The axes of the ellipsoid are oriented along the singular directions of P(z,").

Applying the singular value decomposition to P(¢;), Eq.(3.33) can be rewritten in

the following form.
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[U'R@eHI' D™ (60Xl =1
where D is a diagonal matrix containing the singular values of P(z, ), which are the

lengths of the ellipsoid axes. The columns of U are singular vectors that indicate the
singular directions and form the orthogonal basis in the state space. Small singular
values correspond to directions in the state space with small uncertainties while large
singular values indicate directions with large uncertainties. Convergence of the state

estimate means that the ellipsoid shrinks in all directions. Therefore, analysis of the

error covariance matrix P(z,) is used to determine whether the estimation procedure

is convergent or divergent.

Defining a normalised error quadratic function as follows:
NEQ(t,) = [X(1)) = X(t)] P~ (1 )[R(1]) = X(1,)] (3.34)
where X(z, ) is the true value of the system state x(z, ).

NEQ(t,) 1s a measure of the uncertainty of the filter state estimate and is a

4’ -distributed random variable with n degrees of freedom. Testing NEQ(z,) for

consistency of the state estimation enables abnormalities of the estimated system
states to be detected. However, this test is only applicable to system simulation
because X(z, ) has to be known.

Defining Ax(#,) = X(¢, ) —X(z,) , then Ax(¢,) is a zero-mean Gaussian random
variable with the known covariance of P, (¢, ) = K(z, )H(z, )P(¢, ). When the system
model is highly accurate, an improved NEQ function is designed to check abnormal
changes of the estimated system states as follows:

INEQ(t,) = AX" (1, )P (1, )AX(t, ) (3.35)

Analysis of the state error covariance matrix is used to determine if the Kalman
filter converges, but is unable to verify if the Kalman filter converges to the correct
value.

From Figure 3.4, the accuracy of the error covariance matrix depends solely on

the system model (®,Q,P,) and the measurement model (H,R ). In other words, the

covariance recursion is independent of the actual measurements taken, and thus it can
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be computed without knowledge of the realised measurement values. For this reason,

P(7,) and P(¢;) can be pre-computed before actual measurements are available.

This pre-computability allows early design tradeoffs of expected estimation accuracy
versus sensor system accuracy to be undertaken. Proper estimation accuracy can be
evaluated by off line simulation of different sensor systems and system models until

the error covariance analysis meets the required accuracy.

3.2.7 Drawbacks of Kalman Filter

The conventional Kalman filter algorithms, when implemented on a computer,
may undergo computational inaccuracies owing to computer roundoff errors and the
occurrence of very small values in the error covariance matrix. In particular,
computational inaccuracies in the covariance matrix update procedure can cause the
computed covariance matrix to become numerically inaccurate, resulting in a loss of
symmetry and positive semi-definitiveness of the covariance matrix. These situations
may lead to divergence and instability of the conventional Kalman filter.

In order to overcome the computational inaccuracies in the conventional
Kalman filter algorithms, many numerically accurate forms of the Kalman filter have
been introduced, for example, various squared-root filters or the Potter filter *0'01,
These improved Kalman filter algorithms seek to propagate and update some
factorisation of the error covariance matrix rather than the error covariance matrix
itself. However, it should be noted that the Potter filter increases the computational

accuracy of the error covariance matrix but loses the simplicity of the standard

Kalman filter algorithm.

3.3 The Information Filter

Both the conventional Kalman and the Potter filters need an accurate estimate

of the initial error covariance P,. However, it may be impractical to obtain an
accurate estimate of P, in some applications because there may be no a priori

knowledge of the initial system states or the initial states available are inconsistent.
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In addition, with the increase of the number of measurements, for example, the data
fusion filters in distributed multiple sensor systems must execute matrix inverse
operation on the innovation covariance, which may be time consuming particularly.
In order to resolve such problems, an information form of the Kalman filter has been
introduced. This information filter is an algebraically equivalent Kalman filter, but
processes and propagates the inverse matrix or the inverse matrix square root of the
error covariance. This form possesses several unique characteristics and is suited to
problems where the measurement dimension is large or where there is no a priori
knowledge of the initial system state (particularly allowing a startup procedure in the

case of singular P,).

3.3.1 The Linear Information Filter

In the linear Kalman filter algorithm, the state update equation is given by

x(t,) =[M-K@¢,)H()IX(r,)+K(r,)z(t,) (3.36)
Assuming P(z, ) is non-singular, Eq. (3.18) can be represented as

1K@ )H@ ) =Pe)P (1) (3.37)
Substituting Eq. (3.37) into Eq. (3.36) and pre-multiplying the resultant expression
by P7'(¢;) leads to

P ()R() = P ()R + P (1)K ()21, (3.38)
From Egs. (3.10), (3.16) and (3.18),

K(,)=Pt)HH" (¢, )R (t,) (3.39)
Substituting Eq. (3.39) into Eq. (3.38) leads to

P (1)X() =P ()R + HT ()R ™ (1, )a(t,) (3.40)
This expression is known as the inverse covariance state update equation.

From Eqgs. (3.37) and (3.39),

P'¢)=P'(¢t,))+H" (¢t )R (t,)H(t,) (3.41)
This expression is known as the inverse covariance update equation.

From Eq. (3.8), the inverse of the a priori error covariance is given by
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P (1)) =[®(,.1, )P D@ (1,.1,) + G, Q)G (t,)] (3.42)
Applying the matrix inversion lemma

Z+X"Y)' =27 -Z2"'X"A+YZ'X")YZ"'
to the right side of Eq. (3.42) by identifying

Z=®t,t,_ )Pt )® t,.t_): X =G(t,_)Qt,_):Y=G"(t,_,),

it has been shown that'*"!

P'(t,)=[1-(,)G" (¢, ,)IM(t,) (3.43)
where

M(t,)=®" (1, ,,t,)P ' (t] D, ,.t,) (3.44)

(1) = M(t, )G, )IG™ (1, )M(1)G (1, ) +Q ' (¢, )] (3.45)

In the information filter, the a priori information state estimate y(¢, ), the a
priori information matrix Y(z, ), the information state §(z, ), the information matrix

Y (7)., the new information vector u(z,) and the new information matrix U(z, ) are

defined as follows:

§,) =P (t)%(,) (3.46a)
Y(t,)=P'(t;) (3.46b)
§@) =P (tHX@;) (3.460¢)
Y& =P () (3.46d)
u(t,)=H"( )R (t,)z(t,) (3.46¢)
U@t,)=H"(t,)R™'(t,)H(t,) (3.46f)
From Egs. (3.43), (3.46a) and (3.46¢)
§(&, ) =M -1 )G (1, )I®" (1,_.1,)¥(1 ) (3.47a)
Substituting Eqs. (3.46a), (3.46¢) and (3.46e) into Eq. (3.40) leads to
y)=¥y@)+u,) (3.47b)

Substituting Egs. (3.46b), (3.46d) and (3.46f) into Eq. (3.41) yields
Y )=Y(t)+U@,) (3.47¢)
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From Eq. (3.44), the inverse of the state transition matrix instead of the state
transition matrix ®'(¢,,t, ) =®(t,_,,t,) has been introduced in the information

filter. The information filter algorithm is summarised in Table 3-4.

Table 3-3 The Information Filter Algorithm

Step 1: Initialisation
Y(t,) =Py's §(1,) = Y(1,)x,
Step 2: Time Update
§,) =M= )G" (1, I®" (t,,,1,)3(, )
Y(r) =[1-1(,)G" (1, )IM(z,)
Step 3: Information Update
u(t,)=H" ()R (t,)z(t,)
Yy =9@)+u()
U@t,)=H" ()R (1,)H(,)
Y(t;) = Y(r)+U(r,)
Step 4: State Recovery
X)) =Y t)HyE)

In summary, the information filter simplifies the information update procedure

but increases the computation complexity of the time update procedure.

3.4 Statistical Hypothesis Test

A failure occurring in a multisensor navigation system can be seen as a sudden
change in one or more of the system parameters, system outputs, or sensor outputs.
Such changes can be classified as: additive failures or non-additive failures. Additive
failures produce a change in the mean of the sensor measurements or the navigation
state outputs. Non-additive failures result in changes in covariance of either the state
estimate errors or the sensor measurement noise, or in the system parameters caused

by the uncertainties of the system models. These failures may cause the performance
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of an aircraft navigation system to be degraded and can even lead to catastrophic
events. In order to guarantee the safety of aircraft system, statistical hypothesis tests
are used to check for anomalies in the mean of the sensor measurements and the
navigation states or abnormalities of the covariances of the state estimate errors or

measurement noise.

3.4.1 Hypothesis Test

A hypothesis is tested for possible rejection on the assumption that it is true.
The concept was originally introduced by R. A. Fisher. In failure detection problems
considered in this thesis, the determination of valid navigation states reduces to two

competitive claims/hypotheses; the null hypothesis H,and the alternative hypothesis
H, . The null hypothesis H, represents a statement that no failures have happened in

the aircraft multisensor navigation system while the alternative hypothesis H, is a
statement that failures have occurred in the system. Based on these two hypotheses, a
test statistic is calculated from sensor or system data and its value is used to decide
which of these two hypotheses should be rejected in the hypothesis test. The choice
of a test statistic depends on the assumed probability model and the hypotheses under
question.

In a hypothesis test, two types of erroneous decisions may be made, known as
type I error and type II error in statistical theory. A type I error occurs when the null

hypothesis is rejected if it 1s in fact true; that 1s, H, is wrongly declared when H, is

present. A type II error occurs when the null hypothesis is not rejected if it is in fact
false, that is, H is wrongly declared when H, is present.

In this thesis and for navigation systems in general, the type I error is known as
a false alarm whereas the type II error is known as a missed alarm. The performance
of a hypothesis test procedure is usually measured in terms of several probability
values related to these two errors as follows.

The probability of a false alarm is denoted by P,, and defined as follows:
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P, = P(Declare H, | H present) = Ip(}/l H,)dy (3.43)

where ¥ represents a test statistic, p(y) is the probability density function of ¥ and
&, is called a rejection or critical region containing ¥ under the hypothesis H,.

The probability of a missed alarm is denoted by P,,, and defined as:

P, = P(Declare H, | H, present) = J-p(}/I H))dy (3.49)

&N

where &, is an acceptance region containing ¥ under the hypothesis H,. Moreover,

[x]

o UE, =E is the full set of observations of ¥ and E,(1E, = O is the null set.

The probability of detection is denoted by P, and defined by

P, = P(Declare H, | H, present) = J-p(}/I H)dy =1-P,, (3.50)

Assume that a priori probabilities for each hypothesis H, and H, are F,(H,)
and P,(H,), then the probability of the hypothesis test error is given by

P.=PFP, +PP,, (3.51)

A good detection algorithm is usually designed to minimise average probability

of the hypothesis test error given by Eq. (3.51). Because P, is far larger than P, a

false alarm is often considered to be more serious in the design of multisensor
aircraft navigation systems, and therefore more important to take evasive action, than
a missed alarm. Consequently, a hypothesis test procedure should be adjusted to
obtain a guaranteed 'low' probability of false alarm. A confidence interval, that is, the
probability that a test statistic will fall within a given critical region, is normally used
to indicate a range of the uncertainty of test results and is expressed as a certain
percentage. The concept of confidence interval is more informative than the simple
results of a hypothesis test.

To find a range associated with a given confidence interval, a critical value is

specified for a hypothesis test and is referred to as a threshold 77 so that the

probability of a false alarm can be computed as

P,(m=a (3.52)
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where «a is called a significance level and is expressed as a percentage. The
confidence level is then given by 1—« . The threshold for a hypothesis test depends
on the significance level at which the test is carried out.

The probability of a missed alarm error is usually unknown, but is symbolised

by S and written as

Pu=p (3.53)

3.4.2 Bayesian Detection

Bayesian detection methods are based on the minimisation of error probability
in a hypothesis test, as given in Eq. (3.51). Let C; (i=0,1; j=0,1) represent the
risks of declaring H; true when H ; is present. The Bayesian decision rule minimises

the following Bayesian risk function (BRF).

1 1
BRF = Z;ZCUP(Hj)P(Declare H,|H ; present)

(3.54)

=l

2 2C,P(H) [Pyt H Yy

Considering j p(yIH,)dy=1,1=0,1, Eq. (3.54) can be simplified as

&3]

BRF =F,C\, +FC,, + .[([PI(COI -C)p(7l H1)]_[P0(C10 —Cy)p(71 Ho)])d7/ (3.55)

Minimising BRF' generates a likelihood ratio test (LRT) as follows*”

H,
(yIH,) > B, (C,—Cy)
1(7)219 1 0“0 00 =7 (3.56)
P(7|Ho) < P(Cy,-C)
H,

where A(y) is called the LRT function and 7 is the threshold. Eq. (3.56) shows that
the decision H, is made if A(y) is larger than 77, otherwise the decision H, is made.

The log form of LRT function, as given in Eq. (3.57), is often used to simplify the

computation of LRT.
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—

log[A()]  log(n) (3.57)

H
>
<

HO
Eq. (3.56) or (3.57) is known as the Bayesian detection rule and is widely used in
many failure detection problems where the a priori probabilities Fy(H,) and P, (H,)

are known.

3.4.3 Neyman-Pearson Detection

In some practical multisensor navigation systems, the a priori probabilities of
two hypotheses may be unknown and the risk assignments are difficulty to estimate.
These situations constrain the applications of Bayesian detection methods in sensor/
system failure detection problems. However, the constraints occurring in Bayesian
detection do not take place in Neyman-Pearson detection methods. The objective of
Neyman-Pearson detection is to maximise the probability of detection P, for a given
probability of false alarm P,, . In other words, Newman-Pearson detection can obtain
the minimum probability of a missed alarm P,, under the condition that the
acceptable value of P,, isless .

In failure detection problems, it is desirable to make both P,, and P,, as small
as possible. Unfortunately, these are conflicting objectives. To obtain a tradeoff, a
cost function F is constructed by using Eqgs. (3.48), (3.49 and (3.50) as follows:

F =Py, +1(Py —a)

=n(-a)+ [[p(y | H))=np(y| Hy)ldy (3.58)

where 772> 0 is the Lagrange multiplier.

Minimising the cost function and employing the LRT leads to the following

hypothesis test!"
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Hl
_pr(ylH,) >

p(7/|H0) <
H,

M) (3.59)

Therefore, the threshold of this test is the Lagrange multiplier 77, which is chosen to

satisfy the given significance level o .

Pry = [ p(y1Hy)dy = p(A1 Hy)dA=ax (3.60)
E n

=
=1

Eq. (3.59) is referred to as the Newman-Pearson detection rule and is applied to

many failure detection problems where the a priori probabilities P, (H ) and P, (H,)

are difficulty to determine.
From the above analysis, it is important to determine the forms of probability

density function p(¥) under the two hypotheses, which are associated with the

measure of the performance of a hypothesis test procedure. The probability density
function is formulated on the basis of the statistical analysis of sensor measurement

noise and residuals or the errors of the system state estimates.

3.5 Summary

This chapter has introduced mathematical fundamentals of the statistical
estimation and hypothesis testing theories. The main activities covered include:
1. Introduction of three forms of Kalman filtering techniques and algorithms,
including the conventional Kalman filter and the information filter.
2. Analysis of the statistical characteristics of Kalman filter estimation errors
and residuals.
3. Introduction of statistical hypothesis test methods, including Bayesian

detection and Newman-Pearson detection methods.
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Chapter 4

NAVIGATION EQUATIONS AND ERROR
DYNAMICS

4.1 Introduction

This chapter develops navigation equations and system error dynamic models
of several aircraft navigation systems, including inertial and main navigation aiding
systems. These equations and models constitute the mathematical foundations to
design, develop and simulate fault-tolerant multisensor aircraft navigation systems.

Section 4.2 introduces various coordinate systems used in this thesis. Evolution
of inertial sensor technologies and performance of different grade inertial sensors are
highlighted in Section 4.3. In Section 4.4 inertial navigation equations are developed.
Section 4.5 analyses the error dynamic models of inertial system. In Section 4.6
normalised navigation equation equations of major navaid systems are developed. A

summary of this chapter is given in Section 4.7.

4.2 Coordinate Systems

Coordinate systems are established to develop the navigation equations and to
describe the dynamic motion of an aircraft. Aircraft navigation systems resolve the
navigation equations to determine position, velocity, attitude and time (PVAT)
information with respect to specific frames. Several reference coordinate systems are
used in the development and design of multisensor fusion navigation systems to

represent the navigation system states, aircraft kinematic parameters and navigation
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sensor measurements. This section reviews the definitions of some commonly used

reference frames and their relationships.
Earth Centred Inertial (ECI) Frame (x',y',z') This frame has its origin at

the centre of the Earth. Its axes are non-rotating relative to the inertial space. For

aircraft navigation, the ECI frame is an approximation of the Newtonian inertial
frame. The x' axis is in the Earth’s equatorial plane and points toward the vernal

equinox. The z' axis is aligned with the Earth rotation axis. The y' axis completes

the right-hand system.

\ &
\\“‘Tﬁnlllll \

|

/W”’tii"
s

AR

(a) ECEF and NAV Frames (c) Body and Instrument Frames

Figure 4.1 Coordinate Systems

Earth Centred Earth Fixed (ECEF) Frame (x°,y°,z°) This frame is fixed
to and rotating with the Earth. The ECEF frame has its origin at the Earth’s centre of
mass, as shown in Figure 4.1(a). This is a right-hand Cartesian coordinate system.
The z° axis is the Earth’s rotation axis and points towards the direction of the
Conventional Terrestrial Pole (CTP) for polar motion, as defined by BIH on the basis
of the coordinates adopted for the BIH stations”*. The x° axis lies in the Earth’s
equatorial plane and points the intersection of the CTP’s equator and the reference

meridian being the zero meridian defined by the BIH on the basis of the coordinates
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adopted for the BIH stations. The y*axis realises the right-hand system. The World

Geodetic System of 1984 (WGS-84) is a commonly used ECEF frame that defines
the Earth model and the reference ellipsoid. Geodetic parameters of the WGS-84
ellipsoid are summarised in Table A-1 of Appendix A. The position of aircraft above
the surface of the Earth is defined in the ECEF frame by the geodetic coordinates.
The WGS-84 coordinate system is used by global satellite navigation systems,
for example, the Global Positioning System (GPS), to describe the satellite orbits.
The coordinates of a point position in the WGS-84 frame can be expressed in the
geodetic or Cartesian coordinates, and the transformation from geodetic coordinates
to Cartesian coordinates is given by the following equations:
x° = (N +h)*cos(¢) *cos(A)
y* = (N +h) *cos(p)sin(A) 4.1)
z° =[(1-¢)* N +h]*sin(@)
where (x°,y°,z%) are the Cartesian coordinates of a point position, (¢ , A, h) are

the geodetic coordinates of the point position (latitude, longitude and height above

R

a

J1-e?#sin® (@)

is the radius of

the reference ellipsoid of the Earth), and N =

curvature in the prime vertical.

Navigation Frame (x",y",z") This frame is attached to the aircraft and has
its origin at the aircraft centre of gravity, as shown in Figure 4.1(a)(b). The z" axis
points down perpendicular to the reference ellipsoid. The x" and y" axes lie in a

plane tangent to the reference ellipsoid. Therefore, the navigation frame is a local

level frame and a Cartesian coordinate system.

This navigation frame is a north-slaved frame if the x° axis points north and
the y° axis points east, and is generally referred to as a North-East-Down (NED)
frame. It is known as the wander azimuth frame (x",y",z") if the x"-y" plane is

allowed to rotate freely about the z" axis. The wander azimuth mechanisation
permits the operation of an inertial system at latitudes close to the Polar Regions,

avoiding the singularity associated with the north-slaved mechanisation. In this
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thesis, inertial navigation equations are developed in the wander azimuth frame. The
relationship between the wander azimuth frame and the NED frame is illustrated in

Figure 4.2 and is formulated in Eq.(4.2), where & is the wander azimuth angle, ¥ is

the heading angle and v/, is the heading angle of the wander frame.

XII
A
" Voo @ sin@ 0
X cos(@) sin(o
27 _\ yw n .
v, C, =|-sin(r) cos(a) 0 4.2)
b 0 0 1
> ¥

Figure 4.2 Wander Azimuth Frame

The location of the origin of the navigation frame is specified relative to the
ECEF frame by the geodetic coordinates (A, @, h). Aircraft velocity and attitude
angles are defined with respect to the navigation frame. The transformation matrix
between the NED and ECEF frames is known as the position direction cosine matrix
(DCM) and can be obtained through a series of rotation transformations as follows:

—sin(@)cos(A) —sin(@)sin(1)  cos(@)
C = —sin(A) cos(A) 0 4.3)
—cos(@)cos(A) —cos(@)sin(d) —sin(@)

Let C be the transformation matrix from the ECEF frame to the wander-azimuth

frame, then
cos() —sin(a) O] —sin(@)cos(A) —sin(@)sin(4) cos(@)
C)=CC! =|sin(a) cos(x) 0 —sin(A) cos(A) 0
0 0 1 || —cos(@)cos(1) —cos(@)sin(A) —sin(@)
[—cos(a)sin(@)cos(A) —cos(a)sin(@)sin(A) |
+sin() sin(A) —sin(a¥) cos(A) cos(@)cos(9)
w |~ sin(a)sin(@)cos(A) —sin(a)sin(@)sin(A) |
C = — cos(a)sin(A) + cos(a) cos(A) sin(@) cos(@) 4
—cos(@)cos(A) —cos(@)sin(A) —sin(@)
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Body Frame (x",y",z") This frame is fixed to the aircraft and has its origin at

the aircraft centre of gravity or mass, as shown in Figure 4.1(b). The x” and z" axes
are in the plane of symmetry of the aircraft, where x” points toward the nose of the
aircraft and z" axis points downward. The y® axis points down the starboard wing.

The body frame is a Cartesian coordinate system.

The orientation of the body frame relative to the navigation frame is specified
by the Euler angles (roll ¢, pitch 6 and yaw ), as shown in Figure 4.1(b). The
transformation matrix between the body frame and the navigation frame is referred to
as the attitude direction cosine matrix. The transformation from the body frame to the

wander frame is formulated by a series of rotation transformations as follows:

i sin(@)sin(@)cos(y,,) cos(@)sin(@)cos(y,, )]
cos(8) cos(¥,, ) . RN
—cos(@)sin(y,) +sin(@) sin(y,, )
Cv =| cos@)sinw, ) sin(¢) sin(@) sin(y,, ) co§(¢) sin(@) sin(y,,, ) 4.5)
+ cos(@) cos(y,, ) —sin(@) cos(y,, )
—sin(@) sin(¢) cos(6) cos(¢) cos(@)

The body frame is used to develop the aircraft equations of motion and for the
attitude control and determination. Aircraft kinematic parameters are defined with
reference to this frame. For example, the acceleration and angular rate information
required by a flight control system or autopilot are normally represented in terms of

the body frame.
Instrument Frame (s',s*,s’,...,s") This frame specifies the orientations of the

“sensing axes” of a sensor system with respect to a reference frame (for example, the
body or the navigation frame) and has its origin at the installation location of sensor
system, as illustrated in Figure 4.1(c). For example, in inertial sensor systems, the
sensing axes are the installation axes of the inertial sensors. If an inertial instrument
frame is a Cartesian coordinate system, this inertial sensor system is an orthogonal
configuration. In Doppler radar systems, the instrument frame is the radar antenna
frame that defines the orientations of radar beams relative to a reference frame. In a
radio navigation system, the ‘sensing axes’ are usually the directions of lines of sight

(LOS) from receiver antenna to transmitters.
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The transformation matrix from an instrument frame to a reference frame (the
body or navigation frame) is usually known as the design or measurement matrix of
the navigational sensor system. Sensor measurements are represented in terms of the

instrument coordinates.

4.3 Inertial Sensor Technology

4.3.1 Inertial Sensor System

Inertial sensors are classified as gyroscopes and accelerometers. Gyroscopes
are angular rate sensors while accelerometers are specific force sensors. The specific
force is a combination of the gravitational forces or their projections and total inertial
force acting on aircraft. Gyroscopes and accelerometers can be integrated into a case
to form an inertial reference system (IRS), also known as an inertial measurement
unit (IMU). An inertial reference system can measure all the kinematic parameters of
an aircraft. Integration of an IMU system and a computer solving inertial navigation
algorithms makes up an inertial navigation system (INS). In an INS, gyroscopes are
used to maintain a stable reference platform or establish it by analytical means. The
measurements from the accelerometers can be referenced to this reference frame for
computation of the navigation states. Misalignments of the reference frame caused
by gyro drifts couple the measured accelerations along each axis so that the distance
error is the time-cubical dependence[94]. Consequently, gyroscope performance plays
a critical role in the improvement of the accuracy of inertial navigation system and
development of inertial sensor technology has focused on gyroscope technology.

Inertial sensor systems, depending on the numbers of sensors and installations,
can be classified as orthogonal or non-orthogonal configurations. Non-orthogonal
configurations will be discussed in Chapter 5. For development of inertial navigation
algorithms, it is assumed here that three accelerometers and three gyros are mounted
in orthogonal triads and their input axes are aligned with the axes of the body frame.
In this case, the IMU outputs are coordinated in the body frame. Strapdown inertial

navigation algorithms will be developed in Section 4.4.
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Inertial sensor systems, according to the accuracy requirements for different
applications, can categorised as from low quality though tactical to navigation grade
(high quality) shown in Table A-2 of Appendix A. The navigation-grade IMU can be
alone used to implement an inertial navigation system with level of allowable errors
for one-hour flight. The control grade IMU is generally used to provide inertial
measurements for control systems. The tactical grade IMU can be applied for the
attitude display and flight control and short-time navigation and guidance. When
inertial sensor systems are combined with aiding navigation systems, for example,
GNSS, the accuracy requirements for inertial sensors can be further relaxed from the
navigational to low grades. Therefore, many emerging inertial sensor technologies

can be used for the development of aircraft multisensor navigation systems'>1°,

4.3.2 Inertial Sensor Performance

For navigation applications and the development of the inertial system error
model in this thesis, the performance of inertial sensors are dominantly characterised
by the following parameters.

An inertial sensor provides an output signal in response to its input, either
rotation or acceleration of aircraft. The scale factor is a transform factor that defines
the ratio of the output signal to the input signal. Ideally, the scale factor is a constant
and there exists a linear relationship between the sensor output and input. Owing to
imperfections of the manufacturing and signal processing process, the linearity of
scale factor may change over different input ranges. As a result, the scale factor may
give different values for different input ranges or may have second or higher-order
terms relating the output signal to input. This leads to the nonlinearity or instability
of scale factor. Furthermore, a sensor may have a different scale factor for positive
and negative inputs, known as scale factor asymmetry.

Sensor bias is an offset of an inertial sensor when an output is detected for no
input or input signal change. This bias may be different for positive and negative
inputs and may be turn-on dependent. The uncertainty or instability of sensor bias is

an important parameter in assessing the accuracy of sensor measurements. For a
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gyroscope, the sensor output error caused by nonlinearity, instability or asymmetry
of scale factor and sensor bias is known as the gyro drift.

When inertial sensors are integrated in a case to form an inertial system, the
input axis of each sensor should be aligned to its associated case reference axis. The
angle between the input axis and its associated axis is defined as the input-axis
misalignment.

These performance parameters are common for all kinds of inertial sensors.
But, because of diverse design principles and manufacturing procedures, individual
sensors may have specific error sources. The main performance parameters of

inertial sensors for aircraft navigation applications are summarised in Table A-2.

4.3.3 Gyroscope Technology

The evolution of gyroscope technologies covers three generations. The first
generation is the traditional rigid rotor gyroscopes, which are distinguished as two
classes: attitude gyros and rate gyros. Attitude gyros were based on the principle of
conservation of angular momentum and were specially adapted to the stable platform
systems. Rate gyros are principally based on the Newton’s second law and were used
for strapdown navigation systems. Traditional rotor gyros have the highest accuracy
but expensive cost and large volume. Physical implementations of various rotor
gyroscopes can be mainly featured by the methods in which the maintenance of
reference angular momentum of the rotor is achieved. This ranges from simple
inexpensive flywheel design to highly accurate and complex design, for example, the
floated integrating gyro and the electro-statically suspended gyro. Rotor gyros are the
most mature in the development of gyroscope technology. The traditional rotor gyros
are continually used in marine navigation applications, but have been replaced by
optical gyroscopes for aircraft navigation applications.

The second generation is the optical gyroscopes, which are based on the
Sagnac effect®®’! The Sagnac effect is an optical phenomenon of the relativistic
effect. In an optical gyroscope, two laser beams from the same laser source propagate

around a closed path in opposite directions. If this closed path is rotating around its
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rotation axis, these two beams will arrive at a detector at slightly different times
because the optical path travelled by one beam along the direction of rotation
becomes longer than the path travelled by the other beam. The angular rate of this
closed path rotation can be measured by detecting the time difference between the
two paths. Optical gyroscopes can be classified as two kinds of classes: the ring laser
gyroscope (RLG) and the fibre optic gyroscope (FOG). Optical gyroscopes were
developed for strapdown systems and have replaced the mechanical gyros in many
applications. Optical gyroscopes have smaller volume, lower cost and wider dynamic
rate range in comparison with mechanical gyros.

In the RLG, two counter-propagating laser beams travel through a laser cavity
with reflecting mirrors (resonant cavity). When the resonant cavity is rotating around
its sensitive axis, these two waves resonate in the rotating cavity to generate the
frequency shift, which is proportional to the angular rate of laser cavity rotation. A
photodiode detector can detect this frequency shift in the form of interfering fringes
to derive the angular rate. Current RLG sensors have reached to the performance of
traditional rotor gyroscopes”’’). However, in order to attain such high measurement
accuracy, a RLG needs a large volume to increase the length of the optical cavity. In
addition, the RLG sensors are expensive.

In the FOG, two counter-propagating lasers travel along a closed-loop optical
fibre. When FOG is rotating around its sensitive axis, these two counter-propagating
waves interfere with each other to induce the Sagnac phase (or frequency) shift that
can be measured by a photo-detector to obtain the angular rate of FOG rotation. The
FOG sensor has some desirable features, such as reduced weight. It is smaller than
the RLG and significantly cheaper. However, FOG has lower sensitivity and current
FOG technology cannot reach the performance of a RLG sensor. Sensors based on an
interferometric FOG and a resonant FOG sensors have been developed for tactical,
AHRS and aided navigation applications. Recent developments in optical gyroscope
are concerned with integrated optic gyro (IOG), which is insensitive to environment
effects and is relatively inexpensive.

The third generation of gyroscope involves MicroElectroMechanical Systems

(MEMS) inertial sensors. All MEMS-based gyroscopes make use of the Coriolis
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principle!™®

. MEMS inertial sensors have the smallest volume and cheapest cost but
at present, their accuracy is less than optical gyros. MEMS gyros have been applied
in the automobile industries and for guided munitions. With further development and
maturation of MEMS sensor technologies, it is expected that MEMS gyros will
achieve a performance of better than 1 deg/hr and will replace some optical gyros in
many aerospace applications. For example, the current test results from the Charles
Stark Draper Laboratory'”! have shown that the bias stability of MEMS gyro over

small temperature ranges of 0.5°C has surpassed 10 deg/hr in tests lasting six hours,

while the companion accelerometer demonstrates submilli-g performance.

4.3.4 Accelerometer Technology

The development of accelerometer technology can be classified by two types.
The first type uses the principal of the force rebalance. For both translational proof-
mass and pendulous proof-mass accelerometers, the displacement of the proof-mass
resulting from external force or acceleration is measured by a detector and the
position of the mass is restored by closed-loop control. This displacement is a direct
measure of the acceleration. This type of accelerometer has been used in most
inertial navigation systems.

The second type is based on the vibratory accelerometer, which senses
acceleration by detecting transverse resonant frequency of a pendulous proof-mass.
There are several different versions, including the vibrating string accelerometer, the
vibrating beam accelerometer, the quartz resonator accelerometer and the integrated
silicon accelerometers. This type of accelerometer has been used in aided inertial
navigation systems but currently, cannot reach to the performance of the first type for
inertial navigation systems. However, they offer the advantage of direct digital
output, they consume relatively little power and they are more rugged.

MEMS accelerometers have been based on both the force rebalance and the
quartz resonator principle and several MEMS accelerometers are currently used in
aided inertial navigation systems. The performance and trends of MEMS inertial

sensors are briefly summarised in Table A-3 of Appendix A.

76



NAVIGATION EQUATIONS AND ERROR DYNAMICS

4.3 Inertial Sensor Technology

4.4 Inertial Navigation Equations

This section develops the set of differential equations defining the navigation
states, which are expressed in terms of the sensed accelerations and angular rates
available from an IMU. The principal of inertial navigation is based on Newton’s
second law of motion, which is valid in an inertial frame. Aircraft navigation
however occurs in a terrestrial navigation frame. Therefore, the navigation states
have to be referenced to the local geodetic coordinates and the navigation frames. In
this thesis, the wander azimuth frame is used to represent the navigation frame for

the reasons outlined in Section 4.1.

4.4.1 Velocity Equations

The velocity differential equations are derived on the basis of the Coriolis
theorem. The physical interpretation of the Coriolis theorem is that the rate of change

of a vector takes a different quantity when observed in two relative moving reference

frames. In vector operator notation, the Coriolis theorem is written ast%!

u* =Ciu® +(o,,X)u] (4.6)
where u is an arbitrary vector, A and B are two relative moving reference frames
and o, represents angular rate vector of rotation of B relative to A .

By applying the above relative motion equation to Newton’s second law, the
velocity equation in the wander frame can be obtained.

When an aircraft flies around the Earth, rotating again around the ECI frame,
the aircraft velocity in the wander frame v" is defined in terms of the aircraft position
r° in the rotating ECEF frame as follows:

v' =C)r° 4.7)
Furthermore, the aircraft position r° in the ECEF frame is represented in terms of its
corresponding position r' in the ECI frame as

r'=Cr' (4.8)

where Cj is the rotation transformation matrix from the ECI to ECEF frames.
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The time derivatives of Eqs.(4.7) and (4.8) lead to

V' =ClE +CYE = (0, X)CYE + ClE = —(o), ) V" +C i 4.9)

i =Cr' +CF' = —C (0] )r' + CF! (4.10)
where @, is the angular rate vector of rotation of the wander frame relative to the

ECEF frame in terms of the wander coordinates and ®,, is the Earth’s rotation rate

vector in the ECI coordinates. For aircraft navigation, @), is assumed to be a
constant.
Again the time derivative of Eq. (4.10) is

i =C (0] X) (@] Xr"' —2(of.X)Ci' +Ci' (4.11)
Substituting Eqs. (4.7) and (4.10) into Eq. (4.11) results in

i =—C! (0 X (0, X)r" =20, xC:,v" +CSi' (4.12)
Substituting Eq. (4.12) into Eq. (4.9) leads to

VY = (o), X) + 20 X)]v" + C'[F' — (o), X)(®,,X)r'] (4.13)

where (®,;,X)(®},X)r' is the centripetal acceleration caused by the Earth’s rotation

and ' is the inertial acceleration of aircraft.
However, accelerometer does not directly measure the acceleration ' rather

than the specific force f° coordinated in the body frame in a strapdown system. This

specific force is a combination of both the inertial and gravitational accelerations:

Cif° =i'-G' (4.14)
The total gravitational acceleration includes the local gravity component g' and the
centripetal acceleration:

G'=g' + (o, ¥ (0, Xr' (4.15)
Substituting Egs. (4.14) and (4.15) into Eq.(4.13) produces

VY= (o), X)) + 20 x)]v" +C}[Cif* +g']
Therefore, the velocity equation in the wander frame is given as follows:

VY =CYEY — (@), X) +2(e ) x)]v" +g" (4.16)

e/w ile

where C}'f" =f" is the measured specific force vector coordinated in the wander
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frame, ® X is the skew-symmetric matrix of the vector @, v" is the velocity vector

w
e/w

of aircraft in terms of the wander coordinates, ®_, is the transport rate vector of

aircraft, @}, is the earth rate vector represented in the wander coordinates and g" is

the gravity vector. The expressions of g" and @, are given in Appendix B.

4.4.2 Attitude Equations

In order to derive the velocity in Eq. (4.16), the attitude DCM C; must first be

determined so that the sensed specific force vector from an IMU can be referenced to
the wander frame. From the transport equation given in Eq. (4.6), the differential

equation of the attitude DCM C; can be derived as follows!'"!

Cy = (o}, X)CY (4.17)
where o, is the angular rate vector of rotation of the wander frame relative to the

body frame, coordinated in the wander azimuth frame. From the addition of angular

velocities, ®,,, can be decomposed as follows:

(@), %) = (0],X)—C) (0}, x)C’ = (0] x)+ (@ X)—C (0}, x)C>  (4.18)

e/w

Substituting Eq. (4.18) into Eq. (4.17) leads to
C! =C ()X ~[(@).x)+ (@, x)]C (4.19)

e/w

where ®,, is the measured body angular rate vector from a strapdown IMU.

Eq. (4.19) is known as the attitude matrix differential equation. The attitude
DCM establishes an analytical platform. From Eq. (4.16), the measurements from the
accelerometers must be resolved in this analytical platform in order to derive the
navigation states. Because C, is a symmetric orthogonal matrix, at least six first-
order differential equations in Eq. (4.19) must be resolved to obtain the attitude
DCM. To simplify the computation of the attitude DCM differential equation, a
quaternion form of the attitude matrix differential equation is commonly used. The
quaternion differential equation and the relationship between the quaternion and the

attitude DCM elements are given in Appendix C.
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4.4.3 Position Equations

The differential equation of the position DCM can also be derived from the
transport theorem as follows:

C' =—(0), x)C (4.20)

e/w

., is the transport rate of an aircraft and is given by Eq.(4.21). From an initial

e/w

position DCM or position, Eq.(4.20) can be integrated to give the current position
DCM. From Egq. (4.4), the geographic location of aircraft and the wander angle can

be computed as follows:

_ W I ey O € R IV i S (K))
@ =sin" [-C] (3,3)], 4 =tan [—_C:(&D} o = tan {—CZ“(ZB)} 4.21)

The altitude of aircraft above the surface of the WGS-84 ellipsoid is obtained
by integrating the vertical component of aircraft velocity v_ as follows:

h=-v, (4.22)
Therefore, Egs. (4.16), (2.19) or (C.3) and (4.20) constitute the navigation algorithms

of strapdown inertial navigation systems.

The architecture of the strapdown inertial navigation algorithms is illustrated in

Figure 4.3.
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Figure 4.3 Modular Navigation Algorithm Architecture
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4.4.4 Disadvantages of Inertial Navigation Systems

From the previous subsections, in order to integrate the velocity, the attitude
DCM and the position DCM differential equations, initial values of the navigation
states must be known accurately. Even though a high quality IMU can determine the
initial attitude DCM by performing a so-called initial alignment procedure, initial
velocity and position values have to be provided by other navigation aiding means.
In addition, the integrating procedure will accumulate the navigation state errors
caused by various sensor error sources. Accordingly, inertial navigation systems are
generally aided by other aiding navigation systems.

Initial alignment is a static ground alignment procedure and comprises two
steps: coarse alignment and fine alignment. The coarse alignment makes use of the
known properties of the Earth’s gravity and rotation at specific geographic locations
to estimate the initial attitudes.

Assume that an aircraft is at a known location, the Earth’s gravity and rotation

at this known location point can be accurately computed in the wander frame as

follows:
g"=Cl¢g° (4.23)
o, =Clo;, (4.24)

In this case, outputs from a strapdown IMU can be formulated as follows:
fo=f*+VvP=Ctg" (4.25)

o) =0, +A" =C’o} (4.26)

where V" is the total accelerometer measurement error vector and A’ is the total gyro
measurement error vector.
Combining Eqgs (4.25) and (4.26) gives

o @ frxall=Clle" o) g xop] (427a)
o [f* &% Fxél] =" oL g xel]c (4.27b)
Egs. (4.27a) and (4.27b) are known as the coarse alignment equation from which

initial attitude DCM can be determined. The uncertainty of the coarse alignment is

81



NAVIGATION EQUATIONS AND ERROR DYNAMICS

4.3 Inertial Sensor Technology

approximated as

K =gt ol g xol]' A Fxa+vixet [ (4.28)
From Eq.(4.28), the accuracy of initial alignment totally depends on the performance
of inertial sensors. A low quality IMU cannot obtain expected alignment accuracy.

The fine alignment is based the fact that aircraft’s velocity with respect to the
ground is zero at rest. The fine alignment usually uses a Kalman filter to refine the
attitude DCM estimated by the coarse alignment. The observable for a fine alignment
filter includes the velocity and the Earth rotation.

However, the initial alignment procedure cannot be used for the alignment or
correction of an in-flight INS. In order to correct the INS-driven navigation states
and calibrate IMU sensor errors in-flight, inertial systems are usually combined with
other aiding navigation systems using data fusion techniques. In the following
section, dynamic error models of strapdown inertial navigation system will be
established. The error models are used to analyse the initial alignment accuracy, and

to design data fusion filters and fine alignment filters.

4.5 Error Analysis of Inertial Navigation System

Development of strapdown inertial navigation algorithms is based on detailed
error analysis, which is a critical aspect in the design and development of various
multisensor data fusion navigation systems. Error analysis is not only used to assess
the accuracy of aircraft navigation systems and verify the performance of required
inertial sensors, but is also used to determine the design requirements for integrated
navigation filters and measurement requirements for aiding navigation systems in a
multisensor navigation system. Error analysis is based on the derivation of error
dynamic models of the navigation states. Dynamic models of the navigation state
errors provide the mathematical foundation for navigation system failure detection
and isolation, the implementation of an integrated navigation filter in a multisensor
navigation system and the initial alignment and dynamic calibration of inertial
systems.

Two basic methods have been suggested in the literature to derive error models
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of the navigation states for inertial navigation system: the Phi-angle error model (also
referred to as the tilt errors) and the Psi-angle error model (also known as the attitude
errors). Both models make use of a perturbation approach but the perturbations are
performed with reference to different reference frames. The Phi-angle error model is
derived from a linear perturbation of the navigation equations with respect to the true
navigation frame while the Psi-angle error model is from a linear perturbation of the
navigation equations in the computer frame. The computer frame is the navigation
frame retained by the navigation system and has its origin at the computed position.
The geometric relationships between the true navigation frame, the platform frame
and the computer frame are illustrated in Figure 4.4, where the platform frame is an
imaginary mathematical platform in a strapdown system and is determined by the

computed DCM from the body frame to the estimate of the wander azimuth frame.

w

y
A
yP y XP
I
X dp=0dy , +090 (4.29)
\vaa
> x"
Figure 4.4 Relation Between Three Frames

Benson!'" proves the equivalence of the two error models using analytical

methods and simulation. Goshen-Meskin and Bar-Itzhack!'”! extend these methods
and present a unified approach to the development of inertial navigation system error
models. Scherzinger and Reid"™ further introduce modified error models, which is
based on the computed velocity instead of the measured specific forces. However,
this replacement may introduce large uncertainty into the error models’ parameters
because the computed velocity contains accumulated sensor errors. In this thesis, the
error dynamic models are developed on the basis of perturbation with respect to the
true wander navigation frame. However, the velocity error is selected to simplify the
formulation of the error model. The representation of the Phi-angle errors has certain
advantages for control of the navigation state errors because the estimated errors of

the navigation states are directly related to the true navigation frame.

83



NAVIGATION EQUATIONS AND ERROR DYNAMICS

4.3 Inertial Sensor Technology

4.5.1 Velocity Error Equations

In order to deduce the velocity error differential equation, assume that the

angular position error 00, caused by uncertainty of the computed position DCM CZ“ ,

and the tilt error d¢, caused by uncertainty of the computed attitude DCM C;“ , are
known. The velocity obtained by integrating Eq. (4.16) can be represented in terms
of the true velocity plus the velocity error term as follows:

VY =[I-(06x)]v" +6v' (4.30a)
Let the measured specific force vector f® include the true specific force vector plus

the total accelerometer measurement error V°, then the computed specific force

vector in the wander frame can be expressed as
fY=CY'f° =[I-(0gx)ICY (£° + V")
Therefore,
Y =[I-@@)f" +V" (4.30b)
where V" is the total accelerometer error in the wander frame.

The gravity vector is approximated as
g =g" +0g" (4.30¢)
where dg" is the variation of the gravity vector in terms of the wander frame.

Substituting Egs. (4.30a, b, ¢) into Eq. (4.16), the velocity error equation can be

derived as follows:

&' =@, X) + 20" X)) +£" x0g+ " —(F* +g")x90+V"  (4.31)

e/w
This represents a simplified velocity error differential equation. The approximate
expression of og" is given in Appendix D.

4.5.2 Position Error Equations

The angular position error 96 is defined in terms of the computed position

DCM C" and the true position DCM C as follows:
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~

C) =[I-(6x)]CY (4.32)
It can be rewritten as

Y =Cr-CY (4.33a)

OC) =—(06x)C (4.33b)

Let the latitude, longitude and wander angles be expressed in terms of their true

values plus error terms as follows:

A=A+64, P=¢p+6p, oa=a+dx (4.34)
From Appendix D, the linear position error differential equation can be deduced as
follows:

60, cos@) sin@) O |ov.
52}]{ =|-sin@ cos@) O |, |+
| 0 0 —1|&!
R, +h R, +h (59
-V, sin@) + v, cos(@) v -V, sin@) + v, cos(@) R
an() ; - Oy
R, +h R, +h R, +h &
v, cos(@) + v, sin(@) -V, sin(@) + v, cos(@) 0 L
| R, +h R, +h |

where the linear position errors are defined as
oAy =(R_+h)cos(p)od = (R, +h)cos(p)od

4.5.3 Attitude Error Equations

Due to inertial sensor measurement and computation errors, the attitude DCM

obtained by integrating Eq. (4.19) contains errors. This computed attitude DCM é:
can be represented in terms of the true attitude DCM C;' as follows:
Cy =[1-@¢]C} (4.36)

where d¢ is known as the tilt error vector.

Let &CY=C}-C! (4.37a)
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then 8C, = —(d¢x)C} (4.37b)
Differentiating Eqs. (4.37a) and (4.37b) yields
&) =—(3¢x)Cy — (99x)CY (4.38)

Sy =CY —CY =@}, ¥)C) + (o), ¥)CY (4.39)

From Appendix E, the tilt error differential equation can be derived as follows:

09 =—(0.X) + (0, )]0p + dw’,, +(®},x)00 — A" (4.40)

Let the computed Euler angles be expressed in terms of their true values plus

error terms as follows:

0 =0+80, 0 =0+36, , =y, +y, (4.41)
From Appendix E, the attitude errors can be written in vector form as
¢ 99,
90 | =Ty 99, (4.42)
Sy, 99,

where T5'“=" is the transformation matrix from the tilt errors to the Euler errors.

4.5.4 Inertial Sensor Error Models

An inertial sensor system measures the kinematic parameters (6DOF angular
velocities and linear accelerations) of aircraft motion, which are used in navigation
algorithms, as described in Section 4.3, to obtain the navigation states. Ideally, the
output of an inertial sensor should provide an exact measurement of its input, the
measured kinematic parameter. In practice, the output of an inertial sensor will
contain errors, including nonlinearity of scale factor, misalignment between sensor
sensing axis and input axis, coupling effect between angular and linear motions,
uncertainty of sensor system design itself (including uncertainty of sensor dynamic
model), imperfect sensor signal detection and processing and measurement noise. In
this thesis, separate model equations are defined for gyroscopes and accelerometers.
These models define the mathematical relationship between the outputs of inertial

sensors and the inputs, including applied acceleration, angular velocity and angular
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acceleration along the sensor reference axes.

The generalised model equation of a gyro is defined as follows:

a,, =0, +A=a, +A; +A; +Ag@, +A A +FA(T)+E,  (443)
where

w,, and o, are the gyro output and input, respectively,

out

Ay is the gyro bias, or zero offset,
Ay is the gyro random drift rate, which may be caused by environmental and

other external influences, such as disturbed torque in a mechanical gyro.

A 1s the gyro scale factor error, caused by nonlinearity or instability resulting

from the gyro scale factor.

Ay 1s a gyro misalignment-dependent error, caused by misalignment between

the gyro input axis and its associated reference axis.
A, is the acceleration-sensitive drift rate, which may include acceleration and
acceleration-squared sensitivities.

A, 1s a temperature-dependent gyro drift rate, and
£, 1S gyro measurement noise.

For different gyro sensors, some of the terms in Eq. (4.43) may be omitted. For
example, laser gyros usually exhibit random walk in the gyro drift but it is not
necessary to specify acceleration-sensitive drift. However, for mechanical gyros,
gyro drift caused by acceleration sensitivity has to be considered.

Accelerometer errors may arise from the angular motion and the acceleration
motion of the aircraft, random bias, scale factor, dead zone, cross-axis sensitivity,

temperature and other factors. A generalised model equation of an accelerometer is

defined as

o +V=1f, +V+V  +Af +V, +V +V, +V,+g (4.44)
where

f., and f._ are the output and input of an accelerometer, separately.

V, is the accelerometer bias,

V. is an accelerometer time-dependent random bias. The random bias is a
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critical aspect of accelerometer performance. This bias must be estimated
and corrected with a stochastic process in the integrated Kalman filter.

A 1s the accelerometer scale factor error,
V. 18 the accelerometer misalignment bias, caused by misalignment angle

between the accelerometer input axis and its associated reference axis.

V , is the accelerometer output bias, caused by angular motion of aircraft,

V , is the acceleration-sensitive accelerometer bias, including cross-coupling
effect and higher order acceleration-sensitive terms.

V. is a temperature-dependent accelerometer bias, and
£y 1s the accelerometer measurement noise.

Generally, the first four error terms of inertial sensors in Eqgs. (4.43) and (4.44) are
critical to inertial navigation system. These error terms need to be estimated and

corrected in flight to improve the performance of aircraft navigation systems.

4.6 Navaid Systems

Although an inertial reference system can provide all the necessary information
for computation of all the navigation states, it suffers from time-accumulated drift
errors, as described in Section 4.4. Navaid systems generally supply only partial
information on the navigation states. However, they exhibit a long-term stability and
high positioning accuracy dependent on navaid systems. Therefore, the navigation
states given by navaid systems can be used as constraints on some of the navigation
states derived by INS.

The measurement equations and navigation models of several navaid systems,
for example, global navigation satellite system (GNSS) and Doppler radar systems,
are developed in this section. An air data sensor system is used in aircraft systems for
navigation and flight control. For example, the pressure altitude is widely used to aid
the vertical channel of inertial navigation systems and to maintain vertical height.
However, air data sensor systems will not be discussed in this thesis.

GNSS is an all-weather, space-based radio navigation system providing global
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coverage. There are at present three similar versions of GNSS: the US Global
Positioning System (GPS), the Russian Global Orbital Navigation Satellite System
(GLONASS) and the European Galileo satellite navigation system. These three
satellite navigation systems are mainly distinguished by the satellite orbital planes,
the number of operating satellites, representation of satellite orbit parameters, data
modulation methods, frequency bands and signal structures. For example, GPS uses
the code division multiple access (CDMA) technique whereas GLONASS uses the
frequency division multiple access (FDMA). GPS has 24 operational satellites in six
orbit planes around 20200 km above the Earth’s surface whereas the Galileo system
will have 30 satellites in three orbit planes around 24000 km. GLONASS uses PZ-90
coordinate frame whereas GPS uses the WGS-84 system. The GPS C/A-code rate is
1.023 Mbit/s while GLONASS has a value of 0.511 Mbit/s.

GNSS timing signals are very precisely defined pseudo random noise (PRN)
codes, which are modulated on the satellite carrier signals together with the
navigation message containing the satellite orbit parameters. GNSS satellites may
broadcast different PRN codes on several carrier frequencies for different services.
For example, GPS satellites broadcast the C/A-code on the L1 carrier (1575.42 MHz)
for civilian standard positioning services and the P(Y)-code on both the L1 and L2
(1227.60 MHz) carriers for military precise positioning services™®. By offering dual
frequencies as standard, Galileo will deliver higher real-time position accuracy than
the current GPS or GLONASS positioning services. However, modernised GPS will
offer a new LS5 frequency and L2 civil signal to enhance civil and aviation services.

These systems share the same positioning principle, that is, they all determine
the position of a receiver by measuring time differences of timing signals travelling
from GNSS satellites to the receiver. Therefore, the positioning and navigation
equations developed in this section apply to all three GNSS systems. A GNSS
receiver is designed to track and capture the satellite timing codes and to demodulate
the navigation message in order to compute position. This method is known as the
code-phase measurement. A GNSS receiver can also track and measure the phases of
carrier signals transmitted by GNSS satellites, which are referred to as carrier phase

measurement.
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4.6.1 GNSS Observation Equations

From the user’s perspective, GNSS satellites generate and broadcast a series of
timing codes. These code signals propagate through the atmosphere in space to a user
receiver. The receiver tracks and measures the time delays of these codes to estimate
the time difference of the signal propagation. Let the time at which a GNSS satellite

transmits its timing code signal be f;and the time at which a GNSS receiver receives
this timing code signal be ¢ , then the time difference of this signal propagation is

At =t — 1
Because the satellite and receiver clocks are not perfect, the receiver time ¢, and the
satellite time ¢ will contain errors df; and dtg, respectively. Therefore, the above
equation can be rewritten as:

At =ty +dty —(tg +dtg) = (ty —t5) +dty —dig (4.45)
Assume that the timing signals transmitted by GNSS satellites travel at the speed of
light ¢, then the range between the satellite and receiver can be represented as

r =cAt =c(ty —tg)+cdty — cdty
or r=p+cdty —cdtg (4.46)
where c(t; —ty) = p is the true distance between the GNSS satellite and receiver,
cdty is the range error caused by uncertainty of the receiver clock, cdt is the range

error caused by the satellite clock error and r is usually known as the pseudorange
measurement.

Consider various signal propagation path delays, including the clock errors,
satellite orbit errors and measurement noise. The model equation of the pseudorange
measurement can be expressed as!®!

r=p+dp+d,,, +d,, +d,, +cdty —cdig + €, (4.47)

10no trop
where

dp is the range error caused by satellite orbit errors,

d.  is the range error caused by the ionospheric path delay,

iono
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d ., 1s the range error caused by the tropospheric path delay,
d,,1s the range error caused by multipath effects, reflecting surfaces around

the GNSS receiver antenna.
£, is the measurement noise.

If a GNSS receiver is able to track both the timing signals and the carrier signals,
then carrier phase measurements can also be obtained. When the carrier signal
transmitted by a satellite reaches a GNSS receiver, the relative motion between the
satellite and the receiver causes a Doppler shift of the arrival carrier signal at the
receiver side. If the receiver’s carrier phase tracking loop can lock onto the carrier
signal, the receiver can continuously measure or count the Doppler shift, known as
the Doppler count. Because the initial locking time is unknown, the initial Doppler
count is unknown and is referred to as carrier phase integer ambiguity. The sum of
the accumulated Doppler count and fractional phase measurement is the total carrier
phase, which is an equivalent range measurement.

[83]

The model equation of the carrier phase measurement can be represented as

Ap=p+dp+ AN -d,,, +d,, +d, +cdty —cdts +€, (4.48)

where
A is the equivalent pseudorange from a satellite to a receiver,
@ is the totally measured phase,
A is the wavelength of measured carrier frequency,
N is the carrier phase integer ambiguity, which is a constant once the carrier
signal is locked and tracked.

€, 1s the carrier phase measurement noise.

Because the ionosphere causes the group speed of radio signals to be delayed and the
phase speed of the radio signals to be advanced, the ionospheric delay d, , is
negative in Eq. (4.48) and positive in Eq. (4.47).

Although the carrier phase measurement is potentially more accurate than the

code phase measurement, the carrier phase integer ambiguity occurring in Eq. (4.48)

is an inherent drawback in carrier tracking measurements. In order to benefit from
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the high accuracy property of the carrier phase measurement, the integer ambiguity
must be correctly resolved.

The Doppler shift is a measure of the rate of change of the relative range
between a GNSS satellite and a receiver along the line of sight. If the GNSS satellite
velocities are known, then the instantaneous Doppler measurement can be used to
determine the receiver velocity. The model equation of the Doppler measurement can

be expressed as

i=p+dp+d,, +d,, +d,, +cdiy —cdig+E&, (4.49)

where

i = A¢ is the pseudorange rate, ¢ = Af is the Doppler frequency shift.
p is the true range rate along the line of sight between satellite and receiver,

dp is the range rate error caused by satellite velocity errors,

d. . is the range rate error caused by the ionosphere,

iono

d ., 1s the range rate error caused by the troposphere,

d =p 18 the range rate error caused by multipath effects,

cdty is the range rate error caused by the receiver clock frequency drift,
cdi is the range rate error caused by the satellite clock frequency drift, and

€. is the Doppler measurement noise.

Eqgs. (4.47), (4.48 and (4.49) constitute the GNSS measurement model. Since GNSS
satellite orbit parameters are precisely estimated by GNSS ground data processing
centres and satellite system time is held by highly precise atomic clocks, these error
terms can be neglected for navigation users.

Two methods are used to reduce the error terms in the GNSS measurement
equations. One method is to use an ionospheric and tropospheric delay models!®?,
For example GPS generally broadcasts ionospheric correction parameters as a part of
the navigation message. However, it is difficult to eliminate all the range errors
caused by atmospheric path delays simply by use of these models™.

Another approach is to develop augmented GNSS systems. There are two kinds

of augmentation systems: local and global augmentations. Local area augmentation
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S®31 and pseudolite[los] techniques to correct the error

systems use differential GNS
terms in the GNSS measurements and to improve the integrity and availability of
GNSS satellites in a local area. In a local area augmentation system, a reference
station at a known location receives and processes its local GNSS observables to
obtain the range and range rate corrections to each visible GNSS satellite, and then
broadcasts these differential corrections and GNSS signal integrity information to
near users. These users can utilise this correction information to correct their GNSS
measurements. This differential GNSS technique can only cancel those common-
view error sources to both the reference station and the users, such as, satellite orbit
and clock errors and atmospheric path delay errors. A pseudolite is a ground-based
beacon at known location and transmits timing signals similar to GNSS satellites!' ™.
The pseudolite techniques can improve the availability of GNSS signals and the LOS
geometry of user receivers within a specific region. Therefore, the local positioning
accuracy and signal integrity are improved.

There are three compatible versions of global augmentation system: the US
wide area augmentation system (WAAS)!'%! the European geostationary navigation
overlay service (EGNOS) 7! and the Japanese multifunctional transport satellite
space-based augmentation system (MSAS) YOl AlL these systems are space-ground
combined systems and broadcast the real-time clock, ephemeris and atmospheric
correction parameters, augmented timing/ranging signals and integrity information of
GNSS satellites signals. These correction parameters allow users to obtain accuracies

[108]

approaching those of local-area differential GPS systems' . These spaced-based

systems not only improve the accuracy of GNSS but also enhance the integrity, time
availability and continuity of GNSS service!! @Ol

It should be noted that the local area augmentation systems are to mainly
reduce the effects of the common-view error sources on the GNSS measurements.
Therefore, the correction is local. However, the space-based augmentation systems
directly reduce or remove the error sources. Their corrections are global because all
GNSS users can use these corrections.

In addition, the carrier phase measurements are generally used to smooth the

pseudoranges to improve the accuracy of the pseudorange measurements.
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4.6.2 GNSS Navigation Equations

In order to develop GNSS navigation equations, assuming that the main error
terms in Eqgs. (4.47) and (4.49) have been properly corrected by use of the techniques
mentioned as above. Therefore, the model equations of these GNSS measurements

can be simplified in terms of range and range rate measurements, as follows:

Range equivalent measurement: t' (t,)= ,0[ (t,)+c*dt+ vﬁ (4.50)
Range rate equivalent measurement: i’ )= P (t,)+c*di+ vﬁ 4.51)
where v, is the range equivalent measurement noise, covering the measurement noise

and all residual errors after the propagation path delay corrections; v, is the range
rate equivalent measurement noise, including the receiver measurement noise and all
residual rate errors after the propagation path delay corrections, and the superscript i
represents an observed GNSS satellite. Hereafter, the subscript R in the receiver
clock error terms is omitted for simplifying representation.

The true range p' in Eq. (4.50) is a nonlinear algebraic equation containing the

unknown position of the receiver and the known position of the satellite i as follows:

pt)= \/[Xi (tg) = x(2 ) +1y' (15) =yt ) +[2' (15) —2(t))? (4.52)
where [x',y',z"]"is the position vector of the satellite i in the ECEF frame at the

signal transmission time #y, and [x,y,z]" is the position vector of GNSS receiver in
ECEF coordinates at the signal reception time ¢, .

The true range rate p' in Eq. (4.51) is a projection of the relative velocity
between the satellite and the receiver onto the line of sight along the GPS satellite i
to the receiver. The range rate can be represented as:

(z'-2)
pi

=X LD g
p p

(z' -7) (4.53)

where [X', y" , 7' 1" is the velocity vector of the satellite i at time 7, in terms of the

ECEF coordinates and [x,y,z]T is the true velocity vector of receiver at time ¢, in

terms of the ECEF coordinates. Hereafter, the time symbols in round brackets will be
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omitted to simplify the forms of the GNSS measurement equations.

Two forms of GNSS navigation algorithms are commonly used. One is based
on the least-squares method whereas the other uses Kalman filtering techniques.
Both needs to linearise the GNSS measurement models about nominal points, i.e. the
approximate position and velocity of a GNSS receiver.

From Appendix F, the GNSS navigation equations can be represented in vector

form as follows:

8 = HgyeedD, +, (4.54)
OF = H\ss0p, + H 5y P + 0, (4.55)
where
X
%, - {ﬂ,oﬁa -l o).
oz

Eqgs. (4.54) and (4.55) constitute the fundamental GNSS navigation algorithms. In the
extended least-squares method, Eqgs. (4.54) and (4.55) are directly solved to obtain
the position and velocity states. In the Kalman filtering method, Egs. (4.54) and
(4.55) are used in the filter measurements and the aircraft motion or the inertial
system error dynamics must be modelled. This thesis will investigate multisensor
data fusion navigation systems using the Kalman filter approach and the dynamic
models of inertial system errors developed in Section 4.4.

From the least-squares estimation, the uncertainty of estimate of the GNSS-

L . . . -1
based navigation state can be characterised by the inverse matrix [(HGNSS )" HGNSS] ,

which represents the geometry of visible GNSS satellites in space. The squared-root
of the trace of this inverse matrix is usually known as the geometric dilution of
precision (GDOP) factor. Apparently, GDOP changes with the number of observed
GNSS satellites and their configurations. Minimising GDOP is generally used as a
criterion to select optimal visible satellites. The GDOP is formulated in the ECEF

frame as

GDOP =/ 1r([(H gyss) H s ) (4.56)
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Transforming this inverse matrix from the ECEF frame to the NEU frame, the GDOP

factor in the NEU frame can be formulated as

n n -1 ~e n n -1
GDOP" = \/tr(Ce [(HGNSS)THGNSS] C)= \/tr([CeHgNSS (CeH(T}Nss)T] ) (4.57)
where C! is the 4x4 transformation matrix from the ECEF frame to the NEU frame.

Several other alternative DOP values used in evaluating satellite constellations are
position dilution of precision (PDOP), horizontal dilution of precision (HDOP) and
vertical dilution of precision (VDOP). The product of a DOP value and ranging error
determines the corresponding position fix error'®),

Further investigations in GNSS applications™""™'* have shown that the use
of differential carrier phase measurement techniques, based on three or four GNSS
antennas, can obtain aircraft attitude information. This technique is usually known as
GNSS-based attitude determination. The relative position vector between two GNSS
antennas is referred to as the baseline. In the aircraft body frame, the orientation of
this baseline is known very precisely. The phase difference between two antennas is
an estimate of the projection of this baseline onto the line of sight to the observed
satellite. This principle is illustrated in Figure 4.5 where the parallel carrier signals of
the satellite i arrive at the different antennas. Because the magnitude of this baseline
is constant in any coordinate frames, taking the NEU navigation frame as a reference,

the model for GNSS-based attitude determination can be represented as follows:
dAp, =) Cs" + AN +v,,_, (4.58)

where

d}m"j is the differential phase observation to

the satellite i from the baseline j,

b? is the known baseline j, represented

in the body coordinates,

N is the relative phase ambiguity of

carrier frequency of the observed satellite

o ) ) ) Figure 4.5 Baseline Measurements
i with respective to the baseline j,
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sV = Cgse/ "is the known LOS vector of the satellite i/ coordinated in the NEU frame,
C, is the unknown attitude DCM and (b")" =(b")"C;, and
v;q,_j is the differential carrier phase measurement noise relative to the satellite i

along the baseline ;.
For three baselines (J, K, L), where more than three GNSS satellites are visible,
the model equation of the GNSS-based attitude determination can be rearranged in

matrix form as follows:

d®=B,C"S" + AIN+v,, (4.59)
where
dAp, dip; dig, - dAg]
d® =|dlg, dlp, dAp, --- dAgy | is the differential phase matrix,
dip, dlo; dAg, - dAg)
N, N; N, - NV
N=|Ny N; N, - N} |is the relative ambiguity matrix,
N, N; N, -+ N/

T . . .. .
B, =[b° b b"[ is the baseline matrix in terms of the body coordinates,

n/m .
S" = ls“” s " s J=C§H{OS is the known LOS DCM
coordinated in the NEU frame, and
v, is the differential phase measurement noise matrix.

Given that the relative ambiguity matrix N has been resolved, two methods
can be used to solve Eq. (4.59), depending on the configuration of the baseline
vectors in the aircraft body frame. If these three baseline vectors are non-coplanar in

the body frame, then an inverse of the baseline matrix B,; exists. By using least-
squares techniques, the attitude matrix can be computed as follows:

C" =B, 'doES")'[s )| (4.60)
where d® includes the resolved relative ambiguity matrix N . The inverse matrix

[S“ CN ]_1 can be achieved by selecting appropriate GNSS satellites. GNSS attitude
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algorithms based on this method are generally known as the direct attitude matrix
determination algorithm.
If the baseline vectors are coplanar, Eq. (4.59) is reduced to vector form as

follows:

d®, =(0b")"C;S" + AN, +v,_; (4.61)
where d® i (j=J,K,L) are the row vectors of the differential phase matrix d®, N i
is the row vector of N and v, ; is the row vector of v .

By independently resolving Eq. (4.61) for each row vector of d® , the baseline
vectors can be obtained in terms of the navigation coordinates, as follows:

b =[s"s")]'s" (@@ )" =C1b? (4.62)
Combining any two baseline vectors given by Eq. (4.62) results in

b B bxbr|=Cilbh b% bYxbt] (6.63)
The attitude matrix is then given by

Cr=[b" b bixbi]bt b bixb:] (4.64)

Obviously, this method requires only two baselines. These two baseline vectors
(resolved in the navigation coordinates) must first be determined, and then the
attitude angles or the attitude matrix can be computed by using the estimates of these
baselines. GNSS attitude algorithms based on this method are referred to as indirect
attitude matrix determination algorithm or relative positioning attitude determination
algorithm. Using this relative technique, a single baseline can be used to determine
the heading and pitch angles of an aircraft if this single baseline is orientated along
the aircraft body x-axis.

Existing many GNSS attitude determination algorithms are generally based on
one of these two fundamental methods. These algorithms may be distinguished by
the computing methods used to resolve Eq. (4.59) and Eq. (4.61).

Different from kinematic positioning where the baseline length is usually long
and unknown and the integer ambiguity is searched in a relatively large search space,
the baseline length in aircraft attitude determination problem is precisely known and

very short (typically 1.0-2.0 meters). Consequently, the integer ambiguity search in
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GNSS-based aircraft attitude determination is based on the known baseline length or
antenna geometry and the ambiguity search space is smaller. Several least squares-
based integer ambiguity resolution techniques have been suggested for the attitude
determination®!! 18] "Eor any integer ambiguity resolution algorithm, a very
important factor to be considered is the resolution time of each ambiguity algorithm,
which is used to characterise how fast an ambiguity algorithm can obtain the correct
value of integer ambiguity. Although the angular accuracy of a GNSS-based attitude
determination algorithm is inversely proportional to the baseline length™, the
angular accuracy of the attitude solutions better than 0.5° (root-mean-square) has

been achieved® !,

4.6.3 Normalised Measurement Models

The INS navigation state error models developed in Section 4.4 are represented
in the navigation frame whereas the GNSS-based navigation state error models are
coordinated in the ECEF frame. In order to develop data fusion filter, it is necessary
to represent the states in these two kinds of models in a unified coordinate system.

For aircraft navigation, the navigation frame is preferred as the reference frame.
A. Normalised Range Difference Equation

Rewriting Eq. (4.50) as

Tt ) =p () +c-dt+v! (4.65)
From the INS-derived aircraft position, the computed range between the satellite i
and aircraft T, corresponding to )., can be expressed as follows:

Tas (1) = ' (1) + dirys (8,)

‘ ‘ , (4.66)
= \/[X’ (t3) = XA +1y' (1) = FE)) +12' (0) = Z(1,)]

where [X(2,),¥(t,),Z(t,)]" is the INS-derived aircraft position in terms of the ECEF

coordinates and drj\ (%, ) is the range error caused by uncertainty of the INS-derived

position.

Let the INS-derived position be expressed as follows:
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X(t,)=x+0, yt,)=y+0y, 7Z(t,)=z+
Linearising the squared-root term in Eq.(4.66) around this nominal point, dr/ys can

be derived as follows:

drIiI\Is(tk)z_()ii_X)&('i'_(yi_y)@/'i'_(ii_Z)& (4,67)
IiNs Iins Iins

Differencing Eqs.(4.66) and (4.65) and comparing Eqs. (4.67) and (4.54) where pé
and [x,,y,.Z,]" are approximated by T, and [X,¥,Z]", respectively, the difference

between the INS-derived and GNSS-measured ranges can be represented in vector

form as follows:

Tonss — Ins = —Hos0p +1cdt + v,

In the NEU frame, this range difference equation is normalised as follows:

Tonss — Ins = —H osCrop" +1cdt +v, (4.68)

where " =[dg, 84 " is the linear position error coordinated in the NEU frame.

B. Normalised Range Rate Difference Equation
The GNSS range rate equation can be rewritten as
Tinss (B ) = P (t,) +cdi + V! (4.69)
The INS-derived range rate can be expressed as
T () = P (1) + diiyg
RS LY PR 2N o

~i ~

Iins Iins Iins

where di/\ is the range rate error caused by uncertainty of the INS velocity solution
and [X, ?, 71" is the aircraft velocity derived by the INS in the ECEF frame.
Let the INS derived aircraft velocity (X, 37, 7] be expressed as follows:

X(t,)=x+&K, yt,)=y+6, 2(t,) =2+ &%

Linearising Eq. (4.70) around this nominal point, df}y is approximated as
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dI‘fNS(l‘k)z _()ii‘x)&_i__()ii_y)&_'__({[‘z)&_i_
o e s (471)
'()ii'x)dx_i_'(}ii_y)ay_i_'({i' Z)&
Iins IiNs Iins

Differencing Eqgs.(4.70) and (4.69) and comparing Eqs. (4.71) and (4.55) where ,0("),
[X,,Ye.2,]" and [X,.¥,.2,]" are replaced by T ., [X.¥,Z]" and [X.¥,Z]" ,

respectively, the range rate difference measurement equation is given in vector form

as follows:
Fonss — E:INS =—H, 45y C;p" —H (sCov" +1cdi +v; (4.72)
where C;, is the transformation from the wander frame to the ECEF frame and ov"

is the velocity error state in the wander frame. From Eq. (4.30a), ov" is represented

as follows:

WY ==X V" +v' =T)p" + V'

where
v \%
L —cos(x - L —sin(a 0
R, +h @ R, +h (@
v v
T = L —sin(a —=—cos(a 0
b R, +h (@) R, +h (@)
Vs cos(@) + Yy sin(a) Vs sin(@) — Yy cos(a)| O
R, +h R, +h R, +h R, +h

Therefore, the range rate difference equation can be normalised as follows:
Fonss — ;INS =—(H o5 C; + HLossCivTJ)d)n - HLosCi«avl +lcdi+v,  (4.73)
C. Normalised Relative Phase Difference Equation

From (4.36), given the nominal matrix Cbo, Eq. (4.58) can be rewritten as

n

follows:
dl@._GNSS = (b‘]’. )T CY [T+ 0gx]s™ + Z,N, + Vfw—j
or  dAQ s — (b*; )T Chs™ = (bi’.)Tcﬁo (gx)s™ + AN’ + v;(/,_ ;

Defining dAg'_s = (b)" Cys™, then dA@)_ is the INS-derived magnitude of the
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projection of the baseline b" onto the LOS s™".

‘M?l}_sms - dl%_ms = (b? )T CP (@gx)s™ + AN ’, + vfw_ ; (4.74)
It is obvious that Eq. (4.74) can be used to determine the initial relative phase integer
ambiguity N j Assume that the relative phase ambiguity is known, then the relative
phase difference equation can be normalised as follows:

AAQ)_gnss — AP s =—=(b) T (8" )0 +v,,_; (4.75)
or  dAQ._gnss — AP, s = (") (DX + V),
where (b")" = (b?)" C, is the baseline vector in the navigation frame.

When multiple satellites are observed with respect to one baseline, from Eq.

(4.61), the relative phase difference equation for GNSS attitude determination can be

written in vector form as follows:
4D g5 —d® i " =(8™) T (B13)dg+ 0], (4.76)
where d® ; .\ and d®,  are the GNSS measured and the INS computed row

vectors of d® ; in Eq. (4.61), respectively.

D. Normalised Position and Velocity Difference Equations

If the GNSS-based navigation states are available, the normalised measurement
equations for data fusion filter can be obtained as follows:

The position difference equations are normalised as follows:
(Pins = Panss (R, +1) = 00, 4+, gnss
(Zs = Aoxss (R, +1)cos(9) = 8+ css .77)
(EINS - HGPS) =+ Vv, _onss
and the normalised velocity difference equation is
Vins —Ch Vinss = T, 0p" + V' 0, s (4.78)
In addition, normalised Doppler radar navigation equations are given in Appendix G.

E. Normalised Attitude Difference Equation

When attitude information is available from the GNSS attitude determination

102



NAVIGATION EQUATIONS AND ERROR DYNAMICS

4.7 Summary

or other aircraft sensor systems, the attitude difference equation can be normalised as

follows:

Euler,, — Euler, ., = T2'"""9¢ +v,, (4.79)

tilt
where Euler ., are the Euler angles provided by GNSS-based attitude determination

or other attitude measurement systems, Euler, are the Euler angles derived by the

INS, TS is given by Eq. (4.42) and v, is the attitude measurement noise.
When a magnetic heading sensor is available, the corresponding measurement

is as follows:
oy, =—tan(@)[cos(y,, 0@, +sin(y, )@, 1-09, —by +0vy, (4.80)
where b, is the magnetic heading deviation and v,, is the measurement noise. b,,

can be modelled as the combination of a random constant and the first-order Markov

process.

4.7 Summary

The aim of this Chapter has been to develop the navigation equations and error
dynamic models of inertial systems and normalised measurement models of navaid
systems, which are required to develop and simulate fault-tolerant, multisensor-based
aircraft navigation systems. The following activities have been described in this
Chapter:

1. Mechanisation of the wander-azimuth strapdown inertial navigation

equations, which allow aircraft to fly in the high latitude regions.

2. Development of the error dynamic models for strapdown inertial system.
These models are used not only for analysis and evaluation of the error
behaviour of inertial systems, but more importantly, in the design and
development of the data fusion filter developed in Chapter 6. These models
also provide the basis of dynamic calibration and in-flight correction of
inertial sensor systems.

3. Presentation of the normalised measurement and navigation equations of

GNSS. These normalised measurement models are used in the design of
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multisensor data fusion filters. It should be noted that the normalisation of
the sensor measurement equations can simplify the design of multisensor
navigation systems and development of sensor/system failure detection and
isolation algorithms. In particular, these different forms of normalised
GNSS equations further explain how GNSS measurements are used in
multisensor data fusion for GNSS/inertial hybridised navigation systems.
4. Derivation of the error correction and control equations for the inertial
sensor systems and the navigation states.
These achievements provide the necessary background and fundamental theory
for the design and development of multisensor-based aircraft navigation systems and
also for the simulation and evaluation of different-grade inertial sensor systems in

this thesis.
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Chapter 5

SENSOR NETWORK TOPOLOGY AND FAILURE
DETECTION METHODS

5.1 Introduction

This chapter introduces sensor system network topologies and develops sensor-
level data fusion methods. The main purposes of the sensor-level data fusion are to
provide highly reliable and accurate sensor data for subsequent data fusion modules
and also reconfigure sensor network systems if some sensors failed. These create the
fundamentals for the design of fault-tolerant navigation systems and the achievement
of reliability and integrity of aircraft navigation systems.

Section 5.2 presents a distributed inertial network architecture and develops
optimal redundant inertial system configurations in terms of measurement accuracy,
reliability and failure detection capability. The error models and calibrations of
skewed redundant IMU (SRIMU) systems are considered in Section 5.3. Section 5.4
introduces the basic generalised likelihood ratio test (GLRT) method for the
detection of sensor/system failures. SRIMU error compensation filters are developed
to improve the performance of the basic GLRT methods in Section 5.5. Moving-
window detection methods are presented to enhance the capability of the GLRT
methods for the detection of drift sensor failures in Section 5.6. A summary is given

in Section 5.7.

105



SENSOR NETWORK TOPOLOGY AND FDI METHODS

5.2 Sensor System Network Topology

5.2 Sensor System Network Topology

Measurement information provided by various navigation sensor systems can
be independent, redundant, complementary or cooperative. For example, gyroscope
set and accelerometer set, each individually providing independent measurements,
are integrated in an IMU to provide complementary and cooperative information that
are used to derive the navigation states. Multiple IMUs then offer redundant inertial
measurements. AHRS and Doppler radar together present cooperative information
while GPS and IMU are complementary navigational sensor systems. By structuring
different types (also known as dissimilar) of and redundant (also known as similar)
navigation sensor systems in a rational sensor network topology, these various types
of measurement information can be combined to achieve the required navigation
performance and to provide the inertial vector state information required by other
avionics systems.

Sensor system network topology is a collection of various sensor systems and
explains logical relationships and physical interconnections between these sensor
systems. There are two typical avionics system architectures today widely used in
civil and military aircraft of all types, known as the federated and integrated modular
avionics (IMA) architectures''?*'??, The federated avionics systems have a topology
architecture, as shown in Figure 5.1a where subsystems are encapsulated in various
special-purpose hardware units, known as line replaceable units (LRU), to implement
their individual avionic functions, such as navigation and flight control. These LRUs
share the use of common data buses for data transmission between themselves. For
example, ARINC 429 (single-transmitter multiple-receiver) and 629 (multiple access
data bus) topology buses are usually used for the federated architecture.

Although the federated architecture has its inherent fault tolerance, it does not
efficiently make use of today’s powerful computer processing modules and needs to
develop costly special-purpose hardware systems. With technology advancements in
avionics integration and modularity designs of hardware and software systems, the
concept of integrated modular avionics (IMA) has been presented for the purpose of

developing more reliable and cost-effective, modular and highly integrated avionics
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systems. Various IMA implementation architectures are described in ARINC 651,
‘Design Guidance for Integrated Modular Avionics’. Instead of single-function black
boxes (LRUs), an IMA cabinet contains several line replaceable modules (LRM) and
avionics functions are implemented with common, programmable modules which are
software-reconfigured to process many different LRU functions. Therefore, LRMs
are shared resources for different avionics functions. Several IMA cabinets can be
interconnected to sensor systems by high speed data buses to form a distributed
system for performing all avionics functions on the aircraft. A typical IMA star
topology is shown in Figure 5.1(b) where data transmission between IMAs is through
switch units. Although ARINC 629 topology bus is used in some current IMA-based
avionics systems, its main limitations are lower data rate and expensive components.
Future IMA architecture will be based on faster commercial networking data buses,

such as full duplex Ethernet (FDX).

LRU IMA
] ] Coupler ] []
C mil
w
Switch
(a) Federated Topology (b) Distributed Star Topology

Figure 5.1 Avionics topology Architectures

With the introduction of high speed avionics data buses and integrated modular
avionics systems and the advent of low-cost, small-size, low-mass navigation
sensors, high-speed and embedded microprocessors, it is feasible to install redundant
inertial sensors in a single IMU box using a non-orthogonal configuration in order to
improve the system reliability and to reduce the cost, size and mass of aircraft
navigation systems. In this thesis, two forms of sensor network topologies used in the
design of aircraft multisensor navigation systems are discussed as follows:

e A distributed sensor system architecture

e A clustered sensor system architecture

107



SENSOR NETWORK TOPOLOGY AND FDI METHODS

5.2 Sensor System Network Topology

In the distributed sensor system architecture topology, multiple sensor systems
are spatially distributed at different locations in an aircraft for the implementation of
different functions. This architecture topology is compatible with the new generation
of avionics IMA and can enhance the fault tolerance and the survivability of aircraft
navigation systems.

In the clustered architecture topology, multiple inertial sensors are assembled
into a single box to provide redundant inertial information. This architecture grants
fault tolerance and is usually used to create redundant inertial measurement units.
Multiple clustered sensor systems located at different locations in an aircraft form a

distributed sensor network system.

5.2.1 Distributed Sensor System Architecture

Distributed sensor system architectures may have different topological forms
dependent on the data flow control and communication between the nodes of sensor
system networks. Individual data fusion filtering algorithms have to be developed to
adapt to those diverse architectures, as identified in Sections 2.2 and 2.3.

In this thesis, a distributed inertial network architecture is proposed, as shown
in Figure 5.2 where each node represents an individual sensing place and consists of
an IMU suite and an embedded microprocessor module. This architecture is a fully
connected topology and allows multi-source sensor data to be fused at each network
node. Each IMU suite can be integrated with other navaid systems. Each node is
assumed to be in communication with others so that information from each node can
be shared in the network architecture. The node located at the aircraft centre of
gravity (cg) is a master node, also referred to as cg node, and others are local nodes,
known as slave modes. The data fusion filter located at the cg (known as the cg filter)
provides the navigation states and the cg inertial state vector while the data fusion
filters located at slave nodes (known as the slave filters) provide the local inertial
state vector information.

Motivation to investigate this distributed inertial network architecture is based

on two critical necessities; the inertial sensor system is an essential aircraft sensor
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system that provides vital inertial information for all safety-critical avionic systems,
including navigation system and flight control system. Additionally, fault tolerance

of aircraft navigation system is primarily obtained from redundant inertial systems.

(a) Fully Connected Topology

IMU Suite

Microprocessor

(b) Physical Interconnections

Figure 5.2 Distributed Inertial Network Architecture

This distributed inertial system network affords the following advantages:

e Fault tolerance and robustness to sensor/system failures. Data fusion
algorithms are designed so that the failure of any node or element of the
node will not lead to the degradation of the performance of aircraft
navigation system. Moreover, the degradation of the performance of the
slave filter located at the failed node will be gradual.

e Flexibility. It is easy to add and/or remove one or more sensor systems in

and from the distributed system network.
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Highly reliable cg state estimation. The cg data fusion filter combines all
local estimates and its own estimate to obtain the aircraft cg motion states,
which are used to support aircraft navigation, flight control and guidance,
and other functions that require the cg referenced data

Accurate local state estimation. Local data fusion filter located at each
mode fuses all measurements from all healthy sensor systems to afford
optimal estimates of the local states that are used to support the stabilisation
of various avionics system platforms and local motion compensation.
Automatic alignment. Because information is shared at all nodes, the
distributed data fusion filters can autonomously use the local estimates at a
node of high quality IMU to dynamically correct and align low quality
IMUs at other nodes. Therefore, traditional inertial system alignment
algorithms, for example, fine alignments and transfer alignments, are no
longer necessary in distributed inertial network systems. In traditional
alignment methods, aircraft is usually requested to perform some specified
manoeuvres, which can increase risk especially to military aircraft and
pilots. The elimination of the traditional alignment procedures allows

aircraft to perform free flight and manoeuvres.

Distributed data fusion algorithms and their significant advantages will be

discussed in Chapter 6.

5.2.2 Clustered Sensor Topology

The clustered sensor topology has different configurations. Two approaches to

the configuration of a redundant IMU system have been suggested in the past[mm].

One is an orthogonal configuration shown in Figure 5.3(a) where the sensing axes of

redundant inertial sensors are orthogonal or parallel with respect to the body axes.

The other uses a non-orthogonal configuration relative to the body axes shown in

Figure 5.3(b), referred to as skewed redundant IMU (SRIMU) configurations. In the

orthogonal configuration, the inertial measurement sensed by one sensor mounted on

one axis is independent of other measurements sensed by other sensors mounted on
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other axes. Therefore, the orthogonal IMU measurements are decoupled along the
orthogonal axes.

In a non-orthogonal configuration, the measurement sensed by one sensor can
be decomposed into three components along the orthogonal axes, red dash arrows
shown in Figure 5.3(b). Therefore, the measured states are coupled with each other in
the SRIMU measurements. This nature allows fewer sensors to be used in an SRIMU
configuration in order to achieve system performance equivalent to the orthogonal
IMU system. Although the orthogonal IMU system is a conventional configuration, it
is not the most efficient way to exploit the benefits of redundant sensor systems in a
fault-tolerant navigation system. The orthogonal configuration has been used in
traditional fault-tolerant navigation systems and also appears in multisensor fusion

navigation systems with distributed sensor network to simplify the system design.

A b Zb
z Red arrows

denote sensors

J=".

b (a) Orthogonal Frame

X

(b) Non-Orthogonal Frame
Figure 5.3 Sensor Installation Orientation

SRIMU systems can most effectively make use of redundant measurements
provided by multiple sensors and have various configuration geometries dependent
on the number of sensors. The typical configuration geometries are based on regular
polyhedrons in order to simplify the engineering implementation. Several geometries

commonly used in redundant sensor configurations are summarised in Table 5-1.

Table 5-1 Polyhedrons in Redundant Sensor Configurations

Polyhedron Number of Faces | Min Number of Sensors
for Redundancy
Cube 6 24
Cone (Pyramid) >4 >4
Dodecahedron 12 6
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5.2.3 Criteria for Optimal SRIMU Configurations

In an SRIMU configuration, the orientation of each instrument axis is defined
by its azimuth and elevation angles with respect to an orthogonal reference frame,

such as the body frame. Let each axis of the instrument frame be presented by a unit

vector s’ along the sensing direction of sensor i, the unit vector can be defined in the

orthogonal reference frame by

s' = cos(El")cos(Az')i+cos(El')sin(Az')j+sin(El' )k (5.1
where the bold symbols i, jand k are three unit vectors along the corresponding axes
of the reference frame (x°, yb ,z%), the superscript i denotes a sensor and its sensing

axis, ElI' and Az' are the elevation and azimuth angles of the instrument axis i with
respect to the reference frame, as shown in Figure 5.3(b).

Provided that an SRIMU system encloses n sensors, identified by 1,2,3,---,n,

the failure-free measurement equations of the SRIMU system can be formulated as

follows:
m, | |ios' jos' kos' v,
1)
m, | |ios® jos® kos®| | |v,
=l . ) . o, |t| . (5.2a)
: : : o :
m, jos" jos" Kkos” v,
orin vector form m=Hmo+v (5.2b)

where @, ,®, and @, are three measured quantities, such as accelerations or angular
rates in the body frame, m, is the measurement of sensori andv, is a Gaussian white

noise with a zero-mean value and standard deviationo,. The symbolo presents the

operation of dot product of two vectors. The matrix H is known as the measurement
or design matrix and describes the configuration of an SRIMU system.

Applying a weighted least-squares estimator to Eq. (5.2b), the estimate of the
measured state vector @ is given by

d®=H"WH) 'HWm=C"_ m (5.3)

mstru

b
instru

where W is the weight matrix and C is referred to as the transformation matrix
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from the inertial instrument frame to the body frame.
Defining the estimate error vector ® = ® —® , then
O=0-Od=0—-H"WH) 'H'Wm
=o-(H"WH)'H'"W(Heo +v)
=o—(H'"WH)'H'"WHo - (H'"WH) '"H" Wy
=—(H"WH) 'H"Wv

(5.4)

Therefore, the estimate error is the normal distribution and the covariance matrix of

the estimate errors according to the covariance transfer law is given by

Var(®) = E[(0 - ®)(0—-®)" ] = (H"WH) ' H" WRWH(H " "WH) " (5.5)
where R = E(vv") is the noise covariance matrix.

To simplify the analysis of performance of an SRIMU configuration, assume
that all of sensor noises are independent and that the standard deviation of the noise
for each sensor measurement is identical o, and if the weight matrix W is taken as
the inverse of R, then the covariance matrix of the estimate error becomes

Var(®)=(H'"R"H)' =¢’(H'H)™ (5.6a)
or is represented by the following normalised form

Var(®)
=

Y — (H™H)™ (5.6b)

The probability density function of the estimate error can be given by

™

fa(x)=Qm) "2 exp(—%xTZ_lx)

Then, the locus of the point x is determined by
x'X2'x=K
This represents an error ellipsoid with a surface of constant likelihood. For any K, the

volume of this ellipsoid is given by[m]

4
1% =§K3/2ﬂ\/ﬁ

From the analysis above, the smaller the volume of this ellipsoid, the smaller the

estimate errors, and the performance of navigation systems with various SRIMU

configurations can be determined by\/ﬁ .
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Defining a performance index (PI) as

PI =[5 = {Desf HH) "] (5.7)
This equation can be used to determine the azimuth and elevation angles of each
sensor to construct an optimal SRIMU configuration. If the square root of the trace of
the normalised covariance matrix is selected as a criterion to optimise an SRIMU
configuration, known as the geometric dilution of precision (GDOP), then

GDOP =+/tr[H™H)™'] (5.8)

On the basis of the criterion of minimum GDOP, Sturza'”®

analyses the optimal
installation angles for several cone configurations. However, this criterion cannot be
applied to non-cone SRIMU configurations. To evaluate the optimal performance of
non-cone SRIMU configurations, the estimate error variances of the measured states
in the body frame from Eq. (5.4) can be formulated as follows.

o.() = Ch . )’0;, i=xy.z (5.9)

j=1
Based on the assumption that all measurement noises have an identical variance

o, =0, anormalised error variance is given by

2
o
oy()=—2=>Cl.(.)",i=Xy,z (5.10)
O-v f:1
where C}__ (i, j) is the corresponding element of C}__ .

Accordingly, the criterion for determining the optimal SRIMU installation
angles is based on the allocation of the uncertainty of SRIMU measurement to three
orthogonal reference axes, usually the body axes. For example, to precisely sense
aircraft motion along a specific body-axis direction, the criterion for minimising the

corresponding o, (i) can be used to determine the SRIMU installation angles. To

allocate the uncertainty of SRIMU measurement equally to three body axes, then the

following criteria

oy (X)=0,(y)=0,(2) (5.11)
can be selected to determine the SRIMU installation angles.

Based on these optimal criteria given in Eqgs. (5.7) to (5.11), several SRIMU

configurations shown in Figure 5.4 are evaluated and the results are summarised in
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Tables 5-2 and 5-3. If one sensor in the 5-sensor cone configuration in Figure 5.4(c)
is aligned with an orthogonal axis, Figure 5.4(c) will be degraded into the similar
configuration shown in Figure 5.4(b).

However, the above criteria cannot guarantee that sensor failure detection and
isolation methods based on these optimal SRIMU configurations also have optimal
performance. It will be revealed in the development of sensor failure detection and
isolation methods that the initial installation azimuth angle of the first sensor in a
symmetrical SRIMU configuration should not be zero. Accordingly, this requirement

has to be considered as one restriction to construct a skewed redundant IMU system.

(a) 4-Sensor Cube (b) 4-Sensor Cone (c) 5-Sensor Cone
® One sensor aligned with the
O No sensor aligned with the reference

Figure 5.4 Redundant Sensor Configurations

Comparing the fourth and fifth columns of Tables 5-2 and 5-3, separately, if
sensor failures occurred, optimal configurations many not obtain better measurement
accuracy in comparison with a non-optimal configuration. Therefore, the selection of
an SRIMU configuration is a tradeoff between failure detection performance and

measurement accuracy under conditions of no sensor failures and sensor failures.
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Table 5-2 Comparisons of Two 4-Sensor SRIMU Configurations

Configuration Accuracy of Accuracy Degradation Az =El =45°
State Estimates
o, (i)=0.9129 | When any one on three o, (x) =0.9354
Cube i x . orthogonal axes has failed,
0 = . . =
El: 3522(4)‘-4 ’ Y7 GN (l) — 2.2361, i= X, y’ 7 GN (y) 0.9354
z= -
GN(])=10, ]il O-N(Z)—08660
Cone o (i) =0.8660 Whe(n a)my fnzezh:; failed oy(x)=1.0
. o,y(z)=1.
El = 35.2644° 1=X.Y,2 N . oy(y)=10
Az = any Dependent on which sensor,

o, (x)=1.50or 0.8660

o, (y)=0.86600r1.5
In the case of Az =45°

o,()=1.2247, i=x,y,z

o, (z)=0.7071

Table 5-3 Comparisons of Several 5-Sensor SRIMU Configurations

Configuration Accuracy of State Accuracy Degradation when Azimuth =45°
Estimates’ any one has failed When any sensor on
cone failed
Cone o,()=0.7746 | Max o, =1.0954
El =35.2644 v O
Az=any i=X,y,z Min &, =0.7746
DGOP =1.3416 | pGOP =1.6432
| ov@=07746 | max o, =1.2248 o, (x)=0.9874
Cone + Spin .
El = 24.0929° 1=X,Y.2 Min 0, =0.7746 o,(y)=0.9874
Az = any DGOP, =1.3416 | DGOP =1.6432

o, (z)=0.8660
DGOP =1.6432

Cone + x-Axis’
El=38.1876"
Az = any

o, (x) =0.6688
oy (y)=0.8996
o (z) =0.8087
DGOP, =1.3823

Dependent on the failed
sensor

Max o, =1.5582
Min 0, =0.6688
Min DGOP, =1.5076
Max DGOP, =2.0454

o, (x)=0.7862
o, (y)=1.1699
o, (z)=1.0517
DGOP, =1.7586

Cone + y-Axis*

El =38.1876"
Az = any

o, (x)=0.8996
oy (y)=0.6688
o, (2) =0.8087
DGOP, =1.3823

The same as above

o, (x)=1.1699

oy (y)=0.7862
o, (2)=1.0517
DGOP, =1.7586

' GDOP is also used to describe the geometry of redundant inertial sensor configurations as in satellite

constellations.

* One of sensors is aligned with the spin axis of a cone configuration, or the z-axis of the body frame.
3 One of sensors is aligned with the x-axis of the body frame.
* One of sensors is aligned with the y-axis of the body frame .
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5.2.4 Reliability Analysis of SRIMU Configurations

As stated in the above section, the use of SRIMU configurations can obtain the
fault tolerance and reliability of aircraft navigation systems. To compare reliabilities
of various configuration SRIMU systems, assume that all sensors are single degree-
of-freedom sensors and the failure rate 4 of each sensor is constant and identical for

each type of inertial sensor. Then the reliability function of inertial sensor is given by
R(t)=e™* (5.12)

and the MTBF(mean time between failures) is defined as
o0 |
MTBF = J-OR(t)dt = (5.13)

The reliability of the redundant sensor system is given by the following equation
R, ()=[R (O] + C'[R(OI"'[1 = R(t)H+..+C "[RO 1 - R(D]"  (5.14)

where
n!
C'=——"—
(n—m)\m!
n is the number of sensors in the redundant configuration and m is the number of
allowable failure sensors in the redundant system.

Therefore, the reliability of an SRIMU system is given by

Rggiy (1) = R, (1) Ry (1) (5.15)
For the orthogonal configuration in a conventional IMU, the reliability and MTBF
are given by

-3
R3—Gyro (t) =e

MTBF. !

3-Gyro = ﬁ

For the configurations shown in Figure 5.5, the reliability figures and MTBF values

are computed and normalised with respect to the MTBF, .  value. The results are

Gyro
summarised in Table 5-4 where the reliability increases with the ratio. From
inspection of Table 5-4, the reliability of an SRIMU configuration depends on the

number of redundant sensors and the failure rate of sensor. The accuracy of SRIMU
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measurements relies on the sensor installation configurations.
In the dodecahedron configuration shown in Figure 5.5(g), each of six sensors
is separately mounted along the axis of each pair of parallel faces. The configuration

in Figure 5.5(h) is a combination of 3-sensor cone and 3-sensor cube configurations.

(a) 4-Sensor Cone (b) 5-Sensor Cone (c) 6-Sensor Cone

Cone Configurations without One Cone Axis Sensor

(d) 4-Sensor Cone (e) 5-Sensor Cone (f) 6-Sensor Cone

Cone Configurations with One Cone Axis Sensor

A

/

Y
A 4

(g) Dodecahedron (h) 3-Sensor Cone + 3-Sensor Cube

Figure 5.5 SRIMU Configurations
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Table 5-4 Reliabilities of Several SRIMU Configurations

Sensor Elevation | Azimuth | MTBF | Ratio PI Fault Tolerance’
Configuration (deg) (deg)
3-sensor orthogonal 1 1
34
4-Sensor Cube as in 35.264 45 7 1.75 0.7071 | Fail Safe
Figure 5.4(a) 124
4-Sensor Cone as in 35.264 45 7 1.75 0.6495 | Fail Safe
Figure 5.5(a) 90 124 0.6495
4-Sensor Cone as in 19.472 120 7 1.75 0.6495 | Fail Safe
Figure 5.5(d) 124
5-Sensor Cone as in 35.264 72 47 2.35 0.4648 | Fail Op/Fail Safe
Figure 5.5(b) 604
5-Sensor Cone as in 24.092 90 47 2.35 0.4648 | Fail Op/Fail Safe
Figure 5.5(e) 601
6-Sensor Cone as in 35.264 60 57 2.86 0.3536 | Fail Op/Fail Op/Fail Safe
Figures 5.5(c), 601
Anyone sensor failed, 0.5000 | Fail Op/Fail Safe
2 adjacent sensors failed, 0.9487 | Fail Safe
2 skipping sensors failed 0.7071 | Fail Safe
6-Sensor Cone as in 26.564 72 57 2.86 0.3536 | Fail Op/Fail Op/Fail Safe
Figures 5.5(f), 604
Anyone sensor failed, 0.5000 | Fail Op/Fail Safe
Any two sensors failed, 0.7906 | Fail Safe
Dodecahedron as in 31.717 90 57 2.86 0.3536 | Fail Op/Fail Op/Fail Safe
Figures 5.5(g), 604
One sensor failed, 0.5000 | Fail Op/Fail Safe
Any two sensors failed 0.7906 | Fail Safe
6-Sensor Cube as in 35.264 120 57 2.86 0.3536 | Fail Op/Fail Op/Fail Safe
Figure 5.5(h), 604
Anyone sensor failed, 0.5000- | Fail Op/Fail Safe
Any two sensors (in the 0.7071 | Fail Safe
same set) failed,
Two sensors (in 0.7071- | Fail Safe
different sets) failed 1.2247

5.3 SRIMU Calibration

Consider the main sensor errors, including drifts, sensor misalignments and
scalar factor errors, the compensated SRIMU measurement model corresponding to
Eq. (5.2b) becomes

m=Ho+6, +S;m+Gm+v (5.16)

> Fault tolerance in this table is characterised by Fail safe and Fail Operational. Fail safe means that
the sensor system can issue alarm information and interrupts its work if one sensor has failed. Fail
operational means that the sensor system continues its work even if one sensor has failed.
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where 6, is an n -dimensional sensor drift vector, Sg. is an nXn -dimensional

diagonal matrix, defining scale factor errors and G is an nXxn -dimensional matrix,
containing sensor misalignments. These errors can be estimated and corrected by
using external aiding measurements in a multisensor navigation system to improve
the accuracy of the navigation system and also the performance of sensor failure
detection and isolation functions. The misalignment matrix G, which has a well-
known formulation for the orthogonal sensor configuration, has to be redefined for
an SRIMU configuration.

The misalignments between the designed installation axis and the actual sensor

sensing axis can be represented by two small disturbances of azimuth and elevation

angles J, ,and J,,, as shown in Figure 5.6 where s' and §' are unit vectors along

the designed and actual instrument axes. The practical installation angles are defined

as follows:
El'=El;+6, (5.17)
A7 = Az, —5AZ,. (5.18)

where Azjand EI; are the designed installation azimuth and elevation angles of the

instrument axis i, respectively, as shown in Figure 5.3(b).

Figure 5.6 Definitions of Sensor Misalignments

Furthermore, the perturbation form of Eq. (5.2b), caused by sensor misalignments,

can be expressed as
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m+Am=(H+AH)o +v (5.19)
Therefore,
Am = AHo (5.20)

From Appendix H, the total SRIMU measurement error in the instrument frame is
A0™"™ = 3§, + Diag(m)d, + Diag(I1)d ,, + Diag(X)d,, (5.21)

[M=0C> m, X=TC>._ m

instru instru
where 8 (x = Az, El) are the misalignment angle vectors, 8. is an n-dimensional
scale factor error vector, Diag(m) is a diagonal matrix consisting of the SRIMU
measurement vector m, Diag(Il) is a diagonal matrix consisting of the vector IT ,
Diag() is a diagonal matrix consisting of its element, the elements of the matrix I'
correspond to the coefficients of the elevation misalignments in AH and the elements
of @ are the coefficients of the azimuth misalignments in AH .

These SRIMU error terms are normally estimated by means of appropriate data
fusion filters in multisensor navigation systems. As analysed in Section 4.3, however,
the sensor error states are formulated in the navigation frame to simplify the system
error models. For example, V" appearing in the velocity error model of Eq. (4.31)
and A" in the tilt error model of Eq. (4.40) are described in the navigation frame.
Accordingly, Am™™ has to be transferred into A®" as follows:

Ao" =C;C &, +CiC>  Diag(m)d,

mstru mstru

+CIC°, Diag(Is . +C'C", diag()s,,

mstru mstru

(5.22)

This equation can be used to determine the sub-matrixes of the system state transition
matrix in data fusion filter, which are related to the SRIMU sensor error terms. Once
the SRIMU sensor errors are estimated, Eq. (5.16) can also be used as the calibration
equation to correct the SRIMU measurements.

The main advantage of SRIMU configurations is that the minimum redundant
sensors are needed in order to form a fault-tolerant navigation system, decreasing the
size and weight of the SRIMU system. Fault tolerance can be achieved by the design
of reliable failure detection isolation algorithms. FDI problems will be discussed in

the following sections
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5.4 Basic GLRT Method

The generalised likelihood ratio test (GLRT) approach to the detection of jump
change in linear systems is proposed by Willsky and Jones™'. Since that, various
improved versions of GLRT algorithms have been developed to detect measurement
failures in GPS and SRIMU systems”s'go]. Basic GLRT method for SRIMU FDI is
introduced as follows.

From the SRIMU measurement model given by Eq. (5.2b) and the GNSS
measurement model given by Eq. (4.54), these measurement equations, in normal
operating conditions, can be unified into a normalised form as follows:

m=Ho+v (5.23)
where m is an n— dimensional measurement vector, ® is a measured state vector
and its dimension depends on the GNSS and SRIMU systems. For example, ® is a
3-demensional vector for an SRIMU system and is a 4-dimensional vector for the
GNSS, H is an measurement matrix of proper dimensions, v is an n— dimensional

measurement noise with zero mean and covariance R . The variances of all sensor

measurement noises are hereafter assumed to be identical, that R, = o1

nxn *

Because the number of measurements in an n-sensor SRIMU configuration is
larger than the dimension of the measured state vector, these n measurements are
linearly dependent. Without consideration of the measurement errors, there exists a

set of scalars, at least one of which is non-zero, such that

ipimi =0 (5.24)

!
Eq. (5.24) is generally known as a parity equation. There are ﬁ different
I(n—3)!

parity equations although not all the parity equations are independent. The number of
independent parity equations is equal to the number of redundant measurements. The
matrix, consisting of the coefficients of n-3 linearly independent parity equations, is
known as a parity matrix P. Therefore, Eq. (5.24) can be rewritten in matrix form as
follows:

Pm=0 (5.25)
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The left-hand side of Eq. (5.25) is referred to as a parity vector and can be used to
examine the consistency of the SRIMU measurements.

From Egs. (5.23) and (5.25), a parity matrix P can be constructed to satisfy the
following constraints:

e PH=0

e P has n—3 linearly independent row vector. Therefore, the parity space is
an orthogonal space.

e PP" =1 to simplify the detection and isolation functions. This condition
normalises each row of the parity matrix.

e P'P=I-HMH"H)'H". The relationship is proved in Appendix I.

Considering the normal measurement noise, the parity vector is

p, =Pm=PHx+Pv=Pv (5.26)
This failure-free parity vector is a Gaussian white noise of zero mean and covariance
as follows:

E[p,]=p=0

(5.27)
E[p,p, 1=R, =PR,P" =0 PP’

5.4.1 Detection Procedure

Assume that sensor failure mode is a jump change with unknown sign and
amplitude; the faulty SRIMU measurement equation can be modelled as follows:

m=Ho+b+v (5.28)
where b is an n-dimensional failure vector and b, is a nonzero element if the i"
sensor has failed, otherwise b, =0.

Therefore, the parity vector under failure conditions becomes

p, =Pb+Pv=Pb+p, (5.29)
This failure parity vector is a Gaussian white noise of nonzero mean and the same

covariance as the failure-free parity vector. Therefore,
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Elp,]=p=Pb

T T 2 T (5'30)
Elp,p, 1=R,=PR,P" =0 PP

From Egs. (5.27) and (5.30), the statistics of the parity vector p is summarised as
follows

0, H, :no failure

Elpl=
[p] { R, H,: failure

The probability density functions of the Gaussian distributed parity vector under

these two hypotheses are given by

3

- 1 .
fplH)=27) > agPPT\ 2exp[—EpT(agPPT) 'pl

n=3

F@lH) =) [0IPP| 2 expl= (b= (@ZPP") (-]

The log likelihood ratio for the two hypotheses is given by

fH) 1
A(p)=In—-2 =~
®) =0 H,) 2

The maximum likelihood estimate fi of p is the value, which maximises A(p) .

[p"(c,PP) ' p-(p-w (6, PP)" (p-p] (531

Because two terms on the right-hand side of Eq. (5.31) are positive, the maximum

value of A(p) occurs if and only if i=p.

T
A (P) =lpT(GfPPT)‘1p=p—€ (5.32)
2 20,
Therefore, the decision function for detection is defined as
DFD=p'p (5.33)

Given a pre-specified detection threshold 77, the detection decision can be stated as
follows:

e It DFD >n, then sensor failures have occurred.

e It DFD <n, then no sensor failures have occurred.

However, when two or more sensor failures occur simultaneously, the failure parity
vector can be represented as

p=Pb,+P b,
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where P, and P are the i™ and /™ columns of the parity matrix P, respectively. The

detection function takes the following form.
DFD=p'p

=(P,b,+Pb )" (P,b,+P;b,)

=P,'P,b,’+P,'P b,>+2P,'P,bb,
The first two items on the right-hand side of the above equation are positive. But the
sign of the last item is uncertain because the signs and amplitudes of the failures are
arbitrary. If the last item is positive, the test statistic generated through this detection
function will increase and the detection decision may give a false alarm because of
the accumulation of small biases in individual sensors. On the other hand, if the last
item is negative, the inverse situation may lead to a missed detection. Therefore, this
detection function cannot guarantee a reliable detection decision on sensor failures
when two sensor failures happened simultaneously. In addition, if the noise level is
close to the parity residual level, a sensor failure may also become undetectable from
Eq. (5.32). These shortcomings have to be overcome in order to improve the

performance of the GLRT algorithms.

5.4.2 Isolation Procedure

Failure isolation is to identify those failed sensors after the detection procedure
has declared that sensor failures have occurred. As assumed in the above section, the
failure parity vector is a nonzero mean Gaussian random variable and a unique

nonzero element b, is contained in the failure vector b in Eq. (5.29). The associated

likelihood function for the failure hypothesis is given by

i) =In f(BlH,) = K= (p=P.b,)" (@2PP")" (p=P,b)] (5.34)

Because the matrix PP" is symmetric, the maximum likelihood estimate Bi of the
failure magnitude b, is

¢ _ (P (PP)'p)
" P;(PP")'P,

, i=12,--,n (5.35)
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Substituting Bi into Eq. (5.34), the maximum likelihood value is given by

1 (P, (PP")'p)’

"PP")'p+
p PP P+ PT(PPT)P,

ﬂmax (bz) =K - 21 (536)

2
The first two terms in the left-hand side of Eq.(5.36) are constant for all sensors but
the third term depends on the orientation of sensors. Therefore, the decision function
for isolation is defined by

_ (@, (PP")'p)* (P, 'p)’

DFI, =
" P (PP")'P, PP,

b i:1,2,"',n (5.37)

The isolation decision is made as follows:

e If the i™ sensor has the maximum value of DFI ;» then it is declared failed.

From Eq. (5.35), this isolation procedure can also be used to estimate the failed
sensor signals. The basic GLRT algorithm is illustrated in Figure 5.7.

In summary, the GLRT detection function given by Eq. (5.33) is only used to
detect a single sensor failure of a jump change and it cannot simultaneously detect
two or more sensor failures. This detection function cannot unambitiously detect
sensor failures when the measurement noise level is close to the parity residual level.
In addition, the basic GLRT method cannot detect time-varying failures.

From Eq. (5.16), when aircraft is experiencing a high dynamic or manoeuvring
motion, the measurement errors caused by scale factor and sensor misalignments will
contribute the sensor failures. Consequently, the product of the parity matrix and the
measurement matrix is not zero but depends on the measured states. If these
measurement errors are not compensated or corrected, false decisions may be made
by the decision functions.

Therefore, to improve the sensor FDI performance in terms of the probabilities
of false alarm and missed alarm, it is necessary to develop innovative methods to
compensate for normal sensor measurement errors and to obtain a sufficiently large

failure signal-to-noise ratio before the detection procedure is performed.
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Figure 5.7 Basic GLRT Algorithm Structure

5.5 SRIMU Error Compensation Filter

can be used to compensate for the measurement errors caused by normal sensor error

sources. As a result, the performance of the basic GLRT algorithms and the accuracy

This section develops and designs SRIMU error compensation filters, which

of the SRIMU measurements can be improved.
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5.5.1 SRIMU Error Dynamics

The generalised SRIMU measurement equation is rewritten as follows:

m=Ho+6, +S;m+Gm+v (5.38)

In theory, the dynamics of these error sources given in the above equation can be
modelled by a combination of random constant, random walk and exponentially
correlated random processes[124]. The random constant process is used to model the
SRIMU measurement errors caused by sensor long-term bias and misalignments. The
first-order discrete Gauss-Markov process models the measurement errors caused by
combination of the scale factor error and time-dependent sensor drifts. The random
walk process models those short-term time-dependent errors.

Therefore, for each sensor, the error terms given in Eq. (5.38) are modelled as

follows:

Oy, =0y +0; + 0y

S =0

di, = vl

8 = ~Bid; +v}

8l =P8l + 0l
§ . =0

S, =0

El'
where the sensor drift J, is decomposed into a constant bias error Jd;, a time-
dependent drift error J, and a random walk process Jy, .

From Eq. (5.22), three additional states are needed to relate the above sensor
error states to the resultant navigation state errors. The three additional states are
modeled as follows:

Xx=Ao" (5.39)
An SRIMU consists of two types of sensor set, accelerometer set and gyroscope set.
Therefore, two SRIMU compensation filters are needed to separately compensate for

the accelerometer and gyro sets. Combining the above sensor error dynamic models
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and considering (5.22), the dynamic model of each SRIMU compensation filter can
be formulated as follows:

x(k +1) =Pk +Dx(k)+w(k) (5.40)
where X is a 6n+ 3 -dimensional SRIMU error state vector, as explained above, ®(k)
is a state-transition matrix and it elements are determined by the coefficients of the
above sensor error dynamic models, and w(k) is a white noise sequence of zero mean
and variance Q(k).

Through combination of the SRIMU measurements, three forms of the SRIMU
measurement residual equations can be developed as the observables of the SRIMU
compensation filters, separately known as the least-squares measurement, the state-
free measurement and the parity vector residual equation. In addition, the aircraft
velocity and attitude information can also be obtained from navaid systems, for
example a multifunctional GNSS receiver or other IMUs located at other nodes in the
distributed inertial network system. Therefore, two additional observable equations

can be generated, known as the velocity and attitude residual equations, respectively.

5.5.2 Least-Squares Residual Equation

This method is based on the estimate of the measured state vector. Using a
least-squares (LS) estimate given by Eq. (5.3), the LS residual vector is given by

Am,, =m-m=m-H® =6, +S;;m+Gm+ Wy (5.41)
where W=I-H(H"H)'H" is a weighted matrix for the measurement noises and is
introduced by the least-squares estimator.

From Egs. (5.21) and (5.41), the LS-based measurement residual equation is
formulated as follows:

6B

5
Am,; =[I Diag(m) Diag(Il) Diag(Z)] 6“ +Wo (5.42)

A
)

VA

El

From Eq. (5.41), it should be noted that if the state estimates are based on failed
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sensors, the estimate errors will contribute to the measurement residuals and may

decrease the sensitivity of the detection function to actual sensor failures.

5.5.3 State-Free Measurement Equation

This method is based on the linear transformation to the SRIMU measurement
equation given by Eq. (5.38).

Defining U=P'"P=1-HH"H)"'H"
then U is an nXn-dimensional symmetric, positive semi-definite matrix because the
rank of P"P is the same as the rank of P. Premultiplying the two sides of Eq. (5.38)
by U, the state-free measurement equation is

Amg, =Um=Us, + US;;m + UGm + Uv (5.43)
From Eq. (5.21), the above equation can be formulated as follows:

6B

)
Amg, =U[l Diag(m) Diag(Il) Diag(Z) 6“ +Uv (5.44)
Az

6El

This formulation of the measurement equation eliminates errors caused by estimating

the measured state vector.

5.5.4 Parity Residual Equation

The parity residual equation is derived by directly using the parity vector as the
filter measurement. Performing a linear transformation to the SRIMU measurement
vector from the measurement space to the parity space, then

p=Pm=Po, +PS;m+PGm + Pv (5.45)
From Egq. (5.21), the above equation can be normalised as follows:

8B

p=P[I Diag(m) Diag(Il) Diag(X) ESF +Pv (5.46)
Az
6El
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5.5.5 Velocity Residual Equation

For the accelerometer error compensation filter, the velocity residual equation

is driven on the basis of the difference between the SRIMU-driven velocity Vg
and the navaid-driven velocity or other SRIMU-driven velocity Vv ,yap -

& =T, VNavAID ~ VSRIMU (5.47)
where T, is a velocity transformation matrix from other SRIMU node frame to the

detected SRIMU frame.
From Egs. (5.22) and (5.39), the velocity residual equation is given by

5V = Xv + UNAVAID»V-noise (548)

where v ,yamp.vnoe 1S the navaid-driven velocity solution noise.

5.5.6 Attitude Residual Equation

For the gyroscope error compensation filter, the attitude residual equation is
generated by differencing the SRIMU-based attitude solution 0, and the navaid-
based attitude solution or other IMU-driven attitude solution 0,y ., . For example, a
multifunctional GNSS receiver can output all of the navigation states.

B =Ty0 sya ~Osrvy (5.49)
where T, is an attitude transformation matrix from other SRIMU node frame to the
detected SRIMU frame.

From Egs. (5.22) and (5.39), the attitude residual equation is given by

M =X, + Vyavam-a-noise (5.50)
where Vg gs 006 1S the navaid-driven attitude solution noise.

It should be noted that relationships created in Eqs. (5.47) and (5.49) enable
the inertial and navigation state information in a distributed sensor network system
be shared at all network nodes. This information sharing technique enhances both the

performance of local sensor FDI functions and the fault tolerance of the distributed

multisensor navigation system. The transformations in Eq (5.47) and (5.49) can be a
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unit matrix when the SRIMU error compensation filters are located at the cg node
and the velocity and attitude residual equations are based on the GNSS navigation

solutions.

5.5.7 SRIMU Error Compensated FDI Algorithm Structure

In the case of normal SRIMU operation, the compensation filters estimate the
SRIMU errors, including gyro and accelerometer errors, and these error estimates are
used to correct raw SRIMU measurements. The corrected SRIMU measurements are
then fed into a sequential moving-window GLRT to detect sensor failures. A

modular architecture for the improved FDI algorithms is shown in Figure 5.8.

»|  Residual »| A Bank of SRIMU Error | SRIMU Error
Measurement Compensation Filters Model
Equations
SRIMU
Outputs
\ 4
SRIMU .| Compensated SRIMU .| Sequential MW-
Compensator v Measurements "| GLRT Algorithm

Figure 5.8 Modular Architecture of Improved FDI Algorithm

5.6 Moving-Window GLRT Methods

Traditionally, sequential FDI methods are based on the sequential probability
ratio test (SPRT) developed by Wald, which use all the residual samples from the
initial time to the current time. This detection method decreases the sensitivity to the
detection of actual sensor failures as time progresses. A sequential moving-window
GLRT (MW-GLRT) method is presented for detecting both jump and drift failures,
which may degrade the performance of an SRIMU system. The structure of this
moving-window GLRT is depicted in Figure 5.9. The parity residual vector or the
measurement residual vector sequentially passes a first-in-first-out buffer of a length
L, which generates a sequential test statistic. Failure detection is then performed by

comparing this test statistic with a pre-specified threshold.

132



SENSOR NETWORK TOPOLOGY AND FDI METHODS

5.6 Moving-Window GLRT Methods

=>p® | | | | | | [ [pk-Lrhe—p>

Figure 5.9 MW-GLRT Structure

5.6.1 Sequential MW-GLRT Detection Procedure

Consider that the normal SRIMU sensor errors have been largely corrected by
means of the error compensation filters, the failed SRIMU measurement is modelled

as follows:

m=Ho+b+d(#,)+v (5.51)
where b is a jump bias failure and d(z,) is a random drift failure with unknown

statistical characteristics.

In this case, the failure detection is to check the maximum allowable jump bias
failure and the maximum allowable drift rate failure. Considering the constraints on
the parity matrix, and the statistical character of the parity vector, the parity vectors
are a sequence of independent Gaussian random variables. A moving-window joint

likelihood ratio function is given as follows:

fIp(k),p(k =1),---p(k — L+1)|H,]

A, (k) =In
fIp(k),p(k =1),---ptk = L+1)|H,]
1 £ T,. . . 1T . .
=07 > " (OpG@) —[p() —p@]"[pG) - pi)]1} (5.52)

DY (CORRGITO)

O, i=k-L+1

Furthermore,

A (k)y=A, (k=1 + %{[p(k) - lll(k)]Tu(k)
o, 2 (5.53)

CIp(k—L) - %u(k ~ D" nk - L))

Two methods are used to define the sequential decision function for detection.

One assumes a constant design value fi, of the parity vector average p, within the L-

length window, which depends on the accuracy requirement to an SRIMU navigation

system. The sequential detection function is then defined by
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DFD, (k)= 4, (k)
5.54
:/IL(k—1)+%[(p(k)—p(k—L)]Tﬁb 3%

v

For each type of inertial sensors, the constant design value fi, is determined on

the basis of the sensor statistics and allowable error, and has the sign of the moving
window average value and an amplitude value as follows:
k
sign(fi,,) = sign[ Y p(i)]
i=k—L+1

|ﬁ | _ maximum allowable angular error
° Time Interval = Lx At

where At is the sample interval of SRIMU outputs.

Therefore, the change trend of A, (L) is illustrated in Figure 5.10.

4 A.(L)
n
NN\ >
\/
L/\ T/\
E”b b

Figure 5.10 Detection Function for A Constant Design Value of p,

The detection rules are stated as follows:
e If DFD, (k)=n, then sensor failures have occurred.
e If DFD, (k)<n, then no sensor failure has occurred.

The other method defines the detection function on the basis of the maximum
likelihood estimates of average of the sequential parity vectors. Assume the average

value is an unknown constant p within the L-length window; from Eq. (5.52), the

estimate of p, i, is given by
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=t Yp0) (5.:55)

The maximum likelihood ratio is

1 k k
A, (k) = [ > pOI'T D pG)] (5.56)
. 20 Z L i:;H izlgﬂ
and the detection function is defined as
k k
DFD, (k)=[ >_pOI'[ Y. p@)] (5.57)
i=k—L+1 i=k—L+1

Therefore, the detection rules are stated as follows:

e If DFD, (k)=n, then failures occurred;
e If DFD, (k)<mn, then no failures occurred.

The change trend of this detection function is illustrated in Figure 5.11.

A DFD

v
x~

Figure 5.11 Detection Function based on Estimate of Window Average

From Eqgs. (5.54) and (5.56), this sequential detection is easily affected by the
measurement noise and the detection performance may be degraded with the increase
of the noise variance, especially in less accurate, low-cost SRIMU system. Improved
sequential MW GLRT methods will be introduced to overcome the above problem in

the following sections.

5.6.2 Sequential-Averaged Method

In order to reduce the effects of measurement noise on the sequential residual
signals, it is necessary to pre-process the original parity vector sequences to generate

a new parity vector. This new parity vector or residual signal is then used to detect
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failures. A sequential averaged detection method is introduced in this section. This
method sequentially averages the parity vector or residual signal sequences within a
moving window. The sequential average value can be computed as follows:
_p)+pk=D+---+p(k—L+1)

L

—_ 1
=p(k —1)+Z[P(k) —p(k—L)]

p(k)

(5.58)

p()=pD)
This sequential average is also a Gaussian distributed random variable. Its mean is
the same as the original parity vector, that is,
- 1 kL 1 kL
Ep(1=— > Elp@)] = Do, =n,
i=(k=1)L+1 i=(k=1)L+1
But, the covariance an is

L 1 kL kL
R; = E[pp' 1= El-; Y p@) D p)]

i=(k=1)L+1  i=(k-1)L+1

= %E{[p(kL)+---+p((k —DL+D][p(kL) +---+p((k—DL+D]"}

Assuming the parity vector sequences are independent, E[p()p” (j)]=0 G # j), so

that the above equation can be simplified as follows:

R; = L{E[p(kL)PT(kL)] +oo+ E[p((k=DL+Dp" (k=)L +D])

1
:ZRp

(5.59)

Therefore, this sequential-averaged method reduces the variance of the measurement
noise and can remove high-frequency noise and wild-values. It can also identify the
feature of the drift failures. The size of window should be chosen so that the
influence of the measurement noise on the failure detection procedure can be largely
decreased. As a result, it enhances the sensitivity of the detection algorithm to true
drift failures.

The detection of allowable maximum rate of the drift failure is usually needed

in order to afford highly reliable angular rate data for flight control systems and other
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avionics systems. To detect the drift rate of the drift failure d(z,) in Eq. (5.51), the

averaged parity vector is sequentially differenced and the results are averaged within
the moving-window of a length L as a decision function for the detection of drift rate

failures as follows:

kL/2 kL/2

2
s,(k)=—"— D AP()=—T— D [PQ2D)-PpQRi-D)] (5.60)

L*At i 5in — L*AL g SL2n
where s, (k) represents an average rate of the drift failure within the window.
The norm of s, (k) is defined as the decision function for detection of drift rate
failure DFD, (k) = ||s L(k)” . Given a drift rate threshold 77,,, then the detection rules

are described as follows:
1. If DFD, (k) =mn, , then drift rate failures have occurred,

2. Otherwise, no drift rate failure happened.

5.6.3 Sequential-Averaged MW-GLRT Methods

This improved method is a combination of the sequential MW-GLRT method
and the sequential-averaged detection. To simplify the mathematical equations, the
sequential average value is computed by the following equation,

pk) =— ZP(Z) (5.61)

1 (k=1)L+1
Combining Eqgs.(5.52) and (5.61), the normalised sequential likelihood ratio of

the sequential moving-window average can be formulated by

L

ZOEDWD

i=1
L

Mz

1
[P ((—DN + j)p, —Euifub]

.
Il
—_

| (5.62)
pT<<i—1>N+j>—5u§]ub

Mz

=2

i=1

~.
I
—

where p, is a constant design value dependent of the accuracy requirement for the

SRIMU system.
n, =Pb,

sign(p,, (k)) = sign(p(k))
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where b, is a minimum SRIMU drift error, determined according to the accuracy
requirement of an SRIMU system, and the sign of the elements of b, depends on the
sign of the estimated measurement residuals.

sign[b (k)] = sign[Am(k)]
Eq.(5.62) can be rewritten as follows

A(k) = Ak —1)+ z(k) (5.63)
where

d 1
(k) = Z[ﬁ (k=DN+ ), = Wy, ]

Because p, has the sign of p(k), the above equation can also be expressed as

70 = 5 (k= DN + |~ wlm,] (5.64)

N
WhenZ[‘ﬁT((k —~1)N + j)ub‘ —%ugpb] <0, specifying 7(k) =0 . Therefore, A(k) is
=1

monotonously incremental function. This makes the sensor drift be rapidly detected.
Accordingly, the sequential decision rule is

e If A(n) 27, then sensor failures have occurred at the time ¢ = L* N * At .

e Otherwise, no sensor failure happened.

where 77, is a sequential detection threshold which is based on the probabilities of

. . 1-P,
missed detection and false alarm and 7, =In——*2¢ .

p
FA

5.7 Summary

This chapter introduced the topology architectures of sensor network systems,
and developed methodologies for evaluation of various configurations of the skewed
redundant inertial measurement units (SRIMUs) and for detection and isolation of
sensor failures appearing in the SRIMUSs. The main deliveries cover:

1. Description of two forms of sensor system architectures: the distributed

sensor system architecture and the clustered sensor system architecture.
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2. Development of three criteria to evaluate optimal configurations of skewed
redundant inertial systems in the clustered sensor system architecture,
including minimum GDOP factor, identical variance errors along the three
orthogonal body axes and optimal SRIMU FDI performance. Based on
these criteria, coplanar sensor installations in SRIMUs should be avoided in
order to obtain the maximum SRIMU FDI capability.

3. Comparison of the performance of several SRIMU configurations,
including their measurement accuracy and reliability.

4. Development of the SRIMU error calibration algorithms for design of local
Kalman filter and dynamic SRIMU error controls.

5. Design of the SRIMU error compensation Kalman filters to improve the
performance of the FDI algorithms and the accuracy of SRIMU systems.

6. Development and improvement of the moving-window GLRT methods to
detect three kinds of inertial sensor failure modes, including jump, time-

drift and drift rate failures.
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Chapter 6

DISTRIBUTED DATA FUSION ALGORITHMS

6.1 Introduction

This chapter develops data fusion methodologies for distributed sensor network
systems, including data fusion filter algorithms and integrity monitoring algorithms.
Section 6.2 introduces general distributed fusion algorithms for several distributed
sensor systems. Section 6.3 develops inertial network measurement models and also
establishes dynamic relationships among inertial network nodes. Inertial network
data fusion algorithms are developed in Section 6.4. Inertial network integrity
monitoring algorithms are presented in Section 6.5. Finally, a summary is given in

Section 6.6.

6.2 Distributed Sensor Systems and Fusion Algorithms

This section develops several forms of distributed fusion filter algorithms for
differently distributed sensor systems. The dynamics of a distributed sensor network
system can be described by one global dynamic model and N local dynamic models
where N is the number of the nodes or the local sensor systems in a distributed
sensor network system. Let the global system model be formulated as follows:

X(1,) =@, 1, )Xt )+ G (1, )W) (6.1)

z(t,) = H(, )x(t,)+v(t,) (6.2)

and the local system models be represented by
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X (t)=®,(,.t,_)x,¢t,_)+B,@,_)w, () i=1- N (6.3)
z,(t,)=C,(t,)x,(,)+v,(,) i=1--,N (6.4)
Because all the sensor systems are independent and their measurement noise is also

independent of the measured quantities, the global measurement model given in Eq.

(6.2) can be partitioned into the following block matrices or vectors.

Z(tk)=[Zf(tk) z,(t,) - zﬁ(tk)]T (6.5)
v(tk)=[vf(tk) v, () - va(tk)]T (6.6)
He)=[HT¢,) HIG) — HIG)] 6.7)
R(t,) = blockdiag[R,(t,) R,(t,) - Ry(t,)] (6.8)

where R, is the covariance matrix of the measurement noise v, .

The local system model is a practical dynamic model of a node or a local
system in a distributed network system. The global system model can be either a true
model of a practical distributed system or a virtual model, which is established in
order to develop distributed data fusion algorithms. For example, in many target-
tracking systems, the global system models normally describe the dynamic motion of
the tracked targets. In distributed control systems, a global system model may not
exist although global optimisation is usually required. In an integrated aircraft
navigation system with distributed sensor systems, the aircraft centre of gravity (cg)
is a special location with respect to which many parameters or states used in aircraft
navigation and flight control systems are defined. Therefore, the global system model
of aircraft navigation system usually describes the dynamic motion of the aircraft
centre of gravity and is approximated by the error dynamic model of an inertial
system located at the cg. However, this is not necessarily true in a distributed inertial
network system where each node has its own local dynamic model and a global
model is not needed.

In this thesis, the development of distributed data fusion filter algorithms is
based on two principles. One is known as the global-to-local optimisation method
and the other is referred to as the local-to-global optimisation method. In the global-

to-local optimisation method, the distributed local filters are designed on the basis of
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optimisation of the global system model whereas in the local-to-global optimisation
method, global optimisation is obtained by the optimisation of the local systems.
Depending on the network communication modes and the characteristics of the
node dynamic models, two classes of distributed fusion algorithms, referred to as
state-identical distributed fusion algorithms and state-associated distributed fusion
algorithms, are discussed in the following subsections. For each class of distributed
fusion algorithm, several distributed fusion filters are developed for different sensor

network systems.

6.2.1 State-ldentical Distributed Fusion Algorithms

State-identical distributed fusion algorithms are developed for distributed
sensor network systems where all the sensor systems are distributed but the observed
object is identical. Depending on data communication modes among the network
nodes, two types of distributed filter algorithms are analysed. The Type I algorithm is
used for distributed systems using one-way communication, as shown in Figure 6.1
where the arrows indicate the directions of data flow. The Type II algorithm applies
to distributed systems using two-way communication, as shown in Figure 6.2. In
both these distributed systems, all the sensor systems observe the same dynamic
system. Therefore, all the local system models and the global system model are
identical.

The distributed network system model given by from Egs. (6.1) to (6.4) can be

simplified where the following assumptions apply:
X, () =x,(t,)=x(t,)
O =0,=0
B.(t)=B,;t)=G{,)
w.(t)=w,(t,)=w(,)
C,t,)=H,@t)

By following Hashemipour’s work!®?, the distributed filter algorithms are derived as

follows.
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wRISAS drueui(

Figure 6.1 State-Identical One-Way Model

Dynamic
System

Figure 6.2 State-Identical Two-Way Model

From the information form of the Kalman filter algorithm given in Chapter 3,

the local estimates can be obtained and represented by the following forms:

X, (t,)=®,(t,,t, )X, () (6.9)
P(t,)=®,t,.t )P (1, )(I)iT t,,t,_)+B,(,_)Q, (tk_l)BiT (t,_) (6.10)
H ()R]t )H, () =P (1)) =P (t;) (6.11)
H (1R 1)z, (1) = P 0 )%, (1) =P (1%, (1)) (6.12)

and the global time-update and measurement-update equations are as follows:
X(1,) =@t 1, X)) (6.13)
P(t,)=®(,.t, )Pt )@ (.1, )+G(,_)Qt,_ )G (t,,) (6.14)
P(t)=P 't )+H" (¢ )Rt H(t,)

N 6.15
=P )+ Y H ¢, )R (1)H,(1,) ©1
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PR =P HX(t))+H' (1,)R7'(1,)z(t,)

N (6.16)
=P ()X + Y H ()R (1,)z,(1,)

Substituting Eq. (6.11) into Eq. (6.15) and Eq. (6.12) into Eq. (6.16) generates

the following global update equations

P! (t,j) =P (t,j)+Z[P,i1 (t;)—Pi‘l(t,:)] (6.17)
P ORE) =P )R+ D P EOR, ) =P ()R, (1,)] (6.18)

=1
Egs. (6.9) to (6.14), and (6.17) and (6.18) describe the Type I algorithm. In this
algorithm, each parallel local filter only processes its own measurements in order to
generate its local estimates. The global fusion filter assimilates all the local estimates
to update the global estimate. Obviously, this algorithm has a simple structure. The
main disadvantage of this algorithm is that the degradation of the local filter
performance may critically affect the performance of the global fusion filter because
the global estimate cannot be used to refresh the local estimates.

For the two-way model shown in Figure 6.2, the time-update equations are
given by Egs. (6.13) and (6.14). Placing the global update equations (6.17) and (6.18)
at each node yields

Pl ) =P )+ D [Pt —P ()] (6.19)

i=1
N

Pl OX, () =P (t)X,(1;) + ;[P;1 tOX, ) =P )X, )] (6.20)

Egs. (6.9) and (6.12), and (6.19) to (6.20) constitute the Type II algorithm. In
this algorithm, each local fusion filter updates its global estimate by assimilating the
local estimates from the other local fusion filters. Accordingly, all the local estimates
can be dynamically corrected by their global estimate updates. The Type II algorithm
overcomes the disadvantage of the Type I algorithm and provides the redundant
global state estimates. Therefore, this algorithm is a fault-tolerant fusion algorithm.

In many practical examples of state-identical distributed sensor network

systems, not all the sensor systems can observe the complete states of the same
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dynamic system. Therefore, the local state is a subset of the global system state and
the local filters are generally designed to be reduced-order. In such cases, the Type |
and Type II algorithms given above must be modified.

Let the local system states be abstracted from the global state as follows:

X, (t,)=D.x(t,) (6.21)
where D, is a one-way state abstraction matrix consisting of ones or zeros and each

row of D, has at most one non-zero element.

From Eq. (6.4), a sub-matrix of the global measurement matrix is associated
with a local measurement matrix by

H.(,)=C,(t,)D, (6.22)
From Egs. (6.15) and (6.16), the global update equations are given by

P =P () + DT IPY (1) B (1D, (6.23)

i=1

P ()Rt =P~ (1, k() + iDT [P (tOR, ) —P ()R, ()] (6.24)

i=1

and the local estimates can be obtained as follows:

P(t,)=®,(,,t, )P (] )(IJiT(tk,tk_l)+Bi(tk )Q,; (¢, )BiT(tk) (6.25)
P () =P (1)~ C (1R (1,)C,(1,) (6.26)
X, )=®,,.t, DX, (1) (6.27)
PR () =P ()R, (1)~ CT ()R] 1)z, (1)) (6.28)

Egs. (6.23) to (6.28) constitute the modified Type I algorithm.
To deduce the modified Type II algorithm, from Eq. (6.21), the relationship
between the covariances of the local states and the covariance of the global state can

be obtained as follows:

P.(r,)=D.P(,)D,’ (6.29)
P (1) =[D]I'P" (z,)[D,T (6.30)
P7'(t,)=DP'(z,)D, (6.31)

where D] is a Moore-Penrose inverse of D, and [D;]" =D, . As the row dimension
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of D, is less than its column, D; =D (D.D)™".
It should be noted that D, is a one-way abstraction matrix and Eq. (6.31) cannot

be used to restore the global covariance from a local covariance. However, if the
purpose of the local fusion filter at each node is to update the local estimates, Eq.
(6.31) will be valid.

From Egs. (6.21) and (6.31), the global system state at each network node can

be represented by the following equation
P'(t)X(t,)=D/P'(t,)D.X(t,) =D'P ' (t )X,(t,) (6.32)
Eq. (6.32) implies restoring the global version of the local estimate rather than the

global estimate from the local estimate.

Substituting Eq. (6.31) into Eq. (6.23) and Eq. (6.32) into Eq. (6.24) yields
N

P (t))=P; (t) =D I (D D[P (¢))— P (t; )ID,}[D, T’ (6.33)
i=1

Substituting Eq. (6.32) into Eq. (6.24) yields

PR, () =P ()%, (1)

—[Dj]*iD? [P (1%, (1)) =P (1%, (1,)] ©39
Egs. (6.33) and (6.34) create the modified Type II algorithm. It must be noted that
the modified Type II algorithm has no global fusion model and all the local fusion
filters have their own fusion models. This is different from the Type II algorithm
where a global fusion model can be used in all the local fusion filters. A constraint on
the choice of the local fusion model is that the dimension of the states in the local
fusion model must be equal to that of the states in the corresponding local state filter
model. The modified Type II algorithm is suitable for applications where the local
state estimate is more important than the global state estimate.

The Type I and II algorithms and their modifications are widely used in target
tracking and identification applications and can also be used to design and develop
conventional aircraft integrated navigation systems where the main requirement is to
determine the motion states of the aircraft centre of gravity. The traditional cascaded

and federated filters are special examples of these distributed algorithms. However, a
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common constraint applied to both algorithms is that all the local filters must have

the same dynamic model. This limits the application of the Type I and II algorithms.

6.2.2 State-Associated Distributed Fusion Algorithms

State-associated distributed fusion algorithms are presented for distributed
sensor network systems, as illustrated in Figures 6.3 and 6.4 where all the sensor
systems are distributed and observe their local dynamic motion states. Therefore, all
the local dynamic models may be different from each other and the global dynamic
model. Similar to the analysis in Section 6.2.1, this subsection describes two kinds of
sensor fusion algorithms. The Type IA algorithm is used for the distributed system
shown in Figure 6.3 while the Type IIA algorithm applies to the distributed system in
Figure 6.4. In Figure 6.3, all the local estimates are transferred to the global fusion
filter whereas in Figure 6.4, each local fusion filter assimilates all the local filter

outputs.

Local Dynamic
System-1

Local Dynamic
System-2

Local Dynamic
System-N

Figure 6.3 State-Associated One-Way Model

—~

Figure 6.4 State-Associated Two-Way Model
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In these distributed systems, the following assumptions apply.

X, (t,)# X, (1) #x(,)

w (1) #wW, (1) #wW(t,)

QD @

B.(t)#B;t,)#G(,)

C@)=C,t,)=H,,)

However, some relationships must exist between the local states and the global
state. Assuming the local states are restored from the combination of the elements of
the global state, then Eq. (6.21) can be rewritten as follows

x,(¢,)=T.D.x(z,) (6.35)
where T, is an invertible square matrix having the dimension consistent with the
dimension of the local state X, .

Therefore, from Eq. (6.4), the local measurement matrix is given by

H, (,)=C,(,)T.D, (6.36)
From Egs. (6.23), (6.24), (6.35) and (6.36), the global update equations of the global
fusion filter are as follows:

P (1) =P )+ S (DI 1)~ B (¢ )ED, (6.37)

P
N

PR = P OR(E)+ DDITIR DR () =P )R 0] (638)
The global time-update equations and the local time-update equations are based on
the standard information filter. The fusion algorithm based on Eqgs. (6.37) and (6.38)
is known as the Type IA algorithm.

For the distributed system shown in Figure 6.4, from Eqgs. (6.33), (6.34), (6.35),
and (3.36), the Type IIA algorithm can be implemented as follows:

P () =P (1)

N 6.39
LTI Y DTTP ) — P (), D D, T )
j=1
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Pt O%, (1) =P (1%, (1))
. g o een Y (6.40)
- [D;r] [TI‘T] 1ZD}-T;F [PJ : (tk )Xj (tk ) - Pj : (tk )Xj (tk )]
j=1
At each network node, the local filter estimate equations are given by the standard
information filter algorithms. If the number of the local states is the same as the

global state, then D, =1, and T, represents a transformation between the local states

and the global state.

In comparison with the Type I and Type II algorithms, the Type IA and Type
ITA algorithms are applicable to a wider range of distributed sensor systems. But they
need to establish the transformation relationships between the local states and the

global state. In many practical distributed sensor systems, this transformation T, may
be time varying T, (¢,). Therefore, it is very important to develop this dynamic

transformation in applications of the Type IA and Type IIA algorithms.

Comparing the Type I and Type IA algorithms with the Type II and Type 1IA
algorithms, the former needs to establish the global system model of the distributed
sensor network system whereas the latter does not. From the viewpoint of fusion
filter distributions, the Type I and Type IA algorithms can be also referred to as the
centralised fusion filter algorithm and the Type II and Type IIA algorithms are
known as the fully distributed fusion filter algorithm.

The Type IA and Type ITA algorithms can be used to resolve the problems of
distributed controls and estimations where the local state information is particularly
needed for local system controls and stabilisations and also for estimation of the local
motion states.

In the following sections, a distributed inertial network system is presented as

an example to explain the development of fully distributed fusion algorithms.

6.3 Distributed Inertial Sensing Models

A simplified version of the distributed inertial network system architecture

shown in Figure 5.3 is illustrated in Figure 6.5 where three IMUs are located at
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different positions in an aircraft. These IMUs independently measure individual local
qualities, but the measured or estimated states are not completely independent due to
the rigid structure of the aircraft and are dynamically associated with each other. The
development of this dynamic relationship between the local states and the measured
qualities can drastically utilise the inertial information provided by the inertial
network to detect and isolate sensor/system failures, and to particularly implement
dynamic calibration and transfer alignments between the various inertial systems.
Consequently, this dynamic relationship can be used to improve the required
navigation performance in terms of the RNP parameters and to greatly increase the
fault tolerance of an aircraft navigation system. This dynamic relationship can be
established by the development of the rotational and translational transformations
between the node frames.

T Rotation transformation

Local IMU (body) frame
Local reference frame

1 Translation transformation

& »
< |

Smmm——

l The black arrows represent
the local reference frames
and the red_arrows are the @y, J
local IMU frames:

\I/' A

Figure 6.5 Relationships among IMU Nodes
In Figure 6.5, the IMU frames and the corresponding local reference frames are
indicated. Let I be the inertial reference frame cg is the master IMU node located at
the aircraft centre of gravity and its local body frame; i and j represent the slave
IMU nodes and their individual local body frames(in this thesis, the IMU frames are
assumed to be aligned with the local body frames, otherwise, fixed transformations

are needed to align these two frames). L denotes a translational transformation, for
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example, 1/ is the translation vector from nodes i to j T represents a rotational

transformation, for example, the transformation from i to j is denoted by T/ .
Exchanging the superscript and the subscript of a transformation represents the

inverse of the transformation, for example (T/)™ =T, . Let the local reference

frames at the nodes of i, j and cg be denoted by L', L’ and L® , then the
transformations from the local reference frames to the local body frames are given by

T;, TLj, and T . If the local level frames are used as the local reference frames,

these rotation matrices indicate the orientations of the local body axes relative to the
local reference frames. If one local reference frame is not the local-level frame, then
its orientation should be known relative to the local-level frame. Because the local-
level frames are defined by the geographic locations of IMU nodes, their orientation
differences caused by the translation vectors between these nodes can be ignored.

Consequently, in this thesis it is assumed that the local-level frames located at all
inertial network nodes are identical, thatis I/ = [ = L.

Let the relative rotation of one IMU frame i with respect to another frame j

be ®,,

; and its inverse rotation be @, ; =—® ;. From the theory of multi-body
rotation'®”), the absolute angular velocity of each IMU frame in the inertial network
system is the sum of the absolute angular velocity of the other IMU frame and the
relative angular velocity between these two frames, and is generally written in the

following form:

O, =0, T0O,, (6.41)
O =0 O, (6.42)
Oy, =0, tO,, ., (6.43)

The terms on the left side of the above equations are measured by the corresponding
local IMUs. The rotational transformations among the local IMU (local body) frames
depend on the relative angular velocities between these frames.

Determination of the stationary and dynamic relationships among the network

nodes is discussed in the following subsections.
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6.3.1 Stationary Inertial Sensing Model

In this method, the aircraft is assumed to be a completely rigid body to simplify
the analysis. Based on this assumption, there is no relative rotation motion between
the local node body frames. Therefore, the dynamic relationships between different
IMU frames can be described by stationary rotation and translation transformations
from one node frame to the other node frame. These transformations can be
measured precisely and determined after the IMUs have been installed in an aircraft.

When the local state x is a rate vector, such as acceleration, velocity or angular
velocity, a rotation matrix is used to complete the rotation transformation from one

node frame to the other node frame as follows:
X, = T"jxj (6.44)
If the local state is a displacement vector, a rotation matrix can be combined

with a translation vector together to complete the transformation from one frame to

the other frame as follows:
X, = T;xj+ J_f,. (6.45)
When the local states are the Euler angles, the attitude matrix transformation
from one frame to the other frame has the following form:
T; = Tj’.TL’/. (6.46)

where the states x; and x; are expressed in their individual local frames and T; and

J_ij are known as the rotation matrix and the translation vector, respectively.

At an IMU node, the measured inertial states, accelerations and angular rates,
are expressed in terms of the local body frames and the IMU outputs are represented

in the inertial instrument frames. The transformation between the inertial instrument
frame and the local body frame, for example, at the cg node, is given by H® , where
the subscript imu“ denotes the IMU instrument frame at the cg node. The matrix
H* . depends on the IMU configuration and can be dynamically reconfigured if the
IMU is an SRIMU. From Eq. (5.2b), the measurement of the cg IMU can be

rewritten as
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L =H™"x_ (6.47)

By the rotational transformations, the measurements provided by IMUs i and j can

be represented in terms of the local body frame at the node cg as follows:

m_ =H™x =H"Tx, (6.48)
_=H™x, =H™T/x, (6.49)

Eqgs. (6.48) and (6.49) mean that the node cg assimilates the inertial measurement
information from the slave nodes i and j . Therefore, the inertial measurement at the

node cg can be represented as

imu®
n‘limu"g H‘g
_ _ imu' i _
m,=\m,_. = H"T, x, =H,/x, (6.50)
imu’ rmp j
mimuf Hf TC(S’

Similarly, the inertial measurements at the nodes i and j are as follows:

imu‘® rpcg
imu® HCg Ti
m=m_,|= H™ [, =Hgx, (6.51)
imu
imu’ Jj
imu? Hj Ti
imu‘® mpcg
imuct HCX Tj
_ _ imu’ i _
mj - mimui - Hi TI Xj - Hij (652)
imu’
imu’ Hf

Egs. (6.50), (6.51) and (6.52) imply that each node shares the same redundant inertial
measurements even if all the IMUs are traditionally orthogonal systems. Therefore,
the SRIMU FDI algorithms developed in Chapter 5 can be used directly to detect and
isolate inertial sensor failures in an inertial network system. Various weighted least-
squares estimators can be used to estimate the inertial state. This procedure of data
assimilation and least-squares estimation is referred to as inertial data fusion. The
inertial data fusion procedure increases the measurement accuracy of each IMU and
consequently improves the performance of the navigation system and the accuracy of

the local state estimation.
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One node estimates its local attitude matrix from the assimilated inertial
measurements. From Eq. (6.46), it can also assimilate the attitude information from

the other nodes using the following attitude matrices.

Atnode i,
T (6.53)
T, =TT (6.54)
T., =T T (6.55)
Atnode j,
T/ (6.56)
T, =T/T, (6.57)
T/, =T/T% (6.58)
At node cg,
T (6.59)
TS =TT, (6.60)
T =TT} 6.61)

Therefore, the redundant attitude information at each node can be fused to increase

the accuracy of the local attitude estimates.

6.3.2 Dynamic Transformation Model

Although the assumption of a rigid body aircraft can apply to a wide range of
applications in aircraft navigation and control systems, this assumption may be
invalid in many military aircraft navigation and control systems because high-speed
flight and high dynamic manoeuvres can cause the aircraft body to flex with flight
conditions. The rotational transformations given in the above section are no longer
stationary but are time-varying dynamic matrices. If the flexible structure character

of an aircraft is ignored, the above assimilation equations will introduce errors in the
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rotation transformation AT, leading to larger errors in the estimates of the local
states. Therefore, it is necessary to develop the dynamic relationships between the
network nodes and to estimate these dynamic transformation matrices in flight. Two
methods are presented in this thesis to determine these rotational transformations.
One method establishes analytical models of the rotation matrices while the other
method is an iterative processing method. In both methods, it is assumed that all
initial transformation matrices are known. This assumption is reasonable because an
initial transformation matrix can be approximated by a stationary transformation
matrix, as given in Section 6.3.1.

The iterative processing method for the determination of the transformation
matrices is based on Eq. (6.46) where the local attitude matrices at the IMU nodes
are obtained by invoking the inertial attitude determination algorithms. The dynamic
transformation matrices are then estimated from the computed local attitude matrices.
The architecture of this iterative algorithm is illustrated in Figure 6.6.

Because the dynamic change of a rotation matrix relative to its initial matrix

occurs over a small dynamic range, the estimated transformation matrix T/, can be

k

expressed by the combination of the previous estimated rotation matrix and a small
angle displacement vector y/, . Therefore, the estimated rotation matrix at the
current time can be equivalently rewritten as

T =T/ A+y! % (6.62)
This process is repeated until the norm of y/, is less than a specified value; the
current transformation matrix can then be determined.

From Figure 6.6, this iterative process is a time-consuming computation
because each iteration must perform the inertial attitude determination algorithms for
all the IMU nodes. The main advantage of this method is that the errors of the
transformation matrix estimates are independent of the dynamic models of the
transformation matrices. In addition, the inertial attitude determination algorithms

play the role of a noise filter, which can reduce the effect of the IMU measurement

noise on the rotation matrix estimates. However, uncertainties in the local attitude

155



DISTRIBUTED DATA FUSION ALGORITHMS

6.3 Distributed Inertial Sensing Models

matrix estimates will contribute to errors in the rotation matrix estimates.

Given a stationary

transformation matrix T/

as an initial estimate T/ _,

»
»

A\ 4

At each node, the estimated rotation matrix is used to assimilate
the inertial information from all the other IMU nodes

\ 4
Call the local IMU navigation algorithms to compute

the local attitude matrices, Tiy and ’i‘]y

Next [terative process

Use the estimated attitude matrices to estimate the
transformation matrices, Tij P = T L/ ; TiL where k is an

iterative step.

Compare the current and
previous estimated rotation

matrices "\y{k " <e

[ The rotation matrices have been determined ]

Figure 6.6 Iterative Computation of Rotation Matrices

To deduce the analytical dynamic models of the transformation matrices, the

cg body frame is used as a reference frame for the relative rotation motion of all the

other local frames and the measured angular velocities. Therefore, Eqs. (6.41) to

(6.43) can be rewritten in the matrix form of the angular velocity vectors as follows:

QF =0 +QF

1/i 1/cg cgli

QF =0 +QF

1/j I/cg cglj

QF =0F +QF

1/i 1/j jli
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where € is the skew-symmetric matrix of the corresponding angular velocity vector
o . The superscript cg denotes that the angular velocity vectors are expressed in
terms of the local cg body coordinates.

From the attitude matrix differential equation given in Eq. (4.22), Eq. (6.63)

can be written as

Q= -T,T* (6.66)
Therefore

T., =(Q},, — Q)T 6.67)

oy, =T Q) T, (6.68)

Similarly, the differential equation of the rotation matrix TC’% is as follows:

Q. =T Q] T, (6.70)
where Q(f_, Q|,, and Q, ; are estimated from the IMU measurements at the nodes

cg, 1 and j, as givenin Eq. (5.3).

The rotation transformation matrix between j and i is then computed by the
following equation.

T, =T, T} 6.71)

Obviously, the dynamic models of the rotation transformations are non-linear
matrix differential equations. The initial values of the matrix differential equations
are given by the stationary transformations. These differential equations have to be
iteratively resolved at the measurement time until the solutions become stable.

In comparison with the iterative processing method, the main advantage of the
analytical method is that the time-consuming iterative computation of complex
inertial attitude determination algorithms at all the IMU nodes is avoided. However,
because the IMU outputs are directly used to drive the rotation matrix differential
equations, the IMU measurement errors and noise may affect the accuracy of the
solution of the rotation matrices. As a result, data pre-processing filters are needed to

eliminate abnormal IMU measurement noise.
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6.4 Distributed Inertial Network Fusion Algorithms

From Section 6.3, each node in the inertial network system can assimilate both
the local measurements and the local estimates. Therefore, a two-stage data fusion
strategy is presented to develop distributed data fusion filter algorithms. The first-
stage fusion processes the inertial network measurement at all the nodes to obtain the
more accurate local inertial state vectors, known as distributed inertial measurement
fusion. The second-stage fusion is to increase the accuracy of the local system state
estimates at all the network nodes and to enhance the fault tolerance of the inertial

network system, referred to as distributed state fusion.

6.4.1 Distributed Inertial Data Fusion Algorithm

Assume that all the local IMUs are independent of each other and their
measurements have a Gaussian probability distribution. Then the errors of the local
inertial state estimates are also a Gaussian distributed random vector from Eq. (5.4).

Therefore, the probability density function of the local inertial state is

1
(%) = ———
P Jany det P,

where x is an 3-dimensional local inertial state vector, for example, the acceleration

exp[—% (x-%)" PX‘1 (x—%)] (6.72)

or angular rate vector, and P, is the covariance matrix of the error of the local inertial
state estimate. From Eq. (5.5)

P =(H'H)'H'RHH'H)"' =H'R[H']" (6.73)
The objective of the inertial measurement fusion is to generate optimal estimates of
all the local inertial states. Defining an optimisation criterion that maximises the

following conditional probability
P(X%,.%,.%,,)
From the assumption that all the IMU measurements are independent, the

conditional probability density function of the true local inertial state at each IMU

node can be represented as follows:
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P(R,% ;%) = p(x) = (&) p(xX ) p(xR,.,) (6.74)

Applying the maximum likelihood estimator to Eq. (6.74) and considering Egs.

(6.50) to (6.52), the inertial measurement fusion equations at each IMU node can be

derived as follows:

r -1

x,=| YT'P,T,| D T/PoHmM, J=ijcg (6.75)
| I=i.j.cg | I=ijcg
r -1

x,=| YT/PIT, | D T/H/R'm, (6.76)
_l:i,j,cg i I=i,j,cg

P = > TP T, J=ijeg 6.77)

I=i,j,cg
Eqgs. (6.75) or (6.76) and (6.77) are the inertial measurement fusion algorithm at each
IMU node. Any other methods, for example various weighted least-squares methods,
which are used to resolve Egs. (6.50) to (6.52), can be classified as the inertial
measurement fusion. It should be noted that the inertial measurement fusion is
mainly used to provide highly reliable local inertial state estimates. However, its
outputs can also aid FDI systems to detect and isolate inertial sensor failures. The
inertial measurement fusion can be considered as a pre-processing procedure for the

second-stage fusion.

6.4.2 Distributed State Fusion Filter Algorithm

The architecture of the state fusion filter algorithm at each node is illustrated in
Figure 6.7 where the local Kalman filter uses the assimilated sensor measurements to
estimate the local states. The local fusion filter combines the local estimate and the
assimilated estimates from the nodes to update the local estimates.

At each node of the inertial network system, the local Kalman filter model can

be described as follows:
X,t,)=®,t,.t,_)x,t,_)+G,t,_)w,(t_) (6.78)
z,(t,))=H,@)x,t,)+v,(t,) (6.79)

where J =1, j,cg denote the IMU nodes.
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Local
estimates

Local
estimate

Assimilated
Tocal estimates

Figure 6.7 State Fusion Algorithm Architecture
The navigation algorithms and the SRIMU error dynamic models developed in
Chapter 4 can be applied to all the IMU nodes once the corresponding coordinate
frames are specified. But, each local dynamic model describes its local state, which

is different from the local states described by the other dynamic models. The local

state X, can be decomposed into the local system state x,, and the local sensor

error state X, that is

x, =[xt x, ] (6.80)

All the local system states at the network nodes are referred to as the similar states.
The dynamic matrices established in Section 6.3 provide the transformations among
the similar states.

z, can be decomposed into three sub-vectors as follows:
zZ, = [zT Z., 7. ]T (6.81)
J Ly S.J AJ :
where z, , is the measurement vector provided by local navaid sensor systems, zg

is the measurement vector given by the commonly-shared navaid systems and z, , is

the combination of all the inertial measurements assimilated from the IMU nodes.
The normalised measurement models of several navaid systems have been developed
in Section 4.6 and the normalised measurement models of redundant inertial sensor
systems have been given in Section 5.5.

Because these three forms of measurements are independent of each other, the

terms in Eq. (6.79) can be decomposed into the following forms:

160



DISTRIBUTED DATA FUSION ALGORITHMS

6.4 Distributed Inertial Network Fusion Algorithms

T
H, = [HIJ HE,J HT&J] (6.82)
T
v, = [I)EJ 1):5,1 0}]] (6.83)
R, =blockdiag(RLJ,RS,J,RAJ) (6.84)

All the local Kalman filters process these three forms of the measurements to

obtain the local estimates, including the local states and covariances, as follows:
X,(t,)=®,(t,t,_)X, () (6.85)
PJ (tk_) = (I)J (tk ’ tk—l )FJ (t;——l )(I); (tk ’ tk—l) + GJ (tk—l )QJ (tk—l )G; (tk—l) (686)

P (i) =P, (1) +H) )R} (¢ )H, (t,)

=P/ (t)+ Y H, (¢ )R (¢ )H,, (1,) (6.87)
I=L,S,A
P ()%, (1) =P ()R, )+ H) (0 )R} (¢ )z, (1))
(6.88)

= Pj_l ()X, )+ ZHZTJ (7, )RI_IJ (t)z, ,; (1)

[=L,§,A
where X, and P, are the local estimates given by the local Kalman filter and X, and
FJ are the estimate updates given by the local fusion filter.

To update the locally estimated system states at each node using the similar
state estimates assimilated from the other nodes, a state fusion filter is needed in each

node. Defining a quadratic cost function at the node i as follows:

Jo= Y(T)&, -x,) TP T/ (Ti%}, -x,,) (6.89)

J=i,j,cg
where X ; is the local system state estimate given by the local Kalman filter, x; is
the true local system state at i, P, ; is a sub-matrix of P, and is associated with the

local system state and J, is a measure of the displacement of the local state from its

true value.

The state fusion filter is designed to minimise J,. This is referred to as the

minimum weighted mean square error criterion.

Differentiating J, and setting the result to zero yields

X, =P (P)x;, +T/P'x: +T P %! ) (6.90)

0,i 0, JTo.jT0,j €8~ 0,687 0,8
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P =P, +TP T +T P, T*) 6.91)

In a similar fashion, the similar state update equations at the nodes j and cg can are

given as follows:

X, =P (R % +T/P %, +T P L% ) (6.92)
P =P +T/P T, +T,P | T) (6.93)
X, =P L (PR +TFP %, + TP X)) (6.94)
P =P +TFP T, +T*P,T,) (6.95)

Egs. (6.90) to (6.95) form the distributed state fusion filter algorithm. By examining
the above analysis, this distributed state fusion algorithm actually consists of two
fusion procedures, the measurement fusion given by Eqs. (6.87) and (6.88) and the
state fusion given by Egs. (6.90) to (6.95). The state fusion provides the redundancy
of the similar system states. Therefore, this fusion method can greatly improve the
fault tolerance of an inertial network system.

From Egs. (6.85) and (6.86), the outputs of each fusion filter are fed back to its
corresponding local Kalman filter. This feedback operation implements the dynamic
transfer alignments between the node IMUs and also allows the local Kalman filter to
accurately estimate and calibrate its sensor error state. Consequently, this distributed
state fusion algorithm provides the capability to perform the dynamic alignment and
calibration of the inertial systems in an inertial network system. Therefore, traditional
inertial system alignment algorithms, for example, fine and transfer alignments, are
no longer necessary in inertial network systems. The traditional in-flight alignments
generally require an aircraft to perform some specified manoeuvres, which may lead
to enormous risk especially to military aircraft and pilots. The elimination of the
traditional alignment procedures allows aircraft to execute free flight and arbitrary

manocuvres.

6.5 Inertial Network Integrity Monitoring

From the inertial network dynamic models given by Eqs (6.78) and (6.79), the

failures in the inertial network system can be classified as sensor system failures and
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local system state failures. From Eq. (6.81), the sensor system failures may result
from the inertial sensor systems, the local navaid sensors and the commonly-shared
navaid systems. Therefore, the purpose of inertial network integrity monitoring is to
ensure all the local filters are able to provide the very reliable local system state
estimates and to detect and isolate various sensor failures and the abnormal local
system states from the inertial network system in a short time.

In this thesis, two integrity monitoring strategies have been suggested to
guarantee the integrity of the inertial network system, including the sensor-level FDI
and the system-level integrity monitoring, as shown in Figure 2.9 of the generalised
MSDF model. The sensor-level FDI methods have been developed in Chapter 5 and
are initially used to detect and isolate the inertial sensor failures in skewed redundant
configurations or the GNSS signal failures in the redundant GNSS measurements.
These methods can be directly applied to the inertial assimilation equations given by
Egs. (5.50) to (5.52) to detect and isolate the distributed inertial sensor failures in the
inertial network system. In addition, many other methods have been suggested in the
recent years for detecting and isolating the GNSS signal failures, for example,
receiver autonomous integrity monitoring (RAIM) methods and aircraft autonomous
integrity monitoring (AAIM) methods'®. However, these methods cannot guarantee
that the system state estimates computed by the local Kalman filters are reliable.

To verify the integrity of Kalman filters, several Kalman filter-based detection
methods have been developed in the past. For example, a method, called multiple
model adaptive filters, has been suggested where a bank of Kalman filters is used,
each with a different model. The innovations of these filters are monitored and the
conditional probability that each system model is correct is computed. This technique
has the advantage of being able to provide reliable filter outputs and to isolate failed
sensors and improper filter models. However, with the number of the filter states, the
computations required by all the node processors may be time-consuming.

Several failure detection filter methods!''** have also been suggested for the
detection of actuator, plant and sensor failures in control systems. A detection filter is
a full-order linear state-space observer. In detection filter design, the gain matrix

must be chosen so that the residual vectors generated by certain actuator or sensor
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failures can be projected to lines and planes in the measurement space and each
potential failure has a different fixed direction. Accordingly, the detection filter gain
is adjusted in order to identify the feature of failure signals, but not to minimise the
mean square error of estimation, as is done in a Kalman estimator. In addition, many
detection filters assume that dynamic systems are noise free. Application of detection
filters to inertial network integrity monitoring noticeably increases the complexity of
data fusion algorithms in the network system. Other model-following approaches
require that one Kalman filter performs the usual tracking and estimation, and the
other filters are used to detect the presence of specified (or previously characterised)
failure modes. Based on the above analysis, all of these three methods of Kalman
filter-based failure detection are inappropriate for inertial network systems because
they significantly increase the computation load at each node.

Therefore, in this section, easily implemented and real-time detection methods
are developed not only to monitor the integrity of inertial network systems but also to

reduce the computation load at the inertial network nodes.

6.5.1 Inertial Network Failure Model

As shown in the previous section, the local node system models in the inertial
network system are described by the local IMU error dynamics. From the analysis in
Chapter 4, if the inertial sensor failures occur, the local inertial navigation algorithms
may produce abnormal similar system states, which further cause uncertainties of the
state transition matrices of the local system models. If the navaid system failures
occur, the local and commonly shared measurements may contain errors. Therefore,
it can be assumed that the effect of the inertial sensor failures are considered as
additional system state failures in the dynamic models whereas the navaid system
failures are modelled as additional measurement failures in the measurement models
of the local Kalman filters. Accordingly, a failure model of the Kalman filter at each

node is established as follows:
X, t)=®, .1, )X, ,(_)+6(,.7,, )fx(,,J +G,, )W, (5)  (6.96)

gy ) =H (0%, (0 )+ 0, Ty ) iy + 040, () (6.97)
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where x_, and z ,, , are the local system state and the navaid system measurement
vectors at the node J, & is a diagonal matrix of Kronecker functions, f, , is a time-
variable local system state failure vector and f,,, , is a time-variable navaid system

failure vector. This is a reduced-order filter model compared with the corresponding
local filter.

Because the effects of the inertial sensor failures have been considered in the
system dynamic model, the inertial data assimilation equations are not contained in
the measurement model. Furthermore, the coefficient matrices of this failure model
are the sub-matrices of the coefficient matrices of the corresponding local Kalman
filter. Therefore, the outputs of the local Kalman filters are directly used to generate
failure detection functions without additional computations.

Two efficient system-level methods are presented in this section to monitor the
integrity of the inertial network system. One method is based on directly examining
the consistency of the distributed state estimates whereas the other is to monitor the
distributed filter innovations for detecting and even isolating the local navaid sensor

failures and the commonly shared navaid systems failures.

6.5.2 Distributed State Consistency Monitoring

Assuming no sensor failures occur at any network node, then all the local
similar system states must be consistent through the transformations among the local
similar states. In the presence of any sensor system failures at one network node, this
assumption will no longer be valid. Accordingly, the distributed state consistency
monitoring method can employ combinations of the similar system state estimates
computed by all the local filters to check the consistency of all the similar system
states. Figure 6.8 shows the architecture of this integrity monitoring method.

At each node, the redundant local similar state estimate X, (J =1, j,k ) can be

represented as follows:

A _mig
Xo,i - TJX(),J +8xm
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A s
Xo,j - TJXO,J +8Xg,j

Xo,rg

s mesa
X, e =T, X,, +¢

or
A i
Xo,i TJ
N _ i A
X, |=| T, K., T&, (6.98)
N cg
Xo,cg T]

where €_ is the error of the local similar state estimate with the known covariance

P, ,, as computed by the local Kalman filter.

B

Figure 6.8 Architecture of State Consistency Monitoring

To check the consistency of the distributed attitude states, the quaternion form

q of the local attitude matrix is used. Therefore, the redundant quaternion equations
are derived as follows:
qT, =Tq,
q,T/ =T/q,
q., T =Tjq,
or
af | T
q, T/ |=| T, ja, (6.99)
q,T ] |T*
where T, is the quaternion transformation matrix corresponding to T .

By structuring the redundant equations given in Egs. (6.98) and (6.99), the

problem of the distributed state consistency checking is similar to the sensor FDI
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problem described in Chapter 5. Therefore, applying the FDI methods developed in
Chapter 5 to the redundant state equations, the state failures of the local Kalman
filters can be detected and isolated. This is a simple and efficient method to monitor
the integrity of all the local Kalman filters in real time without considering the
sources of failures. From Figure 6.8, this state consistency checking can be combined
with the local state fusion algorithm. If one local Kalman filter is diagnosed to be
invalid, its outputs will be isolated from its related local fusion filter and the local
fusion filter will use assimilated estimates to reconfigure the local similar system
states according to Egs. (6.90) to (6.95). This method is mainly used to monitor the
integrity of the similar system states in the inertial network system and detect local
Kalman filter failures. It should be noted that this method of integrity monitoring is
based on the assumption that all the transformation matrices among the similar states

are correct.

6.5.3 Distributed Filter Innovation Monitoring

The navaid system failure f,,, , appearing in the failure measurement model of

Eq. (6.97) contains the local navaid sensor failures and the commonly-shared navaid
system failures. Any failures resulting from the commonly-shared navaid systems are
common-mode to all the local Kalman filters because such failures influence all the
local systems. A common-mode failure causes the estimates of all the local Kalman
filters to diverge from their anticipated values. The distributed state consistency
monitoring method above cannot faithfully detect the local system state failures
caused by common-mode failures. However, from the analysis given in Section
3.2.6, the Kalman filter innovation is independent of the actual measurements of the
navaid systems. By monitoring the innovation generated by all the local Kalman
filters, any failure caused by the local navaid sensors or the commonly shared navaid
systems can be correctly detected.

From Egs. (6.96) and (6.97), the failure filter innovation at J can be derived as

follows:

v, @) =r,@)+H, ;)87 O, ;0T h0 s K pias (6.100)
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where the normal Kalman filter innovation r(z,) is
r,t)=H, X, ,¢)+v,, 1) (6.101)

51 (1, Ty )fx(,,l-l
52 (1, Tya-2 )fx(, J-2

St T ), = (6.102)
0, T s s s
8,(tu Ty s s 1o
8t Thia W pia s = %20 P22 (6.103)

é‘m (tk "TAid,J—m )fAid,J»m
Exploiting Eq. (6.100) for detection and isolation of the navaid system failures
and monitoring the integrity of the local Kalman filters, two assumptions are made:

T, # Tyq, - Thatis, the time 7, , of the occurrence of system state failure
is different from the time 7,,, , of the occurrence of the navaid system

failure, or

¢ Inertial sensor failures have been detected at the sensor-level FDI stage or
by the inertial measurement fusion procedure.

Based on the above assumptions, a normalised quadratic innovation function of

r, can be used as a test statistic to test the filter integrity, as given in Eq. (3.32).

NOI,(t)=r,, (t)S; ¢t )r,, () (6.104)
If NQI(t,)2T,,, , . then failures have occurred.

If NQI(t,)<T,,, ,then no failure has taken place.

ol >

An advantage of this NQI testing is that its degree of freedom is equal to the
number of the filter measurements. This means that the NQI testing can verify each
measurement of the navaid systems one by one. Therefore, it can isolate each failure
occurring in the navaid system measurements, for example, GNSS signal failures or
Doppler radar signal failures. The sequential moving-window methods introduced in

Chapter 5 can be used to pre-process the filter innovation in order to increase the
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reliability of NQI testing.

> LKEi [ »  State
T, ; Fusion
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Lsj
> LKF-cg
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Figure 6.9 Architecture of Distributed Filter Innovation Monitoring

Without considering the above assumptions, from Eq. (6.100), the NQI testing
examines the combined effect of the navaid system failures and the system state
failure on the filter performance. When both the system state failures and the navaid
system failures simultaneously occur, NQI testing only provides alarm information
but cannot isolate the failed states or measurements. Therefore, the filter integrity
monitoring should cooperate with sensor-level FDI procedures to ensure the integrity

of an inertial network system.

6.6 Summary

This chapter has developed several distributed fusion algorithms for distributed

multiple sensor navigation systems. The main activities covered include:

1. Introduction of four forms of the distributed sensor systems for navigation
applications and the corresponding fusion filter algorithms, including the
state-identical and state-associated distributed sensor systems, both with
one-way and two-way data communication modes. Four fusion algorithms
cover Type I, Type II, Type A and Type IIA, respectively corresponding to
the above four distributed sensor systems.

2. Development of inertial network sensing models, including the stationary
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inertial sensing model and the dynamic transformation model.

3. Study of two distributed inertial network fusion algorithms, including the
distributed inertial data fusion algorithm and the distributed state fusion
filter algorithm.

4. Introduction of two inertial network integrity monitoring algorithms,
including the distributed state consistency monitoring algorithm and the

distributed filter innovation monitoring algorithm.
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Chapter 7

SIMULATION SYSTEM AND RESULTS

7.1 Introduction

This chapter develops a simulation system environment to test and evaluate the
failure detection and isolation and integrity monitoring algorithms and the distributed
data fusion algorithms developed in this thesis. Section 7.2 introduces the overall
architecture of this software simulation system, the architectures of the SRIMU
simulation system and the GPS simulation system, as well software development and
evaluation strategies. The test results of MW-GLRT algorithms are given in Section
7.3. Several case studies of distributed data fusion algorithms are presented in

Section 7.4. The results of the simulation studies are summarised in Section 7.5.

7.2 Simulation System Architecture

The software simulation system is of a modular system architecture consisting
of the sub-modules, as shown in Figure 7.1 where the shadowed modules represent
the functions to be implemented at different nodes of the inertial network. The
functions of several main sub-modules are summarised below:

Trajectory Generator

The Trajectory Generator module generates the true 6 DOF parameters (three
cg accelerations and three cg angular rates expressed in aircraft body frame), known
as the inertial state, and the true aircraft cg-referenced navigation state, including

aircraft position, velocity and attitude. These true parameters are used as reference
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values to evaluate the performance of the FDI and integrity monitoring algorithms,
and the distributed data fusion algorithms. The aircraft dynamics is modelled by a set
of ideal mathematical equations of the translational and angular motions without the
consideration of the effects of any external disturbances on the aircraft motion. This
assumption is rational because the outputs of this module, in this simulation system,
are used only to drive other sensor system simulation modules rather than to design
the aircraft control systems. In addition, because the specific force triad and the
angular rate triad measured by the inertial sensors represent the driving forces of the
translational and angular momentum equations of the aircraft, various disturbed
aircraft motions can be equivalent to the inertial sensor system errors that are
simulated in the inertial simulation system.

SRIMU Evaluator

This module evaluates the performance of individual redundant inertial system
configurations in terms of the number of inertial sensors and specific criteria. Several
criteria have been introduced in Chapter 5. This evaluator can evaluate up to 12
SRIMU configurations consisting of 3 to 6 inertial sensors, respectively. The outputs
of this evaluator are specified configurations, represented by design matrices, which
are then used in the SRIMU simulator to simulate realistic SRIMU measurements
together with an inertial sensor error simulation module.

SRIMU Simulator

This module simulates the realistic SRIMU measurements. The dimension of
the simulated SRIMU measurement vector depends on the design matrices set up in
the SRIMU Evaluator. The inertial sensor errors mainly result from five error
sources: bias, time-dependent drift, misalignment, scale factor errors and noise.
These error sources are modelled by the random constant process, the first-order
Markov process, the random walk process and Gaussian white noise. Inertial sensor
failure modes are also simulated in this module. Sensor failures are classified as hard
failures and time-drift soft failures for the evaluation of the performance of FDI
algorithms.

To simulate an inertial network system, other local inertial states are derived

from the inertial state at the aircraft cg node but take into account the dynamic

172



SIMULATION SYSTEM AND RESULTS

7.2 Simulation System Architecture

transformations between the local node frames and the cg node frame. The dynamic
transformations are modelled by the sinusoidal functions of different cycles plus the

transformation noise.

- True navigation parameters

6 DOF
Kinematic
Parameters

____________________________________________

Design
Matrixes

Inertial simulation system

Figure 7.1 Simulation System Architecture
SRIMU Navigator
This module implements the inertial navigation computation and the dynamic
SRIMU calibrations. At each inertial network node, this module completes similar

computations but provides the local navigation states. The inertial navigation and
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SRIMU calibration algorithms have been described in Chapter 4. The SRIMU FDI
algorithms have been introduced in Chapter 5.

GPS Simulation System

The GPS simulation system consists of three sub-modules: GPS Measurement
Simulator, GPS Navigator and GPS-based attitude simulator. The GPS Measurement
Simulator generates the realistic GPS pseudorange and Doppler measurements. The
dimension of the simulated GPS measurement vector depends on the true position of
aircraft given by the Trajectory Generator. The GPS measurement errors come from
several errors sources, including ionospheric and tropospheric delay errors, GPS
satellite and receiver clock errors, selective availability (SA) errors (the SA has been
turned off), satellite ephemeris errors and receiver measurement noise. The GPS
navigator implements the GPS navigation computations.

If a multifunctional GPS receiving system is available in the inertial network
system, it can provide the GPS-based attitude information. The GPS-based attitude
simulator (not shown in Figure 7.1) simulates the aircraft cg-referenced attitude
solutions derived by the GPS-based attitude determination algorithm. Although the
GPS-based attitude determination algorithms have been developed by the author, this
simulator does not simulate the GPS carrier phase measurements or perform the
GPS-based attitude computations.

The multifunctional GPS receiver is a commonly-shared navaid sensor in the
inertial network system.

Other navaid sensor systems simulated in this thesis include an air data system,
a magnetic heading sensor and a Doppler radar. These sensor systems are considered

as the local sensors located at the cg node and are omitted from in Figure 7.1.

7.2.1 Inertial Simulation System Architecture

The inertial simulation system performs two main functions: generation of
SRIMU measurements and computation of the navigation states. These two functions
are performed by the SRIMU simulator and the SRIMU navigator.

The architecture of the SRIMU simulator is illustrated in Figure 7.2 where the
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modules framed by the dash-lines on the right and left sides are the inputs and the
outputs to other modules. The SRIMU simulator also produces the true navigation
state in addition to the generation of the realistic SRIMU measurements. The true
state is used to test and evaluate the performance of the distributed data fusion
algorithms. The test results can further determine what grades of inertial sensors
should be used in the inertial network system to achieve the required navigation
performance. The inertial sensor error sources and simulation parameters are given in

Table J-1 of Appendix J.
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Figure 7.2 SRIMU Simulator Architecture

The architecture of the SRIMU navigator located at the cg node is illustrated in
Figure 7.3 where the modules framed by the dash-lines are the conventional coarse
and fine alignment functions, and the vertical channel compensation of the inertial
navigator, as described in Chapter 4. However, the other SRIMU navigators located
at the other inertial network nodes do not have these three modules. The dynamic and
transfer alignments of the SRIMUs in the inertial network system are completed by
the distributed Kalman and fusion filters, as described in Chapter 6.

From Figure 7.3, each SRIMU navigator consists of an inertial state estimator
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and an inertial navigator. The inertial state estimator computes the measured local
inertial state by using local SRIMU measurements and assimilating the other SRIMU
measurements. The redundancy management reconfigures the design matrix based
on the inertial sensor failure report from the FDI system. The accelerometer and gyro
compensation modules dynamically correct the local SRIMU measurements by using
the inertial sensor error estimates obtained from the local Kalman filter, as described

in Chapter 6.

Initial position
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v : 1
| DURING !
{3 ALIGN O),
1

Initial

Baro Alt

Attitudes

Inertial Navigator

Figure 7.3 SRIMU Navigator Architecture
The inertial navigator computes the local navigation state. The local state is
also used to establish the local Kalman filter model. The inertial navigation algorithm
has been introduced in Chapter 4, the SRIMU compensation algorithms have been
developed in Chapter 5 and the inertial state estimator algorithm has been described

in Chapters 5 and 6.
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7.2.2 GPS Simulation System Architecture

The architecture of the GPS simulation system is shown in Figure 7.4 where
the GPS navigator outputs the GPS-derived aircraft position and velocity. The GPS
navigator outputs are used to test and evaluate the distributed Kalman and fusion

filters and to compare different GPS/INS integration mechanisms.

. A/C True
Trajectory

Generator

Position & Velocity

Figure 7.4 GPS Simulator Architecture

The GPS Measurement Simulator provides realistic GPS measurements,
including pseudorange and Doppler (range rate) measurements, rather than deriving
the actual GPS signals provided by an engineering GPS simulator. The simulated
pseudoranges are obtained by a combination of the true geometric distances from the
aircraft to visible satellites and the error terms of various error sources. The true
geometric distances are computed from the true position of the aircraft and the
positions of the visible GPS satellites. The visibility of GPS satellites is determined
by the true position of the aircraft and the minimum elevation of the GPS satellites
relative to the aircraft local level frame. In this simulation study, the minimum
elevation for signal acquisition is defined as five degrees.

The simulated Doppler measurements are the aircraft to GPS satellites LOS
range rates, which are the LOS projects of the velocity differences between the true
velocity of the aircraft and the velocity of the visible satellites plus the range rate
errors caused by various error sources.

The architecture of the GPS measurement simulation algorithm is illustrated in
Figure J.1 of Appendix J where the GPS measurement error models were taken from

The Johns Hopkins University Applied Physics Laboratory"”. Main error sources and
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simulation parameters are summarised in Table J-2 of Appendix J BI83] The ADS and
the magnetic heading sensor are simulated according to the parameters shown in

Table J-3 of Appendix J.

7.2.3 Multisensor Fusion Simulation at Node cg

The cg node local system is a vital subsystem in an inertial network system and
provides the aircraft systems with the navigation states. The purpose of this
simulation study is to evaluate the FDI and data fusion algorithms developed in this
thesis. The Kalman filter located at the cg node has multiple operating modes. The
architecture of the multi-mode filter algorithm is illustrated in Figure 7.6 where the
inputs to the Inertial Navigation module include the SRIMU measurements, pressure
altitude and the positions of visible GPS satellites. This module outputs the coarse

estimates of the navigation states and the estimated GPS measurements.

Residuals

Figure 7.5 Multi-Mode Kalman Filter Architecture at the cg Node

The Multifunctional GPS module outputs the GPS-based attitude information
and navigation states, and the GPS measurements. The SRIMU/FDI module provides

the FDI test results to reconfigure the inertial system and the Kalman filter; it also
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outputs the raw SRIMU measurements for the inertial navigation computation and

the SRIMU measurement residuals as the measurements of the multi-mode Kalman

filter. The ADS and Heading Sensor System module provides pressure altitude

compensation needed for the stabilisation of the vertical channel of the inertial

system, and the heading and air speed measurements of the multi-mode Kalman

filter. The Data Fusion module completes the following tasks:

Processes the raw sensor measurements to generate the normalised data for
the multi-mode navigation filter,

Determines the operating mode according to the sensor health status reports
from the SRIMU/FDI and GPS/RAIM modules,

Reconfigures the dynamic model and measurement model of the cg node
local system,

Performs the local Kalman filter and the fusion filter algorithms to update
the coarse estimates of the aircraft navigation states,

Corrects the cg node SRIMU errors in flight,

Monitors the abnormality of estimates of the local navigation states.

The filter state vector is subdivided into two sub-vectors, known as the basic

state error vector and the sensor error vector as follows:

Xbasic state errors
X=
X

X basic state errors —

Sensor errors

- 4 r X clk -ph
x| [dox ] o
X, 511{ X clk -rate
- 4 | x
X3 Sh Rx Clk Error States acfel 1
Svl SRIMU Accel Error States '
X4 X X .
=|xs|= Sl SRIMU Gyro Error States aceel-n
Y | Xgens = . . = X -
X Sv! sensor erors Magnetic Heading Error State gyro-l
6 z
P) Barometer Bias State
X7 ¢x . . X gyro-n
3 True AirSpeed Bias State &y
Xg ¢y B - X Mag
L*9 | L z Bar
X 29, | X
L Xaps

The basic state error vector has a fixed dimension but the size of the sensor

error vector changes with the numbers of SRIMU sensors and the number of aiding
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sensors available.
The filter measurement vector is formulated as follows and its size depends on

available sensor systems.

GPS pseudorange vector | APR
GPS pseudorange rate vector APRR
_| GPS-basedattitude vector | | AAtt
‘= Magnetic heading output B AYy
Ture airspeed AV1as
SRIMU residual vector | Residuals |

From the error analysis of GNSS and inertial systems given in Chapter 4, the
system noise covariance Q and measurement noise covariance R may change with
each time or measurement update, however here they are assumed to be constant in
order to avoid the real-time computation of these two matrices. The determination of
R is based on a prior statistical characteristics of the sensor measurement noises,
which can be obtained by practically testing sensor systems. Rational selection of R
should guarantee the robustness of the Kalman filter to the change of measurement
noise. The standard deviations of the measurement noises of several navaid systems
are summarised in Tables J-2 and J-3 in Appendix J, which are used to determine R
in this simulation study.

The determination of the system noise covariance Q is generally more difficult
as it cannot be determined by practically testing or directly observing the dynamic
system. However, the uncertainties of the initial filter states, including the basic state
error and sensor error, can be used as reference values for the selection of Q. Tables
J-1 and J-4 in Appendix J give the initial uncertainties of the basic state errors and
Sensor errors.

The dynamic reconfiguration of the cg node filter includes the filter state vector
reconfiguration and the measurement vector reconfiguration. The cg node system
compensation consists of the navigation state compensation and the SRIMU error
compensation, as shown in Figure J.2 of Appendix.

The operating modes of the multi-mode Kalman filter and the sensor systems
used the cg node are listed in Table 7-1. The initial values of the navigation states are

given in Table J-4 of Appendix J.

180



SIMULATION SYSTEM AND RESULTS

7.2 Simulation System Architecture

Table 7-1 Kalman Filter Operating Modes
IMU | ADS | Heading | GNSS GNSS KF Mode
Sensor Range | Attitude
X X X X X All measurement available
X X X X Lost heading sensor
X X X X Lost ADS
X X X Lost ADS & heading sensor
X X X X Lost GPS attitude function
X X X No GPS signals

7.2.4 Software Development and Evaluation

This software simulation system is implemented by use of Matlab. Software
development is based on the top-down design and bottom-up realisation strategies. In
the top-down software design, all the software modules described in the previous
sections are decomposed into several sub-modules according to the functions to be
completed. In each sub-module, the main function is further decomposed into many
sub-functions, each realising one or more relatively independent tasks. Accordingly,
the top-down design generates software function trees (see in Figure 7.6). In contrast,
the programming is based on the bottom-up strategy. The lowest-level sub-functions
are first programmed, tested and integrated into the higher-level sub-functions.
Higher-level sub-functions are then integrated and tested to form a sub-module. Data
transfer between modules and functions uses actual parameters. Furthermore, all the
navigation states and kinematic parameters are defined as the global variables which

can be directly invoked in all modules and functions.

Top level software module

Sub-module 1 Sub-module n

Subfunction 1 Subfunction n

Figure 7.6 Top-Down Software System Design
The evaluation of the software system consists of the static and dynamic testing

procedures. The static evaluation is also based on the bottom-up method. The lowest-
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level subroutines are first tested and then sub-modules are tested. The bottom-up
testing procedures verify if the subroutines or sub-modules can produce the expected
outputs using pre-known static data as their inputs. For example, in order to test the
SRIMU attitude determination module, an IMU is assumed to be fixed on a static
platform with known orientation. The SRIMU then measures the components of the
Earth’s rotation rate and gravity vectors. The use of these components as the input
data of the attitude module can examine the correctness of the attitude computation.
All the sub-modules and functions were tested using similar methods before they
were integrated into the software simulation system.

The dynamic evaluation is a system test procedure and is generally based on
the predictability of the behaviour of the software simulation systems. For example,
an inertial system shows the Schuler period of 84.4890 minutes. This feature can be
used to test the correctness of the inertial simulation subsystem. If the Schuler period
of the navigation states given by the inertial simulation software system differs from
the theoretical Schuler value, then the sub-module and functions in the inertial
software system must be re-evaluated using the static testing procedures. The GNSS
positioning solutions normally have the maximum error thresholds if no GNSS signal
failures occur. In order to evaluate the GNSS software simulation subsystem, the
maximum error thresholds for the GNSS-derived position and velocity are assumed
to be 200 m and 1 m/s. If the outputs of the GNSS software simulation subsystem
exceed the specified thresholds, then all the sub-modules and functions in the GNSS
software system will be re-evaluated by using the static testing procedures.

The evaluation of the distributed data fusion filter software systems is a more
complex procedure. Although the static testing procedures can assure the correctness
of subroutines, the dynamic testing procedure cannot completely check the suitability
of the fusion filter software systems because there are many uncertainties of sensor
measurements. Therefore, the dynamic evaluation is mainly to examine the abnormal
behaviours of the filter software systems from the perspective of the filter states. In
normal operation, the filter states will change smoothly over time if the sensor signal
failures have not been injected into its measurements. The designed true trajectory is

used as a reference to test the correctness of the software simulation system.
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7.3 MW-GLRT Algorithm Test Results

This simulation study considers two cases for the evaluation of the MW-GLRT
algorithms developed in Chapter 5, that is, SRIMU configurations consisting of four

sensors and five sensors. The test procedure is illustrated in Figure 7.7.

Detect Jump Failure
Using the MW-GLRT

Yes
Al
Step 1 am
No
___________________ Detect Drift Failure using the Y
Sequential MW-GLRT
Step 2 Alarm

End FDI

Figure 7.7 Two-Step FDI Test Procedure

In the 4-sensor configurations, the MW-GLRT algorithms are tested by
detecting mid-value and drift failures. In the 5-sensor configurations, the MW-GLRT
algorithms are evaluated by detecting, identifying and estimating large jump failures.
The parameters for the design of the MW-GLRT algorithms are listed in Table J-6 of
Appendix J.

The simulation test results of the SRIMU error compensation filters are shown
in Figures 7.8 and 7.9 where the SRIMU is based on a 4-sensor cube configuration.
These simulation results show that the use of the SRIMU error compensation filters
can slow down the degradation of the accuracy of the free SRIMU navigation
system. As a result, this error compensation filter can be used to compensate for the
absence of the navaid systems, for example, for interruptions and unavailability of

GPS signals.
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Figure 7.8 Attitude Errors without the SRIMU Filter
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Figure 7.9 Attitude Errors with the SRIMU Filter

In the following simulations, it will further be shown that combination of the
local node fusion filters and the SRIMU error compensation filters in the inertial
network system can greatly increase the integrity and accuracy of the navigation state
estimates.

The simulation test results of the MW-GLRT algorithms are shown in Figures
7.10 to 7.14 for the 4-sensor-cube configuration where sensor drift failures and a
mid-value failure occur. The results given in Figure 7.10 show the attitude errors
caused by the effects of a mid-value gyro failure on the inertial attitude determination
function. Although the gyro mid-value failure may not be detected by the short time
MW-GLRT method, as shown in Figure 7.11, it can be detected by the sequential
MW-GLRT method, as illustrated in Figure 7.12.
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Attitude Errors
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Figure 7.10 Attitude Errors in Present of a Mid-Value Gyro Failure
ST-MW GLRT Detection Function for Gyro Mid-Value failure
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Figure 7.11 Gyro Detection Function Using Short Time MW-GLRT in 4-Sensor
Cube®

Sequential MW-GLRT Detection Function for Gyro Mid-Value failure
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Figure 7.12 Gyro Detection Function Using Sequential MW-GLRT in 4-Sensor
Cube

® In all figures, DF represents Detection Function and Td means detection Threshold.
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The simulation test results of SRIMU drift failures are shown in Figures 7.13
and 7.14 where the drift failure is undetectable using the MW-GLRT algorithm, but
can be detected by the sequential MW-GLRT algorithm.

ST MW-GLRT Detection Function for Gyro Drift Failure

4.E-03
3.E-03 -
2.E-03
1.E-03 -
0.E+00 iy W e \“5 P AT A‘MA .

B0z Vaee it L S s M EWSX
2E034+-—Td
-3.E-03 +— +Td
-4.E-03

Value

Time(second)

Figure 7.13 Gyro Drift Detection Function Using Short-Time MW-GLRT in 4-
Sensor Cube

Sequential MW-GLRT Detection Function for Gyro
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Figure 7.14 Gyro Drift Detection Function Using Sequential MW-GLRT in 4-
Sensor Cube

For the 5-sensor cone configuration, the simulation test results are shown in
Figures 7.15 to 7.23 where the SRIMU system may experience jump failures, mid-
value failures and drift failures.

Figures 7.15 to 7.17 show the case where one gyro has a mid-value failure and
one accelerometer has a jump-step failure. The accelerometer jump failure is
detected and identified by the MW-GLRT algorithm. Furthermore, the accelerometer
failure signal is estimated and compensated in the SRIMU measurements, as shown
in Figure 7.16, where the failure signal of the fault accelerometer is 0.02g and its
estimate is 0.1928 m/s”.

The mid-value gyro failure is detected by the sequential MW-GLRT, as shown
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in Figure 7.17 in comparison with Figure 7.15.

ST MW-GLRT Detection Function for Gyro Mid-Value Failure
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Figure 7.15 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor
Cone
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Figure 7.16 Accelerometer Detection Function Using Short-Time MW-GLRT in
5-Sensor Cone
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Figure 7.17 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor
Cone

Figures 7.18 to 7.20 show the case where two accelerometers (sensors 1 and 4
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shown in Figure 5.4(c)) have jump failures sequentially and one gyro has a mid-
value failure.

From Figure 7.18, the mid-value gyro failure cannot be detected by the short-
time MW-GLRT algorithm, but can be detected by the sequential MW-GLRT
algorithm, as shown in Figure 7.19.

In Figure 7.20, the failure signal of accelerometer 1 is 0.006g and its estimate
is 0.0711 m/s”. The failure signal of accelerometer 4 is 0.02g and the corresponding
estimate is 0.1928 m/s”.

ST MW-GLRT Detection Function for Gyro Mid-Value Failure
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Figure 7.18 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor
Cone
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Figure 7.19 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor
Cone
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Figure 7.20 Accelerometer Detection Function Using Short-Time MW-GLRT

Figures 7.21 to 7.23 show the test results where both two accelerometers and
two gyroscopes have jump failures. In Figure 7.21, gyro 2 has a failure signal of 0.04
rad/s and the corresponding estimate is 0.040 rad/s.

Gyro 4 has a failure signal of 0.002 rad/s and the estimate is 0.006 rad/s.
Clearly, the estimate of the failure signal for gyro 4 is far from the true value.
However, the error caused by the estimation can be detected by the sequential MW-
GLRT, as shown in Figure 7.22.

In Figure 7.23, the failure signal of accelerometer 1 is 0.006g and its estimate
is 0.0711 m/s*. Accelerometer 4 has a failure signal of 0.02g and its estimate is

0.1928 m/s>.

ST MW-GLRT Detection Function for Two Gyro Jump Failures
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Figure 7.21 Gyro Detection Function Using Short-Time MW-GLRT in 5-Sensor
Cone
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Sequential MW-GLRT Detection Function for Gyro Mid-Value Failure
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Figure 7.22 Gyro Detection Function Using Sequential MW-GLRT in 5-Sensor
Cone
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Figure 7.23 Accelerometer Detection Function Using Short-Time MW-GLRT in
5-Sensor Cone

Further simulations were performed for different SRIMU configurations

consisting of 4 and 5 sensors. The simulation research results are summarised below:

¢ Optimal SRIMU configurations are determined on the basis of a trade-off

of the minimum GDOP factor, allocation of normalised variances of

SRIMU measurement errors in orthogonal body axes and SRIMU FDI

capability. Coplanar sensor installation should be avoided in order to obtain
maximum FDI capability in terms of sensor configuration.

e Two 4-sensor and four 5-sensor SRIMU configurations were also simulated

in the occurrence of one sensor failure and their estimate accuracy and

degradation performance were compared. The simulation results show that

cone configurations in 4-sensor or 5-sensor SRIMUs can provide a better
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estimate of the measured state and minimum degradation of performance
for various SRIMU configurations for one sensor failure.

The simulation results have shown that SRIMU error compensation filters
can improve the accuracy of an SRIMU system and the performance of FDI
algorithms developed in this thesis. The degradation of an SRIMU system
is reduced so that the navaid systems (for example, GNSS) have sufficient
time and access to satellite signals to correct the SRIMU systems.

The short-time MW-GLRT algorithms can remove abnormal measurement
noise and detect (and estimate) sensor hard failures. In the simulation, the
detection threshold values were determined on the basis of the probability
of a false alarm of 10 and the probability of a missed alarm of 107,

The sequential MW-GLRT algorithms can efficiently detect mid-value and
drift failures, which degrade the accuracy of an SRIMU system without

alarm.

7.4 Distributed Data Fusion Filter Test Results

The aim of this simulation study is to test and evaluate the node filters and the

node state integrity monitoring algorithms that have been developed in Chapters 4

and 6. In this simulation, the GNSS simulation module is assumed to provide the raw

measurements and navigation state information at the rate of 1Hz, the inertial

navigation module outputs attitude information at the rate of 50 Hz and the position

and velocity at the rate of 1Hz and other navaid systems output at the rate of 1Hz.

Several cases in Table 7-2 were simulated and the results are given in the following

subsections.
Table 7-2 Simulation Cases

Simulation SRIMU GNSS Information
Case (Gyro Drift Rate) (PR, PRR & Attitudes)
Case 1 1A 1%h No interruption

1B 1% GNSS attitude available for maximum 6 minutes
Case2 | 2A 10 ”h No interruption

2B 10 ”h GNSS attitude interruption for maximum 6 minutes
Case 3 40 °/h Slave node simulation
Case 4 gyro failures GPS signal failures
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The aircraft can perform arbitrary manoeuvres with a maximum acceleration of
3.0g. In order to compare the simulation results, however, an identical true trajectory
is designed for all the simulation cases. A typical true flight trajectory is shown from
Figures 7.24 to 7.26. The true flight path is depicted in Figure 7.24 where the arrow
represents the flight direction. Figures 7.25 is the true horizontal manoeuvres and
Figure 7.26 is the true vertical manoeuvres. To evaluate the performance of the data
fusion algorithms developed in this PhD study, the true trajectory is used as reference
values to compare with the estimated states of the aircraft motion. Therefore, all the

state errors are the differences between the true and estimated aircraft motion states.
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Figure 7.24 True Flight Trajectory
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Figure 7.25 True Aircraft Horizontal Manoeuvres
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Figure 7.26 True Aircraft Vertical Manoeuvres

7.4.1 Simulation Results at cg Node

In this simulation, the GNSS information available is summarised as follows:

e (GNSS pseudorange (PR) and pseudorange rate (PRR) measurements,

e (GNSS-based attitude information.

For a gyro bias of 1°/h, the simulation test results at the cg node are shown in

Figures 7.27 to 7.35 where there is no GNSS signal interruption. In the following

figures, the absolute errors, which are the differences between the true and estimated

states, are used to describe the realistic state estimate errors whereas the standard

deviations of the state estimate errors represent the accuracy of the state estimates.

Attitude Errors (compared with the true values) with Gyro Drift Rate of 1%h
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Figure 7.27 The cg Node Attitude Errors in Case 1A

193



7.4 Distributed Data Fusion Filter Test Results

SIMULATION SYSTEM AND RESULTS

—{
, ,
I I I I I I I % 7 T T T T T T
| | | | | | | ° ] ! ! ! ! ! !
\\\\\ o __ . __ e I I I I I I
T T T d | r T s &) b | | | | | |
I I I I I I I e e B T =G SO S O R S
| | | | | | ° = <= 2 ! ! ! !
P A o = - ! ! ! !
= | | | | | | e » “ o A ”\\\\”\\\\”\\\ﬁwwwiw
o > | | | | | | = o 2 ] coo) , , A
LR - A e
0“ I I | | | | © = M 2 2] = 7777\\\\,\\\\,\\\\,\\m
— | | | | | | - [+ @ < = | | | | I
© . __L__d4__ - _____L__1_]lo = =1 - O = ! ! ! !
o | | | | | | | ° = ° P D D [
=1 © D A o = B | | | | T
= I I I I I I I ©
a4 | | | | | | | e D o o ) | | | |
e S = =8 S m mm‘\\\”\\\\”\\\\”\\\\”\\\%\\\ ]
E 0 0 e = O 2 s % , , ! !
o I T S R SO N TR N B b= s e - - = , [ [ [
I | | | | | | | e = = ° - D‘\\L\\\L\\\L\\\L
= | | | | | | | [=1 2 e E | | | |
&) | | | | | | | o 21 - > o ! ! ! !
P e e A A A A e - Q S B B S P S R
= | | | | | | | E 9] =] o3 =0 | | | |
M | | | I I I I ° [ = A & I ! ! I
L4 _______vL__1_4142¢ e > o0 e = , , I [
<] | | | | | | | ° 5] oo p— e - __4___1
5 | | | | | | | s n = e o 3 I I | |
.m | | | | | | | oE = - e V & ! ! ! !
B e i i e A il e Ml e o 2 o o O . - |
1o I I I | | | | o 5} = © = .m I I | |
I I I I I I I = = = ! ! ! !
A ° = (=R~ | | I I
Ll _d__ - _ i __L__1_1l1e = = ° A A N S |
= | | | | | | | ° -~ 2 = N a ! ! ! !
/5] | | | | | | | ° o i ! ! ! !
= 3 N - I I I |
» I I I I I I I ° - 1) 5 S 2
E---r--r-—1--"--—-—--r--1t-712 < ° 72 [
m | | | | | | | « = Q [} — | | | |
m I I I I I I I . ] g = g ! ! ! !
I ! | | | 1 I ° = o ° = E ! ! ! !
Q- "~~~ "~ T T T oo T b o S 8 e I el Bty -
ko] | | | | | | | 2 (=] N ° a ! ! ! ! T
=1 | | | | | | | N @ o a2 ! ! ! !
= I I I I I I I ° 5 ° e 5 ! ! ! !
ST --A---—--r--T1t-1%8 <Yy} £ b4 o~ O‘\\\”\\\\”\\\\”\\\\”\\
< I I I I I I I - 3) D - o ! ! ! !
I I I I I I I
L L4 _______L__1_|18 @ 2 3 m. P R A A A N ]
| | | | | | | ° - 3 | I | ° 50 | | | |
I I I | | | | o ke [ | oA I I | | |
| | | | | | ,K\ o o0 W | | | - = \\\”\\\\”\\\\”\\\\”
Bl it et el R Attt el sl o i £ R -2
| | | | | | 1/ © 2 | | | E | © ” ” ” ”
| | | | | | A | | | = |
| I | | L ° ~ * | | | | o | | | |
< 0 ® 0 « 0 - © o m © © - ® By - o - o~ ® <+ ~ ~ - ® @
. - - o o
o o - s
=
(s/w). -
(Bopjewbis-, =) siuon3 (s/wyewsbis-|
=

Case 1A

ions in

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500
Time(second)

500

0

Figure 7.30 The cg Node Velocity Error Standard Deviat



SIMULATION SYSTEM AND RESULTS

7.4 Distributed Data Fusion Filter Test Results

b
M

N-position
E-position
Height

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

500

0

Time(second)

Figure 7.31 The cg Node Position Errors in Case 1A

Position Error Std Deviations with Gyro Drift Rate of 1%h

I
|
|
\\\\\ - - —
| | | |
| | | [
S B 7 I
| I | i I
| | [ |
| | [ S R T
B e R e A e
| | | | |
| | | | |
- _a__a_ 1 C
| | | | | |
| | | | | |
| | | | | |
e e R Rt T e
| | | | | |
| | | | | |
S A
| | | | |
| | | | |
| | | |
- - H- -t ==t
|55 | | |
EE_] | |
| ©oc | | !
- —-joooF -~ —7T——T——~-——
1 laa2 | |
| Lol | |
zwzT
| | | |
- - it Sl
| | | |
| | | |
R [y R N B
| | | | |
| | | | |
| | | | |
e e Bl S
| | | | |
| | | | |
o )
| | | | |
| | | | |
| | | | |
St i Bt Htits S
| | | | |
| | | | |
I I ] 1 1
| | | | | C
| | | | | |
| | | | | |
i i Bt Bt s il o
| | | | | |
| | | | | |
L L 1 L L L
° > @ ~ © © -
(wewbis-|

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500

500

0

Time(second)

Case 1A

1011S 1n

DOP Factors of Visible GP S S atellites
T T

d0Od jo anfep

Figure 7.32 The cg Node Position Error Standard Deviat

'5.94 5.945 5

.01 6.015

6.005 6

6

.96 5.965 5.97 5.975 5.98 5.985 5.99 5.995

.95 5.955 5

Time(GPS week second)

Figure 7.33 DOP Factors in Case 1A

195



SIMULATION SYSTEM AND RESULTS

7.4 Distributed Data Fusion Filter Test Results

Velocity Eror Distribution Position Bmor Distribution

T
|
|
T
|
|
T
|
'

E-Position Error

NPosition Erar(m)
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It should be noted that the changes of DOP factors are referenced to the GPS
week time. However, the time scale lines in Figure 7.33 are completely corresponded
to the time scale lines given in other figures.

From Figures 7.29 to 7.33, and the parallel simulation results in Case 1B, it is
observed that during the different simulation time intervals, the changes of the DOP
factors significantly affect the error standard deviations of the navigation state
estimates but have less effect on the realistic state estimates. The following suggestion
may explain why abnormal changes of the visible satellite geometries have different
effects on the state estimates than on their error covariances. These simulations show
that the fusion filter acts as a low-pass filter that can remove the effects of poor
GNSS geometries on the navigation state estimates. However, because the fusion
filter does not select the optimal geometry of visible satellites but instead uses all the
available GNSS measurements in order to monitor the fusion filter integrity, the poor
GNSS geometry may raise the uncertainty of the error covariance estimates through
the measurement matrix H. As a result, the covariance matrix could not be used as a
sole means of monitoring the integrity of the fusion filter. It is necessary to further
study the effects of the GNSS geometry on both the estimate accuracy and integrity
of the fusion filter in the future research.

The simulation results are shown in Figure 7.36 to 7.44 for the case where the

GNSS attitude information is only available for a short time, for example from 100 to
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350 seconds, 3500 to 3650 second and 5500 to 5650 seconds.
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For a gyro bias of 10%h, the simulation results are given in Figures 7.45 to 7.53
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Further simulation studies were performed for other SRIMU configurations,

low quality inertial sensors and GNSS-based position and velocity information. The

simulation results are summarised in Table 7-2. These simulation results have shown

204



SIMULATION SYSTEM AND RESULTS

7.4 Distributed Data Fusion Filter Test Results

that by fusion of low quality SRIMUs with raw GNSS measurements and GNSS-
based attitude information, the distributed data fusion filters algorithms developed in
this thesis can determine satisfactory navigation states although GNSS attitude
information is only available for a short time, typically 1-2 minutes. It has also
shown that the requirement for the drift or bias performance of gyro sensors of up to
40%h can be accommodated in a distributed inertial network systems. However, it
should be noted that GNSS-based attitude information can significantly improve the
accuracy of estimates of the attitude and velocity states. It is clear from these
simulation results that the DOP factor has a significant effect on the accuracy of the
estimates of aircraft position and velocity errors.

Although use of GNSS-based position and velocity information may produce
better estimates of the navigation states, these fusion methods have a significant
disadvantage. If the number of visible satellites is less than four, then GNSS-based
position and velocity is unavailable. GNSS attitude information alone cannot reduce

the degradation of the navigation velocity state.

Table 7-3 Summary of Simulation Results (gyro bias is 40°/h)

Error State | 4-Cone (10) 4-Cone (1o) 4-Cone (1o) 4-Cone (10) 4-Cube (16) | 5-Cone (10)
PR+PRR PR+PRR PR PR.GNSS Att. | TRHPRR PR+PRR
GNSS Att. Interruption
Interruption
o, 0 <0.2° 0.2°-0.4° <0.3° 0.25"-0.7° <0.2° <0.2°
v <0.2° 0.3° <0.3° 0.3° <0.2° <0.2°
Vn, Ve 0.25-0.4 m/s 0.25-0.4m/s 0.6 m/s 0.6 - 0.7 m/s 025-04m/s | 02-04m/s
vd 0.5 m/s 0.5 m/s 0.8— 1.0 m/s 0.8— 1.0 m/s 0.5 m/s <0.5 m/s
Horizontal 15-25m 1.5-25m 25-30m 25-30m 1.5-25m 15-25m
Vertical 2-5m 2-5m 5m 5-8m 2-5m 2-5m

7.4.2 Simulation Results at Slave Nodes

For the simulation of the data fusion filters at all slave modes, position velocity

and attitude information is available from the cg node or multifunctional GNSS

sensor. Figures 7.63 to 7.67 show the simulation results without aiding attitude

information interruptions and with a gyro bias of up to 40%h.

Although the accuracy of the velocity and attitude estimates at the slave node is
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less than the estimates at the cg node, the accuracy of the navigation state estimates
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Figure 7.66 The Slave Node Velocity Error Standard Deviations in Case 3
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Figure 7.67 Velocity Error Distribution at the Slave Node in Case 3
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7.4.3 Data Fusion Filter Integrity Testing Results

This simulation study tests the integrity of the distributed data fusion filters.
Sensor failures have been inserted in the SRIMU and GNSS measurements. The
statistical characteristics of two testing methods described in Sections 3.2 and 6.5 are
examined and the simulation results are shown in Figures 7.68 to 7.76.

Figures 7.68 to 7.70 shown the test results for the case where one gyro has a
jump failure signal after 6000 seconds for 100 seconds and one accelerometer has a

jump failure signal after 2000 seconds in a 4-gyro cone configuration.
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Figure 7.68 Attitude Errors at the cg Node in Case 4
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Figure 7.69 NQI for Attitude Innovation at the cg Node in Case 4
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Mormalised Quadratic Residual Function for Attitude Error
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Figure 7.70 NQR for Attitude Residual at the cg Node in Case 4
Figures 7.71 to 7.76 show the test results for the case where one of visible GPS

satellites has a jump failure signal after 4000 seconds for 100 seconds.
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Figure 7.71 Velocity Errors at the cg Node in Case 4
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Figure 7.72 NQI for Range Rate Innovation at the cg Node in Case 4
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These simulation results show that the normalised quadratic innovation (NQI)

function can successfully detect the measurement bias signals caused by GPS signal

failures and the normalised error quadratic (NEQ) function can monitor the abnormal

shifts of the navigation states, caused by large sensor drifts or uncertainties of the

model parameters.

The results obtained from these simulation researches are summarised below:

The DOP factor affects the accuracy of estimates of navigation state errors.
Large DOP factors result in large error variances of the navigation states.
When the GNSS pseudorange measurements are only used as the
observables of the data fusion filter, the jump of GDOP will cause large
estimate errors of the position and velocity, even abnormal velocity errors
if the GDOP has a step jump exceeding one unit. These simulations have
shown that the effect of GDOP factors on the estimate accuracy can be
significantly reduced if GNSS pseudorange and Doppler measurements are
used as the filter measurements.

Use of the GNSS PR or PR and PRR measurements with GNSS-based
attitude information as the observables of the distributed data fusion filters
can obtain similar attitude estimate accuracy but use of the GNSS PR and
PRR information has the significant advantage in terms of control of
velocity errors. Therefore, GNSS PRR information should be used to

control system velocity errors.
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Up to 30-minute GNSS attitude interruption can be tolerated after the
distributed data fusion filter has run for 10 minutes, depending on the
performance of the gyro sensors. Maximum attitude error generally occurs
in roll angle whereas errors in the pitch and yaw angles can be controlled
by the velocity information.

The navigation performance of a 4-sensor cube configuration is similar to a
4-sensor cone configuration. The 5-sensor cone has better attitude accuracy
than 4-sensor configurations. The accuracy of attitude estimates in inertial
network systems depend on the accuracy of the GNSS-based attitudes. The
accuracy of the navigation velocity state largely depends on the accuracy of
GNSS Doppler measurements.

The NQI and NQR methods can be used to monitor the distributed data
fusion filter integrity. It is recommended that the distributed inertial
network system should combine three failure detection functions: the short
time MW GLRT, the sequential MW-GLT FDI and the distributed data

fusion filter integrity monitoring to achieve adequate safety requirements.

7.5 Summary

This chapter described the software simulation system and a number of

simulation studies. The main activities included:

1.

Development of a modularised multisensor software simulation system and
description of its architecture and associated functions.

Introduction of inertial simulation and GPS simulation systems and the
architecture of multi-mode data fusion filters at network nodes.
Performance analysis of numerous simulation studies to test and evaluate

the methods and algorithms developed in this thesis.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

This chapter summarises the research undertaken in this thesis. Section 8.2
highlights the major contributions of the thesis. The main conclusions obtained from
the simulation studies are summarised in Section 8.3. Further research studies are

discussed in Section 8.4.

8.2 Contributions

This thesis covers the development of multisensor data fusion methodologies
for the design, development, analysis, and simulation of reliable fault-tolerant aircraft
navigation systems. The use of the methods developed in this thesis and their
applications to low-cost (low-quality) inertial network systems integrated with
multifunctional GNSS sensors can afford benefits in the cost, size, weight, accuracy,
reliability and integrity of aircraft navigation systems. These methods can also be
used for the design of navigation and attitude determination systems for marine
vessels and space vehicles. The major contributions made during this PhD study are

summarised in the following sections.

8.2.1 Multisensor Data Fusion Model

The application of the recent RNP concept to the design of multisensor
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navigation systems leads to a problem: how can multiple sensor systems and their

measurements be combined to achieve the RNP requirements for aircraft navigation

systems? The solution to this problem is based on multisensor data fusion

technologies.

1.

An original generalised multisensor data fusion model was presented for
the design of aircraft navigation systems. This model consists of four
modules, each addressing specific aspects of the RNP requirements and
implementing different functions to ensure that the RNP requirements of
aircraft navigation systems can be satisfied. This model can be used to
assist and guide navigation system engineers to develop reliable and
accurate aircraft navigation systems and to reduce the development cycle
and costs.

The navigation and attitude determination equations of inertial systems and
GNSS were normalised. It is shown in the development of the simulation
software system that the normalised equations provide a convenient method
for the design of data fusion filters for distributed inertial network systems.
This normalisation can be used to provide a standardised development

procedure for inertial/GNSS integrated systems.

8.2.2 Sensor FDI and Network Integrity Methods

Two important modifications to the traditional GLRT FDI methods are the

MW-GLRT methods and sensor error compensation filters. A combination of sensor-

level and system-level FDI procedures can achieve high levels of reliability and

integrity for distributed sensor network systems.

1.

In comparison with traditional GLRT methods, the sequential MW-GLRT
methods exceed the performance of the previous methods in the detection
of various sensor failures. The simulation studies show that the sequential
methods provide improved detection performance and efficiency, for
example, detection of drift sensor failures in a short time and compensation

for normal SRIMU measurement errors.
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2. These improved algorithms are further extended by using the outputs of the

distributed fusion filters to monitor the integrity of an inertial network
system, including the inertial vector states and the similar node states in the
inertial network system. The simulation studies also show that any jump
and drift failures in distributed sensor systems can be successfully detected
by the use of the inertial network integrity monitoring algorithms.

In comparison with current integrity monitoring methods, which generally
detect failure at the system level, the simulation studies have shown that the
combination of sensor-level FDI and system-level integrity monitoring
procedures greatly improves the integrity and fault tolerance of distributed

sensor network systems.

8.2.3 Distributed Data Fusion Algorithms

Two forms of distributed sensor systems have been examined, focusing on

distributed inertial network fusion algorithms.

1.

Two data fusion algorithms were developed for state-identical distributed
sensor systems, known as the Type I and Type IA algorithms. This form of
distributed systems covers the majority of current designs of integrated
navigation systems. It is significant that these two algorithms can be used
for the design of integrated navigation systems for space, air and land
vehicles and also marine vessels. This method was used in the SHINE
programme to develop a multi-mode hybridised navigation filter.

Two data fusion algorithms were developed for state-associated distributed
sensor network systems, known as the Type II and Type IIA algorithms. It
is expected that this method can be used in the design of the next
generations of aircraft navigation systems, particularly inertial network
navigation systems for military aircraft.

An inertial network sensing model was developed and two algorithms were

described to determine the dynamic transformation matrices.

4. Innovative distributed inertial network fusion algorithms were presented;
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including distributed inertial data fusion algorithms and distributed state
fusion algorithms. The simulation studies show that the inertial network
fusion algorithms can significantly improve the accuracy of the estimations
of the inertial vector states and similar node states in an inertial network
system. Moreover, these algorithms are capable of performing dynamic
alignment and calibration of inertial sensor systems in an inertial network

system.

8.2.4 Multisensor Simulation Environment

A multisensor simulation system environment was developed to simulate GPS,
skewed redundant inertial systems and other sensor systems. This simulation system
has been used to test and evaluate the range of data fusion algorithms developed in
this thesis for distributed sensor network systems. It was also used to evaluate the
FDI algorithms and the multi-mode hybridised Kalman filter developed for the
SHINE programme. This simulation system provided an extremely convenient tool

for the design and development of multisensor navigation systems.

8.3 Conclusions

A wide range of simulation studies was performed during the course of this

research study. The main simulation results are summarised below.

8.3.1 SRIMU Configurations

Several SRIMU configurations were evaluated and the following results were

obtained:

1. Optimal SRIMU configurations were determined on the basis of trade-off
of the minimum GDOP factor, the allocation of normalised variances of
measurement errors along orthogonal body axes and the FDI capability.
Coplanar sensor installation should be avoided in order to obtain the

maximum FDI capability.
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2. Accuracies of measured state estimates and degradation of performance of

two 4-sensor SRIMU configurations and four 5-sensor configurations were
compared in the presence of several sensor failures. The full cone SRIMU
configurations in 4-sensor or 5-sensor SRIMU systems are recommended
because degradation of SRIMU performance for the cone configuration is

minimised for the various configurations simulated in this thesis.

8.3.2 FDI and Integrity Monitoring Algorithms

The MW-GLRT FDI algorithms and the inertial network integrity monitoring

algorithms were tested in the simulation environment and the main test results are

summarised below.

1.

The short-time MW-GLRT method can eliminate abnormal measurement
noise and detect sensor hard failures. Furthermore, the sequential MW-
GLRT algorithms can efficiently detect mid-value and drift failures (which
may degrade the accuracy of the SRIMU systems) without generating an
alarm.

SRIMU error compensation filters can improve the accuracy of SRIMU
systems and the performance of the MW-GLRT algorithms.

A combination of inertial data assimilation algorithms with the MW-GLRT
algorithms can detect various sensor failures in an inertial network system.
The filter-based integrity monitoring algorithms can effectively monitor the

integrity of the distributed data fusion filters.

8.3.3 Distributed Inertial Network Fusion Algorithms

The distributed inertial network fusion algorithms were tested during this study

and the significant conclusions are summarised below.

1.

By applying distributed inertial network fusion algorithms to a low-cost
inertial network system (low-cost inertial sensors are characterised by a
gyro bias ranging from 10%h to 40%h in this thesis), the attitude states at

the cg node were estimated at 0.2 degrees (one sigma) even though GNSS-
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based attitude information was unavailable for thirty minutes. The attitude
states at slave nodes were estimated at 0.26 degrees (one sigma) even
though gyros at the node have a bias of 40%h. These simulation studies
imply that low-cost inertial network systems would be used in future
avionics systems to replace high-quality inertial sensors and that SRIMU
configurations would replace orthogonal configurations.

2. Distributed inertial network fusion filters can dynamically correct and align
SRIMU systems in an inertial network system. Therefore, the traditional
inertial system alignment algorithms are no longer necessary in distributed
inertial network systems, for example, the transfer and fine alignments that
have been used to correct inertial system errors at initialisation and to in
flight align low-accurate slave inertial systems to a high-accurate master
inertial system. Traditional transfer alignments need an aircraft to perform
specified manoeuvres, typically covering horizontal straight flight followed
by an ‘S’ flight for up to ten minutes. The elimination of traditional
alignment procedures allows an aircraft to perform manoeuvres without the
consideration of the above constraints. This is particularly important for
military aircraft where these constraints can increase the risk to aircraft and

pilots.

8.4 Future Work

Although the main solutions to the problem of data fusion methodologies in the
development of aircraft multisensor navigation systems have been addressed in this

thesis, the author feels that further research is necessary in several areas.

8.4.1 SRIMU Calibration and Error Dynamic Models

In SRIMU configurations, inertial sensors are installed along skewed axes with
respect to the orthogonal instrument frame axes. Such configurations results in gyros
and accelerometers which are more sensitive to translational and rotational motion of

an aircraft in comparison with an orthogonal IMU configuration. These coupling
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relationships should be modelled in SRIMU error models. This thesis has mainly
identified the misalignment angles in SRIMU configurations as sources of error. For
that reason, one area of the future research should be directed to develop more
comprehensive SRIMU error dynamic models. The author believes that this
research will improve the performance of distributed inertial network fusion filters in
terms of estimate accuracy and network integrity.

From review of the literature, current research is rarely concerned with SRIMU
calibration although the calibration of orthogonal IMUs has been standardised. It is
recommended that another area of the future research should be development of
SRIMU calibration algorithms. 1t is particularly important to SRIMU manufacturers

and companies developing SRIMU-based integrated navigation systems.

8.4.2 Distributed Data Fusion Problems

Normalised GNSS attitude determination equations were developed during this
study programme. If the author had had sufficient time, the normalised GNSS
attitude determination equation would have been integrated into the measurement
models of distributed fusion filters to evaluate the performance of real-time (on-the-
fly) kinematic GNSS/inertial network systems. In comparison with direct resolution
of the GNSS attitude algorithm, the combination of the normalised GNSS attitude
determination equation with inertial network dynamic models can provide benefits in
terms of real-time carrier phase ambiguity resolution and GNSS attitude estimate
accuracy. However, many current kinematic GPS/inertial integrated systems use a
two-step estimation procedure. First, the GPS attitude determination equation is
resolved to obtain the GPS-based attitude solution. Then, the GPS-based attitude
solution is used as the observable of the integrated navigation filter. Therefore,
further research should be directed to real-time kinematic GNSS/ inertial network
systems. It is not necessary to seek for an integer solution of carrier phase ambiguity
in such studies. Nevertheless certain criteria have to be developed to minimise a cost
function of attitude errors.

Recent research shows that the fusion of imaging sensors and navigational
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sensors can detect and locate obstacles in specific phases of flight. Fusion of real-
time images, navigation states and GIS database information can provide a vision
capability that allows an aircraft to operate in harsh weather environments and may
reduce controlled flight into terrain and approach-and-landing accidents. Therefore,
further research in multisensor data fusion methodologies should be directed to
develop comprehensive sensor fusion algorithms for flight safety, enhancement of
synthetic vision systems, terrain obstacle avoidance and guidance and proximity

ground warning systems, as well as aircraft navigation systems.

8.4.3 Inertial Network Failure Detection

Detection filter techniques have been used in many control systems for failure
detection. It is likely that these methods could be used in distributed inertial network
systems. Further research should be pointed to evaluate the usability and detection

performance of failure detection filters in inertial network systems.

220



REFERENCES

REFERENCES

[1] Kayton, M. and Walter, W.R., Avionics Navigation Systems, John Wiley and
Sons, Inc. 2", 1997.

[2] RTCA, Minimum Aviation System Performance Standards (MASPS): Required
Navigation Performance for Area Navigation, DO-236, Jan. 1997.

[3] The Johns Hopkins University Applied Physics Laboratory, GPS Risk
Assessment Study, VS-99-07, Jan. 1999.

[4] http://www.ecacnav.com/rnav/RNP-RNAV .htm

[5] ICAO GNSSP IP11, The Evolution from Area Navigation (RNAV), Required
Navigation Performance (RNP), to RNP RNAV, Oct. 22-Nov 1, 2001,
http://gps.faa.gov/Library/Data/RNAVPaper.DOC
[6] Blackman, S.S., Multiple Targets Tracking with Radar Applications. Artech
House Inc. 1986

[7] Hall, D. L., Mathematical Techniques in Multisensor Data Fusion. Artech House,
Inc. 1992.

[8] Hall, D. L. and Llinas, J., An Introduction to Multisensor Data Fusion,
Proceedings of the IEEE Vol. 85, No. 1, Jan. 1997, 6 -23

[9] http://www.data-fusion.org/article.php?sid=70 (accessed on 12" uly 2002)

[10] Luo, R. C. and Kay, M. G., Multisensor Integration and Fusion in Intelligent
System, IEEE Trans. On System, Man, and Cybernetics, Vol. 19, No. 5,
Sept/Oct 1989, 901-931.

[11] Albus, J. S., The NIST Real-Time Control (RCS): An Application Survey. At
http://www.isd.mel.nist.gov/documents/publist.htm.

[12] Kokar, M. and Kim, K., Review of Multisensor Data Fusion: Architecture and
Techniques, Proceedings of The International Symposium on Intelligent
Control, Chicago, Illinois, USA, Aug. 1993, 261-266

[13] Johnson, B. W., Design and Analysis of Fault-Tolerant Digital Systems.
Addison-Wesley Publishing Company, Inc., 1989.

[14] Brock L.D. and Schor A.L., Modular Avionics System Architecture (MASA )—
The Impact of Fault Tolerance, Proceedings of IEEE/ATAA/NASA ot Digital
Avionics System Conference, 1990, 310-315.

[15] Miller, H. and Hilts, D.A., Fault Tolerant Integrated Inertial Navigation/
Global Positioning Systems for Next Generation Spacecraft, Proceedings of
IEEE/AIAA 10% Digital Avionics Systems Conference, 1991, 207-212.

[16] McIntyre, M.D.W. and Gossett, C. A., The Boeing 777 Fault Tolerant Air Data
Inertial Reference System, A New Venture in Working Together, IEEE/AIAA
14%® Digital Avionics Systems Conference, 1995, 178-183.

[17] Audsley, N.C and Burke, M., Distributed Fault-Tolerant Avionic Systems — A
Real-Time Perspective, IEEE Aerospace Conference, Vol. 4, 1998, 43-60.

[18] Swanson, D.L., Evolving Avionics Systems from Federated to Distributed
Architectures, Proceedings of AIAA/IEEE/ SAE 17" Digital Avionics Systems
Conference, Vol. 1, 1998, D26/1-D26/8.

[19] Hammett, R., Design by Extrapolation: An Evaluation of Fault Tolerant

221



REFERENCES

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

[37]

Avionics, IEEE AES System Magazine, Vol. 17, No. 4, April 2002, 17-25.
Kwan, W; DeVires; Lupash, L. and McLeen J., AC-130U Aircraft GPS-INS
Integration, Proceedings of the first Regional Conference on Aerospace
Control Systems, 1993, 782-786.

Prasad, V.B, Fault Tolerant Digital Systems, IEEE Potentials, Vol. 8, No. 1,
Feb. 1989, 17-21.

Tuttle, F.L.; Kisslinger, R.L and Ritzema, D.F., F-15 S/MTD IFPC Fault
Tolerant Design, Proceedings of NAECON, 1990, 501-506.

Subbarao, E.V., Fault Tolerant Digital System Design, Proceedings of
Southeastcon, Vol. 1, 1991, 124-128.

Gertler, J.J., Survey of Model-based Failure Detection and Isolation in
Complex Plants, IEEE Control System Magazine, Vol. 8, No. 6, Dec. 1988, 3-
11.

Patton, R.J., Fault Detection and Diagnosis in Aerospace Systems using
Analytical Redundancy, Computing & Control Engineering Journal, Vol. 2, No.
3, May 1991, 127-136.

Hegg, J. Enhanced Space Integrated GPS/INS (SIGI), IEEE Aerospace and
Electronics Systems Magazine, Vol. 17, No. 4, April 2002, 26-33.

Krogmann, U.K. Optimal Integration of Inertial Sensor Functions for Flight-
Control and Avionics, Proceedings of AIAA/IEEE 8th Digital Avionics System
Conference, Oct. 17-20, 1988, 148-155.

Sebring, D.L. and MclIntype, M.D., An Air Data Inertial Reference System for
Future Commercial Airplanes, Proceedings of AIAA/IEEE 8" Digital Acionics
Systems Conference, 1988, 308-313.

Sudano, J.J.; Preisig, J.R. and Pokotylo, J., Improved Fault Detection Using a
Selected Grouping of Parity Equations for Advanced Flight Control Systems,
Proceedings of 1988 IEEE NAECON, 1988, 1565-1569.

Sheffels, M.L., A Fault-Tolerant Air Data/Inertial Reference Unit, IEEE AES
System Magazine, March 1993,48-52.

Ebner, R.E. and Klein, A.D., Integrated Navigation/Flight Control for Future
High Performance Aircraft, ADARD-AG-314, Analysis, Design and Synthesis
Methods for Guidance and Control Systems. 1995, V1-8.

Kelley, R.T.; Carlson, N.A. and Berning, S., Integrated Inertial Network,
Proceedings of IEEE PLANS, 1994, 439-446.

Berning, S.; Howe, P. and Jenkins, T., Theater-Widde Reference Information
Management, Proceedings of IEEE NAECON, 1996, 122-128.

Kaiser, J.; Beck, G. and Berning, S., Vital Advanced Inertial Network,
Proceedings of IEEE PLANS, 1998, 61-68.

Diesel, J. W., Integration of GPS/INS for Maximum Velocity Accuracy, Journal
of The Institute of Navigation, Vol. 34, No. 3, Fall 1987.

Rounds, S. and Casey, J., A Fully Integrated GPS/Doppler/Inertial Navigation
System, Proceedings. of the Institute of Navigation Technical Meeting, Sept.
1987.

Schneider, A.M. and Maida, J.L., A Kalman Filter for an Integrated
Doppler/GPS Navigation System, Proceedings of IEEE PLANS '88, 1988, 408-
415.

222



REFERENCES

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Diesel, J.W. GPS/INS Integration for Civil Aviation, Proceedings of National
Telesystems Conference, 1991, 223 -228

Hyslop, G.; Gerth, D.; Kraemer, J. GPS/INS integration on the Standoff Land
Attack Missile (SLAM ), IEEE Aerospace and Electronics Systems Magazine,
Vol. 5, No. 7, July 1990, 29 -34.

Bierman, G.J., Factorization Methods for Discrete Sequential Estimation,
Mathematics in Science and Engineering, Academic Press, 1977.

Maybeck, P. S., Stochastic Models, Estimation, and Control. Vol. 1. Academic
Press, 1979.

Schlee, F.H.; Toda, N.F.; Islam, M.A. and Standish, C.J., Use of an external
cascade Kalman filter to improve the performance of a Global Positioning
System (GPS) inertial navigator, Proceedings of the IEEE NAECON 1988,
345-350.

Wade, M. and Grewal, M. S., Analysis of A Cascaded INS Calibration Filter,
Proceedings of the IEEE 1988, 366-373.

Karatsinides, S. E., Enhancing Filter Robustness in Cascaded GPS-INS
Integrations, IEEE Trans. On Aerospace and Electronic Systems, Vol. 30, No.
4, Oct., 1994, 1001-1008.

Bell, W.B; Gorre, R.G; and Cockrell, L.D, Cascading Filtered DTS Data into a
Loosely Coupled GPS/INS System, Proceedings of IEEE PLANS’98, 1998,
586-593.

Carlson, N.A., Federated Filter for Fault-Tolerant Integrated Systems,
Proceedings of 1988 IEEE PLANS, 1988, 110-119.

Felter, S.C., An overview of decentralized Kalman filter techniques,
Proceedings of IEEE Southern Tier Technical Conference, 1990, 79-87.
Carlson, N.A., Federated Square Root Filter for Decentralized Parallel
Processors, IEEE Trans. On Aerospace and Electronic Systems, Vol. 26 No. 3,
May 1990, 517-525.

Lawrence, P.J., Jr. and Berarducci, M.P., Comparison of Federated and
Centralized Kalman Filter with Fault Detection Considerations, Proceedings of
IEEE PLANS, 1994, 703-710.

Levy, L.J., Suboptimality of Cascaded and Federated Kalman Filters,
Proceedings of the ION 52" Annual Meeting, Navigational Technology for the
3™ Millennium, June 1996, 399-407.

Tupysev, V.A., Federated Kalman Filter Via Formation of Relation Equations
in Augmented State Space, Journal of Guidance, Control, and Dynamics, Vol.
23, No. 3, May-June 2000, 391-398.

Carlson, N.A., Federated Filter for Computer-Efficient, Near-optimal GPS
Integration, Proceedings of IEEE PLANS, 1996, 306-314.

Lawrence, P.J., Jr. and Berarducci, M.P., Navigation Sensor, Filter, and
Failure Mode Simulation Results Using the Distributed Kalman Filter
Simulator (DKFSIM ), Proceedings of IEEE PLANS, 1996,697-710.

Carlson, N.A., Federated Filter for Distributed Navigation and Tracking
Applications, Proceedings of the ION 5 8™ Annual Meeting and the CIGTF 21*
Guidance Test Symposium, June 2002, 340-353.

Kerr, T. H., Decentralized Filtering and Redundancy Management for

223



REFERENCES

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Multisensor Navigation, IEEE Trans. on Aerospace and Electronics Systems,
Vol. AES-23, No. 1, Jan., 1987, 83-119.

Wei, M. and Schwarz, K.P., Testing a Decentralized Filter for GPS/INS
Integration, Proceedings of IEEE PLANS, 1990, 429-435.

Bar-Shalom, Y. and Fortmann, T. E., Tracking and Data Association,
Academic Press, New York, 1988.

Liggins, M. E., II; Chee-Yee Chong; Kadar, I.; Alford, M. G.; Vannicola, V.
and Thomopoulos, S., Distributed Fusion Architectures and Algorithms for
Target Tracking, Proceedings of the IEEE, Vol. 85, No. 1, Jan. 1997, 95-107.
Brumback, B. D. and Srinath, M. D., A Fault-Tolerant Multisensor Navigation
System Design, IEEE Trans. On Aerospace and Electronic Systems, Vol. 23,
No. 6, Nov., 1987, 738-755.

Speyer, J.L., Computation and Transmission Requirements for a Decentralized
Linear-Quadratic-Gaussian Control Problem, IEEE Trans. On Automatic
Control, Vol. 24, No. 2, April 1979, 266-269

Willsky, A.S.; Bello, M.G.; Castanon, D.A.; Levy, B.C; and Verghese, G.C.,
Combing and Updating of Local Estimates and Regional Maps Along Sets of
One-Dimensional Tracks, IEEE Trans. On Automatic Control, Vol.27, No.4,
Aug., 1982, 799-813.

Hashemipour, H.R.; Roy, S. and Laub, A.J.; Decentralized Structure for
Parallel Kalman Filtering, IEEE Trans. on Automatic Control, Vol. 33, No. 1,
Jan., 1988, 88-94.

Hong, L., Centralized and distributed multisensor integration with
uncertainties in communication networks, IEEE Trans. on Aerospace and
Electronic Systems, Vol. 27, No. 2, Mar., 1991, 370-379.

Hong, L., Adaptive Distributed Filtering in Multicoordinated System, IEEE
Trans. on Aerospace and Electronic Systems, Vol. 27, No. 4, July, 1991, 715-
724.

Roy, S.; Hashemi, R.H. and Laub, A.J., Square root parallel Kalman filtering
using reduced-order local filter, IEEE Trans. on Aerospace and Electronic
Systems, Vol. 21, No. 2, Mar. 1991, 276-289.

Paik, B.S. and Oh, J.H., Gain fusion algorithm for decentralised parallel
Kalman filters, IEE Proceedings of Control Theory and Applications, Vol. 147,
No. 1, Jan. 2000, 97-103.

Raol, J. R. and Girija, G., Sensor data fusion algorithms using square-root
information filtering, 1IEE Proceedings of Radar, Sonar and Navigation, Vol.
149, No. 2, Apr 2002, 89-96.

Durrant-Whyte, H.F.; Rao, B.Y.S. and Hu, H., Toward a fully decentralized
architecturefor multi-sensor data fusion, Proceedings of 1990 IEEE
International Conference on Robotics and Automation, Vol.2 1331 —1336.
Rao, B.S. and Durrant-Whyte, H.F. Fully decentralised algorithm for
multisensor Kalman filtering, IEE Proceedings-Control Theory and
Applications, Vol. 138, No.5, Sept., 1991 413 —420.

Berg, T.M. and Durrant-Whyte, H.F., Distributed and Decentralized
Estimation, Proceedings of international Conference on Intelligent Control and
Instrumentation, SICICI'92, Vol. 2. Singapore 1992, 1118 —1123.

224



REFERENCES

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
[83]
[84]

[85]

[86]

[87]

Evans, F.A. and Wilcox, J. C., Experimental Strapdown Redundant Sensor
Inertial Navigation System, Journal of Spacecraft and Rockets, Vol. 7, No. 9,
Sept., 1970, 1070-1074.

Gilmore, J. P. and Mckern, R. A., A Redundant Strapdown Inertial Reference
Unit (SIRU), Journal of Spacecraft and Rockets, Vol. 9, No. 1, Jan., 1972, 39-
47.

Potter, J.E. and Deckert, J.C., Minimax Failure Detection and Identification in
Redundant Gyro and Accelerometer System, Journal of Spacecraft, Vol. 10, No.
4, April, 1973, 236-243.

Wilcox, J.C., Competitive Evaluation of Failure Detection Algorithms for
Strapdown Redundant Inertial Instruments, Journal of Spacecraft, Vol. 11, No.
7, July 1974, 525-530.

Daly, K.C.; Gai, E. and Harrison, J.V., Generalized Likelihood Ratio Test for
FDI in Redundant Sensor Configurations, Journal of Guidance Control, Vol. 2,
No. 1, Jan., 1979, 9-17.

Gai, E.; Harrison, J.V. and Daly, K.C., FDI Performance of Two Redundant
Sensor Configurations, IEEE Trans on Aerospace and Electronics Systems, Vol.
AES-15, No. 3, May 1979

Hall, S.R.; Motyka, P.; Gai, E. and Deyst, J. J. JR., In-Flight Parity Vector
Compensation for FDI, IEEE Trans. on Aerospace and Electronics Systems,
Vol. AES-19, No. 5, Sept., 1983, 668-675.

Sturza, M. A., Skewed Axis Inertial Sensor Geometry for Optimal Performance,
Proceedings of AIAA/IEEE 8th Digital Avionics System Conference, 1988,
128-135.

Sturza, M.A., Navigation System Integrity Monitoring Using Redundant
Measurements, NAVIGATION: Journal of The Institute of Navigation, Vol. 35,
No. 4, 1988-89, 69-87.

Brown, A. and Sturza, M.A., The Effect of Geometry on Integrity Monitoring
Performance, Proceedings of the ION 46th Annual Meeting June 26-28, 1990.
Sturza, M.A. and Brown, A.K., Comparison of Fixed and Variable Threshold
RAIM Algorithms, Proceedings of the ION 3rd International Technical Meeting,
Sept., 1990.

Diggelen, F. van and Brown, A., Mathematical Aspects of GPS RAIM,
Proceedings of 1994 IEEE PLANS, 1994, 733-738.

Parkison, B. W_; et al, Global Positioning System: Theory and Applications,
Vol. I, II, ATIAA Press, 1996.

Chien, T. T. and Adams, M. B., A Sequential Failure Detection Technique and
Its Application, IEEE Trans. On Automatic Control, Oct. 1976, 750-757
Willsky A.S. and Jones, H.L., A Generalized Likelihood Ratio Approach to
Detection and Estimation of Jumps in Linear Systems, IEEE Trans on
Automatic Control, Vol. AC-21, No. 1, Feb., 1976.

Willsky, A.S., A Survey of Design Methods for Failure Detection in Dynamic
Systems, AGARD AG-224, 1977, 5-1 to 5-14.

Kerr, T.H. Statistical Analysis of a Two-Ellipsoid Overlap Test for Real-Time
Failure Detection, IEEE Trans. on Automatic Control, Vol. AC-25, No. 4, Aug.
1980.

225



REFERENCES

[88]
[89]

[90]

[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]

[102]

[103]

[104]
[105]
[106]
[107]
[108]

[109]

Brenner, M., Integrated GPS/Inertial Fault Detection Availability, Proceedings
of ION GPS-95.
Diesel, J. and Dunn, G., GPS/IRS AIME Technology: Certification for Sole
Means and Solution to RF Interference, Proceedings of ION-GPS-96.
Hanlon, P.D. and Maybeck, P.S., Characterization of Kalman Filter Residuals
in Presence of Mismodeling, IEEE Trans. On Aerospace and Electronic
Systems, Vol. 36, No. 1, Jan., 2000, 114-131.
Minkler, G. and Minkler, J., Theory and Application of Kalman Filtering,
Magellan Book, Co., 1993.
Schervish, M.J. Theory of Statistics, Springer Series in Statistics. Springer-
Verlag New York, Inc. 1995.
EUROCONTROL and Institute of Geodesy and Navigation, WGS 84
Implementation Manual, Version 2.4, 1998..
Lawrence, A., Modern Inertial Technology, Navigation, Guidance, and Control,
2", Springer-Verlag New York, Inc. 1998.
Schmidt, G.T., INS/GPS Technology Trends for Military Systems, Draper
Technology Digest 1998, 2-13
Barbour, N. and Schmidt, G.T., Inertial Sensor Technology Trends, IEEE
Sensors Journal, Vol. 1, No. 4, Dec., 2001, 332-3339
The Royal Aeronautical Society, Laser Gyros and Fibre Optic Gyros, On-day
Symposium Proceedings, 25 Feb., 1987,
Yazdi, N., Ayazi, F., and Najiafi, K., Micromachined Inertial Sensors,
Proceedings of IEEE, Vol 86, No. 8, Aug. 1998, 1640-1659.
Kourepenis, A., Borenstein, J., Connelly, J., Elliott, R., Ward, P. and Weinberg,
M., Performance of MEMS Inertial Sensors, Proceedings of IEEE PLANS,
1998, 1-8.
Baruh, H., Analytical Dynamics, WCB/McGraw-Hill, 1999.
Rogers, R. M., Applied Mathematics in Integrated Navigation Systems. AIAA,
Inc., 2000.
Benson, D.O., JR., A comparison of Two Approaches to Pure-Inertial and
Doppler-Inertial Error Analysis, IEEE Trans. on Aerospace and Electronic
Systems, Vol-AES-11, No. 4, July 1975, 447-455.
Goshen-Meskin, D. and Bar-Itzhack, 1.Y., Unified Approach to Inertial
Navigation System Error Modelling, Journal of Guidance, Control, and
Dynamics, Vol. 15, No. 3, May-June 1992.
Scherzinger, B.M. and Reid, D.B., Modified Strapdown Inertial Navigator
Error Models, Proceedings of 1994 IEEE PLANS, 1996, 426-430.
Stewart, C. GPS Pseudolites: Theory, Design, and Applications, PhD Thesis,
Stanford University, 1997.
http://www.waasperformance.raytheon.com/
http://www.esrin.esa.it/export/esaSA/GGGQI9SONDC _navigation_0.html
http://www.mitre.org/work/best_papers/best_papers 00/fernow_interop/ferno
w_interop.pdf
Enge, P., Walter, T., Fullen, S., Kee, C., Chao, Y. and Tsai, Y., Wide Area
Augmentation of the Global Positioning System, Proceedings of The IEEE,
Vol. 84, No. 8, Aug., 1996, 1063-1088

226



REFERENCES

[110]
[111]

[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]
[123]

[124]

[125]

[126]

[127]

http://gps.faa.gov/Library/Data/waas/irbfl.pdf

Grass, F. van, et al, GPS Interferometric Attitude and Heading Determination:
Initial Test Results, NAVIGATION, Journal of The Institute of Navigation,
Vol. 38, No. 4, Winter 1991-1992, 297-316.

Cohen, C.E., Attitude Determination Using GPS, PhD Dissertation, Standford
University, Dec. 1992.

Brown, R.A., Instantaneous GPS Attitude Determination, IEEE Aerospace
and Electronic Systems Magazine, , Vol. 7, No. 6, June 1992, 3 -8
Crassidis, J.L. and Markley, F.L, A New Algorithm for Attitude
Determination Using Global Positioning System Signals,
www.acsu.buffalo.edu/gpsatt.pdf

Teunissen, P.J.G., The Least-Squares Ambiguity Decorrelation Adjustment: A
Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy 1995,
65-82.

Hill, C.D. and Euler, H.J., An Optimal Ambiguity Resolution Technique for
Attitude Determination, IEEE 1996 Position Location and Navigation
Symposium, April 1996, 262 — 269

Pratt, M., et al, Single-Epoch Integer Ambiguity Resolution with GPS L1-L2
Carrier Phase Measurements, Proceedings of ION GPS-97,
http://satnav.atc.1l.mit.edu/papers/ singleepotchGPS/sept97ion.html.

Sutton, E., Integer Cycle Ambiguity Resolution under Conditions of Low
Satellite Visibility, 2002 IEEE Position Location and Navigation Symposium,
April 2002, 91 - 98

Thales Avionics Technical Report, GNSS Attitude Design Report, Ref. No.
NAV/01/004763-00, July, 2001,

Harris, R.L., Modular Avionics: Its Impacts on Communication, Navigation,
and Identification (CNI), in the Proceedings of IEEE NAECON, 1988, 1164-
1169.

Swanson. D.L., Evolving Avionics Systems from Federated to Distributed
Architectures, in the Proceedings of the IEEE/AIAA/NASA 7% Digital
Avionics Systems Conference, 1998, D26/1-D26/8

Spitzer, C.R, The Avionics Handbook, CRC Press LLC, 2001

Harrison, J.V., and Gai, E.G., Evaluation of Sensor Orientations for
Navigation Performance and Failure Detection, IEEE Trans. on Aerospace
and Electronics Systems, Vol. AES-13, No. 6, Nov. 1977.

Hass, R.A. JR.; Kasper, J.F., JR; Crawford, B.S. and Levine, S.A.,
Application of Optimal Smoothing to the Testing and Evaluation of Inertial
Navigation Systems and Components, IEEE Trans. On Automatic Control,
Vol. AC-16, No. 6, Dec. 1971, 806-816.

White, J.E. and Speyer, J.L., Detection Filter Design: Spectral Theory and
Algorithms, IEEE Trans. On Automatic Control, Vol.AC-32, No. 7, July 1987,
593-603

Piercy, N.P., Sensor Failure Estimators for Detection Filters, IEEE Trans. On
Automatic Control, Vol. 37, No. 10, Oct., 1992, 1553-1558

Douglas R.K. and Speyer, J.L., Robust Fault Detection Filter Design,
Proceedings of the American Control Conference, Seattle, Washington, USA,

227



REFERENCES

June 1995, 91-96

[128] Chen, R.H. and Speyer, J.L., Optimal Stochastic Fault Detection Filter,
Proceedings of the American Control Conference, San Diego, CA, USA, June
1999, 91-96

[129] Mallory, G.J.W. and Miller, D.W., Decentralized State Estimation for
Flexible Space Structure, Journal of Guidance, Control, and Dynamics, Vol.
23, No. 4, Jul-Aug 2000, 665-672.

228



APPENDIX A

Table A-1 WGS-84 Parameters
Parameters Notation Value
Semi-major axis R 6378137 m
Normalized C20 — 484.16685 X 10—6
Flattening (ellipticity) f 1./298.257223563
Semi-minor axis R, R,=R,(1-f)
=6356752.3142 m
Eccentricity squared e e? = -1
=6.69437999013x10~°
Angular velocity of the Earth Q 7.292115%10 5 rad/s
The Earth’s gravitational constant GM 3986004.418 x10° m3/s?
Gravity at the equator 2 9780373 m /s>
Gravity formula constant g, 0.00193185138639
Velocity of light C 299792458 m/ s
Table A-2 Inertial Sensor Performance Parameters
Performance Unit Performance Requirements
Parameters Aided IRS AHRS INS
(Control) (Tactical Grade) | (Navigation Grade)
a Bias uncertainty A 10-40 1-10 0.005-0.01
= Scale factor ppm 100-500 100-500 5-50
;‘% stability
3 Misalignment arcsec 200 200 10
o Random noise 0 n/Hz 1-5 0.2-0.5 0.002-0.005
> Bias uncertainty Hg 2000 200-500 10-50
Q Scale factor ppm 500-1000 500-1000 200
o stability
% Misalignment arcsec 200 200 10
E Random noise g/ [H 200-400 200-400 5-10
@
Table A-3 Performance and Trends for MEMS-based Inertial Sensors
Sensor/Performance Current State Trends
Bias(O/h) 100-200 1-10
Gyros Scale factor (ppm) 500 100-200
Noise floor (°/h/~+/Hz ) 10-60 1-10
Bias (g ) 500-1000 100-300
Accelerometers Scale factor (ppm) 50-100 10-30
Random noise (g /v Hz ) 100-200 10-100
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APPENDIX B

The magnitude of the gravity at the surface of the WGS-84 ellipsoid can be

approximated by the following equation“OS]:

1+ g, sin
gwass4 — go!gl—(gp)} (B.1)

\1—e” sin(@)

and the variation of the gravity with aircraft altitude can be approximated by

2
R
= a2 B.2
g gWGS—84(R +hj (B.2)

a

In the wander frame, the direction of the gravity points downward along the axis z" .

Therefore, the gravity vector can be represented as
g" =0 (B.3)

Given an initial velocity, Eq. (4.16) can be integrated to obtain the current
aircraft velocity in terms of the wander coordinates, which can be transformed into

the NED frame by.

vl’l VX

n _ _ n_w __ n

vis|v, |=Clv" =C[|v, (B.4)
Vd Vz

In the wander angle mechanization, the vertical component of the transport rate

w
e/w,z

is defined as zero®”

e/w,z

® =0, and the horizontal components are computed as

follows:
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1
Oy | _[cos@) —sin@) ][ p,| [cos(@) —sin(e) 0 R, +h |V,
o, | Lsin@ cos(@) || p. | |sin(@ cos(@) | _ 1 A2
R, +h
_ ) .
_[cos(a) —sin(e)] R, +h |[ cos(@) sin(@) | v,
| sin(e) cos(e) | _ 1 0 —sin(@) cos(@) || v,
| R, +h
. ( 1 ) sin(@)cos(a) cos (a)+sin ()
[(De,w,x}: R,+h R, +h R,+h R, +h {VX}
Oy _sin*(@) | cos’(@) IV T T v,
(Re+h " R, +h) (Rn +h Re+h)sm(a)cos(a)
(B.5)

where R and R are the radius of curvature along the lines of constant longitude

and latitude, respectively.

3 1

R, =R_#(1-e?)/(1-¢’sin’(@)>, R, =R_/(1-e*sin’(p))?
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Quaternion Differential Equation

Given an initial attitude DCM, the integration of Eq. (4.19) gives the current
attitude DCM C,' . From Eq. (4.5), the Euler angles can be computed as follows:
0 =sin'[-C} (3,1)], ¢=tan{w} v, =tan_1{w} (C.1)
C. (33 C. @)
From Figure 4.2, the true heading angle is computed as
v=v, -a (C2)
To simplify the computation of the attitude DCM differential equation, the

quaternion form of the attitude matrix differential equation is generally used and

given as follows:

4o 0 - a)\t:v/b,x - a)\t:///b,y - a)\t://b,z 9

q, _ l a)\];//b,,x 0 a)\]://b,z - wsv/b,y q, (C.3)
q, 2 a)\l;//b,y - a)\l://b,z 0 a)\l))v/b,x q, .
4, w\l))v/b,z a)\l://b, y a)\l://b, X 0 q;

The relationship between the quaternion and the attitude matrix is represented as:

a0 +qi — 4 —95 2,9, —49095) 209,95 +qyq,)
CY=| 29,9, +9,95) 95 —ai+9: —45  2(q4:95 —404;)
209,95 —909,) 24,95 +909,) 95— a7 — 45 + 45

The attitude angles can be computed from the following identities:

sin(0) = 2(¢,9; — 4949>)
2(9,9, +49495)

4 +a; —q; — s

2(9,9; +4909:)

tan(¢@) =
45 —4; — 4> +4;

tan(y, ) = (C4)

C-1
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Linear Position Error Equations

The angular position error 96 is defined in terms of the computed position

DCM C" and the true position DCM C as follows:

~

C! =[I-(6x)]C) (D.1)
It can be rewritten as

Y =Cr-CY (D.2)

OC) =—(06x)CY (D.3)
Differentiating Eqs. (D.2) and (D.3) yields

I =—06x)CY —(36x)CY (D.4)

&y =€ -€ ==@},0C; + @}, 0C; D.5)

Substituting Eq. (4.29) into Eq. (D.4), and Eq. (D.1) into Eq. (D.5) yields
I =—(36%) — (96x)( ", X)IC (D.6)

e/w

OC! =—[(@), %) — (@,

X)(96%) — (0", X)]C" (D.7)

e/w

Equating Egs. (D.6) and (D.7)
(00x) = (@), X) — (0, X) + @) (@) X)— (&

e/w e/w e/w

X)(06X)
(06%) = (dm 7, X) + (06X) (Y, ) — (B

e/w e/w

X)(06x) (D.8)

Assuming o, = @}, , the vector form equivalent of Eq. (D.8) can be written as

e/w

00 = dw,

— (@), x)08 (D.9)
Eq.(D.9) is known as the angular position error equation.

In order to correct the errors of the geodetic location (latitude and longitude), it
is necessary to determine the relationship between the angular position error 06 and
the location errors. Let the latitude, longitude and wander angles be expressed in

terms of their true values plus error terms as follows:

A=1+8, (P=p+0p, a=a+da (D.10)
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Substituting Eq.(D.10) into Eq. (4.4) and expanding elements of the resultant

position DCM matrix C: produces

CY (3,3) = —sin(p) = —sin(@ + 6p)
~ —sin(@) — cos(¢) 5 (D.11a)
=C' (3.3) — cos(p)Jp

CY (3,2) =—cos(P)sin(A) = —cos(@ + 5p)sin(A + 1)
=~ —cos(@)sin(A) + sin(@)sin(4)0¢ — cos(¢) cos(A)A (D.11b)
= C. (3,2) +sin(@)sin(A)0¢ — cos(¢) cos(4)A
CY (1,3) = cos(@) cos(P) = cos(ar + ) cos(@ + 5p)
= cos(a) cos(p) — cos(a) sin(@) 0@ — sin(&) cos(@)dx (D.11¢)
= C (1,3) — cos(@) sin(@) o — sin(x) cos(p)ocx
Expanding the right side of Eq. (D.1), the elements corresponding to the DCM can be

obtained as follows:

6;” (3,3) = C (3,3) +cos(@) cos(9)d 8, —sin(cx) cos(¢)db, (D.12a)

CY (3,2) = C! (3,2) — [sin(a@) cos(A) + cos(@) sin(¢) sin(1)106, D.12b)
— [cos(@r) cos(A) — sin(e) sin(@) sin(1)]96, '

CY (1,3) = C (1,3) +sin(a@) cos(9)dF, +sin(9)d, (D.12c)

Equating Egs. (D.11a) and (D.12a), Egs. (D.11b) and (D.12b), and Egs.(D.11c¢)
and (D.12c), respectively, the following equations relate the angular position errors

to the latitude, longitude and wander angle errors.

oo = —sin(¢p)od — 96, (D.13a)
0¢ = sin()08, —cos()98, (D.13b)
oA = [cos(a)d b, +sin()0b, ] (D.13c)
cos(¢)
In vector form, these equations can be written as
op 20,
oA |=Ty |06, (D.14)
oo 206

z
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where T=>°" is the transformation matrix from the angular position errors to the

ang_err

geodetic location errors.

sin(&) —cos(@) 0
e o cos(&) sin(&) (D.15)
. cos(¢) cos(¢)

-tan(@)cos(ax) -tan(@)sin(x) -1
In the wander mechanisation, the vertical component of angular position error 06,
can be assumed to be zero.
However, many aiding navigation systems use the linear position errors as the
error states to develop the measurement equations. It is necessary to derive the linear
position error equations of inertial system.

The linear position errors are defined as

op, =R +h)dp =R, +h)dp (D.16)
oAy = (R, +h)cos(@)dd = (R, +h)cos(p)L (D.17)
and the relationship between the angular position errors and the linear position errors
is given by
o=@ 5y _1an(@) 5, (D.18a)
R, +h R, +h
30 = sin(a) S cos(@) Si ~ sin(a) S cos(@) Si D.18b
* R, +h ¢R+Re+h ¥ R, +h (/)R+Ra+h : ( )
90 —— cos(@) S sin(cy) SL. ~— cos(a) 5 sin(@) 51 D.18
Y R, +h ¢R+Re+h ¥ R, +h ¢R+Ra+h : (D-18¢)

w
e/w,z

Expanding both sides of Eq. (4.29) and assumingw, , =0, the geodetic location

differential equations are derived as follows:

¢ =sin(@)o},, —cos(a)m, (D.19)

e/w e/w

[cos(@)®’,, +sin(@)w], ] (D.20)

e/w e/w

A=
cos(¢)
Replacing (R, +h)and (R, +h) in Eq. (4.21) by (R, +h) and then substituting the
resultant Eq. (4.21) into Egs. (D.19) and (D.20), the differential equations of the
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linear position errors can be derived as follows:

v
0Py =—— O
Dr R +h Pr
(D.21)
R an [cos(@)v, +sin(@)v,, 1oh + cos(a)dv, +sin(@)dv,
.+
Sh =Y 51+ 2D [ Gnav. +cos@)v, 169
¥ R,+h ® R, +h * YR
(D.22)
— [—sin(@)v, +cos(@)v, Joh —sin(@)v. +cos(a)év!
R, +h g '
From Eq. (4.39a), the rate of change of height is defined as
h=—(F,-v,)= —00,v, +06, v, — v,
Substituting Egs. (D.18b, ¢) into the above equation yields
2N
(D.23)

oh = (cos(@)v, +sin(a@)v, )m

n

1
—si — M, V!
+( sm(a’)vx+cos(cv)vy)R T .

€

In vector form, the linear position error differential equation can be written as

[ 59, cos(@) sin(@) 0 ] ovl
My |=|—sin(a) cos(@) O §v1y +
& 0 0 -1]ov!
v, 0
R, +h
-V, sin(@) + v, cos(a) v
tan(g) :
R, +h R, +h
v, cos(a) + v sin(a) -V, sin(@) + v, cos(a)
i R, +h R, +h

From Egs. (4.30c), (B.2) and (B.3)

0

& = 0
_ 2g,6h

R, +h

D-4

v, cos(a) + v sin(@) i
R, +h
-v_sin(a) + v, cos() Px
R hy oAy
+
¢ | dh
0
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and from Eqgs.(D.18b, ¢)

—fY +g")x 00 =

£ + £+
— Z—gOCOS(a) Z—gOSln(a) 0
R, +h R, +h ¢
£ + £+ R
_z T& sin() - Z—gocos(a') 0 oAy
R, +h R, +h
. w w . oh
sin()f  cos(a)f” cos(a)f; _sin(@)f ! ol
R, +h R, +h R, +h R, +h i

D-5
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Tilt Error Differential Equations

This computed attitude DCM éb‘” can be represented in terms of the true

attitude DCM C,' as follows:

~

Cy =[1- @¢x)IC} E.D)

where d¢ is known as the tilt error vector.

Let &CY=C!-C (E.2a)
then 8C)' = —(d¢x)C) (E.2b)
Differentiating Eqs. (E.2a) and (E.2b) yields
I =—(0gx)C)' — (9px)C} (E.3a)
Y =CY -CY =—(@",90C +(@) x)C (E.3b)

Substituting Eq. (4.17) into Eq. (E.3a) results in
8C)' = -{(9¢x) - (9px)(@y,, )ICy (E4a)
and substituting Eq. (E.1) into Eq. (E.3b) yields
&y = (@}, 91~ @PIC; + (), )C; (E.4b)
From Egs. (E.4a) and (E.4b)
(09%) = (@1, X) — (01, X) + (@) (@, X) = (B, X)(IPX) (E.5)
In vector form, the above matrix equation can be equivalently represented as
99 = 0Py, + (@, —o,) (E.6)
Expanding the second term of the right side of Eq. (E.6)
By, — 0y, =6y, —B;, —oy, +Clog,
=ap, —-Crob, -C'A" -0}, +Cl o,
=6y, —o), —(C}) -CHoj, -A" (E.7)
=@}, —0) +0) —o) +0x)C) e, —A"

e/w e/w

=00}, + 0o, + (@), —A"

e/w

E-1
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where

~

W ~w W W, e W w__e w
&")I/e - O)I/e _O‘)I/e - Ce O)I/e _('olle - [I—(aHX)]Ce ('olle _('olle

=—(00X)0;, = (0}, X)06

(E.8)

Note that CZV =[I-06x]C in the above equation.
Substituting Eq.(E.8) into Eq.(E.7) and the resultant Eq. (E.7) into Eq.(E.6) leads to
¢ = dm’, + (0. x)00 + (AP0’ + Q¢ — A"

e/w

=00, +(0}.X)00+(dpx)e;, —A"
=00, +(®}.X)060 + (d¢x)(o,,. +o), )—A"
Therefore,
99 = (@) + (0,310 + Jo}, +(©},x)00 - A" (E.9)
where
I ®j.,cos(@) oy, sin(@) N
R, +h R, +h S0
w ., sin(a) ®;.,cos(&) :
o) X060 = —er —— 0 My
R, +h R, +h s
sin(@)oy,,  cos(@)oy, , cos(@)oy,, sin(@)wy, ol
. R,+h R, +h R, +h R, +h |
[ 0 1 0_ [ sin(@)v, cos(@v, Y, ]
R, +h  [g/ (R, +h)>  (R,+h> (R, +h)’ S50,
S, =|- 1 0 0 5V1y Hl cos(o&)vZ2 sm(oz)vZ2 v, : o,
R, +h S R,+h)” ([R,+h) (R, +h) Sh
0 0 0oL 0 0 0 L

In order to correct the attitude angles, the relationship between the tilt errors
and the Euler angle errors has to be determined. Let the computed Euler angles be

expressed in terms of their true values plus error terms as follows:
d=0+0p, 0 =0+380, 7, =y, +5v, (E.10)
Substituting Eq. (E.10) into the left side of Eq. (E.1) and expanding both sides of the

resultant equation, the following equations relate the tilt errors to the Euler errors.

E-2
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cos(y,, )@, +sin(y,, )09,

cos(0)

08 =sin(y,, )09, —cos(y,, )0d,

oy, = —tan(g)[cos(y,, )P, +sin(y,, )09, -9,

In vector form, they can be rewritten as

5¢

99,

50 — TEulerﬁerr a ¢y

tilt

78

T Euler_err

where T,

given by

T Euler_err __
tilt -

a¢Z

_cos(y,,)
cos()
sin(y,,,)

—tan(@) cos(y,, )

_sin(y,,)
cos(0)
~cos(y,)

—tan(@) sin(y,, )

E-3

0
-1

(E.11)

is the transformation matrix from the tilt errors to the Euler errors,

(E.12)
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GNSS Navigation Equations

Given these nominal points at the time ¢, , [X,,Y,.Z,]" and [X,,V,.Z,]" » Egs.

(4.50) and (4.51) can be linearised as follows:

i

_(Xi_xo)&_i__(yi _'y0)5y+_(z

'Zo)
i i

Po Po Po

alt)=t'—p = & +cdt+v: (F.1)

&it)=i-p, =_(X—;X°)5X+_(y ;y°)5y+_(z ;ZO)&+cdi+

Po Po Po
—( _XO)§x+_(y ;y°)§y+_(z ;ZO)&+v§

i

Po Po Po

(F.2)

where v and v, include the additional errors resulting from the linearisation, dt and
di are the unknown receiver clock phase and frequency errors, and [Jx, 8y, dz]" and

[J%, 8y, 0z]" are the unknown receiver position and velocity error vectors,

Pa(t) = (x" =x) 2 +(y' —y,)} +(z' —z,)’ (F.3)

(Xl 'iXO) (Xl 'X0)+ (yl 'iyO) (yz _y0)+ (Zl -iZO)

0 0 0

Pl = (2 -74) (F.4)

From Egs. (F.1) and (F.2), at least four GNSS satellites must be observed
concurrently in order to resolve three unknown position states, three velocity states
and two receiver clock error states. Therefore, when more than four GNSS satellites

are visible, the GNSS navigation equations can be rewritten in vector form as

follows:
or = Hss0p, +0, (F.5)
OF = H 5P, + H 5y P +0; (F.6)
where

F-1
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o] &' V! V!
S X or’ or’ vrr2 vf;
5pp=LdJ,5p= dy|,or=|& |, =& |v,=|v | v =]V
b4 : : :
_5r’"_ _é‘r’"_ v v
&exy) -Gy @z ]
Po o Po
'(Xz'xo) '(yz_yO) '(Zz'zo) 1
Po Po Po
Hyss = —(X3—X0) —(y3—y0) —(ZS—ZO) | :[HLOS 1]
P P P
'(Xm'Xo) '(ym'yO) '(Zm'zo) 1
Zs o s |

i

P P P
line of sight (LOS) vector of the satellite i in terms of the ECEF coordinates and

. . . T
-(x'-xy) -(y' - -(z' -z . L .
( o) -0 .yo) , ( 0)} =sis known as the direction cosine or the

H, o5 is the visible satellite LOS DCM.

' -%) (-, -G -zy) |
P P P
-7 -Xy) -7 -¥,)  -@-7y)
£ P; P;
How = -x*-%,) -G -y, -@ -z,
Py Py Py
SRk -G"-¥,) -@"-2y)
s s Py

F-2
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Doppler Radar Navigation System

Doppler navigation system is an aircraft self-contained dead-reckoning system.
A Doppler radar mounted underneath an aircraft can obtain the velocity vector of the
aircraft relative to the ground by measuring the Doppler shifts of radar beam signals
returned from the ground. A three-beam Janus Doppler radar system is illustrated in
Figure G.1 with two forward-looking beams pointing to the right and left sides of
airframe, respectively, and one beam looking backward. This radar system can

measure three orthogonal components of aircraft velocity'

. Two types of the
Doppler radar mechanisations are used; one fixes the radar antenna array to the
aircraft body frame, and one continuously stabilises the radar antenna array to the
local horizontal by means of an attitude reference system. The airframe-fixed radar
system resolves aircraft velocity in the body coordinates while the attitude stabilised
radar system obtains aircraft velocity coordinated in the local horizontal frame.

These two measurements can be formulated in the wander frame as follows
Ve =Co i (G.1)
where V), is the Doppler radar output.
Therefore,
Vior = T =00)CY (Vi + V)
= C\JVBR - (8¢X)C]‘:VER + Cl‘:DDR
or
Vig = V" +(V'X)0¢9 + Cl v, (G.2)

where v" =C}' v}, is the true velocity of aircraft and v, is the Doppler radar error

vector.
From Egs. (4.30a) and (G.2), the velocity difference between the INS-derived

and Doppler radar-derived velocities can be normalised as follows:

Vis = Vig =[I=(00)]vY +v' = v —(v¥x)d¢g—C}v,,
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Therefore,

Vins —Vor =Ty " + V' —(v¥x)9p - C}vpy, (G.3)

Figure G.1 Three-Beam Janus Doppler Radar Configuration

G-2



APPENDIX H

APPENDIX H
SRIMU Error Equations

Substituting Egs. (5.17) and (5.18) into Eq. (5.2a) and using the first-order
Taylor series expansion for each element of the design matrix H result in
ios' =cosEl' cos Az’
= cos(Ely +8,, )cos(Azg =6, )
= cos El| cos Az}

-0

v Sin Elj cos Az + 3, cos El sin Az,

jos' =cos El'sin Az’
= cos(El, +J,,)sin( Az, — 3,.)
= cos El sin Az

— &, sin El;sin Az, — &, , cos El; cos Az,

kos' =sinEl'
=sin(El + 551' )
=sin El, + 3, cos El,

Therefore, AH can be driven as follows

-0, sinEljcos Az, — 38, sin Elysin Az, 1
L 1 O, cosEl,

+0, cosElysinAz, -6, cosEl cosAgz,

8 .sinEl}cosAz, — 08, sinEl;sin Az,
AH = |~ Oee S Ely c0s Az, o 0 2 ,
N 2 . 2 2 2 5513 COSEIO

+0,,,c08ElysinAz; —&, ,cosEljcos Az,
- 551" sin EljcosAz; — 551" sin El; sin Az, .,
) 551" cos El}

+0, ., cosEljsinAz; -6, , cosEljcos Azg

Observing the form of the above equation, AH can be further represented as follows:
AH = Diag(d . )I' + Diag(s,,)® (H.1)

where Diag() is a diagonal matrix consisting of the elements of the elevation

misalignment vector 8, or the azimuth misalignment vector 8 ,,, the elements of the

matrix I' correspond to the coefficients of the elevation misalignments in the matrix

H-1
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AH and the elements of @ are the coefficients of the azimuth misalignments in AH .
Approximating the measured state vector @ in Eq. (5.20) by its estimate @
given in Eq. (5.3), a generalised formulation of the measurement errors caused by the

SRIMU misalignments can be expressed by
Am=AHMH"H)'H'm=Gm
Therefore,

G=AHH'H)'H" =AHC?

mstru

(H.2)

The SRIMU error terms given in Eq. (5.16) are represented in the instrument frames.
From Egs. (5.16), (H.1) and (H.2), the total SRIMU measurement error is
A0™"™ = 3§, + Diag(m)d, + Diag(I1)d,, + Diag(X)d,, (H.3)
M=0C) m,X=rC) m
where 8 (x = Az, El) are the misalignment angle vectors, 9. is an n-dimensional
scale factor error vector, Diag(m) is a diagonal matrix consisting of the SRIMU

measurement vector m, Diag(IT) is a diagonal matrix consisting of the vector I1

and Diag(Y) is a diagonal matrix consisting of the vectorX .
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From Eqgs.(5.2b) and (5.26), a transformation from the measurement space to
the measured state space and the parity space can be described by the following

block matrix,

{The SRIMU Measurement Space} = { P

SH™ " F

The inverse of this matrix transforms the measured state space and the parity space to

(H'H)'H" - The Measured State Space
The Parity Vector Space

or

the measurement space. From the SRIMU measurement equation, H is a sub-matrix
of this inverse matrix, which determines the transformation from the measured state
space to the measurement space. Let M be a sub-matrix of this inverse matrix,
which specifies the transformation from the parity space to the measurement space,
then the following relationships are created.

{(H H)"'H }[H M]{I (H'H)'H M}EI
P 0 PM

and
[H M{(H HIZ_ H }z[H(HTH)_IHT+MP]EI

From the above two equations, the following matrix equations can be derived.

(H™H)'"H™ =0 @1
PM =1, 1.2)
HMHH)'H" +MP =1, 1.3)

Because the matrix (H"H) ™' is non-singular, then from Eq.(L.1),

H'™M=0 (1.4)

The problem is to derive a matrix M that satisfies the conditions given in Egs. (1.2)
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and (1.4). If and only if M =P", applying the following constraint conditions on P':
PH =0 and PP" =1, then
PM=PP' =1

and
H'M=H'P'=(PH)" =0
From Eq.(H.3)
P'P=1-HH'H)'H"
Let

U=P'P=I-HHH) 'H" L5
then U is an nXxn-dimensional symmetric, positive semi-definite matrix because the
rank of P"P is the same as the rank of P. The upper triangular parity matrix P with

positive diagonal elements can be computed by the following algorithms”.
Pﬁ =U,
P, =0 for j<i

B, =U,;/P, for j=23, - ,n

i—1
P} =U,-> P; fori=23,--,n-3

k=1

i—1
P,=(U,; =Y P.P)IP, for i=23,--,n=3; j=i+l-.n
k=1

* Potter, J. E. and Suman, M.C., Thresholdless Redundancy Management With Arrays of Skewed
Instruments, AGARD AG-224, 1977, pp. 15-1 to 15-25.
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Table J-1 Inertial Sensor Simulation Parameters
Sensor 1 2 3 4 5 6

Parameters

Gyro drift time const 480 470 465 475.5 590 480

(sec)
Gyro drift err (deg/hr) 0.74 0.7 0.69 0.71 0.65 0.63
Gyro bias err (deg/hr) 40]2.0 40/1.9 35|2.2 35|2.3 45|1.8 42|21
Gyro SF err time const (sec) 280 260 270 260 300 265
Gyro SF error (ppm) 50 50 50 50 50 50

Gyro Az misalign err (arcsec) 4.3E+1 3.7E+1 3.8E+1 3.7E+1 3.7E+1 4.0E+1
Gyro El misalign err (arcsec) 4.4E+1 3.8E+1 3.8E+1 3.8E+1 3.6E+1 4.5E+01

Gyro noise (deg/sqrt(hr)) 0.71 0.7 0.78 0.72 0.68 0.71
Accel drift time const (sec) 360 360 365 360.5 366 360
Accel drift err (ug) 160 170 154 165 175 150
Accel bias err (ug) 310 320 330 333 312 320
Accel SF err time const (sec) 250 260 250 260 245 260
Accel SF err(ppm) 400 415 420 410 420 405

Accel Az misalign err (arcsec) | 4.0E+1 4.8E+1 4.7E+1 4.38E+1 | 4.1E+1 4.0E+1
Accel El misalign err (arcsec) 4.6E+1 4.7E+1 4.5E+1 4.2E+1 4.0E+1 4.68E+1
Accel noise (ug/sqrt(hz) 100 100 105 100 102 110

* The first column is a typical value of slave node sensor biases and the second column is a typical

value of the cg node sensor biases.

Table J-2 GPS Error Simulation Parameters

Standard Time Constant Note
Error Sources Deviation (Second)
Ephemeris error 3 (m) 1800
Tonospheric error 3-7(5)(m) 1800 Rx location and SV elevation
dependent
Tropospheric error 1-5(2)(m) 3600 Rx height and SV elevation
dependent
Rx Clk Frq error 0.2m/s Random walk, equivalent
Rx Clk Pha error range rate error, random drift
Pseudorange noise 1-3 Rx dependent, white noise
Doppler meas noise 0.1-0.3 m/s Rx Dependent, white noise
SA effect 33 180 Second-order Markov
Simulated GNSS Roll and Pitch 0.25" White noise, dependent on
Attitude errors Yaw 0.2° PDOP
Table J-3 ADS and Magnetic Heading Simulation Parameters
Sensor/System Sensor Errors Standard Deviation Note
Output (1-sigma)
Scale factor error (%) 0.02 Random process
Pressure Height Time delay error.(s) 0.06 Ran.dom Process
Measurement noise (m) 2 White noise
True Airspeed (TAS) Measurement noise (m/s) 0.5 Total TAS error
Magnetic Heading Heading deviation (deg) 20 Random constant
Heading variance (deg) 0.5° White noise

J-1
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Table J-4 Initial Navigation State Error Parameters

Parameter Initial Errors Note
L-Position Errors | 400m Met by GNSS positioning solution and
H-Position Error 150m pressure altitude
Vn, Ve 1.0m/s Met by GNSS velocity solutions
vd 0.5m/s
Attitude Errors 1° Met by GNSS-based attitude solution or
inertial initial alignment

Table J-5 Parameter for MW-GLRT Requirements

Accelerometer | Accelerometer | Gyro Drift | Gyro Noise Velocity Attitude
Bias (g) Noise (mg) (°/hr) (°/s VHz) Error Error
2E-4 0.25 40 0.012 Max 12 knots | Max 2° for
for 2 minutes | 2 minutes

Integrity Requirements:
Probability of a false alarm is 10

Probability of a missed alarm is 10™

A/C True
Position &

Velocity
R —

GPS
Ephemera

GPS System Time (seconds) at the time of data transmission I e

Psv_i

Psv i

Figure J.1 GPS Measurement Simulation Algorithm Architecture
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KF Estimated - @
Velocity Error Vector v v
> > Outputs

KF Estimated Linear
Position Error Vector

_—— Outputs

b
: C w ¢ b 09 W
KF Estimated
Attitude Error Vector

Navigation State Compensation —> 0

Figure J.2 System Compensation Architecture



