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Summary

We present, in 8 chapters, experiments on and numerical simulations of bodies flap-

ping in a fluid. Focus is predominantly on a rigid foil, a model fish, that performs

prescribed pitching oscillations where the foil rotates around its leading edge.

In a flowing soap film is measured, with unprecedented accuracy, the vortex wake

structure behind the flapping foil in the space spanned by dimensionless flapping

frequency 0 < StD < 0.3 and amplitude 0 < AD < 2. We measure not only the

ubiquitous von Kármán wake, but also wakes where up to sixteen vortices are shed

each oscillation period. The wake measurements are supplemented with numerical

simulations of the flow and fluid forces, in settings relevant for the experiments. It

is shown that wake transitions and average fluid forces are described by a single

parameter, the Strouhal number, which is a measure of both the dimensionless foil

tip-speed and the strength ratio of the vortices formed at the foil’s leading and

trailing edge. The simulated vortex particles and measured thickness variations in

the soap film show similar behaviour which indicates that the soap film provides a

good approximation the flow of a two-dimensional incompressible and Newtonian

fluid. Also, measurements of the swimming speed of a pitching foil in a water tank

are presented.

Finally, an experimental study of the surprisingly strong fluid-mediated interac-

tion of two tandem flappers is presented. It is shown that a passively flapping flag

in general is affected by its downstream neighbour. When this neighbour is a second

flag close by, they synchronise in frequency and the leader experiences a reduced

drag compared to that on the lone flag. In case the follower is replaced by a flapping

plate, upstream synchronisation and drag reduction is again found over a wide range

of frequencies. Drag reductions up to a factor 3 are measured.

Many results presented are obtained through flow visualisations. A great effort

is made to produce visualisations of primarily high scientific quality, but often also

with a certain aesthetic appeal.
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Dansk resumé

Hvordan ser kølvandet af en svømmende fisk ud, og kan vi forst̊a kræfterne p̊a

fisken ved at betragte dens ‘fodspor’ i vandet? I denne afhandling præsenteres en

række eksperimenter og numeriske beregninger, der undersøger hvirveldannelse ved,

kølvandsstruktur bag og kræfter p̊a baskende finner, dvs. stiliserede ‘fisk’. Megen

indsigt opn̊as igennem visualisering af strømningerne. Der er generelt lagt vægt p̊a

visualiseringer af primært høj videnskabelig kvalitet, men ofte ogs̊a med et æstetisk

udtryk.

I en sæbehinde der strømmer lodret nedefter m̊ales i høj detaljeringsgrad de

periodiske hvirvelkølvand bag en oscillerende finne. Ved at variere frekvens og

amplitude findes en stor botanik af periodiske kølvandsstrukturer. S̊aledes m̊ales

b̊ade den klassiske ‘von Kármán hvirvel allé’, hvor 2 modsat roterende hvirvler

dannes per oscillationsperiode, men ogs̊a komplicerede og hidtil ukendte kølvand

hvori op til 16 hvirvler dannes per periode. Kølvandstyperne præsenteres i et ‘land-

kort’ der udspændes af oscillationsfrekvens og -amplitude. Simple matematiske

modeller, der beskriver placeringen af kølvandsstrukturer i landkortet, præsenteres.

Kølvandsm̊alingerne suppleres med numeriske beregninger af strømningen ved og

kræfterne p̊a finnen. Simuleringerne leder ogs̊a til udvikling af en matematisk model

for kræfterne. Resultaterne diskuteres i forhold til m̊alinger af svømmefarten af en

oscillerende finne i et vandkar. Sidstnævnte viser, at svømmefarten af en baskende

finne er proportional med oscillationsfrekvensen.

Endelig præsenteres et eksperimentelt studie af to oscillerende legemer i tan-

dem, der vekselvirker i overraskende grad via strømningerne. Et passivt blafrende

flag mærker generelt tilstedeværelsen af sin nedstrøms nabo. N̊ar denne er et iden-

tisk flag, synkroniserer de to i frekvens mens det forreste flag oplever en reduceret

strømningsmodstand. Erstattes det bagerste flag med en oscillerende plade opn̊as

ogs̊a synkronisering, over et stort frekvensomr̊ade, af det opstrøms flag hvis strømn-

ingsmodstand kan reduceres med en faktor 3.
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Chapter 1

Introduction

Karl Hiemenz worked hard in the early 20th century to optimise an experimental set-

up for the study of flow past circular cylinders. Together with his supervisor Ludwig

Prandtl he wanted to understand the position where flow streamlines separate close

to the cylinder. Despite careful construction of the set-up, the expected symmetrical

flow field did not appear. Instead regions of swirling fluid with an alternating sense

of rotation formed—one after the other—and were succesively shed into the wake

of the cylinder. Prandtl believed that the vortex shedding was due to imperfections

of the set-up and encouraged Hiemenz to adjust and machine the set-up to beyond

perfection. Little did they know that the periodic detachment of vortices was, in

fact, an intrinsic phenomenon of the cylinder flow (von Kármán, 1957).

What Hiemenz and Prandtl observed, the periodic vortex wake, is today known

as the von Kármán wake. The name is after Theodore von Kármán who at the same

time was working in Prandtl’s laboratory in Göttingen and analysed the stability of

the vortex configuration in the wake. It is only fair to mention the French professor

Henri Bénard, who already in the late 19th century studied the periodicity of the

vortex wake (Wesfreid, 2006). Bénard was disappointed that the phenomenon was

named after von Kármán, and the latter proposed that “. . . what in Berlin and

London is called ‘Kármán Street’ in Paris shall be called ‘Avenue de Henri Bénard.’”

This proposition settled, in the opinion by von Kármán at least, the dispute. The

wake is occasionally today referred diplomatically to as the ‘Bénard-von Kármán

wake’. Here we will, for brevity, call it the ‘von Kármán wake’.

Experiments on periodic vortex wakes are central in this dissertation. This chap-

ter gives a general introduction to peroidic vortex wakes behind bluff bodies, of which

the flow past a cylinder is a classical example that is still attracting a great deal of

attention from researchers. The flow is generally complicated, and this chapter will
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focus on cases where the flow is predominantly two-dimensional and the cylinder does

not move in response to the flow. For more details see the thorough review papers on

the cylinder wake (Williamson, 1996) and vortex-induced vibrations (Williamson &

Govardhan, 2004). Then, the active modulation of wakes through prescribed oscilla-

tion of a rigid body, like a cylinder or a flapping foil, is introduced. In chapters 3–7

we will study situations in which a foil or a filament oscillates in a flow. We will

focus on the following questions: Which wake types can a flapping foil create? What

are the fluid forces that the foil experiences? Can two flappers interact via fluid-

mediated forces? We will adress these questions with experiments and simulations

at moderate Reynolds number, Re ∼ 300.

1.1 Flow past a cylinder

A bluff body subjected to a flow will experience fluid forces and in turn alter the

flow. The perhaps most studied such system is a cylinder in a uniform free streaming

flow. The flow is characterised by the Reynolds number

Re ≡ DU

ν
, (1.1)

where D is the cylinder diameter, U is the free streaming flow speed and ν is the

kinematic viscosity of the fluid.

Depending on the Reynolds number, qualitatively different flows are observed cf.

figure 1.1. When the Reynolds number is small, i.e. Re ≪ 1, viscosity dominates

inertial effects. Here, the fluid ‘slowly’ crawls past the cylinder, like one can imagine

thick honey crawling past a spoon. In this low Reynolds number limit the flow is

called creeping flow. As shown in figure 1.1(a), the streamlines are symmetric fore-

aft and left-right. The flow field can (partly) be determined analytically (Batchelor,

1967), and typical streamlines close to the cylinder are shown in figure 1.1(a).

When the Reynolds number is increased to the range 5 . Re . 40 the fore-aft

symmetry is broken as separation of the streamlines takes place on the cylinder’s

lee-side and attached zones of recirculating fluid form as sketched in figure 1.1(b).

The left-right symmetry is retained, rendering the attached eddy on the left (right)

side a positive (negative) sense of rotation. No complete theory exists for the steady

flow field in this case, and experiments as well as simulations are needed to study

this flow. For example, observations in a water tank (Taneda, 1956) and numerical

simulations of the flow field (Brøns et al., 2007) show a linear growth with Re of the



1.1. Flow past a cylinder 3

(a) (b) (c)

Figure 1.1: Depending on the Reynolds number, three different types of flow
patterns are formed around a solid cylinder as the fluid moves from top to
bottom. For small Reynolds number, the creeping flow is symmetric left-right
and fore-aft (a). At larger Reynolds number the fore-aft symmetry is broken
and stationary zones of rotating fluid, attached vortices, sit on the lee-side
of the cylinder (b). For yet larger Reynolds numbers the vortices are shed
successively into the wake, forming a periodic vortex wake (c), that can be
three-dimensional and turbulent.

eddy’s streamwise length.

The third and perhaps most fascinating flow is found as Re is increased to the

range 40 . Re . 180. The flow, sketched in figure 1.1(c), is now unsteady as the

eddies on the cylinder’s lee side detach one after the other such that one eddy shed

has the opposite sense of rotation compared to the previously shed eddy. As they

are washed downstream, they form a vortex wake structure like a staggered grid of

vortices, as shown in the photograph in figure 1.2(a). Here, the vortices on the left

rotate counterclockwise and the vortices to the right rotate clockwise. This regime of

Reynolds number is what Karl Hiemenz considered, and the wake type is indeed the

von Kármán vortex wake. In this range of Re the vortex shedding is two-dimensional

and laminar (Williamson, 1996).

For higher Reynolds numbers, Re & 260 the flow is three-dimensional as turbu-

lence becomes increasingly more dominant in the region of flow close to the cylinder.

A few cylinder diameters downstream a vortex wake with a structure similar to the

von Kármán wake emerges from the turbulent flow, and therefore the von Kár-

mán wake is ubiquitous in nature. Examples can be seen behind bridge pillars in a

river and even in low cloud covers advecting over mountaneous islands such as the

Aleutian Islands close to Alaska.

Vortices are shed with a well-defined frequency. The wake frequency fn, which
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(a) (b)

Re

Stn

Figure 1.2: The classical von Kármán wake as seen in the soap film tunnel
(a). Arrows indicate the direction of rotation for vortices on each side of the
wake. Measured ‘universal’ relationship between Stn and Re for parallel vortex
shedding behind a stationary cylinder (b). The discontinuity at Re ∼ 180 is
due to three-dimensional effects in the wake. The figure is from Williamson
(1989) and modified to highlight the measurements.

is half the vortex shedding frequency, together with the cylinder diameter, D, and

flow speed U combines to the dimensionless Strouhal number

Stn ≡ Dfn
U

. (1.2)

Figure 1.2(b) shows measured values of Stn vs. Re in settings where the vortex

shedding is ensured parallel to the cylinder span with clever manipulation of the

flow at the cylinder ends (Williamson, 1989). In this case the flow is therefore

close to two-dimensional. At Re ∼ 50 the vortex shedding takes place such that

Stn ∼ 0.12. Stn gradually increases with Re until three-dimensional effects in the

wake lead to a discontinuity in the Strouhal-curve at Re ∼ 180. At Re & 500 (not

shown in the figure), Stn settles to the constant value ∼ 0.21 over a broad range of

Re. Due to the periodic flow and pressure fields close to the cylinder, it feels periodic

drag and lift forces that can induce oscillations (Williamson & Govardhan, 2004).

Hence, for engineering structures such as bridge pillars, off-shore oil-pipes, bridge

cables and even buildings, it is important that vortex-induced resonant vibrations

are avoided. In the opposite case, vibrations can lead to structural breakdown.

Many un-answered questions about the von Kármán wake exist. For example,

no complete theoretical explanation for the relation between Stn and Re has been
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Figure 1.3: Von Kármáns original sketch of a vortex wake section in his ana-
lysis (von Kármán, 1911a,b). The full wake is the infinite extension sideways
of the section shown.

put forward. A historically important relation, based on measurements, was put

forward by Roshko (1954) as

Stn = A

(

1− B

Re

)

, (1.3)

where A and B are constants. For instance in the range 40 . Re . 180, Stn =

0.212(1 − 21.2/Re) and in the range Re > 180, Stn = 0.212(1 − 12.7/Re). An em-

phirical Stn-Re relationship of the above form is supported by observations of the

vortex roll-up, and order-of-mangitude estimates of the terms in the vorticity trans-

port equation (Ponta & Aref, 2004). Recent careful analysis (Williamson & Brown,

1998) of direct numerical simulations of the flow past the cylinder (Henderson, 1997)

reveal that in fact a better representation of the Stn-Re curve is obtained by a series

in 1/
√
Re, i.e.,

Stn = A+
B√
Re

+
C

Re
+ . . . (1.4)

Here, Williamson & Brown (1998) show that the fitting error of equation (1.4) is

one order magnitude smaller than the expression in equation (1.3).

A characteristic of the von Kármán vortex wake is the geometry of the wake a

few cylinder diameters downstream. This was first treated by von Kármán in 1911

(von Kármán, 1911a,b) who predicted, assuming the wake as infinitely long rows of

point vortices in an ideal fluid (figure 1.3), an equilibrium wake structure when the

two vortex rows are either symmetric or perfectly staggered. From his analysis, the

symmetric configuration turned out linearly unstable. The staggered configuration,

however, turned out neither linearly stable nor linearly unstable provided that the
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geometry of the wake satisfied

cosh
πh

l
=

√
2 (1.5)

where, as shown in figure 1.3, the lateral distance between vortices of opposite sign

is h and the streamwise distance between same-signed vortices is l. In the deriva-

tion of equation (1.5) it is assumed that the double rows are perfectly staggered,

i.e., the streamwise distance between neighbouring vortices of opposite sign is l/2.

Equation (1.5) gives h ≈ 0.28l. Although the predicted wake geometry has been

successfully created and found stable numerically, still to this day no point-vortex

model has successfully explained the observed stability of the wake that haunted

Karl Hiemenz a century ago.

The staggered row geometry, equation (1.5), was recently found numerically in a

Bose-Einstein condensate that flows past a potential acting as obstacle (Sasaki et al.,

2010). In the study it was found that the potential produces a von Kármán like wake

at carefully selected parameters. The wake found in the Bose-Einstein condensate

differs in one important aspect from the wake in a ‘real’ fluid with finite viscosity,

such as figure 1.2(a). In the ideal fluid of the condensate, the wake is comprised by

four vortices in a periodic strip. Two-by-two the same-signed vortices orbit close to

each other in place of the individual vortices identified in viscous fluids. From the

geometrical center of the same-signed vortices, Sasaki et al. (2010) calculated the

geometry of the wake as h = 0.28l in agreement with von Kármán’s prediction.

1.2 Wakes of an oscillating cylinder

A rich variety of wake structures are found when the cylinder is forced to oscil-

late in the uniform free streaming flow. Perhaps the most celebrated work on this

problem is that of Williamson & Roshko (1988) (and recently re-visited by Morse

& Williamson (2009)), who considered a cylinder that is driven along a sinusoidal

trajectory through still water. This situation is analogous to oscillating the cylinder

transverse to a uniform free flow. They found simple and periodic (i.e. von Kármán)

wakes as well as complicated wakes, where several vortices are shed in each period

of oscillation. Two of the experimental images are seen in figure 1.4. (a) shows a

wake type different to the von Kármán wake in the sense that the counter-rotating

vortices are almost aligned on a single row. (b) shows a wake type where two pairs

of vortices are formed in each oscillation period.
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(a) (b)

Figure 1.4: Examples of the vortex wake behind a cylinder that moves along a
sinusoidal trajectory in otherwise quiscent water. Aluminium particles sprink-
led on the free surface reveal the wake structure. (a) The cylinder sheds two
vortices per oscillation period thereby forming a von Kármán wake (2S). (b)
four vortices organised as two pairs (2P ) are shed per period. The cylinder
moved from right to left and it has just exited the picture. Green (red) dots
mark vortices with a positive (negative) sense of rotation. The pictures are
from Williamson & Roshko (1988).

Using a symbolic code of numbers and letters, Williamson and Roshko con-

structed a map, figure 1.5, of periodic vortex wakes spanned by the oscillation period

and transverse amplitude. In their terminology ‘S’ is short for ‘single vortex’ and

‘P ’ is short for a ‘pair of vortices’. A von Kármán wake is therefore labeled ‘2S’ and

a wake that is comprised of two vortex-pairs shed per oscillation period is labeled

‘2P ’. It is interesting to note from the wake map, that despite the symmetry of

the experiment, in the sense that the cylinder moves along a sinusoidal trajectory in

otherwise still fluid, they observed asymmetric wakes. The P +S wake, for example,

is comprised by a vortex pair on one side and a vortex singlet on the other side of

the center-line.

Williamson and Roshko identified in the ‘fundamental lock-in region’ how shear

layers on each side of the cylinder roll up as the cylinder experiences large accelera-

tions. Thereby, four ‘regions of vorticity’ are formed each period. Depending on the

timing between formation and shedding of these regions they explain qualitatively

the location of regions of 2S and 2P wakes.

λ

δl
A

As the trajectory wavelength and/or amplitude is

increased, wakes with a larger number of vortices per

oscillation period are shed. This trend is explained in

simple terms by Ponta & Aref (2005) who considered

the cylinder trajectory with wavelength λ and ampli-

tude A as shown to the right. They then compared the length, δl, of the section
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n = 1

n = 2

n = 3

n = 4

Figure 1.5: Map of vortex wakes found behind a cylinder that oscillates
transverse to a free streaming flow (Williamson & Roshko, 1988). Red, circular
lines are contours that explain borders between regions of different wake types
(Ponta & Aref, 2005).

joining the two extreme positions of the trajectory with the streamwise distance

(times an integer n) between neighbouring vortices shed by a stationary cylinder,

i.e.,

δl = n
U

2fn
. (1.6)

For n = 1, 2, . . . the condition gives an implicit relation between the trajectory wave

length λ and the amplitude A. Equation (1.6) gives the circular contours, for some

n, shown in figure 1.5 that approximates well the boundaries between regions of

different wake types. The higher n, the more vortices are shed in each oscillation

period which is also observed in the experiment.
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1.3 Wakes of swimmers

A flying bird or a swimming fish are examples from biology where a flow is actively

modified through oscillatory motion of a body. Whereas the wing of a bird in

addition to thrust production also provides the necessary lift to keep the creature

aloft, the tail of a fish is exclusively designed to produce effective thrust and to

manoeuver.

Typically, a fin or wing flaps in a combination of a purely linear heaving motion,

y, and a purely rotational pitching motion, φ, cf. figure 1.6. The motion of the foil

is thus expressed by

y(t) = y0 sin(2πft) (1.7a)

φ(t) = φm + φ0 sin(2πft+ ψ) (1.7b)

where φ is the foil angle relative to the cruising direction (Triantafyllou et al., 2004).

The motion of the foil is often expressed by the amplitude-based Strouhal number,

StA ≡ 2Af

U
(1.8)

where f is the flapping frequency, 2A is the wake width, which for simplicity often

is taken as the foil tip excursion lateral to the cruising velocity with magnitude U .

Notice that StA accounts for both the flapping frequency and amplitude. For fish

it is well established that the optimal mechanical efficiency (defined as the ratio of

propulsive power to input power) takes place when the ratio y0/C (C is the foil chord)

is ∼ 1, the amplitude-based Strouhal number is in the range 0.25 ≤ StA ≤ 0.35, and

the pitching motion leads the heaving motion by ψ = 75◦ (Anderson et al., 1998).

These findings are in agreement with observations of swimming fish (Triantafyllou,

1993) as well as birds (Taylor et al., 2003).

Studies of flapping foils often express the foil kinematics by dimensionless num-

bers that account separately for the flapping frequency and amplitude. These are

dimensionless frequency, the Strouhal number,

StD ≡ Df

U
, (1.9)

where D is the width of the foil. The flapping amplitude is expressed by the dimen-

sionless flapping amplitude

AD ≡ 2A

D
, (1.10)
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(a)

(b)

(c)

Figure 1.6: Different flapping modes of a foil that moves leftwards along the
dotted line. (a) is the purely pitching node, (b) is the purely heaving mode
and (c) is a combination of the two.

U

(a)

(b)

Figure 1.7: The von Kármán wake of a cylinder that experiences drag (a)
and the inverted von Kármán wake of a swimming fish that produces thrust
(b). In the mean flow speed through a line perpendicular to the overall flow
directed left-to-right, the vortex wakes give rise to a velocity deficit (indicating
drag) or a velocity excess (indicating thrust).

where 2A is the total horizontal excursion of the foil tip, as above. Notice that by

definition, StA = StD · AD.

An interesting question regarding flapping foils is the link between vortex wake

structure and streamwise forces on the foil.

The wake of a swimming fish has a close resemblance to the von Kármán wake,

except that the individual vortices have an opposite sense of rotation. A simple

idea of the streamwise fluid forces is given if we consider figure 1.7. Think of the

wake as two rows of spinning wheels that advect fluid. Behind the cylinder the

vortices spin such that momentum is advected upstream, towards the cylinder as
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shown in (a). In a mean-flow profile, this is reflected in a reduced velocity on the

center-line, which again indicates the drag experienced by the cylinder. Behind

the swimmer, as shown in (b), momentum is transported away from the swimmer

which gives the mean flow a jet-like profile. The latter inverted von Kármán wake

type indicates the production of thrust and it has been measured behind steadily

swimming fish such as the mullet (Müller et al., 1997) and bluegill sunfish (Drucker

& Lauder, 1999). Notice that the ‘real’ wake of a swimming fish or the wake of

a foil with limited aspect ratio is three-dimensional. Consequently, vortex lines

have to form closed loops or terminate on a solid structure. Indeed, the inverted

von Kármán wake revealed by measuring the flow in a single plane, as obtained from

conventional particle image velocimetry (PIV), is in fact composed of vortex rings

linked together (Drucker & Lauder, 1999). Detailed studies of flapping finite-span

wings reveal intricate interaction of interconnected vortex tubes formed at the foil’s

leading and trailing edge as well as the side of the foil at Re = 164 (Ellenrieder et al.,

2003; Buchholz & Smits, 2008). Although the flow at higher Reynolds numbers is

more turbulent, the processes involved in production of circulation and formation of

vortex tubes is presumably similar.

von Kármán & Burgers (1963) support this interpretation with ideal flow theory.

They predicted the transition from drag to thrust of a heaving plate to take place

exactly as the von Kármán wake transits to an inverted von Kármán wake. In

the intermediate case, the vortices are aligned on the center-line of the system,

whereby they cancel each other in the mean flow. Garrick (1936) found from inviscid

theory the streamwise forces on a flat plate that performs simple harmonic pitching

oscillations around its leading edge. The plate has a chord length C and it is held in

position as an incoming flow of free stream flow speed U is imposed. He determined

the transition from drag to thrust to be independent of the pitching oscillation

amplitude, and occur at a frequency f = U/(3.16 C). As we will show in chapter 4,

the transition from drag to thrust generally cannot be predicted by the flapping

frequency alone.

1.4 Selected work on wakes behind flapping foils

A large body of work exists on the wake structures behind foils that oscillate in

either a pitching, heaving or combined manner cf. equation (1.7) (Triantafyllou

et al., 2004). This section presents a short review of experimentally measured wake

structures behind foils that oscillates in either of these modes. The motivation to
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(a)

(b) (c)

Figure 1.8: Selected visualisations of periodic vortex wakes of a flapping foil
as the fluid moves from left to right. Shown are the von Kármán wake and
undulating von Kármán wake measured by Koochesfahani (1989) (a), a 2P
wake measured by Lai & Platzer (1999) (b), and the inverted von Kármán
wake measured by Bohl & Koochesfahani (2009) (c).

study these systems comes from both industrial applications such as wings exposed

to an unsteady wind, fluttering airfoils as well as biological systems where wings or

fins are used as propulsors or to manoeuver.

Bratt (1953) used smoke to visualise wake structures of a rigid, pitching NACA

0015 airfoil in a wind tunnel. By varying the Reynolds number in the range

4 · 103 . Re . 5 · 105, he found von Kármán wake and inverted von Kármán

wakes, and he even reported an apparant 2P wake type although it was ‘hard to

reproduce’. Koochesfahani used dye in a water channel to visualise the vortex wakes

of a pitching NACA 0012 that performs pitching oscillations around the leading 1/4

chord (Koochesfahani, 1986, 1989). By varying oscillation frequency and amplitude,

he observed von Kármán wakes (figure 1.8(a)), inverted von Kármán wakes and

2P wakes. For low pitching frequency and amplitude, Kooochesfahani measured an

‘undulating von Kármán wake’, a wake where several vortices are distributed along

a wavy, narrow band that reflects the oscillatory motion of the foil (figure 1.8(a)).

Their set-up did not allow the latter wake type to be characterised in the terminol-

ogy of Williamson-Roshko. Introducing a slight asymmetry in the pitching motion
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(a) (b)

ADAD

StDStD

StA=0.2

StA=0.3

StA=0.4

Figure 1.9: The main results of Godoy-Diana et al. (2008). (a) shows the
measured wake types which are von Kármán wakes (open boxes), aligned 2S
wake (filled boxes), inverted von Kármán wake (plus) and oblique inverse
von Kármán wake (triangles). Blue and green lines are hand-drawn bound-
aries between the different wake types. (b) shows contours of the mean drag
coefficient where the transition from drag to thrust is along the thick black
curve and thrust takes place in the upper-right part of the map. The figure is
from Godoy-Diana et al. (2008).

waveform, Koochesfahani found asymmetric P + S wakes as well. The Reynolds

number is Re = 1440, based on foil width D and the free stream flow speed U .

Recently, Bohl & Koochesfahani (2009) again considered the NACA 0012 foil that

pitches in a simple harmonic fashion in flowing water at Re ∼ 1500. They made use

of molecular tagging velocimetry to extract, in high spatial resolution, the vorticity

field and vortex wake structure. Special focus was on wakes of the von Kármán type.

By varying the oscillation frequency only they found from a control volume analysis

taking into account pressure variations in the wake, that the wake transits to an

inverted von Kármán wake before the transition from drag to thrust. An example

of the inverted von Kármán wake measured by Bohl & Koochesfahani is shown in

figure 1.8(c).

Recently Godoy-Diana et al. (2008) measured 2S wakes behind a pitching foil

in a water tunnel at Re = 255 and supplemented their wake measurements with

propulsive forces. The latter was obtained from PIV measurements of the mean

flow and a subsequent momentum balance through a control volume enclosing the

foil. The discrete data points, 52 combinations of pitching frequency and amplitude,

were compiled in a wake map (figure 1.9(a)) spanned by StD and AD in the ranges
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0 ≤ StD ≤ 0.5 and 0 ≤ AD ≤ 2.1. From the wake map they concluded that the

transition from von Kármán wake to inverted von Kármán wake generally precedes

the transition from drag to thrust, figure 1.9(b). The work of Godoy-Diana et al.

(2008) gave an overview of the vortex wake structures and associated forces behind

the pitching foil. However, the resolution in their wake map as well as limitations in

resolving smaller structures in the flow prevented a clear identification of the actual

wake structure as well as the boundaries between regions of different wake types.

Futhermore, Godoy-Diana et al. (2008) find for selected flapping parameters that

the foil can produce a mean thrust while leaving behind a von Kármán wake.

Lai & Platzer (1999) used dye visualisation to reveal von Kármán wake, in-

verted von Kármán wake and 2P wake (figure 1.8(b)) behind NACA 0012 foils that

performs heaving oscillations at selected parameters in a water channel. Varying

flapping amplitude and frequency of the oscillation, they found the transition from

von Kármán wake to inverted von Kármán wake to take place as the non-dimensional

heave velocity kh = 0.4, which corresponds to StA = 0.13.

Lentink et al. (2008) studied the wake structure of a biologically inspired setting

where a foil oscillates in a combination of heave and pitch at fixed amplitude AD = 15

and 0.0042 < StD < 0.25. In a soap film flow they measured simple von Kármán

wakes, 2P wakes, asymmetric P+S, 2P+S, 3P+2S wakes and aperiodic wakes (for

low oscillation frequency) at Re ∼ 800. They had special focus on the formation

vortices at the foil’s leading and trailing edge, which was observed to take place when

StD & 0.008. After shedding, these vortices formed a pair in the wake. Two such

pairs could form during one flapping period. Lentink et al. (2008) then compiled the

vortex wakes in a diagram showing that more vortices were shed per flapping period

as StD decreases. It is interesting to note that Lentink et al. (2008) found mostly

asymmetric and even aperiodic wakes which contrasts the previous studies Bratt

(1953); Godoy-Diana et al. (2008); Koochesfahani (1989); Bohl & Koochesfahani

(2009). Based on our experience with periodic wakes, we believe that the asymmetric

wakes measured by Lentink et al. (2008) is due to their asymmetric mechanical drive.

The wake structure of and associated forces on oscillating foils in the intermedi-

ate Reynolds number range 102 to 105 have thus been studied in both experiments,

theory and numerical simulations for almost a century. Studies in the existing litera-

ture are usually carried out for a few selected values in, say, frequency or amplitude

of the oscillation. This has produced a body of work on oscillating foils that is

quite extensive, although it is somewhat scattered in the parameter space spanned
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Figure 1.10: A juvenile yellow box fish (Ostracion cubicus) utilises a purely
pitching posterior fin to swim and manoeuver. Credits: Jeff Jeffords, with
permission.

by oscillation frequency and amplitude. In this dissertation we will present a more

thorough study of the vortex wake structures of and fluid forces on a pitching foil,

in the space spanned by 0 < StD < 0.3 and 0 < AD < 2.

As an ending remark it is mentioned that in nature, propulsion by means of a

purely pitching foil is named the ostraciiform mode of swimming. It is employed

for rapid escape events by fish such as the peculiar boxfish shown in figure 1.10

(Hove et al., 2001). The ostraciiform mode of swimming is recognised to yield high

maneuverability (Blake, 1981).

1.5 Thesis outline and main results

The formation of periodic vortex wakes is a central theme of this dissertation—

predominantly the formation of vortex wakes by a foil that undergoes a prescribed

motion. As suggested, the parameters that describe flapping motion in biology are

many. Besides the flapping frequency, phase and amplitude of heave and pitching

motions, the system is characterised by foil geometry and flexibility, properties of

the fluid in which the body moves, and the cruising speed. In order to restrict the

parametric space, most work presented in this dissertation consider rigid foils with a

fixed geometry. The foil performs simple harmonic pitching oscillations only, which

corresponds to y0 = θm = 0 in equation (1.7).
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The dissertation is organised in 7 chapters, of which chapters 1 and 2 are in-

troductury and they are predominantly based on existing literature. Chapters 3–7

consist of results obtained as part of this ph.d. The dissertation and main results

are outlined in the following.

In chapter 2 an introduction to soap films and in particular aspects of their

surface tension properties are given. The use of a soap film as a tool for flow

visualisation experiments is discussed, and an experimental set-up that makes use

of a vertically flowing soap film to produce quasi two-dimensional flow is described.

Finally, the effective viscosity of soap films and in particular the soap film used for

flow visualisations in the present work is measured experimentally and discussed.

Chapter 3 introduces an experimental investigation of the vortex wakes formed

by a rigid foil that performs prescribed simple harmonic pitching oscillations in a

uniform free streaming flow. A measured ‘map of vortex wakes’ in the space spanned

by (dimensionless) pitching frequency and amplitude is presented. The map of

vortex wakes is dominated by wake types where two vortices are shed from the foil

per oscillation period, but more complicated wakes also exist. For example, in the

range of low Strouhal number, periodic wakes comprised by up to 16 vortices formed

per oscillation period were measured. This observation is explained by a simple

model that treats the foil as a passive source of circulation. It is shown how two

disconnected regions of 2P wakes exist in the wake map and it is explained through

a detailed study of the 2P wake formation. Here, distinct sources of circulation on

the foil are identified as the foil’s leading edge and its sharp trailing edge. These

sources form four regions of vorticity per flapping period, and it is shown how these

regions develop into distinct vortices to form a 2P wake.

The major results in this chapter are published in Schnipper, Andersen & Bohr:

Vortex wakes of a flapping foil, Journal of Fluid Mechanics 633, 411–423 (2009), and

Andersen, Bohr & Schnipper: Separation vortices and pattern formation, Theoretical

and Computational Fluid Dynamics 24, 329–334 (2010).

In chapter 4, the measured map of vortex wakes is compared with a similar map

obtained from numerical simulations of a two-dimensional incompressible and New-

tonian flow past the pitching foil, in conditions matching those in the experiment.

Simulations were carried out on a regular grid, comprised of 1000 simulations, in

the same parameter space as measured. The measured and simulated wakes show

impressive quantitative agreement, and the boundary layer evolution and vortex for-



1.5. Thesis outline and main results 17

mation are qualitatively similar. The simulated streamwise forces on the foil show

that the transition from von Kármán wake to inverted von Kármán wake precedes

the transition from drag to thrust, and both transitions are well fitted by lines

of constant amplitude-based Strouhal number. The simulated unsteady and mean

forces are discussed in relation to values obtained from a quasi-static model. The

model describes the transition from drag to thrust fairly well, but fails to predict

the correct phase relative to the foil rotation angle.

Chapter 5 presents an experiment where the foil pitches in an otherwise quiescent

soap film. The impressive flow due to the pitching foil is shown in a single image

that reveals how two vortical lobes form each oscillation period. The lobes pile up

and ultimately form a large region of active flow that has the shape of a pair of

butterfly wings.

The image is published in Schnipper, Tophøj, Andersen, and Bohr: Japanese

Fan Flow, Physics of Fluids 22, 091102 (2010).

In chapter 6, experiments on the swimming speed due to a pitching foil are

described. An experiment has been devised, where a foil undergoing prescribed

pitching motion while free to swim along a fixed path in a water tank. The three-

dimensional foil is swimming at a speed given entirely by the fluid forces acting on the

foil. The chapter consists of preliminary results that show how the foil’s swimming

speed increases linearly with the pitching frequency, above some threshold set by

static friction in the system.

Chapter 7 presents experiments on interacting tandem flappers in an open flow.

In a vertically flowing soap film tunnel a rubber filament, a flapping flag, models

a passive ‘swimmer’. Downstream of the flag objects of three different types are

introduced, one at a time: A rigid plate, a plate performing prescribed pitching

oscillations and a flag identical to the leader. Generally, the flag is affected by its

downstream neigbour such that the flag experiences a reduced drag compared to the

drag it feels when it is left alone in the same flow. It is shown that the observed

frequency synchronisation of two tandem flappers is not limited to cases of passively

flapping bodies: By actively flapping a plate in the wake, it is possible to make the

upstream flag lock to the forcing frequency over a broad range of frequences. The

results are discussed in relation to animals such as schools of fish or a predating fish

chasing its prey.
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The work presented in this chapter was conducted during a 4 month stay with

Jun Zhang at the Applied Mathematics Laboratory, New York University.

Throughout the dissertation, physical units are kept in the cgs system, i.e., length

is measured in ‘cm’, mass in ‘g’, time in ‘s’.
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Chapter 2

Soap films and two-dimensional

flows

Soap films are excellent to visualise overall features as well as minute details of

two-dimensional flows. The first documented work that makes use of soap films to

visualise flows is that of Sir James Dewar in 1923, who visualised the flow due to a

jet of air impingning on a horizontal soap film suspended on a wire frame (Dewar,

1923). Later on, in the early 1980s, soap films gained widespread popularity as a flow

visualisation tool. Of particular importance is the inspirational work of Yves Couder

and co-workers, who studied wakes of cylinders that penetrates the horizontal and

otherwise quiescent soap film (Couder & Basdevant, 1986). Gharib & Derango

(1989) invented a ‘liquid film tunnel’ where a planar water jet pulls a soap film and

thereby produces a horizontally moving soap film in which a number of experiments

which shear flows were conducted. Kellay et al. (1995) made a simpler version where

gravity drives the flow vertically downwards between two guide wires. In the last

two decades, several groups have adopted gravity-driven soap film tunnels to study

a great variety of phenomena such as the shedding of vortices behind a cylinder in

an otherwise uniform flow (Vorobieff & Ecke, 1999a,b), structure in two-dimensional

turbulence (Rivera et al., 1998; Rutgers, 1998), flapping of flags (Zhang et al., 2000),

passive ‘swimming’ of a filament behind a cylinder that sheds a von Kármán wake

(Jia & Yin, 2009) and the ‘inverted drafting’ of two flags that flap in a tandem

configuration (Ristroph & Zhang, 2008).

This chapter first gives a general introduction to soap films. Part of the content

is based on the books by Isenberg (1992) and Boys (1890), that both thoroughly

explains many aspects of soap films in an easy-to-digest language. Secondly, an ex-

perimental set-up that makes use of a flowing soap film to visualise two-dimensional
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water

air

(a) (b)

Figure 2.1: A free surface of water at rest (a). Molecules at the free surface
feel an average force from their neighbours that is directed towards the bulk,
whereas molecules in the bulk feel a zero average force (b).

flows is presented. The flow tunnel is build as a part of this ph.d., and it will be used

in chapter 3 to map out vortex wakes behind a flapping foil. A similar soap film

tunnel is used in chapter 7 to study interaction of tandem flappers. The relevant

properties of the flow tunnel are given, and the link between measured thickness

variations and the underlying flow in the soap film itself is discussed, as is soap

film tunnels as a testing ground for experiments on two-dimensional incompressible

Newtonian flows.

2.1 Anatomy of a soap membrane

A solution consisting of soap and water can form thin fluid membranes suspended

on, say, a closed loop like the wands used by children to blow bubbles. Typically,

a simple solution of water and commercially available detergent produces films that

persist for ∼ 30 seconds. It is the soap molecules that enable the fluid to form thin,

durable membranes. It seems that Dewar (1927) holds the record in long lasting

soap membranes: In a sealed jar he was able to keep a circular soap film (diameter

19 cm) for 3 years!

Consider a volume of pure water at rest with the upper surface exposed to the

air, as shown in figure 2.1(a). A tiny volume near the free surface showing the

individual water molecules is shown in figure 2.1(b). Water molecules are polar and

thus interact with each other as they ramble about due to thermal kinetic energy.

A molecule in the bulk of the fluid will feel a zero force on average since it is

surrounded by its identical neighbours. A molecule on the surface, however, only

feels its neighbours on the surface and in the bulk fluid. The asymmety leads to
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Figure 2.2: Anatomy of a soap film: Evenly spaced soap molecules on the
surface reduce the surface tension of the solvent (water). Superfluous molecules
form spherical micelles in the interstitial fluid layer.

a net force that is directed towards the bulk. Opposing this net force is the fluid

pressure due to the surface molecule being bombarded by molecules in the bulk.

Consider now a perturbation of the flat surface, for instance by displacing upwards

a single surface molecule, cf. figure 2.1(b). The attractive forces from the neighbours

now have a stronger component directed towards the bulk, and the perturbation is

thus eliminated. In other words, the water tries to minimise the free surface area,

which is an effect particularly pronounced for water. This is the reason why insects

like the water strider (Hu et al., 2003) or rigid, dense bodies like paper clips can

float atop a water surface.

When soap is added to water, the solution can form thin membranes, with typical

thickness of order ∼ 10 µm. Soap molecules are hair-pin shaped with a characteristic

hydrophilic head attached in the end of a hydrophobic tail such as the commonly

used Sodium Dodecyl Sulfate, SDS, molecule (C12H25SO4Na). When dissolved in

water, a portion of the slender molecules will migrate to the fluid-air interface where

they will be evenly distributed in such a way that the tails point away from the bulk

fluid as shown in figure 2.2. The concentration of molecules at one film surface, Γ1,

is related to the concentration in the interstitial fluid layer, c1, by

c0 = c1 + 2
Γ1

h
, (2.1)

where c0 is the average soap concentration of the solution and h is the film thick-

ness. The surface concentration is, for small values, linearly related to the bulk

concentration

Γ1 = Kc1, (2.2)

where the constant K has dimension length and is related to the specific soap

(Chomaz, 2001). For SDS soaps K ∼ 4 µm (Couder et al., 1989).
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For large concentrations the linear relationship

(2.2) no longer holds as the surface can occupy no

more soap. Instead, the superfluous molecules form

spherical micelles in the bulk by directing their tails

towards the same point, figure 2.2. This takes place

when c0 is larger than the critical micelle concentration

cm. In this range, the surface concentration settles to

a constant value as sketched on the graph to the right.

As soap molecules occupy space on the fluid sur-

face, the surface density of water is lowered, which again lowers the surface tension

of the solution to a value less than that for pure water σw. For small soap concen-

trations the surface tension departs linearly with Γ1 from σw such that

σ = σw − Γ1RT, (2.3)

where R is the ideal gas constant and T is the temperature. Equation (2.3) is

only valid for low concentrations of soap. When the critical micelle concentration is

reached, no more soap molecules migrate to the surface, and σ accordingly attains

the constant value cm.

An interesting feature of soap films is the response to a sudden stretch. Here,

soap molecules from the interstitial fluid layer have no time to migrate to the surface

to ensure the equilibrium value of Γ1 cf. equation (2.2). Thus, for a period of time,

neighbouring soap molecules are moved further apart and in return the surface

tension is increased cf. equation (2.3). As time evolves, soap molecules from the bulk

of the film will migrate to the surface and equilibriate the surface soap concentration

and surface tension. The surface tension before and after the applied stretch is

generally not the same. The initial increase in surface tension is the Marangoni

elasticity. On a long scale of time, soap migrates from bulk to surface to restore

equilibrium concentractions cf. equation (2.3), and this long-term elasticity is the

Gibbs elasticity. It should be noted that the time it takes soap to reposition from

the interstitial fluid to the surface, τ , varies from τ = 0.01 s (pure water and SDS

solution) to τ = 1 s when pollutants are present (Couder et al., 1989; Chomaz, 2001).

Isenberg (1992) quotes a factor 3 decrease in surface tension as a rule of thumb, and

it is speculated that this value applies to ‘standard’ soap bubble solutions.

The special elastic property of soap films, the Marangoni elasticity, resists defor-

mation thats would otherwise lead to rupture. Since pure water lacks this property,
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(a)

(b)

(c)

Figure 2.3: Three types of waves can propagate in soap films. (a) is the
asymmetric (surface tension driven) waves, (b) is a symmetric (surface tension
driven) wave, and (c) is a symmetric wave driven by Marangoni elasticity due
to local stretching of the soap film surface.

it is not possible to blow bubbles of pure water.

Different types of waves can propagate in thin fluid films, sound waves and sur-

face tension driven waves that deflect the film surface. Sound waves are longitudinal

waves that propagate at the fluid’s speed of sound, in soap solutions this is approx-

imately the speed of sound in water, 1.5 · 105 cm/s. Since flows in soap films take

place at velocities far smaller than the speed of sound, effects of compressibility are

of no concern.

The surface tension driven waves are generally composed of either asymmetric or

symmetric waves (Lucassen et al., 1970). Taylor (1959) considered propagation of

waves in thin water films and gave expressions for their velocities. The asymmetric

wave, figure 2.3(a), is the sheet-analogy to a transverse wave on a string: The

fluid film is deflected away from its resting plane and the surface is correspondingly

stretched. Surface tension resists stretching and acts to restore the flat surface,

and surface tension lets the asymmetric wave to propagate at a velocity that is

independent on the wavelength. An expression for the propagation velocity is given

in table 2.1. A value for typical soap films is ∼ 500 cm/s. This particular type

of wave is the most commonly observed on soap films. Since the two liquid-air

interfaces are displaced in phase, by the same amount, the asymmetric wave is not

accompanied by a significant change in film thickness.

The symmetric wave, figure 2.3(b), is a longitudinal wave where the film thickness

varies in such a way that the upper and lower surfaces are mirror images of each

other. As for the asymmetric waves, surface tension is the driving mechanism.

The propagation velocity for this type of wave depends on the wavelength and the
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Wave type Propagation speed Typical value

(a) Asymmetric vas =
√

2σf

ρh
570 cm/s

(b) Symmetric vsym = 2π
λ

√

σfh

2ρ
2.70 cm/s

(c) Symmetric Marangoni vM =
√

2E
ρh

730 cm/s

Table 2.1: Propagation speed and typical values calculated for the differ-
ent wave types shown in figure 2.3. The film considered has a thickness
h = 1.5 µm, fluid density ρ = 1.0 g/cm3, surface tension σf = 1

3
σ20◦C
w =

73 g cm/s2 and in case (b) waves of wavelength λ = 0.1 cm and in case (c) the
Marangoni elasticity E = 80 g/s2 (Couder et al., 1989).

expression is seen in table 2.1. In soap films, symmetric waves can alternatively

be propagated by the Marangoni elasticity. As the film becomes stretched in the

nodes, a Marangoni flow is set up, which transports fluid along the film surface from

the antinodes to the nodes. In soap films, the rate of change of thickness due to

Marangoni driven waves dominate the conventional symmetric waves (Couder et al.,

1989). As we shall see later, the symmetric wave driven by Marangoni elasticity is

the soap-film analogy to sound waves in air.

2.2 Thin film interferometry

Besides the ability to form stable membranes and bubbles, the soap film is appealing

to the eye due to the many colours that are seen on a bubble as it floats in mid-air on

a sunny day. The colours are due to interference in the film of varying thickness. In

this section an explanation of the link between observed colours and film thickness

variations is given.

Figure 2.4 shows a slab of soap film that is subjected to monochromatic light.

As the incident ray of light I1 meets the soap film, part of it (∼ 96%) is transmitted

through the air-liquid interface while the remainder reflects off the interface. After

reflecting off the upper liquid-air interface (∼ 4%), most of the remaining light

is then transmitted through the lower surface, into the air as R1. Similarly, the

incident ray of light I2 is partly reflected off the lower interface as R2. The two rays

R1 and R2 travel along the same path and an observer sees the resulting light as

they interfere. Whether the interference is constructive og destructive depends on

the soap film thickness.
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Figure 2.4: The incident ray of monochromatic light (I1) is partly trans-
mitted through the lower interface and partly reflected off the upper interface,
before leaving the soap film downwards as R1. Here it interferes with R2 which
is the part of I2 that reflects off the air-liquid interface. Shown in (a) is the
case where the soap film thickness is such that R1 and R2 interfere negatively,
and an observer would see a dark spot. In (b) the rays interfere constructively
to form bright spots. The lower bar shows the brightness variation of the
combined reflected rays. (c) is the cylinder wake, revealed by interference, as
the soap film flows past the cylinder.

In case the local soap film thickness is h, the additional length traversed by the

light ray R2 is

δl = 2nih cos θ +
1

2
λ, (2.4)

where ni is the refractive index of the fluid, λ is the wavelength of the light in the

liquid solution, and θ is the angle (relative to a surface normal) at which the light

reflects inside the soap film. The second term 1
2
λ is due to a 180◦ phase shift of

R2 as it reflects off the soap film which has a higher refractive index than the air

through which it propagates.

Constructive interference, and hence bright spots, are formed between R1 and

R2 when δl is equal to an integer times the wavelength

δl = mλ, (2.5)

as shown in figure 2.4(a). In case the change in thickness results in the rays only be

shifted by effectively half a wavelength, i.e.

δl =

(

1

2
+m

)

λ, (2.6)
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interference is destructive and a dark film is seen. The lower bar in figure 2.4 shows

the resulting colour from interference of R1 and R2 that an observer would see, when

the film thickness varies linearly as shown. The change in film thickness from (a) to

(b) corresponds to the rays being shifted in phase by half a wavelength.

Let us now consider an incident light ray that meets the soap film along its

normal, thus cos θ = 1. In case the soap film thickness has a slight variation such

that two neighbouring points of constructive interference is formed, then δl = 1λ.

The associated change in film thickness is, from equation (2.4)

δh =
λ

4ni

. (2.7)

A good approximation to monochromatic light can be provided by a low-pressure

sodium lamp. Its spectrum is narrow and centered around λ = 589.3 nm (yellow)

which is the major part (∼ 90%) of the energy of the visible light emitted by the

lamp. For this particular lamp, neighbouring dark or bright areas tell us that the

underlying thickness variation in the soap film is δh = 0.11 µm when the refractive

index of water (ni = 1.333) is used. Although the thickness variation is small, it

is sufficient for visualising the flow in soap films. A typical example is given in

figure 2.4(c) that shows a snapshot of the vortex wake formed behind a stationary

cylinder that penetrates perpendicularly the soapfilm as the latter flows steadily

downwards.

2.3 Flows in soap films

As mentioned in the introduction it is today fairly common to study two-dimensional

flows with soap films and soap film tunnels. Typically, the flow within the film is

visualised using thin-film interferometry as described in the previous section. It is

important to keep in mind that structures observed in the flow, such as the vortices

seen in figure 2.4(c), are in fact thickness variations. It is not the flow itself one sees.

A legitimate question arises in this context: How is the thickness field correlated to

the velocity field?

The flow within a soap film flows is complicated. It involves internal pressure

driven flow, effects of curvature (Young-Laplace pressure), effects of Marangoni- and

Gibbs elasticity, dynamics of soap molecules, effects of compressibility (thickness

variations of the film), coupling to the flow of the ambient air and motion of waves

in the film itself. Chomaz (2001) analysed rigoriously the flow in soap films under the
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sole assumption that the flow takes place on a spatial scale L much larger than the

film thickness h. L could for example denote the diameter of a vortex L ∼ 0.1 cm in

a soap film of thickness h ∼ 10 µm. In this typical setting, h/L ∼ 10−3 which meets

the assumption of Chomaz. He then sets up a system of ‘master equations’ that take

into account the effects of Gibbs and Marangoni elasticity, curvature, exchange of

soap between the interstitial fluid and the surface, gradients in soap concentration

in the bulk, viscous effects due to flow in the soap film plane and viscous effects

due to shear stresses at the film surface. He defined a Mach-number equivalent for

soap films M ≡ U/vM and considered the flow in the range M ≪ 1. In this limit,

to leading order, the master system reduces to the two-dimensional Navier-Stokes

equation for an incompressible fluid

∂u

∂t
+ u · ∇u = −∇Γ01 +

1

Re
∇2

u (2.8)

∇ · u = 0. (2.9)

where Re is the Reynolds number defined in equation (1.1). Thus, provided that the

local flow speed |u| (= U) is small compared with vM, the soap film flow behaves

as an incompressible Newtonian fluid where (to leading order) the surface density

of soap Γ01 plays the role of pressure. An analogy between sound waves in air

and Marangoni waves in soap films exists. In air, the finite propagation speed of

sound waves is due to compressibility, i.e., molecules being more densely packed in

some regions than in other. This gives rise to pressure variations that are of order

M2
air. In soap films, the Marangoni waves are driven by ‘compressibility’ of surface

soap molecules, i.e., gradients in concentration of soap on the film surface. These

concentration gradients are, like pressure in air, of order M2 in the limit M ≪ 1

(Chomaz, 2001). Hence, in this range of M , pressure fluctuations (i.e., fluctuations

in Γ0) can be disregarded.

It is less clear how the thickness field evolves when an underlying flow in the soap

film is present. Chomaz & Cathalau (1990) simulated numerically the evolution of

the thickness field and found that it follows the vorticity field when the dimensionless

parameter τ ′ ∼ 10. τ ′ is a rough measure of the time it takes soap to migrate to

the film surface. It has not been possible to find quantitative numbers for the soap

used in this study, so a direct comparison with the results of Chomaz & Cathalau

(1990) and Chomaz (2001) is not possible. As we will see in chapter 4, the thickness

variations in the soap film correspond beautifully to the vorticity in simulated two-

dimensional incompressible Newtonian flows.
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In a gravity-driven, vertically flowing soap film tunnel it was deduced from in-

stantaneous measurements of the thickness and vorticity fields that the thickness

field follows the flow as a passive scalar (Rivera et al., 1998). By measuring the

evolution of quasi two-dimensional turbulence produced behind a comb structure

it was found that certain statistics of the flow evolve in accordance with theoreti-

cal predictions for incompressible flows. In particular, the observed thickness and

vorticity fields appear similar. Interestingly, the thickness and vorticity fields were

similar even in situations with fairly large Mach number, M ∼ 0.5, and relative

thickness variations up to 35% were measured. In our experiments we have M . 0.4

which is smaller than in the experiment by Rivera et al. (1998). It therefore seems

fair to assume that the soap film meets the requirements to behave as predicted by

Chomaz (2001).

In conclusion, the important message in this section is stressed: If (parts of)

the observed thickness field associated with a soap film flow rotates like a vortex,

say, we can trust that a rotating vortex indeed exists in the two-dimensional flow

of the soap film. Furthermore, the flow in the soap film behaves as the flow of a

two-dimensional incompressible Newtonian fluid.

2.4 The soap film tunnel

To visualise structures in two-dimensional flows, a soap film tunnel is build. The

flow tunnel consists of a vertically flowing thin soap film that is suspended between

wires. The design is inspired by the extensive review by Rutgers et al. (2001) and

it is seen in figure 2.5: An acrylic reservoir is placed atop a rigid metal frame. A

precision needle valve is mounted in the bottom of the reservoir, such that the overall

flow through the nozzle is directed vertically downwards. Constant pressure head

at the valve is maintained by overflowing an acrylic cylinder, 15 cm tall, inside the

main reservoir. Two 0.1 cm thick nylon guide wires exit the nozzle in the vertical

direction and the guide wires are tightly suspended with a stainless steel weight.

The soap film is made by draining a solution of demineralised water and 1.5% soap

(Procter & Gamble’s Fairy Ultra) from the upper reservior and between the guide

wires. When wet, the wires are pulled apart by thin tension-threads at points 60 cm

and 125 cm below the nozzle (see figure 2.5), such that they form a section of the

constant width 15.2 cm between these points. Above and below these attachment

points, the guide wires converge linearly to a single point forming an opening angle

of 13.3◦.
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Figure 2.5: Schematic drawing of the gravity-driven soap film tunnel.

The setup is constructed such that the vertical distance between the nozzle and

the tension-threads can be continuously varied to optimise the flow tunnel in terms

of uniformity, stability and reproducibility. The geometry described above is found

be optimal. The thin threads that separate the guide wires are all connected to a

single string. In case of an occasional film rupture, the guide wires are brought close

together such that the gap is wetted by the draining liquid before pulling them apart

to restore the soap tunnel geometry in one easy operation.

The central part of the parallel section, marked by a dotted line in figure 2.5,

consitutes the test section. In this part of the soap film, the gravity-driven flow is

balanced by drag from the surrounding air. We note that our soap film is wider

than what seems to be common (∼ 10 cm) in the literature. It is unclear why this

particular value is often used elsewhere, but we found that the wide film better

suppresses asymmetric waves and since the tunnel is wider, possible effects from

boundaries are less likely to occur.

In the test section the flow is uniform both streamwise and laterally. Free stream

flow speeds U can be obtained in the range 110−280 cm/s by the varying efflux rate

through the valve. Typically we operate the tunnel at a velocity of U = 150 cm/s.

From measurements of the valve efflux rate, film width and flow speed the average
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film thickness is found to be h = 1.5 µm. By inspecting interference fringes in the test

section it is verified that the film thickness is homogeneous to within δh = 0.06 µm,

which yield a 4% uncertainty on the estimated mean film thickness. The free stream

flow speed is measured by tracking small air bubbles, pollutants and other defects in

the soap film using a high-speed camera. All these identifiable features in the soap

film move with speed U ± 3%, and we take this uncertainty as the uncertainty on

flow speed.

The flow structures in the soap film are visualised with thin-film interference as

described in section 2.2. We make use of monochromatic light from a low pressure

sodium lamp (Philips SOX 90W light bulb) onto the soap film. Monochromatic light

has the advantage that it produces interference fringes with high contrast, which

makes it easy to identify the flow features. The interference fringes are recorded

with a high speed camera (Phantom v4.2 monochrome), and a digital camera (Nikon

D70s) with a macro lens (Nikon AF-s VR Micro-Nikkor 105mm f/2.8 IF-ED) for

high-resolution pictures. To minimise geometrical distortions of the images, we take

care that the incoming rays of light are as perpendicular as possible to the plane of

the soap film. Typically, the incident light meet the soap film in an angle of 5.7◦ off

the soap-film normal.

2.5 Effective viscosity of a soap film

Typically, the flow of a Newtonian fluid is characterised by the Reynolds number, in

which the fluid viscosity is a key parameter. To compare the flows in the soap film

with flows in water or air, we could for instance use a effective soap film viscosity

to calculate the Reynolds number for the soap film flow. The (effective) viscosity of

soap films is more involved than that of a Newtonian fluid. In fact, it is not even

expressed by a single parameter. As shown in figure 2.2, a soap film consists of two

surfaces bounding an interstitial fluid. The effective viscosity of the soap film is

therefore comprised by viscosity of the interstitial fluid layer, νb, and contributions

from the two fluid-air interfaces, νs. The effective kinematic viscosity is commonly

expressed as (Trapeznikov, 1957)

νe = νb + 2
νs
h
. (2.10)

For thick films, the bulk contribution dominates, whereas for thin films the terms

that account for the surface will dominate. Generally νb is taken as the viscosity of
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water whereas νs depends on the chemical components in the soap.

Several studies have been performed on soap films of varying thicknesses. For

example, Martin & Wu (1995) constructed a Couette cell device to measure the

viscosity of a freely suspended, horizontal soap film. By rotating a magnet they

forced a thin metal annulus to co-rotate as it was suspended in a horizontal soap

film (with stationary, circular boundary). From either the transient response of the

annulus’ angular velocity to a sudden change in the forcing, or from stresses build up

in the steadily rotating annulus they inferred the effective viscosity νe = 0.04 cm2/s

for films of thickness 0.5 µm ≤ h ≤ 1µm. Although their experiment is quite

fascinating, the method is rather involved and it is hard to precisely control the

thickness of the horizontally suspended film.

Gharib & Derango (1989) proposed an alternative method to estimate the vis-

cosity from measurements of vortex shedding frequency, behind cylinders of different

diameters. The data, represented by Stn and Re, can then be fitted to the Strouhal

curve determined by Roshko (1954) and mentioned in chapter 1

Stn = 0.212

(

1− 21.2

Re

)

, Re < 200 (2.11a)

Stn = 0.212

(

1− 12.7

Re

)

, Re ≥ 200, (2.11b)

using the kinematic viscosity as the single fitting parameter. Although Gharib & De-

rango (1989) did not conduct the actual fitting procedure, the method was adopted

by Vorobieff & Ecke (1999a). They considered films of thicknesses in the range

4 µm ≤ h ≤ 20 µm and found the effective viscosity to vary roughly in the range 3–

8 times the viscosity of water. The most viscous film was the thinnest, in agreement

with equation (2.10).

The film in our soap film tunnel is fairly thin, h = 1.5 µm, and thus it falls

outside the range considered by Vorobieff & Ecke (1999a). We therefore adopt

their method, and measure the wake frequency f behind 20 different cylinders with

diameters varying in the range 0.020 cm ≤ D ≤ 1.20 cm. The cylinders were placed,

one at a time, in the test section of the soap film with free streaming flow speed

U = 150 cm/s. The cylinders did not oscillate in response to the unsteady fluid-

forces. The wake frequency is measured, using high-speed videos, by counting the

number (typically ∼ 20) of vortices that advect through a fixed reference line in the

test section.

In figure 2.6 we show the measurements obtained from the experiment and our
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Figure 2.6: Measurement of Strouhal number vs. Reynolds number for
circular cylinders in the uniform soap film flow. The curves show the fit of
equation (2.11) to the data.

fit of the Strouhal-curve, equation (2.11). The value of νe is chosen to minimise the

root-mean-square deviation between the mean Strouhal number and (2.11). This

gives the estimate νe = 0.07 cm2/s, i.e., under these flow conditions, our soap film

has a kinematic viscosity which is approximately seven times the viscosity of water.

It is noted from figure 2.6 that the measured values of Stn do not seem to be

described very well by the Stn-Re curve in equation (2.11). It is not clear to us what

causes this discrepancy. The agreement between measurements and the curve (2.11)

is better in the study by Gharib & Derango (1989) and Vorobieff & Ecke (1999a).

The latter used 15 cylinders with diameters in the range 0.01 cm ≤ D ≤ 0.26 cm in

flows ranging from 90 cm/s ≤ U ≤ 200 cm/s, which closely matches our experiment.

Differences are that our film is thinner and we use the Fairy Ultra detergent, which

is likely not used by Vorobieff & Ecke. Couder et al. (1989) mention that friction

between the soap film and the surrounding air introduces damping and moves the

threshold Re at which the vortex shedding takes place. Given that our film is fairly

thin it is more subjected to air drag by virtue of the reduced inertia of the soap

film. Couder & Basdevant (1986) mention that the formation of a meniscus, a local

increase in film thickness, around the cylinder can cause a larger effective diameter

of the cylinder. Such a meniscus will therefore result in Stn being underestimated.

No notable meniscus was observed in our experiments, although it was not verified

rigorously. An alternative explanation is the wetting ability of the cylinders used.
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When the experiments were conducted, the cylinders were not carefully de-greased.

In principle, some amount of grease from handling could sit on the cylinders and

cause changing wetting properties, which can affect the meniscus. This can explain

the large variations in Stn in figure 2.6.

The estimate νe = 0.07 cm2/s still seems fair when it is compared to the value

determined by Martin & Wu (1995) and the values determined by Vorobieff & Ecke

(1999a). Regardless of the discrepancy between our measured Stn-Re curve and those

measured in previous studies we will make use of our estimate νe = 0.07 cm2/s. As we

will see in chapter 4, boundary layer flows as well as evolution of vortex wakes match

closely between the flows in the soap film and simulated flows of an incompressible

two-dimensional Newtonian fluid when the Reynolds number in simulations matches

that in the experiments when it is based on the estimated value of νe.

2.6 Summary

In this chapter we described the anatomy of soap films, their elastic properties,

motions of waves in soap films, and visualisation of thickness variations through

thin-film interferometry. Most important, an experimental set-up that makes use

of a gravity driven, vertically flowing planar soap film is introduced. An object

that penetrates the film modifies the quasi two-dimensional flow. The flow is linked

to minute thickness variations that follow the flow as passive tracers, like the dye

used to show the flow in a water tunnel. These thickness variations are revealed by

thin-film interferometry.

One way to match the soap film flows with simulated flows in water or air, is

by using the Reynolds number. This requires an effective viscosity of the soap film

tunnel that is estimated, based on a simple experiment, to be νe = 0.07 cm2/s. The

estimate is in good agreement with results obtained by other groups.

The soap film tunnel will be used to measure in great detail the periodic vor-

tex wake structures of a rigid foil that flaps at externally controlled frequency and

amplitude, presented in the next chapter. Also, in chapter 7 we will make use of a

similar soap film tunnel to study interaction of two flappers.
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Chapter 3

Vortex wakes of a flapping foil

A swimming creature propels itself with its flapping fin. Fins vary greatly in both

size and geometry, some are optimised for speed (like the mackerel) while others

are optimised for cruising (like the whale) or maneouverability (like the box fish

in figure 1.10). Instead of studying such a specialised foil shape, we will consider

the flow of a simple foil. In fact, it is the perhaps simplest realisation of a fin: A

rigid foil that performs prescribed pitching oscillation around the leading edge in a

two-dimensional flow. In this chapter we consider the wake types behind a rigid,

pitching foil.

We show detailed measurements of the vortex wakes behind the pitching foil.

The wake types are mapped out in a phase diagram, similar to the Williamson-

Roshko map of figure 1.5, spanned by the Strouhal number 0 ≤ StD ≤ 0.3 and

dimensionless amplitude 0 ≤ AD ≤ 2. To measure the wakes we make use of a

vertically flowing soap film tunnel as described in the previous chapter. The main

advantage of soap film tunnels is the high quality of flow visualisation they provide.

Second, the set-up that we use is mechanically very simple and it is easy to operate.

Drawbacks are that we cannot, for this system, measure the fluid forces acting on

the foil, and the soap film flow is generally complicated. In chapter 4 we will extend

the map of vortex wakes with numerically simulated forces, and we will see that the

soap film dynamics shows remarkable agreement with the simulated two-dimensional

incompressible flow.

We find a phase diagram that is mostly composed of vortex wakes where two

vortices are shed per oscillation period. These wakes are either a normal von Kár-

mán wake or an inverted von Kármán wake. In the range StD < 0.1, wakes with

many vortices shed per oscillation period dominate. Simple models are provided to

explain (1) the complicated wakes in the low-StD range, (2) why two distinct and
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Figure 3.1: Schematic drawing of the foil that performs simple harmonic
pitching oscillations around the center of the circular leading edge.

disconnected regions of 2P wakes exist and (3) a possible link between constant am-

plitude based Strouhal number and the boundary between von Kármán and inverted

von Kármán wake regions, in terms of vortex strengths.

3.1 Foil geometry and dimensionless numbers

The foil geometry is shown in figure 3.1. The foil has a circular leading edge and

straight sides that meet at the sharp trailing edge. The foil is milled out of brass

to within an absolute tolerance of 10−3 cm. For the experiments two foils are used,

one with chord length C = 0.60 cm and width D = 0.10 cm, and one that is twice

this size, i.e., C = 1.20 cm and D = 0.2 cm.

A two-dimensional flow is provided by the gravity-driven soap film tunnel that

was described in section 2.4. In the center of the test-section, cf. figure 2.5, the

soap film is penetrated by the foil such that the plane in which the foil pitches

is parallel with the soap film. Before each experiment, a layer of oxidised brass

is carefully removed with fine sandpaper. Despite its large oscillation frequencies

and amplitudes the foil does not lead to film rupture. The foil is attached to a

rigid driving shaft that is pitched by an oscillating motor that works as follows: A

central shaft is spring loaded such that it experiences a restoring torque when it

is rotated away from its resting angle. Permanent magnets attached to the shaft
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Figure 3.2: Waveform of the pitch angle (relative to vertical) of the foil when
it is oscillated at f = 150 Hz. The total RMS deviation over one oscillation
period is 1.8%.

are displaced with electromagnets such that the axle rotates. When applying an

alternating current to the magnets, the shaft performs angular oscillations. The

axle is held in position by a rigid teflon cramp. Typically the foil is driven at

frequencies in the range 30 Hz < f < 230 Hz at angular amplitudes φ0 ≤ 10.5◦.

The waveform and angular amplitude of the angular oscillation are monitored by

reflecting a laser beam off a mirror that is attached to the shaft and subsequently

tracking the beam on a projection screen. A representative waveform of the angular

oscillations, the pitching waveform of the foil, is seen in figure 3.2 and the root-mean-

square deviation from a pure sinusoid is less than 1.8%. For certain frequencies, the

motor oscillates around a mean angle that is different from the resting angle. In

such a case, the motor is tilted manually to counteract the bias angle.

Four dimensionless numbers characterise the flapping motion of the pitching foil.

As mentioned in the introduction, the pitching oscillation of the foil is expressed by

the Strouhal number

StD =
Df

U
, (3.1)

where f is the prescribed pitching frequency and U is the free stream flow speed.

The dimensionless flapping amplitude is

AD =
2A

D
, (3.2)



38 Vortex wakes of a flapping foil

where 2A is the total horizontal excursion of the foil tip, cf. figure 3.1. The foil’s

aspect ratio

A.R. =
C

D
, (3.3)

is equal to 6 for both foils, and will be keept fixed throughout the thesis.

The last dimensionless number is the Reynolds number based on the free-stream

flow speed (U = 150 cm/s), foil width (D = 0.1 cm or D = 0.2 cm) and the effective

soap film viscosity determined in section 2.5 (νe = 0.07 cm2/s)

Re =
DU

νe
. (3.4)

For the small foil we have Re = 220 and for the large foil we have Re = 440.

A low-pressure sodium lamp provides the monochromatic light to visualise the

thickness variations in the soap film, and the flow is effectively monitored in real

time with the previewer of a high speed camera. Often, the real-time measurements

are supplemented with videos recorded at 2000 frames per second. We scan the

space spanned by StD and AD in the following way. First, a pitching frequency is

selected. Then the amplitude of the pitching oscillations is slowly ramped up until

we observe changes in wake structure. Due to the direct monitoring of the flow

and the continuously varying AD it is easy to pinpoint precisely the value of AD

where a wake transition takes place. We find no hysteresis, i.e., no difference in this

transition as AD is increased or decreased.

For the measurements with StD < 0.15 we make use of the small foil, and for the

measurements with StD ≥ 0.15 we make use of the large foil. We presume that for

the regime of intermediate Reynolds number, 102 < Re < 104, the wake structures

are insensitive to changes in Re since the quasi two-dimensional flow of the soap film

is not subject to three-dimensional instabilities. To verify that the wakes measured

do not depend on the specific foil size, we scan with the large foil at StD = 0.12

and with the small foil at StD = 0.18. These scans show a perfect agreement in the

wakes measured for each value of StD.

3.2 Map of vortex wakes

The measured map of vortex wakes is shown in figure 3.3, using the wake labeling

from Williamson & Roshko (1988) in conjunction with a colour coding. The space

is spanned by 0 ≤ StD ≤ 0.30 and 0 ≤ AD ≤ 2.0, and the resolution of the scan
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Figure 3.3: Map of vortex wakes in the StD, AD plane. The blue line is for
StA = 0.11 and the black line is for StA = 0.18 (see section 3.4). The figure is
reprinted from Schnipper et al. (2009).

in frequency is given by the width of the vertical, coloured colums comprising the

map.

Several points are worth noting. Firstly, the major part of the map is occupied

by wake types that are periodic with the prescribed frequency of the foil. In all ob-

served periodic wakes, an even number of vortices are formed per oscillation period

and the wakes are symmetric in the sense that the vortex pattern shed as the foil

moves from one extreme position to the other is, except for a change in sign, similar

to the pattern shed as the foil moves back. In the range StD . 0.07 the wake is

extremely sensitive to a slight flapping asymmetry. This sensitivity likely explains

the asymmetric wakes (where an odd number of vortices shed per period) measured

by Lentink et al. (2008). Their driving mechanism, by design, produces an asym-

metric oscillation waveform. It is not clear why asymmetric wakes were produced

behind the cylinder oscillating transverse to the free flow (Williamson & Roshko,

1988). Behind the rounded cylinder, regions of vorticity (cf. the attached eddies in

figure 1.1(a)) interact easier. It is speculated that an asymmetry introduced as the

cylinder is started from rest could partly explain the asymmetry. In contrast, the

foil’s main source of circulation in the low StD limit is the leading edges. The foil

chord functions in this case as an effective wake-splitter that prevents interaction of

vorticity formed at the left and right sides of the foil.
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Figure 3.4: Selected wakes types behind the small foil: (a) von Kármán wake
for StD = 0.12 and AD = 0.98, (b) inverted von Kármán wake for StD = 0.12
and AD = 2.0, (c) 2P wake for StD = 0.080 and AD = 1.4, (d) 2P + 2S wake
for StD = 0.053 and AD = 1.2 (e) 4P wake for StD = 0.039 and AD = 1.34
and (f) 4P +2S wake for StD = 0.035 and AD = 1.47. The figure is reprinted
from Schnipper et al. (2009).

Asymmetric wakes behind the foil do exist. In the upper-right corner of the map

the inverted von Kármán wakes become oblique. This is also found by Godoy-Diana

et al. (2008) who furthermore show that the asymmetric wake is accompanied by

production of an average lift by the foil. In our experiment it is not possible to

determine precisely the threshold where the wake becomes oblique. Between the

region with von Kármán and inverted von Kármán wakes, we find a wake type

where the vortices are aligned, like pearls on a string, behind the foil. As they are

advected further downstream the vortices fall back into the usual staggered double-

row arrangement of the von Kármán wake.
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Secondly, wake types where two vortices are shed per oscillation period, 2S wakes,

dominate the map—particularly in the region StD > 0.1. For small AD, we typically

observe von Kármán wakes. Notice how these wakes are found over a wide range of

frequencies, as opposed to the case of the stationary cylinder, cf. figure 1.5. As AD

is increased we instead find the inverted von Kármán wake. Examples of these wakes

are given in figure 3.4(a, b). Notice that figure 3.4 shows the evolution of the wakes

far downstream. Similar visualisations of the far-wake are rare in the literature,

the only known example we could find is Zdravkovich (1969) who visualised in one

picture 17 periods of the von Kármán wake and Koochesfahani’s wake shown in

figure 1.8(a). Apart from slow decay of the vortices as they are advected downstream,

the von Kármán wake does not change significantly. In contrast, the vortices in the

inverted von Kármán wake tear each other apart from around 10 chord lengths

downstream. This leaves a blurred wake without clear vortex structures. A similar

degeneration of the inverted von Kármán vortex wake is observed behind a NACA-

0012 foil oscillating in the purely pitching mode (Koochesfahani, 1989, Fig. 3b) or

purely plunging mode (Lai & Platzer, 1999, Fig. 4c) in a water stream.

Thirdly, we observe wake types where two vortex pairs, 2P , are shed per oscilla-

tion period, in agreement with observations behind a pitching airfoil (Koochesfahani,

1986, 1989) and an airfoil oscillating in a pure plunging mode (Lai & Platzer, 1999).

An example is given in figure 3.4(c). This wake type is also measured behind live

swimming eel (Tytell & Lauder, 2004), in the simulated wake of a swimming eel

(Blondeaux et al., 2005), behind bluegill sunfish that perform turning maneouvers

(Drucker & Lauder, 2001) and behind the cylinder that oscillates transverse to the

free stream (Williamson & Roshko, 1988). In the latter case the wake appeared

in a single region in the space spanned by (inverse) frequency and amplitude. For

the pitching foil, however, two distinct regions with 2P wakes exist: A main re-

gion at StD ∼ 0.08, and a little island that is wholly contained in the region with

von Kármán wake at StD ∼ 0.17. We will discuss further the 2P wake in section 3.3.

Finally, the region with low Strouhal number StD < 0.1 is dominated by compli-

cated wakes. Shown in figure 3.4(c–f) are examples of such wakes ranging from the

2P wake to the complicated 4P + 2S wake where 10 vortices form per oscillation

period. In general more vortices, up to the impressive 8 pairs, are measured per

period as StD is decreased. For these low values of StD the wake structure takes

the form of a wavy band of vortices. Roughly like a material line, the vortices show

the trajectory of the foil tip drawn into the by-passing liquid sheet. Similar mea-

surements were made by Bratt (1953), Koochesfahani (1989) (cf. figure 1.8(a)), and
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Lentink et al. (2008), although their experiments did not allow the same quantita-

tive observations. That flow structures can be clearly resolved in this low-StD range

shows the visualisation strength of soap film tunnels.

A simple model of the wake in the limit of low StD can be made following the idea

of Ponta & Aref (2005) that was outlined in section 1.2. We consider the shedding

frequency of a cylinder with diameter D. The associated Strouhal number for the

(natural) vortex shedding in this case is measured as Stn = 0.17, i.e., the cylinder

sheds two vortices during the time

Tn =
D

U Stn
. (3.5)

Let us now observe the flapping foil over one oscillation period T = 1/f , and compare

the observation time with m · Tn, where m is an integer. This gives the relation

StD =
1

m
Stn. (3.6)

We predict the value of StD that belongs to a certain wake type, i.e. a certain m, in

the table below. For example, m = 4 corresponds to a wake type where 8 vortices

are shed per oscillation period which corresponds to the 4P wake.

m Wake type Predicted StD Measured StD
2 2P 0.085 ∼ 0.08
3 2P + 2S 0.057 ∼ 0.05
4 4P 0.043 ∼ 0.04
5 4P + 2S 0.034 ∼ 0.035
6 6P 0.028 —
7 6P + 2S 0.024 ∼ 0.03
8 8P 0.021 ∼ 0.02

Table 3.1: Predicted and measured wake types in the low StD limit.

Given the simplicity of the model, the agreement with measurements is good. The

model is only valid in the limit of low StD, where the wake is comprised of many

vortices formed per oscillation period. In this limit, circulation is predominantly

produced at the foil’s leading edge and vortices form through shear flow instabilities

in the wake. This is in agreement with observations in the picture of the 4P + 2S

wake in figure 3.4(f). Notice here that the first 2 chord lengths downstream of the
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Figure 3.5: Formation of a 2P wake (StD = 0.09 and AD = 0.95). The
panels show the foil as it sweeps from the left-most position, panel (a), to the
right-most in panel (e). As time progresses, a vortex ‘E’ is formed close to
the leading edge, while another vortex ‘C’ is formed at the trailing edge as it
crosses the vertical line. The figure is reprinted from Schnipper et al. (2009).

foil, the wake is blurry. Futher downstream, individual vortices form and become

identifiable. The model can not explain the transition from von Kármán to inverted

von Kármán wake, where the tip produces significant circulation, nor can it explain

the existence of the little 2P island. As we shall see in the following sections, timing

of vortices shed from the leading and trailing edges explain the 2P wake island

and the relative strength of leading edge and trailing edge vortices also determines

transitions in the wake.

3.3 The 2P wake

We will now consider the formation of the 2P wake shown in figure 3.4(c). Figure 3.5

shows five zoomed views of the flow around the foil as the tip moves from the left-

most position to the right-most.

In figure 3.5(a), two vortical structures are close to the foil tip. Vortex ‘A’

has a counter clockwise sense of rotation (positive circulation) and it is located

immediately under the foil tip. ‘B’ has a negative sense of rotation and it sits at

the lower right side of the foil. As the foil rotates slightly towards the right, panel

(b), B is washed into the wake. In the following panels (c–e), A and B are advected

into the wake as a vortex dipole on the left side of the center-line. As they move

downwards they translate further to the left due to their mutually induced velocity.
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Meanwhile in panel (b), separation of the boundary layer close to the leading edge

forms an attached leading edge vortex ‘E’.

As the foil passes the center-line, panel (c), it achieves its maximal transversal

speed and a patch of negative circulation ‘C’ forms at the trailing edge. In the

following panels (d–e), ‘D’ appears at the tip. D cannot be seen on the preceding

panels due to a shadow on the left side of the foil. In panel (e), the foil is in the

right-most position and C is shed. Due to symmetry, the half-period of oscillation

following panel (e) will be analogous: D will be shed and travel with C as a pair on

the right side of the center-line. E will move down along the chord and pair up with

the vortex that forms at the tip as it passes the center-line moving leftwards.

Notice how D is created on the left side of the foil, but ends up on the opposite

side of the center-line. This is in contrast to the case of a 2P wake behind an

oscillating cylinder (Williamson & Roshko, 1988). Here, vortices stay on the side

of the cylinder where they were formed. 2P wakes have also been measured in

a horizontal plane that cuts through the center of a swimming eel (Müller et al.,

2001). Here it is found that regions of same-signed vorticity, produced at the eel’s

anterior end, travel down along the body as a ‘proto vortex’. The proto vortex

follows the undulatory wave that the eel sends down along its spine to swim. When

it arrives at the posterior end the protovortex forms, in conjunction with a patch

of vorticity produced at the tail, a vortex ring that is shed into the wake. The

single vortex ring propagates away from the fish along a path directed only slightly

backwards. This wake type is associated with large lift forces (Müller et al., 2001,

2008). Interestingly, the mechanism involved in the formation of 2P wake behind

swimming eel agree well with the observations done in the soap film tunnel. It

therefore seems that deformation of a flexible body is not essential to form a 2P

wake.

In figure 3.6(a) we show the streamwise position of seven individual leading edge

vortices (similar to B, D, E in figure 3.5) as they roll down along the foil chord.

The vortices were tracked manually from a high-speed video. It is observed that

the vortex centroid moves at an almost constant rate. The red line is a best-line

fit to the data points and it has a slope of 72 cm/s, which is close to half the free

streaming flow speed of U = 150 cm/s. As they move downwards, the leading edge

vortices roll, without slipping, as solid wheels downstream along the foil chord. This

observation helps to understand the two distinct regions with 2P in the wake map

in the following simple way: The time it takes a detached leading edge vortex to
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Figure 3.6: (a) Measured position of the leading edge vortices as they roll
down along the chord in figure 3.6 (a). The straight red line is fitted to the
data. A 2P wake in the main region (b), and in the little 2P island, (c). Note
that in (c), two vortices roll down as a little train (marked with black arrows)
along the foil chord. In (b), only one such vortex exists (marked with a white
arrow).

advect with speed U/2 along the chord C is

Ta =
2C

U
. (3.7)

Provided the advection time equals an integer, n, times the oscillation period T ,

wakes of the 2P type can exist. With the foil geometry C = 6D we predict 2P

wakes when

StD =
n

12
. (3.8)

For n = 1 we predict StD = 0.083 in excellent agreement witht the wake map.

This is analogous to the situation where one vortex is present on each side of the

foil chord, as shown again in figure 3.6(b). When n = 2 we predict StD = 0.17,

again in good agreement with the wake map. In this case, two vortices must exist

simultaneously on each side of the chord which is shown with arrows in figure 3.6(c)

(only the flow on the foil’s right side is visible in the figure). In principle, the model

predicts more islands with 2P wakes. However, viscous effects prevents formation

of 2P wakes at, say, StD = 0.25 and beyond. Here, the vortices are shed too close to

each other in the streamwise direction whereupon they instantly merge two-by-two

leaving a wake of 2S type.

The simple model helps to understand the existence and location of regions of

2P wakes in the wake map. Understanding the boundary between the regions with
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Figure 3.7: Wake types observed following the horizontal arrow in the wake
map, figure 3.3, with constant flapping amplitude AD = 1.14. (a) is well
within the main 2P wake region of the wake map, and (e) is well within the
von Kármán wake region. (a) StD = 0.084, (b) StD = 0.096, (c) StD = 0.105,
(d) StD = 0.109 and (e) StD = 0.12. The figure is reprinted from Schnipper
et al. (2009).

2P wakes and, say, von Kármán wakes is more involved. To predict the extent of

the 2P wake island, a criteria for merging of vortices, given their relative position

and strength is needed. Notice that the left and right boundaries can be determined

by the timing at which the vortices are shed only. The upper and lower boundaries,

on the other hand, should be predicted by taking into account the strength ratio.

This will be considered in the next section.

3.4 Wake transitions

The formation of a 2P wake requires that the timing criteria in equation (3.8) is

met. In figure 3.7 we show five snapshots of the flow around the foil as the flapping

frequency is increased as shown by the horizontal arrow in figure 3.3. Panel (a) is for

the lowest value of StD and panel (e) is for the highest value of StD. The individual

panels show the foil as it is pitched approximately to the right-most position.

Panel (a) shows a 2P wake at AD = 1.14 and StD = 0.84, i.e., parameters well

within the main 2P region in the wake map. As the flapping frequency is increased,

the leading and trailing edge vortices are shed with a still smaller streamwise sep-
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aration, a good example is the wake change from panel (b) to panel (c). In this

situation the trailing edge vortex is shed close to the same-signed leading edge vor-

tex from the preceeding oscillation half-period. As the wake evolves, the trailing

edge vortex induces a large strain on the same-signed leading edge vortex, and ulti-

mately they merge further downstream (not shown in c). In panel (d), the merging

of same-signed vortices occurs approximately one chord length downstream of the

trailing edge. Upon the slight increase in StD, from StD = 0.11 in (d) to StD = 0.12

in (e), one cannot distinguish in the wake between patches of vorticity formed at

the leading and trailing edges. In this panel, the vortices leave the trailing edge

simultaneously.

l

u1

u2

From the experimental observations it is clear that

essentially two sources of circulation exist: The lead-

ing edge and the trailing edge. In total the two edges

form four patches of vorticity per oscillation period.

We model the strength of these patches by following

the idea of Prandtl & Tietjens (1934). Consider the transport of circulation through

the one-dimensional area of the straight line l, as shown on the sketch to the right.

Vorticity only exists in regions where the velocity has a non-zero gradient, i.e., cir-

culation flows in the shaded area only. The rate at which circulation flows through

l is,
dΓ

dt
=
u22 − u21

2
, (3.9)

where u1, u2 are the components of velocity normal to l. Let us consider the vorticity

that flows past a line that extends horizontally to the right, starting at the foil’s

round leading edge. Observations show that a leading edge vortex is formed on

sides of the foil during one oscillation period cf. figure 3.5. We assuming that the

circulation flowing through l is all collected in a single patch of vorticity, and we

estimate the circulation of this patch as

Γle =
1

2

∫ 1/f

0

U2 dt =
U2

2f
= DU

1

2StD
, (3.10)

using u1 = 0 due to the no-slip condition and u2 = U . In the estimate we neglected

contributions due to the foil’s rotation (this effect is of order ∼ 0.3%). Notice that

equation (3.10) differs by a factor 2 from the expression given in Schnipper et al.

(2009). The latter was integrated over a wrong period of time.

At the trailing edge we make use of the same idea, however we apply it in
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a situation where the free streaming flow is neglected. The amount of vorticity

transported across the trailing edge due to its motion is estimated as

Γte ≈ 1

2

∫ 1/2f

0

[Vte(t)]
2 dt

≈ 1

2
π2A2f = DU

1

8
π2A2

DStD, (3.11)

where Vte(t) is the instantaneous speed of the foil tip. We presume that equation

(3.10) estimates the circulation of the leading edge vortices well, and that equa-

tion (3.11) underestimates the circulation produced since the free streaming flow is

neglected.

Taking the ratio between Γte and Γle yields an expression for the relative strength

of the two vortices formed at the leading and trailing edges, i.e.,

Γte

Γle

≈ 1

4
π2St2A, (3.12)

where StA (= StD ·AD) is the amplitude-based Strouhal number.

In the wake map, figure 3.3, we have included two lines of constant StA. The blue

line is for StA = 0.11 and the black line is for StA = 0.18. Notice how the blue line

nicely penetrates the regions with 2P wakes, and how the points with aligned 2S

wake follow the trend of the line of StA = 0.18. These obervations suggest that in the

range StD & 0.1, changes in wake structure such as the transition from von Kármán

wake to inverted von Kármán wake is linked to the ratio of circulation produced

at the leading and trailing edges which is described by St2A. For the 2P wake we

have that the strength ratio of the vortices in a pair is constant along StA = 0.11.

However as we slide along the contour, the relative position of the vortices change,

which in some cases lead to merging of vortices as shown. As we shall se in the next

chapter, StA is an important parameter that also describe changes in the average

streamwise force on the foil.

3.5 Summary and discussion

This chapter concerned the vortex wakes of a pitching foil in a two-dimensional flow.

Using a soap film tunnel we measured a rich variety of periodic and symmetric vortex

wakes and presented these in a ‘wake map’ spanned by the dimensionless flapping

frequency, the Strouhal number StD, and the dimensionless flapping amplitude AD.
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When the foil flaps at StD < 0.1, a complicated wake is formed where several

(up to sixteen) vortices are formed each oscillation period. Flapping in this range,

the sharp trailing edge adds only little to the circulation going into the wake. The

circulation is mostly produced at the foil’s leading edge, and it is subsequently

distributed into the wake by the periodic motion of the foil. Once in the wake, shear

flow instabilities cause roll-up of vortices a few chord lengths downstream. In the

case of 2P wake, the individual wake vortices were shown to form at the leading

edge and at the trailing edge.

In the range 0.1 < StD < 0.3 and small flapping amplitudes AD ∼ 0.6, we see how

patches of circulation produced at the foil’s leading edge and trailing edge in some

cases merge to form a classical von Kármán wake. In other cases, a patch is shed

such that it persists as a single vortex in the 2P wake. An interesting observation

is the existence of a little ‘2P wake island’ surrounded by a sea of von Kármán

wakes. A necessary condition for the formation of a 2P wake is that vortices formed

at the leading and trailing edge are shed sufficiently far apart in the downstream

direction. The relative magnitude of circulation produced at the leading and trailing

edge is shown to be described by the amplitude-based Strouhal number StA. These

circulations are each taken as the strength of leading and trailing edge vortices. The

far-wake evolution of the 2P wake indicate that the vortices comprising a pair are

of almost equal strength. It therefore seems reasonable that the two regions of 2P

wake are well penetrated by lines of constant StA. For larger flapping amplitude,

the von Kármán wake transists to the inverted von Kármán wake which is often

measured behind swimming fish and taken as an indicator of thrust production.

In an intermediate state, the vortices are aligned on the center-line of the set-up.

The transition from von Kármán wake to inverted von Kármán wake is also well

described by the line StA = 0.18.

It should be noted that the soap film allows measurements of the wake evolutions

in the far-wake, which is attractive for comparison with theoretical models of periodic

point vortex wakes. At Virginia Tech, Mark Stremler and co-workers have analysed

figure 3.4(c) and compared it with a point vortex model (Salmanzadeh & Stremler,

2009). In this model the wake is assumed infinitely long, i.e., there is no foil. The

periodic wake considered is the periodic juxtaposition of a ‘block’ that is occupied

by four vortices. The vortices have equal magnitude, two of which are positive and

two are negative. Imposing symmetry arguments on the vortex dynamics, their

analysis gives three regimes of qualitatively different wake evolution. The 2P wake

of figure 3.4 evolve according to the point vortex model’s ‘scatter’ regime, where
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vortex dipoles are formed and subsequentently shoot away from the center line. A

very recent generalisation of the point vortex model, to be presented (Basu et al.,

2010), allows for unequal vortex strengths.

A drawback of the present set-up is the lacking ability to measure directly the

fluid forces. The metal axle to which the foil is attached was held in station by

a teflon cramp which prevents deflections of the axle. Force measurements using

strain-gauges are therefore not possible. Even if such deflection allowed, the tiny

fluid forces on the foil yield a tiny deflection of the axle. For example, taking the

typical drag acting on a flapper (6 dynes, see chapter 7) as an estimate of the force

variation on the foil, the displacement of the axle end is ∼ 10−6 cm. Even if such

displacements could be measured, vibrations of the setup should be accounted for.

As we shall see in chapter 7, it is in some cases possible to measure (average) fluid

forces in a soap film.

We believe that our results carry important messages for the field of unsteady

aerodynamics. Formation of vortices at the foil leading edge is of fundamental

importance as they often yield large transient fluid forces on the foil (Dickinson

et al., 1999; Sørensen & Nygreen, 2001). For the cylinder oscillating transverse to

the flow, vortex formation close to the cylinder gives rise to unsteady fluid forces.

Selected changes in oscillation frequency or amplitude, leads to abrupt changes in

the lift and drag, which again is reflected by changes in the wake structure.

It is natural to ask if similar transient forces or sensitive dependence on the

flapping parameters occur for the pitching wing. This is considered in the next

chapter, where we will extend the vortex wakes measured in the soap film tunnel

with wakes and fluid forces obtained numerically.
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Chapter 4

Unsteady fluid forces

Currently unavailable
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Chapter 5

Japanese fan flow

In the previous chapters we considered a foil that imprints a wake in the open flow

to which the foil is presented. In this chapter we consider the alternative situation:

What is the flow due to a foil that is pitching in an otherwise quiescent flow? In

this case there is no free-stream to carry away the vortices formed at the foil. The

situation mimics the well-known experience as we create a cooling breeze by flapping

a paper-fan, like those used by the Japanese Geishas, or the footprint of a fish that

suddently sets into motion from standstill.

5.1 Experimental set-up

A horizontal soap film suspended in a circular loop of metal wire (� 10 cm) consi-

tutes the flow area. The soap solution used so far in this dissertation do not provide

a sufficiently long-lived, stable soap film. Instead the Sterling Johnson big-bubble

recipe is used. It consists of demineralised water, 5% Fairy Ultra detergent, 5% glyc-

erin, 0.16% hydroxyethyl cellulose, 1.0% lauramidopropyl betaine, 0.80% propylene

glucol, and 0.20% peg-80 sorbitan laurate. This solution produces soap films that

are stable for ∼ 1 minute.

We make use of the motor presented in chapter 3 to flap the large foil (1.2 cm

chord and 0.2 cm diameter) in the soap film. The foil penetrates the soap film from

below and flaps in the plane of the soap film. The foil performs simple harmonic

pitching oscillations at 100 Hz and a lateral tip excursion 2A = 0.15 cm. Based on

the tip-speed of the foil, the foil diameter and the kinematic viscosity determined in

section 2.5, the Reynolds number is of order ∼ 130.

Images are aquired with a digital camera (Nikon D70 with macro lens Nikon

AF-s VR Micro-Nikkor 105mm f/2.8 IF-ED), operated at shutter speed 1/100 s and
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aperture f/10. The camera sees the reflected image of a stroboscopic lamp that

is directed towards the plane of the soap film at an angle ∼ 10◦ off the soap film

normal. The stroboscopic lamp emits short flashes at the same frequency as the

oscillating foil.

5.2 The Japanese fan flow

Figure 5.1 shows the flow caused by the pitching foil. In contrast to the situation

in the previous chapters, there is no imposed free streaming flow to produce circu-

lation at the foil’s leading edge—it is predominantly the sharp trailing edge that

can manipulate the fluid. As the foil tip moves from one extreme position to the

other, a lobe of circulating fluid is formed. In the figure, the foil has just moved

to the left whereby the lobe with a counter-closkwise sense of rotation is formed.

At the counter stroke, a lobe with the opposite sense of rotation will form. In the

initial strokes, the fanning flow is limited to a small area near the tip, approximately

a size set by the flapping amplitude, and as time evolves the area affected by the

tip grows. We tested effect of walls by performing experiments in a circular frame

(� 15 cm) and a quadratic frame with side length 15 cm. No effect of the frame size

or geometry are observed.

The lobes are successively advected downwards, thereby creating a streaming flow

which is seen in the stripes on each side of the tip. While the lobes are being advected

downwards, they undergo severe deformations. In the streamwise direction they are

compressed while in the lateral direction they are stretched. A secondary flow folds

the layered pattern upwards, thereby forming two regions of slowly rotating fluid.

This secondary folding gives the overall flow a beautiful butterfly-like structure.

The butterfly wings rotate like a vortex dipole where flow is downwards near the

tip. Both the formation of vortical lobes at the foil tip and the formation of large

circulating regions due to the secondary flow agree with observations of the flow

due to a cantilever plate that is vibrated at the clamped end at Reynolds number

Re ∼ 100 (Kim & Wereley, 2004).
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Figure 5.1: The flow of a hand-held paper fan is mimicked by the rapidly pitching foil in a horizontal and otherwise quiescent
soap film.
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5.3 Discussion

The overall features of the fanning flow agree with observations of the flow of air

due to a vibrating cantilever plate (Kim & Wereley, 2004). The plate (3.3 cm long,

3.8 cm wide and 0.013 cm thick) is clamped in one end while the base is oscillated

perpendicular to the otherwise free plate. Based on oscillation frequency 180 Hz,

tip velocity and amplitude their Reynolds number varied in the range 43–146. Kim

& Wereley (2004) reveal the phase-resolved and mean flow fields with micro PIV.

In agreement with observations in the soap film, they find that vortices form at the

plate’s free end. Two vortices form each oscillation period, each vortex formed as

the plate moves from one extreme position to the other. Close to the tip the flow is

almost two-dimensional, but shortly after being shed the vortices disintegrated due

to three-dimensional effects.

A remarkable feature of figure 5.1 is the long history contained in the thickness

variations that give rise to the colourful pattern. Take a look at the side of the

stacked lobes and follow it all the way to the very center of the wings. Here, the

traces of the very first oscillation periods persist—even after ∼ 70 oscillation periods!

We speculate that non-Newtonian effects are at play in the formation of the flow

pattern, and possibly in the long history contained in the picture.

The picture was one of five winning entries in the 2009 Gallery of Fluid Motion

poster contest (American Physical Society, 62nd Division of Fluid Dynamics meet-

ing). Also, it has been displayed in the major Danish newspaper “Weekendavisen”

(January 22nd 2010) and the homepages of National Geographics and Discovery

Channel.
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Chapter 6

Free swimming of a pitching foil

Currently unavailable
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Chapter 7

Interaction of tandem flappers

Currently unavailable
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Chapter 8

Discussion and outlook

Currently unavailable



62 Discussion and outlook



63

Bibliography

Anderson, J. M., Streitlien, K., Barrett, D. S., & Triantafyllou, M. S. (1998). Os-

cillating foils of high propulsive efficiency. Phys. Rev. Lett. 360, 41–72.

Basu, S., Stremler, M., Schnipper, T., & Andersen, A. (2010). Mathematical mod-

eling of “2P” mode vortex wakes. 63rd Annual Meeting of the APS Division of

Fluid Dynamics. Contributed talk GN.00003.

Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge University

Press.

Blake, R. W. (1981). Mechanics of ostraciiform propulsion. Can. J. Zool. 59, 1067–

1071.

Blondeaux, P., Fomarelli, F., & Guglielmini, L. (2005). Numerical experiments on

flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.

Bohl, D. G., & Koochesfahani, M. M. (2009). MTV measurements of the vortical

field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech.

620, 63–88.

Boys, C. V. (1890). Soap bubbles - their colors and forces which mold them. (Reprint)

Dover Publications, N.Y., USA.

Bratt, J. B. (1953). Flow patterns in the wake of an oscillating aerofoil. Aeronautical

Research Council, R & M 2773, 1–28.

Brøns, M., Jakobsen, B., Niss, K., Bisgaard, A. V., & Voigt, L. K. (2007). Streamline

topology in the near wake of a circular cylinder at moderate reynolds numbers. J.

Fluid Mech. 584, 23–43.

Buchholz, J. H. J., & Smits, A. J. (2008). The wake structure and thrust performance

of a rigid low-aspect-rato pitching panel. J. Fluid Mech. 603, 331–365.



64 Bibliography

Chomaz, J. M. (2001). The dynamics of a viscous soap film with soluble surfactant.

J. Fluid Mech. 442, 387–409.

Chomaz, J. M., & Cathalau, B. (1990). Soap films as two-dimensional classical

fluids. Phys. Rev. A 41, 2243–2245.

Couder, Y., & Basdevant, C. (1986). Experimental and numerical study of vortex

couples in two-dimensional flows. J. Fluid Mech. 173, 225–251.

Couder, Y., Chomaz, J. M., & Rabaud, M. (1989). On the hydrodynamics of soap

films. Physica D 37, 384–405.

Dewar, J. (1923). Soap films as detectors: Stream lines and sound. Proc. Roy. Inst.

24, 197–259.

Dewar, J. (1927). Collected papers by Sir James Dewar. In: — ed. by Lady De-

war, with assistance of J. D. Hamilton Dickson, H. Munro Ross, and E. C. Scott

Dickson. Cambridge University Press.

Dickinson, M. H., Lehmann, F.-O., & Sane, S. P. (1999). Wing rotation and the

aerodynamic basis of insect flight. Science 284, 1954–1960.

Drucker, E. G., & Lauder, G. V. (1999). Locomotor forces on a swimming fish:

Three-dimensional vortex wake dynamics quantified using digital particle image

velocimetry. J. Exp. Biol. 202, 2393–2412.

Drucker, E. G., & Lauder, G. V. (2001). Wake dynamics and fluid forces of turning

maneuvers in sunfish. J. Exp. Biol. 204, 431–442.

Ellenrieder, K. D. von, Parker, K., & Soria, J. (2003). Flow structures behind a

heaving and pitching finite-span wing. J. Fluid Mech. 490, 129–138.

Garrick, I. E. (1936). Propulsion of a flapping and oscillating airfoil. NACA report

567, 1–9.

Gharib, M., & Derango, P. (1989). A liquid film (soap film) tunnel to study two-

dimensional laminar and turbulent shear flows. Physica D 37, 406–416.

Godoy-Diana, R., Aider, J.-L., & Wesfreid, J. E. (2008). Transitions in the wake of

a flapping foil. Phys. Rev. E 77, 016308.

Henderson, R.D. (1997). Nonlinear dynamics and pattern formation in turbulent

wake transition. J. Fluid Mech. 352, 65–112.



Bibliography 65

Hove, J. R., O’Bryan, L. M., Gordon, M. S., Webb, P. W., & Weihs, D. (2001).

Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with

many fins: Kinematics. J. Exp. Biol. 204, 1459–1471.

Hu, D. L., Chan, B., & Bush, J. W. M. (2003). The hydrodynamics of water strider

locomotion. Nature 424, 663–666.

Isenberg, C. (1992). The science of soap films and soap bubbles. Dover Publications,

Mineola, N.Y., USA.

Jia, L.-B., & Yin, X.-Z. (2009). Response modes of a flexible filament in the wake

of a cylinder in a flowing soap film. Phys. Fluids 21, 101704.

Kellay, H., Wu, X.-L., & Goldburg, W. I. (1995). Experiments with turbulent soap

films. Phys. Rev. Lett. 74, 3975–3978.

Kim, Y.-H., & Wereley, S. T. (2004). Phase-resolved flow fields produced by a vi-

brating cantilever plate between two end plates. Phys. Fluids 16, 145–162.

Koochesfahani, M. M. (1986). Wake of an oscillating airfoil. Phys. Fluids 29, 2776.

Gallery of Fluid Motion.

Koochesfahani, M. M. (1989). Vortical patterns in the wake of an oscillating airfoil.

AIAA J. 27, 1200–1205.

Lai, J. C. S., & Platzer, M. F. (1999). Jet characteristics of a plunging airfoil. AIAA

J. 37, 1529–1537.

Lentink, D., Muijres, F. T., Donker-Duyvis, F. J., & van Leeuwen, J. L. (2008).

Vortex-wake interactions of a flapping foil that models animal swimming and

flight. J. Exp. Biol. 211, 267–273.

Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003). Fish exploiting

vortices decrease muscle activity. Science 302, 1566–1569.

Lucassen, J., van den Tempel, M., Vrij, A., & Hesselink, F. Th. (1970). Waves in

thin liquid films. 1. Different modes of vibration. Proc. K. Ned. Akad. Wetensch.

B 73, 109–123.

Martin, B., & Wu, X. L. (1995). Shear flow in a two-dimensional couette cell: A

technique for measuring the viscosity of free-standing liquid films. Rev. Sci. Instr.

66, 5603–5608.



66 Bibliography

Morse, T. L., & Williamson, C. H. K. (2009). Prediction of vortex-induced vibration

response by employing controlled motion. J. Fluid Mech. 634, 5–39.

Müller, U. K., van den Heuvel, B. L. E., Stamhuis, E. J., & Videler, J. J. (1997).

Fish foot prints: Morphology and energetics of the wake behind a continuously

swimming mullet (chelon labrosus risso). J. Exp. Biol. 200, 2893–2906.

Müller, U. K., Smit, J., Stamhuis, E. J., & Videler, J. J. (2001). How the body

contributes to the wake in undulatory fish swimming: Flow fields of a swimming

eel (anguilla anguilla). J. Exp. Biol. 204, 2751–2762.

Müller, U. K., van den Boogaart, J. G. M., & van Leeuwen, J. L. (2008). Flow

patterns of larval fish: Undulatory swimming in the intermediate flow regime. J.

Exp. Biol. 211, 196–205.

Patridge, B. L., Pitcher, T., Cullen, J. M., & Wilson, J. (1980). The three-

dimensional structure of fish schools. Behav. Ecol. Sociobiol. 6, 277–288.

Ponta, F. L., & Aref, H. (2004). Strouhal-Reynolds number relationship for vortex

streets. Phys. Rev. Lett. 93, 084501.

Ponta, F. L., & Aref, H. (2005). Vortex synchronization regions in shedding from an

oscillating cylinder. Phys. Fluids 17, 011703.

Prandtl, L., & Tietjens, O. G. (1934). Fundamentals of hydro- and aeromechanics.

Dover Scientific.

Ristroph, L., & Zhang, J. (2008). Anomalous hydrodynamic drafting of interacting

flapping flags. Phys. Rev. Lett. 101, 194502.

Rivera, M., Vorobieff, P., & Ecke, R. E. (1998). Turbulence in flowing soap films:

Velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81, 1417–1420.

Roshko, A. (1954). On the development of turbulent wakes from vortex streets.

NACA rep. 1191.

Rutgers, M. A. (1998). Forced 2d turbulence: Experimental evidence of simultaneous

inverse energy and forward enstrophy cascades. Phys. Rev. Lett. 81, 2244–2247.

Rutgers, M. A., Wu, X. L., & Daniel, W. B. (2001). Conducting fluid dynamics

experiments with vertically falling soap films. Rev. Sci. Instr. 72, 3025–3037.



Bibliography 67

Salmanzadeh, A., & Stremler, M. (2009). A mathematical model of a “2P mode”

vortex wake. Contributed talk BT.00003.

Sasaki, K., Suzuki, N., & Saito, H. (2010). Bénard-von Kármán vortex street in a
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List of symbols

Physical units are exclusively expressed in the C.G.S. system.

Roman symbols

Symbol Unit Interpretation

a, b, c — Fitting coefficients

A cm Lateral half-excursion of foil tip

A0 cm Lateral excursion of the tip of the lone flapping flag

AD — Dimensionless tip-to-tip flapping amplitude

Am cm Modulation amplitude

A.R. — Aspect ratio of foil, A.R. ≡ C/D

c0 — Total soap concentration in solution

c1 — Soap concentration in the interstitial fluid layer

cm — Critical micelle concentration

C cm Foil chord

CL, C
′

L — Instantaneous lift coefficients

CD, C
′

D — Instantaneous drag coefficients

C̄D — Mean drag coefficient

D cm Diameter of foil or width of flag

ez — Unit vector in the z-direction

E g/(s2cm) Young’s modulus

f Hz Foil oscillation frequency

f0 Hz Flapping frequency of the lone flag

fm Hz Modulation frequency

fn Hz Frequency of vortex wake behind a stationary object

fp Hz ‘Preferred’ frequency of flag

FD, F
′

D dyn Drag force on the foil
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FD0 dyn Drag force on the lone flag

FL, F
′

L dyn Lift force of the foil

FP dyn Propulsive force, projected onto swimming direction

G cm Gap width

h µm Soap film thickness, OR

h — Lateral distance between opposite-signed vortices

K µm Proportionality factor between c0 and c1

l — Streamwise distance between same-signed vortices

L cm Length scale OR length of flag (chapter 7)

L0 cm Length of flag

ni — Refractive index

n — Integer n = 1, 2, . . .

m — Integer m = 1, 2, . . .

ml g/cm Mass per unit length

M dyn·cm Frictional torque

p dyn/cm2 Pressure

P g·m/s3 Input power needed to sustain a flapping foil

R g·cm2/(K·mol·s)2 Perfect gas constant
Re — Reynolds number, Re ≡ 2πAfD/ν

Ref — Reynolds number, Re ≡ 2πRΩD/ν

ReΩ — Reynolds number, Re ≡ L · U/ν
Stn — ‘Natural’ Strouhal number, Stn ≡ D · fn/U
StD — Strouhal number

StA — Amplitude based Strouhal number, StA = StD ·AD

t s Time

T s Oscillation period, T = 1/f

T0, T1 — Constants

Ta s Advection time of leading edge layer vortices

Tn s Vortex wake period, Tn = 1/fn

u cm/s u = u(x), velocity vector

U cm/s Free streaming flow speed

Utip cm/s Foil tip speed

Ueff cm/s Foil tip effective speed

vas cm/s Propagation velocity, asymmetric waves

vsym cm/s Propagation velocity, symmetric waves
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vM cm/s Propagation velocity, symmetric Marangoni waves

x cm x = (x, y), position vector

xp cm Position of vortex particle

Greek symbols

Symbol Unit Interpretation

α degrees Angle

β degrees Angle between U tip and U

δ cm Length of a line segment

ηp — Propuslive efficiency ηp = FU/P

φ degrees Foil pitch angle

φeff degrees Effective angle of attack

Γ cm2/s Circulation

Γ1 — Surface soap concentration

Γ01 — Surface soap concentration, to leading order

Γm — Surface soap concentration at critical micelle conc.

Γle cm2/s Circulation of leading edge vortex

Γte cm2/s Circulation of trailing edge vortex

κ1, κ2 — Constants

λ nm Wave length of light

∇ Differential operator ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z
)

ν cm2/s Kinematic viscosity, ν = µ/ρ

νb cm2/s Kinematic viscosity of bulk fluid

νe cm2/s Effective kinematic viscosity of soap film

νs cm2/s Kinematic viscosity of soap film surface

µ g/(s·s) Dynamic viscosity

ω 1/s Scalar vorticity

Ω 1/s Rotation rate of tower

ω 1/s Vorticity vector

ρ g/cm3 Density

σ g/s2 Surface tension of soap film

σ0 g/s2 Surface tension of water
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σm g/s2 Surface tension at the critical micelle concentration

τ — Dimensionless time, OR

τ s Time it takes a soap molecule to migrate to the

surface (chapter 2)

θ degrees Light reflection angle
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