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Summary

Design automation and analysis tools targeting embedded platforms, developed
using a component-based design approach, must be able to reason about the
capabilities of the platforms. In the general case where nothing is assumed
about the components comprising a platform or the platform topology, analysis
must be employed to determine its capabilities. This kind of analysis is the
subject of this dissertation.

The main contribution of this work is the Service Relation Model used to
describe and analyze the flow of service in models of platforms and systems
composed of re-usable components. Fundamental to the service relation model
is the novel concept of service aggregation that simply states that one service is
accessible through another.

The usefulness and versatility of the Service Relation Model is demonstrated
by means of three different applications. In the first application, the model is
used for checking the consistency of a design with respect to the availablity of
services and resources. In the second application, a tool for automatically im-
plementing the communication infrastructure of a process network application,
the Service Relation Model is used for analyzing the capabilities of a platform
and as a basis for efficient code generation. In the third application, the Service
Relation Model and the concept of consistency are used to guide an automated
procedure for designing systems composed of components.
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Resumé

Værktøjer til automatisering af design opgaver målrettet indlejrede platforme,
der er udviklet ved brug af en komponent-baseret design metode, skal have
adgang til information vedrørende platformenes funktionelle egenskaber. I det
generelle tilfælde hvor intet kan antages vedrørende en platforms topologi eller
komponenterne, der indgår i platformen, må analyse benyttes til at bestemme
platformens egenskaber. Denne form for analyse er emnet for denne afhandling.

Hovedbidraget i dette arbejde er Service Relations Modellen, som benyttes til
at beskrive og analysere tilgængeligheden af tjenester i modeller af platforme og
systemer bestående af gen-brugbare komponenter. Service Relations Modellen
er baseret tjeneste-opsamlings konceptet, der beskriver hvorledes tjenester kan
være tilrådighed igennem andre tjenester.

Brugbarheden og alsidigheden af service relations modellen bliver demon-
steret igennem tre eksempeler på forskellige anvendelser. I den første anven-
delse benyttes modellen til at kontrollere konsistensen af et design med hensyn
til tilrådigheden af tjenester og resourcer. I den anden anvendelse, et værk-
tøj til automatisk at implementere kommunikations infrastrukturen i et process
netværk, benyttes Service Relations Modellen til at analysere en platforms funk-
tionelle egenskaber og som grundlag for effektiv kode generering. I den tredje
anvendelse, benyttes Service Relations Modellen sammen med konceptet om
konsistens som grundlag for en automatiseret procedure til at designe systemer
bestående af komponenter.
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Assumption is the mother of all fuck up’s!

Travis Dane, Under Siege 2: Dark Territory

CHAPTER 1

Introduction

Embedded systems are specialized computing platforms and an integral part of
a device or a machine and typically used for control and data processing. In
contrast to general purpose computers, such as personal computers (PC’s), em-
bedded systems are characterized by only having a single purpose that never
changes. More often than not, an embedded system is associated with strict
constraints on metrics such as performance, power consumption, reliability and,
naturally, cost. Embedded systems can be found in a very broad range of prod-
ucts from cellular phones to household appliances. In 2006, the number of
embedded systems outnumbered the number of PC’s by a factor of 10 [11]. In
2009 the total revenue from embedded systems was 88 billion dollars, up from
46 billion dollars in 2004 which yields an average annual growth of 14%, [4].

For high volume products it is imperative to keep the cost per unit to a min-
imum which often complicates the design significantly resulting in a relatively
high non-recurring engineering (NRE) cost. This is acceptable because the NRE
cost can be amortized across a large number of units and, thus, contributes
marginally to the unit cost. For such products, custom hardware or application
specific integrated circuits (ASIC’s) are often used since they offers the best per-
formance and the lowest power usage. For low volume products, on the other
hand, the NRE cost must be kept low at the expense of a higher cost per unit
which implies that the design must be kept relatively simple. For such products
more general purpose common-of-the-shelf (COTS) platforms, such as micro-
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2 Introduction

controllers, are employed.

In some markets, such as the market for electronic consumer products, the
time from a product is conceived until it is available for sale, called time-to-
market, is of critical concern.

Ever since the dawn of the semi-conductor era, the density of transistors in
integrated circuits has increased according to Moore’s law [66] and it is likely
to continue to do so in the foreseeable future. The increase is based on the use
of smaller wires and transistors. The technological progress has enabled the
construction of more complex chips. Today, it is entirely possible to integrate
complete computing platforms with processors, networks, memories, sensors
and actuators in a single chip. The ability to cram a historical amount of tran-
sistors onto a silicon wafer means that we are able to produce very advanced
systems. The setup costs associated with the manufacturing of such hardware is,
however, overwhelming and is only feasible for parts that can be guaranteed a
high-volume production. As a consequence, the general trend in embedded sys-
tems design is shifting from the use of ASIC’s to programmable general purpose
or domain specific platforms and from hardware design to embedded software
design.

The increase in complexity of modern embedded systems in general and
embedded software in particular means that the design costs has risen expo-
nentially. Unfortunately, the methodologies used to design embedded systems
have not been progressing accordingly which has led to a situation where the
complexity of many designs are pushing the limits of what can reasonably be
handled with current design methodologies. This gap between what we can
build and what we can design is sometimes referred to as the productivity gap
[51] or the implementation gap [70].

1.1 Dealing with Complexity

The design of an embedded system, or any kind of system for that matter, can
be seen as a series of design decisions taking the system from idea to imple-
mentation. These decisions are capture using models – abstract representations
of the design. Associated with a model is a "level of abstraction" that speci-
fies the modeling concepts and the semantics of the model. Exactly what these
concepts and associated semantics are depends on what one considers the im-
plementation. For example, for a hardware design one might take transistors
as the basic concept and for a software design the central concept could be the
instructions of some processors instruction set. The number of design decisions
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captured by such a model is astronomical even for the smallest designs of prac-
tical interest. The lack of efficient ways of making these decisions is the cause of
the productivity gap. Within the field of embedded systems design complexity
has traditionally been addressed by a combination of abstraction, hierarchy and
domains [53]:

Abstraction. An abstraction is a representation of some concept containing
only relevant information with respect to some task. An abstraction level is
a definition of the modeling concepts and their semantics used to represent a
system. The term "level of abstraction" implies that abstraction levels can be
ordered. A level of abstraction x is said to be higher than another abstraction
level y if x has less information than y for some model and if x is at least as
expressive as y. In other words, abstraction levels can be partially ordered. A
characterizing feature of an abstraction is that it allows for multiple realizations
at a lower level of abstraction. Moving from a high-level of abstraction to a
lower level thus usually involves a number of design decisions. Design automa-
tion tools are based on abstractions. They take as input a model of a system at
a given abstraction level and produces as output another model at a lower level
of abstraction.

Hierarchy Hierarchy is a recursive partitioning of a model such that the de-
tails of each part are hidden in a lower hierarchical level. Hierarchy reduces
complexity by simply reducing the number of entities that needs to be consid-
ered.

In some cases it may be difficult to distinguish between hierarchy and ab-
straction. As an example consider the 32-bit adder box in figure 1.1. Besides
the 32-bit adder box, the figure also shows two possible internal models. The
behavior of the adder may be given as a network of full adders in which case
the adder box is a mere substitution for a network of full adders at a different
hierarchical level. Alternatively, the behavior of the adder box could be given
as a pair of equations. Expressing the behavior of the adder box as a network
of full adders is an example of the use of hierarchy whereas expressing the be-
havior using simple equations is an example of applying abstraction. From the
point of view of the designer both hierarchy and abstraction serves him equally
well since only the behavior of the adder is of interest – how the adder is imple-
mented is irrelevant.

Domains (Separation of Concerns) A design can be split into a number of
different domains each of which emphasizes a certain aspect of a design. Such
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Figure 1.1 – Hierarchy vs. Abstraction. Example showing the difference between
hierarchy and abstraction [53]. The figure shows two different meanings of the
simple 32-bit adder box. To the left we have a meaning expressed using hierarchy
as a network of full adders. To the right the meaning of the box is expressed using
abstraction. Here the complex full adder network has been replaced by a simpler
model based on algebraic formulae.

domains can be logically analyzed in isolation from other domains [58]. A
prime example of separation of concerns is the separation of computation and
communication, exemplified by the concept of transaction level modeling (TLM)
[18], which has received a lot of attention from both industry and academia.
Another example is the separation of time and computation in the synchronous
data flow models.

It may be difficult to distinguish between abstraction and domain separa-
tion. The reason for this is that in most practical models these two are inti-
mately linked together in the sense that a domain focus is often realized as an
abstraction layer. For example, in the context of transaction level modeling two
level of abstraction are of interest: the TLM level and the pin-accurate level.
The TLM level focuses on the behavior of the design abstracting the details of
communication whereas the pin-accurate level includes a detailed description
of the communication in addition to the behavior. In principle, however, the do-
mains of computation and communication are independent of these abstraction
layers.

1.2 Design Methodologies

A design methodology, or a design process, is a sequence of steps necessary to
build something. Besides the obvious goal to build something that is function-
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Figure 1.2 – A stack of abstraction layers taking a design from specification to
silicon implementation [82]. The gap between specification and implementation
represents the manual step of going from an informal specification to a (high-level)
formal description.
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Figure 1.3 – Top-down, bottoms-up and meet-in-the-middle methodologies.

ally correct, a methodology may have other equally important goals: time-to-
market, design cost and/or quality. Being explicit about the process is important
to ensure that the design team pulls in the same direction. More importantly,
a methodology provides a context for understanding the models, methods and
tools that are an indispensable part of modern embedded systems development.

Methodologies for embedded systems development are often described rela-
tive to a set of abstraction levels linking the specification with the implementa-
tion. These are ordered in a stack according to their level of abstraction with the
most abstract representation (the specification) at top and the least abstract (the
implementation) at the bottom. The number and types of abstraction levels in
a stack depends on the concrete methodology. Figure 1.2 shows an example of
a typical stack. Relative to such a stack, a design methodology can be classified
as a top-down, bottoms-up or a meet-in-the-middle approach:
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Top-down (Figure 1.3.a) The starting point of a top-down approach is a spec-
ification given at the highest level of abstraction. The specification is gradually
refined into an implementation at the lowest level of abstraction by a process
called stepwise refinement. Top-down approaches can potentially yield the most
optimal implementation because it allows for fine-tuning at all levels of abstrac-
tion and does not exclude any portions of the design space. For the same rea-
sons, top-down approaches are also the most expensive and time-consuming.

Bottoms-up (Figure 1.3.b) The starting point of a bottoms-up approach is a
set of entities at the lowest level of abstraction. These entities are assembled
into richer entities that are abstracted to the second level of abstraction. The re-
sulting entities are again assembled into even richer entities that are abstracted
at the third level of abstraction. This process continues until a single entity that,
hopefully, implements the specification, emerges at the highest level of abstrac-
tion. Bottoms-up approaches inevitably leads to over design because the choices
made at each level of abstraction must be conservative enough to ensure that
the resulting system will satisfy the specification. In favor of bottoms-up ap-
proaches is the fact that the decisions made at the lower levels of abstraction
can be re-used in other designs.

Meet-in-the-middle (Figure 1.3.c) A meet-in-the-middle approach is, as the
name suggests, a combination of the top-down and bottoms-up approaches and
is often referred to as platform-based design [83, 58]. In platform-based design,
a platform is constructed bottoms-up and combined with a specification of the
intended system behavior refined top-down. This enables the trade-off between
design space and other design objectives such as time-to-market or cost. This is
so because the platform can be designed independently of any actual application
which means that the associated design time and cost does not (necessarily)
contribute to the cost and time-to-market of the final system. The overwhelming
design and setup costs associated with the development of hardware has been
one of the primary motivating factors behind the concept of platform-based
design.

In practice, all methodologies are meet-in-the-middle or bottoms-up since
the entities of the lowest abstraction layer necessarily must be given in order
for the methodology to make sense. A number of other conceptual frameworks
have been developed for understanding and comparing methodologies for em-
bedded systems design [54, 33, 38] that will not be discussed here.
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1.2.1 System-level Platform-based Design

A particularly interesting class of platform-based design methodologies are those
where the refined specification, called the application hence forth, meets the
platform at the so called system-level of abstraction. The system-level of abstrac-
tion has traditionally been defined as an abstraction layer above the register-
transfer level that comprises software in addition to hardware [37]. At this
level, a hardware platform is described as a netlist of high-level components
such as processors, memories and interconnects. In addition to the hardware, a
platform may also consist of software such as operating systems and other mid-
dleware components, executing on the programmable processors of the hard-
ware platform.

The task of choosing the right platform and mapping of the application onto
the chosen platform is central to platform-based design. Ideally, the application
is a pure description of behavior containing no implementation details meaning
that the performance characteristics of the final system are determined by the
choice of platform and mapping alone. Much research has been devoted to
the problem of exploring the design space to determining an optimal mapping
and/or platform using both formal (e.g. [46, 45, 79]) and simulation-based
approaches (e.g. [64, 22]).

Many of these approaches uses the concept of abstract services to link ab-
stract representations of applications and platforms [43, 92]. In this view, an
application is seen as a service consumer whose function or behavior is de-
fined by the temporal ordering of a set of service requests and platforms as the
provider of services. Different platforms may provide different implementations
of the same services. Using simulation or formal methods the performance of an
application with respect to a particular platform and mapping can be evaluated
and quantitatively compared to alternative platforms and mappings.

1.3 Scope of Work

In this thesis, we will focus on a class of system-level platform-based design
methodologies that can be described using three different level of abstraction
as shown in Figure 1.4(a). The lowest of level of abstraction is the system-level
where a platform is designed using a component-based design approach. On top
of the system-level we have an API level that implements a specific programming
model, to the highest abstraction level, the implementation model.
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Programming model API

Implementation Model

SW+HW System-level IP

Specification Model

(a) General platform stack

PN Platform Abstraction Layer

Process Network

Xilinx EDK

Specification Model

(b) Specific platform stack

Hardware Platform

Software Platform

PN Platform Abstraction Layer

Process Network

(c) Layered view

Figure 1.4 – Organization of the design methodology used in this thesis.

Most of the experiments and case studies presented in this thesis will be
given relative to a methodology where platforms are created using the Xilinx
Embedded Development Kit design flow and applications are specified using
the process networks model of computation (MoC). In this methodology, an ap-
plication is tied to a platform by means of a platform abstraction layer providing
an implementation of the process network MoC. As shown in Figure 1.4(b) the
platform is created bottoms-up where as the application and the platform ab-
straction layer is created top-down. For reference, Figure 1.4(c) shows a layered
view of systems designed using the methodology. In the rest of this thesis we
will use the term ”system” for a complete system comprising both a platform
and an application.

Even though most examples will be given relative to this specific methodol-
ogy most of the principles and methods presented in this work are independent
of the actual methodology and may be applied to other methodologies as well.

1.3.0.1 Component-Based Design

Component-based design is based on the idea that system can be decomposed
into components. A component is a self-contained part or sub-system that can
be used as a building block in the design of a larger and more complex system. It
provides specific services to its environment across well-specified interfaces. In
the context of embedded systems design, a component is a piece of functionality
implemented as software, hardware or a combination of the two. Components
are units of composition that can be composed into new components with richer
functionality using hierarchy. Ideally, a component should be re-usable and may
provide some degree of customizability.

In a component-based design approach, the task of developing components
and the task of assembling systems are independent of each other. This sepa-
ration is what makes component-based design appealing for embedded systems
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development because the development of the components is not part of the crit-
ical time-to-market. Obviously, the truth of this depends on the availability of
components which implies that component-based design disfavors design with
very specialized needs [52]. In general, component-based design is appropri-
ate when the market is unable to support expensive design costs or when ones
competitive advantage is not in the design of platforms [85]. The strength of
the component-based design is the natural focus on component re-use.

Given is a library of (re-usable) components and the objective is to assemble
these into a network that implements the desired behavior (given in the speci-
fication). The process of integrating a component into a design can be divided
into a series of steps:

1. The first of these is component matching. Here, the functional require-
ments of the component is matched against the functions offered by the
available components. The result of this step is a set of components that
may satisfy the functional requirements.

2. The second step is component selection and involves selecting the most ap-
propriate component with respect to any non-functional constraints placed
on the design.

3. The third step is component integration where the component is integrated
(i.e. connected) into the design.

The resulting design is characterized by its allocation, configuration and topology
where the allocation specifies the number and types of components in the de-
sign, the configuration specifies, for each allocated component, the value of any
required parameters and the topology defines the communication infrastructure
of the design.

1.3.0.2 Programming Models & Abstraction Layers

Compared to single processor systems, heterogeneous multi-processor systems
are difficult to program. In the absence of a platform-wide programming solu-
tion, shielding the application developer from the details of the platform, the
developer must program each processor individually. This is problematic for
several reasons:

∙ First, the application becomes dependent on the particular platform mak-
ing re-use hard and changes in the platform, application and/or mapping
difficult.
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∙ Second, a partitioning and mapping of the application must be decided
upon before any code is written which leaves little room for errors and
may lead to resource waste due to over-engineering.

∙ Finally, in addition to implementing the application, the application devel-
oper must also worry about low-level processor-to-processor interfacing
that in turn will require intimate knowledge of the platform in particular
and low-level programming in general.

Through the use of a parallel programming model (e.g. TTL [94], YAPI [28],
OpenMP [1]) it is possible to abstract away different aspects of the platform,
such as communication and synchronization, and thus effectively de-couple the
application from any actual platform [55, 74, 36]. A programming model can
be provided as an integral part of a programming language or as an add-on in
the form of an API. In most cases, a given platform does not directly imple-
ment a given programming model and thus an abstraction layer, realizing the
abstractions of the programming model, is needed. An abstraction layer can be
application-specific so that it only provides support for the functionality that is
actually used by a particular application. The opposite of an application-specific
layer is a general purpose layer where functionality is provided to support a
broader range of applications.

A general purpose layers are constructed bottoms-up whereas special pur-
pose layers are constructed top-down.

1.3.0.3 Process Networks

For embedded systems, programming models based on the Kahn Process Net-
work (KPN) [57, 62] model of computation have been studied intensively. An
application modeled as a KPN consists of processes communicating and syn-
chronizing using unidirectional FIFO channels. In theory, the capacity of the
channels is unbounded and writing to them is a non-blocking operation. In this
work, we will consider a more practical version with bounded channel capacity
and blocking write that we will refer to simply as a process network. The pro-
cess network MoC is especially well suited for capturing streaming (e.g. image
processing) applications and has previously been shown to be a suitable rep-
resentation for efficiently mapping applications onto multi-processor platforms
[5, 91, 77].

The process network model of computation is favored because interactions
between processes are explicitly modelled by means of channels. In other mod-
els of computation, interactions are often implicit which means that program
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analysis is required to determine dependencies amongst the behavioral entities
of an application.

1.4 Problem Statement

Tools supporting exploration and synthesis must be able to reason about the
capabilities of the target platform. Having knowledge of what can be done
with a particular platform and how to do it is fundamental for refinement and,
similarly, knowing what a platform can do and the cost associated with doing it
is fundamental for design space exploration. If the target platform is known in
advance then this knowledge can be embedded within the algorithm used. If, on
the other hand, the target platform is not known in advance then the algorithm
must be independent of any particular platform and a method for analyzing
the actual capabilities of a given platform must be employed. In the case of
tools targeting platforms built from re-usable components little or nothing can
be assumed about capabilities of the actual platforms. This is so because the
components are essentially black boxes.

By cleverly choosing and imposing a set of restrictions on the supported plat-
forms it is often possible to significantly reduce the required analysis effort for
a given task. This is so because, given an appropriate set of restrictions, it is
possible to make assumptions about all possible target platforms. For example,
a tool for evaluating the mapping of an application onto an execution platform
might assume that all processing elements are connected to the same intercon-
nect so that communication between the parts of the application mapped to
different processing elements is always possible. The tool will thus be limited
to platforms where the processing elements are fully connected. Similarly, a
tool for compiling a high-level specification of an application onto a heteroge-
neous multi-processor platform might assume that standard C compilers exists
for each of the different processors thus limiting the use of the tool to platforms
with processors for which C compilers are available. Exactly what kind of as-
sumptions, and thus restrictions, are useful depends on the task at hand and,
of course, on whether or not the restrictions are justifiable. In many cases, it is
even possible to completely trivialize the analysis so that it becomes an implicit
part of the tool or the algorithm. A compiler for a class of very similar proces-
sors (e.g. ARM) that may generate different results depending on exactly which
processor is the target is an example of this.

The point here is that whenever assumptions are required in order for a tool
to avoid having to automatically discover the capabilities of the actual target
platform (which might not be trivial) then these assumptions impose restric-
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tions on the targeted platforms which in turn limits the design space. The al-
ternative to imposing restrictions is to allow errors in the tools. For example,
the mapping tool might come up with a mapping that is infeasible because two
dependent parts of the application are mapped so that their dependency is vi-
olated. If one is unable, or unwilling, to accept imposing restrictions on the
platform then nothing can be assumed about the platform and, consequently,
any information required for decision making must be extracted from the plat-
forms themselves. Extracting this information is, in general, not trivial and the
subject of this thesis. In other words: there exists a trade of between how easy
it is to design a tool and the usefulness of the tool.

We believe that a number of tools for key problems, primarily within the platform-
based design, could benefit from improved analysis techniques for analyzing the
capabilities of platforms and systems. By improving these techniques it is pos-
sible to develop more generally applicable tools supporting a broader range of
architectures and design styles. In this work, we will focus on the task of ex-
tracting information about the capabilities of platforms that either is, or can be
seen as, a network of components without imposing restrictions on the type of
the components or the topology of the network.

1.4.1 Platform Capability Analysis Challenges

In the following, we will give two examples of some of the problems that makes
analyzing the capabilities of a platform a challenge.

1.4.1.1 Localization of Services

Since modern embedded platforms are increasingly based on heterogeneous
multicore architectures, the services offered by the different programmable el-
ements are very likely to differ. As a consequence, talking about the services
provided by the platform as a whole is too simplistic, instead we have to focus
on the services provided at the different points-of-contact between the platform
and its application. Example 1 illustrates this.

Example 1.1 Figure 1.5 shows a relatively simple multi-processor platform
created using the Xilinx Embedded Development Kit tool. The platform is taken
from an official application note published by Xilinx for demonstrating multi-
processor designs using the tool. The platform consist of two processors, a Mi-
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Application

Partition 
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Figure 1.5 – Multi-processor platform created using the Xilinx Embedded Develop-
ment Kit. Source: Xilinx Application Note, [12]

croblaze and a PowerPC, and a number peripheral cores. Each of the processors
are connected to a private bus through which each of them may access a subset
of the peripheral in the platform. The sets of peripherals accessible from each
of the two processors are given below:

From Microblaze From PowerPC
Microblaze PowerPC

Plb0 Plb1
XpsTimer0 XpsTimer1
XpsIntc0 XpsIntc1
External Memory Controller External Memory Controller

External Memory External Memory

Bram0 Bram0
XpsMutex XpsMutex

XpsMailbox XpsMailbox

Bram1 XpsUartlite

It is obvious that the two sets are different. For example, only software exe-
cuting on the PowerPC will be able to use the UART (XpsUartlite) and although
the platform features two timer peripherals only one can be accessed from each
processor. �

Peripherals accessible from several points-of-contact may be accessed differ-
ently depending on the point of contact. A dual-port memory, for example, can
be mapped to different segments of the address spaces of two different proces-
sors.
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Bus
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Interrupt
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Figure 1.6 – A simple single processor platform. The Timer/Counter peripheral is
not part of the capabilities of the platform since it is used internally by the operating
system.

1.4.1.2 Resources

The services offered by a network of components comprising a platform at a
given point-of-contact is not simply the sum of the services accessible from that
point. Some services are only available in finite quantities and may be used
internally by the platform as is illustrated by the next example.

Example 1.2 Consider the simple platform of figure 1.6. The hardware of
platform consists of a single processor, a bus and a handful of peripheral cores
including a timer/counter. Besides the hardware the platform also includes an
operating system featuring time-sliced multiprocessing executing on the proces-
sor. In order to provide multiprocessing, the operating system requires (exclu-
sive) access to the timer/counter and, consequently, the services provided by
the timer/counter peripheral is not part of the capabilities the platform. �

1.4.2 Case Study: Xilinx Embedded Development Kit

Field Programmable Gate Arrays (FPGA) is an example of a class of platforms
that provides a high degree of customizability. The use of FPGA’s have tra-
ditionally been associated with a long time-to-market compared to the use of
microcontrollers. The reason for this is that FPGA’s must be "programmed" us-
ing hardware description languages such as VHDL or Verilog. Today, however,
tools exists that can generate synthesizable designs for FPGA’s from higher-
level models eliminating the need for the hardware description languages. Two
such tools are the Embedded Development Kit [97] from Xilinx and the System-
on-a-Programmable-Chip Builder [9] from Altera. These tools allows for an
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FPGA to be configured as a customized computing platform complete with pro-
grammable processors, peripherals and sophisticated interconnects. Another
tool is the System Generator [98] that can be used as a backend to Simulink for
realizing DSP algorithms in programmable logic. In the terms of platform-based
design, these tools may represent an abstraction layer above the FPGA platform.

Of special interest to this thesis are the before mentioned tools for config-
uring an FPGA as a more general purpose computing platform. Next, we will
present a few shortcomings of the Xilinx Embedded Development Kit tool that
are representative for the more general issues addressed in this thesis.

1.4.3 Xilinx The Embedded Development Kit

The Xilinx Embedded Development Kit (EDK) consists of a number of inte-
grated tools for developing embedded processor systems based on the Microb-
laze [101] and PowerPC [99] processors targeting the Xilinx line of FPGA’s.

The Platform Studio tool is a graphical system editor used for assembling
computing platforms using a rich library of existing IP-cores. Among the pro-
vided cores are a number of different buses and point-to-point links that can be
mixed in a platform to provide a custom communication infrastructure. Addi-
tional cores, written in VHDL or Verilog, can easily be added to the library if they
implement an interface to one of the supported buses or point-to-point links. A
core in the library is organized as a set of parameterized VHDL or Verilog files
and a high-level description of its interfaces and possible configurations. Plat-
form Studio generates a hardware specification, in the form of a Microprocessor
Hardware Specification (MHS) file, specifying a set of IP core instances, their
configurations and the connections between them.

A deployable bitfile is generated on the basis of an MHS file using the Platgen
tool. This tool first generates a description of the system in a hardware descrip-
tion language and then it uses the Xilinx ISE implementation flow to synthesize
the bitfile. Because of the hardware synthesis involved, running Platgen can be
quite time consuming. It can easily take up to 15 to 20 minutes to synthesize
even relatively small designs. Before attempting to generate a bitfile, the MHS
file is subjected to a verification/consistency check using TCL scripts.

The EDK also comprises a number of tools supporting the development of
software for hardware platforms generated using the Platform Studio and Plat-
gen tools. The most interesting of these tools is the Libgen tool – a tool for gen-
erating libraries and drivers for the processors of a platform. This tool takes as
input a MHS file specifying a hardware platform and a Microprocessor Software
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Specification (MSS) file created by hand or using the Platform Studio graphical
IDE. The MSS file specifies the drivers associated with peripherals, which pe-
ripherals should be used for standard input/output and other software related
features. Libgen can also be used to configure an operating system for each pro-
cessor in the platform. The EDK is shipped with a single operating system called
Xilkernel [102]. The Xilkernel operating system can be configured to include a
number of optional features such as semaphore and message queue support.

1.4.3.1 Issues

Using the tools of the EDK to create sophisticated systems is surprisingly easy.
There are, however, some limitations in the tools that indirectly restricts the
freedom of the designer. More specifically, the analysis capabilities of the Libgen
tool are too limited and based on assumptions about the IP cores used as well
as on how the communication infrastructure is realized. In order to make use
of the Libgen tool these assumptions must be justified which in practice limits
the freedom of the designer.

Based on our experience with the EDK, we believe that the identification
of the set of peripherals reachable from a processor is done in the following
way: First the processor in question is located. Next, the buses connected to
the processor are enumerated. Finally, the slave attachments of these buses are
added to set of reachable peripherals. For this to be possible, the analysis back-
end must know which components represent buses and processors. It should
be noted that this is speculation as the documentation [100] does not describe
the analysis capabilities of the tools in any kind of detail. Our experiments
shows that the analysis back-end of the EDK fails to locate peripherals that are
indirectly connected the address space of a processor through a bridge. More
specifically, the Libgen tool fails with a somewhat arcane error message stating
that there was an error in the address specification.

Furthermore, the component-model underlying the EDK tool does not model
resources. For example, the Xilkernel operating system requires a timer of the
type XPS Timer/Counter or fit timer to provide it with the ticks necessary to
implement time-sliced multitasking. The XPS Timer/Counter is a standard bus-
mounted peripheral accessible via a set of memory mapped registers. In order
to work, the timer/counter must be connected so that its memory mapped reg-
isters are accessible from the processor running the operating system. Also, the
interrupt port of the timer/counter must be connected to the processor either di-
rectly or indirectly via an interrupt controller. Our experiments has shown that
it is possible to create a dual processor design with two Xilkernel operating sys-
tems using the same timer/counter instance. This error is not caught at design
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time. One could argue that, in theory, two identical operating systems could use
the same timer for generating ticks. This, however, is most likely not the case
with the Xilkernel as the time between ticks is a customizable parameter.

From the point of view of the end-user, the real problem is not so much the
shortcoming of the analysis back-end but rather the lack of proper error detec-
tion and reporting. Debugging a complex system can be a very time consuming
process. This is especially true if the error does not show up at design time so
that hardware synthesis must be re-run for each iteration of the debug cycle.

1.5 Contributions

We have developed a formalism called the Service Relation Model for describing
systems composed of components based on the novel concepts of service ag-
gregation and service exchange relations. The formalism can be used to create
re-usable abstract descriptions of hardware and software components that may
be combined into models of platforms and systems. The resulting models may
be analyzed to obtain information about service availability and flow. We con-
sider the Service Relation Model and the associated analysis method the main
contribution of this work.

To demonstrate the usefulness and versatility of the proposed model we have
developed a number of procedures and associated proof-of-concept tools for
assisting the designer in tasks related to component integration and low-level
programming:

∙ Consistency Checking. A procedure for checking the consistency of a
platform or system modeled as a network of re-usable components with
respect to service and resource availablity. Using our consistency checking
procedure, we are able to capture some inconsistencies that will show up
as run-time errors in industry standard component-based design tools.

∙ Automated Programming. A procedure for automatically generating an
application-specific abstraction layer implementing the communication in-
frastructure of an application given as a process network. The procedure
uses a Service Relation Model representation of a platform for determining
different implementation alternatives and for code generation purposes.

∙ Automated Design Generation. A procedure for automatically trans-
forming an inconsistent model of a system into a consistent model by al-
locating, configuring and inserting new components into the model. This
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procedure has a number of different uses in the context of ”automated de-
sign generation” and generalizes the analysis and decision making parts
of the procedure for automated programming.

All of the three procedures are central contributions to this work. The proof-
of-concept tools supporting the different procedures are all based on a com-
mon framework, called the xSRM framework, for working with service relation
models that we also consider an important, albeit theoretically less interesting,
contribution.

1.6 Thesis Outline

This thesis is organized as follows: In chapter 2, the basic concepts of the Service
Relation Model and its associated analysis method are presented. In chapter 3,
a number of additional concepts are added to the basic Service Relation Model
that forms the basis of the procedure for consistency checking presented in the
same chapter. This chapter also contains an overview of related work. The
procedure for automated programming is presented in chapter 4 followed by
the presentation of the procedure for automated design generation in chapter
5. Chapter 6 contains the concluding remarks.



CHAPTER 2

The Service Relation Model

The Service Relation Model, presented in this chapter, is an abstract component-
centric model used to extract information about the capabilities of a system
given as a network of components. The model does not impose any restrictions
on what a component is and may be used to describe platforms and systems
comprised of both hardware and software. The Service Relation Model is an
analysis model, as opposed to a composition model, meaning that it is primarily
intended to analyze systems created using other tools and models. A key feature
of the model is that it allows for re-use of component descriptions by separating
the definition of components from any actual model.

This chapter is organized as follows: The first section contains an informal
introduction to the basic concepts of the Service Relation Model. After the infor-
mal introduction the basic concepts are formalized with the intent of providing
a precise and unambiguous presentation.

2.1 Informal Presentation

Most models supporting component-based design of execution platforms (e.g.
[97, 9]) employs the basic concepts of components, interfaces and connections.
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In these models, a component represents a physical entity such as a processor,
bus or a block of memory. Likewise, an interface represents a physical connec-
tion point where a component may be connected to another component with
a matching interface. The Service Relation Model extends this line of thought
to also include conceptual components and conceptual connections (called re-
lations). In other words, the components of the service relation model need not
necessarily have a physical manifestation and their relationships (connections)
can be conceptual as well as physical.

The components of the Service Relation Model are defined by the service
or services they offer to other components. A service can be any kind of work
that a component carry out on behalf-of another component. As an example,
consider a bus: the ability of a bus master attachment to issue read and write
requests to slave attachments can be seen as a service provided by the bus to the
master attachment. A component representing a function in the C programming
language might be considered to provide other components with the service
that it describes. The service relation model explicitly separates the concept of
a service and its provider (a component).

The Service Relation Model supports only one kind of binary relations called
service exchange relations. A service exchange relation is characterized by facili-
tating some kind of exchange of services between two components. The relation
between a bus master attachment and a bus is an example of such a relation
since the bus master attachment may request service from the bus. Similarly,
a software module may have a service exchange relationship with its processor
because it, conceptually, is serviced by the processor. On the other hand, a rela-
tion stating that two components are identical is not a service exchange relation
because no exchange of service can be attributed to it. A service exchange re-
lation consists of three parts: the relation itself and two roles (the subject and
the object). A component in the Service Relation Model exposes its services
through a set of interfaces each of which is associated with exactly one role of
a predefined service exchange relation. Two components may be connected to
each other, using a service exchange relation, only if one of the components
define an interface with the subject role of the relation and the other define
an interface with the object role of the relation (see Figure 2.1). The flow of
service through service exchange relations is unidirectional and service always
flow from the object interface to the subject interface.

Besides the service exchange relation the model supports two additional re-
lations: service import relations and service export relations. In contrast to service
exchange relations, the service import and export relations are used inside com-
ponents to relate services and interfaces to each other. An export relation states
that a given service is exported to a given interface. Recall that we said that the
services of a bus are provided to its master attachments. In the Service Relation
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master0 : 
Bus/BusMaster

databus : 
Bus/BusMaster

bus

processor

Bus

Bus Master

Bus/BusMaster

a. b.

Figure 2.1 – a. A service exchange relation modeling the relationship between a
bus master and the bus. b. The same relation used to relate the data bus interface
of a processor with a bus (note: role names are not included but suggested with the
coloring of the boxes representing interfaces).

Model, this is modeled by an export relation relating the bus services with the
interfaces representing the bus role of a bus-master/bus service exchange rela-
tion. A service exported to an interface is said to be available at that interface.
Services available at an interface are also considered to be available at the in-
terface of another component if the two interfaces are (properly) connected by
means of a service exchange relation.

The import relation facilitates service aggregation which essentially is an
"available through" relationship between any services available at an interface
and a service defined in the component. A service representing the ability to
execute software on a RISC processor can be said to aggregate services of its
attached data bus since the services of the bus may be invoked using the mem-
ory LOAD and STORE instructions of the processor. A driver is another example
of service aggregation. The service offered by a driver aggregates the service
offered by the underlying device. A service aggregated by another service is
considered available at that service and at any interfaces and services where the
aggregating service is considered available.

2.1.1 Example: Hardware Platform

As an example, we will consider a simple hardware platform consisting of a
memory, a bus, a processor core and a floating point co-processor (FPU). These
four components are organized in the following way: The data bus interface of
the processor is attached to the bus as a master attachment and the memory as a
slave attachment. The FPU is an optional part of the processor core and thus the
instruction set of the processor includes instructions for operations on floating
point numbers. If the FPU is not included these instructions are undefined.

Figure 2.2 shows a graphical representation of a service relation model of
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Figure 2.2 – A simple system described in the Service Relation Model.

the platform. In the graphical notation, a component is represented as a box
with its name printed on it. An interface is represented as a box placed on the
border of a component. Object interfaces are represented using white boxes
and subject interfaces using black boxes. The text printed in the boxes repre-
senting interfaces (name : relation) gives the name of the interface as well as
the relation to which it belongs. In this thesis, all relations names follows the
same generic naming convention based on the types of the components that it
relates. For example, the relation relating a bus slave to a bus is named Bus-
Slave/Bus and, similarly, the relation relating a co-processor to the processor is
named CoProc/Proc. Notice that the component with the role of the object is
always mentioned first. Service exchange relations are represented as arrows
connecting an object interface with a subject interface. Services are represented
as boxes completely contained within the bounds of a component. A service is
associated with a name printed inside it. Import and export relations are repre-
sented using arrows connecting interfaces to services and services to interfaces
respectively.

Next, the meaning of the different parts of the model will be explained:

∙ Memory: The memory has a single object interface of type BusSlave/Bus

meaning that it may participate in a single BusSlave/Bus relation in the
role of the bus slave. The memory provides other parts of the system with
the ability to read and write its data through its bus interface. The ability
of the memory to be read and written is modeled using a service called
MemoryService that is exported through the bus slave interface.

∙ Bus: The bus component has two interfaces – a subject interface of type
BusSlave/Bus and an object interface of type Bus/BusMaster. Conse-
quently, the bus may participate in a maximum of two relations (in the
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role of the bus). The function of the bus is to provide the bus master with
(read/write) access to the bus slave. This is modeled using the service
BusService that aggregates services available on slave0 interface and is
exported to the Master0 interface.

∙ Processor: The processor provides the capability of executing software.
This capability is modeled by means of a single service, called Execution,
that represents the possible execution of one instruction of the processors
instruction set. The service can import services from the data bus interface
(where the bus is connected) because the data bus is accessible by means
of the processors LOAD and STORE instructions. Similarly, the Execution

service may import services from the co-processor interface because these
can be accessed through the special FPU instructions of the processor. At
this time, Execution service itself is not exported anywhere.

∙ FPU: The FPU component provides the processor with the ability to ex-
ecute a set of predefined floating point instructions. Each of these in-
structions is modeled using an appropriately named service exported to
the connected processor through the CoProc/Proc interface of the FPU
component.

The components are related to each other using three different service exchange
relations:

∙ Bus/BusMaster This relation represents a bus masters ability access ser-
vices provided by a bus by issuing read and write requests to it.

∙ BusSlave/Bus This relation represents the ability of a bus to access ser-
vices provided by slave peripherals by forwarding read and write requests.

∙ CoProc/Proc This relation represents a processors ability to use a co-
processor. The understanding here is that only services representing a
predefined set of FPU instructions can be propagated through the rela-
tion.

It is important to note that even though the names of the components, services
and service exchange relations are fairly generic the intention is that they refer
to actual components rather than abstract classes. For example, the proces-
sor component represents a concrete processor rather an unspecified instance
of a generic processor type and, similarly, the BusSlave/Bus service exchange
relations represents a relation between a specific type of bus and components
implementing a compatible slave interface.
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Using the information asserted in the model and our knowledge of the mean-
ing of the different concepts we can determine the availablity (or accessability)
of the 11 services in the model. Below the services available at the different
interfaces and service of the model is given:

SA[memory.MemoryService] = { memory.MemoryService }

SA[memory.bus] = { memory.MemoryService }

SA[bus.slave0] = { memory.MemoryService }

SA[bus.BusService] = { memory.MemoryService, memory.BusService }

SA[bus.Master0] = { memory.MemoryService, memory.BusService }

SA[processor.DataBus] = { memory.MemoryService, memory.BusService }

SA[processor.Execution] = { memory.MemoryService, memory.BusService,

processor.Execution, FPU.FpAdd ,

FPU.FpDiv, FPU.FpMul, }

SA[FPU.Processor] = { FPU.FpAdd, FPU.FpDiv, FPU.FpMul}

SA[FPU.FpAdd] = { FPU.FpAdd }

SA[FPU.FpDiv] = { FPU.FpDiv }

SA[FPU.FpMul] = { FPU.FpMul }

The sets above describe the availablity of the services in the model and this
can be considered an abstract representation of the capabilities of the platform.
From the information contained in the sets we may, for example, infer that
software executing on the processor can access the memory and it may use
the floating point instructions provided by the attached co-processor because
the services representing these capabilities are available through the Execution

service representing the instruction set of the processor.

2.1.2 Example: Software

The next example will show how the Service Relation Model can be used to
model software and how such a model can be combined with a model of a
hardware platform.

As an example of an application, we will use a simple program for solving
quadric equations. A quadric equation, ax2 + bx + c, is defined by means of three
real values (a, b and c) and has two solutions (r0, r1)) given by:

r0, r1 =
−b ±

√
d

2a
, D = b2

− 4ac
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#include <math.h>

#include ”pnapi.h”

void main() {

  float a, b, c, D;

  while(1) {

    read(CH0, &a, 4); 

    read(CH0, &b, 4);

    read(CH0, &c, 4);

    D = pow(b,2) – 4 * a * c;

    write(CH2, &d, 4);

  }

}

Producer

CH1

ConsumerDiscriminant Solve
CH0 CH2 CH3

#include <math.h>

#include ”pnapi.h”

void main() {

  float a, b, c, D, r0, r1;

  while(1) {

    read(CH1, &a, 4); 

    read(CH1, &b, 4);

    read(CH1, &c, 4);

    read(CH2, &D, 4);

    r0 = (-b - sqrt(D)) / (2 * a);

    r1 = (-b + sqrt(D)) / (2 * a);

    write(CH3, &r0, 4);

    write(CH3, &r1, 4);

  }

}

Figure 2.3 – Process network for solving quadric equations.

where D is the discriminant.

Figure 2.3 shows a process network for a simple application for solving
quadric equations. The network has a four processes (Producer, Discrimi-
nant, Solve and Consumer) and four channels (CH0, CH1, CH2 and CH3). The
Producer process produces data for the process network by continuously writ-
ing three values (a, b and c) to both of the channels CH0 and CH1. The Dis-

criminant process reads the values of the variables a, b and c from channel
CH0, computes the discriminant and writes the result to channel CH2. The Solve

process reads the values of a, b and c from channel CH1 and the value D of the
discriminant from channel CH2. The process then computes the two solutions to
the equation and writes the result to channel CH3. The last process, Consumer,
continuously reads pairs of values representing solutions to quadric equations
from the channel CH3.

A C code implementation of the two processes Discriminant and Solve is
also shown in figure 2.3. Each of the two processes are given as a standalone
C program. Both processes uses functions from the math library and from a li-
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Figure 2.4 – Service relation model of the C program implementing the discrimi-
nant process.

brary pnapi that implements a simple API for accessing channels in a process
network. The channels of the process network are accessed by means of two
function read and write. Figure 2.4 shows a service relation model of the C
program implementing the discriminant process. The model consists of four
components representing the math library, process network API, the discrimi-
nant main function and a context. The context components represents the ”exe-
cution context” of a program – the conceptual infrastructure through which the
different entities of the program communicates. The components of Figure 2.4
are related to each other by means of two different service exchange relations:

∙ Callee/Context. The Callee/Context service exchange relation models a
relation between two components where the object provide C functions
that are made accessible through a context (the subject).

∙ Context/Caller. The Context/Caller service exchange relation models a
relation where the subject can access C functions available in a context
(the object).

The context component and the two relations allows us to model the acces-
sibility of functions in a C program. From Figure 2.4 we may infer that the
discriminant component has access to the services of both the math library and
the process network API.
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Figure 2.5 shows a service relation model of the process network from Fig-
ure 2.3 mapped to a simple dual-processor platform. The platform consists of
two processors (Processor0 and Processor1) connected to a shared bus (Bus).
Besides the bus, each of the processors are also connected to a local memory
(Memory0 and Memory1) and a floating point co-processor (FPU0 and FPU1). A
third memory, Memory2, is connected to the shared bus and is used for inter-
processor communication.

In the model, the Producer and Discriminant processes are mapped to
Processor0 and the other two processes, Solve and Consumer, to Processor1.
The programs executing on the two processors of the platform are modeled us-
ing two context components to which the components representing the four pro-
cesses are mapped. Each context is related to a total of four other components
– two processes, a component representing the math library and a component
representing the process network API. Besides being related to a shared context
component, the four components are also related to the processor that they exe-
cute on. This is done by means of the service exchange relation Processor/SWE

where SWE is short for ”software entity”. These relations provides the means for
relating the capabilities (services) offered by a processor through its instruction
set to the software entities in the program executing on the processor.

Using the information embedded in the model of Figure 2.5 we may infer
a number of interesting things about the system. First, we can check if the
processes are properly mapped meaning that they have access any services they
may require to function properly. Below the sets of services available at the
Context and Processor interfaces of the Discriminant component are given:

SA[discriminant.Context] = { context0.ContextService,

math0.acos, math0.pow, math0.sqrt,

pnapi0.write, pnapi0.read; }

SA[discriminant.Processor] = { processor0.Execution, memory0.MemoryService,

FPU0.FpAdd, FPU0.FpDiv, FPU0.FpMult,

bus.BusService, memory2.MemoryService }

Looking at these sets we can conclude that the process is indeed properly mapped
because it has access to an Execution service needed for basic execution, the
pow service needed to compute the value of the discriminant, the read and
write functions for accessing channels and, finally, a set of services needed for
doing computations on floating point values. In the model, we assume that the
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process network API implements the communication infrastructure of the pro-
cess network. This means that all processes that can access a pair of write and
read functions can somehow, magically, communicate. Obviously, this imposes
some requirements on the two components representing the process network
API’s. Assuming that communication between two process network API’s can
be accomplished by means of shared memory we can check if communication is
in fact possible. To do this, we compute the intersection of the sets of services
available at the Processor interfaces of the two process network API compo-
nents. If the result contains one of the MemoryServices in the system then a
memory exists that can be accessed from both components and, consequently,
communication is possible.

This example shows one way to model software using the Service Relation
Model. Depending on the purpose of the model other ways may be more appro-
priate.

2.2 Basic Concepts

The Service Relation Model is based on a number of novel concepts that will be
explained in this section.

Fundamental for this thesis and the Service Relation Model is the concept of
service aggregation which was conceived during the early phases of the project
ending in the writing of this thesis. Service aggregation is a relation between
two services stating that one is accessible through the other. These kinds of
relations is the basic building block of the Service Relation Model. Service ag-
gregation is, per definition, a transitive relation meaning that if we know that
service s0 is aggregated by service s1 and that service s1 is aggregated by service
s2 then we may infer that s0 is also aggregated by (accessible from) s1. Using
service aggregation relations, the services of some system can be arranged in
a graph representing the flow of service in the system. Using such a graph,
the service flow of a model can be analyzed with the aim of determine which
services are accessible where.

When dealing with platforms or systems given as a network of re-usable
components information about service aggregation is not readily available. This
is so because the (re-usable) components are defined in isolation of each other
and, in general, are not based on assumptions about the context in which they
are used. For example, the description of a component representing a hardware
bus consisting of a single service cannot contain a list of the services of other
components that are aggregated by its service simply because the set of compo-
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nents to which the bus is connected is not known. When defining a component
one usually knows something about the types of components that it may be im-
mediately connected to. For example, the hardware bus component will always
be connected to components implementing a compatible slave and/or master
interface. In the Service Relation Model, service aggregation relations between
services of different components are established in-directly through interfaces
and service exchange relations. Service exchange relations defines relations be-
tween two classes of components (e.g a specific bus and its compatible slaves)
and interfaces acts as proxies when defining the service flow.

In order to more clearly understand service aggregation and, more impor-
tantly, what needs to be true in order for an import or export relation to be justi-
fied we first need a way to more formally describe the phenomenon represented
by services and service exchange relations. In the following, a characterization
of services and service exchange relation based on the concept of functions will
be presented. This characterization can be used to more formally define what is
service aggregation is – and what it is not.

2.2.1 Service Characterization

Most people have an intuitive idea about what a service is and will agree that a
service is ”some work” that an individual does on behalf-of another individual.
Here, an individual can be anything ranging from a person to a conceptual
component. A service in the Service Relation Model represents the potential for
service rather than the use of it. When we say that ”a provides b with service
c” it means that the service c is at the disposal of the component a. A given
component can provide the same service to several other components and it may
provide different services to different groups of other components. Knowing
what services a given component provides to other components is the same as
knowing the capabilities of the component. In other words, a service can be
considered a capability – a possibility of performing some function.

The Service Relation Model is exclusively concerned with services that can,
and must be, actively invoked by a service consumer in order for them to carry
out their function. This is as opposed to services that are randomly or continu-
ously being provided to the consumer without the consumers explicit consent. A
service can be described as a function taking n-inputs and returning m-outputs:

〈o0, . . . , om〉 = ServiceName(i0, . . . , in)

Intuitively, such a service can be invoked by a service consumer by providing a
proper valuation of its inputs. The invoked service may produce zero or more
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outputs that are passed back to the service consumer. In keeping with the ter-
minology of functions, the set of possible inputs to a service is called the domain
of the service and the set of possible outputs the range of the service. The do-
main D(s) of a service s is defined as the Cartesian product of the domains of
the inputs:

D(s) = I0 × . . . × In

and, similarly, the range R(s) as the Cartesian product of the domains of the
outputs:

R(s) = O0 × . . . ×Om

The domain of a service is allowed to contain elements that does not repre-
sent a proper service invocation (i.e. invalid valuations of its inputs) as well
as multiple elements that will result in the invocation of the same functionality.
This provides an additional degree of freedom in choosing the domain used to
describe a service which helps to make the description more intuitive.

Note that a service is not a proper mathematical function because it repre-
sents a phenomenon that is allowed to have side effects and whose outputs may
depend on the state of the system in addition to its inputs. Also, in the Ser-
vice Relation Model, services are abstractions meaning that we do not concern
ourselves with the definition of the behavior or function implemented by the
service.

Example 2.1 (Memory Access Services) Services representing access to mem-
ory are quite common. Such services can be represented using four inputs and
one output:

〈val〉 = MemoryAccessService(op,w, addr, val)

where op ∈ {rd, wr} specifies the type of operation (read or write), w ∈ {1, 2, 4}
specifies the width of the access (1, 2 or 4 bytes), addr ∈N0 specifies the address
to be accessed and val ∈ Z the value to be written in case of op = wr. The
MemoryService and BusService from the previous examples are examples of
such services. �

Example 2.2 (Functions) The service representation of C functions is straight-
forward: one output representing the function return value and a single input
for each function argument:

〈result〉 = FunctionName(arg0, arg1, . . . , argn)

For example, the power function of the C math library can be modeled as
〈result〉 = pow(a, b) where result, a, b ∈ R. �
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Example 2.3 (Execution) Another interesting, and often used, class of ser-
vices is the monolithic Execution service of processors. The inputs and outputs
of this service is highly dependent upon the actual processor and, in general,
not trivial to describe. Fortunately, we can get around this by assuming that the
services of a processor are accessed through a high-level language such as C.

For a given processor only a selection of instructions will be used to access
services provided by the connected hardware. Common examples of such in-
structions are the LOAD and STORE instructions of a RISC machine. Assuming
that a high-level function wrapper (e.g. void load(int* addr)) is available
for each of these instructions, the execution service can be described as:

〈result〉 = Execution(name, arg0, arg1, . . . , argmax)

where result is the return value, name is the name of the wrapper function, argx
is an argument and max is the maximum number of arguments any function can
take. Notice that many of the combinations of inputs for this function does not
correspond to a proper invocation of the execution service. For example, the
valuation load, void, 10, 10, . . . void does not make sense. �

2.2.2 Service Exchange Relation Characterization

Like services, the phenomenon represented by service exchange relations may
also be described using functions. The purpose of such a function is to define the
possible service requests (inputs) and results (outputs) that may pass through
a particular service exchange relation. In comparison with the functions de-
scribing services, the functions describing service exchange relations does not
represent any ”work” to be done at run-time. As was the case for services, the
Cartesian product of the domains of the inputs of a service exchange relation
is called the domain of the relation and, similarly, the Cartesian product of the
domains of the outputs the range of the relation.

Example 2.4 (Memory Interfaces) A common way of interfacing hardware
components is through memory interfaces where a master component may ac-
cess a slave by issuing read and write requests. The function signature describ-
ing a service exchange relation representing a memory interface can be given
as:

〈val〉 = BusToBusSlave(op,w, addr, val)

where op ∈ {rd, wr} specifies the type of operation (read or write), w ∈ {1, 2, 4}
specifies the width of the access (1, 2 or 4 bytes), addr ∈N0 specifies the address
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to be accessed and val ∈ Z the value to be written in case of op = wr. Notice
that the function has exactly the same inputs and outputs as the function used
for describing memory access services. �

Example 2.5 (Function Invocation) The service exchange relations the Con-

text/Caller and Callee/Context representing the exchange of service be-
tween a context and a software entity using function invocation can be de-
scribed as:

〈result〉 = FunctionSxr(name, arg0, arg1, . . . , argn)

where name is the domain of valid function names, n is the maximum number
of allowed arguments a function can take and argx is an input representing the
value of an argument. argx is in the domain TYPE ∪ ⊥ where TYPE is the
domain of values for the corresponding type and ⊥ represents ”not used”. �

In earlier versions of the Service Relation Model, service exchange relations
were bi-directional – as the name ”exchange relation” suggests. Both the object
and subject components of a relation were allowed to export services to it. While
this simplified some models slightly it also complicated the task of encoding the
service flow because each interface would introduce a circular dependency in
the flow graph. Eventually, the bidirectional relations were replaced with the
unidirectional relations. There might be good reasons to allow bidirectional
flow of service since it can simplify some models. Bidirectional flow, however,
is difficult to handle since it introduces cycles in the model. An example of a
problem caused by such cycles will be presented later in section 5.4.6.

2.2.3 Service/Interface Aggregation

Using the presented characterization of services and service exchange relations
we may now more formally define the concept of service aggregation. As pre-
viously mentioned, the service aggregation relations between services are not
explicit in the Service Relation Model. Instead, all service aggregation relations
are established in-directly through interfaces and service exchange relations. A
service may participate in two different relations with interfaces: import and
export relations.

In the following, let a i
−→ b be an infix boolean-valued operator between a

specification of a service invocation a and a specification of a service exchange
relation access b or a specification of a service exchange relation access a and a
specification of a service invocation b. The operator returns true if the invoca-
tion or access specified by a causes the invocation or access specified by b and
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otherwise false. For example,

r0 = S(i0) i
−→ r1 = I(i1)

is true if invoking the service S with input i0 causes the interface I to be ac-
cessed with input i1. Furthermore, let x C y be another boolean-valued oper-
ator between two sets of input/output values returning true if the information
contained in x is somehow part of the information contained in y. This will, for
example, be the case for the following pair of values:〈

q, t
〉
C

〈
SomeFunction, q, t

〉
if the meaning of the values q and t is the same in both tuples. In other words,
x C y is true only if the value x can be extracted from y.

Definition 2.0 (Import) An interface i associated with the service exchange
relation sxr can be imported into a service s only if the following is true:

∀x ∈ D(s) : ∃y ∈ D(sxr) : r0 = s(x) i
−→ r1 = sxr(y) ∧ x C y ∧ r1 C r0

meaning that it must be possible to invoke s so that i is accessed with every
possible input and that any information returned by the access of i is part of the
output returned by the invocation of s. �

Definition 2.1 (Export) A service s can be exported to an interface i associated
with the service exchange relations sxr only if the following is true:

∀x ∈ D(sxr) : ∃y ∈ D(s) : r0 = sxr(x) i
−→ r1 = s(y) ∧ x C y ∧ r1 C r0

meaning that it must be possible to access i so that s is invoked with every
possible input and that any information returned by the invocation of s is part
of the output returned by the access of i. �

Collectively, the two definitions ensures that when we say a service s is avail-
able at some point x in a model it will be possible to access s from that point. It
should be noted that the definition of services and service exchange relations as
functions is not required by the Service Relation Model. In the Service Relation
Model, both services and service exchange relations are abstract entities and, as
such, are not associated with a definition of their structure or behavior. Later,
in section 4.3, an approach to code generation based on the Service Relation
Model is presented. This approaches is based on the definition of services and
service exchange relations as functions as presented in this section.



2.3 In-depth Presentation 35

Figure 2.6 – The concepts of the Service Relation Model are split into three do-
mains: the library domain, the design domain and the model domain. The relation-
ship between library entity descriptions of the library and two (different) designs.
The description of a design does not contain descriptions of its constituent compo-
nents and instead references the descriptions of the library.

2.3 In-depth Presentation

The concepts of the Service Relation Model are divided into three different do-
mains called the library domain, the design domain and the model domain. The
model domain contains concepts that can be used to create models like those
presented in the examples of section 2.1.1 and 2.1.2. In such models, how-
ever, components are not readily re-usable because of their static structure. For
example, the bus component of the example in section 2.1.1 represents a bus
instance with exactly one slave and one master attachment. The library and de-
sign domains contains additional concepts that acts as a front-end for specifying
models and, collectively, enables re-use of components by separating component
definition from component assembly. Figure 2.6 illustrates this separation. This
emphasis on re-use is mandatory for the Service Relation Model to efficiently
support component-based design approaches.

Finally, a note on notation. To simplify the presentation a ”.” notation will
be used to refer to the members of tuples. For example, given the tuple a = 〈b, c〉
we will write a.b when referring to the first member and a.c when referring to
the second. For reference, table 2.7 contains a list of symbols used in this thesis.

2.3.1 Models

It is the purpose of this section to provide a detailed description of service rela-
tion models ignoring the details of how these models come into existence. The
first part of the presentation will focus solely on the structure of models. The
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m,M Models RI, ri Import relations
δ,∆ Designs RE, re Export relations
` Library S, s Services
T, t Templates I, i Interfaces
C, c Components RES, res Resources
O, o Options CL, cl Resource claims
R, r Service exchange relations P, p Parameters
RS, rs Resource shares A, a Assertions
G, g Interface groups

Figure 2.7 – Symbols and their meaning

meaning and purpose of models will be explained afterwards. Formally, a model
is defined as:

Definition 2.2 (Model, m) A model is a pair m = 〈C,R〉 where C is the set of
components in the design and R is the set of service exchange relations between
the elements of C. �

Internally, a component consists of services, interfaces and import/export
relations. Services are used to describe the capabilities of components. A ser-
vice, in the context of the Service Relation Model, shares many similarities with
the concept of functions in programming. An interface is a connection point
through which the component may be connected to another component via a
service exchange relation. The interfaces and services of a component are re-
lated to each other using import and export relations. Formally, a component is
defined as:

Definition 2.3 (Component, c) A component is a quadruple c = 〈S, I,RE,RI〉
where S is a set of services, I is a set of interfaces, RE is a set of export relations
and RI a set of import relations. �

Definition 2.4 (Import Relation, ri) An import relation is a triple ri = 〈c, i, s〉
where c is the parent component of the relation, i ∈ c.I an interface and s ∈ c.S
a service. �

Definition 2.5 (Export Relation, re) An import relation is a triple re = 〈c, s, i〉
where c is the parent component of the relation, s ∈ c.S a service and i ∈ c.I an
interface. �

The components of a model are related to each other using a set of service
exchange relations. A service exchange relation is a binary relation representing
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the possible flow of service from one component to another. Service exchange
relations are unidirectional meaning that service can only flow in one direction.
Two entities related to each other using binary relations are often referred to
as the object and the subject of the relation. In the Service Relation Model, the
object of the relation is per definition always the service provider and the subject
the service consumer. Components are indirectly connected to service exchange
relations through their interfaces:

Definition 2.6 (Interface, i) An interface is a triple i = 〈c, rel, role〉 where c is
the parent component of the interface, rel ∈ R is the relation associated with the
interface and role ∈ {object, subject} is the role associated with the interface. �

Definition 2.7 (Service Exchange Relation, r) A service exchange relation is
a pair of pairs r = 〈〈c1, i1〉 , 〈c2, i2〉〉 where c1, c2 ∈ C, i1 ∈ c1.I and i2 ∈ c2.I. The
pair 〈c1, i1〉 identifies the object of the relation and the pair 〈c2, i2〉 the subject.�

An interface can at most be connected to one service exchange relation and
may be unconnected. A model with one or more unconnected interfaces is called
a partial model. A component has a finite set of interfaces and, consequently,
can only participate in a finite number of service exchange relations with other
components.

Well-formed Model. For a well-formed service relation model m = 〈C,R〉 the
following must be true. Each interface is either properly connected or not con-
nected:

∀ 〈〈c0, i0〉 , 〈c1, i1〉〉 ∈ R : i0.rel = i1.rel ∧ i0.role , i1.role (2.1)

Each interface is connected at most once:

∀ 〈〈c0, i0〉 , 〈c1, i1〉〉 , 〈〈c2, i2〉 , 〈c3, i3〉〉 ∈ R × R :
(c0 = c2 ∧ i0 = i2)↔ (c1 = c3 ∧ i1 = i3) (2.2)

The target interface of an export relation is always an object interface:

∀c ∈ C :
(
∀re ∈ c.RE : re.I.rel = object

)
(2.3)

and the source of an import relation is always a subject interface:

∀c ∈ C :
(
∀ri ∈ c.RI : ri.I.rel = subject

)
(2.4)

Collectively, 2.1, 2.3 and 2.4 ensures that service only flow one way through
interfaces.
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Concept Constraint

Interface, i nothing

Service, s {s} ⊆ SA[s]

Import relation, ri = 〈c, s, i〉 SA[s] ⊆ SA[i]

Export relation, re = 〈c, i, s〉 SA[i] ⊆ SA[s]

Service exchange relation, r = 〈〈c1, i1〉 , 〈c1, i2〉〉 SA[i0] = SA[i1]

Table 2.1 – Service flow, concepts and implied constraints

2.3.2 Service Flow

The purpose of the Service Relation Model is to determine the sets of services
available for each component in a model. More specifically, we are interested in
the services available at each interface and service of each component. Collec-
tively, this information is called service availability information:

Definition 2.8 (Service Availablity Information, SA) Let I∗ be the set of in-
terfaces and S∗ be the services in a model m. The set of services available at an
interface i ∈ I∗ or a service s ∈ S∗ is called the service availablity information of
i or s. The service availability information of m is a map:

SA : I∗ ∪ S∗ → P(S∗)

mapping interfaces and services to the sets of available services. �

To more formally describe the semantics of service flow in the Service Re-
lation Model, we will show how the service availablity information of a model
is given relative to a set of constraints derived from the various concepts of the
Service Relation Model. Table 2.1 shows the constraints associated with the
concepts. Notice that components are not mentioned as they do not directly
influence the service availablity information. The set of constraints associated
with each occurrence of the concepts in a model m comprises a constraint sys-
tem describing the flow of service in m. The constraint system may have several
feasible solutions. One of these solutions, called the least solution, exactly de-
scribes the service availablity information of m. Informally, the least solution to
a constraint system can be thought of as the ”smallest” solution in terms of the
number of services available. For a more exact definition of the least solution
see [68]. An algorithm for computing the service availablity information of a
model will be presented later in section 2.4.
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Example 2.6 For the hardware platform of figure 2.2, we can extract the fol-
lowing constraints using table 2.1:

{ memory.MemoryService } ⊆ SA[memory.MemoryService]

SA[memory.MemoryService] ⊆ SA[memory.bus]

SA[bus.slave0] ⊆ SA[bus.BusService]

{ bus.BusService } ⊆ SA[bus.BusService]

SA[bus.MemoryService] ⊆ SA[bus.Master0]

SA[processor.DataBus] ⊆ SA[processor.Execution]

SA[processor.CoProc0] ⊆ SA[processor.Execution]

{ processor.Execution} ⊆ SA[processor.Execution]

{ FPU.FpAdd } ⊆ SA[FPU.FpAdd]

{ FPU.FpDiv } ⊆ SA[FPU.FpDiv]

{ FPU.FpMul } ⊆ SA[FPU.FpMul]

SA[FPU.FpAdd] ⊆ SA[FPU.Processor]

SA[FPU.FpDiv] ⊆ SA[FPU.Processor]

SA[FPU.FpMul] ⊆ SA[FPU.Processor]

SA[bus.Master0] = SA[processor.DataBus]

SA[FPU.Processor] = SA[processor.CoProc0]

SA[memory.bus] = SA[memory.bus]

The least solution to this constraint system – the service availablity information
of the model – was presented earlier as part of the example in section 2.1.1. �

Another kind of interesting information, which may be derived from the
service availability information, is called available at information and records
for each service in a model the set of interfaces and services where the service
is available:

Definition 2.9 (Available At Information, AA) Let I∗ be the set of interfaces
and S∗ be the services in a model m. The set of services and interfaces x ∈ I∗∪S∗
where a service s ∈ S∗ is available is called the available at information of s. The
available at information of m is a map:

AA : S∗ → P(I∗ ∪ S∗)

mapping services to sets of interfaces and services. �

In some rare cases, we are also interested in the accessibility of interfaces.
Intuitively, an interface is accessible from an other interface or service if it is
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possible request a service through it. This has uses when dealing with partial
models because if we know that an unconnected interface i is available at some
point x then we may infer that any services later made available at i are also
available at x.

Definition 2.10 (Service/Interface Availablity Information, SIA) Let I∗ be
the set of interfaces and S∗ be the services in a model m. The set of services
available at and the set of interfaces accessible from an interface i ∈ I∗ or a
service s ∈ S∗ is called the service/interface availablity information of i or s. The
service/interface availability information of m is a map:

SIA : I∗ ∪ S∗ → P(S∗ ∪ I∗)

mapping interfaces and services to the sets of services and interfaces. �

Note that the service/interface availablity information of a model contains
the service availablity information. The service/interface availablity information
of models will not be used much in this work but has been included primarily
because the analysis back-end used for experimentation purposes computes this
instead of the less detailed service availablity information.

2.3.3 Configurability

The examples presented thus far have all focused on models. The components
of a model are concrete instances that does not provide much flexibility. For
example, the bus component of the example in figure 2.2 represents a concrete
bus with exactly one master attachment and one slave attachment. While it
is entirely possible to formulate models directly on the basis of some input,
say a platform specification, it is often more convenient to employ a scheme
where models are generated on the basic of re-usable component descriptions
(templates). In this section, configurability in the Service Relation Model will
be presented.

As was mentioned earlier, a specification of a model consists of a design
description and a library. A library is a repository for re-usable information
such as component templates and types of service exchange relations. A design
description specifies a model by specifying an allocation, a configuration and a
topology of components relative to a library.

The front-end of the Service Relation Model consists of two different (but
related) formalisms. The first of these formalisms, called the library description
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formalism, is used for describing re-usable entities such as components and the
possible relations between the them. These descriptions, called library entity
descriptions, are conceptually grouped together in a library. Formally, a library
is defined as:

Definition 2.11 (Library, `) A library is a pair ` =
〈
T`,R`

〉
where T` is a set of

component templates and R` is a set of service exchange relations. �

Notice that the term component template is used to denote a re-usable descrip-
tion of a component in the library domain.

The second formalism, called the design description formalism, is used for
describing a concrete allocation, configuration and topology of a system based
on the library entity descriptions of a given library. A system described using
the design description formalism is referred to simply as a design:

Definition 2.12 (Design, δ) A design δ is an triple δ =
〈
`,Cδ,Rδ

〉
where ` is

the library containing the library entities referenced by the design, Cδ is a set of
component instances and Rδ a set of service exchange relation instances . �

Through a process called design expansion the description of a design and a
library containing the necessary library entities are merged into a ”standalone”
service relation model of the design. Informally, a model can be thought of as
a design where the references to library entities have been replaced by their
content (i.e. descriptions in the library domain).

Since several of the similarly named concepts in the Service Relation Model
have slightly different meaning depending on whether the context is the library
domain, design domain or the model domain we will use a special notation to
set them apart: Entities in the library domain will be decorated with the super-
script `, entities in the design domain will be decorated with the superscript δ
and entities in the model domain context will not be decorated. Thus, s` de-
notes a service in the library domain and cδ a component of the design domain
where as s and c denotes entities of the model domain.

2.3.3.1 Textual Representation, The xSRM Language

All of the example of models presented thus far have been given using diagrams
using the graphical notation introduced in section 2.1.1. While the graphical
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model SimplePlatform {
component memory {

i n t e r f a c e bus : o b j ( BusSlaveToBus );
s e r v i c e MemoryService { e x p o r t (bus); }

}
component bus {

i n t e r f a c e slave0 : sub( BusSlaveToBus );
i n t e r f a c e master0 : o b j ( BusToBusMaster );
s e r v i c e BusService { import (slave0 ); e x p o r t (master0 ); }

}
component processor {

i n t e r f a c e DataBus : sub( BusToBusMaster );
i n t e r f a c e CoProc0 : sub(CoProcToProc );
s e r v i c e Computation { import (DataBus , CoProc0 ); }

}
component FPU {

i n t e r f a c e Processor : o b j (CoProcToProc );
s e r v i c e FpAdd { e x p o r t (Processor ); }
s e r v i c e FpDiv { e x p o r t (Processor ); }
s e r v i c e FpMult { e x p o r t (Processor ); }

}

connect (memory.bus , bus.slave0 );
connect (bus.master0 , processor.DataBus );
connect (processor.CoProc0 , FPU.Processor );

}

Listing 2.1 – sSRM Descriptions of the service relation model of the platform from
the example of section 2.1.1.

notation is excellent for depicting models it is less well suited for depicting en-
tities in the library and design domains. The reason for this being that many of
the concepts that has yet to be presented does not have an intuitive graphical
representation. This section contains a brief presentation of a textual represen-
tation, named the Simple Service Relation Model sSRM language, that will be used
in the remainder of this thesis.

The sSRM language is associated with three different views – one for each of
the three domains of the Service Relation Model. The model view corresponds
to the graphical notation and are used to describe models. The library view is
used to describe the entities of the library domains such as service exchange
relation and component template definitions. Finally, the design view is used to
specify a model relative to a library. Hopefully, the semantics of the sSRM lan-
guage should be intuitive enough to excuse the fact that a formal presentation
of the language is not provided.

Listing 2.1 shows an sSRM description of the service relation model of the
hardware platform of example 2.1.1. The description is enclosed in a model tag
showing that it contains a description of a model. Listing 2.2 shows the sSRM

descriptions of the library and design specifying the model of the platform.
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l i b r a r y {
namespace platform {

s x r BusSlaveToBus;
s x r BusToBusMaster;
s x r CoProcToProc;

template memory {
i n t e r f a c e bus : o b j ( BusSlaveToBus );
s e r v i c e MemoryService { e x p o r t (bus); }

}
template bus {

i n t e r f a c e slave0 : sub( BusSlaveToBus );
i n t e r f a c e master0 : o b j ( BusToBusMaster );
s e r v i c e BusService { import (slave0 ); e x p o r t (master0 ); }

}
template processor {

i n t e r f a c e DataBus : sub( BusToBusMaster );
i n t e r f a c e CoProc0 : sub(CoProcToProc );
s e r v i c e Computation { import (DataBus , CoProc0 ); }

}
template FPU {

i n t e r f a c e Processor : o b j (CoProcToProc );
s e r v i c e FpAdd { e x p o r t (Processor ); }
s e r v i c e FpDiv { e x p o r t (Processor ); }
s e r v i c e FpMult { e x p o r t (Processor ); }

}
}

}

d e s i g n SimplePlatform {
component processor : platform.processor {}
component memory : platform.memory {}
component FPU : platform.FPU {}
component bus : platform.bus {}

connect (memory.bus , bus.slave0 );
connect (bus.master0 , processor.DataBus );
connect (processor.CoProc0 , FPU.Processor );

}

Listing 2.2 – sSRM Descriptions of the library and design used for specifying the
model of listing 2.1.
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The word ”simple” in the name ”Simple Service Relation Model” is due to
the fact that it is a syntactically simpler version of another XML-based language
called the xSRM language supported by the xSRM framework that will be pre-
sented later in section 3.4.

2.3.3.2 Options

A component template is configurable by means of options. An option is a partial
description of service flow that can optionally be included in the service flow
description of a component instance depending on the needs of that particular
instance. An option can be included zero or more times in the same component
instance. In the case that an option is included several times then its service
flow description is duplicated accordingly.

Example 2.7 Listing 2.3 shows a sSRM description of a hardware bus illustrat-
ing the use of options. Here, the number of master and slave attachments have
been made customizable by means of two options called master and slave. The
master option adds an interface for connecting the bus component to a master
attachment and, similarly, the slave option adds an interface for connecting it to
a slave attachment. The description also shows a design containing an instance
of the bus with one master and two slave options included and the resulting
model. �

The concept of an option exists in both the library and the design domain.
In the library domain, an option is defined as:

Definition 2.13 (Option, o`) An option is a quintuple o =
〈
t`,S`, I`,RE`,RI`

〉
where t` is the template to which the option belongs, S` is a set of services, I` a
set of interfaces, RE` a set of export relations and RI` a set of import relations.�

In the design domain, an option refers to an inclusion or instantiation of an
option from the library domain in some component. An option oδ in the design
domain is defined as:

Definition 2.14 (Option, oδ) An option oδ is a pair oδ =
〈
cδ, o`

〉
where cδ is

the parent component of the option (i.e. the component in which the option is
included) and o` is the re-usable service flow description in the library. �
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l i b r a r y {
namespace platform {

...
template bus {

o p t i o n master { i n t e r f a c e master : o b j ( BusToBusMaster ); }
o p t i o n slave { i n t e r f a c e slave : sub( BusSlaveToBus ); }
s e r v i c e BusService { import (slave.slave ); e x p o r t (master.master ); }

}
}

}

d e s i g n BusExample {
component MyBus : platform.bus {

i n c l u d e master0 : master;
i n c l u d e slave0 : slave;
i n c l u d e slave1 : slave;

}
}

model BusExample {
component MyBus {

i n t e r f a c e master.master0 : o b j ( BusToBusMaster );
i n t e r f a c e slave.slave0 : sub( BusSlaveToBus );
i n t e r f a c e slave.slave1 : sub( BusSlaveToBus );
s e r v i c e BusService {

import (slave.slave0 , slave.slave1 );
e x p o r t (master.master0 );

}
}

}

Listing 2.3 – An sSRM description of a hardware bus using options.

For obvious reasons, only options where oδ.o` ∈ oδ.cδ.t.O` are valid.

The service flow description of a component template consists of a manda-
tory and an optional part. The mandatory part contains the part of the service
flow description that must be part of all instances of a given template. Concep-
tually, this mandatory description is not an option itself but in order to ease the
formalization of the concepts we will adopt the view that the partial description
of service flow shared by all instances is an option with the restriction that it
must be included exactly once in each component instance. This leads to the
following definition of a template in the library domain and a component in the
design domain:

Definition 2.15 (Template, t`) A component template is a pair t` =
〈
O`, o`m

〉
where O` a set of options and o`m ∈ O` is the mandatory option. �
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Definition 2.16 (Component, cδ) A component cδ is a triple cδ =
〈
t`,Oδ, oδm

〉
where t` is the template upon which the component is based, Oδ is a set of
included options and oδm ∈ Oδ is the mandatory option (as dictated by the asso-
ciated template of c). We require that the mandatory option is included exactly
once:

∃oδ ∈ Oδ : oδ.o` = oδm.o`

∀oδ1, o
δ
2 ∈ Oδ : oδ1.o

` = oδm.o` ∧ oδ1.o
` = oδm.o` ⇒ oδ1 = oδ2

This implies that Oδ is never the empty set. �

It should be noted that the sSRM and xSRM languages does not incorporate the
concept of the mandatory option directly. In these languages, the description of
service flow otherwise contained in a mandatory option is part of the component
itself.

Libraries. Besides the concepts already mentioned, the following concepts
also belongs to the library domain:

Definition 2.17 (Interface, i`, I`) An interface is a pair i` =
〈
o`, rel, role

〉
where

o` is the parent option to which the interface belongs, rel is the service exchange
relation associated with the interface and role ∈ {object, subject} is the role asso-
ciated with the interface. �

Definition 2.18 (Import Relation, ri`, RI`) An import relation is a triple ri` =〈
o`, i`, s`

〉
where o` is the parent option of the relation, i` ∈ o`.I` an interface and

s` ∈ o`.S` a service. �

Definition 2.19 (Export Relation, re`, RE`) An export relation is a triple re` =〈
o`, s`, i`

〉
where o` is the parent option of the relation, s` ∈ o`.S` a service and

i` ∈ o`.I` an interface. �

As can be seen, the definition of templates and interfaces in the library do-
main resembles those of the model domain. The entities of the library domain,
however, represent classes whereas the entities of the model domain represents
instances of such classes.
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Well-formed. The service flow of all possible components instantiated on the
basis of a given template must be well-formed meaning that the source interface
of an import relation is always associated with the subject role of a service
exchange relation and, similarly, that the target interface of an export relation
is always associated with the object role of a service exchange relation. Recall
that in a service exchange relation, service flows from the object to the subject.
Let RE`∗ be the set of all export relations and RI`∗ the set of all import relations
in a template. The following must hold for the template to be well-formed:

∀re` ∈ RE`∗ : re`.i`.rel = object (2.5)

and

∀ri` ∈ RI`∗ : ri`.i`.rel = subject (2.6)

Designs. Besides the concepts already introduced, the design domain also
consists of service exchange relations:

Definition 2.20 (Service Exchange Relation, rδ,Rδ) A service exchange re-
lation rδ ∈ Rδ is a pair of triples r =

〈〈
cδ0, o

δ
0, i

`
0

〉
,
〈
cδ1, o

δ
1, i

`
1

〉〉
where c0, c1 ∈ Cδ,

oδ0 ∈ cδ0.O
δ, oδ1 ∈ cδ1.O

δ, i0 ∈ oδ0.o
`.I` and i`1 ∈ oδ1.O

`.I` for some design δ =
〈
`,Cδ,Rδ

〉
�

Well-formed. We assume that the relations of a design are all properly con-
nected meaning that only interfaces associated with the same service exchange
relation and with opposite roles can be connected. More formally:

∀((cδ0, o
δ
0, i

`
0), (cδ1, o

δ
1, i

`
1)) ∈ Rδ : i`0.rel = i`1.rel ∧ i`0.role , i`1.role (2.7)

Furthermore, each interface is connected at most once:

∀

〈〈
cδ0, o

δ
0, i

`
0

〉
,
〈
cδ1, o

δ
1, i

`
1

〉〉
,
〈〈

cδ2, o
δ
2, i

`
2

〉
,
〈
cδ3, o

δ
3, i

`
3

〉〉
∈ Rδ × Rδ :

(cδ0 = cδ2 ∧ oδ0 = oδ2 ∧ i`0 = i`2)↔ (cδ1 = cδ3 ∧ oδ1 = oδ3 ∧ i`1 = i`3)
(2.8)

As can be seen, not all interface has to be connected. A design with one or
more unconnected interfaces is called a partial design.
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2.3.4 Design Expansion

Having presented the various concepts of the Service Relation Model in the
three different domains we can now more formally define the design expansion
process. Design expansion is formalized as a function E(δ) = m that takes a
design and returns the corresponding model. The definition of E, as presented
here, uses several auxiliary functions.

The first step of the formalization consists of mapping services in the library
domain to services in the model domain. Because of options and the fact that
multiple components may be instantiated on the basis of the same template
there may be zero of more services in the model domain for each service in the
library domain. To describe this relation we use an injective function:

Sδ→m : S` × Cδ ×Oδ
→ S (2.9)

The function formalizes the instantiation of a service which is part of an option
in the library. The function requires three arguments: a component dδ and an
option oδ ∈ dδ.Oδ in the design domain and a service s` ∈ oδ.o`.S` in the library
domain. The function returns the service in the model domain that corresponds
to the instantiation of s` belonging to the option oδ of component cδ. The func-
tion Sδ→m is injective:

Sδ→m(s`1, c
δ
1, o

δ
1) = Sδ→m(s`2, c

δ
2, o

δ
2)⇒ s1 = s2 ∧ c1 = c2 ∧ o1 = o2 (2.10)

This is an important property of the function since it captures the fact that
a service in the model domain represents an instance of a library service or
interface of a particular included option in a particular component instance.

We also have a similar injective function for mapping interfaces in the library
domain to interfaces in the model domain:

Iδ→m : I` × Cδ ×Oδ
→ I (2.11)

Using these two functions the mapping of a component cδ in the design
domain into a component c in the model domain can now be described using
another function:

Ec(cδ) = 〈S, I,RE,RI〉 (2.12)
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where

S = {Sδ→m(s`, cδ, p(s))|s` ∈ cδ.t.S`}

I = {Iδ→m(i`, cδ, p(i))|i` ∈ cδ.t.I`}

RE = {
〈
Sδ→m(s`, cδ, oδ1), Iδ→m(i`, cδ, oδ2)

〉
|〈

s`, i`
〉
∈ cδ.t.RE` ∧ o1, o2 ∈ c.Oδ

∧ o1 = p(s) ∧ o2 = p(i)}

RI = {
〈
Sδ→m(s`, cδ, oδ1),Sδ→m(s`, cδ, oδ2)

〉
|〈

i`, s`
〉
∈ cδ.t.RI` ∧ o1, o2 ∈ c.Oδ

∧ o1 = p(i) ∧ o2 = p(s)}

The mapping of service exchange relations in the design domain to service
exchange relations in the model domain is straightforward:

Er((cδ0, o
δ
0, i

`
0), (cδ1, o

δ
1, i

`
1),C) =

〈
(Ec(cδ0), Iδ→m(cδ0, o

δ
0, i

`
0)), (Ec(cδ0), Iδ→m(cδ1, o

δ
1, i

`
1)))

〉

The function describing the expansion of a design δ can now be given as:

E(δ) =
〈
{Ec(cδ)|cδ ∈ δ.Cδ}, {Er(rδ)|rδ ∈ δ.Rδ}

〉

Example 2.8 Figure 2.8 shows a library template (a) and three components
based on it (b, c, d). The template provides two options (o0, o1) in addition to
the mandatory option. The lines in the figure represents import/export rela-
tions. Component instance b does not include any options so the service flow
of the component matches that of the mandatory option excluding the relations
it has with the two options. In component instance c a single instance of the
option o1 is included. The third component instance, d, includes two instances
of both options o0 and o1. Notice that the relations between the options in the
template have been duplicated in the instantiated component according to the
number of instances included.

�
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Figure 2.8 – Import/export relations and design expansion.
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Figure 2.9 – Service flow graph (SFG) of the model of the simple hardware platform
in figure 2.2

2.4 Analysis

In this section, a pair of algorithms for computing the service availablity in-
formation and the service/interface availablity information of a model are pre-
sented. Because the algorithms are almost identical emphasis will be on the
algorithm for computing the service availablity information. The difference be-
tween the two algorithms will be briefly discussed at the end of the section.

Both algorithms operates on a more explicit representation of the service
flow in a model called the service flow graph (SFG). Figure 2.9 shows the service
flow graph of the model depicted in Figure 2.2. Formally, a service flow graph
is defined as:

Definition 2.21 (Service Flow Graph) A service flow graph is a quadruple
s f g = 〈S, I,N,E〉 where S is a set of service, I is a set of interface, N = S ∪ I is a
set of nodes and E ⊂ N ×N is a set of edges representing service flow. �

A service flow graph is a cyclic graph where the nodes represents the services
and interfaces in the model and the edges represent import/export relations.
Pairs of interfaces connected by means of a service exchange relation are col-
lapsed and represented by means of a single node. Extracting the service flow
graph from a model is fairly straightforward and will not be discussed here.
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Algorithm 1 Available Services - Worklist Algorithm
1: procedure SOLVE(S, I, E)
2: worklist := E . Initialization
3: for each i ∈ I do
4: available[i] := ∅
5: end for
6: for each s ∈ S do
7: available[s] := { s }
8: end for
9: while worklist , ∅ do . Main loop

10: e := DEQUEUE(worklist)
11: t := GETTARGETNODE(e)
12: s := GETSOURCENODE(e)
13: if ¬ (available[t] ⊆ available[s]) then
14: available[t] := available[t] ∪ available[s]
15: for each o ∈ GETSUCCESSOREDGES(t) do
16: ENQUEUE(o)
17: end for
18: end if
19: end while
20: end procedure

Algorithm 1 is used to compute the service availability information of a
model as presented previously in section 2.3.2. The algorithm is based on a
generic worklist algorithm. More specifically, algorithm 1 is an adaptation of an
algorithm presented in [68] used for computing data flow information in the
context of program analysis.

In algorithm 1, every node in the service flow graph is associated with a set
of services that are considered available at that particular node – an associative
array, named available, is used to represent these associations. For the nodes
representing interfaces these sets are initialized to the empty set and for the
nodes representing services the sets are initialized to contain the service repre-
sented by the node (i.e. we adopt the idea that a service is available at itself).
A queue, called the worklist, is initialized to contain all the edges of the service
flow graph. The main loop of the algorithm extracts one edge at a time and tests
if the set of services available at the source node is a subset of the set of services
available at the target node. If this is not the case then the services available at
the source node is added to the set of services available at the target node and
any edges having the target node as source node is added to the worklist.

The complexity of algorithm 1 is bounded by the number of required itera-
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tions of the while loop. To determine the maximum number of iterations, we
note that if the test at line 13 succeeds then at least one new service will be
added to the availablity set of the target of the edge being considered. For a
given target node n, the update of the availablity set at line 14 can at most be
executed h times where h is the number of services in S. Let M be the number
of successor edges associated with the node with the most successor edges in
the service flow graph, each entry into the if-statement of line 13 will cause at
most M new edges to be inserted into the worklist. Each node will cause a max-
imum of M × h edges to be added to the worklist. This yields a complexity of
O(N ×M × h) where N is the number of nodes in the service flow graph. Since
h ≤ N and M ≤ N we can simplify this to O(N3). Algorithm 1 uses a worklist
of edges. Another version of the algorithm uses nodes instead of edges. The
complexity of such an algorithm is also known to be O(N3), [68].

Algorithm 1 cannot be used to compute the service/interface availablity in-
formation of a model because it only considers services. Algorithm 2 is an adap-
tion of Algorithm 1 that also computes the availablity of the interfaces in the
service flow graph. Pseudo code for Algorithm 2 can be found in appendix A.
Algorithm 2 differs from Algorithm 1 in the size of the sets and in its initial-
ization of the associative array available and, consequently, the two algorithms
have the same complexity. When considering both the availablity of services
and accessibility of interfaces, the problem amounts to computing the transitive
closure of its service flow graph. Much research has been done in efficient algo-
rithms for computing the transitive closure of graphs and algorithms exists that
can handle very large problems quite fast [73].

2.5 Discussion & Summary

In this chapter, the basic concepts of the Service Relation Model have been pre-
sented. Readers familiar with static program analysis will notice many simi-
larities between, on one hand, the concepts of the Service Relation Model and
the service availablitity analysis and, on the other, data flow analysis. Both the
Service Relation Model, the analysis method and parts of the presented formal-
ization have been inspired by data flow analysis.

A key feature of the Service Relation Model, that has not been explicitly
mentioned, is that it does not impose any constraints on what a component is. In
many component models, components are given meaning by organizing them in
a class hierarchy similar to the service class hierarchy presented previously. For
example, many models restricts themselves to components that can be classified
as being processors, interconnects or memories.
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The concepts of the Service Relation Model presented in this chapter should
be considered a ”minimal” set. The modeling capabilities of the model could
be broadened by adding additional concepts. An obvious extension would be to
incorporate the notion of hierarchy into the Service Relation Model. A hierar-
chy concept would allow the designer to create new components using existent
components. As was mentioned in the introduction, hierarchy can be used to
keep complexity in check. Another interesting extension, related to hierarchy,
is embedding relations. Some service exchange relations models a form of em-
bedding where one of two connected component can be said to be embedded
within the other. The most notable example of this is the Processor/SWE service
exchange relation between processors and software entities. From a modeling
point of view, it may be more intuitive to represent such relations by means of
embedding (e.g. boxes inside other boxes).

The Service Relation Model can only be used to model designs with a static
topology. This means that it cannot be used to analyze designs that employs run-
time re-configuration. It may be possible to extend the concepts of the Service
Relation Model to also handle dynamic topologies. This, however, has not been
explored much in this project and is left for future work.

Another potential shortcoming of the model had to do with the justification
of service/interface aggregation. An import relation between an interfaces and
a service states that all services available at the interfaces are also available at
the service. In some cases, however, only a subset of the services available at
an interface can be aggregated by a service. The platform of figure 2.10 illus-
trates this. The platform consists of two processors, two buses, two memories,
a peripheral and a bus-to-bus bridge. The bridge is used to mount part of the
address space of slave bus (bus1) to the address space of the master bus (bus0).
A possible organization of the address spaces of the two buses is shown in figure
2.10. Part of the address space of bus0 is used for mounting part of the address
space of bus1. Notice that the address range of the peripheral in the address
space of bus1 is only partially mapped through the bridge to bus0 meaning that
some addresses of the peripheral cannot be accessed from bus0.

In these cases, an import relation cannot be justified as it may cause the ser-
vice availablity analysis information to be incorrect because services accessible
through the low address range of peripheral1 will be considered available at the
processor even though these services cannot be accessed through the bridge. In
order to avoid invalidating the analysis information, the import relation must
necessarily be removed. This, however, means that the analysis becomes inac-
curate albeit not invalid.

The obvious solution to this problem is to allow for import relations to model
aggregation of some services rather than all. One way to accomplish is to
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Figure 2.10 – Simple platform using a bus-to-bus bridge to map part of the address
space of one bus onto the address space of the other.

associate all instances of the three relation types (import, export and service
exchange relations) with a service transformation function that can be used to
moderate which services are allowed to flow through the relation. In order for
a transformation function to make a decision about whether or not a particular
service should be allowed to flow through it, it must know something about
the service. Exactly what kind of information is required to make this decision
depends on what the relation represents.



CHAPTER 3

Consistency Checking

In a component-based design approach, a platform is constructed by selecting,
configuring and connecting components from a library of existing components.
A platform can consist of both hardware (e.g. processors, memories, inter-
connects and peripherals) and software (e.g. operating systems, middleware)
components. The resulting high-level description of the platform can be fed to
tools used for estimating its performance in regards to an application and/or to
synthesis tools to obtain an implementation at a lower level of abstraction. Both
performance estimation and synthesis can be quite slow and must be restarted
if an error is detected in the design. In order for the designer to remain pro-
ductive, it is imperative that errors are detected as early as possibly – preferably
at design time. A common way to accomplish this is by means of consistency
checking where one or more properties of the design are statically tested on the
basis of the high-level description.

In this chapter, we introduce a set of additional concepts to the basic Service
Relation Model presented in the previous chapter. Together these concepts can
be used for checking the consistency of a platform or a system with respect to
service and resource availablity.
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3.1 Service Classes and Hierarchies

Using the analysis procedure presented in the previous chapter, we are able to
determine the sets of services available at different points of interest in a design.
In order for this information to be useful, we need a way to attach meaning to
these services. This is achieved by means of the service class concept presented
in this section.

A service class is an abstract representation of a set of services that can be
considered to be similar in some way. If we know that a given service belongs
to a given service class we may infer something about the service. For example,
if we know that a service s is a member of the service class SCMemoryService

we may infer that s can be used to access memory because we assume this to be
the case for all members of the SCMemoryService service class. When we say
that a service class is an abstract representation of a set of services it means that
the class exists independently of any members it may have in some model. In
the Service Relation Model, service classes are shared between the library and
model domains but it is only makes sense to talk about the individual members
of a service class in the context of a specific model.

The concept of service classes provide the means for analysis tools to reason
about the services of a model without the specific (implementation) details of
each service. This allows for the construction of tools with the property of being
independent of the component templates available at any given time and thus
designs upon which it operates. An example of such a tool will be presented
later in chapter 4. Service classes can also be used by components to reference
services provided by other components without having to explicitly name them.
If a component c0 includes a reference to a specific service of another component
c1 then c0 will be come tightly coupled with c1. This would be unfortunate
because it would never be possible to replace c1 with another, possibly more
efficient, component c2 even though it was functionally equivalent to c1. Also,
since components in the Service Relation Model are based on templates defined
independently of any actual models it is not possible to reference a service of
another component and, consequently, the indirection provided by the service
class concept is needed to enable inter-component referencing of services.

It is important to note that the meaning of a service class is not captured
by the Service Relation Model. Instead, information about what a given service
class represents must be shared between component and tool designers by other
means.
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l i b r a r y {
namespace platform {

s e r v i c e c l a s s SCMult;
s e r v i c e c l a s s SCTCMult : SCMult; /* two ’s complement multiplication */
s e r v i c e c l a s s SCFPMult : SCMult; /* floating point multiplication */

}
}

Listing 3.1 – Declaration of service classes.

3.1.1 Hierarchies

In the Service Relation Model, the declaration of a service class belongs to the
library domain. A service class is allowed to have other service classes as mem-
bers in addition to the services of a concrete model and all service classes are
implicitly assumed to be member of the general SCService service class. In the
sSRM language such subsumption relations between service classes are a part of
the declaration.

Example 3.1 Services representing operations on numbers can be organized
into service classes. Three such classes could be SCPow representing services for
computing the power function, SCSub representing services for doing subtrac-
tion and SCMult representing services for doing multiplication. Each of these
classes could be decomposed into other classes representing operations on dif-
ferent types of numbers (e.g. two’s complement integers, floating point reals
and so on). Listing 3.1 shows how the SCMult service class and two other
sub-classes representing multiplication of two’s complement and floating point
numbers is declared in the Service Relation Model. �

A service in the library domain can be declared to be a member of one of
more service classes. Any instances of the service in a model will be considered
a member of those service classes. All services are implicitly a member of the
service class SCService.

Example 3.2 Listing 3.2 shows a revisited description of the FPU component
used in the examples of sections 2.1.1 and 2.1.2 where the individual services
have been declared as members of different service classes. �

The service classes of a library are naturally organized into a hierarchy called
a service class hierarchy. Similarly, the service classes of a library and the services
in a model based on the library are naturally organized into a hierarchy called
a service hierarchy.
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l i b r a r y {
namespace platform {

template FPU {
i n t e r f a c e Processor : o b j (CoProcToProc );
s e r v i c e FpAdd : SCFPAdd { e x p o r t (Processor ); }
s e r v i c e FpDiv : SCFPDiv { e x p o r t (Processor ); }
...
s e r v i c e FpMult : SCFPMult { e x p o r t (Processor ); }

}
}

}

Listing 3.2 – Declaration of service class membership.

SCService

SCSub SCMult

SCFPSubSCTCSub SCFPMult

FPU0.FPSub FPU1.FPSub FPU0.FPMult FPU1.FPMult

Service hierarchy

Service class hierarchy

SCAdd

SCFPAdd

FPU1.FPAddprocessor0.
Execution

processor1.
Execution

FPU0.FPAdd

SCTCAdd

processor0.
Execution

processor1.
Execution

processor1.
Execution

processor0.
Execution

SCTCMult

Figure 3.1 – Service Hierarchies. The figure shows parts of the service class hierar-
chy and the service hierarchy for the example of section 2.1.2. Gray nodes represent
service classes in the library and white nodes services in the model.

Definition 3.0 (Service Class, sc`) A service class sc` is a singleton 〈P〉 where
P ⊂ SC` is a set of super-classes of sc`. The set SC` of all service classes in a
library is ordered as follows:

∀sc`0, sc`1 ∈ SC` : (sc`0 v sc`1)↔ (sc`1 ∈ sc`0.P)

∀sc`0, sc`1, sc`2 ∈ SC` : ((sc`0 v sc`1) ∧ (sc`1 v sc`2))→ (sc`0 v sc`2)

The operator v naturally imposes a hierarchy on the service classes. This hier-
archy is called the service class hierarchy. �

A service class hierarchy is specific to a library but is shared for all designs
based on that library. Notice that the service class hierarchy does not include
the services of the library. Recall that a service in a library is part of a template
and thus represents a possibly empty set of service instances in a given model.
A service in the library must, however, be associated with one or more service
classes meaning that instances based on the service belongs to the associated
service classes. Formally, we define a service in the library domain as:
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Definition 3.1 (Service, s`) A service s` is a pair s` =
〈
o`,SC`

〉
where o` is the

parent option of the service and SC` is the set of super classes of all instances
s0, s1, ..., sn of s` in any model. �

This leads to the following definition of a service in the model domain:

Definition 3.2 (Service, s) A service s is a pair s = 〈c,SC〉 where c is the parent
component and SC is the set of super classes to which s belongs. �

For a model m = 〈C,R〉, the services of m and the service class hierarchy of
the associated library ` are combined into a hierarchy called the service hierar-
chy. Figure 3.1 illustrates the relationship between the service class hierarchy
of a library and the service hierarchy of a model.

Definition 3.3 (Service Class, sc) A service class sc in the model domain is
a pair sc =

〈
sc`,S

〉
where sc` is the corresponding service class in the library

domain and S = {s0, s1, . . . , sn} is the set of service instances in the model which
belongs to the service class. �

Service classes is a simple yet powerful way of assigning meaning to services
but it has its limitations and problems. One problem is that the meaning of a
service class is not captured formally. In practice, this will lead to misunder-
standings showing up as errors for the end user. A more formal approach to
describing the meaning of service classes can, however, always be added later.
A limitation is that a service must explicitly be declared to be a member of a
service class. This means that we cannot later add new classes and then infer
membership of services using the existing assertions or other knowledge.

3.2 Assertions

Many components naturally have dependencies, in the form of services that
must be accessible to them, in order for them to function properly. Such depen-
dencies are captured by means of assertions. A component can be associated
with one or more assertions. An assertion is an expression that must evaluate
to the truth value true in order for the use of the component to be considered
valid.
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Exprα := e0 and e1
| e0 or e1
| e0 implies e1
| not e0
| sc @ i
| sc @ s

Figure 3.2 – Abstract syntax of alpha expressions. Here e0, e1 ∈ Exprα are sub-
expressions, sc ∈ SC a service class, s ∈ S a service and i ∈ I an interface

Evalα : Exprα × (S ∪ I→ P(S))→ {true, false}

Evalα(e0 and e1,SAm) = Evalα(e0,SAm) ∧ Evalα(e1,SAm)

Evalα(e0 or e1,SAm) = Evalα(e0,SAm) ∨ Evalα(e1,SAm)

Evalα(e0 implies e1,SAm) = Evalα(e0,SAm)→ Evalα(e1,SAm)

Evalα(not e0,SAm) = ¬ Evalα(e0,SAm)

Evalα(sc @ i,SAm) = sc.S ∪ SAm[i] , ∅

Evalα(sc @ s,SAm) = sc.S ∪ SAm[s] , ∅

Table 3.1 – Evaluation of alpha expressions defined as a function taking as input
an expression and the service availablity information (SAm) of the model. Here
e0, e1 ∈ Exprα, s ∈ S, i ∈ I and sc ∈ SC.

3.2.1 Assertions in Models

Definition 3.4 (Assertion, a) An assertion a is a pair a = 〈c, e〉 where c ∈ C is
the parent component to which the assertion belongs in the model m = 〈C,R〉
and e ∈ Exprα is an alpha expression. Figure 3.2 shows the BNF for alpha
expressions. �

The meaning of an alpha expression is defined by means of the recursive
evaluation function Evalα given in Table 3.1. The function takes as argument an
alpha expression and the map representing the service availablity information
of the associated model. The output of the function is the validity (true or false)
of the expression and thus the parent assertion with respect to that model.

As can be seen, the meaning of the four logical operators are the usual. The
@-expression is used to test for the availablity of a member of a given service
class at some point of interest within the component. A point of interest can
be any service or interface in the component to which the assertion belongs.
The @-expression can only be used to test if a member of a given service class
is available – it cannot be used to test for the availablity of a specific service
instance which would lead to tight coupling.
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model quadric {
component discriminant {

i n t e r f a c e context : sub( ContextToCaller );
i n t e r f a c e processor : sub( ProcessorToSwe );

a s s e r t (
(SCExecution @ processor)

and (SCFPSub @ processor)
and (SCFPMul @ processor)
and (SCFPPow @ context)
and ( SCPNReadChannel @ context)
and ( SCPNWriteChannel @ context)

);
}

}

Listing 3.3 – sSRM description of the discriminant component from the example of
section 2.1.2.

Example 3.3 As an example consider the discriminant component of example
from section 2.1.2. This component has several dependencies that must be
satisfied in order for the component to be able to function properly. Listing
3.3 shows an sSRM description of the discriminant component that includes an
assertion for enforcing these dependencies. Here we assume that the three
services FPPow, FPSub and FPMul have been declared to be members of the
service classes SCFPPow, SCFPSub and SCFPMul respectivily. Similarly, we also
assume that the Execution service of the processor has been declared to be a
member of the SCExecution service class and that the write and read services
of the process network API component have been declared to be members of
the service classes SCPNReadChannel and SCPNWriteChannel. �

Assertions is a simple concept but should be applied with some care. Just be-
cause a service is available at some point of interest it does not necessarily mean
that it is also free for use. Some services cannot necessarily be shared between
several users. An example of such a service is a monolithic service representing
the capabilities of a timer. When this service is used by one component it cannot
simultaneously be used by another. This is so because the timer represented by
the service is a limited resource that can only be used to count one thing at a
time. Resource handling in the Service Relation Model will be presented in the
next section.

3.2.2 Assertions in the Library

In this section, the difference between assertions in the library domain and as-
sertions in the model domain and the design expansion process for assertions
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Expr`α := e`0 and` e`1
| e`0 or` e`1
| e`0 implies` e`1
| not` e`0
| sc` @` i`

| sc` @` s`

Figure 3.3 – Alpha expressions BNF. Here e`0, e
`
1 ∈ Expr`α, sc` ∈ SC`, s` ∈ S` and i` ∈ I`

will be explained. In the library domain, an assertions is defined as:

Definition 3.5 (Assertion, a`) An assertion a` is a pair a` =
〈
o`, e

〉
where o` ∈ O`

is the parent option in the library to which the assertion belongs and e ∈ Expr`α
is an alpha library expression. �

The abstract syntax of alpha expression in the library domain is given in
figure 3.3. Syntactically there is little difference between alpha expression in
the model and in the library. Semantically, however, there is a major difference
due to the fact that entities of the library domain refer to classes where as
entities in the model domain refers to instances. The difference lies in how the
@-expression is interpreted when the point of interest is a service or interface
defined in another option than the one the assertion belongs to. In this case,
the meaning of the @-expression is taken to be the conjunction of the availablity
test for each included option. Table 3.2 gives a definition of a function A`→m
defining how an alpha expression Expr`α of a particular option and component
is expanded into an alpha expression Exprα in the model domain.

Example 3.4 Listing 3.4 shows a model containing a single component. The
component is based on a template that contains an interface i1, an option o and
an assertion. The assertion contains a reference to an interface i2 contained
within the option. The component of the model includes the option o twice.
In the model, the second @-expression of the assertion in the library has been
replaced by a conjunction of @-expressions requiring an instance of the service
class SCSomeOtherClass to be accessible at both interface o1.i2 and o2.i2. �

3.3 Resources and Resource Claims

In this section, the concepts of resources and resource claims are presented. Col-
lectively, these two concepts provides the means to deal with services (called
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l i b r a r y {
namespace ns {

...
template t {

i n t e r f a c e i1 : sub(SomeRelation );
o p t i o n o { i n t e r f a c e i2 : sub(SomeRelation ); }
a s s e r t (

(SCSomeClass @ i1) or ( SCSomeOtherClass @ o.i2)
);

}
}

}

d e s i g n MyDesign {
component c : ns.t {

i n c l u d e o1 : o;
i n c l u d e o2 : o;

}
}

model MyDesign {
component c {

i n t e r f a c e i1 : sub(SomeRelation );
i n t e r f a c e o1.i2 : sub(SomeRelation );
i n t e r f a c e o2.i2 : sub(SomeRelation );
a s s e r t (

(SCSomeClass @ i1)
or (( SCSomeOtherClass @ o1.i2) and ( SCSomeOtherClass @ o2.i2))

);
}

}

Listing 3.4 – Assertion in the library

resources) that are characterized by being available only in finite quantities.
The example below illustrates two of the central problems addressed by the
concepts presented in this section.

Example 3.5 Figure 3.4 shows a graphical representation of a service relation
model representing a simple dual processor platform. Both processors are run-
ning an instance of an operating system (OS0 and OS1). In order to provide time
sliced multi-processing, each of the operating systems requires exclusive access
to a timer resource. The platform provides two timer/counters that can be used
for this purpose. In the model, a timer is represented as a component providing
a start and a stop service. The start service is declared to be a member of the
service class SCTimerStart and the stop service is declared to be a member of
the SCTimerStop service class.

In the model, the dependency of an operating system component on a timer
is modelled using an assertion. The assertion states that an instance of the
SCTimerStart and SCTimerStop services should be available at the proces-
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assert(

      (SCTimerStart @ processor) 

  and (SCTimerStop @ processor)

);

assert(

      (SCTimerStart @ processor) 

  and (SCTimerStop @ processor)

);

Figure 3.4 – Service relation model of a platform including two timer/counters and
two operating systems

sor interface of the operating system component. The model is consistent with
respect to assertions because both assertions are true. A problem with the as-
sertions, however, is that they cannot be used to claim exclusive access and, as
a consequence, a single timer/counter can be used to satisfy an infinite number
of timer requirements. This means that the model of Figure 3.4 will still be
consistent with respect to assertions if one of the timer/counters are removed.

The platform of Figure 3.4 has two points of contacts where the platform
may interface with an upper layer of software. The capabilities of the platform
with respect to the two points-of-contact can be determined by computing the
sets of services available at the unconnected swe interfaces of the two proces-
sors. Both sets will contain the services provided by the two timer/counters
despite the fact that these are in fact used internally by the platform. �

The underlying problem is that services are considered to be available in
infinite quantities and that no concept of ”exclusive access” to a service exists.
These two shortcomings of the basic Service Relation Model are addressed by
introducing the concepts of resources and resource claims. A resource repre-
sents an entity that is only available in a limited quantity through one or more
services. A key feature of the resource concept is that it integrates seamlessly
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with the existing concepts so that our understanding of the existing concepts
in general and the concept of service flow in particular is not affected. The
concept of a resource claim acts as a replacement for the concept of assertions
when dealing with resources. A resource claim can be used by a component to
declare that it requires exclusive access to a resource.

3.3.1 Resources

Resources are modeled using the concepts of resources which are logically asso-
ciated with the inner workings of components like service. A resource is a dec-
laration of some amount of resource being provided by a component through
its services. In the sSRM language, the syntax for declaring a resource is:

resource <name> : <ResourceClass> {

quantity = <Integer>;

export (<ServiceList>);

}

As can be seen, the declaration consists of a name, a resource class, a quantity
and a list of services. The name is used to identify to the resource in interac-
tions with the user. Like services, resources are organized in a resource class
hierarchy. The purpose of this hierarchy is similar to that of the service class
hierarchy: to assign meaning to resources and enable referencing of resources
between components without imposing tight coupling. A resource is associ-
ated with a quantity, an integer, representing the amount of resource available.
Access to a resource is governed by one or more services. This means that a
resource cannot be exported to interfaces directly – all resources are accessed
through services. A resource is not itself a service although it shares many sim-
ilarities with services. This is done to separate the concept of resources from
that of services computationally. If we had adopted the view that a service is
a resource then it would not be possible to do the service availability analysis
without taking resources into account. Also, many resources cannot be repre-
sented by a single service. For example, a timer cannot be considered a service
unless we want to merge all of its provided capabilities (i.e. start, stop, reset)
into a single service. Note that a resource can only be made available through
services belonging to the same component as the resource.

Example 3.6 Figure 3.5 shows an example of an 8k byte bus-mounted mem-
ory component modelled using a resource. The component consists of an inter-
face, a service and a resource. The resource provides 8192 quantities (bytes) of
a resource belonging to the RCMemory resource. The resource is made accessible
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model m {
component memory {

i n t e r f a c e bus : o b j (BusSlaveToBus );
s e r v i c e memoryservice : SCMemoryService {

e x p o r t bus;
}
r e s o u r c e memory_resource : RCMemory {

q u a n t i t y = 8192;
e x p o r t memoryservice ;;

}
}

}

bus : 

BusSlaveToBus

MemoryService : 

SCMemoryService

M
e
m
o
ry

MemoryResource : 

RCMemory

Figure 3.5 – A bus-mounted memory component modelled using a resource. Left:
sSRM description in the model domain. Right: Graphical representation.

through the memory service meaning that if other components can access the
memory service they may also access the resource. �

3.3.1.1 Resource Availablity

Like services, we can talk about the availablity of a resource. A resource is said
to be available at some point x, that can be either a service or an interface, if
there exists a path from any of the services that the resource is exported through
to x in the service flow graph.

Definition 3.6 (Resource Availability Information, RA) Let I∗ be the set of
interfaces, S∗ the set of services and RES∗ the set of resources in a model m. The
set of services and interfaces x ∈ I∗ ∪ S∗ where a resource res ∈ RES∗ is available
is called the resource availablity information of res and is defined as:⋃

s ∈ res.S

AA[s]

where AA is the availablity-at information of m. The resource availablity infor-
mation of the model m is a map:

RA : RES∗ → P(I∗ ∪ S∗)

mapping resources to their resource availablity information. �

Notice that a resource may be available through different services at different lo-
cations in a model. A resource representing a hardware FIFO exported through
two services representing reading and writing the content of the FIFO, for ex-
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ample, may only be available through one of the two services in some parts of
a model and through the other in other parts.

3.3.2 Resource Claims

The concept of a resource claim is used to declare that a component requires
exclusive access to some amount of resource in order for it to function properly.
Exclusive access means that some quantity of resource can at most be claimed by
one resource claim. Below, the syntax for a resource claim in the sSRM language
is given:

claim <name> : <ResourceClass> {

quantity = <Integer> ;

mp = <Multiplicity> ;

where <Exprω> ;

}

The structure of the claim is somewhat similar to that of a resource. Claims are
associated with a name to help identifying them when interacting with the user.
The resource class associated with a claim specifies the set of resources that
may satisfy the claim. For example, a claim associated with the resource class
RCMemory can only be satisfied by resources belonging to this class. A resource
claim can claim multiple units of resource. The number of resource units needed
is called the quantity of the claim. Besides the name, resource class association
and the quantity, a claim also consist of a multiplicity flag and a where expression.
The multiplicity flag is used to specify whether the claim can be satisfied by
multiple (different) resources (multiplicity = ”many”) or must be satisfied by
exactly one resource (multiplicity = ”one”). A component requiring memory,
for example, could set the multiplicity flag to ”one” stating that the quantity of
memory claimed must be provided by the same resource. For claims where the
quantity is 1 there is no difference between the two kinds of multiplicity as 1
quantity of resource is the smallest unit that can be considered. Together with
the resource class, the where expression is used to impose constraints on the
resources that may satisfy the claim. Table 3.6 shows the abstract syntax for
such expressions.

The where expression acts as a function for filtering out resources on the
basis of the service availablity information of the model and on the values of any
parameters associated with the classes of resource being claimed. The latter,
parameterized resources, will be presented momentarily. The evaluation of a
where expression can be thought of as a function:

Ωe : Exprω × RES × (S × I→ P(S))→ {true, false}
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Exprω := e0 + e1 | e0 - e1 | e0 * e1 | e0 / e1 | -e
| e0 > e1 | e0 >= e1 | e0 < e1 | e0 <= e1 | e0 = e1 | e0 != e1
| e0 and e1 | e0 or e1 | e0 implies e1 | not e0
| constant | resource_parameter

| sc @ s | sc @ i
| ->(sc @ s) | ->(sc @ i)

Figure 3.6 – Abstract syntax for where expressions in the model domain

model m {
component SoftwareComponent {

i n t e r f a c e processor : sub(ProcessorToSwe );
c l a i m memory : RCMemory {

q u a n t i t y = 1200;
mp = one;
where ->(SCMemoryService @ processor );

}
}

}

processor : 

Processor/SWE

S
.C
.

Figure 3.7 – A software component requiring 1200 bytes memory modelled using
a resource claim. There is no graphical representation associated with claims.

taking as input the expression, a resource and the service availablity informa-
tion of the model and returning true or false depending on whether or not the
resource is a possible candidate for satisfying the claim. The definition of the
Ωe function is, with the exception of the expressions on the last line, trivial
and can be found in appendix B. The two expressions in the last line are called
is-available-through expressions and are used to constrain the resources being
considered using the service flow of the model. The is-available-through ex-
pression ->(sc @ x) evaluates to true if the resource is available through an
instance of the service class sc at some point of interest x in the component of
the claim. Formally, the value of an is-available-through expression ->(sc @ x)
can be expressed as

RA[res] ∩ sc.S ∩ SA[x] , ∅

where RA is the resource availability information and SA the service availability
information of the model.

Example 3.7 Figure 3.7 shows an example of a software component requir-
ing memory. The component is modelled using a resource claim, claiming
1200 quantities of the RCMemory resource. The where expression constrains
the resources under considerations to those available through an instance of
the SCMemoryService class at the processor interface of the component. No-
tice also that resource claims does not have a graphical representation in the
graphical notation. �
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claim TimerReq : RCTimerResource {

  quantity = 1;

  mp = one;

  where ->(SCTimerStart @ processor)

    and ->(SCTimerStop @ processor);

}
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claim TimerReq : RCTimerResource {

  quantity = 1;

  mp = one;

  where ->(SCTimerStart @ processor)

    and ->(SCTimerStop @ processor);

}

Figure 3.8 – Revisited model of the platform from Figure 3.4 using resources and
resource claims.

Example 3.8 Figure 3.8 shows a revisited model of the platform used to mo-
tivate the need for resources and resource claims presented previously. In the
model of Figure 3.8, the two timer/counters are modelled by means of resources
belonging to the resource class RCTimerResource. The resources are made ac-
cessible for the rest of the system through the start and stop services. The de-
pendency of an operating system on a timer is modelled by means of a resource
claim instead of an assertion.

In practice, requiring that a given timer resource is available through some
set of services is not sufficient to properly model the dependency of an operat-
ing system on a timer. In addition to requiring access to a set of timer services,
an operating system will also require that the timer is connected to the inter-
rupt sub-system of the processor allowing for the timer to generate the periodic
interrupts used for driving time-sliced multiprocessing. Unfortunately, this re-
quirement cannot be expressed using a resource claim. This shortcoming will
be discussed in more detail later in section 3.3.6. �



3.3 Resources and Resource Claims 71

l i b r a r y {
namespace MyLibrary {

r e s o u r c e c l a s s RCQueue <Depth , Size > : RCResource;
...

template MyComponentTemplate {
...
r e s o u r c e MyQueueResource : RCQueue <10,10> {

q u a n t i t y = 1; ’
e x p o r t (out_if );

}
}

template MyOtherComponentTemplate {
...
c l a i m MyClaim : RCQueue <Depth ,Size > {

q u a n t i t y = 1;
mp = one;
where Depth > 10 and Size == 10 and ->(SCEnqueue @ in_if );

}
}

}
}

Listing 3.5 – Example of the use of parameterized resource classes

3.3.3 Parameterized Resources and Resource Classes

As previously mentioned, resource classes are used to assign meaning to the
resources of a model and as a way to enable referencing of resource between
components without imposing tight coupling. Resource classes differs from ser-
vice classes in that they can be parameterized. A parameterized resource class
is an abstraction of a set of similar resources associated with a set of integer
parameters that must be defined for each resource declaring its membership of
the class. The values of the parameters associated with a resource class can
be referenced from within the where expressions of claims. The next example
illustrates the use of parameters with resource classes.

Example 3.9 Listing 3.5 shows an example of the use of parameterized re-
source classes. The parameterized resource class RCQueue<Depth,Size> is used
for representing queue resources and has two parameters named Depth and
Size. The Depth parameter specifies the minimum number of messages that
a particular queue can facilitate and Size the maximum size of each message
(in bytes). The component MyComponentTemplate provides a resource belong-
ing to the parameterized resource class RCQueue<Depth,Size> with Depth =
10 and Size = 10 meaning that it can contain a maximum of 10 messages of
10 bytes each. Finally, the component MyOtherComponentTemplate contains a
claim for resources of type RCQueue<Depth,Size>. The where expression limits
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RCQueue<D,S>

RCResource

RCMemory

Queue0.QueueResource
D = 10, S = 16

Mem0.MemoryResource

Resource hierarchy

Resource class hierarchy

Queue1.QueueResource
D = 4, S = 16

Queue2.QueueResource
D = 256, S = 1024

Mem1.MemoryResource

Figure 3.9 – Resource class hierarchy/resource hierarchy example.

the usable resources to those that has a minimum depth and size of 10 and are
available through an instance of the SCEnqueue service class. �

The example is given in the library domain because the resource class decla-
rations naturally belongs to this domain. Formally, a resource class in the library
domain is defined as:

Definition 3.7 (Resource Class, rc`, RC`) A resource class rc` is a pair 〈RP,P〉
where RP = {rp0, rp1, . . . , rpn} is a possibly empty set of resource parameters and
P ⊂ RC` is a set of super-classes of rc`. The set RC` of all resource classes in the
library is ordered as follows:

∀rc`0, rc`1 ∈ RC` : (rc`0 v rc`1)↔ (rc`1 ∈ rc`0.P)

∀rc`0, rc`1, rc`2 ∈ RC` : ((rc`0 v rc`1) ∧ (rc`1 v rc`2))→ (sc`0 v sc`2)

The operator v naturally imposes a hierarchy on the resources classes. This
hierarchy is called the resource class hierarchy. �

A resource class rc` = 〈RP,P〉 where RP , ∅ is refered to as a parameterized
resource class where as a class where RP = ∅ is refered to simply as a resource
class. In the model domain, a resource class is defined as:

Definition 3.8 (Resource Class, rc, RC) A resource class rc in the model do-
main is a pair rc =

〈
rc`,RES

〉
where rc` is the corresponding resource class of

the library and RES = {res0, res1, . . . resn} is the set of resources in a given model
that provides an instance of the rc` resource class. �

As was the case with service classes, the resource classes of a library are
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organized into a resource class hierarchy similar to the service class hierarchy
and the resource classes of a library and the resources of a model m can also
be ordered into a resource hierarchy. Figure 3.9 illustrates the relationship be-
tween the two hierarchies for a model containing three queue resources and
two memory resources.

3.3.4 Resources & Resource Claims in Models

Formally, the concepts of a resource and a resource claim in the model domain
is defined as:

Definition 3.9 (Resource, res, RES) A resource is a quadruple res =〈
rc`,RPv, q,S

〉
where rc` ∈ RC` is the resource class, PRv is a set of resource

parameter values, q ∈ N is the quantity of resource being provided and S is the
set of services through which the resource is accessible. A resource parameter
value rpv ∈ RPv is a pair rpv =

〈
rp`, val

〉
where rp` ∈ rc`.RP is a resource param-

eter of the resource class associated with the resource and val ∈ Z is the value
of the resource parameter for the resource. For a resource res =

〈
rc`,RPv, q,S

〉
the following is always true:

∀rp ∈ rc`.RP :
(
∃rpv ∈ RPv :

(
rpv.rp` = rp

))
∧

∀rpv, rp′v ∈ RPv × RPv :
(
rpv.rp` = rp′v.rp` ⇒ rpv = rp′v

)
meaning that a resource must provide exactly one value for each of the resource
parameters defined in the associated resource class. �

Definition 3.10 (Claim, cl, CL) A claim is a quadruple cl =
〈
mp, rc`, q, ω

〉
where

mp ∈ {one,many} is the multiplicity of the claim, rc` is the resource class being
claimed, q ∈ N the quantity of resource being claimed and ω ∈ Exprω is an
expression that must evaluate to true for a given resource res in order for res to
be able to satisfy the claim. �

3.3.4.1 Resource Distribution

Notice that neither of the two concepts can be used to describe a particular dis-
tribution of resources to resource claims. The reason for this is that the purpose
of the Service Relation Model is to provide the foundations for determining such
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Expr`ω := e0 + e1 | e0 - e1 | e0 * e1 | e0 / e1 | -e
| e0 > e1 | e0 >= e1 | e0 < e1 | e0 <= e1 | e0 = e1 | e0 != e1
| e0 and e1 | e0 or e1 | e0 implies e1 | not e0
| constant | resource_parameter | parameter

| sc @ s | sc @ i
| ->(sc @ s) | ->(sc @ i)

Figure 3.10 – Abstract syntax for where expressions in the library domain. The
only difference between the where expressions of the model domain and the library
domain is that parameters can be referenced in the library domain. In the model
domain, all parameters are replaced by their constant values.

distributions rather than representing them. Conceptually, however, the distri-
bution of a resource with quantity q ∈ N amongst n different parties can intu-
itively be be presented as a set of n non-overlapping intervals, called resource
shares:

Definition 3.11 (Resource Share, rs, RS) A resource share rs is an integer
interval rs = [rsl, rsu] where rsl ∈ N is the lower bound and rsu ∈ N the upper
bound. �

The concept of resource shares is not part of the Service Relation Model but is
used by the tool presented in the next chapter.

3.3.5 Configurability

In this section, the concepts of resources and resource classes in the library and
design domains will be presented. In the model, the quantities associated with
resources and claims are modelled as a constant integer which does not pro-
vide much flexibility and, consequently, hinders re-usability. In many cases, the
quantity of resource provided or claimed by a component is naturally depen-
dent on the configuration of the component. For example, the number of byte
resources provided by a memory component is dependent on the size of the
memory – a property that may be configurable. To enable such dependencies,
we introduce the concepts of parameters and quantity expressions.

3.3.5.1 Parameters & Quantity Expressions

Intuitively, a parameter is a constant associated with a component template
whose exact value is defined as part of the component instantiation process.
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In the template, the name of the parameter can be used in place of a constant
value. The use of parameters is not limited to quantities and may also be used
in where expressions and for defining the value of resource parameters. To
formally enable the use of parameters the concepts used in the model domain
are replaced by so called quantity expressions in the library domain. Figure
3.11 shows the abstract syntax for such expressions. In addition to allowing
the use of parameter values, quantity expressions also allows for some degree
of computation to be carried out which adds an extra dimension of flexibility
to the descriptions. Similarly, the syntax for the where expressions used in the
model domain is replaced by another and very similar syntax (given in Figure
3.10) that allows parameters to be referenced by name. The next example
illustrates the different uses of parameters:

Example 3.10 The code in listing 3.6 shows a simple example of the different
uses of parameters.

The library of the example contains two component templates called Queue-

Provider and QueueConsumer. The QueueProvider template contains a re-
source of the type RCQueue<Depth,Size> that has been parameterized so that
the quantity of resource being provided (i.e. number of queues) and the values
of the two resource class parameters are configurable by means of three parame-
ters pDepth, pSize and pQueuesProvided. The QueueConsumer component con-
tains a resource claim on the parameterized resource class RCQueue<Depth,Size>.
The component has been made configurable by means of three parameters
pDepth, pSize and pQueuesNeeded. The parameters pDepth and pSize are
used inside the where expression of the resource claim for constraining the re-
sources that may satisfy the claim and the parameter pQueuesNeeded is used for
defining the quantity of resource claimed.

Besides the library, the example also include a design including two compo-
nent instances based on the templates of the library. The values of the parame-
ters are defined as part of the component instantiation. �

Conceptually, a parameter is associated with a type. For simplicity, we only
consider parameters of type integer. The reason for this is that only integer
parameters are currently supported by the xSRM language and that it is straight-
forward to encode boolean and enumerable types using integers. Additional
types can easily be added if needed.

In the library domain, a parameter is a symbol associated with an option
representing an unspecified value:
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l i b r a r y {
namespace MyLibrary {

...
template QueueProvider {

parameter pDepth;
parameter pSize;
parameter pQueuesProvided;

i n t e r f a c e out_if : o b j (...);

s e r v i c e Enqueue : SCEnqueue { e x p o r t (out_if ); }
s e r v i c e Dequeue : SCSequeue { e x p o r t (out_if ); }

r e s o u r c e res : RCQueue <pDepth ,pSize > {
q u a n t i t y = pQueuesNeeded;
e x p o r t (Enqueue , Dequeue );

}
}

template QueueConsumer {
parameter pQueuesNeeded;
parameter pMinDepth;
parameter pMinSize;

i n t e r f a c e in_if : sub (...);

c l a i m cl : RCQueue <D,S> {
q u a n t i t y = pQueuesNeeded;
where ->(SCEnqueue @ i) and ->(SCDequeue @ i)

and (D >= pMinDepth) and (S >= pMinSize );
}

}
}

}

d e s i g n m {
...
component provider : MyLibrary. QueueProvider {

s e t pDepth = 10; s e t pSize = 16; s e t pQueuesProvided = 2;
}
component consumer : MyLibrary. QueueConsumer {

s e t pMinDepth = 2; pMinSize = 10; s e t pQueuesNeeded = 1;
}

}

Listing 3.6 – Example of the different uses of parameters.

Exprqty := e0 + e1 | e0 - e1 | e0 * e1 | e0 / e1 | -e
| e0 > e1 | e0 >= e1 | e0 < e1 | e0 <= e1 | e0 = e1 | e0 != e1
| e0 and e1 | e0 or e1 | e0 implies e1 | not e0
| constant | parameter

Figure 3.11 – Abstract syntax of quantity expressions

Definition 3.12 (Parameter, p`) A parameter p` is a pair p` =
〈
o`, id

〉
where

o` ∈ O` is the parent option and id ∈ SYM is the symbol representing the
parameter. �
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An option creates a scope for such symbols where any given symbol can
be associated with at most one parameter. The parameters of an option is in-
tuititvily modeled as a map param : SYM → P`

⊥
where SYM is the set of all

symbols and P`
⊥

= P` ∪ ⊥ is the set of all parameters and ⊥ is used for symbols
that are not associated with any parameters.

In the design domain, the assignment of a value to a parameter is repre-
sented by means of a ”parameter assignment” concept:

Definition 3.13 (Parameter Assignment, pδa) A parameter assignment pδs is a
pair pδa =

〈
oδ, id, value

〉
where oδ ∈ Oδ is option to which the assignment belongs,

id ∈ SYM is the symbol associated with the parameter being assigned a value
and value ∈ Z is the value to assign to the parameter associated with the symbol
id. �

Every option oδ =
〈
cδ, o`

〉
included in a component cδ must assign values to

all parameters associated with the library option o`. Attempting to set the value
of a parameter that is not defined is an error.

Parameters can only be referenced from with quantity and where expres-
sions. Expressions can only reference parameters that belongs to the same op-
tion as the entity in which the expression (resource or resource claim) is con-
tained. The reason for this is that an option may be included multiple times and
the value assigned to their parameters are not necessarily the same. There is
one notable exception to this: Parameters defined in the mandatory option can
be referenced from expressions belonging to other options as long as the symbol
associated with the parameter has not been overwritten in the option.

3.3.5.2 Resources & Resource Claims

The definition of a resource in the library resembles the definition of a resource
in the model domain. The main difference between the two is that quantity
expressions are used in place of constants for defining the quantity of resource
provided and the values of resource parameters.
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Definition 3.14 (Resource, res`, RES`) A resource is a quintuple res =〈
o`, rc`,RP`v, q`,S

〉
where o ∈ O` is the parent option of the resource, rc` ∈ RC`

is the resource class, RP`v is a set of resource parameter values, q ∈ Exprqty
is an expression defining the quantity of resource being provided and S` is the
set of services through which the resource is accessible. A resource parameter
value rpv ∈ RPv is a pair rpv =

〈
rp`, val

〉
where rp` ∈ rc`.RP is a resource pa-

rameter of the resource class associated with the resource and val ∈ Exprqty is
an expression defining the the value of the resource parameter for the resource.
For a resource res =

〈
rc`,RP`v, q,S

〉
the following is always true:

∀rp ∈ rc`.RP :
(
∃rpv ∈ RPv :

(
rpv.rp` = rp

))
∧

∀rp`v,0, rp`v,1 ∈ RP`v × RP`v :
(
rp`v,0.rp` = rp`v,1.rp` ⇒ rpv,0 = rpv,1

)
meaning that a resource must provide exactly one value for each of the resource
parameters defined in the associated resource class. �

Below the definition of a resource claim in the library domain is given. The
definitions differs from the definition of a resource claim in the model domain
in that, in the model domain, a quantity expression is used in place of a constant
for defining the quantity of resource being claimed.

Definition 3.15 (Claim, cl`, CL`) A claim is a quintuple cl =
〈
o`,mp, rc`, q`, ω`

〉
where o` ∈ O` is the parent option of the claim, mp ∈ {one,many} is the mul-
tiplicity of the claim, rc` is the resource class being claimed, q ∈ Exprqty is an
expression definting the quantity of resource being claimed and ω` ∈ Expr`ω is
an expression that must evaluate to true for a given resource res in order for res
to be able to satisfy the claim. �

During design expansion quantity expressions must be evaluated to a con-
stant value. Formally, this is accomplished by means of a function:

Qexpr→Z : Exprqty × (SYM→ Z ∪ ⊥)→ Z

mapping a quantity expression and a parameter/value map into an integer
value. The definition of this function is straightforward and has been included
in appendix B for reference.
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Figure 3.12 – Model of a platform demonstrating ”callbacks”.

3.3.6 Limitations

In this section, the limitations related to assertions and resource claims that has
been discovered while working with them will be briefly discussed.

A common problem with both assertions and resource claims is that they
are tied very closely to a single component. This means that it is not possible
to declare service and/or resource dependencies for multiple components. For
example, it is not possible to state that an instance of a service class must be
accessible from two different components using assertions. As a consequence
of this, it may sometimes be necessary to model parts of a platform or an appli-
cation as a single component even though it may be more naturally modelled
using a set of components. This is, for instance, the case for models of pro-
cess networks. It seems natural to model the processes of a process network
as a set of components representing the individual processes but because the
processes share service and resource requirements we are forced to model the
entire process network as a single component.

Also, the alpha expressions of assertions and the where expressions of re-
source claims can only be used to express constraints on the service flow in
their parent component. One consequence of this is that ”callback” scenarios
cannot be expressed. The example with the two operating system requiring
exclusive access to timer resources is an example of this. Figure 3.12 shows
a model of a platform containing a timer/counter, a bus, a processor and an
operating system. In comparison with the previous examples focused on the
dependencies between operating systems and timers, this model also captures
the interrupt sub-system that associates an interrupt handler in the operating
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system with an interrupt source on the timer/counter. Looking at the model,
we may conclude that the timer resource provided by the timer/counter is an
acceptable candidate for satisfying the requirement of the operating system be-
cause the timer is accessible for the processor through the necessary services
and because the service representing the interrupt handler is available at the
interface representing the interrupt port of the timer/counter. The last require-
ment, that the interrupt handler service must be available at the interrupt port
of the timer/counter, cannot be expressed using an assertion or a resource claim
associated with the operating system component because it involves the service
flow of another component.

The obvious solution to both problems is to somehow extend the alpha and
where expressions so that they can be used to express constraints on the ser-
vice flow taking both the service flow and structure of other components into
account. Exactly what this extension will look like is an open question and has
been left for future work. It must noted that the analysis information provided
by the Service Relation Model and its associated analysis method does support
the necessary reasoning and that the shortcomings are primarily due to the lim-
ited expressibility of assertions and resource claims.

The last of the limitations that needs to be discussed has to do with the ability
of the Service Relation Model to capture a particular allocation of resources.
The presented concepts does not allow for explicitly declaring that a particular
resource claim is satisfied by a particular resource and, as a consequence, the
model is not very well suited for expressing allocations of resources to claims. A
particular allocation can be represented implicitly by placing the resources of a
model in resource classes of their own and then referring to these new classes in
the resource claims. This is obviously not a pretty solution and a better solution
would be to extend the concept of a resource claim so that the user may specify
a named resource that must satisfy a given claim as part of the instantiation of
the component containing the claim. By introducing this extension some of the
procedures presented later in this thesis must be updated accordingly. We see
no principal difficulties in doing this. The reason why this has not been done is
that we have had no imminent need for it.

3.4 The xSRM Framework

The concepts of the Service Relation Model have been implemented as part of a
proof-of-concept framework called the xSRM framework. Figure 3.13 shows an
overview of the framework. The core of the framework consists of three differ-
ent intermediate representations (or object models) for representing libraries,
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Figure 3.13 – Overview of the xSRM framework.

designs and model. The two central tasks performed by the framework is library
building and design expansion. Library building is the process of combining li-
brary entity descriptions into an actual library that can later be used by the
design expansion process. The design expansion process, previously described
in section 2.3.3, takes as input a design and a library and generates a model.
A central back-end tool is the analysis tool that is used to compute the service
availablity information of a model. This tool provides an implementation of the
alternative analysis algorithm previously described in section 2.4.

Even though the framework is presented as a process in Figure 3.13, the
different parts of the framework are in fact semi-independent and can be used
differently by different tools.

The implementation of the concepts in the xSRM framework differs slightly
from the presentation in this thesis. The most notable difference between the
two is that many of the aspects that has to do with configuration (e.g. options,
parameters, quantity expressions) are also part of the representation of models
and are not striped from the model as part of the design expansion process. This
complicates models in the framework a great deal but also allow for a tools to
more easily reason about the configurable parts of models. In chapter 5, a tool
that exploits this information is presented.

The size of the core framework is about 14k lines of code excluding com-
ponents and blank lines. A large portion of the code deals with detecting and
reporting errors. The size and complexity of some of the designs that we have
been working on makes good and precise error messages a must. In addition, a
number of tools to assist debugging have also been developed. One of the more
useful ones is a tool for dumping a service flow graph of a model as a graph us-
ing the GraphViz package and another one is a tool for dumping the information
contained in a model as a HTML page with hyper links – being able to easily
browse the information embedded within the different object representations of
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Figure 3.14 – The Xilinx EDK front-end to the xSRM framework.

the framework has been crucial for debugging purposes.

The framework itself has been written in C# for .NET 3.0. In restrospect, it
is clear that the entire project would have benefited tremendously from using
another higher-level implementation platform for doing the initial experimenta-
tion. An early attempt at implementing the Service Relation Model as a (graph-
ical) domain specific language using the DSL tools for Visual Studio [23] had to
be abandoned. The reason for this was that, at that time, the DSL tools only had
very limited support for moving data from one language to another. This was
needed to make a proper implementation of component instantiation based on
re-usable component templates. While it was definitely technically possible to
extend the basic framework of the DSL tools to support this, it quickly became
apparent that the complexity of such an extension would be well beyond the
scope of the project. An implementation based on UML or GME [61] may have
proved to be more flexible but has not been attempted.

In the following, we will briefly present a number of extensions to the core
xSRM framework that have been developed for ding experimentation.

3.4.1 The xSRM Front-end

Besides the intermediate representations and the library building an design ex-
pansion tasks, the core framework also contains two XML parsers for import-
ing library and design descriptions given in the xSRM language. As previously
mentioned, the xSRM language is an XML-based language for describing library
entities and designs that closely resembles the less verbose sSRM language used
by the examples in this thesis.
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Component Short Description
bram_block Block RAM Memory (BRAM)
fsl_v20 Fast simplex link (FSL), hardware FIFO
lmb_v10 Local memory bus (LMB)
lmb_bram_if_cntlr LMB-to-BRAM interface controller
mdm Microblaze debug module
microblaze 32-bit RISC processor core
mpmc Multi-port memory controller
plb_v46 Processor local bus (PLB)
plbv46_plbv46_bridge PLB-to-PLB bridge
xilkernel Real-time operating system
xps_bram_if_cntrl PLB/BRAM interface controller
xps_gpio General purpose IO controller
xps_intc Interrupt controller
xps_mch_enc External memory controller
xps_mutex Hardware mutex
xps_Timer Timer/counter
xps_uartlite Universal asynchronous receiver/transmitter (UART)

Table 3.3 – Components of the EDK recognized by the Xilinx EDK front-end and
characterized in the Xilinx EDK library package.

3.4.2 The Xilinx EDK Front-end

The Xilinx EDK front-end to the xSRM framework is capable of generating Ser-
vice Relation Model descriptions of hardware/software platforms created using
the EDK. An overview of the front-end is shown in Figure 3.14. The front-end
parses the MHS and MSS files of an EDK projects and produces a corresponding
design. Besides the MHS/MSS parser, the front-end also consists of a library
of descriptions of the components in the EDK. Using the xSRM framework the
design and the components of the library can be combined into a service re-
lation model. In most uses of the front-end, the design representing the EDK
platform is combined with an application of sorts before expanding the result
into a model.

Table 3.3 shows a list of the components supported by the front-end. With
the exception of the Xilkernel component, all of the components are hardware
components. The EDK contains significantly more components than are cur-
rently supported by the front-end. Most of these components, however, are quite
specialized and are not supported simply because they have not been needed.
Adding support for a new component consists of creating a description of it in
the xSRM language and adding an entry in the parser for the MHS and/or MMS
files.
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3.4.3 The YML Front-end

To support working with process networks, a front-end for importing models of
process networks given in the XML-based Y-chart modeling language (YML) has
been developed.

3.5 Consistency Checking

In this section, we will present a method for computing the consistency of a ser-
vice relation model based on the concepts previously introduced in this chapter.

A service relation model is said to be consistent if and only if 1) all assertions
are true and 2) all resource claims can be satisfied and otherwise it is said to be
inconsistent.

The method for checking the consistency of a model exploits the fact that the
concepts of resources and assertions are independent of each other to provide
a fast and inexpensive consistency check that can be integrated into compila-
tion/system generation loops without affecting the productivity of the designer
notably. The two concepts are independent in the sense that the truth the as-
sertions in a given model does not depend on the truth (i.e. satisfiability) of the
resources and vice versa and, as a consequence, we may treat them indepen-
dently of each other.

The consistency checking procedure presented is focused exclusively on de-
termining the availablity or absence of services and resources. This kind of
consistency check is by itself not enough to ensure that the platform or system
in question is free or errors and is intended to be used in combination with
other, more common, checks. Checking that each component has the necessary
services and resources available is, however, an important aspect of component-
based design that has hugely been left unaddressed in the context of component-
framework-free component models.

3.5.1 Assertion Checking

Checking that the assertions of a model are satisfied is simply a question of
evaluating the alpha expression of each assertion. The only prerequisite for
doing this, is that the service availability information SAm of the model has
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been computed beforehand. Formally, a model m is consistent with respect to
assertions if and only if: ∧

a∈A∗

(Evalα(a.e,SAm))

where A∗ is the set of assertions in m and Evalα is the function for evaluating an
alpha expression. The complexity of the check is linear in the number of terms
in the assertion expressions.

3.5.2 Resource Claim Checking

In this section, a simple procedure for checking the consistency of a model with
respect to resources and resource claims is presented. The procedure consists
of three steps and uses an satisfiability modulo theories (SMT) solver supporting
the theory of linear arithmetics for deciding whether or not a given model is
consistent with respect to resources and resource claims.

3.5.2.1 Satisfiability Modulo Theories (SMT) Solvers & Problems

An SMT solver is a solver capable of evaluating the satisfiability of logical for-
mulae of binary-valued predicates over non-binary valued variables. The type
of variables and expressions that can be used with a solver is determined by
the theories that it supports. The basic theory, supported by all solvers, is first
order logic. Most, if not all, solvers supports some variant of linear arithmetics.
Some solvers also supports more exotic theories such as bit vectors and unin-
terpreted functions. Notable examples of SMT solvers include the HySAT solver
from Oldenburg University [35], the Z3 solver from Microsoft Research [29]
and the Yices solver developed by SRI international [32].

An SMT problem, the input to an SMT solver, consists of a number of as-
sertions. An assertion is a logical formula of binary-valued predicates. An SMT
problem is said to be satisfiable if there exists a valuation of its variables so that
all assertions evaluates to true and otherwise the problem is said to be unsatis-
fiable.

3.5.2.2 The Procedure

The problem addressed by this procedure can be summarized as follows: Given
the set RES∗ = {res0, res1, . . . , resi} of all resources and the set CL∗ = {cl0, cl1, . . . , cl j}



86 Consistency Checking

of all resource claims in a model m, is it possible to satisfy all claims in CL∗ with
the resources available in RES∗ taking the service flow connecting the claims
with the resources into account?

Step 1 (Preparation) The first step of the procedure consists of computing the
set of so called possible matches between the resources and resource claims in
the model. The set of possible matches is used by the next step in the procedure
for simplifying the encoding of the problem into an SMT problem.

Definition 3.16 (Possible Match, pm, PM) A possible match pm is a pair pm =
〈res, cl〉 where res ∈ RES∗ and cl ∈ CL∗ for which the following two conditions
are true: 1) the provided resource is a sub-class of the claimed resource class:

res.rc v cl.rc (3.1)

and 2) the where expression of cl evaluates to true for the resource res:

Ωe(cl.ω, res,SAm) = true (3.2)

Here SAm is the service availablity information of m and Ωe is the function for
evaluating where expressions defined previously. �

Computing the set of all possible matches for a model can be done by sim-
ply evaluating the two conditions for all pairs of resources and resource claims
in the model. If the model contains a large number of resources and resource
claims computing this set can be computationally expensive. Notice that quan-
tities are not considered when determining if a resource and a resource claim
constitutes a possible match. An additional check that the quantity of resource
provided by res is larger or equal to the quantity of resource being claimed could
be added but is not needed.

In the following, let PM = {pm0, pm1, . . . , pmn} be the set of all possible
matches, Pres : CL∗ → P(RES∗) be a function that maps claims into the set
of resources that may satisfy the claim and Pclaim : RES∗ → P(CL∗) a function
that, given a resource, returns the set of claims that the resource may satisfy.

Step 2 (Encoding) Given the set of possible matches computed in the previous
step, the problem has been reduced to a simpler resource allocation problem
because the part involving the service flow has been eliminated.
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The encoding is based on the use of a set of integer variables for modeling
the allocation of resource to resource claims. There is one such variable for
each possible match. To simplify the presentation, we will use a map-notation
to refer to these variables where ~u[res, cl] gives us the variable representing the
amount of resource from res allocated to claim cl. Since a negative amount
of resource cannot be allocated we implicitly require that ~u[res, cl] ≥ 0. The
encoding consists of an assertion of the form:

assert

 ∧
res ∈ RES∗

Eres(res)

 ∧
 ∧

cl ∈ CL∗

Ecl(cl)


where Eres is a function for encoding the contribution of a resource and Ecl a
function for encoding the contribution of a resource claim.

Resource Encoding. The restrictions placed on each of the resources are given
in equation 3.3. For each resource, we simply require that the sum of all re-
source allocated to claims does not exceed the quantity of resource available:

Eres(res) := res.q ≤
∑

cl ∈ Pclaim(res)

~u[res, cl] (3.3)

Claim Encoding. Claims are encoded differently depending on whether the
claim can be satisfied by multiple resources mp = many or must be satisfied by
a single resource mp = one:

Ecl(cl) :=

 Ecl,m(cl) if cl.mp = many

Ecl,s(cl) if cl.mp = one
(3.4)

For claims that may be satisfied by multiple resources we require that the sum
of all resources allocated to the claim equals the quantity of resource claimed:

Ecl,m(cl) := cl.q =
∑

res ∈ Pres(cl)

~u[res, cl] (3.5)

The encoding for claims that must be satisfied by a single resource is slightly
more complicated:

Ecl,s(cl) :=
⊕

res ∈ Pres(cl)

cl.q = ~u[res, cl] ∧
∧

z ∈ Pres(cl)\res

(
~u[z, cl] = 0

) (3.6)
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cl0 cl1 cl2 cl3

res0 res1 res2

res0.q = 10 cl0.q = 10

res1.q = 10 cl1.q = 10

res2.q = 10 cl2.q = 10

cl3.q = 10

~u[res0, cl0] + ~u[res0, cl1] + ~u[res0, cl2] ≤ res0.q ∧

~u[res1, cl1] + ~u[res1, cl3] ≤ res1.q ∧

~u[res2, cl2] + ~u[res2, cl3] ≤ res2.q ∧

~u[res0, cl0] = cl0.q ∧

~u[res0, cl1] + ~u[res1, cl1] = cl1.q ∧

~u[res0, cl2] + ~u[res2, cl2] = cl2.q ∧

((cl3.q = ~u[res1, cl3] ∧ 0 = ~u[res2, cl3]) ∨ (0 = ~u[res1, cl3] ∧ cl1.q = ~u[res2, cl3]))

Figure 3.15 – A simple resource allocation problem.

Example 3.11 Figure 3.15 shows an example of an encoding of a simple re-
source allocation problem with three resources (res0, res1, res2) and four claims
(cl0,cl1, cl2 cl3). The service flow connecting the resources with the resource
claims is shown using a graph and the quantity of resource provided and claims
is given next to the graph. Claim cl0 can only be satisfied by resource res0, claim
cl1 can be satisfied by either res0 or res1, claim cl2 by res0 and res1 and, finally,
claim cl3 by res1 or res2. Claims cl0, cl1 and cl2 all have single multiplicity mean-
ing that they must be satisfied by a single resource. Claim cl3 has multiplicity
many meaning that it can be satisfied by a combination of the resources. �

Step 3 (Solving & Decoding) The encoded SMT problem is fed to an SMT
solver that will evaluate its satisfiability. If the problem is found to be satisfiable
then the input model is consistent with respect to resources and resource claims.
If the problem is found to be unsatisfiable then at least one claim could not be
satisfied and thus the model is inconsistent.

In the case of a problem being satisfiable, the solver can also provide a sat-
isfiable valuation (called a model) of the free variables in the problem. Given
such a valuation, it is straightforward to decode an allocation of resources to
resource claims. It is important to note that such an allocation of resources
to resource claims is not (necessarily) optimal in any regard. For consistency
checking, however, the valuation of the variables are of no interest.
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3.5.2.3 Error Reporting

If a model is determined to be inconsistent then the user would like to know
what part of the model that causes the inconsistency. For resources, providing
precise error reports is troublesome because no information besides ”unsatisfi-
able” will be returned by the solver. For small models with few resource claims,
the user may be able to determine the problem but for larger models determin-
ing the problematic claims will prove difficult. One way to improve on the error
reports is to split the resource problem into smaller problems. A resource prob-
lem can be split if the resource claims can be divided into two or more subsets
so that the resource classes claimed by each subset does not overlap with the
resource classes claimed by the other subsets. Each such subset will constitute
a resource problem of its own and its satisfiability will not be dependent on the
resources belonging to the classes claimed by the resource claims in the other
subsets. Any inconsistencies in the model will show up as one or more resource
problems being unsatisfiable. For each unsatisfiable problem an error report
containing only a subset of the resources and resource claims of the model can
be generated. Besides enabling more precise error reports, splitting the problem
into smaller problems will also have a positive effect on the execution time of
the solver.

3.5.3 Consistency Checking in the xSRM Framework

The presented procedure for checking the consistency of a model has been im-
plemented as part of the xSRM framework in the form of a back-end extension.
The implementation takes as input a model and produces a true/false answer to
whether or not the model has been determined to be consistent. The Yices SMT
solver [32] is used for solving the SMT problem associated with checking the
satisfiability of resource claims. Yices was chosen because it, in comparison with
many other solvers, offers an API that allowed for the solver to be integrated into
the framework and, more importantly, because it can also be used for solving
MAXSMT problems and supports the background theory of bit vectors. These
last two features of Yices are not used by the procedure for consistency checking
but by the two tools presented later in chapter 4 and 5.

3.5.4 Experiments & Results

To determine how large models that can be handled efficiently by the consis-
tency checking procedure an experiment using a set of similar platforms of dif-



90 Consistency Checking

Number of sub systems (n)
n = 10 n = 100 n = 200 n = 300 n = 400

Service flow graph size
Number of nodes 271 2701 5401 8101 10801
Number of edges 220 2200 4400 6600 8800

Measured execution time
Flow graph construction ~0.00 s 0.02 s 0.04 s 0.09 s 0.03 s

Service availablity analysis 0.02 s 2.70 s 20.75 s 69.99 s 163.85 s
Checking assertions ~0.00 s 0.01 s 0.04 s 0.07 s 0,13 s

Compute possible pairs ~0.00 s 0.42 s 2.78 s 9.11 s 20.80 s
Construct SMT problem ~0.00 s 0.61 s 11.15 s 39.32 s 151.54 s

Solve SMT problem ~0.00 s 0.02 s 0.03 s 0.11 s 0.27 s

Table 3.4 – Measured exeuction time of consistency check and size of the service
flow graphs for varying number of sub systems.

ferent sizes has been carried out. The point of the experiment is to show that
the consistency checking procedure is suitable in a practical scenario.

3.5.4.1 Setup

Figure 3.16 shows the topology of the test platforms created using the Service
Relation Model descriptions of the components of the Xilinx EDK that are part
of the Xilinx EDK front-end to the xSRM framework. The platform consists of a
single interconnect in the form of a processor local bus and a variable number
of sub- systems. A sub-system, also shown in figure 3.16, consists of a Microb-
laze processor, a local BRAM block memory, a timer/counter and a Xilkernel
operating system. The Microblaze implements the Harvard architecture and,
consequently, it has different interfaces for instructions and data. The local
BRAM memory is a dual port memory connected to the processor through two
local memory buses ((ilmb and dlmb) and two memory controllers ((icntrl
and dcntlr) – this is the standard way of connecting the Microblaze core with
block ram memory in the Xilinx workflow. Each sub system has 1 assertion, 1
resource and 1 resource claim.

Using the xSRM framework, a test program has been written for measuring
the execution time of the various tasks involved in consistency checking. By
varying the number of sub systems, we can vary the size of the service flow
graph and the number of assertions, resources and resource claims. All mod-
els created using the test program are consistent. The assertion is satisfied in-
ternally by the sub systems themselves and the claim for a timer resource is
satisfied by the timer through the shared bus.
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assert(

       (SCMemoryService @ ilmb or SCMemoryService @ iplb)

   and (SCmemoryService @ dlmp or SCMemoryService @ dplb)

)

resource Timer : RCTimerResource {

  quantity = 1;

  export TimerStartService;

  export TimerStopService;

}

claim : RCTimerResource {

  quantity = 1;

  where ->(SCTimerStartService @ processor)   

    and ->(SCTimerStopService @ processor);

}

Figure 3.16 – Schematics of the topology of the test platforms and architecture of
the sub systems.

3.5.4.2 Results

Table 3.4 shows the measured execution time for five different experiments with
n = 10,n = 100,n = 200,n = 300 and n = 400. The experiments have been run
on an Intel Core2 Quad CPU at 2.40 GHz running Microsoft Windows 7. Even
though a quad core CPU was used for the test, the program and the solver only
uses a single core. The results for n = 10 are obviously inaccurate. This is due
to the resolution of the timer. For n = 500 Yices crashes the test program for
unknown reasons. The most obvious explanation would be that the number of
variables exceeds some internal limit. With n = 500 there are a total of 25000
variables in the problem.

Measuring the time required by Yices for solving the resource allocation
problem is slightly problematic. The problem is that part of the solving is done
when SMT assertions are added to the logical context of Yices. As table 3.4
show, the time used for actually solving the allocation problem is insignificant
for all the experiments compared to the time spend constructing the problem
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10 100 200

Flow graph construction 0 0,02 0,04

Assertion check 0 0,01 0,04

Service availability analysis 0,02 2,7 20,75

Compute possible pairs 0 0,42 2,78

Construct SMT 0 0,61 11,15

Solve 0 0,02 0,03
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Figure 3.17 – Graphical representation of the results from table 3.4.

(i.e. constructing and adding SMT assertions).

Figure 3.17 shows a graphical representation of the data in Table 3.4. As ex-
pected, the figure clearly shows that the execution time of the procedure scales
exponentially with the size of the input model. As can be seen, the service
availablity analysis, computation of the possible pairs and, especially, the con-
struction (and solving) of the SMT problem dominates the picture for larger
n.

The experiment shows that the consistency checking procedure is capable of
handling large problems in reasonable time even though the exponential growth
in execution time means that the procedure scales poorly. The ~2 minutes
required for checking the platform with n = 200 and the ~5 minutes and 30
seconds required for checking the platform with n = 400 may sound like a long
time. Whether or not this is case ultimately depends on the context in which the
procedure is used. If, for example, the procedure is used in combination with
a synthesis tool for hardware synthesis then the time required for running the
procedure will most likely be negligible compared to the time used for synthesis.
The synthesis of a dual processor design with the Xilinx design flow can easily
take up to 10 minutes or more. The synthesis of a design with 100+ cores is
likely to take a very long time.
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3.5.4.3 Optimizations

Even though the procedure may perform sufficiently well to be used in a wide
range of practical scenarios it would still be desirable to optimize it further. In
this section, some optimizations to the tool used for the experimentation will be
discussed. This discussion will focus on the three most time consuming tasks:
the service availablity analysis, the computing of the set of possible pairs and
the construction and solving of the SMT problem.

Service Availablity Analysis. A number of things can be done to improve the
performance of the service availablity analysis. As previously mentioned, a lot of
research has been devoted to improving algorithms for computing the transitive
closure of graphs. The algorithm used by the xSRM framework represents one of
the simplest algorithms available for the task. Other, possibly more complicated,
algorithms are likely to perform better.

Using a profiler tool, we have been able to determine the bottleneck in the
analysis back-end of the xSRM framework to be the implementation of the ”is
subset of” operation used in the inner loop of the algorithm. The implementa-
tion uses the BitArray data structure that is part of the Microsoft .NET common
runtime library (CLR). For unknown reasons, this data structure does not sup-
port a method for testing if all bits are either zero or false and, as a consequence,
any comparisons must be done by iteratively comparison of the individual bits.
It is possible to do a more efficient implementation of comparison for the special
cases of all bits being 0 or 1 but it will require access to the internal represen-
tation used by the BitArray class. Using another underlying representation
supporting this will most likely result in a significant speed up.

Computing Possible Pairs. In the implementation, no attempt has been done
at optimizing the computation of the possible satisfying pairs. The implemen-
tation itself is rather straightforward and simply compares every resource in a
model with every resource claim in the same model. For each pair of resources
and claims, the resource classes are first compared and if they are compatible
then the where expression of the claim is evaluated. An obvious way of speeding
up the computation is to exploit the obvious parallelism in the problem.

SMT Construction & Solving. As such, little can be done to improve the per-
formance of the solver since it is used as black box in the test program. It may
be possible to ”optimize” the encoding or to tweek some of the parameters of
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Figure 3.18 – Dependencies between concepts of the Service Relation Model.

the solver to improve its performance for the specific type of problem. The gain
in performance for doing this will most likely not be impressive.

3.5.5 Discussion

An important property of the Service Relation Model is that there are no cyclic
dependencies between service flow, service availablity information and resource
allocation and assertions. Service availablity information is a function of the ser-
vice flow in a model and service flow is, by definition, static and independent
of the service availablity information, the the satisfiability of resource claims
and the truth of assertions. The satisfiability of resource claims is dependent on
service availablity information and by implication also on service flow but inde-
pendent of the truth of assertions. Finally, assertions are dependent on service
flow and the service availablity information but not on the satisfiability of re-
source claims. Figure 3.18 illustrates these dependencies between the different
concepts of the Service Relation Model.

This separation of concerns means that the task of evaluating the consistency
of a model can be done in three steps: 1) compute service availablity informa-
tion, 2) compute resource allocation and 3) evaluate assertions. Because step
2 and 3 are independent their may be switched or done in parallel. The com-
plexity and the computational requirements of each of these steps are, as we
shall see, not overwhelming. However, this separation comes at the price of
reduced expressibility. Most problematic is the requirement that service flow
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must be static and independent of service availability information and resource
allocation. This means that we cannot model situations where services are con-
ditionally provided – e.g. a component may provide a given service only if it
has access to some other set of services or resources. If we were to allow ser-
vice flow to be a function of resource allocation then we will need to consider
both simultaneously when testing for consistency. Because computing the sat-
isfiability of the resource allocation is in the NP domain the combined problem
will also be in the NP domain. This will have a major impact on the practical
feasibility of the consistency checking procedure because the resulting problem
will be much larger which means that finding a solution may take significantly
longer.

3.6 Related Work

In this section, we will briefly review related work. The presentation of related
work has been postponed until now because we believe that a basic under-
standing of the basic concepts of the Service Relation Model will be needed to
properly position this work with respect to the literature.

3.6.1 System Level Design Languages

The SystemC language [50] is the De facto standard for modeling at the system-
level of abstraction. SystemC is an extension of C++ in the form of a set of
libraries. The core of SystemC is an event driven simulator that enables co-
simulation of hardware described using the SystemC C++ extensions and ”na-
tive” C++ code. The mix of C++ and hardware modeling capabilities is both
SystemC’s strength and its weakness. A practical problem with the use of Sys-
temC, and other languages based on C++, is that designers must worry about
the syntactic and semantic details of the underlying C++ language that are in-
dependent of the system model. Also, tools for analyzing SystemC designs are
difficult to write because of the complexity of the C++ language.

The Metropolis framework is an embodiment of the platform-based design
paradigm [13]. The framework is based on a model called the Metropolis Meta-
Model that can be used to capture both application and platform. The execution
semantics of the model is based on events. Models consists of a composition of
processes, media, quantity managers and netlists. A process has its own thread
of execution that executes concurrently with the other processes in the system.
Communication between processes is accomplished by means of media objects
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that implements a set of interface methods. Medias can be connected to pro-
cesses and other media by means of ports. Quantity managers are used to con-
trol accesses to shared media and to assign physical quantities to events. Netlists
are container objects used to structure a model into a hierarchy. Besides these
basic building blocks the model also supports user-defined constraints using lin-
ear temporal logic and logic of constraints. Metropolis is primarily a composition
framework supported by tools for simulation and verification. A subset fo the
model may, however, be synthesized using the xPilot synthesis system. Since
its interception, the team behind Metropolis has identified a number of short-
coming of the framework. A next-generation framework, named Metro II, will
address these shortcomings [26, 25]. A noticeable problem with the current
Metropolis framework is its inability to import and work with pre-defined IP.

Although not explicitly represented, the Metropolis framework (or rather the
platform-based design paradigm) incorporates a concept of services somewhat
similar to the concept of a service in the Service Relation Model. Metropolis does
not have a concept similar to service aggregation and, as a consequence, cannot
be used to explicitly describe the flow of service as function of the descriptions
of the components. A large part of the Metropolis framework is focused on the
estimation of non-functional properties like power usage and performance. Be-
cause the similarities between the concept of a service employed by the Service
Relation Model and in Metropolis we believe that their ideas for estimation of
non-functional properties can also be applied to the Service Relation Model.

Other examples of system-level design languages include SpecC [30] and
SystemVerilog [7]. All though all of the languages mentioned here supports
modualization neither of them are proper component-models as they lack the
means to express dependencies of components and do not distinguish between
a components interface and its implementation.

3.6.2 Component-based Design (Hardware)

Bottoms-up approaches to embedded systems design have received a lot of at-
tention from researchers and have shown promising results. In a bottoms up
approach, a design is assembled from a set of predefined components. Obvi-
ously, if the components are small, such as logical gates or processor instruc-
tions, this would not be a challenge. This kind of trivial reuse has a long tradi-
tion within both hardware and software design. The challenge is to enable the
reuse of complex components such as processors, buses and operating systems.
In the field of hardware, the term ”IP-based design” is often used in place of
”component-based design”.
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3.6.2.1 Standardized Component Frameworks

Most component-based design approaches are based on the use of standard-
ized component frameworks. Such a framework usually consists of an standard
interface used to connect (hardware) components and/or a standard communi-
cation infrastructure. Examples of such frameworks include the OpenConnect
infrastructure from IBM [24] and the AMBA protocol from ARM [10]. An in-
trinsic problem with using a specific infrastructure as the foundation of a design
approach is that may only be used with components (cores) that implements a
compatible interface. The Xilinx EDK [97] and the Altera SoPC [9] are examples
of tools that are focused on a set of specific interconnects.

3.6.2.2 Virtual Architecture Models

The Coral [15] framework from IBM is an early attempt at moving the specifi-
cation of platforms up in abstraction from the register transfer level. This work
was one of the first to introduce the concept of a virtual design – an idea that
has later been elaborated on by other researchers.

As part of their ongoing research into system-level design methodologies,
Jerraya et al. proposes a design flow where an application is decomposed into
a set of virtual components connected through a virtual interconnect [19]. A
high-level parallel programming model is used to de-couple these components
from each other and to abstract away platform details. Much of their effort
has been spent trying to automate the generation of wrappers used to connect
components with an actual interconnect.

Interestingly, they use a model called the Service Dependency Graph to syn-
thesize wrappers between components [60, 84]. Despite the name, the ser-
vice dependency graph model has little in common with the Service Relation
Model presented in this thesis. The Service Dependency Graph is used to cap-
ture service requirements and dependencies amongst the sub-components of an
interface connecting an implementation of a virtual component to an actual in-
terconnect. The Service Relation Model, on the other hand, is used to capture
the flow and availability of services in an entire system composed of compo-
nents. The difference between the two will be elaborated on later in section 3.7
as part of a more general discussion.
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3.6.2.3 Other

Balboa [31] is a component composition framework based on C++ used to
build system-level models with an architectural perspective. The framework
consists of thee parts: a component integration language, a set of IP component
libraries and a set of split-level interfaces used to link between the two. Compo-
nent design is done using C++ where as component integration is done using
a scripting language front-end. The key feature of Balboa is that it raises the
abstraction level by using type inference to allow for weaker type dependen-
cies among components than what is possible with the C++ components alone.
This allows for the designer to focus on architectural design rather than C++
type matching.

3.6.3 Component-based Design (Software)

The literature contains many examples of models incorporating the concepts of
components and/or services. These concepts so are general and used in many
different contexts with different meanings that a complete survey is out of the
scope of this work.

3.6.3.1 Component Models & Component-based Design

In software engineering, the term ”component-model” is often used as a label
for specific technologies supporting component-based design of software sys-
tems. In this context, a component model is a set of standards and conversions
that components must follow to allow proper integration. A component model
is associated with a component framework – the infrastructure that enables com-
ponent interaction and manages resources for components [56].

Within the field of enterprise system component-based design and compo-
nent models have received a lot of attention from major players such as Mi-
crosoft, IBM, Intel and Sun Microsystems. Component-based design is used to
bring structure to the design of large systems by allowing the development of
a software system to be split between three independent groups: component
designers, infrastructure (component framework) designers and application de-
signers. Common component-models includes JavaBeans [2, 3], the .NET com-
ponent model and the COM/DCOM model [48]. Component technology has
been applied to the design of embedded systems software with success. The
Koala component-model developed at Philips for designing media equipment is
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a prime example [95]. Other examples include PECOS [40] and Rubus [72]
component models.

A particularly interesting class of component-based design methodologies
for enterprise systems is service oriented computing and architecture. Service
oriented computing is a paradigm referring to a set of concepts, principles and
methods that represent computing in service-oriented architecture (SOA). In
such architectures, functionality is viewed as services exposed through service
brokers (e.g. CORBA [49]). SOA emphasizes loose-coupling of services with
each other and with the underlying platform. From an embedded systems point
of view, this loose-coupling is problematic as it implies a rather large overhead,
in the form of a service broker framework, that is generally not acceptable. Also,
SOA services are too ”heavy weight” to be useful in many embedded applica-
tions. Despite these problems, SOA has also been employed in the construction
of embedded systems [93].

3.6.3.2 Architecture Description Languages

In the software field, an Architecture Description Language (ADL) is a language
used to capture design decisions regarding the architecture of a system. There
is no commonly agreed upon definition of what exactly constitutes an ADL [65]
but according to [21] an ADL is a language capable of expressing the soft-
ware architecture of a system in a way that suppresses implementation and
non-architectural information. Furthermore, an ADL must embody rules about
what constitutes a consistent architecture and provide some analysis or code-
generation capabilities. The literature contains many examples of ADL’s that
can be used to analyze various properties of systems composed of components
(e.g. Acme [39]). Some ADL’s also take hardware (platforms) into consid-
eration to analyze non-functional properties like real-time schedulability and
reliability ([16, 8]).

The Service Relation Model could be considered an ADL even though its
intended purpose is different from that of ADL’s. The Service Relation Model is
not intended as a software engineering tool and it does not have much to offer
in that regard.

3.6.3.3 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a set of graphical general purpose
languages used for object-oriented modeling standardized and managed by the
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Object Management Group [17]. UML is not by itself a methodology but may be
used in a variety of methodologies for different purposes. A key feature of UML
is that it can be extended with domain specific concepts using, so called, UML
profiles. A number of methodologies for addressing various problems within the
field of embedded systems have been proposed using the basic UML infrastruc-
ture extended with domain specific concepts in the form of UML profiles.

For example, in [20] a design methodology based on UML, Metropolis and
the principles of platform-based design is proposed. The methodology is based
on the use of an UML profile for extending UML with a number of concepts from
Metropolis and platform-based design. The profile combines the strengths of
UML and the Metropolis framework by allowing UML models to be transformed
into Metropolis models. Metropolis can thus be used as a back-end for UML
for simulation and synthesis purposes. A number of, conceptually similar, UML
profiles for linking UML and SystemC have also been proposed (e.g. [96, 67,
81]).

The concepts of the Service Relation Model could most certainly be ex-
pressed in UML as a profile. This is not the same as saying that the two are the
same. Being a general meta-modeling framework UML is capable of expressing
most component-models.

3.6.4 Comparison with the Service Relation Model

There are two aspects that sets the Service Relation Model apart from most of
the different component-models mentioned.

One thing that sets the Service Relation Model apart from most other com-
ponent models is the fact that it does not incorporate the concept of a compo-
nent framework. This is an essential difference as the existence of a component
framework implies that only components compatible with the framework can
be used – a key feature of the Service Relation Model is that it does not impose
any restrictions on what a component is.

The second difference has to do with the purpose of the model and how
dependencies between components are represented. Many component-models
provide the means to check the consistency of inter-component dependencies.
Often such dependencies amongst components are modeled by means of the
concepts of provide and require interfaces [60, 13, 95, 47]. A provide interface
is an interface through which a component provides other components with one
or more services and a require interface is an interface where a component con-
sumes service. A model employing the concepts of provide/require interfaces
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is consistent when all require interfaces are connected to compatible provide
interfaces. Checking for this kind of consistency is simply a matter of inspecting
each require interface to determine if it is properly connected.

A potential drawback of using these concepts for modeling dependencies
among components is that the dependencies must be explicitly asserted by
means of relations connecting require interfaces with provide interfaces. For
example, if component a is dependent on services provided by components b
and c then this must be modeled using a pair of relations for relating a with b
and c. This means that the allocation of service and/or resource from providers
to consumers must be available a priori to analyzing the model and, thus, the
model cannot be used as a basis for determining this information. For most
component-models this is not a problem because they are, in comparison with
the Service Relation Model, intended primarily for representing dependencies
rather than as a foundation for resolving them. This difference in purpose il-
lustrates well the focus of the Service Relation Model as an analysis model as
opposed to a representational model.

3.7 Discussion & Summary

In this chapter, we have presented a number of additional concepts to the Ser-
vice Relation Model that can be used for checking the consistency of platforms
and systems.

In the introduction, a number of problems specific to the Xilinx EDK tool
were discussed. By incorporating the concepts of the Service Relation Model
into the internal component-model of the EDK many of these shortcomings
could be dealt with efficiently. More specifically, it would be possible to make
the software generation tool (Libgen) independent of the components of the li-
brary and assumptions about the communication topology. This would require
that Service Relation Model descriptions of the IP and software components,
such as those found in the EDK front-end to the xSRM framework, were avail-
able. Besides describing the service flow of each components, the description
would also formally capture any service/resource dependencies that the com-
ponent may have. This information can be used to both improve the analysis
back-ends of the Libgen tool and to improve the existing check for errors (via
consistency checking) that is done prior to synthesis.
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CHAPTER 4

Automated Programming

In this chapter, we will focus on the problem of automatically generating an
implementation of the communication infrastructure (the channels) of a process
network targeting custom execution platform instances.

4.1 Introduction

A process network application consists of a number of processes interacting
using an API, acting as an abstraction layer between the platform instance and
the application, exposing the process network programming model. The API is
tied to the platform by means of a platform abstraction layer (PAL) that provides
a realization of the API for the particular platform.

Rather than focusing on attempting to generate a platform abstraction layer
for process networks in general we are interested in application-specific imple-
mentations where the generated layer supports exactly the features used by the
process network in question. An application-specific implementation is more ef-
ficient because it only has to support a fixed number of processes and channels
and does not have to provide the means for any two processors of the platform
to communicate – which may not necessarily be possible.
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Figure 4.1 – Possible design flow supported by our procedure (PAL generation tool).

Figure 4.1 shows a design flow supported by the procedure presented in
this chapter. The design is shown at three different levels of abstraction: the
system-level, the register transfer level and the gate level. At the system-level
the design consists of an application specification, a platform specification and a
mapping between the two. The platform is a composition of components taken
from a library of existing hardware and software components. The platform
specification specifies which components are used, how they are configured and
connected. The application is captured in a high-level language supporting the
process network MoC (e.g. TTL) and, conceptually, consists of a number of con-
current processes communicating and synchronizing using unidirectional FIFO
channels. Finally, the mapping consists of associations between the processes
in the application and processors in the platform. Channels are not part of the
mapping as determining their placement is part of the automated design flow.

The platform is refined into a register transfer level description using a plat-
form generation tool (Xilinx Platform Studio for example). The result of run-
ning this tool on the platform specification is a set of hardware description lan-
guage (HDL) files implementing the hardware and a set of C files for each pro-
grammable processor implementing the platform software. The HDL files are
later processed by a hardware synthesis tool to obtain a gate-level implementa-
tion of the hardware.

Using an application translation tool and the mapping, the platform specifi-
cation and the platform independent application specification are refined into a
platform dependent implementation consisting of a set of C files for each pro-
grammable processor in the mapping specification. For each processor in the
design, the C files generated by the application translation tool and platform
generation tools for the processor can be combined and compiled to obtain the
final program images.
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A tool based on the procedure presented in this chapter is intended to be
used as part of the application translation process embedded within the ap-
plication translation tool of Figure 4.1. This tool will require three inputs: a
description of the platform given in the Service Relation Model, a description of
the process network embedded in the application and, finally, a mapping of the
application processes onto processors in the platform. Given these inputs, the
tool produces an implementation of the applications (global) communication
infrastructure.

The procedure analyzes the platform description to obtain information about
the different alternative implementations, called possible implementations, of the
channels in the process network. Because the possible implementations of the
channels can be dependent on one or more of the (limited) resources provided
by the platform it is not possible to arbitrarily choose the actual implementations
between the sets of possible implementations. Using information about the re-
source requirements of the different possible implementations and the resources
provided by the platform, the procedure constructs and solves an optimization
problem whose solution provides a feasible choice of actual implementations
with respect to resources. The choice of actual implementations is fed to a code
generation back-end that generates the C code implementation of the channels.

In another version of the procedure, that will not be presented here in detail,
the optimization problem is replaced by a manual intervention by the designer.
In this procedure, the designer selects, for each channel, an actual implemen-
tation from amongst the set of possible implementations. The feasibility of the
choice of actual channel implementations is checked and if it is not consistent
with respect to the resources provided by the platform (i.e. uses more resource
than is available) the designer must alter his or her choices. In comparison
with the procedure presented here, the alternative procedure allows for the de-
signer, rather than the procedure, to take control of the choice of channels. Also
in favor of the alternative procedure is the fact that it is less computationally
expensive because it does not involve solving an optimization problem.

4.2 The Procedure

In this section, the procedure for automated programming is presented. Before
presenting the procedure itself, the generic architecture of the abstraction layers
generated will be presented.
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Figure 4.2 – Architecture of the generated platform abstraction layer.

4.2.1 Layer Architecture

Figure 4.2 shows an outline of the architecture of the generated platform ab-
straction layer produced by our procedure in the context of a simple three pro-
cess application mapped to a dual-processor platform. The generated process
abstraction layer (PAL) is organized as a set of local implementations. Each pro-
cessor in the platform is associated with a single local implementation that ser-
vices all application processes mapped to that processor though a simple API.
Conceptually, the communication infrastructure of a process network applica-
tion consists of a set of channels accessed by means of read and write primitives
with blocking semantics. An implementation of a channel consists of two chan-
nel access modules. These two channel access modules, a read module and a
write module, provide implementations of the read and write primitives asso-
ciated with the channel. The read module is part of the local implementation
associated with the processor where the application process reading from the
channel (the consumer) is mapped. Similarly, the write module is part of the
local implementation associated with the processor where the application pro-
cess writing to the channel (the producer) is mapped. An access module is a
logical grouping of three C functions: an initialization function, a read or write
function (depending on the type of access module) and a handler function.

The initialization functions of the access modules allows for some initial-
ization of the channels to take place before the system begins its operation.
At system start-up, each local implementation will call the initialization func-
tions of its access modules and once the inititialization has been completed the
system will begin its operation. Determining when the initialization phase is
completed can be a problem. Here we assume that all processors agree to wait
for a set time before beginning their operations. The set time is long enough to
allow all processors to do their initialization. We will not address the problem
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Figure 4.3 – Service relation model component representing a point-of-contact.

of determining when the initialization phase is complete any further.

4.2.2 Inputs

The input to the procedure is a service relation model of a platform instance, an
application in the form of a process network, a mapping associates the processes
of the process network with the processors of the platform instance and a set of,
so called, channel implementation schemes.

Process Network. The process network describing the application is assumed
to be available as a graph-like structure:

Definition 4.0 (Process Network) A process network is a pair pn = 〈P,CH〉
where P is a set of processes and CH a set of channels. A channel ch ∈ CH
is a 4-tuple ch =

〈
p, c, size, depth

〉
where p writer process (the producer), c the

reader process (the consumer), size the (maximum) size of messages and depth
the minimum depth of the channel. �

Details about the internals of the processes are not needed as we assume that
the behavior of any process can be implemented on any processing element.
Whether or not this assumption is justified can be checked using the approach
sketched in the example of section 2.1.2.

Platform. The service relation model describing the platform is assumed to
be consistent with respect to service accessibility. Also, we assume that each of
the different points of contact, where the processes of the application can be
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mapped to the platform, is clearly marked by means of a special component.
This component, shown in figure 4.3, can be considered a black-box represent-
ing the partition of the application mapped to a single processing element.

The point of contact component has a minimum of three interfaces and one
service. The interface Processor is used to relate the point of contact with the
local processor. Through this interface the local implementation and the part
of the application mapped to the point of contact can (conceptually) access ser-
vices available through the processor. The two interfaces ContextAsCaller and
ContextAsCallee are used to relate the point of contact with the C context of
its compilation unit. Through the ContextAsCaller interface services provided
in the context can be accessed (e.g. services offered by libraries, drivers and so
on). The ContextAsCallee interface is used to export the service fhandler to
the context of the local implementations compilation unit. The fhandler ser-
vice is used to determine which other parts of the model can access the local
implementation by means of function invocation.

A point of contact may have one or more unbound interrupt handlers that
can be used (freely) by the application. In order to allow the procedure to
consider them when implementing channels they must be related to the point
of contact. Each such free interrupt handler is related to the point of contact by
means of its own interface Intrx through which a service ihandlerx is exported.

For a given platform with n different points of contact we have:

POC = {poc0, poc1, . . . , pocn}

In the following, we will extend use the ”.”-operator to also reference the inter-
faces and services of these components. For example, poc1.ContextAsCaller will
give us the interface named ”ContextO f Caller” of the component poc1.

Mapping. The mapping of a process network onto a platform instance is map:

Definition 4.1 (Mapping, ~m, ~M) A mapping of a process network pn = 〈P,CH〉
onto a platform is a map ~m : P → POC mapping processes of the process
network to points-of-contacts in the application instance. �

The arrow in the map symbol is used to differentiate it from the symbol used
for service relation models m. Channels are not considered in the mapping as
determining their placement is the focus of the procedure.
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Implementation Scheme. An implementation scheme is a generic template
for creating an implementation of a channel in a process network. Different
implementation schemes provides different kinds of channel implementations.
For example, we may have one scheme for implementing channels in memory
and another for implementing channels using hardware FIFO’s. An implemen-
tation scheme can be described as two functions: one for mapping a channel,
a mapping and a service relation model of the platform to a set of possible im-
plementations and another for mapping a single possible implementation to a
concrete implementation (i.e. a pair of access modules given in C).

A possible implementation is an information object recording the needs
of the implementation in terms of resources, interrupt handlers and services
should it be chosen:

Definition 4.2 (Possible Implementation, pi, PI) A possible implementation
is a triple pi = 〈RQ,S,H〉 where RQ is a set of resource requirements, S is
a set of services in the platform and H is a set of services representing the
interrupt handlers associated with the different points of contact in the platform.
A resource requirement rq ∈ RQ is a pair rq =

〈
res, q

〉
where res ∈ RES is a

resource in the platform and q ∈N is the quantity of the resource required. �

If chosen, a possible implementation will be transformed into an actual im-
plementation:

Definition 4.3 (Actual Implementation, ai, AI) A actual implementation is
a triple ai = 〈SRR,S,H〉 where SRR is a set of satisfied resource requirements,
S is a set of services in the platform and H is a set of services representing the
interrupt handlers associated with the different points of contact in the platform.
A satisfied resource requirement srr is pair srr = 〈res, rs〉 where res ∈ RES is a
resource in the platform and rs a resource share (see section 3.3.4.1) defining
the portion of res allocated to satisfy the requirement. �

The difference between the object describing a possible implementation and
the object describing an actual implementation is that resource requirements
have been replaced by satisfied resource requirements.

Using these two definitions an implementation scheme can be defined as:
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Figure 4.4 – Overview of the automated programming procedure.

Definition 4.4 (Implementation Scheme, is, IS) An implementation scheme
is a pair of functions is =

〈
a, g

〉
where

∙ a : M×
→

M ×CH→ P(PI) is the analysis function

∙ g : AI→ AMwr × AMrd is the implementation function where AMwr is the
domain of write access modules and AMrd is the domain of read access
modules

The former of these functions is called the analysis function of the implementa-
tion scheme and the latter the implementation function. �

4.2.3 Procedure Steps

Figure 4.4 shows an overview of the procedure that consists of a four steps. The
sections following this one will elaborate on some of the steps that are more
involved.

Step 1 (Analysis) In this step, the set of possible implementations for each
channel in the application is computed. This is done straightforward by means
of the analysis functions of the different implementation schemes. The result of
this step is a map PI : CH → P(PI) mapping channels to possible implementa-
tions:

PI[ch] =
⋃
is∈IS

(
is.A(m, ~m, ch)

)
(4.1)

If one or more channels does not have any possible implementations the proce-
dure terminates with error.

Step 2 (Decision) The objective of step 3 is to decide, for each channel, which
of its possible implementations should be chosen as its actual implementation.
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For this purpose, we formulate an optimization problem using the minimization
of the sum of a cost associated with choosing a possible implementation as an
actual implementation as the objective. The details of this is presented later in
section 4.4.2. The result of this step is another map CI : CH → PI mapping
each channel to exactly one possible implementation that we will refer to as the
chosen implementation of the channel.

We assume that the resources provided by the platform can be used freely
and that any resource requirements of the platform components have already
been accounted for. Ideally, the resource requirements of the platform compo-
nents should also be taken into consideration. This is, in principle, straightfor-
ward but has been left out for the sake of simplifying the presentation.

Step 3 (Allocation Refinement) From the previous step, we know that the re-
source requirements of the chosen implementations are guaranteed to be satis-
fied and we know what resources are used to satisfy each resource requirement.
Next, we need to determine, for each resource, how it is distributed among the
actual implementations that require some quantity of it. The resource require-
ments on a resource is turned into a corresponding set of resource shares by
simply distributing the available resource from one end. For example, for a re-
source res with quantity 10 and two resource requirements for 2 and 5 quantities
of the resource we will have the two satisfied resource shares: srr0 = 〈res, [0; 1]〉
and srr0 = 〈res, [2; 7]〉.

The result of this step is yet another map AI : CH→ AI mapping each chan-
nel in the process network it an actual implementation. This map is constructed
on the basis of the CI map of the previous step by simply replacing each resource
requirement in the possible implementations of CI with the corresponding sat-
isfied resource requirement.

Step 4 (Code Generation) The final step of the procedure is concerned with
generating the code for the abstraction layer. This is done by means of the im-
plementation functions of implementation schemes. For each channel ch in the
process network the two access modules 〈amrd, amwr〉 are generated by applying
the implementation function g to its actual implementation AI[ch]. The read
access module amrd is added to the local implementation belonging to the point
of contact where the consumer process of the channel is mapped ~m[ch.c] and,
similarly, the write access module amwr to the local implementation belonging
to the point of contact where the producer process is mapped ~m[ch.p].
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4.3 Code Generation

The implementation function of an implementation scheme is used to gener-
ate C code implementations. The input to an implementation function is an
abstract representation of the desired implementation in the form of an actual
implementation. In this section an approach, called service invocation synthe-
sis, to generating a concrete C code implementation on the basis of an abstract
representation such as an actual implementation is presented. This approach
requires that the services and service exchange relations used in the Service Re-
lation Model description of the platform have previously been characterized as
function as described in section 2.2.

4.3.1 Service Invocation Synthesis

A trace of relations, services and interfaces connecting a service x with another
service or interface y where x is available (x ∈ SA[y]) in the service flow graph
is called a service aggregation chain. A service aggregation chain represents one
way to invoke a service offered by a foreign component through a possibly very
complex structure of other components. A service aggregation chain can easily
be extracted from a service flow graph using backtracking. There might exist
multiple different service aggregation chains each representing different ways
to invoke a given service at a particular node in the service flow graph.

Example 4.1 Figure 4.5 shows a service relation model of a simple platform
consisting of a processor, a bus, a memory and a UART. The processor is as-
sumed to be connected to a number of software components (not shown). The
service aggregation chain connecting the Receive service of the UART with the
interface SWE0 of the processor is also shown. �

When a service is available at a location it means that it may somehow be
accessed from that location. The service aggregation chain linking a location
with an available service tells us which services, interfaces and import/export
relations will be involved in accessing the service from that location. This infor-
mation is not sufficient to actually realize the invocation of the service because
we cannot uniquely identify the service amongst other services also aggregated
at the nodes of the chain. The missing information is added to the model by
means of the concepts of invocation parameters and invocation functions. An
invocation parameter is simply a label/value pair associated with an entity of
the Service Relation Model. Invocation parameters can be used to store addi-
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Figure 4.5 – Top: A simple platform comprising a processor, a memory and a UART.
Bottom: Service aggregation chain for invoking the Receive service of the UART
component from the SWE0 interface of the processor.

tional information about the system such as the offset of a slave peripheral in
the memory space of bus component. Note that the concept of an invocation
parameter is essentially identical to the parameter concept presented previously
in section 3.3.5 with the exception that invocation parameters are accessible in
models (i.e. they are not replaced by their constant value).

An invocation function is a function associated with an import, export or
service exchange relation and is used to extract information about how a spe-
cific service available at the source node of the relation is to be invoked from
the target node. The role of an invocation function is as follows: given infor-
mation about how to invoke a service s from a node n0, the invocation function
associated with a relation having n0 as source and node n1 as target will provide
the information needed to invoke s from n1. In order to compute the desired
output, the function can use the input information and any invocation param-
eters associated with the service and interface represented by the two nodes.
The type of input expected and output produced by an invocation function is
dictated by the service and interface related by the associated relation. More
specifically, the type of output produced and the type of input expected by two
functions associated with a pair of relations connected to the same node in a
service aggregation chain must be the same. The process of determining how
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to invoke a service, given a service aggregation chain, consists of applying the
invocation functions associated with the relations of the chain to each other in
a backwards manner as shown in the example below.

Example 4.2 Given the service service aggregation chain of figure 4.5 and
information about invoking how to invoke the Receive service at itself Iin we
can compute the information needed to invoke the Receive service from the
swe0 interface of the processor Iout:

Iout = re3(ri2(sxr2(re3(ri0(sxr0(re1(Iin)))))))

Here the names of the import, export and service exchange relations in the ag-
gregation chain denotes the invocation function associated with that particular
relation. �

The information about ”how” to invoke a given service from a call node n is
described as valuations of the inputs associated with the functional characteri-
zation node (see section 2.2). Since not all input values are necessarily known
at design time the use of variables are allowed. This means that, formally, a ser-
vice invocation function is not a mapping between valuations of different inputs
sets but rather a mapping between constructors of such valuations.

The process of synthesizing an invocation of a service can be broken into a
relatively simple four step procedure:

Step 1 (Service Identification) First, we identify the service s to be invoked
and the call node n (a service or an interface) from which we want to invoke s.
The service aggregation chain linking s with n is extracted from the service flow
graph. If the chain does not exist, it is not possible to invoke s from n and the
procedure terminates with error. If there exists multiple chains, one is chosen
arbitrarily.

Step 2 (Target Valuation) Second, the desired operation, represented by the
service s, is chosen by choosing a valuation of the inputs of s. The chosen
valuation may contain variables that can be used to postpone the choice of the
actual operation until run-time.

Step 3 (Apply Invocation Functions) Third, the invocation functions are ap-
plied bottoms-up using the chosen valuation of the inputs of s as the input.
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Step 4 (Decode Information) Fourth, the valuation of the inputs at the call
node n resulting from applying the invocation functions is transformed into an
implementation of the service access. Because variables can be used as input to
the invoked service the valuation of the inputs at the call site are not values but
rather constructors (e.g. expressions) for generating values.

Example 4.3 Below the definitions of the service invocation functions for the
service aggregation chains of figure 4.5 are given:

sxr3(
〈
name, arg0, . . . , argn

〉
) =

〈
name, arg0, . . . , argn

〉
re3(

〈
op,w, addr, val

〉
) =

{
〈store, addr, val,⊥, . . .〉 if op = wr

〈load, addr,⊥, . . .〉 if op = rd

ri2(
〈
op,w, addr, val

〉
) =

〈
op,w, addr, val

〉
sxr2(

〈
op,w, addr, val

〉
) =

〈
op,w, addr, val

〉
rs3(

〈
op,w, addr, val

〉
) =

〈
op,w, addr, val

〉
ri0(

〈
op,w, addr, val

〉
) =

〈
op,w, slave1.offset + addr, val

〉
sxr0(

〈
op,w, addr, val

〉
) =

〈
op,w, addr, val

〉
re1(〈〉) = 〈rd,1,0x0,0〉

Here we have assumed that information about which segment of the address
space of the bus is occupied by the UART peripheral is stored with the bus and
that the offset of this segment may be retrieved from an invocation parameter.
This information could also have been stored with the UART peripheral in which
case the alteration of the address should be moved from ri0 to re1 or sxr0.

Given the above definitions and assuming that the UART peripheral is mounted
at offset 0x200000 in the address space of the bus, the service invocation infor-
mation object describing how the service Receive is invoked from the proc

interface can now be computed:

〈load, 0x200000 + 0x0〉

The add operator in the result shows that the result is not a value but rather a
constructor for determining a value. �
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v o i d store( i n t * addr , i n t value) {
*(( i n t *)addr) = value;

}

i n t load( i n t * addr) {
r e t u r n *(( i n t *)addr);

}

Listing 4.1 – Examples of C-binding wrapper functions

4.3.2 Integration to C

A processor is characterized by providing a service of the class SCExecution

that represents the instructions of its instruction set. This service is made ac-
cessible for the software entities executing on the processor. A software entity
can be implemented using different languages. To keep things simple, we will
assume that all software is given as C code. In order to facilitate the invocation
of services across the boundary between software (C code) and the processor
(instructions in the instruction set) we assume to have available at set of C func-
tions wrapping the instructions of the instruction set that may be interesting to
invoke. Listing 4.1 show two such functions wrapping a word LOAD instruction
and a word STORE instruction.

In the following chapter on automated programming we will need the abil-
ity to invoke services from C code. The procedure described in this chapter can
be used together with a pre-processor to insert synthesized service access ex-
pressions in the code. To invoke the service MyService from C, we will use the
following syntax:

[ 〈o0, . . . , om〉 = MyService(i0, . . . , in)]

where i0, . . . , in are the inputs required by the service and o0, . . . , om the outputs.
We will allow the use of program variables in place of the input and output
values. The value of some inputs must be constant and known at compile time.
The op input of the memory service is an example of such an input. When a
program variable is used, we assume there exists a conversion between the C
type of the variable and the domain of the corresponding input. Furthermore,
we will also allow for the use of the upper and lower bounds of resource shares
to be used for specifying inputs with the understanding that they can be treated
as constants.

Example 4.4 As an example of integrating the service invocation synthesis
procedure with C consider the partial model of figure 4.6. The figure shows
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Figure 4.6 – Partial model of a platform using fast simplex links (FSL).

three hardware components: a Microblaze processor and two fast simplex links
(FSL). A FSL is a hardware FIFO available in the Xilinx EDK used primarily to
connect processors to each other. The two FSL’s can be accessed from software
by means of a set of special instructions in the instruction set of the Microblaze
processor.

A FSL queue is modeled as a single component with two services, two inter-
faces and a single resource. The resource is an instance of the parameterized
resource class RCQueue<D,S> where D defines the depth of the queue and S the
maximum size of each token. The two services represent the familiar enqueue
and dequeue operations and are declared as members of the appropriate ab-
stract service classes. The resource is exported through both services. The two
interfaces of type Fsl/FslMaster and Fsl/FslSlave are used respectively to
connect the FSL to a master and a slave component.

The Microblaze processor provides access to FSL components by means of a
set of special purpose instructions. The instructions can be used to enqueue and
dequeue up to a maximum of 32-bits of data. In the Service Relation Model,
the instructions to enqueue and dequeue 32-bits of data in a non-blocking fash-
ion can be modeled using a pair of services belonging to the following service
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classes:

〈success〉 = SCEnqueue32NoBlocking
(
qid, val

)
〈success, val〉 = SCDequeue32NoBlocking

(
qid

)
where qid ∈ [0, 7] is the id of the FSL queue interface of the processor to access,
val ∈ [0, 232

− 1] is the value read or written and success ∈ {true, false} is an
output indicating whether the operation was a success or not. The Microblaze
also offers blocking versions of the FSL enqueue and dequeue instructions that
are not shown in the figure.

The code below shows how to write to a queue from C using service invoca-
tion synthesis. The function takes as argument an array of 32-bit data and an
integer representing the number of words to write to the queue. The writing of
the queue has been abstracted using a resource share and a service:

v o i d write_fsl <RCQueue <D,S> r, SCEnqueue32NoBlocking s>
( i n t [] data , i n t len) {

i n t i = 0; BOOL success = FALSE;

f o r (; i < len; i++) {

do {

[<success > = s(r.l, data[i])];

} w h i l e (! success)
}

}

Syntactically, the function has been parameterized by extending the header with
a list of required services and resource shares. Notice that the resource share is
given by the type of the resource that is belongs to rather than by the, not very
descriptive, name ”ResourceShare”. Notice the use of the lower bound of the
resource share r is used as the first input to specify the id of the FSL to access.

For a resource share rs = [0; 0] belonging to the queue resource of FSL0 and
the Enqueue service of the processor in figure 4.6 we get the following result:

v o i d write_fsl( i n t [] data , i n t len) {

i n t i = 0; BOOL success = FALSE;

f o r (; i < len; i++) {

do {

success = fsl_enqueue (0, data[i]);

} w h i l e (! success)
}

}
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Figure 4.7 – Overview of the PAL generation tool.

The service invocation procedure inserts the proper code for accessing the en-
queue service provided by the processor through the queue resource of the FSL
component. �

Notice that when using service invocation synthesis, the choice of input val-
ues is relative to the location of the invoked service. This is a key feature since it
makes the invocation of a service independent of the other parts of the system.
Usually, when programming access to a device the inputs to the device must
be specified relative to the location of the caller (e.g. an embedded processor).
For example, when reading address x in a memory from some processor p the
effective address of x relative to p must be provided. The effective address of x
relative to p depends on the topology and allocation of the system and it need
not be the same for different choices of p.

4.4 The PAL Generation Tool

Figure 4.7 shows an overview of our proof-of-concept tool, based on the xSRM

framework, implementing the procedure for automated programming used for
experimental purposes. As can be seen, the tool only implements the analysis
and decision making parts of the procedure – code generation is not supported
at this time. The reason for this is that our purpose with the procedure is pri-
marily to demonstrate the analysis capabilities of the Service Relation Model
and that time has permitted us from completing this part of the tool.

The tool takes as input a platform designed using the Xilinx EDK tool and
a YML file containing a specification of a process network and a mapping of its
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processes to the processors of the application. The YML file also specifies the
minimum size and depth of each channel in the process network. The MHS and
MSS files describing the platform are transformed into a corresponding design
using the Xilinx EDK front-end of the xSRM framework. Before the design is
expanded into a model point-of-contact components are automatically inserted
into the design.

The implementation schemes supported by the tool are defined as classes
compiled into the tool itself. Adding new implementation schemes is done
straightforward using class inheritance but does require a recompilation of the
tool. The supported implementation schemes will be presented in detail the
next section. In the tool, the optimization problem of step 2 is encoded and
solved as an MAXSMT problem using the Yices solver. The details of MAXSMT
and the encoding are presented in detail later in section 4.4.2.

4.4.1 Implementation Schemes

In this section, we will present a collection of implementation schemes that
we have developed for testing purposes. The analysis function of each scheme
is given as a query on the structure of the service relation model of the plat-
form presented in an implementation independent way using set constructor
notation. Each element in the set represents a possible implementation of the
channel with respect to the implementation scheme. The implementation func-
tions will not be presented explicitly. Instead, the resulting access modules will
be given as C code parameterized using the notation for synthesizing service
invocation presented previously in section 4.3.

The schemes presented here are divided into two categories: synthesized
channel implementation schemes that provides channels implemented as circular
buffers in memory and platform-provided implementation schemes that provides
channels based on existing channels (e.g. hardware FIFO’s) in a platform.

4.4.1.1 Synthesized Channel Implementation Schemes

The synthesized channel implementation schemes produces channels realized
as circular buffers in memory. A buffer is organized as a series of equally sized
tokens each of which is capable of containing a single message. Besides the
buffer a synthesized channel also consists of two control variables (read index
and write index). The read index holds the position of the first full token in the
buffer. Similarly, the write index holds the position of the first free token in the
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Figure 4.8 – Layout of a synthesized channel in memory. The tokens of the channel
has size n and the depth of the channel is m.

buffer. The layout of a channel in memory is shown in figure 4.8. The status
of the channel can be determined by comparing the two indices. If the read
and write indices are equal the channel is either full or empty. To distinguish
between the two situations the channel is extended with an additional token
which is never used. Now, the following expressions can be used to test the
status of a channel:

full(ch) = ((ch.wr_idx + 1) mod ch.depth = ch.rd_idx)
empty(ch) = (ch.wr_idx = ch.rd_idx)

Assuming that we use two times 32-bits to store the read and the write indices
a channel ch =

〈
p, c, size, depth

〉
requires size× (depth+1)+2×4 bytes of memory.

In the following, four different implementation schemes based on circular
buffers will be presented. The implementation schemes differs in how they
implement synchronization as shown in the table below.

Scheme Producer to consumer Consumer to producer
IS0 Polling Polling
IS1 Notification (function) Notification (function)
IS2 Notification (interrupt) Notification (interrupt)
IS3 Polling Notification (interrupt)
IS4 Notification (interrupt) Polling

Polling Synchronization. This implementation scheme provides a memory-
backed channel synchronized using polling. Listings 4.2 and 4.3 shows the tem-
plate C code for implementing the access modules of this scheme. The template
uses a number of functions shared with other implementation schemes. These
shared functions are given in listings 4.4.

In order for this scheme to applicable, we need (ch.depth+1)×ch.size+8 bytes
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#i n c l u d e <shared.c>
v o i d chx_write_init <RCMemory r, SCMemoryService s>() {

initialize_memory <r, s>();
}

v o i d chx_write <RCMemory r, SCMemoryService s>( v o i d * data) {
w h i l e (is_full <r,s>());
copy_to_token <r,s>(data);
inc_wr_idx <r,s>();

}

v o i d chx_write_handler () {
/* empty */

}

Listing 4.2 – Template for the write access module of IS0.

#i n c l u d e <shared.c>
v o i d chx_read_init () { /* empty */ }

v o i d chx_read <RCMemory r, SCMemoryService s>( v o i d * data) {
w h i l e (is_empty <rs,s>());
copy_from_token <rs,s>(data);
inc_rd_idx <rs,s>();

}

v o i d chx_read_handler () { /* empty */ }

Listing 4.3 – Template for the read access module of IS0.



4.4 The PAL Generation Tool 123

#d e f i n e RD_IDX_OFFSET 0 /* local in memory rs */
#d e f i n e WR_IDX_OFFSET 4
#d e f i n e BUFFER_OFFSET 8

v o i d initialize_memory <RCMemory rs, SCMemoryService s>() {
i n t i = 0;
f o r (; i < CH_DEPTH * CH_SIZE , i++) { /* clear buffer */

i n t address = BUFFER_OFFSET + i;
[s(wr, 1, brsc + address , 0)];

}
/* initialize read/write indices */
[s(wr, 4, brsc + RD_IDX_OFFSET , 0)];
[s(wr, 4, brsc + WR_IDX_OFFSET , 1)];

}

v o i d copy_to_token <RCMemory rs, SCMemoryService s>( v o i d * data) {
i n t wr_idx , i = 0;
[wr_idx = s(rd, 4, brsc + RD_IDX_OFFSET , 0)];
f o r (; i < CH_SIZE; i++) {

i n t address = BUFFER_OFFSET + (CH_SIZE * wr_idx) + i;
[s(wr, 1, brsc + address , data[i])];

}
}

v o i d copy_from_token <RCMemory rs, SCMemoryService s>( v o i d * data) {
i n t rd_idx , i = 0;
[rd_idx = s(rd, 4, brsc + WR_IDX_OFFSET , 0)];
f o r (; i < CH_SIZE; i++) {

i n t address = BUFFER_OFFSET + (CH_SIZE * rd_idx) + i;
[data[i] = s(rd, 1, brsc + address , 0)];

}
}

v o i d inc_rd_idx <RCMemory rs, SCMemoryService s>() {
[ i n t rd_idx = s(rd, 4, brsc + RD_IDX_OFFSET , 0)];
i n t new = (rd_idx + 1) % CH_DEPTH;
[s(wr, 4, brsc + RD_IDX_OFFSET , new)];

}

v o i d inc_wr_idx <RCMemory rs, SCMemoryService s>() {
[ i n t wr_idx = [s(rd, 4, rsl + WR_IDX_OFFSET , 0)];
i n t new = (wr_idx + 1) % CH_DEPTH;
[s(wr, 4, rsl + WR_IDX_OFFSET , new)];

}

BOOL is_full <RCMemory rs, SCMemoryService s>() {
[ i n t rd_idx = s(rd, 4, brsc + RD_IDX , 0)];
[ i n t wr_idx = s(rd, 4, brsc + WR_IDX , 0)];
r e t u r n (( wr_idx + 1) % CH_DEPTH) == rd_idx;

}

BOOL is_empty <RCMemory rs, SCMemoryService s>() {
[ i n t rd_idx = s(rd, 4, brsc + RD_IDX , 0)];
[ i n t wr_idx = s(rd, 4, brsc + WR_IDX , 0)];
r e t u r n wr_idx == rd_idx;

}

Listing 4.4 – Shared functions of the synthesized channel access modules. The
number of tokens and size of each token is given by means of the two definitions
CH_DEPTH and CH_SIZE.
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of memory in a memory accessible from both the producer and consumer points
of contact. In terms of analysis, this means that we need to query the platform
for RCMemory resources accessible through an instance of the SCMemoryService

service class at the two points-of-contact where the reading and writing pro-
cesses are mapped. Here we assume that the members of RCMemory resource
class represent bytes of memory and that members of the SCMemoryService are
parameterized using the four parameters

〈
op,w, addr, val

〉
. The analysis function

of the scheme is given below:

Definition 4.5 (IS0: Analysis)

IS0(m, ~m, ch) = {
〈
{
〈
r, (ch.depth + 1) × ch.size + 8

〉
}, { s }, ∅

〉
∈ PI :

r ∈ RCMemory.RES ∧

s ∈ SCMemoryService.S ∩ RA[r] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∩

(SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller])

}

�

Notice that we require for the memory resource to accessible through the same
instance of the SCMemoryService class at both points of contact. A more gen-
eral solution would allow the resource to be accessible through two possibly
different instances of the class. This would allow the implementation scheme
to be used with a wider range of different representations of memories. In the
interest of keeping things simple, however, we will refrain this.

The channel access protocol is inspired by a similar protocol used in a TTL
implementation for a Philip’s DSP platform, [94]. A key feature of the protocol
is that it ensures safe concurrent access to the channel buffer without the use of
synchronization primitives such as locks or semaphores [5]. This implementa-
tion scheme is used as a ”fallback” since it requires very little of the platform.

Notification Synchronization. The previous protocol used for synchroniza-
tion wastes computing cycles on busy waiting. A more efficient protocol would
use notification (e.g. via interrupts) to signal changes to the status of the chan-
nel thus allowing a process waiting for the channel to become either not-empty
or not-full to be suspended. This, however, is only possible if the waiting pro-
cess is hosted on a processor with an operating system providing the service of
blocking and if there exist a path in the platform for propagating the notification
between the two communicating processes.
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Figure 4.9 – Tri-processor system demonstrating accessability of interrupt handlers.

Notification is applicable in two slightly different scenarios. In the first sce-
nario, the two processes communicating via a given channel are mapped to the
same point-of-contact. In this case, notification can be done directly by means of
function calls since both processes exists in the same context. In the other sce-
nario, the two processes are mapped to different processors which complicates
things somewhat. In order for a channel access module of a local implementa-
tion on one processor to invoke a handler in a local implementation on another
processor there must be a path in the platform through which the call can be
facilitated. An obvious and efficient way of implementing this in a platform is
by means of interrupts. For a particular processor there are only a limited num-
ber of interrupt inputs available and each interrupt input can be used to invoke
at most one handler. This means that the interrupts must be treated as finite
resources. Furthermore, the set of interrupts of a processor may not necessarily
have the same accessibility. This is illustrated by means of a small example:

Example 4.5 Figure 4.9 shows a schematic of a tri-processor system, divided
into three sub-systems, demonstrating accessibility of interrupt handlers. The
sub-systems are fairly identical and connected to each other by means of a set of
interrupt signals. The single interrupt port of each processor is increased to 32
by means of interrupt controllers. The three ”bus-to-interrupt” controllers are
used for raising interrupts through a memory mapped bus interface. The topol-
ogy of the platform restricts the access to these controllers meaning that not all
of the processors can interrupt each other: The software running on processor
pe0 can raise interrupts in processor pe1 through bi0 The software running on
processor pe1 can raise interrupts in processor pe0 through bi1 and bi2 and in pe2
through bi2. Finally, the software running on processor pe2 can raise interrupts
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in itself and in processor pe0. Notice also that one of the interrupt ports of the
interrupt controller ic0 is used for connecting processor pe0 to a timer/counter.

The software running on the three processors includes interrupt handlers for
each of their 32 interrupt inputs. Using a Service Relation Model description of
the platform, we may compute the accessibility of these handlers. For the 32
interrupt handlers of Sub-system0 we get the following result:

Interrupt Accessible from
0–3 Sub-system1, Sub-system2
4–19 Sub-system1
20–30 Not used
31 Timer/Counter tc0

The example shows that the different handlers (interrupts) cannot be used ar-
bitrarily for synchronization purposes. �

For particular channel, we need to synchronize both the reading and the
writing. The synchronization of the reading and the writing can be done inde-
pendently of each other. For example, we may use notification to let the reader
process notify the writer process that the channel is no longer full and polling
to let the writer process notify the reader process that the channel is no longer
empty. The are a total of four different possibilities of combining polling and
notification.

A process may be notified that the status of a channel has been changed by
invoking the handler function associated with one of its access modules. Since
the invocation of a handler function happens asynchronously with respect to
the process it conceptually belongs it is necessary to synchronize the two. For
this purpose a (counting) semaphore is used. A semaphore is represented as a
resource RCSemaphore and three service classes:

〈〉 = SCSemInit (semid, val) semid, val ∈N
〈〉 = SCSemWait (semid) semid ∈N
〈〉 = SCSemPost (semid) semid ∈N

IS1: Two-way Notification via Function Invocation This implementation
scheme is used for implementing channels where both the producer and the
consumer are mapped to the same point of contact (~m[p] = ~m[c]). Channel
implementations based on this scheme are synchronized using sempahores and
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the notification is implemented by means of function invocation. The analysis
function of the implementation scheme is given below:

Definition 4.6 (IS1: Analysis)

IS1(m, ~m, ch) = {
〈
{
〈
r0, ch.depth × ch.size + 8

〉
, 〈r1, 1〉 , 〈r2, 1〉 }, { s0, s1, s2, s3, s4, s5, s6, s7 }, ∅

〉
:

r0 ∈ RCMemory.RES ∧

s0 ∈ SCMemoryService.S ∩ RA[r0] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∧

r1 ∈ RCSemaphore.RES ∧

s1 ∈ SCSemInit.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s2 ∈ SCSemWait.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s3 ∈ SCSemPost.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

r2 ∈ RCSemaphore.RES ∧

s4 ∈ SCSemInit.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧

s5 ∈ SCSemWait.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧

s6 ∈ SCSemPost.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧
~m[c].FHandler ∈ SA[~m[p].ContextAsCaller] ∧
~m[p].FHandler ∈ SA[~m[c].ContextAsCaller]

}

�

The scheme requires a total of three resources and eight services. The first re-
source r0 is the memory where the channel buffer and indices should be stored.
For this resource, we require that the memory must be accessible through an
instance of the CSMemoryService class at the Processor interface of the point
of contact to which the producer and consumer processors are mapped. The
other two resources r1 and r2 represent the two counting semaphores that are
needed to implement the synchronization. Both semaphore resources must be
accessible through instances of the SCSemInit, SCSemWait and SCSemPost ser-
vice classes at the ContextAsCaller interface of the point of contact.

The requirement that the producer and the consumer are mapped to the
same point of contact is modeled indirectly by requiring that the FHandler ser-
vice of ~m[c] is accessible at the ContextAsCaller interface of ~m[p] and vice
versa. Alternatively, we could simply have required that ~m[c] = ~m[p] but we pre-
fer the other formulation as it more explicitly captures our intent. Also, notice
that we do not use the additional token for channels implemented using this
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v o i d chx_write_init
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemInit s1 >() {

initialize_memory <r0, s0 >();
[s1(br1c, CH_DEPTH )]; /* initialize semaphore to CH_DEPTH */

}

v o i d chx_write
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemWait s2 >( v o i d * data) {

[s2(br1c)]; /* wait */
copy_to_token <r0, s0 >(data);
inc_wr_idx <r0, s0 >();
chx_read_handler (); /* notify */

}

v o i d chx_write_handler <RCSemaphore r1, SCSemPost s3 >() {
[s3(br1c)]; /* post */

}

Listing 4.5 – Template for the write access module of IS1.

v o i d chx_read_init <RCSemaphore r2, SCSemInit s4 >() {
[s4(br2c, 0)]; /* initialize semaphore to 0 */

}

v o i d chx_read
<RCMemory r0, RCSemaphore r2, SCMemoryService s0, SCSemWait s5 >( v o i d * data) {

[s5(br2c)]; /* wait */
copy_from_token <r0, s0 >(data);
inc_rd_idx <r0, s0 >();
chx_write_handler (); /* notify */

}

v o i d chx_read_handler <RCSemaphore r1, SCSemPost s6 >() {
[s6(br2c)]; /* post */

}

Listing 4.6 – Template for the read access module of IS1.

scheme. This is not necessary because the two semaphores are used to keep
track of the queue status.

Listing 4.5 and 4.6 gives the C code templates for implementing the access
modules of this scheme.

Scheme IS2 & IS3: One-way Notification via Interrupt. Implementation
scheme IS2 generates channels where the consumer-to-producer direction is
synchronized using notification and the producer-to-consumer direction is im-
plemented using polling. An implementations based on IS2 is possible if there
exists a memory in the platform accessible from both the reading and writing
processes, a semaphore accessible through a wait, a signal and an init service at
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the writer process and an interrupt handler in the writer which can be invoked
by the reader. The analysis function of IS2 is given below:

Definition 4.7 (IS2: Analysis)

IS2(m, ~m, ch) = {
〈
{
〈
r0, (depth + 1) × size + 8

〉
, 〈r1, 1〉 }, { s0, s1, s2, s3 }, { i }

〉
∈ PI :

r0 ∈ RCMemory.RES ∧

s0 ∈ SCMemoryService.S ∩ RA[r0] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∩

(SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller]) ∧

r1 ∈ RCSemaphore.RES ∧

s1 ∈ SCSemInit.S ∩ RA[r1] ∩ SA[~m[p].ContextAsCaller ∧

s2 ∈ SCSemWait.S ∩ RA[r1] ∩ SA[~m[p].ContextAsCaller ∧

s3 ∈ SCSemPost.S ∩ RA[r1] ∩ SA[~m[p].ContextAsCaller ∧

i ∈ ~m[p].IHandlers ∩ (SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller])

}

�

Implementation scheme IS3 is the opposite of IS2 and uses notification in
the producer-to-consumer direction and polling in the consumer-to-producer
direction. The analysis function of IS3 is given below:

Definition 4.8 (IS3: Analysis)

IS3(m, ~m, ch) = {
〈
{
〈
r0, (depth + 1) × size + 8

〉
, 〈r1, 1〉 }, { s0, s1, s2, s3 }, { i }

〉
∈ PI :

r0 ∈ RCMemory.RES ∧

s0 ∈ SCMemoryService.S ∩ RA[r0] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∩

(SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller]) ∧

r1 ∈ RCSemaphore.RES ∧

s1 ∈ SCSemInit.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s2 ∈ SCSemWait.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s3 ∈ SCSemPost.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

i ∈ ~m[c].IHandlers ∩ (SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller])

}

�
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The C code templates for these two implementation schemes are very similar
and mere hybrids of the templates used for IS0 and IS1 and have been moved
to appendix C.

IS4: Two-way Notification (via Interrupt). The last of the synthesized chan-
nel implementation schemes is IS4 which implements synchronization using
notification in both directions.

Definition 4.9 (IS4: Analysis)

IS4(m, ~m, ch) = {
〈
{
〈
r0, ch.depth × ch.size + 8

〉
, 〈r1, 1〉 , 〈r2, 1〉}, {s0, s1, s2, s3, s4, s5, s6, s7}, {i0, i1}

〉
:

~m[p] , ~m[c] ∧

r0 ∈ RCMemory.RES ∧

s0 ∈ SCMemoryService.RES ∩ RA[r0] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∩

(SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller]) ∧

r1 ∈ RCSemaphore.RES ∧

s1 ∈ SCSemInit.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s2 ∈ SCSemWait.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

s3 ∈ SCSemPost.S ∩ RA[r1] ∩ SA[~m[c].ContextAsCaller ∧

r2 ∈ RCSemaphore.RES ∧

s4 ∈ SCSemInit.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧

s5 ∈ SCSemWait.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧

s6 ∈ SCSemPost.S ∩ RA[r2] ∩ SA[~m[p].ContextAsCaller ∧

i0 ∈ ~m[c].IHandlers ∩ (SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller]) ∧

i1 ∈ ~m[p].IHandlers ∩ (SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller])

}

�

Notice that IS3 is only applicable if ~m[p] , ~m[c] meaning that the producer
and the consumer are mapped to different points of contacts. This is done to
keep the number of possible channels down. If this scheme could be used for
channels where both the producer and the consumer are mapped to the same
point of contact then the number of possible implementations is

(h
2
)
× m × s2

where h is the number of usable handlers, m the number of usable memory
resources and s the number of usable semaphore resources. The presence of
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the binomial coefficient in the equation means that the number of channels
will grow rapidly when h is increased. For a channel with 32 usable interrupt
handlers, 1 memory resource and 1 semaphore resource there will be a total
of 496 possible implementations that differs only on the way the two interrupt
handlers are chosen.

Using interrupts to implement notification between two processes mapped
to the same processor must be considered inferior to using function invocation
and, thus, the previously presented implementation scheme IS1, for implement-
ing two-way notification via function invocation, should be used instead.

The C templates used for generating the access modules used with IS4 is very
similar to those used for IS1 and can be found in appendix C. Finally, notice that
we do not use the additional token for channels implemented using this scheme.
This is not necessary because the two semaphores are used to keep track of the
queue status.

4.4.1.2 Platform Provided Implementation Schemes

A platform provide channel is a channel that exists in the platform such as a
point-to-point link between two processors or a message queue provided by an
operating system. It is important to consider such channels as possible candi-
dates for realizing the channels of the application for two reasons: First, since
the channels are already part of the system it makes sense to use them before
introducing synthesized software queues. Second, it is not always possible to
realize a channel as a synthesized software queue and in these cases it may be
possible to use a platform provided channel instead. For a given platform, there
are only a fixed number of platform-provided channels available and, conse-
quently, they need to be treated as resources.

We assume that platform-provided channels are represented by resources
belonging to the parameterized resource class RCQueue<D,S> where the param-
eters D and S respectively describes the depth and size of the member queues.
A particular channel ch =

〈
p, c, size, depth

〉
can potentially be implemented by

resources belonging to the resources classes where D ≥ depth and S ≥ size.

We will consider two slightly different kinds of platform provided imple-
mentation schemes. One scheme will be used for implementing channels using
low-level processor-to-processor FIFO’s and the other for implementing chan-
nels using software message queues. The two schemes differs mainly in how
the queue is accessed.
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v o i d chx_write_init <>() { /* empty */ }

v o i d chx_write <RCQueue <D,S> r, SCEnqueue32NoBlocking s0 >( v o i d * data) {
i n t i = 0;
f o r (; i * 4 < CH_SIZE; i++) {

w h i l e (![r->s0((( INT32*)data)[i])]);
}

}

v o i d chx_write_handler <>() { /* empty */ }

Listing 4.7 – Template for the write access module of IS5.

Scheme IS5: 32-bit Enqueue/Dequeue, No Blocking. This implementation
scheme is based on queues accessed via services representing non-blocking en-
queue/dequeue operations with a capacity of 32-bits:

〈success〉 = SCEnqueue32NoBlocking (val) success ∈ {true, false}, val ∈ Z32
〈success, val〉 = SCDequeue32NoBlocking () success ∈ {true, false}, val ∈ Z32

Because the size of the tokens is fixed at 32-bit this scheme will split larger
tokens into chunks of 32-bit. This means that for the channel ch =

〈
p, c, size, depth

〉
we need a queue resource with at least depth depth× size and size ≥ 4 bytes. The
analysis function of this implementation scheme is given below and the C tem-
plates for the channel access modules of this scheme are shown in listings 4.7
and 4.8.

Definition 4.10 (IS5: Analysis)

IS4(m, ~m, ch) = { 〈 { 〈r, 1〉 }, { s0, s1 }, 〉 ∈ PI :

r ∈ RCQueue<D,S>.RES ∧D ≥ ch.depth × ch.size ∧ S ≥ 4 ∧

s0 ∈ SCEnqueue32NoBlocking.S ∩ RA[r] ∩

(SA[~m[p].Processor] ∪ SA[~m[p].ContextAsCaller) ∧

s1 ∈ SCDequeue32NoBlocking.S ∩ RA[r] ∩

(SA[~m[c].Processor] ∪ SA[~m[c].ContextAsCaller])

}

�

Scheme ISy: Unlimited Enqueue/Dequeue, Blocking. The target of this
scheme is (software) message queues with unlimited capacity providing block-
ing enqueue/dequeue operations. An example of such a queue, represented in
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v o i d chx_read_init <>() { /* empty */ }

v o i d chx_read <RCQueue <D,S> r, SCDequeue32NoBlocking s1 >( v o i d * data) {
i n t i = 0;
f o r (; i * 4 < CH_SIZE; i++) {

BOOL success = FALSE;
w h i l e (! success) {

[<success , val > = r->s1((( INT32*)data)[i])];
}

}
}

v o i d chx_read_handler <>() { /* empty */ }

Listing 4.8 – Template for the read access module of IS5.

var0 : 
Data/Context

ContextAsCallee : 
Callee/Context

intr0...m: 
Callee/Caller

intr0...m: 
Callee/Caller

ihandler0...mihandler0...mihandler0...m

Intr0...m: 
Callee/Caller

ContextAsCaller : 
Context/Caller

Point-of-contact

Processor : 
Processor/SWE

Processor
Unbound 
interrupt 
handlers

Callee0 : 
Callee/Context

Enqueue : 
SCEnqueueUnlimitedBlocking

Processor : 
Processor/SWE

EcService

Callee1 : 
Callee/Context

Dequeue : 
SCDequeueUnlimitedBlocking

Queue<1024, 2> : RCQueue

Queue<64, 10> : RCQueue

Callee0 : 
Callee/Context

Caller0 : 
Context/Caller

Callee0 : 
Callee/Context

Caller0 : 
Context/Caller

Caller0 : 
Context/Caller

Caller0 : 
Context/Caller

Callee0 : 
Callee/Context

Callee0 : 
Callee/Context

Context

OS

Figure 4.10 – Partial model showing a software message queue provided by an
operating system component.

the Service Relation Model, is shown in figure 4.10. In the figure, the software
queue is modeled as a resource provided by a component representing an oper-
ating system and exported to the execution context associated with the proces-
sor through two services representing C functions for enqueuing and dequeuing
data:

〈〉 = SCEnqueueUnlimitedBlocking
(
ptr

)
ptr ∈ c pointer

〈〉 = SCDequeueUnlimitedBlocking
(
ptr

)
ptr ∈ c pointer
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v o i d chx_write_init <>() { /* empty */ }

v o i d chx_write <RCQueue <D,S> r, SCEnqueueUnlimitedBlocking s0 >( v o i d * data) {
[r->s0(data )];

}

v o i d chx_write_handler <>() { /* empty */ }

Listing 4.9 – Template for the write access module of IS6.

v o i d chx_read_init <>() { /* empty */ }

v o i d chx_read <RCQueue <D,S> r, SCDequeueUnlimitedBlocking s1 >( v o i d * data) {
[r->s1(data )];

}

v o i d chx_read_handler <>() { /* empty */ }

Listing 4.10 – Template for the read access module of IS6.

Definition 4.11 (IS6: Analysis)

IS6(m, ~m, ch) = { 〈 { 〈r, 1〉 }, { s0, s1 }, 〉 ∈ PI :

r ∈ RCQueue<D,S>.RES ∧D ≥ ch.depth ∧ S ≥ ch.size ∧

s0 ∈ SCEnqueueUnlimitedBlocking.S ∩ RA[r] ∩

SA[~m[p].ContextAsCaller ∧

s1 ∈ SCDequeueUnlimitedBlocking.S ∩ RA[r] ∩

SA[~m[c].ContextAsCaller]

}

�

As can be seen, the analysis used for this implementation scheme is almost iden-
tical to the analysis used for the previously presented scheme targeting FIFO’s
with 32-bit data capacity. The C templates for the read and write access modules
of the implementation scheme are given in 4.9 and 4.10.

4.4.2 Channel Implementation Selection

In this section, we will present a formulation of the optimization as a MAXSMT
problem using the Yices SMT solver.
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4.4.2.1 A Short Introduction to MAXSMT and Yices

MAXSMT is an extension to SMT that allows for the encoding of optimization
problems, [69]. A MAXSMT problem consists of a number of clauses, called as-
sertions, each of which is associated with a weight. A clause is a first-order logic
formula where the predicates may be binary-valued functions over non-binary
variables. The type of functions and variables allowed is defined by the theories
supported (e.g. linear arithmetics, bit vectors, uninterpreted functions). A solu-
tion to a MAXSMT problem is a valuation of the variables so that the sum of the
weights associated with clauses falsified by the valuation is minimized. A more
appropriate name for this class of problems would be ”weighted MINSMT” but
since the name MAXSMT is used by the Yices solver – the only solver, that we
know of, that is capable of evaluating these kind of problems – we will stick
with the name MAXSMT.

Example 4.6 As a small example of a MAXSMT problem consider the four
clauses given below:

assert_w(¬a, 8), assert(b ∨ c→ a), assert_w(a ∧ b, 3), assert_w(c, 4)

Each of the four clauses with the exception of the second consists of a formula
and a weight. The second clause does not have a weight associated with it
meaning that it must be true. Notice that the conjunction of the four formulas
alone is unsatisfiable. The solution with the minimal cost of 7 is achieved by
choosing a, b, c = f alse which falsifies clauses 3 and 4.

To keep the example simple only boolean logic was used. An important
feature of MAXSMT, however, is that it supports the mixing of multiple different
theories. �

MAXSMT is quite expressive but computationally expensive. The MAXSMT
problem is a generalization of the SAT problem which is known to be NP com-
plete. For this reason, MAXSMT is at least as hard. Although MAXSMT will most
likely be too slow to handle larger problems it was chosen because its express-
ibility. This is acceptable because our primary focus is to show the worth of the
Service Relation Model.

4.4.2.2 Problem Encoding

The formulation uses a number of variables to describe whether or not a partic-
ular possible implementation should be chosen as an actual implementation and
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to represent the allocation of resources and interrupt handlers to possible imple-
mentations. To simplify the presentation, these variables are ordered into three
groups where a member variable of a group can be retrieved using a map-like
notation. The three groups are:

s[pi] boolean Possible implementation pi chosen as an actual implementation
→

r [pi, r] integer Quantity of resource r allocated to possible implementation pi
→

h [pi, h] boolean Handler h allocated to possible implementation pi

We implicitly require that the value of all
→

r [pi, r] variables must be non-negative.

In addition to the variables, the optimization problem consists of a num-
ber of assertions. The first of these assertions, 4.2, encodes the requirements
for each possible implementation in terms of resources and handlers and the
requirement that each channel must have exactly one actual implementation:

assert
⊕
ch∈CH

 ∧
pi∈PI(ch)

s[pi] ∧
∧

rq∈pi.RQ

(
→

r [pi, rq.r] = rq.q
)
∧

∧
h∈pi.H

→

h [pi, h]


 (4.2)

Here PI : CH → P(PI) is a function returning the set of possible implemen-
tations of a given channel. The next two assertions 4.3 and 4.4 state that, for
each resource in the platform, the amount of resource allocated to each possible
implementation cannot exceed the total amount of resource available and that
each interrupt handler can at most be allocated to one possible implementation.

assert
∧
h∈H

 ⊕
pi∈X(h)

(
→

h [pi, h]
)
⊕

∧
pi∈X(h)

¬
→

h [pi, h]

 (4.3)

assert
∧
r∈R

r.q ≥
∑

pi∈T(r)

(
→

r [pi, r]
) (4.4)

Here X : H → P(PI) is a function returning the set of possible implementations
that requires a given handler and T : R → P(PI) is a function returning the set
of possible implementations which requires some quantity of a given resource.

Collectively, the three assertions 4.2, 4.3 and 4.4 encodes the constraints on
the decision variables but they do not comprise an optimization problem. By
adding additional weighted assertions modeling the cost of picking a particular
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possible implementation as the actual implementation we get an optimization
problem. We will consider two slightly different ways of modeling the optimiza-
tion problem. First, we consider a scenario where each possible implementation
is associated with a cost. In Yices MAXSMT, this can be modeled by including a
weighted assertion of the following form for each possible implementation pi:

assert_w
(
¬s[pi], costpi

)
(4.5)

where costpi is the cost associated with choosing pi as an actual implementa-
tion. Alternatively, we may use the same cost for all possible implementations
based the same implementation scheme. This can be done by adding a weighted
assertion of the following form for each channel:

assert_w

¬
 ∨

pi∈PI(ch,is)

s[pi]

 , costis

 (4.6)

where PI is a function returning all possible implementations of channel ch
based on implementation scheme is and costis is the cost of choosing an actual
implementation based on the is scheme.

Obviously, 4.5 provides the most flexibility but it is also computationally
more demanding than 4.6 because, in general, the number of possible imple-
mentations will out number the set of implementation schemes many fold.

4.4.2.3 Experiments

The primary motivation for using MAXSMT for optimization is its expressive-
ness. The encoding of the optimization problem is, as can be seen, straightfor-
ward in MAXSAT. Also, MAXSAT is not a meta heuristic and will find the optimal
solution. Unfortunately, MAXSMT is also computationally very demanding with
a worst-case execution time that increases exponentially with the size of the
problem. The MAXSMT problem is only supported by a handful of solvers. Most
of these solvers are proof-of-concept tools and does not meet the requirements
for this project. The Yices solver was chosen because it was the only MAXSMT
solver that supports bit vectors and because it provides an API enabling an easier
integration with the xSRM framework.

In an attempt at quantifying how large problems can be handled with Yices
MAXSMT using the described encoding, a set of small experiments have been
carried out. In the experiments, the time required by Yices to solve problems of
increasing complexity has been measure. A problem consists of n channels each
of which has m possible implementations that does not require any resources.
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(a) 10 to 17 channels (b) 10 to 17 channels

(c) 10 to 15 channels (d) 10 to 15 channels

Figure 4.11 – Measured execution time. The measurements depicted by the graphs
can be found in appendix D.

The graphs of Figures 4.11(a) and 4.11(b) shows the execution time mea-
sured for m ∈ [10, 17] and n ∈ [10, 100] using the cost per possible implemen-
tation encoding. The data forming the basis for the graphs can be found in
appendix D. The problems with 16 and 17 channels all ran about 20-30 min-
utes before Yices reported the problem as being ”undefined”. This value is re-
turned when Yices gives up trying to find a solution. When this happens can
be controlled indirectly by means of two parameters ”max conflicts in MAXSMT
iterations” and ”max number of iterations in MAXSMT”. For the experiments,
they were both arbitrarily set to 100000. To check that this was indeed the
problem, another experiment with 17 channels and 20 possible implementa-
tions were run where the value of both parameters were set to 1000000. This
experiment returned the value true, meaning that a solution was found, after 49
minutes and 57 seconds. Another test with 20 channels each with 20 possible
implementations took 10 hours and 35 minutes before Yices gave up.

Figures 4.11(c) and 4.11(d) shows the measured execution time for the
problems where a solution was found. The figure clearly shows that the execu-
tion time is exponential in the number of channels. Furthermore, the execution
time quickly ramps up over a quite small interval meaning that the approach is
sensitive to even small increases in complexity. The execution time for problems
with less than 11 channels cannot be measured accurately because of the timer
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resolution.

The variance in the data is believed to be due to ”random” restarts and
other average-case optimizations employed by Yices. It has, however, not been
possible to verify this due to the lack of detailed documentation of the Yices tool
in general and its MAXSMT features in particular.

The experiments shows that the MAXSMT approach is only capable of han-
dling relatively small problems. One thing that must be kept in mind though
is that the efficiency of the solver is very much dependent on how the effect
of the average case optimizations and, more importantly, on minimizing the
search space by leaning from conflicts. Since the choice of implementation
for the channels in the problems of the experiment does not have any inter-
dependencies little can be learned and thus the search space cannot be mini-
mized. In this sense, the problems of the experiment could be considered the
worst possible problems in regards to the expected execution time of the solver.
Again, this is purely speculative as a description of the MAXSMT features of
Yices is not available.

The conclusion is that Yices MAXSMT is not a practical way of solving the
optimization problem as it scales horribly. All of the experiments used the cost
per implementation scheme encoding. The alternative, cost per possible imple-
mentation, has significantly more weighted assertions and other experiments
(not included here) show that this causes a significant increase in the execution
time. A more practical approach to solving the optimization problem could be
to employ the use of meta heuristic methods such as simulated annealing [59],
tabu search [41] or evolutionary algorithms [14]. Using such methods the com-
putation time can be bounded at the cost a getting a potentially sub-optimal
result. This will most likely be acceptable for the purpose of the procedure.

4.5 Case Study: MJPEG

To demonstrate the procedure we will use a realistic, but still relatively simple,
application. The application is an MJPEG encoder that has been used exten-
sively in the literature for demonstrating similar and related procedures, tools
and methodologies involving KPN’s [63, 78, 34, 91]. The MJPEG application
will be mapped to a custom multicore hardware platform which will exercise
many of the implementations schemes described earlier. It is important to note
that the focus of this case study is to show the versatility of our procedure em-
phasizing the analysis capabilities of the Service Relation Model. This focus has
motivated the choice of platform instance and mapping rather than attempting
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Figure 4.12 – The MJPEG encoder process network. The mapping of the processes
to the processors of the platform depicted in figure 4.13 is indicated using the
shaded regions.

Ch. Source Sink C/C++ Type Size Depth
0 Video_in DMUX TBlockData 256 2
1 Video_in DMUX THeaderInfo 16 2
2 DMUX Video_out TFrameSize 8 10
3 DMUX RGB2YUV TBlockData 256 10
4 DMUX DCT TBlockData 256 10
5 DMUX DCT TBlockType 4 10
6 DMUX Control TNumOfBlocks 4 10
7 RGB2YUV DCT TBlockData 256 10
8 DCT Quantizer TBlockData 256 10
9 Quantizer VLE TBlockData 256 10

10 Control Quantizer TCommand 4 10
11 Control Quantizer TQTables 256 10
12 VLE Control TStatistics 2060 2
13 Control VLE TCommand 4 10
14 Control VLE THuffTables 4112 2
15 VLE Video_out TBitStreamPacket 4 10
16 VLE Video_out TPacketFlag 4 10
17 Control Video_out TTablesInfo 2448 2

Table 4.1 – Channels of the MJPEG application.

to optimize the implementation in terms of performance.

Figure 4.12 shows a graphical representation of the MJPEG application. The
application consists of 8 processes and 18 channels. Table 4.1 shows additional
information about the channels.
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Figure 4.13 – Schematic of the MJPEG multicore platform.

4.5.1 The Platform

Hardware. Figure 4.13 shows a schematic of the target platform, created us-
ing Xilinx Platform Studio, we want to map the MJPEG application to. The
schematic only contains the most important components, several interface con-
troller have been omitted. The platform is divided into three interconnected
sub-systems (ss0, ss1, ss2) each of which contains a single Microblaze 32-bit
RISC processor (pe0, pe1, pe2). Each processor is connected to a local memory
(mem0, mem1, mem2) that cannot be accessed from anywhere else. Besides the
processor and the local memory, sub-system ss0 also contains a bus bus0 and a
bus-mounted timer/counter tc0 that may generate interrupts for the processor
pe0. Sub-system ss2 contains a bus bus2, a timer/counter tc2 and two interrupt
controllers ic0 and ic2 who’s purpose will be explained momentarily.

The processors of sub-systems ss0 and ss1 are connected point-to-point by
means of two fast simplex links ( f sl0, f sl1). Both links are configured so that
pe1 acts as master and pe0 as slave meaning that it is only possible to transfer
data in one direction from pe1 to pe0. Sub-systems ss0 and ss2 are connected by
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Figure 4.14 – The software stacks of the three processors pe0, pe1 and pe2 in the
MJEPG platform. The operating system of pe0 is configured with support for 20
semaphore objects and 10 x message queues with a depth of 10 and token size
of up to 256 bytes. The operating system of pe2 is configured with support for 4
semaphore objects.

means of a shared memory (connected to both bus0 and bus2) and a bus-to-bus
bridge enabling processor pe0 to access bus2 and its peripherals.

The purpose of the two interrupt controllers ic0 and ic2 is to provide proces-
sor pe0 with the ability to generate interrupts on processor pe2. Each interrupt
controller consists of a number of interrupt inputs and a handful of control reg-
isters accessible through the bus slave interface. One of these control registers
can be used to signal interrupts via software (i.e. by asserting the bit that cor-
responds to the interrupt source) provided that the controller is in a special
”software test” mode. In this mode, all the actual (physical) interrupt inputs
are, however, ignored. Using two cascaded interrupt controller we are able to
have both software generated and physical interrupts. The controller ic0 is in
the ”software test” mode and can be used to generate interrupts on one of the
inputs of ic2 which is in ”normal mode”. Physical interrupts are needed because
tc2 must be able to interrupt processor pe2. The number of interrupt inputs on
the interrupt controller ic0 has been limited to 4.

Software. The software part of the platform is depicted in Figure 4.14. All the
software stacks include a low-level hardware abstraction layer in the form of a
set of C files providing easier access to the underlying processor and connected
peripherals. This hardware abstraction layer is automatically generated by the
Xilinx tool Libgen (”Library Generator”) for each processor in the platform in-
stance. For two of the processors, pe0 and pe2, the Xilkernel operating system
is used which provides the service of basic time-sliced multitasking. In addition
to multitasking, each operating system can be configured to also include several
other services such as message queues and semaphores. The operating system
of processor pe0 is configured with both message queues and semaphores where
as the operating system of processor pe2 is only configured with semaphores.
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The number of such resources provided by each operating system is also shown
in figure 4.14. The processor pe1 runs ”standalone” meaning that it does not
have an operating system and thus can only host a single process.

Mapping. The mapping of the processes to the points-of-contact’s in the plat-
form was shown in Figure 4.12. Notice that the chosen mapping is feasible
meaning that each channel should have at least one possible implementation
according to one of the implementation schemes and that multiple processes
are only mapped to points-of-contacts that can actually host more than one pro-
cess.

The table below shows the cost associated with choosing an implementation
based on each of the implementation schemes:

Scheme Cost
IS0 Synthesized, Polling only 50
IS1 Synthesized, Two-way notification via interrupt 25
IS2 Synthesized, Polling+notification 30
IS3 Synthesized, Polling+notification 30
IS4 Synthesized, Two-way notification via function invocation 20
IS5 Platform-provided, FIFO, 32-bit, No Blocking 10
IS6 Platform-provided, FIFO, Unlimited, Blocking 15

The cost associated with each of the implementation schemes is to be considered
an abstract measure that could refer to a concrete cost in terms of a metric or
a combination of metrics such as energy, memory and/or performance. As far
as the procedure and the case study is concerned, the cost is used solely for
prioritization.

4.5.2 Results

Table 4.2 shows the outcome of the analysis portion of the procedure. For each
channel, the number of possible implementations based on each of the seven
implementations schemes are listed. All channels with the exception of chan-
nels ch0 and ch1 have at least one possible implementation using the synthesized
memory channel scheme based on polling IS0. The channels with two possible
IS0 implementations are all channels where both the reader and writer pro-
cesses are located on one of the pe0 or pe1 processors. Both processor have, in
addition to their local memories, also access to a shared memory. No channels
have any possible implementations using implementation scheme IS4 (two-way
notification via interrupts). Channels ch0 and ch1 can only be implemented using
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ch0 ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 ch11 ch12 ch13 ch14 ch15 ch16 ch17

IS0 0 0 1 2 2 2 1 2 2 1 1 1 2 2 2 2 2 2

IS1 0 0 0 2 2 2 0 2 2 0 0 0 2 2 2 2 2 2

IS2 0 0 0 0 0 0 0 0 0 0 4 4 8 8 8 8 8 8

IS3 0 0 4 0 0 0 4 0 0 4 0 0 8 8 8 8 8 8

IS4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IS5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IS6 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0

total 1 2 5 5 5 5 5 5 5 5 5 5 20 20 20 20 20 20

Table 4.2 – The number of possible implementations per implementation scheme
of each of the channels in the MJPEG application. The choice of the actual imple-
mentation of each channel is indicated by the shaded cells.

Resource Type Channel (usage) Used/Available

f sl0.Queue RCQueue<512,4> ch0(1) 1/1

f sl1.Queue RCQueue<32,4> ch1(1) 1/1

OS0.MessageQueue RCQueue<10,256> ch3(1), ch4(1), ch5(1), ch7(1), ch8(1) 5/10

mem0.Memory RCMemory none 0/8192

mem1.Memory RCMemory none 0/8192

mem2.Memory RCMemory ch12(6188), ch13(52), ch14(12344), 23588/32768
ch15(52), ch16(52), ch17(4904)

mem3.Memory RCMemory ch2(88), ch6(48), ch9(2568), 5580/8192
ch10(52), ch11(2824)

OS0.Semaphore RCSemaphore ch2(1), ch6(1), ch9(1) 3/20

OS2.Semaphore RCSemaphore ch16(2), ch17(2) 4/4

poc2.IHandler0.IHandler IHandler ch2(1) 1/1

poc2.IHandler1.IHandler IHandler ch6(1) 1/1

poc2.IHandler2.IHandler IHandler ch9(1) 1/1

poc2.IHandler3.IHandler IHandler ch12(1) 1/1

Table 4.3 – Resource Usage

the platform provided implementation scheme IS5. Channel ch1 can be imple-
mented using both of the FSL FIFO’s where as ch0 can only be implemented
using one of them because the other one does not meet its minimum size/depth
requirements.

The number of possible channels in the example have deliberately been kept
low to ensure that the resulting optimization problem can be solved relatively
quickly.



4.6 Related Work 145

The choice of the actual implementation of each channel is also shown in
Figure 4.2. The shaded cells shows which implementation scheme the chosen
actual implementation of each channel belongs to. Table 4.3 shows the distri-
bution of resources of the platform between the chosen actual channel imple-
mentations.

There are a total of six channels between processes mapped to pe2. Four of
these channels (ch12, ch13, ch14, ch15) have been chosen for implementation us-
ing the memory-backed polling implementation scheme IS0 and the other two
(ch16, ch17) using the two-way notification via function invocation implemen-
tation scheme IS4. The limited number of available semaphores at pe2 means
that at most two channel can be implemented using IS4. The buffer and con-
trol of all six channels have been placed in the local memory mem2 of pe2. This
makes good sense as the alternative, placing them in the shared memory mem3,
would, all things equal, lead to a less optimal solution. This is purely incidental,
however, as the alternative would also have been a valid solution.

The optimization problem used to determine the actual implementation has
18 channels and 173 possible implementations. Solving the optimization prob-
lem took 22 minutes and 40 seconds (1340 seconds). Notice that Yices required
significantly less time for solving this optimization problem compared to the
closest of the synthetic problems of the experiment from section 4.4.2.3. This
strengthens our belief that the average case running time of Yices is substantially
less than what the experiment with the synthetic examples showed.

The case study demonstrates the capabilities of the proposed procedure and
shows the usefulness of the Service Relation Model as a means for analyzing
complex systems.

4.6 Related Work

In this section, we will briefly compare our procedure to other approaches to
automated code and abstraction layer generation described in the literature.

In [94] the authors present a programming model called Task Transaction
Level (TTL). TTL is based on a process network MoC where tasks (processes)
communicate with each other using bounded FIFO buffers (channels). In their
approach, the API implementing the TTL interface is manually implemented
bottoms-up on a per-platform basis. The channel implementation scheme used
by our tool is inspired by the scheme used in the TTL implementation described
in [94]. TTL includes a number of different communication and synchronization
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primitives in addition to the (simple) blocking read and write supported by
our tool. Implementing TTL for a platform is essentially a bottoms-up manual
undertaking where as our procedure is a top-down automatic approach. TTL is
mention here because it has served as a source of inspiration for our work.

In [27] the authors propose a design flow for implementing applications
given as KPN’s onto heterogeneous multi-processor systems based on the use of
the Metropolis [13] tool. The proposed design flow is divided into four steps.
In the first step, reconfiguration is applied to the platform and the application.
For the platform reconfiguration means choosing a concrete platform from a set
of available platforms. For the application reconfiguration means applying clus-
tering to the process network. In the second step, the application is mapped to
the platform. This is achieved by solving an optimization problem. In the third
step, memory and buffer resources are allocated to the channels of the process
network. In the final step, potential run-time deadlocks are addressed using
runtime detection and resolution strategies. As we understand it, the proposed
design flow is hugely a manual undertaking. Metropolis supports the design
flow by providing a formal representation of both application and platform and
by providing simulation data used to make decisions.

The aim of the SynDEx tool [80] is to generate optimized implementations of
dataflow-based applications from descriptions of an algorithm and an architec-
ture (platform). SynDEx supports a particular methodology for distributed real-
time processing called the Adequation Algorithm Architecture (AAA) methodol-
ogy, [86, 42]. Adequation means ”efficient mapping” which illustrates the pri-
mary focus of the tool: to determine an optimal static or offline mapping and
scheduling of an algorithm onto a platform. The result of applying the tool is
a file for each processing element, called an executive, containing macro code
that may be expanded into code suitable for that particular processing element
and its interconnects. The executive of a processing element consists partly of
macros describing the part of the application mapped to that processing ele-
ment and partly of reusable macros for doing computation and communication
on the processing element. Semaphores are used to ensure that the implemen-
tation is guaranteed to be dead-lock free. The model of architectures used by
SynDEx are much more detailed than the Service Relation Model descriptions
used by our tool. The extra detail is primarily needed to support reasoning
about non-function aspects – something which our procedure does not consider.
The SynDEx tool does not support as wide a range of different implementations
as our procedure.

In [44] Guerin et al. proposes a design flow and associated tool set for gen-
erating application software for heterogeneous multi-processor systems. The
flow takes as input a SimuLink application and a mapping and produces C code
for each processor in the platform. The tools are based on a component-based
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approach where an API is used to de-couple the application from a library of
different operating systems, communication schemes and hardware abstraction
layers. The proposed design flow does not employ analysis to determine the
capabilities of the platform. Instead, the choice of operating systems and com-
munication schemes and other design decisions must be made by the designer
and is part of the input. The components of the library are dependent on the
platform.

The StepNP system-level exploration platform for network processors [75]
and its associated MultiFlex multi-processor programming environment [76] is
an example of a combination of platform and tool that generates abstraction lay-
ers. The tool is capable of generating abstraction layers suitable for a symmetric
multi-processing (SMP) model using shared memory and a distributed system
object (DSOC) message passing programming model. This approach is limited
by the underlying assumption that all processors in the system are connected to
the same central interconnect. Also, it relies on platform-provided services in
the form of hardware accelerators for message passing and task scheduling.

The tool Embedded System-level Platform synthesis and Application Mapping
(ESPAM), part of the Daedalus design flow [90, 71], spans the entire design
process from application and platform specification to FPGA implementation
[70]. The tools very elaborate front-end allows applications to be specified in a
restricted subset of the C programming language. ESPAM can extract possible
parallelism, in the form of a KPN, from a sequential C program. Given the KPN,
the tool is capable of determining an upper bound on the buffer size for each
channel in the network such that deadlocks will be avoided without the use
of detection and recovery mechanisms. The resulting process network can be
mapped to multi-processor platforms also created using ESPAM’s platform spec-
ification and generation tools. The tool allows the designer to assemble multi-
processor platforms using a fairly small set of predefined components. More-
over, the tool only supports a couple of different platform topologies. ESPAM
is an excellent example of a tool where limitations in the supported topologies
and components are used to justify assumptions needed to simplify software
synthesis tasks.

In [6] the authors presents a model based design methodology for software
synthesis using a tool set called Embedded Systems Environment (ESE). The
methodology starts with an application given as a set of C processes communi-
cating via abstract channels mapped to a platform given as a netlist of system-
level IP cores. A transaction level model is generated to validate the commu-
nication between processes mapped to different cores. This model is further
refined into a Pin-Cycle accurate model which includes the C code realizing the
communication. The authors reports a productivity gain of over 300 percent as
a result of using automated software synthesis. This approach is in many ways
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similar to ours but there are still a few notable differences. The model of a plat-
form used is somewhat more limited than the Service Relation Model and, as a
consequence, cannot be used to express as broad a range of different platforms.
Another difference is that they do not support the concept of platform provided
channels.

4.7 Discussion & Summary

In this chapter, we have presented our procedure for generating an abstraction
layer implementing the communication infrastructure of an application mod-
eled as a process network. At the heart of our procedure is the Service Relation
Model and its associated analysis method for analyzing the flow and availability
of services in systems composed of components. We have shown how informa-
tion retrieved from analyzing a platform described using the model can be used
for deriving concrete channel implementations based on abstract implementa-
tion schemes.

The procedure presented in this chapter is a vastly improved version of the
procedure presented in a previous publication of ours [89]. The procedure
of the publication supported only the memory-backed polling implementation
scheme and thus avoided many of the problems associated with resources. One
contribution of that paper, that has not been mentioned here, is a method for
dealing with a mapping that does not have an immediate realization because at
least one channel does not have an actual implementation. This will be the case
if the two processors to which a pair of communicating processes are mapped
cannot communicate or if there are insufficient with resources available. If this
is the case then it may be possible to transform the process network by adding
additional, appropriately mapped, processes and channels that implements the
problematic channels indirectly via other processors. The necessary transfor-
mation can be done automatically using analysis information gathered using
the Service Relation Model and information about how channels can be im-
plemented (i.e. implementation schemes). We see no principle difficulties in
extending the method to support the improved procedure presented here but it
has, for the time being, been left as future work.

The procedure only considers processes implemented as software. An obvi-
ous extension would be to allow processes to be mapped to dedicated hardware
as well. This would require adding another component type for representing
hardware points of contact and new implementation schemes.



CHAPTER 5

Automated Design Generation

In chapter 3, we showed how the service relation model could be used to check
the consistency of a platform. In this case the problem was to determine if a
given network of components were consistent. In this chapter, we will investi-
gate the possibility of reversing the problem and asking: given an inconsistent
model what needs to be done to make it consistent? An inconsistent model can
possibly be made consistent by instantiating, configuring and connecting new
components to the inconsistent design.

In this chapter, we will present a procedure for automatically constructing a
consistent design on the basis of an inconsistent design. The procedure is based
on the use of an SMT solver capable of evaluating MAXSMT problems.

5.1 Introduction

Embedded systems are typically organized as a stack of layers. Each layer in
such a stack provides services to the upper layers and uses services from the
lower layers. At the bottom we typically have the hardware and on top of that
the various software layers. The application layer, at the top of the stack, is
unique in that it does not provide any services to the other layers. The role
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of the application layer is to impose requirements on the lower layers – the
lower layers must provide the application layer with the services it requires.
The lowest layer is characterized in that it is self-contained and does not require
any services provided by other layers.

In chapter 4, a three layer view was presented consisting of 1) the platform,
2) an abstraction layer and 3) an application modeled as a process network.
Here the application layer required the abstraction layer to provide the com-
munication infrastructure of the application. The platform provided the upper
layers with services such as memory access, multi-processing and synchroniza-
tion. In chapter 4, the platform was assumed to be given and non-configurable
and the architecture of the abstraction layer only allowed for a small degree
of customization. In most cases, the platform does provide some configura-
tion possibilities. This is especially true if the platform also contains software
middelware. In order to make use of this potential for customization a more
system-oriented approach must be adopted where all layers are considered si-
multaneously. This adds extra dimensions to the complexity of the problem and
introduces a number of new challenges – which are the focus of this chapter.

In the Service Relation Model, a layer can be represented as a partial de-
sign (i.e. a design containing unconnected interfaces). A design representing
an entire stack can be created by properly connecting the unconnected inter-
faces of the partial designs representing the individual layers of the stack to
each other. There is no explicit representation of layers in the Service Relation
Model. The partial design representing the top level application layer is charac-
terized by being non-configurable and inconsistent with respect to the Service
Relation Model since it will require services provided by the layers beneath it.
The design representing the whole stack must, however, be consistent and thus
the problem addressed in this chapter can be summarized as: Given a partial
and inconsistent design what must be added to the design to make it consistent?
Here, the input design is not limited to be a representation of the application
alone, it may contain descriptions of non-optional parts of other layers as well.
In the context of the service relation model, a solution to this problem consists
of a) an allocation of (additional) components from a library, b) a configura-
tion for each component and c) a topology relating the given design and the
allocated components to each other. The input design may contain parts that
are configurable in which case a configuration for the design is also part of the
solution.

In order to automatically construct a solution to the problem presented
above, we present a procedure based on the use of a MAXSMT solver supporting
the theories of arithmetics and bit vectors.
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Figure 5.1 – Example showing the need for topology restrictions.

5.1.1 Interface Groups

A shortcoming of the Service Relation Model with respect to automated design
generation is that it does not provide a way to restrict the topology beyond en-
suring that interfaces are properly connected. In some cases, a component has
multiple interfaces that must be connect in a specific way in order for the model
to make sense. For example, consider the simple model shown in Figure 5.1(a).
The model contains two context components representing the execution context
of two different processors and two software entities connected to each of the
contexts. A software entity and a context is connected by means of two service
exchange relations (Context/Caller and Callee/Context) used for importing
and exporting services representing functions. In order to make sense, the two
interfaces of a software entity must be mapped to the same context. This re-
striction, however, is not formally captured in the service relation model and,
consequently, the model shown in figure 5.1(b) is also valid although it makes
no sense.

To avoid having the procedure produce useless results like that of Figure
5.1(b) a way to restrict the connectivity of components is needed. To accomplish
this we introduce the simple concept of interface groups. An interface group is a
set of interfaces of a component that must be connected to the same component.
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Figure 5.2 – Example of a topology that cannot be expressed using interface groups.

Definition 5.0 (Interface Group, g, G) An interface group g is a set g =
{i0, i1, . . . in} of interfaces belonging to the same component. An interface can at
most belong to one interface group. �

By placing the two interfaces of the software entities in the same group we can
ensure that they are always connected to the same context and thus exclude
solutions like that of figure 5.1(b). In a future version of the Service Relation
Model, it may make sense to replace the concept of interface groups with a
similar, but more initutive, concept of composite interfaces.

Interface groups is not an ideal solution to the problem because it can only
be used to specify restrictions on the immediate connectivity of a component.
As an example of a restriction that cannot be specified using interface groups
consider the model depicted in Figure 5.2 of two software entities mapped to
the same processor. Both of the software entities are related to the processor
and a context components. Because the context components represents the
execution context on a specific processor it must be the case that all software
entities related to it must also be related to the same processor. This kind of
restrictions cannot be expressed using the concept of interface groups.

5.2 Procedure Overview

It is the purpose of this section to give an overview of the design generation pro-
cedure. The details of the procedure will be presented in the following section.

The inputs to the procedure consists of 1) a model representing the a partial
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Figure 5.3 – Overview of the design generation procedure.

and inconsistent design, 2) a library of component templates and 3) a set of
instantiation restrictions. The instantiation restrictions are used to place bounds
on the solution space which may otherwise be infinite. Instantiation restrictions
will be properly introduced and discussed later.

The idea behind the procedure is to formulate an optimization problem on
the basis of the concepts of the service relation model, the input design and the
library. The free variables in the problem are 1) the number and types of compo-
nents added to the design, 2) the number and types of options included in each
component, 3) the values of parameters and, last but not least, 4) the choice of
connections between unconnected interfaces. The objective of the optimization
is to minimize costs associated with adding new components and options to the
design. The optimization problem is encoded as a MAXSMT problem targeting
the Yices SMT solver [32]. The result of applying the procedure is either a con-
sistent design containing the input design or failure. The procedure may fail if
one or more of the inconsistencies of the input design cannot be satisfied by any
combination of components instantiated from the templates of the input library.

The procedure is carried out on a modified representation of models that
includes several of the concepts found in the library and design domains. More
specifically, the used model representation explicitly represents the configurable
portions of a design such as options and parameter values that are not be part
of the model domain as presented in section 2.3.1. This is needed in order for
the procedure to reason about the configurable portions of a design.

The procedure can be broken into three steps, as shown in figure 5.3, each
of which will be described in detail later in sections 5.3, 5.4 and 5.5.

Step 1 (Preparation) The purpose of the preparation step is to compute in-
formation needed by the encoding into MAXSMT. The information computed
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in the preparation step consists of a service relation model called the maximal
model, a set of so called possible connections and another set of possible matches
similar to those used previously in section 3.5.

The maximal model is a preliminary representation of the final result that in-
cludes as many components and options as allowed by the instantiation restric-
tions. The maximal model can be thought of as the largest possible model, in
terms of the number of component and option instances included, that may be
returned by the procedure. The maximal model contains relations correspond-
ing to those found in the input model but does not contain any information
about how the added components are connected and, as a result, the maxi-
mal model will contain a number of unconnected interfaces. The set of possible
connections is an enumeration of the connections (relations) that can be made
between the unconnected interfaces of the maximal model taking relations and
roles of the interfaces into account.

Step 2 (Encoding) In the next step, a MAXSMT problem is formulated on
the basis of the maximal model, the set of possible connections and the set of
possible matches. The problem contains a number of variables that describes
the free dimensions of the problem. The aim of the solver is to find a satisfiable
valuation of these variables that will minimize the cost associated with falsifying
assertions representing the inclusion of components and options. The encoding
of the problem is described in more detail later in section 5.4.

Step 3 (Solving & Decoding) In the last step of the procedure, the result pro-
duced by the solver is decoded. In principle, the solver may return one of two
results: unsatisfiable or satisfiable. If the solver determines the problem to be
unsatisfiable then the input design could not be made consistent with the com-
ponents specified in the instantiation restrictions and the procedure terminates
with error. If the solver determines the problem to be satisfiable then a solu-
tion that minimizes the total cost of the problem has been found. In this case,
both the cost and the associated valuation of the variables may be extracted.
Using the valuation of the variables associated with a satisfiable solution the
desired result (i.e. the allocation, topology and configuration representing the
consistent result) is constructed.
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5.3 Preparation

5.3.1 Procedure Input

The inputs to the procedure consists of a partial (and inconsistent) Service Rela-
tion Model design, called the input design, a set of instantiation restrictions and
a library of components.

The Library. The library contains descriptions of the component templates
that can be used by the procedure. The part of a library that is considered by
the procedure is limited by means of the instantiation restrictions.

The Input Design. The input design is a design specifying a partial and incon-
sistent service relation model of some system. Notice that the input is a design
rather than a model. The design may have parts that are configurable by means
of options. Such configurablity is defined using instantiation restrictions.

Instantiation Restrictions. There are two kinds of instantiation restrictions:
component and option restrictions. Component instantiation restrictions are
used to limit the type and number of components that will be considered by the
procedure and, similarly, the option instantiation restrictions are used to limit
the type and number of options that will be considered. Formally, the two kinds
of instantiation restrictions are defined as:

Definition 5.1 (Component Instantiation Restriction, cir, CIR) An instanti-
ation restriction is a triple ir = 〈t,max, cost〉 where t is a component template
in the library, max ∈ N0 the maximum number of instances of the component
template that can be in the model and cost ∈N is the cost of adding an instance
of the template to the design. �

Definition 5.2 (Option Instantiation Restriction, oir, OIR) An instantiation
restriction is a triple ir =

〈
o`,max, cost

〉
where o` is an option in the library,

max ∈N0 the maximum number of instances of the option that any component
in the model can have and cost ∈ N is the cost of adding an instance of the
option to a component. �
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In the following, let CIR = {cir0, cir1, . . . , cirn} denote the set of component
instantiation restrictions and let OIR = {oir0, oir1, . . . , oirm} denote the set of
option instantiation restrictions passed as input to the procedure.

The cost associated with adding components and options to a design is pri-
marily used to ensure that the result produced by the procedure does not con-
tains any unnecessary components. If no cost is associated with adding com-
ponents then results may be produced that contain unused components. A sec-
ondary use of cost is to prioritize between different choices of components and
options that can be used to resolve the inconsistencies of the static model. In this
case, the cost can be considered an abstract measure of some metric associated
with including the component or option.

5.3.2 The Maximal Model

The first step in the preparation is to create the maximal model. The maximal
model consists of the input design and a set of, so called, speculative components
and options. The maximal model represents the largest possible model in terms
of the number of components and option instances that will be considered. A
speculative component or option is a entity that may be part of the final design.

The maximal model is created on the basis of the input design and the in-
stantiation restrictions. Given a model representing the input design, the first
step in creating the maximal model is to add additional speculative compo-
nents. For each component instantiation restriction, a number of components
corresponding to the maximum number instances allowed by the restriction are
added to the model. These components are marked as being speculative. Spec-
ulative components are not connected to any other components in the model
as determining their connectivity is part of the decision making handled by the
solver.

Next, options are considered. The set of options included in each component
is compared to the options mentioned in the option instantiation restrictions. If
the template of a component contains an option mentioned in an option in-
stantiation restriction then the number of included instances of the option in
the component is compared to the maximum number of allowed instances in
the restriction. If the number of included instances is less than the number
of allowed instances then additional options are included in the component so
that number of included instances matches the maximum number of allowed
instances. All options added this way are marked as speculative.



5.3 Preparation 157

x : at.xt y : at.yt

a : at b : bt

(a) Input design

y : bt.yt

x1 : at.xt

x : at.xt

x1 : at.xt

x2 : at.xt

y1 : at.yt

y1 : at.yt

y2 : at.yt

a : at

a1 : at

b : bt

b1 : bt

(b) Maximal model

y : bt.yt

x1 : at.xt

x : at.xt

x1 : at.xt

x2 : at.xt

y1 : at.yt

y1 : at.yt

y2 : at.yt

a : at

a1 : at

b : bt

b1 : bt

(c) Possible connections

Component Option Speculative 
component

Speculative 
option

Connection
Speculative 
connection

Figure 5.4 – Preparation. a: maximal model corresponding to the input design
shown in b and the instantiation restrictions CIR = {〈at, 10, 2〉 , 〈bt, 20, 2〉} and OIR =
{〈at.xt, 5, 2〉 ,

〈
bt.yt, 3, 2

〉
}. c: set of possible connections.

Example 5.1 As an example of how the maximal model related to an input
model and a set of instantiation restrictions, consider the simple input design
of figure 5.4(a). The input design and the instantiation restrictions are given
relative to a library containing two templates at and bt. The mandatory option of
template a and b both contains a single interfaces that are compatible with each
other. Template at is configurable by means of a single option xt and template
bt by means of the option yt. As was the case for the mandatory options, both
option xt and yt contains a single interface compatible with the interface of the
other option.

The input design contains two components – one instance of template at
called a and one instance of template bt called b. A single instance of the op-
tion xt is included in component a and, similarly, a single instance of option yt
is included in component b. As shown in Figure 5.4(a) the interfaces of the
mandatory options of the two component instances are connected and so is the
interfaces of the two non-mandatory options.

Figure 5.4(b) shows the maximal model corresponding to the input design
and the instantiations restrictions:

CIR = {〈at, 10, 2〉 , 〈bt, 20, 2〉}

OIR = {〈at.xt, 5, 2〉 ,
〈
bt.yt, 3, 2

〉
}

�
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5.3.3 Possible Connections

The next step of the preparations is to determine the possible connections be-
tween the unconnected interfaces of the components in the model. A possible
connection is given as:

Definition 5.3 (Possible Connection, pc, PC) A possible connection pc is a pair
pc = 〈i0, i1〉 where i0, i1 ∈ I∗. A possible connection is valid only if i0.rel , i1.rel
and i0.role = i1.role and if both i0 and i1 are unconnected. �

Computing the set PC∗ for a maximal model m is simply a question of com-
paring the unconnected interfaces. Note that computing the set of possible
connections can be computationally expensive for large models.

Example 5.2 The set of possible connections belonging to the maximal model
of the previous example is depicted in Figure 5.4(a). �

In the following, let PC∗ = {pc0, pc1, . . . , pcn} be the set of possible connections
in the maximal model. Furthermore, let PC : I∗ → P(pc) be a function that maps
an interface to the set of possible connections in PC∗ that contains a reference
to the interface.

5.4 Encoding

In this section, the encoding of the problem in MAXSMT is presented. The
presentation will not cover all details of the encoding but only focus on the
main ideas. For a more detailed presentation, we refer to the source code of the
tool used for experimental purposes.

The encoding makes use of a number of variables organized into groups.
Table 5.1 shows the most interesting groups. Again, a map-index notation will
be used to refer to the actual variables of the groups. For example, at[s] refers
to the bit vector variable representing the set of services available at the service
s.

The presentation of the encoding will be done as a presentation of a function
E that maps concepts in the service relation model into SMT assertions. Some
concepts give rise to multiple assertions in different parts of the encoding. For
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Group Type Description

con[i0, i1] boolean Interfaces i0 and i1 connected
con[i] boolean Interface i is connected (not unconnected)
inc[c] boolean Component c is included in the result
inc[o] boolean Option o is included in the result
at[s] bit vector The set of services available at service s
at[i] bit vector The set of services available at interface i
tid[i] integer Target component id of interface i
valp[p] integer The value of parameter p
valrp[rp, res] integer The value of resource parameter p of resource res
valq[q] integer The value of the quantity q
~u[res, cl] integer Quantity of resource allocated from res to cl

Table 5.1 – Groups of variables used in the encoding of the design generation prob-
lem in MAXSMT.

such a concept x, we will use the special notation E(x) := . . . assert SMTexpr to
show that the definition of E for the concept x is only partial.

5.4.1 Service Flow

The encoding of service availablity in the service flow is implemented using bit
vectors. This is possible because the number of services in the maximal model
is finite. The usual operations on sets (e.g. union, intersection, complement)
can easily be expressed using bit vector operations. For clarity, however, the
following presentation will use sets in place of bit vectors.

To ease the presentation of the encoding we will make use of a function To :
S∗∪ I∗ → P(S∗∪ I∗) that given a service or an interface returns the set of services
or interfaces that has the input service or interface as a predecessor node in
the service flow graph of the model. Another function Parent : SRM concept→
C ∪ O is used to retrieve the immediate parent of concepts such as assertions,
resources and resource claims.

Services. The set of services available at a service is simply the union of the
service itself and the set of services available at each of the interfaces imported
into the service:

E(s) := assert at[s] = {s} ∪
⋃

i∈To(s)

at[i]
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Interfaces. The encoding of interfaces is slightly more involved as the set of
available services at an interface is dependent on which, if any, remote interface
it is connected to. The encoding of an interface is split into two different en-
codings depending on whether or not the interface has any services exporting
to it:

E(i) := . . .

{
Ei,1(i) if To(i) , ∅
Ei,2(i) if To(i) = ∅

The first of the two encodings deals with the case where at least one service
exports to the interface. This implies that the interface is an object interface
as service export is only allowed to have object interfaces as targets. In this
case, the set of available services at the interface is the union of the services
available at each of the services importing to the interface moderated by a re-
quirement that the interface must be connected and the parent component must
be included:

Ei,1(i) := assert if ¬con[i] ∨ ¬inc[i] then at[i] = ∅ else at[i] =
⋃

s∈To(i)

s

The next encoding deals with the case where no services exports to an inter-
face. If the interface is an object then the set of services available must neces-
sarily be the empty set because the flow of service through an interface is uni-
directional from the object to the subject. If the interface is a subject interface
then its service availablity set is the empty set if the interface is not connected or
equal to the service availablity set of the remote interface to which the interface
is connected:

Ei,2(i) :=

assert at[i] = ∅ if i.role = object
assert ¬con[i]→ at[i] = ∅ if i.role = subject

5.4.2 Topology

The encoding of the topology is divided into two parts: one part dealing with the
relations in the maximal model corresponding to the relations found in the input
design and one part dealing with the possible connections between unconnected
interfaces.
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Relations. For each relation r in the maximal model we simply assert that the
set of services available at each of the connected interfaces must be equal:

Er(r) := assert at[r.i1] = at[r.i2]

Possible Connections. The connectivity of the unconnected interfaces in the
maximal model are encoded using the set of possible connections that were
computed previously in the procedure. Each possible connection pc is associated
with a boolean variable sel[pc] stating whether or not the connection has been
selected as an actual connection (i.e. should be in the output design). For each
possible connection, we assert that if the connection is chosen then the services
available at each of the two interfaces represented by the possible connection
must be equal:

Epc(pc) := . . . assert sel[pc]→ at[pc.i0] = at[pc.i1]

Unconnected Interfaces. For each interface i in the model, we assert that the
interface is either connected or exactly one of the possible connections that i
can participate in is selected:

Ei(i) := . . . assert ¬con[i] ⊕
⊕

pc∈PC(i)

sel[pc]

here con[i] is a variable associated with an interface i stating whether or not the
interface is connected.

Interface Groups. The encoding of interface groups is based on the use of
unique integer id’s associated with the components of the maximal model. In
the encoding, each interface i in the model is associated with a variable tid[i]
that contains the id of the component to which it is connected. The special id
zero is used for unconnected interfaces and does not identify any component in
the model.

To ensure that the values of the target id’s properly reflects the topology
additional assertions regarding the possible connections and interfaces of the
model are needed. For each possible connection, an assertion is added stating
that if the possible connection is selected then the target id of each interface in
the possible connection equals the id of the parent component of the other:

E(pc) := . . . assert sel[pc]→
(
tid[pc.i0] = id(pc.i1) ∧ id(pc.i0) = tid[pc.i1]

)
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here id : I∗ → N>0 is a convenience function for retrieving the id associated
with the parent component of an interface. For each interface i in the model, an
assertion stating that if the interface is unconnected then its target id is zero is
also added.

E(i) := . . . assert ¬con[i]→ tid[i] = 0

Using the target id’s, the encoding of an an interface group g is encoded
straightforward by an assertion stating that the target id’s of all interfaces in the
group must be the same:

E(g) := assert
∧

i0,i1∈g

tid[i0] = tid[i1]

5.4.3 Parameters

A parameter p is encoded using an integer variable valp[p]. If the parameter
belongs to a non-speculative option then its value is defined by means of an
assertion:

Ep(p) := assert valp[p] = p.value

Components & Options. The components and options of the maximal model
are treated differently in the encoding depending on whether or not the com-
ponent or option is marked as speculative. Associated with each component
and option is a boolean variable inc[x] stating whether or not the component
or option is part of the result. For a component or an option that is part of the
static model, the value of the inc[x] variable is asserted to be true meaning it
is (must be) included in the result. For a speculative component or option, the
value of the inc[x] variable if left for the solver to decide. This is accomplished
by means of a weighted assertion stating that if val[x] is true of a component or
option x then the cost specified in the instantiation restriction associated with
the component or option is incurred.

E(c) := . . .

assert_w (¬inc[c], cost(c)) if c is speculative
assert inc[c] otherwise

E(o) := . . .

assert_w (¬inc[o], cost(o)) if o is speculative
assert inc[o] otherwise
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Eα : Exprα → SMT

Eα(e0 and e1) := Eα(e0) ∧ Eα(e1)

Eα(e0 or e1) := Eα(e0) ∨ Eα(e1)

Eα(e0 implies e1) := Eα(e0)→ Eα(e1)

Eα(not e0) := ¬ Eα(e0)

Eα(sc @ i) := sc.S ∪ at[i] , ∅

Eα(sc @ s) := sc.S ∪ at[s] , ∅

Table 5.2 – Encoding of alpha expressions

If a component is not included then all of its options are also not included:

E(c) := . . . assert ¬inc[c]→
∧

o∈c.O

¬inc[o]

If an option is not included then all of its interfaces must be unconnected:

E(o) := . . . assert ¬inc[o]→
∧
i∈o.I

¬con[i]

5.4.4 Assertions

Due to the expressiveness of MAXSMT, the encoding of Service Relation Model
assertions in quite simple. A Service Relation Model assertion a is encoded by
means of a single MAXSMT assertion:

E(a) := assert inc[parent(a)]→ Eα(a)

The MAXSMT assertion is constructed by means of the function given in Table
5.2 for mapping alpha expressions into MAXSMT expressions. The implication
ensures that the service relation model assertion should only be considered if
the parent component or option of a is included.

5.4.5 Resources & Resource Claims

The encoding of resources and resource claims resembles the encoding used for
the consistency checking procedure of section 3.5. Similar to the approach of
section 3.5, the encoding of resources and claims makes use of flow variables
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~u[res, cl] representing the assignment of resource from a given resource res to a
given claim cl and a pre-computed set of possible matches. In comparison with
the encoding used for consistency checking, the computation of the possible
matches only considers resource classes and does not take the where-expression
of the claim into account. This leads to a slightly different definition of a possible
match than the one used previously for consistency checking:

Definition 5.4 (Possible Match, pm, PM) A possible match pm is a pair pm =
〈res, cl〉 where res ∈ RES∗ a resource and cl ∈ CL∗ is a resource claim so that
res.rc v cl.rc. �

In the following, let PM∗ = {pm0, pm1, . . . , pmn} be the set of all possible
matches in the maximal model. This set is easily computed by comparing the
resource classes claimed by the resource claims in the model with the resource
classes provided by the resources. Furthermore, let Pclaim be a function for re-
trieving the set of claims that may be satisfied by a resource

Pclaim(res) = {cl : 〈res, cl〉 ∈ PM∗}

and Pres be a similar function for retrieving the set of resources that may satisfy
a given claim.

Pres(cl) = {res : 〈res, cl〉 ∈ PM∗}

Quantity Expressions. Both resources and claims include quantity expres-
sions. In resources, quantity expressions are used to define the quantity of
resource being provided and to define the value of any resource class param-
eters of the associated resource class. In resource claims, quantity expressions
are used to define the quantity of resource being claimed. A quantity expression
q is encoded using a integer variable valq[q] and an assertion defining its value:

E(q) := assert valq[q] = Eqty(q)

The assertion is constructed by means of the function given Table 5.3 for en-
coding the expression. As can be seen, the encoding of the expression itself is
rather trivial. Note that Yices only supports multiplication and division for pairs
of operands where at least one of them is a constant.

Resources. A resource res is encoded using several assertions. The first asser-
tion states that if the parent component or option of the resource is included
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Eqty : Exprqty → SMT

Eqty(e0 + e1) = Eqty(e0) + Eqty(e1)

Eqty(e0 - e1) = Eqty(e0) − Eqty(e1)

Eqty(e0 * e1) = Eqty(e0) × Eqty(e1)

Eqty(e0 / e1) = Eqty(e0)/Eqty(e1)

Eqty(e0 > e1) = Eqty(e0) > Eqty(e1)

Eqty(e0 >= e1) = Eqty(e0) ≥ Eqty(e1)

Eqty(e0 < e1) = Eqty(e0) < Eqty(e1)

Eqty(e0 <= e1) = Eqty(e0) ≤ Eqty(e1)

Eqty(e0 = e1) = Eqty(e0) = Eqty(e1)

Eqty(e0 != e1) = Eqty(e0) , Eqty(e1)

Eqty(e0 and e1) = Eqty(e0) ∧ Eqty(e1)

Eqty(e0 or e1) = Eqty(e0) ∨ Eqty(e1)

Eqty(e0 implies e1) = Eqty(e0)→ Eqty(e1)

Eqty(not e) = ¬Eqty(e)

Eqty(- e) = −Eqty(e)

Eqty(parameter) = val[parameter]

Eqty(constant) = constant

Table 5.3 – Encoding of quantity expressions.

then sum of resource assigned from res to any claims must be less than or equal
to the quantity of resource provided:

E(res) := . . . assert inc[parent(res)]→ valq[res.q] ≥
∑

cl∈Pclaim(res)

~u[res, cl]

The next assertion states that if the parent component or option of the resource
is not included then amount of resource from res assigned to any claims must
be zero:

E(res) := . . . assert ¬inc[parent(res)]→
∧

cl∈Pclaim(res)

~u[res, cl] = 0

If the resource class of the resource is associated with any resource parame-
ters the value of these are defined by means of assertions of the following form

E(res, rp) := assert valrp(res, rp) := valq[rp.val]
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Resource Claims. A resource claim cl is encoded differently depending on
whether the claim can be satisfied by many resources or must be satisfied by
exactly one resource. If cl can be satisfied by multiple resources (cl.mp = many)
then we assert that the sum of the amount of resource assigned to cl from each
resource equals the value of the quantity expression cl.q representing the quan-
tity of resource required by cl:

E(cl) := . . . assert inc[parent(cl)]→ valq[cl.q] =
∑

res∈Pres(cl)

~u[res, cl]

If, on the other hand, the claim must be satisfied by a single resource (cl.mp =
one) then we assert that the amount of resource assigned to cl from each of
the different resources with the exception of one that must provide exactly the
amount of resource specified by the value of the quantity expression cl.q:

E(cl) := . . . assert inc[parent(cl)]→
⊕

res∈Pres(cl)

valq[cl.q] = ~u[res, cl] ∧
∧

z∈Pres(cl)\res

~u[z, cl] = 0


The pre-computed set PM∗ of possible matches used for the encoding does

not take the where expressions of resource claims into account. The reason
for this is that the value of a where expression depends on the topology of
the model and because the defining the topology of the model is part of the
procedure then it is not possible to pre-compute its value. The influence of the
where expressions on the assignment of resource from resources to resource
claims are encoded by means of a single assertion per possible match:

E(pm) := assert ¬Eω(pm.cl, pm.res)→ ~u[pm.res, pm.cl] = 0

here Eω is the function given in table 5.4 for encoding the where expression. The
assertion states that if the where expression is not satisfied for a given possible
match pm = 〈res, cl〉 then the amount of resource from res assigned to cl must be
zero.

Note that the meaning of the two is-available-through expressions in Table
5.4 differs from the meaning previously defined in section 3.3.2. The expres-
sions used here are slightly more limited because it only takes the services the
resource is directly exported to into account. In other words, these expres-
sions can only be used to make tests on the types of the services res.S and not
on the set of services where res is available. The reason for this limitation is
that it simplified the encoding slightly because we do not need to encode the
available-at information of services. Adding the available-at information and
making a proper encoding of the two is-available-through expressions is not dif-
ficult but will most likely have a negative effect on the time required to solve
the problem.
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Eω : Exprω × RES→ SMT

Eω(e0 + e1, res) = Eω(e0, res) + Eω(e1, res)

Eω(e0 - e1, res) = Eω(e0, res) − Eω(e1, res)

Eω(e0 * e1, res) = Eω(e0, res) × Eω(e1, res)

Eω(e0 / e1, res) = Eω(e0, res)/Eω(e1, res)

Eω(e0 > e1, res) = Eω(e0, res) > Eω(e1, res)

Eω(e0 >= e1, res) = Eω(e0, res) ≥ Eω(e1, res)

Eω(e0 < e1, res) = Eω(e0, res) < Eω(e1, res)

Eω(e0 <= e1, res) = Eω(e0, res) ≤ Eω(e1, res)

Eω(e0 = e1, res) = Eω(e0, res) = Eω(e1, res)

Eω(e0 != e1, res) = Eω(e0, res) , Eω(e1, res)

Eω(e0 and e1, res) = Eω(e0, res) ∧ Eω(e1, res)

Eω(e0 or e1, res) = Eω(e0, res) ∨ Eω(e1, res)

Eω(e0 implies e1, res) = Eω(e0, res)→ Eω(e1, res)

Eω(not e, res) = ¬Eω(e, res)

Eω(- e, res) = −Eω(e, res)

Eω(sc @ s) = sc.S ∩ at[s] , ∅

Eω(sc @ i) = sc.S ∩ at[i] , ∅

Eω(->(sc @ s), res) = res.S ∩ sc.S ∩ at[s] , ∅

Eω(->(sc @ i), res) = res.S ∩ sc.S ∩ at[i] , ∅

Eω(resource_parameter, res) = val[resource_parameter, res]

Eω(parameter, res) = val[parameter]

Eω(constant, res) = constant

Table 5.4 – Encoding of where expressions.

5.4.6 Cyclic Designs

The procedure does not support models with cycles in the service flow graph.
The reason for this is that it may invalidate the encoding of the service flow.
Fortunately, cycles rarely shows up in practice. Figure 5.5 shows an example
of a model and a corresponding service flow graph containing a cycle. In the
model, two buses are connected to each other via two bus-to-bus bridges. If the
address ranges mapped by the two bridges overlap a cycle will emerge through
the bridges and buses. Attempting to invoke a service that will exercise this
cycle will most likely cause a run-time error. Note that cyclic infrastructure
components such as ring buses does not give rise to cycles.
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Figure 5.5 – SRM cycle example. Two buses connected to each other using two
bus-to-bus bridges.

To see why cycles causes problems consider the service flow graph of figure
5.5. The encoding of the service flow can compactly be written as:

at[s0] = {s0} ∪ at[i0] ∪ at[i4] at[i0] = x at[i4] = at[s3]
at[s1] = {s1} ∪ at[i1] at[i1] = at[s0] at[i5] = at[s2]
at[s2] = {s2} ∪ at[i2] at[i2] = at[s1]
at[s3] = {s3} ∪ at[i3] at[i3] = at[s2]

where x is the set of services available at i0. Let sx be a service that is not
available at i0 (sx < x). The following is a valid solution despite the fact that sx
is not in the service flow.

at[s0] = at[s1] = at[s2] = at[s3] = {s0, s1, s2, s3, sx}

at[i1] = at[i2] = at[i3] = at[i4] = at[i5] = {s0, s1, s2, s3, sx}

at[i0] = x

The underlying problem is that the solver is the solver does not construct a
solution bottoms-up like the worklist-based analysis algorithm presented earlier.
In general, there are many possible solutions to a set of flow equations but
only the least solution corresponds to the service availablity information. By
disallowing cycles the only solution to the flow equations is the least solution
and, consequently, any satisfiable valuation of the variables will correspond to
the correct solution.
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5.5 Decoding

The process of decoding a satisfiable result produced by the solver, in the form
of a valuation of the variables given in table 5.1, into an output design is rather
straightforward and will only be outlined here.

For each speculative component or option x in the maximal model the value
of the corresponding inc[x] is checked. If the value of inc[x] is true then the
component or options is part of the output design and otherwise not. The en-
coding ensures that if an option is included then so is its parent component.
For included options, the values of any parameters are immediately available in
the valp[p] set of variables. Similarly, the quantities of resources and resource
claims with an included speculative option can be retrieved by inspecting the
valq[q] set of variables.

The topology of the output design is decoded from the values of the sel[pc]
variables associated with the set of possible connections. A service exchange
relation of the appropriate type is added to the output design for each possible
connection pc ∈ PC∗ where sel[pc] is true. The encoding ensures that the result-
ing topology is consistent with the well-formedness rules of the service relation
model (i.e. no interface is connected to more than one service exchange relation
and so on).

5.6 Experiments

To show that generating designs on the basis of consistency information was
indeed possible a couple of small experiments were carried out. Because the
procedure for generating a consistent design is based on MAXSAT we expect
that it will only be able to handle smaller problems in reasonable time. For this
reason, the complexity of the experiments presented in this section has been
kept low.

The experiment is an attempt at generalizing the procedure for automatically
generating an abstraction layer implementing the communication infrastructure
of a process network presented in the previous chapter. Besides choosing imple-
mentations for each channel in the process network we also want to determine
the values of some configurable parts of the platform.

Figure 5.6 shows an overview of the tool, based on the xSRM framework, used
for the experiments. The tool takes as input a pair of MHS and MSS files speci-
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Figure 5.6 – Overview of the tool used for experimental purposes.

fying a platform and a YML file containing a specification of a process network
application and a mapping of its processes onto the processors of the platform.
The platform and the process network are combined into a design representing
the maximal model and then this design is expanded into a proper model. The
resulting model is used as the basis for computing the possible connections and
the possible matches and for the encoding and decoding of the MAXSMT prob-
lem. The output produced by the tool is a report containing information about
the generated design and other information useful for debugging purposes.

5.6.1 Platform

The same platform will be used for all of the experiments presented here. The
platform was created using the Xilinx EDK tool and imported into the xSRM

framework using the EDK front-end previously described in section 3.4. Figure
5.7 shows a schematic of the platform used in the experiments. The hardware
platform consists of a processor local bus (PLB) bus, two Microblaze processors,
two (local) BRAM memories, two timer/counters and a number of interfacing
components for connecting the processors with the memories. The microblaze
debug module, connected to the PLB bus as a slave, was inserted automatically
by the EDK when the platform was generated but has no real use for our pur-
poses. Each of the processors are configured with an instance of the Xilkernel
operating system. Notice that the platform does not support any means for
inter-processor communication.

Ideally, the platform should also include an interrupt sub-system for con-
necting the timer/counters with the processors. This, however, has been left out
to keep the complexity of the model down.
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Figure 5.7 – Schematic of the platform used for the experiments.

In comparison with the platforms used in the previous chapter on automated
programming, this platform provides some degree of customizatibility. More
specifically, the platform allows for additional hardware components to be con-
nected to the processor local bus and for the Xilkernel operating systems to
include support for message queues. Both kinds of customizability are mod-
eled as options that can be included in the processor local bus and Xilkernel
components.

Listing 5.1 shows parts of the template used for the Xilkernel. As can be
seen, the template provides an option for adding message queue support in the
kernel. The message queue can be used for inter-process communication be-
tween processes mapped to the same processor. The option can be included
multiple times allowing the same kernel to provide multiple message queues
with different depths and sizes. The maximum number of message queues al-
lowed in an instance of the kernel is defined using the instantiation restrictions
later on.

Because of the limitations of the interface group concept discussed previ-
ously in section 5.1.1 it has been necessary to change the way the relationship
between a software entity and a processor is modelled. Instead of relating a pro-
cessor with each of its associated software entities through an instance of the
Processor/SWE service exchange relation, the processor is instead related to the
context component and the services offered by the processor imported into the
context service. A software entity may then access the services provided by the
processor through a Callee/Context interface. Although we would prefer to use
the other approach to modeling the relations between processors and software
entities there is nothing ”wrong” with doing it this way.
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l i b r a r y {
namespace Xilinx.EDK {

template Xilkernel {
i n t e r f a c e ContextAsCaller : sub( ContextToCaller );
i n t e r f a c e ContextAsCallee : o b j ( CalleeToContext );
...

o p t i o n MessageQueue {
parameter Depth { min = 1; max = 10000; }
parameter Size { min = 1; max = 10000; }

s e r v i c e Enqueue : SCEnqueue { e x p o r t ( ContextAsCallee ); }
s e r v i c e Dequeue : SCDequeue { e x p o r t ( ContextAsCallee ); }

r e s o u r c e QueueResource : RCQueue <D,S> {
q u a n t i t y = 1;
s e t D = Depth; s e t S = Size;
e x p o r t (Enqueue , Dequeue );

}
}

}
}

}

Listing 5.1 – Xilkernel Template

5.6.2 Application

The experiments will use three different applications of varying complexity. Fig-
ure 5.8 shows the process networks for the applications. The mappings of the
processes to the two processors of the platform are also shown. The process net-
works for application 1 and 2 are very simply and does not represent any real
applications. The third application, the MJPEG encoder that was the subject of
the case study in the previous chapter, is more complicated and does represent
a real application.

The process networks comprising the three applications are captured in the
YML format. The YML description of an application is transformed into a partial
Service Relation Model description by means of the YML front-end to the xSRM

framework. The generated description of an application is quite simple and
consists of only a single component. The component has one interface of type
CallerToContext per process. When combined with a platform, the interfaces
of the component are connected to the context components so that the interface
associated with a given process is connected to the context of the processor to
which the process is mapped. Figure 5.9 shows the component generated for
Application 2. In addition to the interfaces, the component also contains one
resource claim per channel.
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p0 : 
Context/Caller

Example 2 Application

mb0.Context

p1 : 
Context/Caller

p2 : 
Context/Caller

p3 : 
Context/Caller

mb1.Context

claim ch0 : RCQueue<D,S> {

  quantity = 1;

  where ->(SCEnqueue @ p0)   

    and ->(SCDequeue @ p1)

    and D >= 2 

    and S >= 16

}

claim ch1 : RCQueue<D,S> {

  quantity = 1;

  where ->(SCEnqueue @ p1)   

    and ->(SCDequeue @ p2)

    and D >= 20 

    and S >= 1024

}

claim ch2 : RCQueue<D,S> {

  quantity = 1;

  where ->(SCEnqueue @ p2)   

    and ->(SCDequeue @ p3)

    and D >= 32 

    and S >= 64

}

Figure 5.9 – Component representing Application 2.
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l i b r a r y {
namespace Xilinx.EDK {

template BramMemory {
parameter Size { min = 1; max = 0xFFFFFFFF; }

i n t e r f a c e PortA : o b j ( BramToBramController );
i n t e r f a c e PortB : o b j ( BramToBramController );

s e r v i c e MemoryService : SCMemoryService {
e x p o r t (PortA , PortB );

}

r e s o u r c e QueueResource : RCMemory {
q u a n t i t y = Size;
e x p o r t ( MemoryService );

}
}

}
}

Listing 5.2 – BRAM Memory Template

5.6.3 Library Components

The library of components that the procedure can used to make the design con-
sistent consists of a software queue, a bus-to-memory (processor local bus/BRAM
memory) controller and a BRAM memory. The bus-to-memory controller is used
to connect a BRAM memory to a PLB bus. The component representing the bus-
to-memory controller has a trivial description in the Service Relation Model and
will not be discussed in detail here.

The BRAM memory is a dual port memory whose size is configurable. The
Service Relation Model description of the memory is shown in listing 5.2. Each
of the two ports of the memory are modelled using an interface. A service
belonging to the SCMemoryService service class is exported through both inter-
faces. Besides the two interfaces and the service, the component also provides
a resource of type RCMemory. The quantity of resource (bytes of memory) pro-
vided is configurable by means of the parameter Size.

The software queue resembles the queues produced by the IS0 implemen-
tation scheme presented in the previous chapter. The queue is implemented as
a circular buffer placed in a memory and synchronization between the writer
and reader is done using polling. The Service Relation Model description of
the software queue, shown in listing 5.3, has two pairs of interfaces used for
relating it with the context(s) where from where data may be enqueued and
dequeued. The two interfaces of each pair of interfaces are grouped into an
interface group of their own meaning that they must be connected to the same
component (context in this case). If both the reader and the writer of the queue
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l i b r a r y {
namespace Components {

template SoftwareQueue {
parameter Depth { min = 1; max = 100000; }
parameter Size { min = 1; max = 100000; }

i n t e r f a c e EnqueueContextAsCallee : o b j ( CalleeToContext) { group = 0; };
i n t e r f a c e EnqueueContextAsCaller : sub( ContextToCaller) { group = 1; };

i n t e r f a c e DequeueContextAsCallee : o b j ( CalleeToContext) { group = 0; };
i n t e r f a c e DequeueContextAsCaller : sub( ContextToCaller) { group = 1; };

s e r v i c e Enqueue : SCEnqueue { e x p o r t ( EnqueueContextAsCallee ); }
s e r v i c e Dequeue : SCDequeue { e x p o r t ( DequeueContextAsCallee ); }

r e s o u r c e QueueResource : RCQueue <D,S> {
q u a n t i t y = 1;
s e t D = Depth;
s e t S = Size;
e x p o r t (Enqueue , Dequeue );

}

c l a i m MemoryRequirement : RCMemory <D,S> {
q u a n t i t y = Depth * 100 + 8;
where ->( CSMemoryService @ EnqueueContextAsCaller )

and ->( SCMemoryService @ DequeueContextAsCaller );
}

}
}

}

Listing 5.3 – Software Queue Template

are hosted on the same processor the two pairs of interfaces may be connected
to the same context. The component exports two services called Enqueue and
Dequeue. Both services are specializations of a pair of general versions. A re-
source of type RCQueue<D,S> is exported through these two services. The size
(S) and depth (D) of the resource is configurable by means of two parameters
(Depth and Size). Finally, the component has a resource claim for claiming
memory required for implementing the circular buffer. The quantity associated
with the claim is set by means of a quantity expression to Depth * 100 + 8.
Ideally, this should have been Depth * Size + 8 but because multiplication in
Yices is restricted to the case where at least one operand is a constant the size
has been statically set at 100.

5.6.4 Setup

The platform and the three applications are combined to form three different
designs that are used as input to the procedure. The purpose of the experiments
is partly to demonstrate that automated design generation is in fact possible
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Type Name Cost Max. Instances

Experiment Ex. 1 Ex. 2 MJPEG

Component Components.SoftwareQueue 10 1 2 3
Component Xilinx.EDK.XpsBramIfCntlr 100 1 1 1
Component Xilinx.EDK.BramBlock 20 3 3 3
Option Xilinx.EDK.Plb_v46.PlbSlave 4 4 4 4
Option Xilinx.EDK.Xilkernel.MessageQueue 5 3 3 10
Option Components.Context.Callee 1 10 10 15
Option Components.Context.Caller 1 10 10 15

Table 5.5 – Instantiation restrictions for the three experiments. Recall that the
maximum number of instance specified in the instantiation restrictions includes the
instances in the input design.

and partly to determine how complex problems can be handled. An experiment
consists of an input design and a set of instantiation restrictions. Table 5.5
shows the instantiation restrictions used for the three experiments.

Note the cost associated with the different instantiation restrictions does
not correspond to any ”real” cost and have been chosen only for the purpose
of prioritizing. For all of the three experiments, the maximum number of in-
stances defined by the instantiation restrictions is close to the minimum of what
is needed to ensure that a consistent design can be generated. Again, this is
done to keep the complexity down.

5.6.5 Results

Before reporting on the execution time of the procedure, we will give a more de-
tailed presentation of the result produced using the design based on application
2 and the instantiation restrictions given below:

Figure 5.10 is an attempt at visualizing the maximal model created on the
basis of the input design and the instantiation restrictions. There are three in-
consistencies in the model in the form of the three resource claims associated
with the channels of the application. The three resource claims cannot be satis-
fied by the platform because no queue resources (RCQueue) are provided. Notice
the rather large number of possible connections between the interfaces of the
two software queue components and the context components.

Figure 5.11 shows the result produced by the procedure. Three components
have been added to the design: a software queue, a PLB/BRAM interface con-



5.6 Experiments 177

m
em

1

B
R

A
M

 M
em

o
ry

tc
0

Ti
m

er
/c

o
u

n
te

r

m
b

1

M
ic

ro
b

la
ze

p
ro

ce
ss

o
r

ilm
b

1
Lo

ca
l m

em
o

ry
 b

u
s

d
lm

b
1

Lo
ca

l m
em

o
ry

 b
u

s

d
lm

b
_c

n
tr

l 1
B

R
A

M
/L

M
B

 c
n

tl
r.

ilm
b

_c
n

tr
l 1

B
R

A
M

/L
M

B
 c

n
tl

r.

m
em

1

B
R

A
M

 m
em

o
ry

m
b

0

M
ic

ro
b

la
ze

p
ro

ce
ss

o
r

ilm
b

0
Lo

ca
l m

em
o

ry
 b

u
s

d
lm

b
0

Lo
ca

l m
em

o
ry

 b
u

s

d
lm

b
_c

n
tr

l 0
B

R
A

M
/L

M
B

 c
n

tl
r.

ilm
b

_c
n

tr
l 0

B
R

A
M

/L
M

B
 c

n
tl

r.

m
em

0

B
R

A
M

 m
em

o
ry

tc
1

Ti
m

er
/c

o
u

n
te

r

C
al

le
e 3

C
al

le
e 2

C
al

le
e 1

C
al

le
e 0

C
al

le
e 4

C
al

le
r 1

C
al

le
r 2

C
al

le
r 3

C
al

le
r 4

C
al

le
r 0

So
ft

w
a

re
Q

u
eu

e 1

C
al

le
r 0

C
al

le
r 1

C
al

le
r 2

C
al

le
r 3

C
al

le
r 4

C
al

le
e 4

C
al

le
e 3

C
al

le
e 2

C
al

le
e 1

C
al

le
e 0

C
o

n
te

xt
0

C
o

n
te

xt
1

M
es

sa
g

eQ
u

eu
e 1

X
ilk

er
n

el
1

So
ft

w
a

re
Q

u
eu

e 0

X
ilk

er
n

el
0

P
lb

Sl
av

e 3

p
lb

_b
ra

m
_c

n
tr

l

B
R

A
M

/P
LB

 c
o

n
tr

o
lle

r

m
em

2

B
R

A
M

 m
em

o
ry

Ex
a

m
p

le
 2

 A
p

p
lic

a
ti

o
n

b
u

s 
P

ro
ce

ss
o

r 
lo

ca
l b

u
s

P
lb

M
as

te
r 0

P
lb

M
as

te
r 1

P
lb

M
as

te
r 2

P
lb

M
as

te
r 3

P
lb

Sl
av

e 0
P

lb
Sl

av
e 1

M
d

m

M
ic

ro
b

la
ze

d
eb

u
g

 m
o

d
u

le

P
lb

Sl
av

e 2

M
es

sa
g

eQ
u

eu
e 2

M
es

sa
g

eQ
u

eu
e 0

M
es

sa
g

eQ
u

eu
e 1

M
es

sa
g

eQ
u

eu
e 2

M
es

sa
g

eQ
u

eu
e 0

St
at

ic
 c

o
m

p
o

n
en

t

Sp
ec

u
la

ti
ve

 c
o

m
p

o
n

en
t

St
at

ic
 o

p
ti

o
n

 
w

. I
n

te
rf

ac
e(

s)

Sp
ec

u
la

ti
ve

 o
p

ti
o

n
 

w
. I

n
te

rf
ac

e(
s)

Sp
ec

u
la

ti
ve

 o
p

ti
o

n
 

w
.o

. I
n

te
rf

ac
e(

s)

St
at

ic
 c

o
n

n
ec

ti
o

n

P
o

ss
ib

le
 c

o
n

n
ec

ti
o

n

Le
g

en
d

Fi
gu

re
5.

10
–

M
ax

im
al

m
od

el
of

ex
pe

ri
m

en
t

2.



178 Automated Design Generation

m
em

1

B
R

A
M

 M
em

o
ry

tc
0

Tim
er/co

u
n

ter

m
b

1

M
icro

b
la

ze
p

ro
cesso

r

ilm
b

1
Lo

ca
l m

em
o

ry b
u

s

d
lm

b
1

Lo
ca

l m
em

o
ry b

u
s

d
lm

b
_cn

trl1
B

R
A

M
/LM

B
 cn

tlr.

ilm
b

_cn
trl1

B
R

A
M

/LM
B

 cn
tlr.

m
em

1

B
R

A
M

 m
em

o
ry

m
b

0

M
icro

b
la

ze
p

ro
cesso

r

ilm
b

0
Lo

ca
l m

em
o

ry b
u

s

d
lm

b
0

Lo
ca

l m
em

o
ry b

u
s

d
lm

b
_cn

trl0
B

R
A

M
/LM

B
 cn

tlr.

ilm
b

_cn
trl0

B
R

A
M

/LM
B

 cn
tlr.

m
em

0

B
R

A
M

 m
em

o
ry

tc
1

Tim
er/co

u
n

ter

C
allee

1
C

allee
0

C
aller

1
C

aller
2

C
aller

3
C

aller
0

So
ftw

a
reQ

u
eu

e
1

C
aller

0
C

aller
1

C
aller

2
C

aller
3

C
allee

1
C

allee
0

C
o

n
text

0
C

o
n

text
1

X
ilkern

el1
X

ilkern
el0

P
lb

Slave
3

p
lb

_b
ra

m
_cn

trl

B
R

A
M

/P
LB

 co
n

tro
ller

m
em

2

B
R

A
M

 m
em

o
ry

Exa
m

p
le 2

 A
p

p
lica

tio
n

b
u

s 
P

ro
cesso

r lo
ca

l b
u

s

P
lb

M
aster

0
P

lb
M

aster
1

P
lb

M
aster

2
P

lb
M

aster
3

P
lb

Slave
0

P
lb

Slave
1

M
d

m

M
icro

b
la

ze
d

eb
u

g
 m

o
d

u
le

P
lb

Slave
2

M
essa

g
eQ

u
eu

e
2

M
essa

g
eQ

u
eu

e
2

Static co
m

p
o

n
en

t

Sp
ecu

lative co
m

p
o

n
en

t

Static o
p

tio
n

 
w

. In
terface(s)

Sp
ecu

lative o
p

tio
n

 
w

. In
terface(s)

Sp
ecu

lative o
p

tio
n

 
w

.o
. In

terface(s)

Static co
n

n
ectio

n

P
o

ssib
le co

n
n

ectio
n

Leg
en

d

Figu
re

5.11
–

R
esult

produced
for

experim
ent

2.



5.6 Experiments 179

Parameter Value
SoftwareQueue1.Depth 20
SoftwareQueue1.Size 1024
mem2.Size 4016
Xilkernel0.MessageQueue2.Depth 2
Xilkernel0.MessageQueue2.Size 16
Xilkernel1.MessageQueue2.Depth 32
Xilkernel1.MessageQueue2.Size 64

Table 5.6 – Parameter values computed by the procedure for the components and
options added to experiment 2.

troller and a BRAM memory. Besides the components, a pair of Callee and Caller
options have been added to both of the contexts for connecting the added soft-
ware queue and a number of message queue options have been added to the
Xilkernel components. The inconsistency of the input design caused by the re-
source claim associated with channel ch0 has been resolved by including a mes-
sage queue option in the component Xilkernel0. Similarly, the inconsistency
caused by the resource claim associated with channel ch2 has been resolved by
the inclusion of a message queue option in Xilkernel1. The last inconsistency,
caused by the resource claim associated with channel ch1, has been resolved by
adding a software queue to the design. Adding this queue, however, introduces
a new inconsistency because the platform does not include a memory reach-
able from both processors. This inconsistency is handled by connecting a BRAM
memory block through a PLB/BRAM interface controller to the bus.

Besides adding new components and options to the design, the procedure
has also determined the values of their parameters. Table 5.6 shows the values
computed for the add components and options. Six of the seven parameters
are used for specifying the dimensions of the three queues added. Their values
match the minimum values specified for the three channels in the YML file of
experiment 2 (see Figure 5.8). The value of the size parameter for the memory
has been set at 4016 even though it only needs to be 2008 (20×100+8) in order
to satisfy the resource claim of the software queue. This illustrates a general
shortcoming of the procedure: it is not possible to associate a ”cost” with the
values of parameters and, as a consequence, results like this may show up. This
is unfortunate as parameters are likely to be used to describe dimensions of
components whose chosen value is proportional to a real cost as is the case with
the memory here.

Although simple, the experiment demonstrates that the procedure works
and shows that it can handle inconsistencies that are not completely trivial. The
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Experiment Variables Expressions Time (hh:mm:ss)

Experiment 1 597 2536 00:00:08

Experiment 2 690 3602 00:03:18

MJPEG 1457 18059 n/a

Table 5.7 – Complexity in terms of variables and expressions in the problem and
execution time of Yices for the three experiments. No result was obtained for the
MJPEG example. The experiments were run on an Intel Core2 Quad CPU at 2.40
GHz running Microsoft Windows 7.

inconsistency caused by channel ch1 cannot be resolved by just adding one com-
ponent or including an option but requires a rather non-obvious combination of
several components

5.6.5.1 Timing Results

Table 5.7 shows the time required by Yices to solve the MAXSMT problem for
the three experiments. As can be seen, experiment 1 ran for about 8 seconds
before Yices came up with a solution. The marginally more complex experiment
2 required 3 minutes and 18 seconds before a solution was found. No result has
been obtained for the MJPEG experiment. The MJPEG experiment was aborted
after having been running for 24 hours without producing a result. Whether
it would take days, weeks, months or perhaps years to come up with a result
remains unknown.

For reference, the size of the SMT problems for the three experiments are
also shown in Table 5.7. The size is given as the number of variables and ex-
pressions in the problem. The number of expressions are not completely accu-
rate as some expressions are expanded into multiple expressions as part of the
encoding. In general, there is not a strong correlation between the number of
variables and expressions in a problem and the time required to solve it. This
observation is supported by the data enclosed in appendix E.

The results show that the procedure is capable of handling small problems
quite fast but cannot handle even medium sized problems such as the MJPEG
example. The logical explanation for this is that the complexity of the MAXSMT
problem, and thus time time required to find a solution, increases exponentially
– and at a rather extreme rate.
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Figure 5.12 – Varying the number of speculative components and options. The data
supporting the plots of Figure 5.12 can be found in appendix E.

To investigate what causes this sudden explosion in complexity a number
of other experiments have been carried out. The experiments are all based on
experiments 1 and 2 and consists of varying the maximal number of instances
set in the instantiation restrictions. Figure 5.12 shows the time required by
Yices for finding a (satisfiable) solution for both Experiments 1 and 2 when the
maximum number of instances of a single instantiation restriction is increased.
The data supporting the plots of Figure 5.12 can be found in appendix E.

As can be seen, increasing the number of SoftwareQueue components causes
the execution time of Yices to increase rather dramatically. Both experiment 1
and 2 requires a single software queue and adding extra instances does not give
rise to a different solution. Increasing the maximum number of MessageQueue
options for experiment 2 is also associated with a significant increase in execu-
tion time although not as dramatic as adding software queues. For Experiment
1, increasing the maximum number of MessageQueue options is associated with
an, in this context, insignificant increase in execution time. The reason for this is
that they are not used in Experiment 1 and, consequently, does not have an im-
pact on the satisfiability of the problem. Figures 5.12(c) and 5.12(d) shows the
effect on the execution time for increasing the maximum number of Caller and
Callee options. The Caller and Callee options influences the number of different
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ways the software queue components can be connected to the two context com-
ponents and thus the number of possible connections in the problem. As can
be seen, increasing the maximum number of Callee options is more demanding
than increasing the maximum number of Caller options. Why this is the case
we do not know but it may have to do with the fact that the interface contains
within a Callee interface is a subject interface and the services available at a
such is used for defining the services available at a larger part of the model than
what is the case for the object interface contains within a Caller option.

In these experiments, the maximum number of instances for all but one of
the instantiation restrictions were kept constant. When the maximum number
of instances for several of the instantiation restrictions are increased then the
execution time rises even more dramatically. This is, of cause, a natural conse-
quence of the complexity of the MAXSMT problem which is known to be NP.

The results clearly show that the procedure is not practically useful because
of the overwhelming computational requirements associated with evaluating
all but the smallest problems. Although we did initially expect to have prob-
lems with the scalability, we did not expect for it to be this extreme. However,
considering the size of the solution space and and using the timing result ob-
tained in chapter 3 for checking the consistency of a model as a benchmark for
the time required to test one possible solution it is obvious that the problem is
indeed very complex and that the results were to be expected. A more feasi-
ble approach to tackle the optimization problem could be to use meta-heuristic
methods supported by the consistency checking procedure presented earlier in
chapter 3.

5.7 Optimizations

The performance of the procedure is rather poor and not well suited for practical
applications. In this section, we will briefly discuss two possible optimizations
that may improve the performance of the procedure.

Flow Merging. A significant part of the complexity is due to the encoding of
the service flow. The bit-vector operations used to encode service availablity
propagation are quite expensive. By collapsing the encoding of the service flow
in components and options some computation can be saved. Also, the compo-
nents and the options of the input design could be merged.



5.7 Optimizations 183

C
o
n
textService

o
b
j0

o
b
j1

o
b
j2

su
b

su
b

su
b

C
o
n
textService

swe0

swe1

swe2
Context Context

o
b
j0

o
b
j1

o
b
j2

su
b

su
b

su
b

swe0

swe1

swe2

Figure 5.13 – Reducing the set of possible connections from 9 to 3

Connection Reduction. A major source of complexity is the encoding of the
possible connections between the components. In the presented encoding, each
(free) interface can be connected to all other (free) interfaces of a compatible
type. This means that for a design with x object and y subject interfaces of
a given service exchange relation there are x × y possible connections. It is,
however, often the case that a significant number of these possible connections
are equivalent meaning that regardless of which, if any, of them is chosen as an
actual connection the service flow of the resulting model is effectively identical.

As an example, consider the service exchange relation Context/Caller used
to relate software entities relations with an execution context. The context com-
ponent provides a number of completely identical interfaces each of which are
used to relate it to a single software entity. It does not matter which of these
interfaces a given software entity is connected to because the interfaces are iden-
tical both regarding the type (relation and role) and the set of services available
at them. For a design with three software entities and a single context there are
a total of 9 different possible connections (see Figure 5.13). This can be reduced
to 3 if we are able to determine that the three interfaces on the processor are in
fact equivalent (Figure 5.13).

While this optimization would most likely do wonders for the three simple
problems considered, it is not a silver bullet because it the number of possible
connections would still grow rapidly as more components are added.
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5.8 Discussion & Summary

In this chapter, we have presented an approach to generate consistent designs on
the basis of an inconsistent design and a library of components. The approach
attempts to transform the inconsistent design into a consistent one by adding
components from the library.

Besides the problem with the overwhelming computational requirements,
the presented procedure has a number of shortcoming and limitations that must
be addressed before the procedure can be put to practical use.

A serious shortcoming of the procedure is that it can only deal with costs
associated with the inclusion of components and parameters. Choosing the pa-
rameter values associated with a speculative component or option is not associ-
ated with a cost and may be chosen freely by the solver. For example, the cost
of including the message queue option in the Xilkernel component is the same
regardless of the size and depth of the queue.

Another shortcoming is the lack of a ”compositional rules” concept that can
be used to restrict how components are connected. The concept of interface
groups is not sufficient to properly handle the kinds of restrictions that one
would like to make in practice. A more capable solution would probably involve
a ”topology constraint” language of sorts.

In theory, the procedure can also be used to generate a design from scratch
given only a Service Relation Model description of the top (application) layer. To
be practical in such a scenario, however, the procedure will have to be extended
with the ability to reason about non-functional properties and constraints. As
it is, the procedure will return the smallest possible consistent design. How to
add support for non-functional properties and constraints is an open question.
Experimentation will be difficult without a faster way to solve the optimization
problem and we believe that this problem should be addressed either before or
in tandem with the question of how to approach the inclusion of non-functional
properties.

Many of these shortcoming could probably be addressed one way or the
other but once the problem with the computational requirements were discov-
ered work on addressing the other problems was put to a halt. The reader may
ask why MAXSMT was used when the results of chapter 4 clearly showed that it
was computationally expensive and only feasible for relatively small problems.
The reason for this is that most of the work presented in this chapter was carried
out prior to the work presented in chapter 4.



CHAPTER 6

Conclusion

6.1 Contributions

Design automation tools supporting the platform-based design approach must
be able to reason about the capabilities of platforms. By imposing restrictions
on the supported platforms it is often possible to replace the need for analysis
by a set of assumptions. Such restrictions can help simplifying the tool makers
job at the cost of limiting the design space covered by the tool.

This dissertation has presented an attempt at devising a formalism and an
associated analysis method for automated analysis of platform capabilities. The
result has been named the Service Relation Model emphasizing its focus on
relations between abstract services. In the Service Relation Model, a platform is
viewed as a network of components providing and forwarding services.

Three different applications of the Service Relation Model have been pre-
sented in this dissertation:

In the first application, the Service Relation Model was used to check the
consistency of designs with respect to service and resource availablity. For each
component of a design we are able to determine whether or not it has access to
the necessary services and resources that it will need to function properly. The
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consistency check is implemented by adding additional concepts to the core
Service Relation Model. Compared to other approaches, the consistency check
does not require that the dependencies amongst the components have been
explicitly asserted in the input nor does it assume the existence of a component
framework. Our experiments shows that the procedure is capable of handling
rather large problems in a reasonable time frame.

In the second application, information retrieved from analyzing a Service
Relation Model description of a platform was used to generate an abstraction
layer implementing the communication infrastructure of a process network ap-
plication. The presented procedure uses analysis information for determining
the set of possible channel implementations based on a set of abstract channel
implementation schemes. An optimization problem, in the form of a MAXSMT
problem, is formulated and solved to determine, for each channel, which of
its possible implementations should be used in the final implementation. The
back-end of the procedure uses service invocation synthesis – an approach to
code generation based on the Service Relation Model. Compared to other simi-
lar procedures and approaches, the presented procedure is completely indepen-
dent of the platform and can easily be extended with new platform components
and implementation schemes. Experiments show that MAXSMT is capable of
handling small to medium sized designs reasonably fast but does not scale well
and, as a consequence, is not practical for larger designs.

In the third and final application, the concepts of the Service Relation Model
and the concept of consistency is used as the foundation for a procedure that,
given an inconsistent design, attempts to generate a new consistent design con-
taining the given inconsistent design. The procedure generalizes parts of the
previously presented procedure for implementing the communication infras-
tructure of process networks. At the heart of the procedure is a non-linear
optimization problem. An attempt at formulating and solving the problem as a
MAXSMT problem has been undertaken. Experiments show that only very small
problems can be handled in reasonable time.

Collectively, the three applications demonstrates the worth of the Service
Relation Model and the associated service availablity analysis. Using abstract
re-usable descriptions of the components of platforms, we have shown how
information about its capabilities can be extracted and used for diverse purposes
such as consistency checking and automated programming.
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6.2 Discussion

The real contribution of this work is the concept of service aggregation upon
which the service relation model is based. In our view, it is so simple and
obvious that others before us surely must have used it for similar purposes.
Despite our best efforts, however, we have been unable to find any prior work
based on the same or a similar concept.

Two of the presented applications of the service relation model requires an
optimization problem to be solved. In this dissertation, these problems have
been solved using the MAXSMT feature of the Yices solver. Unfortunately, the
exponential running time of MAXSMT means that both of the presented proce-
dures can only handle problems of a limited size in reasonable time. In gen-
eral, we conclude that the use of MAXSMT for solving the kind of optimization
problems encountered in this work is not practical due to the overwhelming
computational complexity. Alternative ways of dealing with the optimization
problems must be investigated. We believe that an approach based on the use
of meta-heuristics may be appropriate in both cases.

Although the performance results of the two procedures proved to be unsat-
isfactory, we still believe that the two procedures served their intended purpose
of demonstrating the usefulness and versatility of the Service Relation Model.

6.3 Future Work

The Service Relation Model, as presented in this thesis, focuses exclusively on
functional aspects. In practice, the non-functional properties of systems cannot
be ignored. Extending the Service Relation Model so that it may be used to an-
alyze different non-functional properties is an important next step. We theorize
that many of the ideas employed by the Metropolis framework for analyzing
non-functional properties can also be used with the Service Relation Model.

Another shortcoming of the Service Relation Model, that could be addressed,
is that it can only be used for modeling static platforms and systems. Whether
or not this is worth pursuing, however, depends on the intended application of
the model. Within the context of embedded systems, there are plenty of areas
where the lack of means to model dynamic behavior is not an issue.

The expressibility of the presented concepts of assertions and resource claims
used for capturing component dependencies is somewhat limited. It could be
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interesting to explore the possibility of replacing both concepts with a more gen-
eral ”constraint language” that supports more advanced reasoning with respect
to the structure and meaning of the model and its constituent parts.

In this thesis, we have presented three different uses of the Service Rela-
tion Model. We believe that the model has more interesting uses that could
be explored. In this work, we have focused solely on applications given using
the process networks MoC. It would be interesting to see if the methods and
principles used for process networks could be used for other MoC’s as well.



APPENDIX A

Alternative Analysis Algorithm

This appendix contains the pseudo code for the alternative analysis algorithm
mentioned in section 2.4. The algorithm differs from algorithm 1 from section
2.4 in that it computes the availablity of interfaces in addition to the availablity
of services.
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Algorithm 2 Available Services - Worklist Algorithm
1: procedure SOLVE(S, I, E)
2: worklist := E . Initialization
3: for each x ∈ S ∪ I do
4: available[x] := { x }
5: end for
6: while worklist , ∅ do . Main loop
7: e := DEQUEUE(worklist)
8: t := GETTARGETNODE(e)
9: s := GETSOURCENODE(e)

10: if ¬ (available[t] ⊆ available[s]) then
11: available[t] := available[t] ∪ available[s]
12: for each o ∈ GETSUCCESSOREDGES(t) do
13: ENQUEUE(o)
14: end for
15: end if
16: end while
17: end procedure
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Ωe : Exprω × RES × (S × I→ P(S))→ {true, false})

Ωe(e0 + e1, res, sa) = Ωe(e0, res, sa) + Ωe(e1, res, sa)

Ωe(e0 - e1, res, sa) = Ωe(e0, res, sa) −Ωe(e1, res, sa)

Ωe(e0 * e1, res, sa) = Ωe(e0, res, sa) ×Ωe(e1, res, p, sa)

Ωe(e0 / e1, res, sa) = Ωe(e0, res, sa)/Ωe(e1, res, p, sa)

Ωe(e0 > e1, res, sa) = Ωe(e0, res, sa) > Ωe(e1, res, p, sa)

Ωe(e0 >= e1, res, sa) = Ωe(e0, res, sa) ≥ Ωe(e1, res, p, sa)

Ωe(e0 < e1, res, sa) = Ωe(e0, res, sa) < Ωe(e1, res, p, sa)

Ωe(e0 <= e1, res, sa) = Ωe(e0, res, sa) ≤ Ωe(e1, res, p, sa)

Ωe(e0 = e1, res, sa) = Ωe(e0, res, sa) = Ωe(e1, res, p, sa)

Ωe(e0 != e1, res, sa) = Ωe(e0, res, sa) , Ωe(e1, res, p, sa)

Ωe(e0 and e1, res, sa) = Ωe(e0, res, p, sa) ∧Ωe(e1, res, sa)

Ωe(e0 or e1, res, sa) = Ωe(e0, res, p, sa) ∨Ωe(e1, res, sa)

Ωe(e0 implies e1, res, sa) = Ωe(e0, res, p, sa)→ Ωe(e1, res, sa)

Ωe(not e, res, sa) = ¬Ωe(e, res, sa)

Ωe(- e, res, sa) = −Ωe(e, res, sa)

Ωe(sc @ s) = sc.S ∩ sa[s] , ∅

Ωe(sc @ i) = sc.S ∩ sa[i] , ∅

Ωe(->(sc @ s), res, sa) = RA[res] ∩ sc.S ∩ sa[s] , ∅

Ωe(->(sc @ i), res, sa) = RA[res] ∩ sc.S ∩ sa[i] , ∅

Ωe(resource_parameter, res, sa) = res.RPv[resource_parameter]

Ωe(constant, res, sa) = constant

Table B.1 – Evaluation of where expressions. It is assumed that the input expression
is well-formed with respect to types.



193

Qe : Exprqty × (SYM→ Z ∪ ⊥)→ {true, false})

Qe(e0 + e1, p) = Qe(e0, p) + Qe(e1, p)

Qe(e0 - e1, p) = Qe(e0, p) − Qe(e1, p)

Qe(e0 * e1, p) = Qe(e0, p) × Qe(e1, p)

Qe(e0 / e1, p) = Qe(e0, p)/Qe(e1, p)

Qe(e0 > e1, p) = Qe(e0, p) > Qe(e1, p)

Qe(e0 >= e1, p) = Qe(e0, p) ≥ Qe(e1, p)

Qe(e0 < e1, p) = Qe(e0, p) < Qe(e1, p)

Qe(e0 <= e1, p) = Qe(e0, p) ≤ Qe(e1, p)

Qe(e0 = e1, p) = Qe(e0, p) = Qe(e1, p)

Qe(e0 != e1, p) = Qe(e0, p) , Qe(e1, p)

Qe(e0 and e1, p) = Qe(e0, p) ∧ Qe(e1, p)

Qe(e0 or e1, p) = Qe(e0, p) ∨ Qe(e1, p)

Qe(e0 implies e1, p) = Qe(e0, p)→ Qe(e1, p)

Qe(not e, p) = ¬Qe(e, p)

Qe(- e, p) = −Qe(e, p)

Qe(parameter, p) = p[parameter]

Qe(constant, p) = constant

Table B.2 – Evaluation of quantity expressions. It is assumed that the input expres-
sion is well-formed with respect to types.
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APPENDIX C

Implementation Scheme C
Templates

This appendix contains the C templates used for generating implementations
for the access modules of the implementation schemes that were not presented
with the main text in section 4.4.1.
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#i n c l u d e <shared.c>
v o i d chx_write_init

<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemInit s1 >() {
initialize_memory <r0, s0 >();
[s1(br1c, CH_DEPTH )]; /* initialize semaphore to CH_DEPTH */

}

v o i d chx_write
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemWait s2 >( v o i d * data) {
[s2(br1c)]; /* wait */
copy_to_token <r0,s0 >(data);
inc_wr_idx <r0,s0 >();

}

v o i d chx_write_handler(RCSemaphore r1, SCSemPost s3) {
[s3(br1c)]; /* post */

}

Listing C.1 – Template for the write access module of IS2.

#i n c l u d e <shared.c>
v o i d chx_read_init () { /* empty */ }

v o i d chx_read <RCMemory rs, SCMemoryService s, SCIHandler i>( v o i d * data) {
w h i l e (is_empty <rs,s>());
copy_from_token <rs,s>(data);
inc_rd_idx <rs,s>();
[i();] /* notify */

}

v o i d chx_read_handler () { /* empty */ }

Listing C.2 – Template for the read access module of IS2.

v o i d chx_write_init <RCMemory r0, SCMemoryService s0 >() {
initialize_memory <r0, s0 >();

}

v o i d chx_write
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemWait s2,
SCIHandler i1 >( v o i d * data) {

w h i l e (is_full <r0,s9 >());
copy_to_token <r0, s0 >(data);
inc_wr_idx <r0, s0 >();
[i0();] /* notify */

}

v o i d chx_write_handler () {
/* empty */

}

Listing C.3 – Template for the write access module of IS3.
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v o i d chx_read_init <RCSemaphore r1, SCSemInit s1 >() {
[s1(br1c, 0)]; /* initialize semaphore to 0 */

}

v o i d chx_read
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemWait s2,
SCIHandler i1 >( v o i d * data) {
[s2(br1c)]; /* wait */
copy_from_token <r0, s0 >(data);
inc_rd_idx <r0, s0 >();

}

v o i d chx_read_handler <RCSemaphore r1, SCSemPost s3 >() {
[s3(br1c)]; /* post */

}

Listing C.4 – Template for the read access module of IS3.

v o i d chx_write_init
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemInit s1 >() {

initialize_memory <r0, s0 >();
[s1(br1c, CH_DEPTH )]; /* initialize semaphore to CH_DEPTH */

}

v o i d chx_write
<RCMemory r0, RCSemaphore r1, SCMemoryService s0, SCSemWait s2,
SCIHandler i1 >( v o i d * data) {
[s2(br1c)]; /* wait */
copy_to_token <r0, s0 >(data);
inc_wr_idx <r0, s0 >();
[i0();] /* notify */

}

v o i d chx_write_handler <RCSemaphore r1, SCSemPost s3 >() {
[s3(br1c)]; /* post */

}

Listing C.5 – Template for the write access module of IS4.

v o i d chx_read_init <RCSemaphore r2, SCSemInit s4 >() {
[s4(br1c, 0)]; /* initialize semaphore to 0 */

}

v o i d chx_read
<RCMemory r0, RCSemaphore r2, SCMemoryService s0, SCSemWait s5,
SCIHandler i1 >( v o i d * data) {
[s5(br2c)]; /* wait */
copy_from_token <r0, s0 >(data);
inc_rd_idx <r0, s0 >();
[i1();] /* notify */

}

v o i d chx_read_handler <RCSemaphore r1, SCSemPost s6 >() {
[s6(br2c)]; /* post */

}

Listing C.6 – Template for the read access module of IS4.
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APPENDIX D

Automated Programming
Timing Measurements

This appendix contains the measured execution times for the experiments of
section 4.4.2.3.
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