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Abstract This report summarizes the findings of the EFP project WAsP Engineering
Version 2000. The main product of this project is the computer program WAsP Engineer-
ing which is used for the estimation of extreme wind speeds, wind shears, profiles, and
turbulence in complex terrain. At the web page http://www.waspengineering.dk
more information of the program can be obtained and a copy of the manual can be down-
loaded.

The reports contains a complete description of the turbulence modelling in moderately
complex terrain, implemented in WAsP Engineering. Also experimental validation of the
model together with comparison with spectra from engineering codes is done.

Some shortcomings of the linear flow model LINCOM, which is at the core of WAsP
Engineering, is pointed out and modifications to eliminate the problem are presented.

The global database of meteorological “reanalysis” data from NCAP/NCEP are used to
estimate the extreme wind climate around Denmark. Among various alternative physical
parameters in the database, such as surface winds, wind at various pressure levels or
geostrophic winds at various heights, the surface geostrophic wind seems to give the
most realistic results. Because of spatial filtering and intermittent temporal sampling the
50 year winds are underestimated by approximately 12%. Whether the method applies to
larger areas of the world remains to be seen.

The 50 year winds in Denmark is estimated from data using the flow model in WAsP
Engineering and the values are approximately 1 m/s larger than previous analysis (Kristensen,
Rathmann and Hansen 2000). A tool is developed to estimate crudely an extreme wind
climate from a WAsP lib file.
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1 Introduction

Wasp Engineering is a computer program for the estimation of extreme wind speeds,
wind shears, profiles, and turbulence in complex terrain. The core algorithms were devel-
oped under the project called WAsP Engineering 1.0 DK sponsored by EFP (the Energy
Research Programme under the Danish Energy Authority, project number ENS–1363/07–
0004, (Mann, Astrup, Kristensen, Rathmann, Madsen and Heathfield 2000)). The ambi-
tion was to have a commercially available version ready at the end of the project (end of
1999). However, only a prototype of the program was achieved, and it was not stable and
user friendly enough to be distributed.

Funded again by EFP (ENS–1363/00–0015) the work with the computer program con-
tinued and WAsP Engineering version 1.0 was finally released July 2001 at the European
Wind Energy Conference and Exhibition in Copenhagen (see figure 1). The time from the
production of the first prototype to the release of version 1.0, approximately 18 months,
was used to reprogram the user interface almost completely, send a beta version out to 10
test users and fix a long list of bugs and installations problems.

Figure 1. The presentation of WAsP Engineering at the Risø stand at EWEC 2001 in the
Bella Center, Copenhagen

Now, a year after the release, the program has been sold in almost 40 copies. A revised
version (version 1.2) is distributed in August 2002 with a tool to estimate extreme wind
climates from a WAsP lib file (see section 5.3 on page 82).

In November 2001 the first WAsP Engineering course was held at Risø (see figure 3 and
4). Many participant had not bought the program in advance, but generally they handled
the user interface with ease. Thus we are satisfied with the basic functionality and layout.
These courses have been attended by some 20 persons by now.

The next course was held in June 2002 and from both courses we got valuable infor-
mation on what the users, mainly wind turbine manufactures and consulting engineers,
would like in the future. Their wishes can be summaries as

1. A flow model that works in terrain steeper than 25%.

2. Calculation of extreme wind climates from measured time series.

3. Modelling of turbulence in wind turbine wakes.

4. More information on the mathematical models behind WAsP Engineering.

The first point is extraordinary difficult. A not very successful attempt using a atmospheric
mesoscale model is presented in section 4. An attempt to improve the applicability of the
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Figure 2. Room was sparse at the introduction of WAsP Engineering, June 2001.

Figure 3. Participants from Spain, England, Germany and Japan at the first WAsP Engi-
neering course.

linear flow model is presented in section 3. The second point is indirectly in the Extreme
Wind Climate Estimator described in section 5.3. Here the extreme wind climate is es-
timated from a climate file (a so-called lib file) from WAsP. A better way of doing the
estimation would be to go back to the original time series and analyze that. Best strat-
egy for doing this has been considered, although a final implementation into a smoothly
running tool has not been completed. We have unfortunately not had sufficient time to
develop and implement the third point. The fourth point is taken care of by a complete
description of the turbulence modelling in WAsP Engineering is section 2.

In section 2 a complete description of the turbulence modelling in WAsP Engineering
is presented. A spectral tensor model of turbulence over flat terrain is discussed in detail
with experimental verification and comparison with spectra from engineering codes. Then
the model is generalized to moderately complex terrain where the effects of orography
and varying roughness is modelled. Finally, the tensor model is used as a basis of the
simulation of turbulent fields implemented in WAsP Engineering.

The linear mean flow model currently used in WAsP Engineering has unrealistic flow
angles very close to the surface. In section 3 a more correct formulation of the linearized
equations is presented, which should improve on these flow angles. Further, new ideas on
alternative formulations of the flow equations are presented.
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In section 5.1 50 year winds close to Denmark are estimated from the NCEP/NCAR
reanalysis data. Winds at 10 m, at the pressure level 850 hPa, and geostrophic winds
at 850 hPa, 1000 hPa, and at the sea surface are analyzed. It turns out that the surface
geostrophic wind gives most realistic values. At 10 m height the expected extreme wind
with a return period of 50 years at the North Sea west of Denmark is 27 m s−1, based
on the NCEP/NCAR reanalysis data. It is approximately 11 % less than estimates from
observations. More research is needed in order to validate the method and see whether
the spatial and temporal averaging inherent in the model can be corrected for.

A recalculation of the extreme wind climate based on data is done in section 5.2. Here
WAsP Engineering is used instead of WAsP which has been used before (Kristensen
et al. 2000). The analysis show that 50 year winds are roughly 1 m/s larger compared
with the older analysis. Much of the difference is attributed to the increased roughness of
water bodies at high wind speed, which is not modelled in WAsP.

Finally, section 5.3 shows a way to estimate extreme wind climates from WAsP lib
files. This has been implemented in WAsP Engineering version 1.2 being released August
2002.

Figure 4. Course participants Felipe Sánchez and Ignacio Martín from Spain discuss
WAsP Engineering with the teachers Jakob Mann and Søren Ott.
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2 Flat and complex terrain turbulence

For wind turbines dynamic wind loading caused by the atmospheric turbulence is a seri-
ous concern for the designer. Knowledge of all three wind components and their spatial
correlations are needed because the gusts are ‘sampled’ in a complicated way by the
sweeping blades.

The purpose of this section is to describe a model for the spectral tensor of neutral
atmospheric surface layer turbulence over flat, homogeneous terrain and the extension of
this model to moderately complex terrain. The spectral tensor contains all information
on spectra, cross-spectra and coherences, which usually are the input requested by wind
turbine designer. Besides being implemented in the computer program WAsP Engineering
the model (for flat terrain) is currently being incorporated into the code IEC 61400, which
is used widely in the design work of wind turbines.

To model model turbulence over complex terrain is an extremely complicated task.
However, in moderately complex terrain some of the techniques used for the flat terrain
case can be extended. Both the effect of changing roughness and orography on the turbu-
lence is modeled. The model is combined with the simple and fast flow model LINCOM
(Astrup, Mikkelsen and Jensen 1997) and included into the software program WAsP En-
gineering.

What happens when the terrain is more than just moderately steep and how steep is
that? We do not try to give definite answers to this, only a rule of thumb is given to
guide the designer. In order to predict what happens in very steep terrain computationally
much more difficult and expensive methods, such as LES (Large Eddy Simulation), must
come into play. At present this is according to Wood (2000) too difficult for all but the
most simple terrains. In section 4 some very preliminary attacks on the problem of steep
terrain is presented.

We also to devise a general algorithm to simulate three-dimensional fields of all three
components of the wind velocity fluctuations. Such simulations are particular useful for
time domain simulations of gust loading of turbines, and core of the algorithm has been
used since 1994 in the Department of Wind Energy at Risø mainly for load calculations on
wind turbines with the program HAWC (see http://www.risoe.dk/vea-aed/aeroelas.htm).

In section 2.2 the tensor model for turbulence over flat terrain is presented. Despite
the various assumptions and postulates the tensor model only contains three adjustable
parameters: a length scale describing the size of the energy containing eddies, a non-
dimensional number used in the parametrization of eddy lifetime, and the third parameter
is a measure of the energy dissipation. These three parameters are estimated by comparing
the model to measurements over flat terrain in section 2.2.5. In section 2.4, 2.5 and 2.6
it is sketched how the flat terrain model is extended to more complex terrain and the
limitations are stated. Finally, in section 2.7 the spectral tensor is used in a numerical
algorithm to simulate three-dimensional fields of all three components of the wind vector.
Some of the material presented here has previously been reported in more detail in Mann
(1994), Mann (1998), and Mann (2000).

2.1 Flat terrain turbulence
Definitions The atmospheric turbulent velocity field is denoted by ũ(x), where x =
(x, y, z) is a right-handed coordinate system with the x-axis in the direction of the mean
wind field and z as the vertical axis. The fluctuations around the mean wind, u(x) =
(u1, u2, u3) = (u, v,w) = ũ(x) − (U(z), 0, 0), are assumed to be homogeneous in
space, which is often the case in the horizontal directions but is only a crude approxi-
mation in the vertical. Since turbulence over flat terrain at high wind speeds is primarily
shear-generated, the mean wind field is allowed to vary as a function of z. Because of
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homogeneity, the covariance tensor

Rij (r) =
〈

ui(x)uj (x + r)
〉

(1)

is only a function of the separation vector r (〈 〉 denotes ensemble averaging).
We shall use Taylor’s frozen turbulence hypothesis to interpret time series as ‘space se-

ries’ and to serve as a ‘dispersion relation’ between frequency and wave number (Panofsky
and Dutton 1984). Therefore, we can suppress the time argument in u.

We only aim at modelling the second order statistics of turbulence, such as variances,
cross-spectra, etc. For simulation purposes the velocity field is otherwise assumed to be
Gaussian (see section 2.7). It is still not clear how much influence the statistics of third
order, such as skewness, has on load calculations.

All second order statistics can be derived from the covariance tensor or its Fourier
transform, the spectral tensor:

8ij (k) = 1

(2π)3

∫

Rij (r) exp(−ik · r)dr, (2)

where
∫

dr ≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dr1dr2dr3. The spectral tensor is the basis of the Fourier

simulation in section 2.7. The stochastic velocity field can be represented in terms of a
generalized stochastic Fourier-Stieltjes integral:

u(x) =
∫

eik·xdZ(k), (3)

where the integration is over all wave number space. The orthogonal process Z is con-
nected to the spectral tensor by

〈

dZ∗
i (k)dZj (k)

〉

= 8ij (k)dk1dk2dk3, (4)

which is valid for infinitely small dki and where ∗ denotes complex conjugation (Batchelor
1953).

Is it very difficult to measure the spectral tensor directly. Instead cross-spectra, defined
as

χij (k1,1y,1z) = 1

2π

∫ ∞

−∞
Rij (x,1y,1z)e

−ik1xdx (5)

are often measured, say by two instruments separated by 1y in the horizontal direction
perpendicular to the wind and 1z in the vertical, and are used in practical applications.
The connection between the components of the spectral tensor and the cross-spectra is

χij (k1,1y,1z) =
∫ ∞

−∞

∫ ∞

−∞
8ij (k)ei(k21y+k31z)dk2dk3. (6)

When the two indices i and j are the same and 1y = 1z = 0 (6) becomes the one-point
spectrum Fi(k1) = χii(k1, 0, 0). This definition implies that spectra are two-sided, i.e.
we get the variance by integrating from −∞ to ∞.

To distinguish between spectra as functions of wave number k1 (= 2πf/U ) and fre-
quency f we use F for the former and S for the latter, i.e. Si(f )df = Fi(k)dk.

The coherence is defined as

cohij (k1,1y,1x) = |χij (k1,1y,1z)|2
Fi(k1)Fj (k1)

. (7)

2.2 The ‘sheared’ spectral tensor for flat terrain
To model the spectral velocity tensor in a shear flow in flat, homogeneous terrain we
linearize the Navier-Stokes equation to estimate the effect of the shear on the turbulence.
If we assume the shear to be linear such that dU/dz is constant, we obtain a simple linear
differential equation for the time evolution of the spectral tensor or the ‘stretching’ of
individual eddies. A sketch to guide the imagination of what this means is provided in
figure 5.
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Figure 5. Interpretation of the interplay of shear and turbulence: Two differently oriented
eddies are followed over three successive times. Shear stretches (along the axis of ro-
tation) and speeds up the upper eddy while the lower eddy is compressed and slowed
down.

2.2.1 Rapid distortion theory

The incompressible Navier-Stokes equation may be written as

Du
Dt

+ u · ∇∇∇U = − 1

ρ
∇∇∇p + non-lin. and viscous terms, (8)

where p is the pressure, and D/Dt ≡ ∂/∂t+U ·∇∇∇ is the ‘average Lagrangian derivative.’
Assuming a linear shear (∇∇∇U constant), taking the curl, and dropping the non-linear and
viscous terms we get

Dωωω

Dt
= ���· ∇∇∇u + ωωω· ∇∇∇U, (9)

where ��� and ωωω are the mean and the fluctuating part of the vorticity. It is not at all clear
that this linearization is permissible. For example, it can be shown that if the curl of (8) is
used to estimate the change in mean square vorticity the non-linear terms will dominate
the linear. However, Hunt and Carruthers (1990) argue that when used for the calculation
of the response of velocity fluctuations (u or Rij ) to a sudden application of a large scale
shearing or straining motion the linearization (9) is valid.

Physically, the last term on the right hand side of (9) may be interpreted as the stretch-
ing of vorticity by the mean shear (see figure 5). The first term is a distortion of the mean
vorticity by velocity fluctuations.

In order to solve (9) we have to Fourier transform the equation. In order to do so, it is
important to notice that wave fronts are advected by the mean flow i.e.

dk
dt

= −(∇∇∇U)k. (10)

The solution to this wave front advection equation is

k(t) = exp(−∇∇∇Ut)k0 (11)

where exp means the matrix exponential.
For a general linear U (9) does not have analytic solution. However, for many simple

situations such as unidirectional shear, non-rotational stretching or compression, etc. such
solutions exists (Townsend 1980).

To get the velocity field from the vorticity we shall express dZ in terms of d���, which
is the Fourier transform of ωωω defined in parallel to (3):

ωωω = ∇∇∇ × u ⇒ d��� = ik × dZ ⇒ −ik × d��� = k × (k × dZ). (12)
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Because of the general identity A × (B × C) = B(A · C)− C(A · B) and that k · dZ = 0
we get

−ik × d��� = −k2dZ ⇒ dZ = i
k × d���

k2
. (13)

We shall rederive (3.11) in Mann (1994), i.e. set up the equations of motion for

∇∇∇U =





0 0 0
0 0 0

dU
dz 0 0



 . (14)

In this case

k(t) = exp(−∇∇∇Ut)k0 =





1 0 0
0 1 0

− dU
dz t 0 1



 k0, (15)

in accordance with (3.13) of Mann, and ��� = (0, dU/dz, 0). The equations of motion (9)
becomes

Dk × dZ
Dβ

= k2dZ +





d�3

0
0



 . (16)

Taking the cross product with k and adding k̇ × (k × dZ) on both sides we get

−Dk2dZ
Dβ

= Dk
Dβ

× (k × dZ)+ k × Dk × dZ
Dβ

= Dk
Dβ

× (k × dZ)+ k2k × dZ +





0
k3

−k2



 d�3. (17)

Writing this more explicitly we get

Dk2dZ
Dβ

=





(k2
1 − k2

2 − k2
3)dZ3 − 2k1k3dZ1

2k1(k2dZ3 − k3dZ2)

0



 (18)

and using Dk2/Dβ = −2k1k3 from (15) this can be shown to be equivalent to (3.11) in
Mann (1994).

The differential equations (18) are easily solved given the initial conditions k(0) =
k0 = (k1, k2, k30) and dZ(k0, 0). Instead of time, t , we shall use the non-dimensional
time, β, defined as

β = dU

dz
t. (19)

The solution to (18) is

dZ(k, β) =





1 0 ζ1

0 1 ζ2

0 0 k2
0/k

2



 dZ(k0, 0), (20)

where

ζ1 =
[

C1 − k2

k1
C2

]

, ζ2 =
[

k2

k1
C1 + C2

]

(21)

with

C1 =
βk2

1(k
2
0 − 2k2

30 + βk1k30)

k2(k2
1 + k2

2)
(22)

and

C2 =
k2k

2
0

(k2
1 + k2

2)
3
2

arctan

[

βk1(k
2
1 + k2

2)
1
2

k2
0 − k30k1β

]

. (23)

The equations (15) and (20) give the temporal evolution of individual Fourier modes.
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2.2.2 RDT and surface layer turbulence

Now we discuss the connection between RDT and stationary surface-layer turbulence,
then the key concept of eddy lifetime (section 2.2.3), and finally we combine the different
parts to obtain the spectral tensor model (section 2.2.4).

The theory in the previous section describes how turbulence react to a sudden and fast
application of a linear shear. It is natural to ask what this has to do with turbulence in the
surface layer.

If the initial conditions can be represented by the isotropic von Kármán tensor,

8ij (k) = E(k)

4πk4

(

δijk
2 − kikj

)

, (24)

with the energy spectrum

E(k) = αε
2
3L

5
3

(Lk)4

(1 + (Lk)2)
17
6

, (25)

then the tensor 8ij (k, t) will become more and more ‘anisotropic’ with time.
The linearization implied by RDT is unrealistic, and at some point (in time) the stretched

eddies will break up. We postulate that eddies of linear dimension ≈ |k|−1 (or more pre-
cisely the Fourier modes) are stretched by the shear over a time which is proportional to
their lifetime. The lifetime τ is

τ(k) ∝ ε−
1
3 k− 2

3 (26)

pertaining, at least in the inertial subrange, to eddies with wave vector magnitude k = |k|
(Landau & Lifshitz 1987, § 33).

The basic postulate is that the stationary spectral tensor

8ij (k) ≡ 8ij (k, τ (k)) (27)

describes the surface layer turbulence well. The combination of RDT and scale dependent
eddy lifetimes has previously been used by (Derbyshire and Hunt 1993).

Maxey (1982) has described a similar model with the exception that the lifetime τ
was assumed to be constant for all wavevectors. (τdU/dz is called ‘the equilibrium value
of the effective distortion strain’ by Maxey.) Maxey’s model gives a reasonable, but not
perfect, description of the ratios between σ 2

u , σ 2
v , σ 2

w and 〈uw〉 for turbulent shear flows.
There are, however, two grave drawbacks when the model of Maxey (1982) is used to
calculate spectra:

1. The uw-cross-spectrum in the inertial subrange decays as k
− 5

3
1 whereas Wyngaard

& Coté (1972) observe and give scaling arguments for k
− 7

3
1 .

2. For typical values of the effective distortion strain the model predicts Fu/Fw ≈ 7 in
the inertial subrange whereas it should be Fu/Fw = 3

4 .

The model presented here does not suffer from these shortcomings.

2.2.3 Eddy lifetimes

At scales larger than the inertial subrange (26) is not necessarily valid. We construct an
alternative model for the ‘eddy lifetime’ assuming that the destruction of an eddy with
size k−1 is mainly due to eddies comparable to or smaller than k−1. The characteristic

velocity of these eddies may be written as
(∫∞
k
E(p)dp

)
1
2 , and we simply assume the

lifetime to be proportional to the size k−1 divided by this velocity:

τ(k) ∝ k−1
(∫ ∞

k

E(p)dp

)− 1
2

∝ k− 2
3

[

2F1

(

1

3
,

17

6
; 4

3
;−(kL)−2

)]− 1
2

∝
{

k− 2
3 for k → ∞

k−1 for k → 0
(28)
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Figure 6. Eddy lifetimes as functions of the magnitude of the wave vector. The lifetimes
given by (28) give the most realistic results.

where we have chosen E as the von Kármán energy spectrum (25) and where 2F1 is the
hypergeometric function.

Comte-Bellot and Corrsin (1971) give another lifetime model which has the right
asymptotic behaviour for k → ∞, the ‘coherence-destroying diffusion time’ :

τD(k) ∝ k−2
[∫ ∞

k

p−2E(p)dp

]− 1
2

∝ k− 2
3

[

2F1

(

4

3
,

17

6
; 7

3
;−(kL)−2

)]− 1
2

∝
{

k− 2
3 for k → ∞

k−2 for k → 0
(29)

which was constructed as the square of the eddy size divided by a k-dependent ‘turbulent
viscosity’.

Further, the inverse ‘eddy-damping rate’

τE(k) ∝
(

k3E(k)
)− 1

2 ∝
{

k− 2
3 for k → ∞

k− 7
2 for k → 0

(30)

is used by Lesieur (1987) in eddy-damped quasi-normal theories of turbulence as a char-
acteristic non-linear relaxation time.

All lifetime models are shown in figure 6 normalized such that they coincide in the
inertial subrange. It turns out that σ 2

u becomes infinite using (29) or (30), while (26) and
(28) give reasonable results. It also turns out that the spectra calculated from (28) fit
the data better than (26) for which reason (28) is used. Some support for (28) may be
found in Panofsky, Larko, Lipschutz, Stone, Bradley, Bowen and Højstrup (1982) who
measured eddy ‘response times’ of eddies in the neutral atmospheric surface-layer. Also
Kristensen and Kirkegaard (1987) were in their theoretical model of the growth of a puff
in a turbulent fluid compelled to use (28) rather than (29) or (30).

It is convenient to write (28) as

τ(k) = 0

(

dU

dz

)−1

(kL)−
2
3

[

2F1

(

1

3
,

17

6
; 4

3
;−(kL)−2

)]− 1
2

, (31)

where 0 is a parameter to be determined. Wilson (1998) has reformulated this expression
in terms of the incomplete beta function.

It should be emphasized that at low wavenumbers the assumptions made so far are not
valid. F.ex. the assumptions of linear shear is only valid over small distances, i.e. for large
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k. Similarly, homogeneity is a dubious assumption for large vertical separations. Finally,
despite talking about eddy lifetimes, there is no real modelling of the decay process,
because there is no equation describing the non-linear transfer of energy among various
wavevectors.

In an attempt to relax the assumption of vertical homogeneity Mann (1994) modelled
the influence of the blocking of the surface in addition to shear. This gave slightly better
coherence predictions than the present model, but greatly complicated the mathematics
and had also other negative consequences.

2.2.4 The uniform shear model

To make a stationary model we use (31) and (27) discussed in section 2.2.2, i.e. we
substitute t with τ given by (31). For the 33-component we get

833(k) = 8iso
33 (k0)

k4
0

k4
= E(k0)

4πk4
(k2

1 + k2
2), (32)

where 8iso
33 refers to the isotropic von Kármán tensor and E to the energy spectrum (25).

The other components become

811(k) = E(k0)

4πk4
0

(

k2
0 − k2

1 − 2k1k30ζ1 + (k2
1 + k2

2)ζ
2
1

)

(33)

822(k) = E(k0)

4πk4
0

(

k2
0 − k2

2 − 2k2k30ζ2 + (k2
1 + k2

2)ζ
2
2

)

(34)

812(k) = E(k0)

4πk4
0

(

−k1k2 − k1k30ζ2 − k2k30ζ1 + (k2
1 + k2

2)ζ1ζ2

)

(35)

813(k) = E(k0)

4πk2
0k

2

(

−k1k30 + (k2
1 + k2

2)ζ1

)

(36)

and

823(k) = E(k0)

4πk2
0k

2

(

−k2k30 + (k2
1 + k2

2)ζ2

)

. (37)

The equations (32) to (37) with (31) constitute the Uniform Shear model (US).
These equations have two differences from the expressions of Townsend (1976) for

plane shearing of homogeneous turbulence. The first is the elimination of time by (31)
and the second and related difference is that we do not use the turbulent viscosity of
Townsend, which would make the decay time for all eddies equal, independent of their
sizes.

2.2.5 Fitting spectra to observations

First the uncertainties on estimated spectra are discussed. These are either caused by
variations in atmospheric stability, which persists evern at high wind speeds (> 16 m/s)
over water, or by statistical variations. Secondly, the measured neutral spectra are fitted
to the spectral tensor model. Based on this fit the coherences are finally predicted and
compared to the measurements.

Uncertainties on spectra Often raw spectral estimates are averaged over, say, n consec-
utive frequencies or wavenumbers to decrease the random error of the estimate (Bendat
and Piersol 1986). Alternatively, the time series could be divided into n segments of equal
duration. Each segment is then Fourier transformed and the spectrum determined as the
average of the absolute square of these Fourier transforms. For either definition the statis-
tical uncertainty on spectral density F calculated from a stationary time series is (under
the assumption that the time series is long compared to the time scale of the process)

σ(F )

〈F 〉 = 1

n
1
2

(38)
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(Koopmans 1974, Bendat and Piersol 1986).
Figure 7 shows the result of an analysis of 22 two-hour time series from the Great Belt

(see also table 2 on page 30). The series have mean speeds U between 16 and 20 m/s and
the mean directions are within a narrow range around South where there is an uninter-
rupted fetch over water for at least 20 km.

Assuming the stability to be neutral, the variation of spectral densities should obey (38)
and the standard deviation at the lowest wavenumbers should be around 25% and 5% at
k1 = 0.1 m−1. The observed rms variations are clearly larger, at least 50% at the lowest
frequencies and maybe 20% at higher frequencies. Most noticeably, there are spectra with
only 10% of the spectral density of the others.

This variation is due to the stability of the atmosphere not being neutral. The case with
suppressed turbulence is slightly stable and has U = 16 m/s.

Unstable stratification also alters the spectrum. Though none of the spectra from the
Great Belt are obtained under very unstable situations, an analysis of unstable, high-wind
spectra on the west coast of Norway indicate that the spectra are mainly enhanced (by
more than 100%) at very low frequencies (f < 0.02 Hz). These might be relevant for
various off-shore production units (Mann 1992).

2 × 10−4

4 × 10−4

10−3 10−2 0.1 1

k
1
F
w
(k

1
)

U
2

Wavenumber k1 (m−1)

Figure 7. Spectra of w from the Great Belt Coherence Experiment. Mean wind speeds
are between 16 and 20 m/s and directions are in a narrow interval around the South (see
table 2 on page 30 for a definition of the interval). Dashed spectra have slightly unstable
stratification, gray have stable, and the thin have neutral.

2.2.6 Spectral fitting and prediction of coherences

In order to conduct simultaneous measurements of spectra and coherence over the sea a
70 m high mast was erected 40 m from an existing mast on the easterly spit of Sprogø,
an island in the midst of the Great Belt separating the two Danish islands Funen and
Zealand. A 15 m long horizontal boom was mounted symmetrically at the top of the new
mast so that the whole construction has the form of a letter “T”. A Kaijo-Denki DAT-
300 omni-directional sonic anemometer was installed at each end of the boom and at the
top of the old mast, providing 15.0, 32.5 and 47.5 m horizontal separations between the
three co-linear instruments. The mast array is shown in figure 9. More details about the
experiment including correction for flow distortion by the sonic anemometers may be
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Figure 8. Average u-, v-, w-, and cross-spectra of all the neutral runs present in figure
7. The ragged curves are meansurements while the smooth are the model spectra. The
model has zero imaginary part of the cross-spectrum (quadrature spectrum).

Figure 9. The mast array on Sprogø viewed from SSE. The tiny dots at the top of the masts
are the omni-directional sonic anemometers.
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found in (Mann, Kristensen and Courtney 1991).
The measured spectra shown in figure 8 are an average of 16 neutral two hour runs

with wind speeds between 16 and 20 m/s. The smooth curves are model spectra derived
from the spectral tensor model, (32) — (37), with the parameters 0 = 3.2, L = 61 m,
and αε2/3/U2 = 1.810−4 m−2/3, which are taken from Mann (1994), who used fewer
two hour runs but slightly higher wind speeds.
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Figure 10. The dots are measured coherences from the same set of data as used for figure
8 for various horizontal separations 1y and for all three velocity components. The lines
are the coherences predicted by the model.

These parameters are in turn used to predict the coherences through (6), (7) and (32)
— (37) as shown in figure 10. As seen from this figure the predictions agree well with the
measurements except for the w coherence, especially at the largest separation.

2.3 Parameters from code spectra
Here we compare the tensor model of section 2.2 to spectra and coherences from the lit-
erature. We will not give an exhaustive review of spectral models but select a few modern
models which the author believes is used in wind engineering. The purpose is to estimate
the parameters 0, L and αε2/3 for a given mean wind speed U and height above the water
surface z.

The logarithmic mean wind profile defines the roughness length:

U(z) = u∗
κ

ln(z/z0), (39)

where u∗ ≡ (− 〈uw〉)1/2z→0 is the friction velocity and κ = 0.40 the von Kármán constant
(Landau and Lifshitz 1987, Panofsky and Dutton 1984).

ESDU International (1982) gives a slightly more accurate wind profile:

U(z) = u∗
κ
(ln(z/z0)+ 34.5f z/u∗) (40)

with the Coriolis parameter f ≡ 2� sinφ, where � is the angular velocity in rad s−1

of the Earth and φ the geographical latitude. The profile (40) is valid up to z = 300 m,
below 30 m (39) is a good approximation to (40). Throughout this comparison we use
f = 10−4 s−1.
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Figure 11. The neutral drag coefficient CDN as a function of mean wind speed at
z = 10 m. The broad line is from Charnock’s relation (41) and (39). The thin lines
are empirical relations from (Geernaert 1987) and the dotted line is from NDP (1998),
see (50).

Charnock (1955) argued that over the sea the roughness length is related to g =
9.8 ms−2 the acceleration due to gravity and the friction velocity by

z0 = A
u2

∗
g

(41)

where A, the Charnock constant, must be determined experimentally. On basis of an
extensive literature study of ocean data Garratt (1977) found that the best fit of (41) is
A = 0.0144. A slightly newer value is given by ESDU International (1982):

A = 0.0167, (42)

which will be used here. Over the ocean the neutral drag coefficient

CDN =
(

u∗
U(10 m)

)2

(43)

increases monotonicly with U as can be seen by solving (41) and (39). This is shown
in figure 11 as a broad line together with several recent empirical relations. The figure
gives a good impression of the uncertainty in estimates of drag coefficients. Among the
various reasons for this variability are atmospheric stability, surface currents, ‘wave age’,
length of the fetch over water, and water depth (Garratt 1977, Geernaert 1987, Brown
and Swail 1991). The spectral density of velocity fluctuations is in general proportional
to the drag coefficient so the uncertainty of the former is probably of the same order of
the latter.

2.3.1 Code and textbook spectra

Surface layer scaling is used in many spectral models, implying that length scales are
proportional to z and that variances are proportional to u2

∗. Therefore, it is convenient to
normalize the spectra with u2

∗ and present them as functions of either n ≡ f z/U or k1z.
The spectra of Kaimal are (Kaimal, Wyngaard, Izumi and Coté 1972, Kaimal and

Finnigan 1994)
f Su(f )

u2∗
= k1Fu(k1)

u2∗
= 52.5n

(1 + 33n)5/3
, (44)

f Sv(f )

u2∗
= 8.5n

(1 + 9.5n)5/3
, (45)

and
f Sw(f )

u2∗
= 1.05n

1 + 5.3n5/3
. (46)
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Kaimal’s spectra are based on measurements over flat homogeneous terrain in Kansas.
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Figure 12. Comparison of spectral models. For the comparison z = 40 m andU = 40 m/s
(over the sea) is chosen. For u ESDU International (1985), (44), (47), (57), (53) are
used. For v and w ESDU International (1985), (45) and (48), and ESDU International
(1985), (46) and (49), respectively. Eq. (40) together with (41) gives u∗ = 1.78 m/s and
z0 = 0.0054 m.

The spectra of Simiu and Scanlan (1996) have the same functional shapes as Kaimal’s
but the numerical constants are different:

f Su(f )

u2∗
= 100n

(1 + 50n)5/3
, (47)

f Sv(f )

u2∗
= 7.5n

(1 + 9.5n)5/3
, (48)

and
f Sw(f )

u2∗
= 1.68n

1 + 10n5/3
. (49)

Deviations from surface layer scaling are found in the model spectra from ESDU In-
ternational (1985). Also the spectra of Norwegian Petroleum Directorate (NDP 1998) and
Højstrup, Larsen and Madsen (1990) do not obey surface layer scaling, but they are only
limited to u-spectra.
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The Engineering Science Data Unit (ESDU) wind profile, spectra and coherences
(ESDU International, 1982, 1985 and 1986) are derived from many sources from all
over the world during several decades. ESDU proposes that the turbulence intensities
and length scales in the surface layer are dependent on mean wind speed. The argument
is that the boundary layer depth increases with increasing wind speed implying larger
scales of the turbulence. The other models, relying on surface layer scaling do not con-
tain any information on the boundary layer depth and they contain no explicit reference to
the mean wind speed. The equations of ESDU are, compared to all other spectral models
discussed here, by far the most complicated. Therefore we shall not cite them explicitly.
The most important input parameters are, as for the other spectral models, the height
above the surface z, and the mean wind speed at some height. Of less important input is
the Coriolis parameter which, as mentioned previously, is taken to be f = 10−4 s−1. The
models we use are valid for the neutral atmosphere.
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Figure 13. The ‘sheared spectral tensor’ of section 2.2 (curves with dots) fitted to the
models by Simiu and Scanlan (47) – (49). The result is given by (60).

The u-spectrum of NDP (1998) applies to winds over oceans and assumes the drag
coefficient to be

CDN = 0.525 × 10−3(1 + 0.15U10), (50)

see figure 11. Integrating dU/dz = u∗/(κz) =
√
CDNU10/(κz) (50) implies that

U(z) = U10

(

1 + C ln
z

10 m

)

(51)

with
C = 0.0573(1 + 0.15U10)

1/2 (52)

where U10 has to be measured in meters per second. While discussing the NPD spectrum
we also assume the unit of z to be meter, f is Hz and Su is m2s−2Hz−1. The spectral
density of the longitudinal wind component is

Su(f ) =
160

(

U10

10

)2
( z

10

)0.45

(

1 + f̃ n
)

5
3n

(53)

with

f̃ = 172f
( z

10

)2/3
(

U10

10

)−3/4

(54)
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and n = 0.468. This spectrum implies that the variance

σ 2
u = 0.00309

U2.75
10

z0.217
(55)

will decrease with height and not constant as implied by surface layer scaling. Further-
more, the integral length scale

length scale ∝ z2/3U
1/4
10 (56)

will not be proportional with height but will grow somewhat slower and it will also in-
crease a little with wind speed. This is not consistent with surface layer scaling where it
under neutral conditions is constant with wind speed.

Højstrup et al. (1990) suggested that spectra at low frequencies do not obey surface
layer scaling because the low frequency part scales with the height of the boundary layer,
not z. To verify their model they used data selected for neutrality and high wind speeds
(11 < U < 23 ms−1) from both over sea and land sites in Denmark. The u-model is1

f Su(f )

u2∗
=
(

2.5nt

1 + 2.2n5/3
t

+ 52.5n

(1 + 33n)5/3

)

1

1 + 7.4(z/A)2/3
(57)

where the ‘neutral length scale’ A = 3000 m and nt = fA/U . The second term in the
parenthesis is the Kaimal spectrum (44).

All spectral model are compared in figure 12 for a specific choice ofU and z. Generally,
ESDU has larger length scales compared to those by Kaimal and by Simiu & Scanlan,
which are similar. NPD and Højstrup support ESDU’s large u-scale. ESDU, though, has
the most peaked spectra and, at high wave numbers, slightly lower spectral densities. All
spectra agree fairly well at high wave numbers but have substantial scatter at low wave
numbers.

2.3.2 Comparison with the spectral tensor model
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Figure 14. Example with z = 40 m and U = 40 m/s of the fit of the spectral tensor model
(curves with dots) to the ESDU models.

Here we fit the spectral tensor of section 2.2 to models that describe all three component
spectra, namely the ones by Kaimal, Simiu & Scanlan and ESDU.

1Højstrup, Larsen and Madsen (1990) also gives a model for the v spectrum, but it was never compared with
data, so it will not be discussed here.
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We obtain the parameters 0, L and αε2/3 by making a simultaneous least squares fit to
the u-, v- and w-model spectra for wave numbers in the range 0.05 < k1L < 100. For
the Kaimal spectra we get

0 = 3.9

L = 0.59z (58)

αε2/3 = 3.2
u2

∗
z2/3

,

where the dependence on z is a consequence of surface layer scaling. For the Simiu &
Scanlan spectra, where the fir is shown in figure 13, we get

0 = 3.8

L = 0.79z (59)

αε2/3 = 2.8
u2

∗
z2/3

and for both models u∗ can be obtained from figure 11.
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Figure 15. The parameters of the spectral tensor model derived from fits to the ESDU
model spectra for turbulence over the sea. Given U and z, all three parameters can be
extracted from these plots.
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It is more complicated to get the parameters from the ESDU models because the spectra
no longer depend on U and z in a simple way. For each set {U, z}, a fit to the tensor model
has to be calculated. We do that on a mesh limited by 10 < U < 80 m/s, 5 < z < 300 m
over the sea. The result is shown in figure 15. As an example of use of these graphs,
suppose that the parameters for U(z = 80 m) = 20 m/s are wanted. From the upper plot
of figure 15 we get L = 33 m and αε2/3 = 0.1 m4/3s−2. The lower plot gives 0 = 4.5.

Table 1. Parameters of the spectral tensor derived from different sources for U(40 m) =
40 m/s at sea.

0 L [m] αε2/3 [m4/3s−2]
Great Belt 3.2 35 0.79
Kaimal 3.9 24 0.86
Simiu 3.8 31 0.76
ESDU 4.5 66 0.62

Another example is shown in table 1 where the Great Belt data from (Mann 1994) are
extrapolated using neutral surface layer scaling to U(40 m) = 40 m/s. The spectral fit for
these values of U and z is shown in figure 14.

Literature coherences and coherences derived from the spectral tensor by (6) and (7)
are compared in Mann (1998). Generally, the agreement is good.

In WAsP Engineering the spectral tensor for flat terrain is used as basis for the modeling
of turbulence in moderately complex terrain as described in the following sections. The
three different ways to estimate the parameters of the tensor in flat terrain (eqs. (59), (60)
or from the ESDU) are all implemented and may be chosen by the user.

2.4 Turbulence in complex terrain
As indicated in the previous sections a lot is known about turbulence over flat terrain. The
purpose of this section, section 2.5 and 2.6 is to describe models that take into account
the influence of roughness changes and gentle hills on the turbulence statistics. The tur-
bulence model used input from the mean flow model LINCOM and is implemented in
the computer program WAsP Engineering. The following text is largely based on Mann
(2000).

The modeling of the turbulence structure is divided into two parts: Roughness vari-
ations and orography. For the second rapid distortion theory (RDT) is used. Effects of
both on the turbulence are treated as perturbations to the homogeneous terrain turbulence
model of section 2.2. The model is restricted to neutral atmospheric stratification, which
may be a severe restriction sites close to the sea and at large heights above the surface.

The modeling of the change of turbulence due to orography is limited to the so-called
outer layer. For a simple isolated hill the height of the inner layer is estimated by

`

L
ln2
(

`

z0

)

= 2κ2, (60)

where z0 is the roughness length, L the upwind distance where the elevation is half the
hill height and κ ≈ 0.4 the von Kármán constant (Jensen, Petersen and Troen 1984).
At heights lower than ` there is approximately local equilibrium between production and
dissipation of turbulent kinetic energy, and above ` the perturbations caused by the hill are
approximately inviscid. The inner layer height is also approximately equal to the height
above which the travel time over the hill is shorter than the Lagrangian time scale or the
eddy ‘turn-over’ time scale.

Inner scales derived from (60) compare well with measurements from Askervein (Walmsley
and Taylor 1996). With L = 100 m and z0 = 0.03 m (60) gives ` = 2 m, ` = 4 m with
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L = 100 m, z0 = 0.3 m, and ` = 10 m with L = 1000 m, z0 = 0.03 m. The lower limit
of the applicability of the model depends thus on the terrain.

The modeling of turbulence changes due to roughness variations does not have this
limitation, and should apply all the way down to the roughness sub-layer which is very
close to the ground. The flow disturbances produced by roughness changes are by nature
viscous and thus much “slower” than RDT. We use and modify the idea that eddies re-
spond to roughness changes on the order of “the eddy turn-over time scale” (Panofsky
et al. 1982, Højstrup 1981). A consequence of this is that the low frequency end of the
spectrum responds very slowly to roughness changes while small eddies quickly become
in equilibrium with the underlying surface.

Releted work may be found in Frank (1996), which considers spectra over a single hill
with constant roughness.

The basic limitation of the model is embodied in the following rule of thumb:

If there are extended areas within a radius of 3 to 4 km from the site of in-
terest with slopes of more than 20◦ to 25◦, then turbulence may be much larger
than calculated. In this situation measurements at the site may be required.

2.4.1 The linear flow model LINCOM

Within the concept of linearized flow models originally introduced by Jackson and Hunt
(1975), Troen and de Baas (1986) developed a relatively simple model for neutrally stable
flow over hilly terrain. The model was later named LINCOM, an acronym for LINearized
COMputation. The base of this version of the code, giving the influence of the topography
on the flow of a neutrally stratified atmosphere, has been extended with a model for the
influence of varying surface roughness also over water (Astrup et al. 1997, Astrup and
Larsen 1999, Astrup, Larsen, Rathmann and Madsen 1999). Later the model has been
extended to calculate spatial derivatives of the mean wind field, such as the vertical shear
∂U/∂z, which is used in the turbulence modeling.

LINCOM is based on an analytical solution in Fourier space to a set of linear equations
derived from the normal nonlinear mass- and momentum equations for incompressible
fluid flows. The linear equations describe the perturbations in velocity and pressure which
the real terrain induces in an equilibrium flow corresponding to a flat terrain with uniform
surface roughness. The perturbations caused by horizontal gradients in ground elevation
and surface roughness are determined separately and added as a first order approximation
to the combined perturbation.

In section 3 some unwanted properties of the LINCOM flow model are resolved, but
not yet implemented in WAsP Engineering, and thoughts on the further development of
linearized flow models are presented.

2.4.2 Nomenclature

The instantaneous wind speed as a function of space and time Ũ = Ũ(x, t) is decomposed
into the ensemble mean and fluctuations:

Ũ = U + u, (61)

U ≡ |U|. The unperturbed stationary velocity field is denoted by U0 and is only de-
pendent on the height above the surface z. The unperturbed fluctuations are denoted by
u0.

The correlation and spectral tensors Rij (r) and8ij (k) are defined by (1) on page 9 and
(2). However, it should be noted that the turbulence is not homogeneous, not even in the
horizontal directions, so the tensors are meant as approximations to the real inhomoge-
neous correlation structure. The corresponding unperturbed tensors which equal those for
flat terrain have a superscript 0.
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Figure 16. Qualitative sketch of the action of a ridge on the turbulence according to the
RDT model. The fluctuations in the u-component of the turbulence are attenuated, as
seen from the u-spectrum (solid curve), the v-fluctuations are not changed much (dashed
curve), while the w-fluctuations are amplified (dotted curve).

Since the flow model LINCOM is linear the perturbation to the mean flow can be
written as a sum of two terms

U − U0 = Ur + Ut , (62)

where Ur refers to flow perturbations due to roughness variation and Ut due to variations
in the height of the terrain.

2.5 Variable roughness
Højstrup’s model concerning the adjustment of velocity spectra downstream of an abrupt
change of roughness is the starting point of a more general model for the spectral tensor
downstream of any slowly varying or abrupt change of roughness (Højstrup 1981).

2.5.1 Outline of the model by Højstrup

In the special case of neutral stability, which is the only concern here, it is assumed in
Højstrup (1981) that the height ztop separating air which has or has not felt the abrupt
change of roughness is governed by the differential equation:

dztop

dx
= D

σw

U
= D

κ1.22

log(ztop/z0)
, (63)

where z0 refers to the downstream value of the roughness andD is a constant of the order
of one. Figure 17 shows ztop for a landscape with an abrupt change of roughness for every
12.5 km together with the mean flow field calculated by LINCOM.

When an eddy hits the upper edge of this internal boundary layer its energy is supposed
to change according to

dEe(k1)

dt
= Ee2(k1)− Ee(k1)

τ (k1)
, (64)

where Ee(k1) the energy of the eddy with wavenumber k1 and Ee2(k1) is the energy
the eddy would have had being above a homogeneous surface having the downstream
roughness.

Comparison of eddy time scales in the two models In the equation for the change
of energy (64) above the time scale τ has to be determined. This ‘eddy time scale’ is in
Højstrup written as

τ(k1) = A
2π

k1
√
Ee(k1)

(65)
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Figure 17. The mean velocity field U r due to an abrupt change of roughness according
to LINCOM (top, darker means lower values). Lower plot: Expected intensity of small
scale turbulence according to (71). White lines: Internal boundary layer according to
(Højstrup 1981). Spectra shown in figure 18 are calculated along the black horizontal
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with A = 0.13 and Ee(k1) ≡ k1Fu(k1), where Fu is the spectrum of fluctuations in
the direction of the mean wind. In the inertial subrange he estimates the eddy time scale
to be τ(k1) = Bα1ε

−1/3k
−2/3
1 with B = 2.3. Since the Kolmogorov constant for the

one-dimensional spectrum α1 ≈ 0.5, the time scale of Højstrup is in inertial subrange

τ(k1) = C1ε
−1/3k

−2/3
1 with C1 = 1.15. (66)

The time scale discussed in section 2.2.3 is a function of k = |k| and in the inertial
subrange it is

τ(k) = Cε−1/3k−2/3 (67)

with C = 1.8 in the Great Belt Experiment and 1.5 in the Lammefjord Experiment (Mann
1994). In order to relate these two constants C and C1 in the inertial subrange we assume
that τ(k1) can be expressed as an weighted average of τ(k) over all wavevectors that
contribute to the energy at the horizontal wavenumber k1:

τ(k1) =
∫

8ii(k)τ (k)dk⊥
∫

8ii(k)dk⊥
= Cε1/3 5

7
k
−2/3
1 (68)

where
∫

dk⊥ means
∫∞
−∞

∫∞
−∞ dk2dk3 and summation over repeated indices is assumed,

so

C = 7

5
C1 (69)

implying that C = 1.61 for the data analysed by Højstrup. So, even though the eddy
time scales of (Højstrup 1981) and (Mann 1994) appear in different contexts they are of
comparable magnitude.

At smaller wavenumbers outside the inertial subrange both models behave asymptoti-
cally as τ ∝ k−1.

2.5.2 Spectral tensor model: Roughness

As a generalization of (64) we propose that the three-dimensional spectral energy density
(or the spectral tensor) approaches some equilibrium spectral tensor8eq

ij according to the
equation

d

dt
8ij (k) =

8
eq
ij (k)−8ij (k)

τ (k)
, (70)

where d
dt is a Lagrangian derivative. The time scale τ is the “the eddy turn-over time

scale” as defined by (31). To simplify things we suppose k, and all parameters describing
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Figure 18. Calculated u-spectra for every 100 m at z = 20 m as indicated in figure 17.
Notice how turbulence “overshoots” after the roughness change before becoming in equi-
librium with the new surface.

the tensor, except the energy dissipation ε, are constants as the turbulence is advected
over varying roughness and that the equilibrium energy dissipation is given by

εeq = κ2z2
(

dU r

dz

)3

, (71)

where κ is the von Kármán constant (the superscript r on the mean velocity U refers to
the part of the mean velocity perturbation that is due to roughness changes). Then (70)
can be written as

d

dt
ε2/3 =

ε
2/3
eq − ε2/3

τ(k)
, (72)

where ε is no longer the instantaneous energy dissipation, but merely a spectral multiplier
dependent on k.

This equation is derived in the same spirit as done in (Højstrup 1981) but uses the
calculated flow field U r as given by LINCOM and does not require explicit calculations
of the positions of internal boundary layers. This formulation should be advantageous
when dealing with a terrain with an arbitrarily complex roughness distribution, and not
just simple changes along lines in the terrain.

Assuming t ≈ −x/U 0 (where U0 is the unperturbed mean wind speed) the solution of
(72) is

ε2/3 = 1

U0τ

∫ 0

−∞
exp

( x

U0τ

)

κ4/3z4/3
(

∂U r

∂z

)2

dx. (73)

Once LINCOM has calculated ∂U r

∂z
, spectra, cross-spectra and simulated Gaussian wind

fields can be calculated from this equation together with a suitable form of the spectral
tensor (see sec. 2.2).

To illustrate the model we have calculated u-spectra (figure 17) at various downstream
positions of the roughness change. The spectra shown in figure 18 first increases at high
wavenumbers and more slowly at lower wavenumbers. Turbulence “overshoots” before
settling at an spectrum which is in equilibrium with the higher downstream roughness.
While the “overshoot” after a smooth-rough change has been observed in some wind
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tunnel turbulence statistics, such as the momentum transport 〈uw〉 (Antonia and Luxton
1971, Antonia and Luxton 1972), it is only very weak or absent in other like σu. It seems
obvious that the various components of the Reynolds stress tensor respond differently
to the change of roughenss. This certainly requires a more advanced model than ours
in which all components change in step. Our model clearly exaggerates the overshoot,
however, it is still unclear whether it can be attributed to the linear flow model trough the
calculation of ∂U r/∂z, to the model (73), or both.

2.5.3 Example: The Gedser land mast
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Figure 19. The Gedser land mast (cross). On the left plot the computational domain used
in LINCOM is marked. The right plot shows the situation of the town Gedser, which has
been assigned a roughness length of z0 = 1.0 m (dark area). Other smaller towns and
the forest/summer house area on the east coast have z0 = 0.5 m (gray) while the country
side has 0.05 m (light gray).

For offshore wind energy resource estimation one land mast and two offshore masts
have been erected in the vicinity of Gedser on the southern tip of Falster, which is an is-
land south of Zealand (Barthelmie, Courtney, Lange, Nielsen, Sempreviva, Svenson and
Christensen 1998). The land mast is ideal for testing the roughness model for turbulence,
because it is situated in a very flat terrain with drastically varying roughness (see fig-
ure 19). The mast is instrumented with cup anemometers at 10, 30 and 45 m, wind vanes,
various temperature sensors and a sonic anemometer at 42 m, suitable for turbulence
measurements.

We use an almost contiguous record of data from August 1996 to June 1998 in this
analysis. All half hour average turbulence intensities measured at 42 m with an average
wind speed of more than 12 m/s are plotted in figure 20. Intensities with a positive heat
flux (measured with a sonic anemometer) indicating unstable stratification are shown
as diamonds, while negative heat flux (stable atmospheric stratification) corresponds to
crosses. As it may be seen, there is a systematic difference between the two, showing that
atmospheric stability plays a significant role, even at U > 12 m/s.

As input for the turbulence calculation we used the LINCOM mean flow generated
from the maps shown in figure 19 together with an unperturbed spectral tensor resembling
Kaimal’s spectra. The predicted turbulence intensities are shown as broad gray curves.

Three things immediately catch the attention:

• The large scatter of measured intensities, which, as shown, is at least partly due to
atmospheric stability variations.
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Figure 20. Turbulence intensities (10 minutes averages) from the Gedser land mast. Mea-
surements with unstable atmospheric stratification are diamonds, stable are crosses. The
broad gray curve is model results.

• The excess intensity around 90◦ most noticeable in w. This is due to the instruments
being in the wake of the mast, which is not modeled.

• The excess intensity around 315◦, which might be due to large obstacles at the harbor
of Gedser, a kilometer upstream in that direction.

2.5.4 Example: An island in the Great Belt

In order to better estimate the dynamic loads on the Great Belt Bridge, which opened for
traffic in 1998, an experiment was set up on the island of Sprogø in the middle of the
Great Belt, see figure 21. Turbulence was measured with several sonic anemometers at
high wind speeds at z = 70 m from the summer of 1990 until summer 1991, see Mann
et al. (1991) for details on the experiment. The terrain surrounding the masts is very
simple having a fetch of water for at least 10 km. However, for some directions Sprogø
may disturb the flow. As a crude rule of thumb the flow is disturbed up to a height of
0.1xr where xr the upstream distance to the change of roughness, so turbulence should
be enhanced in the “Island” sector and also in the “NW” sector, see the maps in figure 21.

For the calculation of spectra two-hour blocks with a mean speed larger than 15 m/s are
chosen. Furthermore, to ensure stationarity only runs wind mean speeds in the previous
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Figure 21. a: The situation of Sprogø and the mast in The Great Belt. b: Close-up of
Sprogø with an indication of the directions of all runs analyzed. The broad, black contour
is Spogø before the extensions (dashed contours) made in connection with the train and
road links. The measurements were made after the extensions were completed and during
the construction of the low bridge to the West of Sprogø.

Table 2. Number of two hour runs from Sprogø and grouping criteria.

Name θmin [◦] θmax [◦] Mean wind speed [m/s] # of runs # of neutral runs
Island 245 290 16.0 7 5
South 150 210 17.4 22 16

Northwest 298 330 17.0 13 9
Southwest 210 240 15.8 8 5

and following two-hour run within ±4 m/s and direction within ±45◦ are chosen.
The bulk Richardson number, which is a measure of atmospheric stability, is calculated.

It is defined as (Panofsky and Dutton 1984)

Rb = gz2
m

T

(

1T/1z+ γd

U2
8m

)

, (74)

where g is the acceleration due to gravity, T the mean temperature, γd the dry adiabatic
lapse rate, 1T the temperature difference between z = 2 m and z = 10.15 m, 1z the
corresponding height difference, U 2

8m the mean wind speed at 8 m, and zm a logarithmic
average height. In figure 22 spectra with differing atmospheric stabilities are plotted. “Un-
stable” spectra are defined to have Rb < −0.0001, “stable” Rb > 0.0002, and “neutral”
in between. It is seen that especially the stably stratified spectra are different from the
neutral spectra in the expected sense that they have less energy. It is also seen that there is
a large variability, especially at low wavenumbers. We exclude non-neutral spectra from
the average spectra that we are going to compare to the model.

Model calculation are performed on a 20 by 20 km grid centered on Sprogø and
the calculated spectra are compared to measurements in figure 23. The modeled spec-
tra show a slight increase in energy for the “Island” sector and an even less increase in
the “NW” sector. The measurements show a larger increase in for these sectors and for
the “NW” sector the increase is mostly pronounced at low wavenumbers compared to
the undisturbed sectors “S” and “SW”. These data appears to conflict with (Panofsky
et al. 1982, Højstrup 1981) who found that high the wavenumber end of the spectra re-
sponds faster to roughness changes. However, we speculate that features in the terrain of
Sprogø may trigger recirculation zones which in turn enhance the low wavenumber part
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Figure 22. Spectra of the w-component from the Southwest sector. Neutral spectra are
thin, solid curves, stable are broader, and unstable are dashed. See figure 7 on page 7 for
the South sector data.

of the spectra.
We have also done calculations with a larger grid covering parts of Fyn and Zealand.

Spectra only change slightly when this larger calculations domain is used.

2.6 Orography
Rapid distortion theory was originally developed to model turbulence in wind tunnel
contractions (Batchelor and Proudman 1954, Townsend 1976), but has later been applied
to a variety of atmospheric turbulent flows such as neutral flow over flat terrain (Mann
1994) or hills (Britter, Hunt and Richards 1981), the convective boundary layer close to
the ground (Hunt 1984) or the inversion (Carruthers and Hunt 1986) and flow over waves
(Townsend 1972). In many applications both the “rapid” condition and the condition of
homogeneity have been treated rather loosely but often with good results (Savill 1987).

The rapid distortion equations describe the response of turbulence to a uniform gradient
of the mean velocity ∂Ui/∂xj over times which are small compared to the time scales of
the eddies. In complex terrain the mean velocity gradients are far from constant and small
eddies typically have short life times compared to the advection time over features in the
terrain. Rapid distortion theory (RDT) should thus be applicable for eddies smaller than
the scale of variations in the mean flow gradients but larger than the eddies with a too
small life time.

In (Britter et al. 1981) the relative change in the integrated turbulence statistics (such as
σ 2
u ) above the top a two-dimensional hill is modeled by rapid distortion of isotropic turbu-

lence. The authors ignore shear (∂U/∂z) entirely but get results in qualitative agreement
with wind tunnel measurements for both the relative change of σu and σw.

Since we are not only interested in relative changes but rather the absolute value of
the spectral energy in different bands our approach is somewhat different. We want to
estimate the combined effect of shear and strain along the principal axes. While explicit
solutions to the rapid distortion equations exists for both of these distortions separately,
there is unfortunately no such for the combined case (Townsend 1980). As stated in the
beginning we would like a fast computer code and would like as far as possible to avoid
numerical integration of differential equations, so the way we approximate the combined
action of shear and strain is to use the spectral model of section 2.2 as the upstream model,
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Figure 23. Comparison of measured (left column) and modeled spectra (right) from
Sprogø.

which already has the effects of shear included, and then apply the irrotational distortions
calculated from the linear mean flow model. We ignore the variations in the off diagonal
elements in the tensor ∂Ui/∂xj . This implies for example that effect of transversal shear
and curvature of the stream-lines will be neglected.

Britter et al. (1981) applies rapid distortion to all wavenumbers in the spectrum. Here
the ambition is to model each part of the spectrum, not only the integrated second order
statistics. Therefore, we must take special care of the areas of the spectrum where the
assumptions of RDT are broken. At high frequencies (or wavenumbers) the lifetime of
eddies is very short and the eddies are not affected by the entire upstream history of
distortions. At low wavenumbers the distortion will typically not be homogeneous over
the entire extent of the eddy, which is one of the basic assumptions in RDT (see figure 26).
There has been attempts to generalize RDT to inhomogeneous mean flows, but they did
not result in closed-form solutions and would require excessive computing time (Hunt
1973).

We have implemented some simplified solutions to take into account these deficiencies
of RDT. However, the calculated spectra do not compare better to the few measurements
in complex orography we have analyzed, so, until more experimental evidence is present,
we assume no lower wavenumber limit of the validity of RDT.
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Usually, the effect of irrotational distortion along the coordinate axes is estimated by
RDT through the total strain ratios ei (Townsend 1976)

ln(ei) =
∫ 0

−∞

αi(x)

U(x)
dx, (75)

where the integration is done over the entire upstream track (negative x) and where αi ≡
∂Ui/∂xi (no summation).

We modify this to take into account finite lifetime:

ln(ei) =
∫ 0

−∞
exp

(

x

U(x)τ (k)

)

αi(x)

U(x)
dx, (76)

where τ(k) is the eddy time scale (31), i.e. small, short-lived eddies hardly experience
any distortion at all. This guarantees the 4

3 -ratio between transversal (v and w) and lon-
gitudinal spectra (u) at high frequencies. These modified strain ratios are subsequently
used in the RDT calculations.

2.6.1 Example: The Askervein Hill

The Askervein Hill Field Experiment took place in September/October 1982 and Septem-
ber/October 1983. The purpose was to study boundary-layer flow over a low hill (Taylor
and Teunissen 1983, Taylor and Teunissen 1985, Walmsley and Taylor 1996).

Askervein is a 116 m high hill (126 m above sea level) on the west coast of South Uist
of the Outer Hebrides, Scotland. As seen from figure 24 it has an essentially elliptical
base.

Spectra from the sonic anemometer at z = 47 m on the mast at the hill top are calcu-
lated and runs with mean wind directions around 180◦ and 225◦ are shown in figure 25.
Most runs are longer than one hour and they have all wind speeds larger than 13 m/s.
Superimposed in the same figure are calculated model spectra for the two directions. The
hill top spectra have considerably different distribution of turbulent energy among the
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Figure 25. Measured and modeled spectra at z = 47 m at the top of the Askervein Hill.
The broad, gray curves are the model calculations and the thin, black curves are mea-
surements. The dashed curves are flat terrain spectra. All spectra have been normalized
with the squared mean speed at the hill top, except for the dashed which are normalized
with the square of the flat terrain wind speed.

Table 3. Comparison of model calculations of Askervein hill top variances to flat terrain
values at z = 47 m. From both directions σ 2

u decreases, σ 2
w increases, while σ 2

v is almost
unchanged. The suppression of all hill top spectra compared to flat terrain spectra in fig-
ure 25 are mainly due to the normalization with U 2, which makes the turbulence intensity
(the square root of the area under these curves) much lower at the hill top compared to
flat terrain.

σ 2
HT/σ

2

Direction UHT/U u v w

180◦ 1.26 0.87 1.03 1.33

225◦ 1.37 0.75 1.03 1.34

three component spectra compared to what is found over flat terrain. The u-spectrum is
considerably attenuated while the w-spectrum is enhanced. The modeled spectra agrees
reasonably well with the measured, however, the experimental spectra have considerable
scatter, probably caused by variation in the atmospheric stability.
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2.6.2 Is RDT valid at low frequencies?

Although the rejection of RDT at low wavenumbers is not obvious from the Askervein
data, there are several reasons to question RDT anyway.

Many studies indicate that in a boundary layer gusts with larger wavelengths are ad-
vected faster than indicated by Taylor’s hypothesis (Mizuno and Panofsky 1975, Kim
and Hussain 1993). This is because large eddies are somehow attached to flow further
away from the surface where the mean wind speed is larger. The terrain induced strains
decrease rapidly with height, so one may expect the effects of RDT to be attenuated for
large eddies, i.e. low frequencies. One way of doing this would be to use

ln(ei) =
∫ 0

−∞
exp

(

x

U(x, y, z′)τ (k)

)

αi(x, y, z
′)

U(x, y, z′)
dx (77)

instead of (76), where

z′2 = z2 + 1

k2
3

or z′2 = z2 + 1

k2
(78)

where we have used the later expression for computational convenience. In other words
we use the strains calculated at z′ which is wavenumber dependent and larger than z.

a

advection speed U

small eddy

b

large eddy

Figure 26. The difference between RDT and quasi-stationary amplification illustrated by
flow over a simple hill. In a the eddy experiences roughly the same distortion over its
extent implying (if the distortion is also rapid) that RDT applies. In b the eddy is larger
than the hill and the wind variations are amplified as if they were changes in the mean
speed U0.

Preliminary calculations with (77) indicate that this does not improve the model per-
formance.

Another effect which should counteract RDT in some situations is quasi-steady ampli-
fication of the low frequency fluctuations as illustrated in figure 26. Again, comparison
with the Askervein data shows that the inclusion of this effect does not improve the model,
somewhat in contrast to the findings of Frank (1996).

2.7 Turbulent wind field simulation
Having discussed the spectral tensor in flat terrain (section 2.2), in relation to literature
spectra (section 2.3), and in complex terrain (section 2.4), we now describe how to simu-
late a velocity field u(x).

We approximate the integral (3) by a discrete Fourier series:

ui(x) =
∑

k

eik·xCij (k)nj (k), (79)

where the l’th component of x is xl = n1Ll with n = 1, ..., Nl . The symbol
∑

k denotes
the sum over all wave vectors k with components ki = m2π/Li , with the integer m =
−Ni/2, ..., Ni/2, nj (k) are independent Gaussian stochastic complex variables with unit
variance and Cij (k) are coefficients to be determined. See figure 27. The great advantage
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of (79) is that, once the coefficients are known, it can be evaluated very fast by the fast
Fourier transform (FFT) (Shinozuka and Deodatis 1991).

L1 = N11L1 = T U

L2 = N21L2

L3

Figure 27. The box B consists ofN1×N2×N3 points and has side lengths Li , i = 1, 2, 3,
so the separation between the points in the i-direction is 1Li = Li/Ni . U is the mean
wind speed and T is the simulation time.

Solving (79) we get (approximately, see the appendix of Mann (1998)).

Cij (k)nj (k) = 1

V (B)

∫

B

ui(x)e−ik·xdx, (80)

where V (B) = L1L2L3 is the volume of B and
∫

B
dx means integration over the box

B. From (80) it is easy to see that nj (k) have to be Gaussian when ui(x) is a Gaussian
field. Many authors relax this constraint and let nj (k) have random phase but a fixed
absolute value (Shinozuka and Jan 1972, Shinozuka and Deodatis 1991, Shinozuka and
Deodatis 1996). Using this approach every sample will get exactly the same variance and,
given a wavenumber (or vector), the estimated power spectral density at this wavenumber
will be the same for all realizations of the same process. This might be advantageous in
some situations, but it is in contrast to power spectral density estimates of stationary time
series which have 100% rms (Press, Flannery, Teukolsky and Vetterling 1992, Bendat
and Piersol 1971). The difference between the two approaches is discussed in detail in
(Grigoriu 1993). In practice there is little difference and both models could be used.
However, the Gaussian approach is usually easier to analyse theoretically and we shall
stick to that here.

To find the coefficients Cij (k) we calculate the covariance tensor of (80) obtaining

C∗
ik(k)Cjk(k)

= 1

V 2(B)

∫

B

∫

B

〈

ui(x)uj (x′)
〉

eik·xe−ik·x′
dxdx′ (81)

= 1

V 2(B)

∫ ∫

Rij (x − x′)1B(x)1B(x′)eik·(x−x′)dxdx′,

where 1B(x) = 1 if x ∈ B and 0 otherwise. Using the change of variables r = x − x′ and
s = x + x′ having the Jacobian |∂(r, s)/∂(x, x′)| = 8 we get

Cik(k)Ckj (k) = 1

8V 2(B)

∫

Rij (r)e−ik·r
∫

1B

(

s + r
2

)

1B

(

s − r
2

)

dsdr (82)
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The inner integration can be carried out according to

∫

1B

(

s + r
2

)

1B

(

s − r
2

)

ds =











3
∏

l=1

2(Ll − |rl |) for |rl | < Ll for all l

0 otherwise

(83)

so, using the convolution theorem and noting that the Fourier transform of L − |r| (for
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Figure 28. 811(k) (in arbitrary units) at k1 = 0.2/L and 2/L with 0 = 3.

|r| < L and else 0) is L2 sinc2(kL/2), we get

C∗
ik(k)Cjk(k) =

∫

8ij (k′)
3
∏

l=1

sinc2
(

(kl − k′
l)Ll

2

)

dk′, (84)

where sinc x ≡ (sin x)/x. For Ll � L, the sinc2-function is ‘delta-function-like’, in the
sense that it vanishes away from kl much faster than any change in 8ij , and the area
beneath the sinc2-curve is 2π/Ll . Therefore, we get

C∗
ik(k)Cjk(k) = (2π)3

V (B)
8ij (k). (85)

The solution to (85) is

Cij (k) = (2π)3/2

V (B)1/2
Aij (k) = (1k11k21k3)

1/2Aij (k) (86)

with A∗
ikAjk = 8ij and 1kl = 2π/Ll . This result should be expected when comparing

(3) to (79).
An example of a simulated non-isotropic velocity field with 0 = 3 is shown in Fig-

ure 29. It is seen on the upper plot that the shear tilts the elongated fluctuations. Similar
plots of the w-components show much less elongation and a shorter length scale.
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Figure 29. Vertical and horizontal cross sections of the u-fluctuations of simulated non-
isotropic turbulence with 0 = 3.

2.7.1 Problems with discretization and periodicity

Two problems occur by simulating a field by the Fourier series (79) with the coefficients
(86). The first is that for many applications the dimensions of the simulated box of tur-
bulence need not to be much larger than the length scale of the turbulence model L.
Therefore (85) may not be a good approximation to (84). However, almost always for
practical applications L1 � L, so we can at least reduce (84) to

C∗
ik(k)Cjk(k) = (87)

2π

L1

∫

8ij (k1, k
′
2, k

′
3)

3
∏

l=2

sinc2
(

(kl − k′
l)Ll

2

)

dk′
⊥,

where
∫

dk⊥ ≡
∫∞
−∞

∫∞
−∞ dk2dk3. This integration, which has to be done numerically2

is here limited to wave vectors, k, obeying k = |k| < 3/L. Outside this volume we
consider (85) a good approximation to (84), regardless of the dimensions of the box. This
discretization problem is illustrated by figure 28 and 30. Figure 28 shows that close to
k = 0, 8ij (k) varies rapidly implying that (85) may be a poor approximation to (84).
Figure 30 indicate that (87) must be used if Ll (l = 2 or 3) is less than ∝ 8L.

The second problem is that the simulated velocity field (79) is periodic in all three
directions. Originally, Shinozuka and Jan (1972) suggested to perturb the wave vectors
in (79) to avoid this problem. However, this would corrupt the efficiency of the FFT. Our
solution to the problem is to use a larger spatial window. In figure 31 the coherence of
vertical velocity fluctuations for a vertical separation

cohww(k1, z) ≡ |χ33(k1, z)|2
χ33(k1, 0)2

, (88)

calculated from the sheared velocity tensor with 0 = 4, is shown together with coher-
ences calculated from simulations with 2048 × 32 × 32 points and dimensions 256L ×
3L× 3L. Since the simulated field is periodic the coherence goes to 1 as z → L3 = 3L.
In a structural response analysis the space domain (L2 and L3) should be chosen large
enough to contain roughly twice the structure of interest in each dimension. However, if

2In practice the integration is only done over |k′
l

− kl | < 2π/Ll l = 2, 3 i.e. out to the

first zero in the sinc-function. The loss in variance is accounted for by multiplying by c2 with c =
∫∞
−∞ sinc2(x)dx

/

∫ π
−π sinc2(x)dx = π

2Si(2π) = 1.1076, where Si is the sine integral function. An even

better representation of the target spectrum is possible if the integration interval of the convolution is extended.
However, out to the first zeros seems to be sufficient.
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Figure 30. The discretization problem illustrated by a w-spectrum with 0 = 3.0. The
thin line is the target spectrum, the dotted line is the average spectrum obtained by using
(86) and the dashed line is an average spectrum using (87). a) Average spectra of 100
simulations with box dimensions 32L × 4L × 4L (512 × 32 × 32 points). b) Average
spectra of 20 simulations with 32L× 8L× 8L (512 × 64 × 64 points).

Ll � L or if the structure is insensitive to low frequency fluctuations the structure might
cover more than half the simulated field in each direction.
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Figure 31. Illustration of periodicity. Simulated (dots) and model w-coherences (curves)
as functions of vertical coordinate z. The vertical dimension of the box is L3 = 3L.

A final point is that the simulated spectra are typically attenuated at high wave numbers
(or frequencies) as seen from figure 30. The reason is that the wind speed is spatially
averaged over a small volume roughly of the size1L1×1L2×1L3. In most engineering
applications it is exactly this averaged field which is needed, but if the un-averaged ‘point
velocities’ are required they can still be simulated with our technique. Details of this
aliasing problem are scrutinized in Mann (1998).
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2.7.2 Implementation and speed

The implementation of the model includes three steps:

1. Evaluate the coefficients Cij (k), either by (86) or, if necessary, by (87) using the
factorizations discussed in the previous section.

2. Simulate the Gaussian variable nj (k) and multiply.

3. Calculate ui(x) from (79) by FFT.

The time consumption in the first step is proportional to the total number of points N =
N1N2N3 in the simulation. The required time to perform the FFT is O(N log2N) (Press
et al. 1992).

In practice, simulating a three-dimensional field, used for load calculations on wind
turbines, with millions of velocity vectors takes of the order of a few minutes on a modern
pc.
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3 Revision of the LINCOM model

3.1 Motivation
LINCOM has a big problem. The calculated streamlines are vertical at the boundary,
where they should run parallel with it. The intentions with the model is that, sufficiently
close to the surface, the flow should resemble and ordinary log-profile as over flat terrain.
The ’inner’ solution should take care of this, but apparently this is not what happens in
the model. Below a simple way out of the the problem is proposed which constitutes only
a minor revision. In addition the interpretation of geometry is made straight forward.

In Section 3.2 the necessary steps are taken to formulate a concise perturbation prob-
lem. The results are used in Section 3.3 to revise the LINCOM model equations. Sections
3.4, 3.5 and 3.6 are devoted to a discussion of the equations that come out of the pertur-
bation problem, omitting the approximations made in LINCOM. The approach is applied
to flow over a sinusoidal row of hills, assuming that the unperturbed profile is of the form
V (z) = αz. Model results are compared to data from wind tunnel experiments.

3.2 The first order strategy
We consider incompressible turbulent flow over terrain defined by a orography function
h(x, y). In flat terrain (h = 0) we have of course the well known logarithmic profile and
we expect this to be only slightly modified if h is suitably small. It is therefore natural to
attempt a perturbation approach. In order to avoid certain mathematical inconsistencies
(to be discussed below) we propose the following strategy:

1. A coordinate transformation is applied which simplifies the domain to z > 0.

2. A divergence free velocity vvv′′ is defined in the transformed system.

3. The governing equation for vvv′′ is written down in transformed coordinates.

4. Extra non-Navier-Stokes terms are identified.

5. The transformation which (in some suitable sense) minimizes or simplifies the extra
terms may be chosen.

6. The momentum equation is ensemble averaged.

7. An appropriate closure is postulated.

8. An expansion parameter ε is introduced in the extra terms. The extra terms should
be unchanged for ε = 1 and vanish for ε = 0.

9. The equation is simplified by keeping only first order terms in the ε.

10. ε is set equal to 1.

11. The closed equation is solved based on knowledge of the zero-th order solution.

12. The solution is transformed back to original coordinates.

A ’first order’ perturbation with respect to a certain quantity has a concise meaning.
The concept can be applied in situations where we have a set of differential equations
containing a perturbation term, say Q. Q may enter the equations and/or the boundary
condition. The procedure is to substitute Q with ε Q and expand solutions in powers of
the expansion parameter ε. In our case we may want h to play the role of Q, but there is
a complication due the fact that h defines the boundary as such and therefore enters the
problem in a more fundamental way than just through terms in governing equations and
boundary conditions. The problem is how to compare solutions for different boundaries.
A point close to the ground in the unperturbed case may become located below the surface
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when the perturbation is turned on and the perturbed velocity is not defined. Therefore it
makes no sense to compare solutions for different boundaries unless we specify a one-to-
one connection between points in the two domains. The coordinate transformation takes
care of this, because the boundary is flat in transformed system and does not change with
h. The simple, flat boundary has other convenient features. For example, it allows us we
to define the Fourier transform in the x and y coordinates, e.g.

vvv(k1, k2, z) ≡ 1

2π

∫ ∫

vvv(x, y, z) e−ik1x−ik2y dxdy (89)

This is not possible with a curved boundary because vvv is not defined inside the hills.
It is customary to use the following transformation

x′′
1 = x1

x′′
2 = x2

x′′
3 = x3 − h(x1, x2) (90)

Simplicity is the main virtue of this transformation, but there are of course many other
transformation that flatten the boundary, even among transformations that depend linearly
on h. In generally we may write the transformation as

x′′
i = xi − λi(x, y, z) (91)

with the condition

λ3(x, y, h(x, y)) = h(x, y) (92)

so that x ′′
3 = 0 at the surface. The the extra terms in reformulated equations will depend

on h through λi . Therefore it is convenient to use λi as the seed of the perturbation. In
other words, we replace λi with ελi , expand in powers of ε, discard terms of order ε2 or
higher, set ε = 1 and solve the equations.

The next step is to define a transformed velocity field v ′′
i . We cannot just let vvv′′(xxx′′) =

vvv(xxx) because this may violate mass conservation (this is one of the problems with LIN-
COM). The new field should be divergence free, i.e.

∂v′′
i

∂x′′
i

= 0 (93)

where the partial derivatives are with respect to transformed coordinates. The following
transformation produces a divergence free field whenever ∇ · vvv = 0

v′′
i ≡ D

∂x′′
i

∂xj
vj (94)

where D is the Jacobian of the transformation (i.e. the determinant of the matrix ∂xi
∂x′′
j

). In

the appendix we show this by proving that

∂v′′
i

∂x′′
i

= D
∂vj

∂xj
(95)

The term
∂x′′
i

∂xj
vj represents the velocity of the image of the fluid element located at xxx

in the original system. This may seem to be a natural definition of a transformed velocity,
because it maps streamlines onto streamlines, but care should be taken not to sacrifice
the mass balance. It is not necessary to identify fluid elements in the two systems, an we
may in fact define the new velocity entirely as we wish, as long as we can transform back
and forth. It therefore seems even more natural to define a divergence free vector field so
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that mass is conserved for perturbations of any order. The inclusion of the factorD in the
definition of the transformed velocity insures this.

The inverse transformation is

vi ≡ 1

D

∂xi

∂x′′
j

v′′
j (96)

Inserting this into the N-S equations we obtain the new, transformed N-S equation. After
some manipulations it can be written as

∂v′′
i

∂t
+ 1

D
v′′
q

∂v′′
i

∂x′′
q

+ v′′
p v

′′
q

∂x′′
i

∂xj

∂

∂x′′
p

[

1

D

∂xj

∂x′′
q

]

= −D
∂x′′
i

∂xj

∂x′′
q

∂xj

∂P

∂x′′
q

+ viscous term

(97)
This equation is exact since no approximations have been made so far. The viscous

term is quite complicated, but it plays a minor role and will soon be discarded, so we
have not written it explicitly. Compared to the normal Navier-Stokes equation several
new terms appear. The factor D is responsible for some of them and it clearly would be
convenient if D = 1. This is a strong argument for choosing (90). It would also simplify

matters if
∂x′′
i

∂xj

∂x′′
q

∂xj
was proportional to δiq so that we have an ordinary pressure gradient

on the right hand side of the equation. This requires that the planes x ′′
i (xxx) = constant

makes right angle intersections with planes x ′′
q (xxx) = constant for i 6= q. It should be

realized that not all simplifications we may want can be imposed at the same time, and of
course we cannot get rid of all the extra terms.

According to the strategy we only retain terms to first order in the expansion parameter
ε. We may expand λi in terms of h also, but the way λi depends on h is a separate problem
altogether, and we can treat λi exactly or to first order in h as we wish. When λi = Aih,
where Ai are linear operators, as in (90), it does not matter if we place the ε on h or λi .

Jackson and Hunt (1975) introduced the concepts of ’inner’ and ’outer’ solutions. The
idea is that the flow looks like an ordinary surface layer flow close to the surface, but
higher above the terrain the the mean flow is essentially determined by the pressure per-
turbations and resembles a potential flow. We may recover the essence of these results
by choosing the coordinate transformation (the link between h and λi) in such a way that
the transformed coordinates follow the outer solution streamlines, while the perturbations
of the transformed NS equation takes care of the modifications close to the ground (the
inner solution). We leave this to future speculations.

To first order in λi we have

∂xi

∂x′′
j

≈ δij + ∂λi

∂x′′
j

≈ δij + ∂λi

∂xj
(98)

and

D ≈ 1 + ∂λi

∂x′′
i

(99)

and

∂x′′
i

∂xj

∂x′′
q

∂xj
≈ δiq − ∂λi

∂xq
− ∂λq

∂xi
(100)

Inserting into (97) yields the linearized equation

∂v′′
i

∂t
+ v′′

q

∂v′′
i

∂x′′
q

− v′′
q

∂

∂x′′
q

(

v′′
i

∂λj

∂x′′
j

)

+ v′′
p v

′′
q

∂2λi

∂x′′
p∂x

′′
q

= −
[

δiq − ∂λj

∂x′′
j

δiq − ∂λq

∂x′′
i

− ∂λi

∂x′′
q

]

∂P

∂x′′
q

+ viscous term (101)
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Now we take the ensemble average on both sides and assume stationarity so that
〈

∂vvv′′/∂t
〉

= 0. We know the solution to this equation when λi = 0, where the pecu-

liar thing is that all terms vanish. This means that there are no zero order terms in
∂
〈

v′′
qv

′′
i

〉

∂x′′
q

and ∂〈P 〉
∂x′′
q

, and since we only intend to keep terms up to first order the averaged equation

reduces to

∂
〈

v′′
qv

′′
i

〉

∂x′′
q

− ∂

∂x′′
q

〈

v0
i v

0
q

〉 ∂λj

∂x′′
j

+
〈

v0
p v

0
q

〉 ∂2λi

∂x′′
p∂x

′′
q

= −∂ 〈P 〉
∂x′′
i

+ 〈 viscous term〉 (102)

where v0
p is the un-perturbed wind field. We notice that a lot of terms have now dis-

appeared, and we should probably be careful with the interpretation of what is left. A
random stirring force added to the Navier-Stokes equation also vanishes on averaging,
but that does not mean that a random stirring force has no effect.

3.3 Revised LINCOM
We now proceed in the spirit of the derivation of the LINCOM equations. We therefore
set λ1 = λ2 = 0 and λ3 = h. Then

∂λj

∂x′′
j

= 0 automatically so that we can drop the second

term on the left hand side of (102). In the third term on the lhs we make the approximation

〈

v0
p v

0
q

〉

≈ Vp Vq (103)

where Vp is a short hand notation for the un-perturbed mean velocity
〈

v0
p

〉

. We also drop

the viscous terms.
Then we make a Fourier transform with respect to the variables x and y, which are re-
placed by wave number variables k1 and k2. This yields the following equations

ikq

〈

v′′
qv

′′
1

〉

+ ∂

∂z

〈

v′′
3v

′′
1

〉

= −ik1P

ikq

〈

v′′
qv

′′
2

〉

+ ∂

∂z

〈

v′′
3v

′′
2

〉

= −ik2P

ikq

〈

v′′
qv

′′
3

〉

+ ∂

∂z

〈

v′′
3v

′′
3

〉

− kqVpkpVq h = −∂P
∂z

(104)

Next, we write vvv′′ as

vvv′′ = vvv0 + ṽvv (105)

A crucial point is the following first order closure assumption for the advection term

ikq

〈

v′′
qv

′′
i

〉

+ ∂

∂z

〈

v′′
3v

′′
i

〉

≈ ikq
〈

ṽq
〉

Vi + ikq Vq 〈ṽi〉 − ∂

∂z
K
∂ 〈ṽi〉
∂z

(106)

where index q runs from 1 to 2 (there is no k3). It is understood here that we are dealing
with the (partially) Fourier transformed fields so that the ’eddy diffusivity’K is a function
of kkk and z. When we transform back to real space the term will become a convolution of
K and

〈

ṽvv
〉

in the x and y coordinates, which may not be a bad way to model the term. In
LINCOM K is independent of z. As a further approximation the logarithmic variation of
VVV with z is neglected. This means that terms involving ∂VVV /∂z are discarded and that a
z-independent value of VVV r = VVV (zr), for a suitably chosen reference height zr , is used.
With all these approximations, of which the use of a constant VVV r might be the most
problematic, we finally arrive at the following set of equations
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ikq V
r
q 〈ṽ1〉 − ∂

∂z
K
∂ 〈ṽ1〉
∂z

= −ik1P

ikq V
r
q 〈ṽ2〉 − ∂

∂z
K
∂ 〈ṽ2〉
∂z

= −ik2P

ikq V
r
q 〈ṽ3〉 − ∂

∂z
K
∂ 〈ṽ3〉
∂z

− kpV
r
pkqV

r
q h(kkk) = −∂P

∂z

ikj
〈

ṽq
〉

+ ∂ 〈ṽ3〉
∂z

= 0 (107)

This system of linear equations is identical to that in LINCOM except that the inhomo-
geneous term, involving h, is lacking in LINCOM. Solutions are obtained as the sum of
a solution to the homogeneous system (as in LINCOM) and a particular solution to the
inhomogeneous system. Thus the general solution may be written as









〈ṽ1〉
〈ṽ2〉
〈ṽ3〉
P









= A1eαz









k2

−k1

0
0









+A2eαz









ik1

ik2

kkk2/α

0









+Be−|kkk|z









ik1

ik2

−|kkk|
−C









+









0
0

−ikkk · VVV r h(kkk)
0









(108)

where A1, A2 and B are arbitrary constants, C = ikkk · VVV r − kkk2K and α =
√

ikkk·VVV r
K

. The
square root for which Reα < 0 should be chosen in order to get a bounded solution. The
solution involving e+|k|z must be discarded for the same reason. The two first terms are
the inner solutions, the third term is the outer solution and the last term is the particu-
lar solution. The arbitrary constants are fixed by the boundary condition

〈

ṽvv
〉

= 0 at the
ground, which leads to

A1(kkk) = 0

A2(kkk) = −B(kkk)

B(kkk) = − ikkk · VVV r h(kkk)
kkk2/α + |kkk|

(109)

Taking the Fourier transform we obtain the perturbation ṽvv(xxx). This should be added to
the zero order profile. Following LINCOM we choose this to be a logarithmic profile VVV ,
even if different constant profiles have been used for different Fourier components. This
does not spoil mass conservation. Changing back to the original coordinates we finally
get

〈v1〉 = V1(z− h)+
∑

kkk

〈ṽ1(kkk, z− h)〉 eikkk·xxx

〈v2〉 = V2(z− h)+
∑

kkk

〈ṽ2(kkk, z)〉 eikkk·xxx

〈v3〉 =
∑

kkk

〈ṽ3(kkk, z− h)〉 eikkk·xxx + 〈vvv〉 · ∇h (110)

The results for 〈v1〉 and 〈v2〉 are very similar to those in LINCOM. The difference
is that LINCOM uses two different constant velocities VVV (L) and VVV (l). One is used to
specify boundary conditions and the other is used for the governing equations. On top
of this both depend on kkk. This is very confusing, and it has almost no impact on the
numerical results if l and L are both set equal to 1/|k|. With zr = l = L the horizontal
components of the two models are identical. The revised vertical component 〈v3〉 is, on
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the other hand, radically different from LINCOM. Note that we may write this component
as

〈v3〉 =
∑

kkk

B(kkk)
[

−kkk2/αeα(z−h) − |kkk|e−|kkk|(z−h)
]

eikkk·xxx+
∑

kkk

ikkk·[VVV (z− h)− VVV (zr − h)] h(kkk)

(111)
The first sum term on the right hand side vanishes for z → ∞, but the second sum does
not. This is an artifact caused by the inconsistent adoption of a flat velocity profiles in the
calculations.

Figure 32. Flow field over sinusoidal orography with maximum slope 0.6. Upper: LIN-
COM model. Lower: revised LINCOM model.

A series of sinusoidal hills, h(x, y) = A sin kx, with the wind direction perpendicular
to the ridges, can be used as a test example. Figure 32 shows results for LINCOM and
the revised LINCOM. The LINCOM streamlines clearly have strange features: they are
vertical at the surface so that air is emerging from the ground at the uphill slope and is
sucked into the hill at the downhill slope. At the same time the steamlines are pushed
away from the hill, probably because of violation of the mass balance which introduces
spurious bulk sources. The corrected equations do not violate mass conservation, and
behave much nicer. The flow runs parallel with the ground and with a compression of
streamlines at the summit as expected. The maximum slope is 0.6 in this case and a re-
circulation zone at the trough could have been expected, and a recirculation zone does
appear for slopes steeper than about 0.7. Real flows separate at much lower slopes. Sep-
aration of the model flow is illustrated in figure 33 (upper) where the maximum slope is
1. The fact that the revised equations can produce recirculation zones is reassuring, but
the accuracy of the prediction should be questioned. The perturbation must be larger than
the unperturbed velocity for this to happen, so a first order approximation is probably
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Figure 33. Flow field over sinusoidal orography with maximum slope 1.0. Upper: LIN-
COM model. Lower: revised LINCOM model.

inadequate. In this model streamlines have the same reflection symmetries as the terrain,
therefore the recirculation zone is symmetric around the trough, which is an unwanted
feature. Real hills exert a drag force caused by higher pressures on the sides facing the
wind, but the symmetry means that the net drag force is zero. It should be noted that
the symmetry is broken by terms like ṽ3∂Vi/∂z

′′, which appears in the equations for a
non-constant Vi .

As we have seen the application of a stricter derivation procedure leads to corrections
of LINCOM, which removes unphysical features at no extra computational cost. There-
fore there is every reason to implement these corrections. It is a minimal repair copying
LINCOM as far as possible. It is likely that we could do even better if a logarithmic
velocity profile was used.

3.4 First order equations
It seems natural to investigate the first order equations as they come out of the derivation
described above without further approximations. This means letting VVV and K vary with
height. The extra computational work could be a good investment, and it would ensure a
well defined set of governing equations. The plan is to start with a closed set of equations,
apply a transformation that straightens the boundary, make a first order approximation and
solve the equations. We choose the following closure

〈vvv〉 · ∇ 〈vvv〉 = −∇ 〈P 〉 + ∂

∂z
K
∂

∂z
〈vvv〉 (112)
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where

K = κ u∗ (z− h(x, y)) = κ u∗ z
′′ (113)

A more fancy closure such as ∇jK(∇jvi + ∇ivj ) could be tried here, the extra terms are
in fact quite harmless. However, we wish to keep things as simple as possible, and the
proposed closure might still catch much of the right behaviour.

Next we apply the coordinate transformation x ′′
i = xi−δi3 h and define the transformed

velocity v′′
i = vi + δ3ivvv · ∇h, as was done above. The transformed equation becomes (we

drop the brackets from now on)

vvv′′ · ∇
(

v′′
i + δ3ivvv

′′ · ∇h
)

= −∇iP + ∂P

∂z′′
∇ih+ ∂

∂z′′
K

∂

∂z′′
(

v′′
i + δ3ivvv

′′ · ∇h
)

(114)

Then we insert vvv′′ = VVV + ṽvv, where ṽvv is the perturbation and expand to first order in h.
This yields the following equation:

ṽvv · ∇Vi + VVV · ∇ṽi + δ3i(VVV · ∇)2 h = −∇iP + ∂

∂z′′
K

∂

∂z′′
ṽi (115)

This is an inhomogeneous system of linear equation in vvv with the important property
that all coefficients depend only on z′′. This means that the partial Fourier transform
decouples the problem into independent ordinary differential equations. This is a major
simplification because the equations can be solved separately for each kkk without having
to solve implicit equations. The reason for this is the lack of a self advection term vvv · ∇vvv
which would convolute the Fourier components. The term is of second order and should
probably only be admitted together with all other second order terms. After a partial
Fourier transform we end up with (please recall that kkk = (k1, k2, 0))

ikkk · VVV ṽvvi + ṽ3
∂

∂z′′
Vi = −ikiP + ∂

∂z′′
K

∂

∂z′′
ṽi for i = 1, 2 (116)

ikkk · VVV ṽvv3 + (ikkk · VVV )2 h = − ∂P

∂z′′
+ ∂

∂z′′
K

∂

∂z′′
ṽ3 (117)

ikkk · ṽvv + ∂ṽ3

∂z′′
= 0 (118)

We could have obtained the same equations if we had let VVV be a function of z′′ in (107).
In other words, the simple closure can be applied before or after the coordinate transfor-
mation with the same result. This is not so for the ’more fancy’ closure mentioned above,
where extra terms are generated if the closure is applied first. These terms ensure the right
asymptotic behaviour, therefore the correct procedure is to apply the closure first.

Contracting both sides of (116) with ki and inserting ikkk · ṽvv = −∂ṽ3/∂z
′′ we get two

equations for ṽ3 and P

−ikkk · VVV ∂ṽ3

∂z′′
+ ṽ3

∂ikkk · VVV
∂z′′

= kkk2P − ∂

∂z′′
K
∂2ṽ3

∂z′′2

ikkk · VVV ṽvv3 + (ikkk · VVV )2 h = − ∂P

∂z′′
+ ∂

∂z′′
K

∂

∂z′′
ṽ3 (119)

Differentiating the second of these equations with respect to z′′ and adding the result to
the first equation yields two coupled second order differential equations:

2 (ṽ3 + ikkk · VVV h) ∂ik
kk · VVV
∂z′′

= kkk2P − ∂2P

∂z′′2
+ ∂

∂z′′
K ′ ∂ṽ3

∂z′′
(120)

(ikkk · VVV )(ṽ3 + ikkk · VVV h) = − ∂P

∂z′′
+ ∂

∂z′′
K

∂

∂z′′
ṽ3 (121)
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Solving these equations we obtain ṽ3, P and ikkk · ṽvv = −∂ṽ3/∂z
′′. Contracting both (116)

with k̂kk ≡ (−k2, k1, 0) yields an equation for the second horizontal component k̂kk · ṽvv

ikkk · VVV k̂kk · ṽvv + ṽ3
∂k̂kk · VVV
∂z′′

= ∂

∂z′′
K
∂k̂kk · ṽvv
∂z′′

(122)

3.5 Higher orders
The higher order equations are derived replacing h with εh in (114), inserting

v′′ =
∞
∑

n=0

ṽvv(n) εn (123)

and

P =
∞
∑

n=0

P (n) εn (124)

and equate terms of order εn. Due to the product in the advection term, the nth equation
will only contain perturbations of orders lower than or equal to n. The equations should
therefore be solved sequentially starting with n = 0, then n = 1, n = 2 etc. In this way
ṽvv(n) and P (n) are the only unknowns in the nth equation. Collecting known terms into a
‘source term’ S(n)i we may write the resulting equations as

ṽvv(n) · ∇Vi + VVV · ∇ṽvv(n)i = −∇iP (n) + ∂

∂z′′
K

∂

∂z′′
ṽ
(n)
i + S

(n)
i (125)

We see that all the equations have the same structure and therefore could be solved by
the same algorithm. We also not that a partial Fourier transform decouples the equations
into one separate set of equations for each Fourier component. The source term S

(n)
i

contains products so its Fourier transform is a mixture of Fourier components. The easiest
way to obtain S(n)i (kkk) is probably to transform ṽvv

(p)

i and P (p) (p < n) to real space, make
the products and transform back again. This may require lots of RAM.

3.6 Boundary conditions
The boundary conditions are tricky. The logarithmic profile is divergent for z → 0 and
therefore does not seem to comply with a no-slip condition. In reality there is no diver-
gence and the meaning of the logarithmic profile is that z exp −V (z)/(zV ′(z)) takes on
the constant value z0 when z is within the surface layer and outside the viscous layer next
to the ground. According to surface layer similarity the surface layer is controlled by the
momentum flux (−u2

∗) and the surface is characterized by z0. In other words, the surface
layer above the viscous layer does not care how the momentum flux is produced as long
as u∗ and z0 are the same. If we want to, we can control the local forcing by putting con-
veyer belts on every square meter of surface. The conveyer belts should be equipped with
controllers able to adjust the speed so as to maintain predetermined values of u∗ and z0.
If the conveyer belts are smooth (but still giving no slip) and the viscosity is very small,
the velocity at the ground becomes very large and negative. The logarithmic divergence
therefore appears in the limit ν → 0. We should therefore not worry about non–zero tan-
gential wind component at the ground. But even if the divergence is physically sound, it
is annoying that the perturbation (VVV · ∇)2h is divergent at the ground. In order to make
things more regular we add a finite viscosity term to K , i.e. K = κu∗(z + z1). The
corresponding mean profile is V (z) = u∗/κ log((z + z1)/z0), Where we put z0 in the
denominator in order to get the right asymptotic value of z0. The boundary conditions are
then that the tangential wind components vanish for z = z1 − z0 and the normal compo-
nent vanished for z = 0. Evidently z1 = z0 is a natural choice because it is just no–slip
conditions at z = 0.
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In Section 3.2 we found three second order differential equations for P , ṽ3 and k̂kk · ṽvv
and the algebraic relation ikkkṽvv + ∂ṽ3

∂z′′ = 0. We therefore need six boundary conditions of
which we found three in the preceding paragraph. The remaining three must be fixed by
the requirement that the perturbations remain bounded for z → ∞ and by specified the
momentum forcing. Alternatively, if the Coriolis force is included, we must specify the
geostrophic wind.

When z0 is non-uniform the boundary condition at the ground is that
∫

ṽ3(z0(xxx, kkk))e
ikkk·xxx d2x = 0 (126)

There is a problem if z0 varies, because we wish to keep K only as a function of z (or
actually z′′) so that the equations separate in the kkk domain. Surface roughness variations
are important so we have to be able to deal with them. In LINCOM this is done by intro-
ducing a separate perturbation problem for variations of log(z0/z0), where z0 is a suitable
average value of z0. This restores the separation of equations for Fourier components, but
with two perturbation expansions on top of each other the number of terms very soon
becomes enormous.

When the Coriolis force is neglected, a logarithmic profile should exist high above
the terrain. The friction velocity u∗, corresponding to the asymptotic logarithmic profile,
is determined by the square root of the momentum flux, which is assumed to be given.
Close to the ground we also expect a local logarithmic profile, but with a different (local)
friction velocity. This is due to form drag of the orography. Likewise the friction velocity
corresponding to the upper profile is not the same as the local z0 on the ground, even
when z0 is the same everywhere. This is because the upper profile sees the orography
as roughness. In WAsP end WAsP Engineering the geostrophic wind is used as upper
boundary condition. It might be a good idea to include the Coriolis force together with
this boundary condition.

3.7 An alternative
To first order each Fourier component is treated separately, which, to some extend, justi-
fies the use of a different K for each mode. Since K is large, the model flow is laminar,
as for any other eddy viscosity model. It therefore seems natural to use a solution to a
real laminar flow in order to maintain some degree of realism. In LINCOM the unper-
turbed flow is laminar with full–slip at the boundary. On the other hand we used a no–slip
boundary condition for the perturbation. This lack of consequence makes it impossible to
relate the solution to a physical problem. If the full–slip condition is applied also to the
perturbation the equations get under–determined. The probable explanation for this is that
the lack of friction makes more than one solution possible. If we try no–slip conditions
for the unperturbed field then the only constant profile is V1 = 0 and nothing will work. A
viable alternative is to keep the no slip condition and let the momentum flux be constant.
In that case the unperturbed profile is linear, V1(z) = αz, which may not be any worse
than a constant profile. For the constant momentum flux we have u2

∗ = Kα, where u∗
should be a parameter of the problem. As the second parameter we can use the observed
wind speed at the reference height zr so that α = U(zr)/zr = u∗/κl and K = κu∗l,
where l ≡ zr/ log(zr/z0). The results will of course depend on the choice of zr (or l), but
you can’t have everything (unless you use a logarithmic profile).

For a sinusoidal orography, h(x) = 2hk cos kx, with VVV along the x–axis, the resulting
equations can be written in non-dimensional form. To this end we define

s ≡ kz′′ (127)

ψ ≡ (v3 + iαshk)/u∗ (128)
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p ≡ kP

u∗α
(129)

Inserting this into (119) leads to the following equations

−is ∂ψ
∂s

+ i ψ = p − (κkl)2
∂3ψ

∂s3
(130)

is ψ = −∂p
∂s

+ (κkl)2
∂2ψ

∂2s
(131)

Elimination of p leads to the equation

(

∂2

∂s2
− is

(κkl)2

)(

∂2

∂s2
− 1

)

ψ = 0 (132)

The factorization of the operator on the lhs is the simplification we get from assuming a
simple profile. It may not seem much, but it does simplify the solution procedure. I have
not been able to obtain the same for a logarithmic profile. The solution to (132) for which
ψ(0) = 0, ψ ′(0) = iαhk/u∗ and ψ(s) is bounded for s → ∞ can be written as

ψ(s) = i
hk

κl











sinh s −

s
∫

0
A(s′) sinh(s − s ′) ds′

∞
∫

0
A(s′) e−s′ ds′











(133)

where

A(s) = Ai(e−iπ/6(κkl)−2/3s) (134)

and Ai is an Airy function. The other Airy function, Bi, produces unbounded solutions
for s → ∞, hence we drop it. (A linear combination of the two Airy functions should be
used in case of an upper boundary at finite height).

The horizontal flow field component v1 is determined from the continuity equation, i.e.

v1(z, k) = −iu∗ψ
′(kz)+ αh(k) (135)

The last term is a constant ensuring that v1 = 0 at the boundary. Note that v1 → αh

for z → ∞, where v1 → 0 might have been expected. The perturbation therefore does
not vanish (although the ratio v1/V does). This probably has to do with the fact that the
∂V/∂z remains finite for z → ∞.

The flow field is shown in figure 34. The input are: maximal slope is 0.6, zr =
10m,2π/k = 500m and z0 = 0.03m. This model produces flow separates much more
willingly than the modified LINCOM model. A large recirculation zone is seen at the
trough and separation persists down to maximum slopes of about 0.04. Figure 35 shows
results for maximum slope 0.05. Flow separation is not expected at this low slope. On the
other hand, wind tunnel experiments indicate that separation zones are shifted away from
the trough towards the downhill slope, and the model actually does that.

Flow over sinusoidal hills has been investigated in a wind tunnel experiment by Athanas-
siadou and Castro (2001). Three orographies were used: a reference case on a flat, a si-
nusoidal ’small hill’ case with maximum slope 0.2, and a ’large hill’ case with maximum
slope 0.4. The same roughness cover was used in all three cases and the period λ was
the same for the two hill cases. The small hill was designed to be just below the onset
of separation, which was confirmed by the experiment. A separation zone was observed
on the large hill stretching from about halfway down the down–hill slope to right after
the trough. This behaviour is nicely reproduced by the model as can be seen in figures
36 37. In the figures the reference height is set equal to the boundary layer height (ob-
tained from the flat case), but further calculations show that the choice of reference height
markedly influences the results. Choosing a somewhat lower reference heights the model
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Figure 34. Flow field over sinusoidal orography with maximum slope 0.6.

Figure 35. Flow field over sinusoidal orography with maximum slope 0.05. Note that
vertical dimensions have been scaled up.

flow separates on the small hill. The measurements include surface pressure data, which
are valuable for model testing. The surface pressure varies something like a sine with the
same period as the hill, minimum at the crest and maximum slightly after the trough on
the up–hill slope. A larger content of higher harmonics is evident from the large hill com-
pared to the small hill. First order theory can only provide the first harmonic, hence the
experimental data indicate a need for higher order calculations. The model also predicts a
linear dependence of the pressure on the slope, which is not observed. The best fit to the
amplitude of the pressure variation now occurs for small reference heights, so it seems
that a proper choice cannot be made. It is possible to compute the form drag of the hills
directly from the pressure measurements. The measured form drag is consistent with the
observed u∗ taken from the logarithmic profile above the hills. For the small hill the form
drag is about equal in magnitude to the friction drag, while it is about six times larger
for the large hill. The values predicted by the model are generally of the right order of
magnitude, but depend quite a lot on the chosen reference height.

Even if there are problems with fixing the reference height in the model, it does catch
much of the qualitative behaviour.

3.7.1 Proof of (95)

A proof that vvv′′ is divergence free may go as follows. Consider a regular matrix Mij . We
recall that the determinant DetM may be expanded in terms of the j th row , i.e.

Det M =
∑

i

Cij Mij (136)

where Cij is equal to (−1)i+j times the determinant of the matrix that results from delet-
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Figure 36. Flow field over the ’small hill’. Note that vertical dimensions have been scaled
up.

Figure 37. Flow field over the ’large hill’. Note that vertical dimensions have been scaled
up.

ing the ith row and the j th column of M . In other words, 1/D Cij is the inverse of Mij .
Since Cij is independent of the elementMij , we can express the differential of the matrix
as

dDet M = Det M (M−1)ij dMji (137)

Specializing this to Mij = ∂xi
∂x′′
j

, we note that

∂xi

∂x′′
k

∂x′′
k

∂xj
= δij (138)

so that (M−1)ij = ∂x′′
j

∂xi
, and from (137)

∂D

∂xj
= D

∂x′′
p

∂xq

∂

∂xj

∂xq

∂x′′
p

= −D
∂2x′′

p

∂xq∂xj

∂xq

∂x′′
p

= −D ∂

∂x′′
p

∂x′′
p

∂xj
(139)

where (138) was used in the second equality. Taking the divergence on both sides of (94)
and using (139) we finally get

∂v′′
i

∂x′′
i

= D
∂x′′
i

∂xj

∂vj

∂x′′
i

+ vj
∂x′′
i

∂xj

∂D

∂x′′
i

+ vj D
∂

∂x′′
i

∂x′′
i

∂xj

= D
∂vj

∂xj
+ vj

∂D

∂xj
+ vj D

∂

∂x′′
i

∂x′′
i

∂xj
= D

∂vj

∂xj
(140)
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4 KAMM2 simulations for Tauste

Due to large loads on wind turbines at the site Tauste in Northern Spain Gamesa Eólica
and Vestas decided to investigate the flow in more detail. Two mast were instrumented
by the company MetSupport and Risø National Laboratory as described in table 4. The
heights are above ground level and for the sonic anemometers the brand is given in paren-
theses. The level 42.3 m corresponds to hub height and 18.7 m to the lowest position of
the tip. This instrumentation is sufficient to give reliable information on shear, gusts, tur-
bulence and possible influence of stability on the flow at the positions of the masts. In this
investigation we are only trying to model the most simple aspect of the measurements,
namely the mean wind as a function of height. Gusts and turbulence is not analyzed here.

Height [m] Mast 1 Mast 2
48 cup vane cup

42.3 cup sonic (Gill) term cup vane term
30.6 cup sonic (Metek) cup sonic (Gill)
18.7 cup sonic (Metek) cup vane
10 cup vane term cup vane term

Table 4. Instrumentation of the two masts
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Figure 38. The two masts at Tauste together with positions of wind turbines. The lines
indicate typical wind directions.

The positions of the masts are shown in figure 38.
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4.1 Model issues
4.1.1 The KAMM2 mesoscale model

The Karlsruhe Atmospheric Mesoscale Model 2 (KAMM2) is a three-dimensional, non-
hydrostatic and compressible mesoscale model (Adrian 1998) related to KAMM (Adrian
and Fiedler 1991, Adrian 1994). Spatial derivatives are calculated in the model by central
differences on a terrain following grid. The turbulent fluxes are parametrized using a
mixing-length model with a non-local closure for the convective mixed layer. Lateral (i.e.
the sides of the domain) boundary conditions assume zero velocity gradients normal to
the inflow sides. On out-flow boundaries, the horizontal equations of motion are replaced
by a simple wave equation allowing signals to pass out of the domain without reflection.
Gravity waves are absorbed in the upper part of the computational domain which acts
as damping layer. At initialization, the orography, roughness and large scale forcing are
loaded into the model.

4.1.2 Independence of grid resolution

As when operating any finite difference model, it is necessary to run the model for differ-
ent spatial grid resolutions in order to confirm that the model results are not sensitive to
grid resolution. Normally, three different resolutions are employed. If the computational
results of the two finest resolutions are close to each other it is an indication of that the
model results approach a distinct solution for increasing grid resolution. In this way, an
appropriate grid resolution can be chosen. When choosing very fine grid resolutions, the
computational resource requirements may increase significantly. It may then be appropri-
ate to allow some difference between model results for different resolutions.

4.1.3 Simulation time

A simulation time of several hours (physical model time - not computer CPU time) is
necessary in order to approach a final state of the computational wind map. There is
no specific correct way of deciding how much simulation time is necessary to complete
a mesoscale model run. Rather, this depends on the judgment of the model operator.
However, for the present work, it has been found appropriate to focus on the horizontal
velocities, u and v, as they are the main variables of the computational results.

4.1.4 Sensitivity to non-smoothness of the grid

Like some finite difference models, KAMM2 is sensitive to non-smoothness of the com-
putational grid. This is because change of elevation in the lower part of the grid is im-
plemented via source terms containing Christoffel symbols in the equations of motion.
The Christoffel symbols depend on the second derivatives of the elevation and become
significant for non-smooth grids, thus making the source terms important in the model so-
lution. The consequence is that, for complex terrain, the orography must be smoothed by
filtering before the computational grid is generated. Otherwise, if the grid is not smooth,
it may be very difficult to run the model although the model equations are formally cor-
rect. In practice, this is in particular a problem for high grid resolutions. Furthermore, it
can become difficult to obtain grid independent solutions unless the orography is filtered
appropriately.

4.1.5 Stand-alone operation of the model

KAMM2 is able to run as a “stand-alone” model, i.e. the mesoscale model can be run by
using only the large scale forcing (see sketch in Figure 39) instead of being nested within
a larger model supplying the boundary conditions.
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Figure 39. Sketch of the large scale forcing used for KAMM2.

4.2 Model setup for Tauste
4.2.1 Topography and filtering

The orography data with 50 m horizontal resolution was generated from the WAsP map
file Tauste.map by using the WAsP utility map2grd. Prior to this, a few spurious elevation
lines were removed from the WAsP map. The chosen map section is Easting 653km to
661km and Northing 4634km to 4642km (UTM32, ED50).

The orography data was filtered in real space via a binomial polynomial kernel using
n = 9 points for each horizontal direction with the actual point in the center, i.e. by using
the kernel centered at the index i = j = 0,

k(i, j) =
(

n− 1

i + n− 1
2

)(

n− 1

j + n− 1
2

)

, −n− 1

2
≤ i, j ≤ n− 1

2
, (141)

normalized to give a unit sum. An additional horizontal zone, 600 m wide, was added
around the boundary of the map prior to filtering by simple copying of the boundary
points (resulting in flat squares by the corners of the map). This is because KAMM2
expects the elevation near the boundary to be constant in the horizontal direction normal
to the boundary. The resulting map shown in Figure 40 has 185 × 185 grid points at 50m
resolution. Also shown in the figure are three transects used for comparing results.

Two additional maps with horizontal resolutions of 100 m and 200 m were generated
from the filtered map by selecting every second and fourth point, respectively. These
maps have 93 × 93 and 47 × 47 grid points.

The aerodynamic roughness length has been set uniformly to 0.03 m.

4.2.2 Vertical resolution

Based on experience, the vertical extension of the computational domain is chosen to be
at least 5 km above terrain level and the lowest cells must lie within the inner layer of
which the height is estimated by the relation by (Jensen et al. 1984),

li

L
ln2
(

li

z0

)

= 2κ2, (142)
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Figure 40. Orography of Tauste used for the mesoscale model. The three transects shown
are used for comparing results. Each transect start at the end labeled by a number.

where L is the horizontal length scale of a hill, z0 is the roughness length and κ is the von
Kármán constant. Resolving features from topography elements of scales down to L for
z0 = 0.03 m yields

li = 5.78 m,L = 500 m, (143)

li = 3.52 m,L = 250 m. (144)

where the alternative values of L are based on the judgment of the model operator by
regarding the orography shown in Figure 40. Using vertical parabolic stretching with 4
grid points below the height of 50m (agl.) and 80 vertical grid points the lowest grid point
is placed at a height of h1 = 5.9 m over the lowest part of the terrain. This corresponds
to the value of L = 500 m. Using 100 vertical grid points with 6 grid points below the
height of 50 m (agl.) the lowest grid point is placed at h1 = 3.4 m over the lowest part
of the terrain. This corresponds to the value of L = 250 m. It is of course desirable to
resolve the lowest part of the atmospheric boundary layer with as many grid points as
possible within the scope of the study in order to investigate the negative shear at heights
of order of the assumed hub height 50 m. However, it is not known how well the simple
mixing length model for the turbulence responds to very fine vertical resolutions. It would
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be desirable to investigate this matter further.

4.2.3 Model test cases

A strategy has been applied to the computer simulations in which the KAMM2 model
was first tested with different filtering schemes for the orography and different horizontal
and vertical grid resolutions for verifying grid independence of the model solutions for
Tauste. Second, different large scale forcing, in particular different temperature condi-
tions, was tested in order to investigate the local atmospheric conditions that may lead
to negative shear at the positions of the two measuring masts. Most of the effort was put
into generating reliable model solutions. More effort in the direction of testing different
large scale forcing and perhaps different turbulence model schemes is somewhat lacking
in the present study. However, it was found necessary to investigate the validity of the
results generated by the mesoscale model. In Table 5 an overview is given for the cases
simulated with KAMM2.

Table 5. Overview of cases simulated with KAMM2.

case 1x,1y (m) NZ ug
(m
s

)

vg
(m
s

) 1T
1z

(

K
m

)

1Tland (K) comments

1 50 80 7.5 -6.5 -0.0065 0.0
100 80 7.5 -6.5 -0.0065 0.0
200 80 7.5 -6.5 -0.0065 0.0

2 100 80 8.0 -6.0 -0.0098 -3.0 day
3 50 100 7.5 -6.5 -0.0065 0.0

100 100 7.5 -6.5 -0.0065 0.0
200 100 7.5 -6.5 -0.0065 0.0

4 50 100 7.5 -6.5 -0.0065 0.0 filter at 25 m
100 100 7.5 -6.5 -0.0065 0.0 filter at 25 m
200 100 7.5 -6.5 -0.0065 0.0 filter at 25 m

5 100 100 14.1 -5.1 -0.0098 -3.0 day
6 100 100 9.4 -3.4 -0.0050 3.0 night
7 100 100 9.4 -3.4 -0.0050 0.0

Each case is numbered and has been run for one or three horizontal resolutions indi-
cated by 1x,1y. The number of vertical grid points is listed as NZ. The geostrophic
wind is given as ug and vg (along Easting and Northing respectively). The vertical tem-

perature gradient in the lower part of the atmosphere is listed as 1T
1z

.1Tland is defined as
the difference between the air temperature at 2 m height and the surface skin temperature
over land, i.e.

1Tland = Tair,2m − Tland (145)

For all the shown cases the orography filtered at 50 m horizontal resolution was utilized
except for case 4 for which the orography was filtered at 25m resolution using a binomial
filter kernel with 17 points, i.e. n = 17 in Equation (141).

4.3 Results
4.3.1 Initial results

While testing grid independence in for case 1, it was attempted to investigate the effects
of the temperature conditions of day in case 2. No grid independence was found for case
1, rendering both case 1 and case 2 invalid. However, it was noticed from the data of case
1 that the surface wind should be turned clockwise by 15◦ in order to match the 310◦ at
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50 m (agl.) predominant at Mast 1. From the data of case 2 it was seen that the surface
wind should be 50% larger for day conditions. This can be explained by the increased
influence of the surface in the lower part of the boundary layer for the day situation
which has more convection.

It was then decided to increase the vertical resolution of the model by using 100 vertical
grid points in case 3. In order to be able to compare to case 1, the other parameters in
Table 5 were set as in case 1. The resulting wind speed at 50 m (agl.) after four hours of
simulation time is shown in Figure 41. The horizontal wind speed at 50 m (agl.) along

Figure 41. The horizontal wind speed for case 3 at 50 m (agl.) for Tauste.

the transects 1 and 2 indicated in Figure 40 is shown in Figure 42 for KAMM2 at three
different horizontal resolutions and for WAsP Engineering. The results for transect 3 are
shown in Figure 43. It is seen from Figure 41 that the first peak at the position of 5.7 km
in transect 1 in Figure 42 is the most important part, as it is near the position of the
meteorological mast 1. For transect 2 in Figure 42 the most important part is the peak at
the position of 4 km which is near the mast 2. In Figure 43 it is hard to see the positions
of the masts in the plot. Mast 1 is located at 4.9 km and Mast 2 is located at 7.6 km.
Grid independence is not clear at the positions near the masts. However, the results for
the three different horizontal resolutions are generally close in large parts of the domain
investigated via the transects. It is readily seen in the figure that the level of the wind
speed near mast 1 is very similar for KAMM2 and WAsP Engineering, whereas the wind
speed for WAsP Engineering is generally greater than for KAMM2 along the part of each
transect before the masts and generally smaller than for KAMM2 along the part after.

The wind direction at 50 m (agl.) along the transects 1 and 2 is shown in Figure 44 for
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Figure 42. The horizontal wind speed for case 3 at 50 m (agl.) along the transects 1 (top)
and 2 (bottom).

KAMM2 at three different resolutions and for WAsP Engineering. The results for transect
3 are shown in Figure 45. Grid independence is obtained along all three transects for the
wind direction. It is also seen that the results from WAsP Engineering are close to the
wind directions from KAMM2. The vertical profiles of velocity are shown in Figures 46
and 47 for Mast 1 and 2, respectively. No indication of negative shear is visible for Mast
1. For Mast 2, a tendency of negative shear is observed in the lowest part of the plot of
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Figure 43. The horizontal wind speed for case 3 at 50 m (agl.) along transect 3.

vh. However, it corresponds only to two grid cells and should be verified by simulations
with higher vertical resolution near the ground.

The data for the comparison has been treated in the following way. First, all 10 minutes
averages with a mean wind speed of more than 9 m/s at 42 m and a direction (at 42 m
at mast 1 and at 50 m at mast 2) within ±6◦ of the direction of the KAMM2 run at
computational level number 6 (z = 44.91 m) are selected. Then, the wind speed at z =
42 m is scaled, so it matches the KAMM2 wind speed. The scale factor is used to scale
wind speeds in all others heights and the wind direction is not changed. The resulting data
set is averaged to get a profile which is guaranteed to match at z = 44.91 ≈ 42 m, and we
can make a crude test of the performance of the calculation by comparing calculations
and the averaged wind speed and direction at the other heights. The vertical velocity
generally compares very poorly with data. One explanation could be that the filtering
changes the local slope of the terrain, which to a large degree determines w. The slightly
negative wind shear observed at mast 2 (see figure 47 where the largest average speed is
at z ≈ 18 m) is not reproduced by the model. The large positive shear at mast 1 (figure 46)
is also poorly reproduced.

In order to obtain a clear demonstration of grid independence, case 4 was run using
a map filtered at 25 m instead of 50 m horizontal resolution. The underlying hypothesis
is that grid independence is lost when the orography is filtered at a horizontal resolution
similar or equal to the resolution utilized in the model runs. Thus, it was believed that
doubling the resolution before the filtering of the orography should improve grid inde-
pendence. However, this turned out not to be the case. In fact it made the situation worse!
Rather, it is thought that the vertical resolution is more important, because an improve-
ment in grid independence is actually achieved when going from case 1 to case 3.
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Figure 44. The wind direction for case 3 at 50 m (agl.) along the transects 1 (top) and 2
(bottom).
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Figure 45. The wind direction for case 3 at 50 m (agl.) along transect 3.
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horizontal wind speed (vh) and its components u, v. Symbols are measurements.
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4.3.2 Results of physical parameter changes

Based on the results from the cases 1,2,3 and 4 it was decided to continue an investigation
of physical parameter changes with the same model setup as in case 3, assuming grid in-
dependence. Hence, a horizontal resolution of 100m and a vertical resolution determined
by NZ = 100 was applied to the cases 5, 6 and 7.

The geostrophic wind direction of case 5, 6 and 7 was set to 290◦ corresponding to a
clockwise rotation of 20◦ relative to the cases 1 and 3. The purpose of this is to obtain a
surface wind direction close to 310◦. However, this was not achieved in the model results.
The modelled wind speed and direction for Mast 1 at 50 m height (agl.) is summarized
together with the geostrophic wind speed and direction in Table 6. The horizontal grid
resolution referred to is 100 m. For convenience, the vertical temperature gradient and
the difference between air temperature at height 2 m and the surface skin temperature are
also shown.

Table 6. Summary of speed and direction for the geostrophic wind and the modelled wind
near Mast 1 at 50 m (agl.) height. The horizontal resolution, the vertical temperature
gradient and the temperature difference between air and surface are also shown.

case 1x,1y (m) FFg
(m
s

)

DDg (
◦) FF

(m
s

)

DD (◦) 1T
1z

(

K
m

)

1Tland (K)

1 100 10.0 311 9.1 325 -0.0065 0.0
2 100 10.0 307 6.4 299 -0.0098 -3.0
3 100 10.0 311 9.4 321 -0.0065 0.0
4 100 10.0 -0.0065 0.0
5 100 15.0 290 9.5 231 -0.0098 -3.0
6 100 10.0 290 13.6 344 -0.0050 3.0
7 100 10.0 290 13.6 340 -0.0050 0.0

In case 5 the geostrophic wind was increased by 50% relative to case 2. Case 5 was
allowed six hours of simulation time whereas the cases 1, 2, 3, 4, 6 and 7 were only
allowed four hours of simulation time. The purpose of case 5 was to simulate day time
temperature conditions similar to case 2. But the geostrophic wind in case 5 was adjusted
to yield a sufficiently high surface wind (the wind speed at 50 m height (agl.) should
be 10 − 14 m/s). However, the direction of the geostrophic wind was chosen wrong
by a mistake. It should have been increased by 10◦ instead of decreased by 20◦. The
resulting wind speed at 50 m (agl.) is shown in Figure 48. The horizontal wind speed
at 50 m (agl.) along the transects 1 and 2 is shown in Figure 49 for KAMM2 and for
WAsP Engineering. For transect 1 the wind speed of KAMM2 is close to the wind speed
of WAsP Engineering at the position 5.7 km corresponding to Mast 1. For the rest of the
plot the wind speed of KAMM2 is significantly higher than that of WAsP Engineering.
A similiar behavior is observed for transect 2. Here, Mast 2 is located at the position
4 km. The wind direction at 50 m (agl.) along the transect 1 is shown in Figure 50 for
KAMM2 and for WAsP Engineering. Unfortunately, the wind direction of KAMM2 is
offset by 80◦ clockwise relative to the predominant wind direction of Mast 1 as indicated
in Table 6. This is of course visible in the large difference between KAMM2 and WAsP
Engineering. The vertical profiles of velocity are shown in Figures 51 and 47 for Mast 1
and 2, respectively. No indication of negative shear is visible for any of the masts. On
the contrary, the observations at mast 1 show strong positive shear. The model also have
quite strong shear, although the detailed shape of the profile is not reproduced.

The purpose of case 6 is to investigate the effect of night time temperature condi-
tions. Thus, the air temperature gradient in this case corresponds to stable conditions and
1Tland = Tair − Tland was set to 3.0 K simulating a cold surface. The resulting wind
speed at 50m (agl.) is shown in Figure 53. The horizontal wind speed at 50m (agl.) along
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Figure 48. The horizontal wind speed for case 5 at 50 m (agl.) for Tauste.

the transects 1 and 2 is shown in Figure 54 for KAMM2 and for WAsP Engineering. The
wind speed of KAMM2 along transect 1 is close to the wind speed of WAsP Engineering
for positions lower than 5 km. Near Mast 1 at the position 5.7 km the difference in wind
speed is large. For positions greater than 5 km the wind speed of KAMM2 is significantly
larger than the wind speeds of WAsP Engineering. In contrast, the wind speed of KAMM2
along transect 2 is lower than the wind speed of WAsP Engineering for positions less than
3 km and larger for positions greater than 4 km. For positions from 3 km and up to the
location of Mast 2 at 4 km the velocities of the two models are close. The wind direction
at 50 m (agl.) along the transect 1 is shown in Figure 55 for KAMM2 and for WAsP
Engineering. The wind direction og KAMM2 is offset by 30◦ counter-clockwise relative
to the predominant wind direction of Mast 1 as indicated in Table 6. This is observed in
the difference between KAMM2 and WAsP Engineering. The vertical profiles of velocity
are shown in Figures 56 and 57 for Mast 1 and 2, respectively. No indication of negative
shear is visible for Mast 1, but the quite flat profile compares well with data. For Mast 2,
a tendency of negative shear is observed is observed in the lowest part of the plot of vh.
However, like for case 3, it corresponds only to two grid cells and should be verified by
simulations with higher vertical resolution near the ground. Also, the observed slightly
negative shear at higher elevations seems not to be reproduced by the model. Whether
this discrepancy is due to the model or wrong input to the model remains to be seen.

There is not much difference between case 6 and case 7, which have identical temper-
ature gradients. Case 7 has 1Tland = 0. Apparently the change from the positive 1Tland
in case 6 to zero in case 7 does not have much effect for the temperature gradient of
−0.005 K/m.
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Figure 49. The horizontal wind speed for case 5 at 50 m (agl.) along the transects 1 (top)
and 2 (bottom).

4.4 Conclusion
A number of different cases have been simulated with the Karlsruhe Atmospheric Mesoscale
Model 2 (KAMM2) for a local area in Tauste, Spain. The motivation of the simulations is
the presence of negative wind shear measured at heights under 50 m above ground level
at two meteorological masts. It has been attempted to reproduce similar situations of neg-
ative shear by performing changes of the conditions of large scale forcing used as input to
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Figure 50. The wind direction for case 5 at 50 m (agl.) along transect 1.

the mesoscale model. In conclusion, no clear indication has been found of the ability of
KAMM2 to produce negative wind shear similar to the measurements for the investigated
conditions of large scale forcing. Two obstacles for the successful use of KAMM2 have
been identified. First, the model seems not to handle non-smooth orography very well
and extensive filtering of the terrain was necessary. Second, for the type of calculations
considered here, the demand for computational resources is very large, making detailed
parameter studies impractical.

The following conditions have been tried. First, a stable but near neutral case. Second,
a day case with neutral atmosphere and a warm surface. Third, a night case with stable
atmosphere and cold surface. Fourth, a case with stable atmosphere and a surface with
temperature similar to the air.

It is also concluded that more effort in the direction of testing different conditions of
large scale forcing and perhaps different turbulence model schemes is somewhat lacking
in the present study. However, it was found necessary to spend a large part of the work in
establishing the validity of the results generated by the mesoscale model.
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Figure 51. Vertical velocity profiles near Mast 1 for case 5. Left, vertical velocity. Right,
horizontal wind speed (vh) and its components u, v. Symbols are measurements.
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Figure 52. Vertical velocity profiles near Mast 2 for case 5. Left, vertical velocity. Right,
horizontal wind speed (vh) and its components u, v. No measurements were available for
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Figure 53. The horizontal wind speed for case 6 at 50 m (agl.) for Tauste.
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Figure 54. The horizontal wind speed for case 6 at 50 m (agl.) along the transects 1 (top)
and 2 (bottom).
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Figure 55. The wind direction for case 6 at 50 m (agl.) along transect 1.
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Figure 56. Vertical velocity profiles near Mast 1 for case 6. Left, vertical velocity. Right,
horizontal wind speed (vh) and its components u, v. Symbols are measurements.
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Figure 57. Vertical velocity profiles near Mast 2 for case 6. Left, vertical velocity. Right,
horizontal wind speed (vh) and its components u, v. Symbols are measurements.
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5 Extreme winds

5.1 50 year winds from Reanalysis Data
For the analysis of extreme winds it is necessary to have several years of observations to
be able to make a reliable estimate of the wind speed, which can be expected to occur
with a return period of 50 years. For many constructions, this wind produces the extreme
load for which the building must be designed. Jensen and Franck (1970), Abild (1994)
and Kristensen, Rathmann and Hansen (1999) determined the 50 year return wind for
Denmark from measurements at different sites. However, in many locations good mea-
surements over a sufficient observation period are not available. Hence, it would be of
great advantage if extreme surface winds could be derived from modeled data.

An analysis of global weather observations with a modern numerical weather analysis
and modeling system was and is performed by the U.S. National Centers for Environ-
mental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR)
(Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Iredell, Saha, White, Woollen,
Zhu, Leetmaa, Reynolds, Chelliah, Ebisuzaki, Higgins, Janowiak, Mo, Ropelewski, Wang,
Jenne and Joseph 1996). The NCEP/NCAR reanalysis covers more than 50 years world
wide. Therefore, it promises a good data base for global estimates of the extreme winds.
However, the low resolution of the global reanalysis model and the temporal resolution of
6 hours will likely result in an under-estimation of the actual extreme winds. However, if
this under-estimation turns out to be systematic, the extreme winds from the model could
be corrected to make global predictions of the expected extreme surface wind.

Here we describe an analysis done for an area around Denmark. More details can be
found in Frank (2001).

5.1.1 The reanalysis data

First, we analyzed the predicted wind at 10 m above the surface. It is calculated on a
Gaussian grid with a longitudinal resolution of 1.875◦ and meridional resolution of ap-
proximately 1.91◦ (Kalnay et al. 1996). The surface wind is a quantity which strongly
depends on the model physics. The data analyzed here is a 6-h forecast, not an analysis
of observations. Still, as we are not interested in the prediction of the highest winds in in-
dividual storms, but only in the statistics of extreme winds, the model winds might yield
good estimates of the true extreme winds.

We used wind data every 6 hours for the 52 years 1948 to 1999. The maximum modeled
10 m wind speed for the years 1948 to 1999 is shown in Figure 58. Actually, the 10 m
wind of the model is calculated at the height 10 m +z0, which can be 11 m or more at
grid points over land.

The date of the maximum wind is also written on Figure 58. At several longitudes the
most severe storm occurs on the same day. However, only at two grid points does the
highest wind occur at neighboring latitudes. This indicates the main storm passages from
west to east. Most likely, the true maximum speed occurred between the 6 hour sampling
interval. As the storm moves eastward its intensity decreases. This can be seen best at
latitude 52.4◦ N.

It is striking that the great storm on December 3. 1999 (Mann and Hansen 2000) seems
to be missed partly by the reanalysis data. Only at the two grid points in the Baltic has
50 year maxima at Dec. 3. 1999 despite the fact that the strongest wind ever measured
in Denmark was on this occasion 15 km off the coast of Jutland in the North Sea. Here,
at a location called Horns Rev, the 10 minute average wind speed peaked at 39.3 m/s at
15 m above the water. (It was 45.4 m/s at z = 62 m.) A five hour average wind speed
centered around this extreme is 31.5 m/s, much higher that the North Sea maxima from
the reanalysis data of approximately 25 m/s. It seems that the spatial resolution of the
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Figure 58. Maximum wind at 10 m for the years 1948 to 1999 of the NCEP/NCAR re-
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model is not sufficient to resolve this storm.
The wind at 850 hPa is available on a regular grid with a resolution of 2.5 degrees in

longitudinal and meridional direction. It has been interpolated to the pressure levels and
the 2.5 degrees grid from the sigma levels of the model and the spectral representation of
the model. The interpolation introduces some smoothing. Upper-air winds depend more
on observations than on the model physics. This is especially the case in Europe with its
dense network of observations. Hence, the data represents analyzed observations, not 6
hour forecasts as the surface wind.

Another data set is the surface pressure, i.e. the pressure at the model surface. Like
the 10 m wind it is a 6 hour forecast. But, it is more influenced by observations. It is
available on the same grid as the 10 m wind. A geostrophic wind near the surface can
be calculated from it. The disadvantage is that the pressure must be extrapolated to one
height to calculate gradients. Any interpolation introduces extra uncertainties.

5.1.2 The statistical model

The frequency of extreme events is described by the double exponential, the so-called
Gumbel distribution (Gumbel 1958):

P(U) = exp(− exp(−α(U − β))) (146)

P(U) is the cumulative probability that the wind speed, U , is exceeded.
We use the periodical maximum method of Abild (1994) as described by Mann, Kris-

tensen and Jensen (1998) to determine the parameters α and β. The method is the probability-
weighted moment procedure.

A record of the maximum winds Umax
1 , . . . , Umax

n within a certain period is constructed
and sorted in ascending order. Here, the maximum wind in one calendar year has been
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chosen and ordered. From this record the quantity

b1 = 1

n

n
∑

i=1

i − 1

n− 1
Umax
i (147)

is calculated. Then α and β can be estimated to be

α = ln 2

2b1 − Umax
(148)

β = Umax − γ

α
, (149)

where γ ≈ 0.577216 is Euler’s constant, and Umax the mean maximum value.
From the cumulative probability (146) for the recurrence interval T = 1/(1−P(UT )),

the T -year wind speed UT is obtained:

UT = α−1 ln T + β (150)

The uncertainty of UT can also be calculated (Mann et al. 1998).

5.1.3 Extreme surface winds from the NCEP/NCAR reanalysis

The one-year maximum winds were determined from the 52 years 1948-1999. The pa-
rameters α and β of the double exponential function were fitted to the record of ranked
annual maximum wind for each grid point near Denmark. The records are well approxi-
mated by this function. (see e.g. Figure 59).
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Figure 59. Ordered one-year maximum wind speed at 10 m at 9.375◦ E, 56.19◦ N, and
the double exponential fit. The thin lines are the fit plus/minus one standard deviation.

A map of the expected 50 year return wind speed is shown in Figure 60. The values
range from 15.4 m s−1 in Sweden to 26.6 m s−1 in the North Sea west of Denmark. The
standard deviations are between 0.6 m s−1 and 1.3 m s−1. Naturally, the winds are higher
over the sea than over land. In addition, there is a decrease from west to east.

Abild (1994) obtained 28.8 m s−1 for the expected maximum wind at 10 m above water
averaged over 10 min with a return period of 50 years. He transformed the estimate of
Jensen and Franck (1970) for Thorsminde at the west coast of Jutland to 30.3 m s−1 for
conditions over water. The grid point in the North Sea west of Denmark has a maximum
of 26.6 m s−1. However, this data is sampled only 4 times daily. Likely, the true maxima
occurred in between the sampling times.

This effect was tested for time series of 10 min mean wind measurements at 44 m,
77 m, and 125 m height at the Risø mast. The original time series were continuous and
covered 4 years. The data recovery rate is greater than 99 %. The maximum speeds within
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Figure 60. The expected 50 year maximum 10 m wind determined from the NCEP/NCAR
reanalysis over and near Denmark. The standard deviation is written below the expected
value.

3 months were found and averaged. Taking only the data at the hours 0, 6, 12, 18 the
average maximum is reduced to between 87.4 % and 88.9 % of the maximum of the full
time series. The reduction is slightly less at 125 m than at 44 m height.

Definitively, the variability in the model is less than in nature. The time step of the
model is 20 min. However, it is not clear that this truly corresponds to an averaging time
of 20 min of measured data. Also spatial averaging may reduce the modeled maxima
compared to point measurements. If we correct the model wind by 11 % we obtain 29.5
m s−1. This lies between the estimates of Abild (1994) and the transformed estimate of
Jensen and Franck (1970). The uncertainty margin of our estimates includes both.

5.1.4 Surface winds at standard conditions

The extreme winds obtained in the previous section cannot be compared directly with
each other and with observations because the surface roughness varies from one grid
point over land to the other. It must be expected to differ from the local roughness at an
observation site, too. Therefore, the modeled winds must be transformed to a common
roughness to make them comparable among each other and to observations.

The transformation to one roughness follows the wind atlas method used in the Eu-
ropean Wind Atlas (Troen and Petersen 1989) and applied to extreme winds by Abild
(1994) and Kristensen et al. (1999).

The surface roughness used in the NCEP/NCAR reanalysis model is determined from
the Simple Biosphere Model (Dorman and Sellers 1989). Daily values are interpolated
from a data base of monthly values. In addition an interpolation is done from the original
1◦ × 1◦ resolution of the data base to the grid of the reanalysis model. Unfortunately,
neither the peninsula of Jutland nor the Danish islands are present in the original data

Risø–R–1356(EN) 77



base. Instead, it indicates water for these areas. The interpolation program cycle yields a
land roughness for the peninsula of Jutland (Figure 61) because the land-sea mask for the
NCEP/NCAR model defines these points as land areas. However, values between 0.5 m
and 1 m are too high for this region, which is dominated by farming without large forest
areas.

Figure 61. Surface roughness length z0 in mid-January as used in the NCEP/NCAR re-
analysis. These roughness lengths are derived from the data base for the Simple Biosphere
Model (Dorman and Sellers 1989).

Over the sea the roughness length depends on the wind speed following Charnock
(1955). The Charnock constant Ac = 0.014 is used in the model. Assuming a logarithmic
wind profile the sea surface roughness can be iterated from the 10 m wind speed. Alterna-
tively, it can be down-loaded from the Climatic Diagnostics Center, CDC. However, the
down-loaded sea surface roughness values are greater than those iterated from the 10 m
wind speed. Even after communication with Hua-Lu Pan from NCEP it was not possible
to find out the reason for the difference.

In the end it was not clear how to transform the modeled surface wind to standard
conditions with smooth transitions from sea to land and reverse. Stratification has only
a very minor influence on the surface winds under conditions of extreme winds. Dur-
ing storms the surface layer is well mixed. This was confirmed by calculations where a
Monin-Obukhov-length was determined from the wind speed at 10 m and the difference
of the 2 m temperature and the skin temperature of the model. The difference on the 50
year return wind was 0.1 m s−1 or less.

5.1.5 Extremes of winds at 850 hPa

The results of the last section was disappointing. The problem with the correct friction
velocity over water could not be resolved. Therefore, an extreme wind analysis was done
for the wind at the 850 hPa level, which is above the planetary boundary layer in Den-
mark. Therefore, it is not directly influenced by the surface roughness. The 50 year return
wind at 850 hPa is shown in Figure 62. The extreme winds decrease from southwest to
northeast.

The wind at 850 hPa is close to the geostrophic wind at 850 hPa. However, it must
be expected that the geostrophic wind, i.e. the pressure gradient, at the surface is greater
than at the 850 hPa level. Cyclones deepen at the surface in agreement with theoretical
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models of cyclogenesis (Hoskins 1982). The 850 hPa wind is used here because it is an
analyzed quantity strongly influenced by observations, and no additional calculations are
needed to get it.

We use the geostrophic drag law to transform the wind at 850 hPa to a surface wind.
These are half as strong as upper-air wind. (Figure 62). These surface winds are approx-
imately 2 m s−1 less than the values obtained by Kristensen et al. (1999) for the central
and eastern part of Denmark. However, if we introduce the correction factor 1.1 (see sec-
tion 5.1.3) to account for the low temporal resolution, essentially the same extreme winds
are obtained.
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Figure 62. Left: Expected 50 year wind at 850 hPa and standard deviation. Right: Ex-
pected 50 year wind at 10 m above a flat surface with roughness length 5 cm obtained
from the wind at 850 hPa using the geostrophic drag law. Estimates from observations
(Kristensen et al. 1999) are written with smaller letters.

The trend from west to east agrees with the conclusion of Kristensen et al. (1999) that
the west coast of Denmark experiences higher winds than the rest of the country. How-
ever, owing to the low resolution of the model, and perhaps enhanced by the smoothing
to the 2.5 degree grid, the difference is very small. The difference between southern and
northern Denmark is bigger in the model results. Unfortunately, Kristensen et al. (1999)
did not analyze data in northern Jutland. The mean winds at the northern tip of Jutland are
less than along the west and northwest coast. This might indicate that the extreme winds
are also weaker.

5.1.6 Extremes of the geostrophic wind

Since the geostrophic drag law is being used to transform surface winds to the same
conditions, we might as well start directly with the geostrophic wind. The extreme wind
analysis is carried out for the geostrophic wind calculated from the surface pressure, ps .
Centered differences are used to calculate the pressure gradients. Only data at 00 UTC
and 12 UTC for the 47 years 1953-1999 were analyzed.

The variation of the 50 year geostrophic wind calculated from the surface pressure (Fig-
ure 63) shows an expected decrease from west to east. The highest winds are predicted
for the southern North Sea and the lowest winds for central Sweden and north-eastern
Germany.
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Figure 63. Expected 50 year geostrophic wind at sea level (left), and expected wind
at 10 m above roughness 5 cm derived from it (right). Estimates from observations
(Kristensen et al. 1999) are written with smaller letters.

The 50 year wind calculated from the surface pressure shows the expected decrease
from west to east. The values are approximately 10 % less than the 22 m s−1 found by
Kristensen et al. (1999) for most of Denmark. Unfortunately, we have no observations to
verify that the highest winds are in the southern North Sea.

5.1.7 Conclusions

Unfortunately, it seems not possible to compare directly the extreme winds at 10 m of
the NCEP/NCAR reanalysis with observed extreme winds over Denmark. The roughness
length used in the NCEP/NCAR reanalysis at land points in Denmark is much to high.
At some grid points — in the North Sea west of Denmark, perhaps in northern Germany
— the expected 50 year return winds seem to compare well with other investigations
based on surface measurements if the reanalysis values are increased by approximately
10–12 % owing to the low spatial and temporal resolution of the model data.

The analyses of the wind at 850 hPa and the geostrophic wind at 850 hPa and 1000
hPa (not shown here) yield very similar extreme winds of approximately 42 m s−1. The
surface pressure data yields extreme geostrophic winds of ca. 45 m s−1 over Jutland.
Transformed to a height of 10 m above a surface with roughness length 5 cm we obtain
approximately 20 m s−1 for the 50 year return wind. This is approximately 10 % less than
found by Kristensen et al. (1999) for most of Denmark. Considering the low temporal and
spatial resolution of the model data such an underestimation could be expected.

A comparison with extreme wind analyses in other areas of the mid-latitudes would be
necessary to find out if the underestimation of the “true” extreme winds by 10–12 % in
the reanalysis data is generally valid. Compared to the resolution of the reanalysis model,
and perhaps also compared to the size of most cyclones, Denmark is just too small to see
big variations across the country.

Also further analysis is needed in order to see whether the directional distribution of
extreme winds can be deduced faithfully from the reanalysis data. This would be neces-
sary for the construction of Extreme Wind Climates used as input for WAsP Engineering.

In our opinion the analysis indicates that the best estimate for extreme winds in mid-
latitudes can be obtained from geostrophic wind calculated from the surface pressure
field. In areas with big variations of the surface height it is difficult to calculate correct
horizontal pressure gradients. There it might be best to use an upper-air wind, e.g. at 850
hPa, with a greater correction factor than for the geostrophic wind at the surface.
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5.2 Recalculation of extreme winds in Denmark
The basic design wind speed for Denmark was obtained in a previous EFP project called
WAsP Engineering 1.0 DK (ENS–1363/07–0004) on basis of analysis of wind record
from four masts: Skjern, Kegnæs, Sprogø and Tystofte. In that analysis WAsP was used
to “clean” the data for the terrain surrounding terrain. Here WAsP Engineering is used for
the same purpose in order to investigate whether the results differ significantly from the
WAsP results presented in Kristensen et al. (2000).

This analysis was undertaken by Janne R. T. Banke, Brian R. Broe, Carsten Damberg
and Birgitte Knudsen, four students from the University of Copenhagen, Department of
Geophysics, under supervision by Jakob Mann. They used the same data as Kristensen et
al. in order to be able to see the differences in using the flow model of WAsP Engineering
instead of that of WAsP. There are many small differences between the two programs. The
influence of roughness on the flow in WAsP is calculated by an adaptation of empirical
knowledge of internal boundary layers after simple roughness changes. The mathematics
of WAsP Engineering is quite different. Here the spatial roughness variations are decom-
posed into Fourier modes and for each mode the flow is calculated by an eddy diffusion
model where the diffusion coefficient depends on the wave length. The resulting flow is
calculated as a sum of the contribution from all the individual Fourier modes (Astrup,
Jensen and Mikkelsen 1996, Astrup et al. 1997). Further, the roughness in WAsP is as-
sumed to have constant value over water of z0 = 0.0002 m. In WAsP Engineering the
roughness over water depends on the wind speed just above the water and can be much
larger at high wind speeds. Finally, the models of how the flow responds to orography
are slightly different, but this aspect will probably be less important because the sites are
relatively flat.

There are also differences in the way extrapolation to a 50 year return period is done.
In the present analysis we use what is presented in section 5.1.2, while Kristensen et al.
(2000) use a least squares fit in a Gumbel plot. Also the way the terrain is described is
different in the two models. WAsP uses a polar, zooming grid while WAsP Engineering
uses a Cartesian grid.

Banke, Broe, Damberg and Knudsen (2001) find that the calculation grid around the
mast should be of the order of 10 km in each direction. Apart from the differences above
they follow Kristensen (1999) in their analysis and the results are shown in table 7.

Table 7. Danish 50 year winds derived from WAsP and WAsP Engineering

Skjern Sprogø Tystofte
short period 1983–1997 1978–1997 1983–1997
long period 1983–1998 1978–1998 1983–2000
WAsP (short) 28.7 ± 2.5 20.4 ± 1.3 24.1 ± 1.9

U50 [m/s] WAsP Engng (short) 29.2 ± 2.2 21.5 ± 1.4 25.6 ± 2.1
WAsP Engng (long) 28.9 ± 2.1 21.4 ± 1.3 27.1 ± 2.3

The wind speeds in the table are basic wind speeds which is the 50-year wind speed
under standard conditions, i.e. ten minute averages at the height 10 m over a uniform
terrain with the roughness length 0.05 m. The data from Kegnæs have not been analyzed
because the time series is only half the length of the others. The original values from
Kristensen et al. (1999) are shown in the row “WAsP (short)” and should be compared
with the row immediately below. The WAsP Engineering result are generally slightly
larger, however, they are within the uncertainty of the original analysis. The inclusion of
newer data does not change the numbers much except from the Tystofte site, which was
hit by the Dec. 3. storm of 1999 (Mann and Hansen 2000). We believe that much of the
(small) difference between the two analyses can be explained by variable water roughness
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in WAsP Engineering. In WAsP Engineering the roughness is higher compared to WAsP
for strong winds which leads to larger winds under standard conditions.

5.3 Estimation of extreme wind climates
The wind atlas used in WAsP contains a wind rose, giving the probabilities of wind in
the ns sectors, and Weibull A and k parameters for each sector. This is given for various
heights z above flat, homogeneous terrain and roughness lengths z0. An extreme wind
atlas contains sectorwise information on strong winds pertaining to z = 10 m and z0 =
0.05 m. The probabilities and Weibull parameters of the wind atlas are given at this height
and roughness length, or they are easily derived through interpolation between the z’s and
z0’s in the wind atlas.

In Kristensen et al. (1999) the extreme wind atlas is given in terms of sectorwise Gum-
bel distribution for the friction velocity pressure, which is also used in WAsP Engineering.

It is desirable to be able to derive the parameters of the extreme wind atlas from the
ordinary wind atlas. In Dekker and Pierik (1999) a connection has been established, but
it is clear that pure mathematics will not do the job, additional assumptions have to be
made.

An old engineering approach states that the 50 year wind is 5 times the average wind
speed. Dekker and Pierik (1999) refines this estimate by taking into account not only the
mean but also the shape of the distribution of the wind speeds. Here it is further refined
to apply to the extreme winds for different direction sectors. It is important to emphasize
that this is merely a refinement of the engineering formula U50,year = 5Uave.

Here the connection between a wind atlas and a WAsP Engineering wind atlas is de-
scribed.

5.3.1 Mathematical preliminaries

The wind atlas The wind atlas is described by sector probabilities and Weibull param-
eters:

ns
∑

i=1

pi = 1 ; Ai, ki, for i = 1, ..., ns , (151)

with the (10 minutes) mean winds in the ith sector distributed as

W(U) = P(U < U) = 1 − exp

{

−
(

U

Ai

)ki
}

, (152)

or, in terms of the probability density function,

w(U) = ki − 1

Ai

(

U

Ai

)ki

exp

{

−
(

U

Ai

)ki
}

, (153)

The nth non-central moment of the Weibull distribution is

mn =
∫ ∞

0
Unw(U)dU = An0

(

1 + n

k

)

(154)

The extreme wind atlas The extreme wind atlas is described in terms of the Gumbel
distribution. Suppose x is the largest value of some atmospheric quantity over the basis
period T0, e.g. 50 years. Obviously, x varies from basis period to basis period and the
distribution of x is often well approximated by the Gumbel distribution. The cumulative
Gumbel distribution is

G(x) = exp
[

− exp{−α(x − β)}
]

, (155)

and the corresponding probability density function is

g(x) = G′(x) = αe−α(x−β)e−e−α(x−β)
. (156)
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The parameter β is the most probable value of x and also the value of x which, on average,
is exceeded once in the basis period T0. The mean of the Gumbel distribution is slightly
different from β:

mG =
∫ ∞

0
xg(x)dx ≈

∫ ∞

−∞
xg(x)dx = β + γ /α, (157)

where γ ≈ 0.577216 is Euler’s constant, and the variance is

σ 2
G ≈ π2

6α2
(158)

Connection between Gumbel distribution of U and 1
2ρu

2
∗ Suppose the distribution

of yearly (or some other period, f.ex. 50 years) extreme 10 minute average wind speeds is
given by the Gumbel distribution (155) with parameters α and β. What is the distribution
of the friction pressure?

The friction pressure is given by

q = 1

2
ρu2

∗ = 1

2
ρ

(

κU

log(z/z0)

)2

≡ CU2, (159)

where u∗ is the friction velocity, ρ the density of air often taken to be 1.25 kg/m3 and
κ ≈ 0.4 the von Karman konstant. Given that U is Gumbel distributed the cumulative
distribution of the friction velocity pressure is

P(Q < q) = G2(q) (160)

G2(x) = exp
[

− exp
{

−A(
√
x − B)

}]

, (161)

with the parameters

A =
√
Cα =

√

2

ρ

log(z/z0)

κ

B = β/
√
C (162)

The mean of the G2 distribution is

mq ≈ (AB + γ )2 + π2/6

A2
(163)

and the variance is

σ 2
q ≈ 60(AB + γ )2π2 + 11π4 + 720(AB + γ )ζ(3)

90A4
, (164)

where ζ is the Riemann zeta function (ζ(3) ≈ 1.202057). Now the mean and the variance
of the exact distribution (163) and (164) are matched with (157) and (158) and approxi-
mate Gumbel parameters αq and βq are derived:

αq = π√
6σq

(165)

and
βq = mq − γ /αq (166)

To summarize, given the Gumbel parameters of the ten minutes average wind speed
extreme value distribution we can calculate the corresponding parameters of the friction
pressure Gumbel distribution.

5.3.2 The WAsP Engineering ewc file

The essential part of the extreme wind climate file DK24.ewc, which is a part of the
WAsP Engineering distribution, looks as follows:

Risø–R–1356(EN) 83



Figure 64. User interface of the EWCEstimator implemented in WAsP Engineering

<RveaExtremeWindClimate Height="10" Roughness="0.05" RecurrenceInterval="50" NumberSectors="12" LatitudeDegrees="56">
<EwcSectorData CentreAngle="0" WindSpeed="17.610" Alpha="0.1267"/>
<EwcSectorData CentreAngle="30" WindSpeed="17.002" Alpha="0.1207"/>
<EwcSectorData CentreAngle="60" WindSpeed="18.581" Alpha="0.1407"/>
<EwcSectorData CentreAngle="90" WindSpeed="19.223" Alpha="0.1417"/>
<EwcSectorData CentreAngle="120" WindSpeed="17.323" Alpha="0.1077"/>
<EwcSectorData CentreAngle="150" WindSpeed="19.113" Alpha="0.1453"/>
<EwcSectorData CentreAngle="180" WindSpeed="20.668" Alpha="0.1657"/>
<EwcSectorData CentreAngle="210" WindSpeed="21.132" Alpha="0.1677"/>
<EwcSectorData CentreAngle="240" WindSpeed="21.918" Alpha="0.1833"/>
<EwcSectorData CentreAngle="270" WindSpeed="22.754" Alpha="0.1960"/>
<EwcSectorData CentreAngle="300" WindSpeed="22.779" Alpha="0.2020"/>
<EwcSectorData CentreAngle="330" WindSpeed="19.764" Alpha="0.1553"/>

</RveaExtremeWindClimate>

The WindSpeed in each sector refers to a ten minute average wind speed with a return
period (also called recurrence interval) of 50 years, measured over a flat homogeneous
terrain with a roughness length of 0.05 m at a height of 10 m above the terrain. There are
12 sectors and the latitude, on which the WAsP Engineering calculations are only weakly
dependent, is 56◦.

From the wind speed of each sector the 50 year friction velocity pressure βq can be cal-
culated from (159) using the standard density for sea level atmosphere of ρ = 1.25 kg/m3.
The parameter Alpha is α−1

q .
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5.3.3 The EWC Estimator

In Dekker and Pierik (1999) it is shown that if N independent measurements of U are
given and if these are Weibull distributed with identical parameters A and k, then it is
possible to calculate the exact distribution of the maximal value. This distribution is well
approximated with a Gumbel distribution with the parameters

β ≈ A(lnN)1/k (167)

and

α = k

A
(lnN)1−1/k (168)

The problem with these expressions is that it is difficult to estimate how many indepen-
dent measurements are available. 50 years can be divided into 2.63 × 106 10 minute
periods, but they are certainly not independent. Dekker and Pierik (1999) cites Berström
and recommends multiplying the number of 10 minute periods with 0.438. This num-
ber may seem to be rather large. It implies that there are more than two independent 10
minute values every hour. One could expect only of the order one per day which corre-
sponds roughly to the so-called synoptic time scale. However, we use Dekker and Pierik’s
(1999) value, which may be conservative, but it is based on empirical evidence.

In the EWC Estimator the degrees of freedom N are divided into the ns sectors N =
∑ns
i=1Ni where Ni = piN (see eq. 151). Then the Gumbel parameters for each sector

are calculated according to (167) and (168).
The parameters are then transformed to refer to friction velocity pressure as described

in section 5.3.1.
The resulting extreme wind climate is generally conservative and examples of extreme

wind speeds predicted from wind atlas files are compared to the proper wind speeds in
table 8.

Table 8. The 50 year 10 minute average wind speed estimated from long time series
directly (data) and estimated from a WAsP wind atlas file (lib file).

Zaragoza Airport, Spain Denmark, Eastern part
U50 [m/s] (data) 25.6 24
U50 (lib file) 30.1 23.2
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