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ABSTRACT 

  

ABSTRACT 

The challenge of integrating the UAV fleet into the carrier landing operational structure 

with respect to navigation and control strategies is addressed. A simulation model was 

developed which includes an aircraft model, an atmosphere model and an aircraft carrier 

motion model. The six degree of freedom non-linear aircraft model is based on the 

aerodynamic characteristics of the Mk 4a Jindivik extended to include rudder, spoiler 

and thrust vectoring controls, and an undercarriage model. The atmosphere model 

includes a carrier landing atmospheric disturbance model. The six degree of freedom 

aircraft carrier motion model is based on the ship motion simulation program 

SEAWAY. 

A Navigation System was developed which conforms to current operational procedures 

and future military navigation goals. This Navigation System continuously predicts the 

position in space where touchdown on the carrier deck will take place, based on aircraft 

position, the relative velocity between the aircraft and carrier, and the motion time 

history of the carrier. A reference flight path to the predicted touchdown point is 

continuously defined. The aircraft deviation from this flight path is determined and 

input to the autoland control system. For the purposes of this study perfection prediction 

is assumed. 

Automatic flight control systems were developed to assess three control strategies for 

suitability to the carrier landing task. The focus of this assessment was on vertical glide 

path deviation control. Direct Lift Control was compared to conventional control and 

was found to have superior performance, especially in turbulence. As UAV planforms 

tend to be tailless, and therefore lateral and pitch control are generated by a common 

aerodynamic surface, thrust vectoring was investigated as a means of alleviating 

aerodynamic pitch control requirements in the carrier landing task. 

An Adaptive Approach Speed Controller was developed as an extension of the 

Navigation System. This system synchronises the time that the aircraft passes over the 

stern, or ramp, of the carrier with the minimum absolute carrier pitch attitude attainable 

for a given range of approach speeds. This system was shown to be an effective method 

of minimising the negative effect that carrier motion has on the clearance between the 

aircraft and the carrier’s ramp. 
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NOTATION 

Roman Alphabet

A  Aspect ratio 
a  Acceleration , Speed of 

sound 

1wb
a  Wing-body combination lift 

curve slope 

1T
a  Tailplane lift curve slope 

2T
a  Elevator effectiveness 

sA  Aspect ratio of the wing 
section defined by the 
inboard and outboard limit of 
the spoiler 

xa  Axial acceleration 

xs
a  Sensed axial acceleration 

ya  Lateral acceleration 

ys
a  Sensed lateral acceleration 

za  Normal acceleration 

zs
a  Sensed normal acceleration 

b  Wingspan 
c  Wing chord 
c  Mean aerodynamic chord 

1
4wl

c  Height of quarter chord from 
waterline 

DC  Drag coefficient 

Di
C  Induced drag coefficient 

Dis
C  Induced drag coefficient 

increment due to symmetric 
deflection of spoilers 

Ds
C  Drag coefficient increment 

due to symmetric deflection 
of spoilers 

Duc
C  Drag coefficient increment 

due to extension of 
undercarriage 

DC CL Lcrit
C

>
 Drag coefficient increment 

due to lift coefficient being 
greater than the critical lift 
coefficient 

MDC  Coefficient of drag due to 
Mach effects 

Dos
C  Increment in profile drag due 

to symmetric deflection of 
spoilers 

DZ
C  Profile drag coefficient 

fc  Flap chord 

hsc  Spoiler chord aft of hinge 

lC  Rolling moment coefficient 

lp
C  Rolling moment coefficient 

due to roll rate 

lr
C  Rolling moment coefficient 

due to yaw rate 

lv
C  Rolling moment coefficient 

due to lateral velocity 

lC
ξ

 Rolling moment coefficient 
due to aileron deflection 

lC
ς

 Rolling moment coefficient 
due to rudder deflection 

LC  Lift coefficient 

Lcrit
C  Critical lift coefficient 
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Ls
C  Spoiler lift increment 

1Ls f
C

δ =
 Lift coefficient due to 

symmetric spoiler deflection 
with flaps retracted 

1Ls f
C

δ >
 Lift coefficient due to 

symmetric spoiler deflection 
with flaps extended 

Ls
C ∞  Two dimensional lift 

coefficient increment due to 
symmetric spoiler deflection 

Lwb
C  Wing-body combination lift 

coefficient 

LT
C  Tail lift coefficient 

1
4

mC  Quarter chord pitching 
coefficient moment 

mC  Pitching moment coefficient 

nC  Yawing moment coefficient 

np
C  Yawing moment coefficient 

due to roll rate 

nr
C  Yawing moment coefficient 

due to yaw rate 

nv
C  Yawing moment coefficient 

due to lateral velocity 

nC
ξ

 Yawing moment coefficient 
due to aileron deflection 

nC
ς

 Yawing moment coefficient 
due to rudder deflection 

rc  Wing chord at root 

tc  Wing chord at tip 

wsc  Wing chord at mid spoiler 
location 

xwb
C  Wing-body combination 

coefficient of axial forces 

YC  Sideforce coefficient 

Yp
C  Sideforce coefficient due to 

roll rate 

Yv
C  Sideforce coefficient due to 

lateral velocity 

YC
ς

 Sideforce coefficient due to 
rudder deflection 

zwb
C  Wing-body combination 

coefficient of normal force 

BED  Body from earth axes 
direction cosine matrix  

EBD  Earth from body axes 
direction cosine matrix  

EBac
D  Earth from aircraft carrier 

body axes direction cosine 
matrix  

intD  Engine intake drag 

d  Distance between aircraft 
and desired touchdown point 

dε  Tail hook deviation from the 
prescribed track 

md  Maximum gust length 

rdd  Relative distance between 
the predicted touchdown 
point and the aircraft 
projected on to the flat earth 

, ,x y zd d d  Axial, Lateral and Normal 
gust length 

0 1

2 3

, ,
,

e e
e e

 
Euler parameters 
(Quaternions) 

0 1

2 3

, ,
,

i i

i i

e e
e e

 
Initial values of Euler 
parameters (Quaternions) 

F  General force, Force vector 

act df  Trailing edge flap actuator 
demand 

g  Acceleration due to gravity 

H  Effective height of spoiler 
plus ordinate of wing section 
at xs 

1 3H  Significant wave height 
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( )sH ω  Ship motion transfer function 

h  Altitude 

cgh  Centre of gravity position as 
a percentage of the mean 
aerodynamic chord 

dh  Altitude demand 

hε  Tail hook vertical deviation 
from desired approach glide 
path 

fhε  Approach glide path vertical 
deviation lead signal 

effh  Effective height of spoiler 

oh  Aerodynamic centre position 
as a percentage of the mean 
aerodynamic chord 

rh  Ramp crossing height 

sh  Sensed altitude 

sph  Height of spoiler when 
deflected 

teh  Distance from trailing edge 
of deflected flap to chord line

thh  Perpendicular distance from 
the axial body axis to the tail 
hook 

thH  Height of the tail hook from 
the aircrafts centre of gravity 

thd
h  Tail hook desired altitude 

wlh  Height of cg from waterline 

hε  Altitude error 

xI  Moment of inertia about ox 
axis 

xyI  Product of inertia about ox 
and oy axes 

xzI  Product of inertia about ox 
and oz axes 

yI  Moment of inertia about oy 
axis 

yxI  Product of inertia about oy 
and ox axes 

yzI  Product of inertia about oy 
and oz axes 

zI  Moment of inertia about oz 
axis 

zxI  Product of inertia about oz 
and ox axes 

zyI  Product of inertia about oz 
and oy axes 

k  Gain 

dek  Baseline approach glide path 
controller derivative gain 

dk β  Sideslip controller derivative 
gain 

dlck  Direct Lift Control 
proportional gain 

dk λ  Track controller derivative 
gain 

dpak  Pitch attitude controller 
derivative gain 

1fkδ =  Value of gain at flap 
deflection of 1 degree 

20fkδ =  Value of gain at flap 
deflection of 20 degrees 

fek  Flap to elevator feedforward 
gain 

fsgk  Flap to Spoiler ratio gain 

hk  Altitude correction factor 

hdk  Altitude hold and acquire 
autopilot derivative gain 

hik  Altitude hold and acquire 
autopilot integral gain 

hpk  Altitude hold and acquire 
autopilot proportional gain 

iek  Baseline approach glide path 
controller integrator gain 
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ipak  Pitch attitude controller 
integrator gain 

iuk  Autothrottle integrator gain 

ik β  Sideslip controller integrator 
gain 

ik λ  Track controller integrator 
gain 

mk  Mass flow correction factor 

pk  Roll rate SAS gain 

pek  Baseline approach glide path 
controller proportional gain 

ppak  Pitch attitude controller 
proportional gain 

cPre
k  Engine pressure recovery 

factor 

puk  Autothrottle proportional 
gain 

pk β  Sideslip controller 
proportional gain 

pk λ  Track controller proportional 
gain 

qk  Pitch rate SAS gain 

rk  Yaw rate SAS gain 

sk  Correction factor for flat type 
spoilers 

tek  Reduction in elevator 
demand gain 

sDk  Spoiler induced drag factor 

sfk  Flap factor 

TGk  Gross thrust factor  

uck  Undercarriage drag 
calculation coefficient 

1uc f
k

δ =
 Undercarriage drag 

calculation coefficient flaps 
retracted 

20uc f
k

δ =
 Undercarriage drag 

calculation coefficient flaps 
fully extended 

kφ  Roll attitude SAS gain 

kθ  Pitch attitude SAS gain 

kτ  Throttle SAS gain 

ikψ  Heading acquire and hold 
autopilot integral gain 

pkψ  Heading acquire and hold 
autopilot proportional gain 

L  Rolling moment 

AeroL  Rolling moment due to 
aerodynamics 

GravL  Rolling moment due to 
gravity 

pl  Moment arm of angle of 
attack probe 

ThrustL  Rolling moment due to thrust 

tl  Tail moment arm 

thl  Distance from the centre of 
gravity to the tail hook 
measured parallel to the axial 
body axis 

thrustl  Thrust moment arm 

, ,u v wL L L  Axial, lateral and normal 
turbulence scale length  

M  Mach number 

M  Pitching moment 

Moment vector 
m  Mass 
m  Engine mass flow 

mλ  ‘Slope’ of the prescribed 
track 

AeroM  Pitching moment due to 
aerodynamics 
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GravM  Pitching moment due to 
gravity 

M s  Sensed Mach number 

ThrustM  Pitching moment due to 
Thrust 

mtom  Maximum take-off mass of 
aircraft 

zfm  Zero fuel mass of aircraft 

N  Yawing moment 

1N  Engine speed 

1idleN  Engine idle speed 

max1N  Engine maximum speed 

AeroN  Yawing moment due to 
aerodynamics 

GravN  Yawing moment due to 
gravity 

ndN  Equivalent non dimensional 
engine speed corrected for 
temperature 

ThrustN  Yawing moment due to 
thrust 

o  Origin of body axes system 

aco  Origin of aircraft carrier 
body axes system 

Eo  Origin of earth axes system 

0o  Earth reference point 

to  Origin of thrust vectoring 
axes system 

P  Random phase 
P  Atmospheric pressure 
p  Roll rate 

ip  Initial roll rate 

intakeP  Engine intake pressure 

int ratioP  Engine intake pressure ratio 

OP  Sea level pressure 

ratioP  Engine pressure ratio 

recP  Engine pressure recovery 

sp  Sensed roll rate 

sP  Sensed atmospheric pressure 

q  Pitch rate 

dynq  Dynamic pressure 

dyn s
q  Sensed dynamic pressure 

iq  Initial pitch rate 

sq  Sensed pitch rate 

R  Universal gas constant 
r  Yaw rate 

ir  Initial yaw rate 

sr  Sensed yaw rate 

S  Wing area 
s  Wing semi-span, Laplace 

operator 

actd
s  Spoiler actuator demand 

sS  Area of wing bounded by 
spoiler 

TS  Tailplane area 

( )TS ω  PSD of ship motion response 
to a particular wave height 

( )wS ω  Wave height PSD 

T  Temperature 
t  Time 

1T  Average wave period 

1t  Time to touchdown at 
maximum approach speed 

1t ′  Time to ramp crossing at 
maximum approach speed 
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2t  Time to touchdown at 
minimum approach speed 

2t ′  Time to ramp crossing at 
minimum approach speed 

GT  Gross thrust 

Gnd
T  Non dimensional gross thrust 

intakeT  Engine intake temperature 

LT  Temperature lapse rate 

OT  Sea level temperature 

Tτ  Thrust 

tdt  Time to Touchdown 

trt  Time to ramp 

mintr c
t

θ
 Minimum absolute aircraft 

carrier predicted pitch 
attitude over a defined time 
range 

wlT  Tailplane height from 
waterline 

xyT  Thrust component resolved 
onto the ,t tx y  plane 

U  Axial velocity (body axes) 

Velocity vector 
u  Axial velocity of a point 

1u  Axial component of random 
free air turbulence (aircraft 
carrier body axes) 

2u  Axial component of ship-
wake disturbance (aircraft 
carrier body axes) 

3u  Axial component of periodic 
ship-motion-induced 
turbulence (aircraft carrier 
body axes) 

4u  Axial component of random 
ship-wake disturbance 
(aircraft carrier body axes) 

20u  Wind speed at 20 feet above 
the ground (earth axes) 

aadu  Adaptive approach speed 
demand 

acU  Aircraft carrier axial velocity 
(body axes) 

acTrim
U  Aircraft carrier steady state 

axial velocity (body axes) 

cu  Carrier disturbance axial 
velocity (earth axes) 

du  Velocity demand 

dU  Total axial atmospheric 
disturbance velocity (earth 
axes) 

uε  Speed error 

EU  Axial velocity (earth axes) 

Eac
U  Aircraft carrier axial velocity 

(earth axes) 

( )Eac tdp
U  Aircraft carrier touchdown 

point axial velocity 
(earth axes) 

gu  Gust axial velocity (earth 
axes) 

iU  Initial axial velocity 
(body axes) 

maxu  Maximum approach speed 

minu  Minimum approach speed 

RU  Relative axial velocity  
(body axes) 

su  Senses axial velocity (Body 
axes) 

tu  Turbulence axial velocity 
(earth axes) 

wu  Axial steady wind velocity 
component (earth axes) 

wU  Absolute magnitude of 
steady wind (earth axes) 

V  Lateral velocity (body axes) 
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v  Lateral velocity of a point 

1v  Lateral component of 
random free air turbulence 
(aircraft carrier body axes) 

4v  Lateral component of 
random ship-wake 
disturbance (aircraft carrier 
body axes) 

cv  Carrier disturbance lateral 
velocity (earth axes) 

acV  Aircraft carrier lateral 
velocity (body axes) 

acTrim
V  Aircraft carrier steady state 

lateral velocity (body axes) 

dV  Total lateral atmospheric 
disturbance velocity (earth 
axes) 

EV  Lateral velocity (earth axes) 

Eac
V  Aircraft carrier lateral 

velocity (earth axes) 

( )Eac tdp
V  Aircraft carrier touchdown 

point lateral velocity 
(earth axes) 

gv  Gust lateral velocity (earth 
axes) 

iV  Initial lateral velocity (body 
axes) 

mv  Maximum gust velocity 
(earth axes) 

RV  Relative lateral velocity 
(body axes) 

TV  True airspeed 

T s
V  Sensed true airspeed 

w dV  Wind over deck 

tv  Turbulence lateral velocity 
(earth axes) 

wv  Lateral steady wind velocity 
component (earth axes) 

Vε  Speed error 

W  Normal velocity (body axes) 
w  Normal velocity of a point 

1w  Normal component of 
random free air turbulence 
(aircraft carrier body axes) 

2w  Normal component of ship-
wake disturbance (aircraft 
carrier body axes) 

3w  Normal component of 
periodic ship-motion-induced 
turbulence (aircraft carrier 
body axes) 

4w  Normal component of 
random ship-wake 
disturbance (aircraft carrier 
body axes) 

cw  Carrier disturbance normal 
velocity (earth axes) 

acW  Aircraft carrier normal 
velocity (body axes) 

acTrim
W  Aircraft carrier steady state 

normal velocity (body axes) 

dW  Total normal atmospheric 
disturbance velocity (earth 
axes) 

EW  Normal velocity (earth axes) 

Eac
W  Aircraft carrier normal 

velocity (earth axes) 

( )Eac tdp
W  Aircraft carrier touchdown 

point normal velocity 
(earth axes) 

gw  Gust normal velocity (earth 
axes) 

iW  Initial normal velocity (body 
axes) 

RW  Relative normal velocity 
(body axes) 

tw  Turbulence normal velocity 
(earth axes) 



NOTATION 

 - xxxii -    

wsw  Wind shear normal velocity 
(Earth axes) 

X  Axial ‘drag’ force 
x  General axial position 

AeroX  Axial ‘drag’ force due to 
aerodynamics 

acPert
x  Aircraft carrier axial position 

perturbation (body axes) 

( )
ac

Pert tdp
x  Aircraft carrier axial position 

perturbation at touchdown 
point (body axes) 

Bx  longitudinal coordinate 
(body axes) 

Bac
x  longitudinal coordinate 

(Carrier body axes) 

cX  Aircraft range from aircraft 
carrier centre of pitch 

Ex  longitudinal coordinate 
(earth axes) 

Eac
x  Aircraft carrier longitudinal 

coordinate (earth axes) 

E iac
x  Initial aircraft carrier 

longitudinal coordinate 
(earth axes) 

( )E i tdpac
x  Initial Aircraft carrier 

touchdown point longitudinal 
coordinate (earth axes) 

( )Eac tdp
x  Aircraft carrier touchdown 

point longitudinal coordinate 
(earth axes) 

Eix  Initial longitudinal 
coordinate (earth axes) 

Eptd
x  Axial coordinate of predicted 

touchdown point (earth axes) 

GravX  Axial force due to gravity 

hx  Chordwise position of spoiler 
hinge 

sx  Chordwise position of spoiler 
trailing edge 

ox  Earth axes system origin 
coordinate 

tx  Axial thrust vectoring axes 
system coordinate 

ThrustX  Axial force due to thrust 

Y  Sideforce 
y  General lateral position 

AeroY  Sideforce due to 
aerodynamics 

acPert
y  Aircraft carrier lateral 

position perturbation (body 
axes) 

( )
ac

Pert tdp
y  Aircraft carrier lateral 

position perturbation at 
touchdown point (body axes) 

By  Lateral coordinate 
(body axes) 

Bac
y  Lateral coordinate (Carrier 

body axes) 

Ey  Lateral coordinate 
(earth axes) 

Eac
y  Aircraft carrier lateral 

coordinate (earth axes) 

E iac
y  Initial aircraft carrier lateral 

coordinate (earth axes) 

( )E i tdpac
y  Initial Aircraft carrier 

touchdown point lateral 
coordinate (earth axes) 

( )Eac tdp
y  Aircraft carrier touchdown 

point lateral coordinate 
(earth axes) 

Eiy  Initial lateral coordinate 
(earth axes) 

Eptd
y  Lateral coordinate of 

predicted touchdown point 
(earth axes) 

GravY  Sideforce due to gravity 

oy  Earth axes system origin 
coordinate 
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ty  Lateral thrust vectoring axes 
system coordinate 

ThrustY  Thrust sideforce 

Z  Normal ‘lift’ force 

z  General normal position 

0z  Altitude of zero wind shear 

AeroZ  Normal ‘lift’ force due to 
aerodynamics 

acPert
z  Aircraft carrier normal 

position perturbation (body 
axes) 

( )
ac

Pert tdp
z  Aircraft carrier normal 

position perturbation at 
touchdown point (body axes) 

Bz  Normal coordinate 
(body axes) 

Bac
z  Normal coordinate (Carrier 

body axes) 

Ez  Normal coordinate 
(earth axes) 

Eac
z  Aircraft carrier normal 

coordinate (earth axes) 

E iac
z  Initial aircraft carrier normal 

coordinate (earth axes) 

( )E i tdpac
z  Initial Aircraft carrier 

touchdown point normal 
coordinate (earth axes) 

( )Eac tdp
z  Aircraft carrier touchdown 

point normal coordinate 
(earth axes) 

Eiz  Initial normal coordinate 
(earth axes) 

Eptd
z  Normal coordinate of 

predicted touchdown point 
(earth axes) 

GravZ  Normal force due to gravity 

oz  Earth axes system origin 
coordinate 

tz  Normal thrust vectoring axes 
system coordinate 

sz  Ordinate of wing section at xs 

ThrustZ  Normal force due to thrust 
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Greek Alphabet 

 

α  Angle of attack 

0α  Zero lift angle of attack 

local probeα   Angle of attacked sensed at 
probe 

Rα  Tailplane rigging angle 

sα  Sensed angle of attack 

Tα  Tailplane angle of attack 

wbα  Wing-body combination 
angle of attack 

β  Sideslip angle 

dβ  Sideslip demand 

εβ  Sideslip error 

sβ  Sensed sideslip angle 

χ  Probability of occurrence 

L f
C∆  Increment in total lift 

coefficient due to flap 
deflection 

20L f f
C

δ =
∆  Increment in total lift 

coefficient due to full flap 
deflection 

fδ  Flap angle  

mδ  Incremental mass 

sδ  Spoiler angle  

tφδ  Lateral thrust vectoring 
paddle deflection 

ηδ  Elevator angle 

dηδ  Elevator demand 

trimηδ  Trim elevator angle 

tθδ  Longitudinal thrust vectoring 
paddle deflection 

µδ  Undercarriage position 

τδ  Engine speed  

ξδ  Aileron angle  

dξδ  Aileron deflection demand 

ςδ  Rudder angle  

dςδ  Rudder deflection demand 

ε  Downwash angle 

iwε  Downwash angle in the 
region of the spoiler 

iΦ  Inboard part span 
correction factor 

ieΦ  Effective inboard part span 
correction factor 

oΦ  Outboard part span 
correction factor 

oeΦ  Effective outboard part 
span correction factor 

φ  Roll attitude 

acφ  Aircraft carrier roll attitude 

acptd
φ  Predicted aircraft carrier 

roll attitude at touchdown 

dφ  Roll attitude demand 

eφ  Roll attitude error 

sφ  Sensed roll attitude 

τφ  Lateral thrust paddle 
deflection  

act dτφ  Lateral thrust paddle 
actuator demand 

11 1
, ,u v wφ φ φ  Carrier landing disturbance 

model free air turbulence 
axial, lateral and normal 
velocity spectra 
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, ,ut vt wtφ φ φ  Axial, lateral and normal 
turbulence velocity spectra 

γ  Flight path angle, Specific 
heat ratio of air 

act dη  Elevator actuator demand 

iη  Spanwise location of 
inboard end of spoiler as a 
percentage of wing semi-
span 

ieη  Spanwise location of 
effective inboard end of 
flap as a percentage of 
wing semi-span 

ifη  Spanwise location of 
inboard end of flap as a 
percentage of wing semi-
span 

oη  Spanwise location of 
outboard end of spoiler as a 
percentage of wing semi-
span 

oeη  Spanwise location of 
effective outboard end of 
flap as a percentage of 
wing semi-span 

ofη  Spanwise location of 
outboard end of flap as a 
percentage of wing semi-
span 

sη  Spanwise location of centre 
of spoiler as a percentage 
of wing semi-span 

κ  Angular rates vector 

acλ  Aircraft carrier track 

act dµ  Undercarriage actuator 
demand 

θ  Pitch attitude 

acθ  Aircraft carrier pitch 
attitude 

acptd
θ  Predicted aircraft carrier 

pitch attitude at touchdown 

dθ  Pitch attitude demand 

eθ  Pitch attitude error 

sθ  Sensed pitch attitude 

trimθ  Trim pitch attitude 

σθ  Aircraft carrier pitch 
amplitude 

τθ  Longitudinal thrust paddle 
deflection  

act dτθ  Longitudinal thrust paddle 
actuator demand 

wθ  Bearing of steady wind 

ρ  Air density 

Oρ  Sea level air density 

Σ  Summation 
σ  Standard deviation, RMS 

turbulence amplitude 

4uσ  RMS amplitude random 
component of carrier 
airwake 

, ,u v wσ σ σ  Axial, lateral and normal 
turbulence intensity 

τ  Time constant 

dτ  Throttle demand 

Ω  Turbulence spatial 
frequency 

ϖ  Band limited white noise 

Rϖ  White noise 

ω  Frequency 

pω  Aircraft carrier pitch 
frequency 

act dξ  Aileron actuator demand 

dξ  Aileron demand 

ψ  Yaw attitude 

acψ  Aircraft carrier yaw attitude 
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acptd
ψ  Predicted aircraft carrier 

yaw attitude at touchdown 

dψ  Heading demand 

sψ  Sensed yaw attitude 

εψ  Heading error 

act dς  Rudder actuator demand 
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ACRONYMS 
 

ACLS Automatic Carrier Landing 
System 

AFCS Automatic Flight Control 
System 

AoA Angle of Attack 

APCS Automatic Power 
Compensation System 

ARMAX Auto Regressive Moving 
Average with Exogenous 
Input  

CAP Control Anticipation 
Parameter 

CLASS Carrier Landing Aid 
Stabilisation System 

CPAFC Cross Product Automatic 
Frequency Control 

CSAS Command and Stability 
Augmentation System 

DCM Direction Cosine Matrix 

DLC Direct Lift Control 

DMC Deck Motion 
Compensation 

EKF Extended Kalman Filter 

ESDU Engineering Sciences Data 
Unit 

FCS Flight Control System 

FFT Fast Fourier Transform 

FLOLS Fresnel Lens Optical 
Landing System 

GPS Global Positioning System 

GUI Graphical User Interface 

HARV High Alpha Research 
Vehicle 

ICLS Instrument Carrier Landing 
System 

IFLOLS Improved Fresnel Lens 
Optical Landing System 

ILS Instrument Landing 
System 

ISA International Standard 
Atmosphere 

JPALS Joint Precision Approach 
and Landing System 

LDGPS Local Differential Global 
Positioning System  

LSO Landing Signal Officer 

ML Maximum Likelihood 

MNS Mission Needs Statement 

NATO North Atlantic Treaty 
Organisation 

NCD Non-Linear Control Design

P-I-D-DD Proportional-Integral-
Derivative-Double 
Derivative 

PLL Phase-Locked Loop 

PSD Power Spectral Density 

RMS Root Mean Square 
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SAS Stability Augmentation 
System 

SI System Identification 

TAFCOS Total Aircraft Flight 
Control System 

UAV Unmanned Air Vehicle 

UCAV Unmanned Combat Air 
Vehicle 

USAF United States Air Force 

USN United States Navy 

USS United States Ship 

V/STOL Vertical/Short Take Off 
and Landing 
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1 INTRODUCTION 

1.1 OVERVIEW 

Ever since January 18th 1911 when Eugene Ely landed a Curtis pusher biplane aboard 

the armoured cruiser USS Pennsylvania anchored in San Francisco Bay the task of 

recovering an aircraft aboard a ship has been universally recognised as the most 

challenging manoeuvre in all of aviation. 

 

Figure 1-1 Eugene Ely Landing aboard USS Pennsylvania January 18th 1911 [1] 

There are a number of factors which set an approach and landing aboard an aircraft 

carrier apart from an approach and landing to a fixed landing surface in terms of 

difficulty. These are the diminished size of the landing area, the translation and rotation 

of the landing area, which is intensified when inclement weather conditions prevail, and 

the air wake aft of the carrier due to the presence and motion of the carrier.  

Procedures and landing aid systems have been developed to assist a pilot in making the 

recovery of an aircraft aboard a carrier safe in nearly all weather conditions, night or 
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day. However, even at their most autonomous modes of operation, these systems and 

procedures require a level of human interaction both aboard the aircraft and the carrier 

which is inadequate to realise the goal of truly autonomous operations.  

Truly autonomous operations are highly desirable for Unmanned Air Vehicle (UAV) 

applications. The UAV market is currently the predominant growth sector of the 

aerospace industry. The roles played by the UAV in Kosovo, Afghanistan and Iraq has 

strengthened its position as a vital combat tool. Unmanned Combat Air Vehicles 

(UCAV) have been under development for some time and as confidence in the 

capabilities of, and advantages afforded by, unmanned operation increases, the 

introduction of these vehicles into frontline service will be accelerated. 

The challenge presented to operators of UAVs is how to integrate the UAV fleet with 

the piloted fleet while adhering to the tried and tested operational procedures already in 

place without abating the benefits of autonomy afforded by UAVs. This is especially 

challenging in the carrier landing environment.  

With respect to carrier operations this challenge raises two questions. Firstly, what is the 

most effective navigation method to guide a UAV through the approach and landing 

phase of a recovery aboard an aircraft carrier considering the systems and procedures 

currently in place, the future military navigational goals, and the objective of seamlessly 

integrating the UAV fleet with the piloted fleet while attaining maximum autonomy?  

And secondly how best to control a UAV through the approach and landing phase of a 

recovery aboard an aircraft carrier considering the non-conventional planforms 

proposed for UCAVs and the precarious nature of the carrier landing environment? 

These questions encapsulate the central theme of this study. While these questions are 

posed with reference to UAVs there is little doubt that the answers to these questions 

would also be of benefit to piloted carrier operations. 

1.1.1 Navigation 

A navigation concept has been conceived which responds to the navigation question. 

When an aircraft is on approach to a carrier, the time until touchdown is determined 
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based on the distance between the aircraft and the carrier and the rate of change of their 

relative positions. Ship motion prediction techniques are used to determine the position 

of the carrier at that time in the future and a standard glide path and track from that 

point is generated. The lateral and vertical position deviations from the desired approach 

glide path and track are calculated and form the input to appropriate approach 

controllers. These deviations could be monitored and compared with predefined limits 

autonomously during approach. 

It is thought that the position and the rate of change of position signals can be 

determined using Differential Global Positioning System (DGPS). It is proposed that 

this navigation concept can be implemented using the operating procedures currently in 

place. This would reduce the number of carrier-based systems required for automatic 

carrier landings and increase the level of autonomy to the ultimate level for all weather, 

night or day operations.  

1.1.2 Control 

Three control strategies have been conceived for development and comparative analysis 

in order to determine the most suitable strategy for this task. The focus for the control 

strategy development and assessment is on the pitch axis. As a result all three systems 

share a common lateral-directional control strategy of standard aileron and rudder 

control as well as a common autothrottle system.  

The first system, or baseline system, controls vertical flight path deviations from the 

desired glide path via elevators.  

The second system controls vertical flight path deviations from the desired glide path 

via constant pitch attitude Direct lift Control (DLC). This is effected through trailing 

edge flaps and spoilers with elevators compensating for the pitching moment induced by 

the trailing edge flaps and spoilers in order to maintain a constant pitch attitude. 

The third system comprises of an addition of thrust vectoring capability to the Direct 

Lift Control system. The thrust vectoring is used in this instance to alleviate the 

magnitude of elevator pitch control required during the approach. Future UCAV 

planforms are tending towards a tailless configuration in an effort to reduce the 
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aircraft’s radar signature. This implies that lateral, directional and pitch control is to be 

effected through common aerodynamic control surfaces. As the tailless planform 

inherently lacks stability in the lateral and directional senses it is imperative that these 

common aerodynamic control surfaces never become saturated. In such a case the 

aircraft’s dynamics revert to that of the un-augmented airframe. Reducing the pitch 

control required from such a surface has the effect of increasing the overall safety of the 

aircrafts Flight Control System (FCS) design. 

A comparative analysis of these three control strategies coupled with the navigation 

concept over a range of operating conditions, from the most to the least favourable, will 

be used to assess the control strategies for their suitability to the task as well as 

determining the feasibility of the navigation system for the task.  

1.2 OBJECTIVES 

The objectives of this study are defined as: 

 To develop and assess the feasibility of the navigation concept which builds on 

operating procedures currently in place; reduces the number of associated 

subsystems required; accounts for future military navigational goals; accounts 

for ship motion through the use of ship motion prediction; facilitates the 

seamless integration of the UAV fleet with the piloted fleet and allows for truly 

autonomous carrier landing operations. 

 To assess three control strategies applied to the carrier landing task with an 

emphasis on control strategies suitable for future UCAV planforms and which 

coupled with the navigation strategy would allow for the expansion of the UAV 

carrier recovery operations to be genuinely all weather day or night capable.  
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1.3 LIMITATIONS TO THE SCOPE OF STUDY 

The following limitations to the scope of the study have been applied: 

 Aircraft Type 

From the outset the study is limited to fixed wing non Vertical/Short Take Off and 

Landing (V/STOL) UAVs. 

 Operational Procedures 

Due to the availability of material published by the United States Navy (USN), the 

procedures and systems used by the USN form the basis of the subsequent 

discussions.  

 Definition of Approach 

An aircraft approaching an aircraft carrier typically flies at an altitude of 500 feet 

until capturing the glide path, either visually or through the Instrument Landing 

System (ILS). This point is known as ‘tip over’. For the purpose of this study only 

the descent phase of the approach is considered, i.e. the segment of the approach 

after ‘tip over’.  

 Aircraft Carrier 

It is assumed that the subject aircraft carrier’s landing area is aligned with the 

aircraft carrier’s velocity vector, i.e. the deck is not angled, and that the arresting 

wires are spaced as per USN standards. For all simulations involving the aircraft on 

approach to the aircraft carrier it is assumed that the aircraft carrier is steaming into 

the wind and is maintaining its track, i.e. not turning. 

 Control Strategies Focus 

Previous carrier approach related research has concentrated on pitch approach 

performance. This is reflective of the challenges that the pitch axis presents as well 

the fact that aircraft carrier motion has a more dominant effect on the desired glide 

path than on the desired track, assuming that the aircraft carrier is not executing a 

change in course. Consequently pitch approach control is the focus of the control 

strategies potion of this study. Flight Control System failure cases and reversion 

modes are not considered. 
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 Ship Motion Prediction 

Perfect ship motion prediction is assumed. Although ship motion prediction is an 

intrinsic component of the navigation strategy, the development of a suitable 

prediction algorithm is considered outside the scope of this study as the magnitude 

of the task would detract the focus of this study from the stated objectives. 

1.4 PROJECT PLAN 

The approach to the realisation of the objectives of this study can be broadly 

summarised by the following task definitions. 

1 Literature Review 

A literature review is to be completed comprising a critical review of relevant 

literature pertaining to the areas of (1) carrier landing operations and procedures, 

(2) flight control research in the area of carrier landings, (3) navigation systems 

research in the area of carrier landings and (4) ship motion prediction 

techniques.  

2 Simulation Environment Development 

A simulation environment of high fidelity is the most essential tool in a study of 

flight control and associated systems. In order to increase confidence in the 

results and subsequently the conclusions derived from the results it is sought to 

develop a simulation environment which rigorously represents the physics of its 

constituent components. 

3 Development and Assessment of Navigation Strategy 

The navigation concept is to be developed to allow truly autonomous UAV 

carrier landings and to facilitate the seamless integration of the UAV fleet with 

the piloted fleet. This concept is to be developed and assessed in light of current 

carrier landing operations and procedures, future military navigation goals and 

research in the area of carrier landing navigation systems.  
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4 Development and Assessment of Control Strategies 

Control strategies employing Direct Lift Control (DLC) and vectored thrust are 

to be developed along with a conventional Flight Control System. These systems 

are to be assessed relative to each other using suitable approach and landing 

performance metrics.  

The results of the completion of these tasks are presented in the following chapters. 
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2 BACKGROUND AND LITERATURE 
REVIEW 

2.1 INTRODUCTION 

There are two objectives in reviewing carrier landing operating procedures and research 

related to the objectives of this study. The first is to gain a better understanding of 

operating procedures and the current state of the art. The second is to provide a context 

for this current study in relation to that state of the art. 

In the absence of publications on carrier based UAV operations and related research the 

review has focused on piloted operations and related research. In general, there exists a 

distinct lack of publications in the area of carrier landing flight control systems and 

associated navigation systems. As a result many of the publications reviewed were 

found not to be directly relevant to this study but did serve to increase the understanding 

of the carrier landing environment. 

2.2 CARRIER LANDINGS 

On 26 October 1922, Lieutenant Commander Godfrey deC. Chevalier, flying an 

Aeromarine 39B biplane, made the first arrested carrier landing aboard the United States 

Navy’s first dedicated aircraft carrier, the USS Langley [2]. The arrested carrier landing 

has become the standard method of recovering non-vertical landing aircraft aboard a 

carrier. 

As an introduction to an analysis of an augmentation of the Fresnel Lens Optical 

Landing System (FLOLS) Durand and Wasicko [3] present a very useful discussion on 

the carrier landing environment and its inherent challenges. Their short but thorough 

discussion provides valuable insights into the carrier landing environment from an 

engineering point of view, or more specifically from the point of view of navigation 
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system development. In addition to this a discussion on optical landing aids and air 

wake characteristics is also presented along with the actual intent of the study. These 

areas will be reviewed in the appropriate sections that follow.  

The landing area on an average carrier is approximately 600 ft long and 90 ft wide, and 

aircraft touchdown should occur 160 ft from the ramp. Four arrestment wires for 

tail-hook engagement are located about the nominal touchdown point and spaced 40 ft 

apart. With a realistic approach speed, and a 3.5o glide slope projected by the optical 

landing system, under no ship motion conditions an aircraft nominally will clear the 

carrier’s ramp by 8.4 ft and touch down 1 second later with an impact velocity of 

12.36 ft/sec. 

The glide slope projected by the optical landing system can be varied, depending on the 

closure rate of the aircraft to the carrier, to provide an effective glide slope of 3o [4]. A 

decrease in closure rate, caused by the carrier’s speed and wind over the deck, has the 

effect of reducing the actual glideslope flown [4].  As the navigation strategy proposed 

aims to provide guidance to a fixed point in space, as opposed to a moving point in the 

current navigation strategy, a glide slope of 3o will be used in this study. 

The moving carrier deck is one of the most significant obstacles to safe aircraft 

recovery, and can by itself render catastrophic terminal landing conditions. When the 

aircraft’s inertial path is precisely controlled, ship heave motion directly alters the ramp 

clearance by a 1:1 ratio and changes the touchdown point by a 14:1 ratio. Likewise, ±1o 

of ship pitch produces a motion of ±9 ft at the ramp and a ±80 ft range in the touchdown 

position. The heave and pitch motions also cause large vertical deck velocities and thus 

drastically reduce the available impact velocity margin [3]. 

The motion of the aircraft carrier and the presence of obstacles on the deck create major 

air disturbances in the wake of the carrier. The magnitude of this disturbance is greatest 

just aft of the carrier’s ramp, close to the point where the pilot has to decide whether to 

commit to landing or abort the approach [5]. Considering that the response of an aircraft 

in the approach configuration tends to be sluggish, the consequences of the air 

disturbances on precise flight path control can be detrimental.  
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As with the approach and landing of an aircraft on a conventional runway, the 

prevailing atmospheric conditions affect the precision with which the desired approach 

glide path and track are followed. The difference in this case is that the greater the 

atmospheric disturbances, the greater the ship motion and, consequently, the greater the 

carrier air-wake disturbances. 

On approach to an aircraft carrier a pilot is largely dependent on visual cues for 

judgement of the aircrafts deviation from the desired glide path and track. These cues 

take the form of the carrier’s visual approach aids, the horizon and the observed motion 

of the carrier’s deck. In conditions of poor visibility, such as night time, these cues are 

either significantly reduced or absent.  

Although poor visibility does not present a problem to UAV carrier operation, the tight 

confines of the landing area, the motion of the carrier, the air disturbances in the carrier 

air-wake and the probability of inclement atmospheric conditions remain factors. 

With the aim of facilitating seamless integration of UAVs into the present piloted 

aircraft fleet it is necessary to understand the procedures and systems currently utilised. 

While some of these systems are exclusively designed for piloted operations, knowledge 

of such allows better comprehension of the problem.  

2.2.1 Overview 

The approach to land on a carrier begins when the aircraft is cleared from a holding 

pattern by the carrier air traffic control centre, located below deck on the carrier. 

Depending on the type of approach required the aircraft is required to be configured for 

landing at a specified altitude and distance from the carrier prior to acquisition of 

glideslope and the commencement of the final approach phase.  

The exact USN air traffic control procedures employed are presented in the United 

States Navy Aircraft Carrier Operations Manual [6]. This comprehensive document 

presents standard, non-standard and emergency operating procedures for pre-flight, 

launch and recovery of aircraft. Much of this document is of no relevance to this study; 

however the section on recovery of aircraft provides an insight into the systems and 
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procedures used as well as some anecdotal information on the process which serves to 

better understand the environment. 

Having configured the aircraft for landing and acquired the glideslope the pilot tightly 

controls angle of attack and the aircraft’s speed while correcting for any deviations from 

the required approach glide path and track. Approach cues are available to the pilot from 

the Improved Fresnel Lens Optical Landing System (IFLOLS), the Instrument Carrier 

Landing System (ICLS), and the Automatic Carrier Landing System (ACLS). These 

systems are discussed in sections 2.2.3, 2.2.4 and 2.2.5 respectively.  

Aboard the carrier, the Landing Signal Officer (LSO) monitors the aircraft’s approach 

visually as well as the carrier’s motion, while also having reference to glideslope and 

track deviation data. The LSO decides whether the aircraft will continue its approach to 

a landing or whether the aircraft is to be waved-off based on this information as well as 

knowledge of the pilot’s ability. The role of the LSO is discussed in section 2.2.2. 

On approach the target is to catch the third arresting wire with the tail-hook which 

extends below the rear of the aircraft. The presence of multiple arresting wires has the 

effect of extending the target area. The third wire provides the safest target; if the first 

wire were aimed for, and the aircraft approached too low, a collision with the stern of 

the ship is likely. If the fourth wire were aimed for, and the aircraft landed long, a go 

around is inevitable. The arresting wires are visible in the Frontispiece of this document. 

It is the procedure of the United States Navy that full power is selected upon touchdown 

on the carrier deck, idle power is selected only when the aircraft has been brought to a 

full stop. In the event that the aircraft lands beyond the fourth arresting wire, which 

results in a go-around, having full power already selected mitigates the time delay due 

to recognition of the situation, selecting full power and the associated engine spool time. 

A go-around due to landing beyond the fourth arresting wire is known as a ‘bolter’. 

2.2.2 Landing Signal Officer 

The LSO’s primary responsibility is the safe and expeditious recovery of non 

Vertical/Short Take Off and Landing fixed-wing aircraft aboard the carrier. Through 

training and experience the LSO is capable of correlating factors of wind, weather, 
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aircraft capabilities, ship configuration and pilot experience in order to provide optimum 

control and assistance in aircraft landings. The LSO is also directly responsible for 

training pilots in carrier landing techniques [7]. 

The pilot of an aircraft on approach to a carrier and the LSO, who is also a pilot, operate 

as a team to ensure the safe recovery of the aircraft. The LSO communicates with the 

pilot through a radio link and through light signals. As previously stated, the LSO has 

the responsibility of making the final decision as to whether an approach is to be 

continued to landing or whether the aircraft is to be waved-off.  

The LSO grades each approach and debriefs the pilots on their performance to ensure 

that the highest standards are maintained. The LSO’s function is not minimised in the 

event that an aircraft makes an automatic approach to a carrier. A full description of the 

responsibilities and a detailed description of LSO procedures can be found in the United 

States Navy Landing Signal Operators Manual [7], United States Navy Landing Signal 

Officers Reference Manual [4], and a memo from the Chief of Staff of the Department of 

the Navy (USN) entitled Landing Signal Officers [8].  

These documents provide invaluable insights into the problem of safely recovering an 

aircraft aboard a carrier. Much of the detailed information presented in these manuals is 

not relevant to this study as it pertains to LSO selection, training and qualification. 

However the anecdotal information presented in each is invaluable in increasing 

familiarity with the problem and understanding both the risks involved and the level of 

human interaction required, even in the most autonomous recovery mode.  

Detailed descriptions on carrier landing aid systems are also presented in these manuals. 

These descriptions, while lacking in engineering design detail, help bridge the gap in 

knowledge created by the lack of publications on this subject. 

2.2.3 Improved Fresnel Lens Optical Landing System 

The Improved Fresnel Lens Optical Landing System is a derivative of the Fresnel Lens 

Optical Landing System. The Fresnel Lens Optical Landing System is an electro-optical 

landing aid which projects glide slope data to the pilot of an aircraft on approach to the 
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carrier. The Fresnel Lens Optical Landing System incorporates the Carrier Landing Aid 

Stabilisation System (CLASS) which provides stabilisation to compensate for carrier 

motion. 

A Fresnel lens is a lens designed to minimise astigmatism and the loss of light projected 

from a light source and as such allows a powerful focused beam of light. The Fresnel 

Lens Optical Landing System uses this lens to project a set of different coloured light 

beams which represent the desired glide slope and deviation data. Because of the ability 

of the lens to focus the beam of light with precision the pilot will be able to judge if the 

aircraft is above, below or tracking the desired glide path. The Fresnel Lens Optical 

Landing System is normally positioned on the left hand side of the carrier deck, from 

the pilot’s perspective, about 10 ft from the edge of the carrier and 750 ft from the stern 

of the carrier [9]. The Fresnel Lens Optical Landing System is clearly visible in the 

Frontispiece of this document. 

In its primary mode of operation the Carrier Landing Aid Stabilisation System provides 

stabilisation of the lens for the carrier’s pitch, roll and heave motions. This provides a 

stabilised glide slope from the point of visual contact with the light plane to the hook 

touchdown point, as long as the pilot is lined up with the centreline of the angled deck, 

and the carrier’s pitch motion is within ±6o, the carrier’s roll motion is within ±10o and 

the carrier’s heave motion is within ±15ft. There are two backup modes of operation 

which offer reduced stabilisation. A comprehensive description of Carrier Landing Aid 

Stabilisation System is presented in the United States Navy Landing Signal Officers 

Reference Manual [4]. 

As the aircraft approaches, the pilot will see different colour lights depending on the 

aircraft position relative to the desired glide path. If the aircraft is on the glide path, the 

pilot will see an amber light, dubbed the meatball, in line with a row of green lights. If 

the amber light appears above the green light, the aircraft is above the glide path; if the 

amber light appears below the green lights, the aircraft is below the glide path. If the 

aircraft is significantly below the glide path the pilot will see red lights. Four red 

wave-off lights are located on either side of the lens. These are illuminated by the LSO 

in the event that a wave-off is required. The Fresnel Lens Optical Landing System also 
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has a pair of green lights located either side of the lens known as cut in lights. These 

lights are used by the LSO to communicate with the pilot. Illumination of the cut in 

lights may mean ‘add power’ or ‘roger ball’, a concurrence with the pilot’s 

interpretation of the aircraft’s position relative to the glide path when asked by the LSO 

to ‘call the ball’. The arrangement of the Fresnel Lens Optical Landing System is 

presented in Figure 2-1.  

 

Figure 2-1 Fresnel Lens Optical Landing System [4] 

The improvement of the Fresnel Lens Optical Landing System which resulted in the 

Improved Fresnel Lens Optical Landing System allows the pilot to receive more 

accurate glide path information from one mile out to touchdown. This has been 

accomplished by increasing the length of the assembly to accommodate 12 light cells as 

opposed to 5, while presenting the same range of glide path information as the Fresnel 

Lens Optical Landing System thus increasing sensitivity. This gives the pilot a more 

accurate and earlier visual cue of ball movement, allowing the pilot to correct quicker 
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since the ball movement is amplified compared to the Fresnel lens optical landing 

system. 

A more complete explanation of the Fresnel Lens Optical Landing System and 

Improved Fresnel Lens Optical Landing System is presented in the United States Navy 

Landing Signal Officers Reference Manual [4], while the United States Navy Training 

Manual: Construction Electrician, Intermediate [9] provides some supplemental 

information. Durand and Wasicko [3] present a succinct overview of the Fresnel Lens 

Optical Landing System and its stabilisation. 

As the aim of this study is to provide complete autonomy to a UAV landing aboard a 

carrier the Improved Fresnel Lens Optical Landing System does not provide any means 

of achieving this aim, nor does it present a point from which development of an 

autonomous system can begin.  It does however represent the state of the art with 

respect to visual carrier landing aids.  

2.2.4 Instrument Carrier Landing System 

The Instrument Carrier Landing System (ICLS) operates in a similar manner as the 

conventional land based Instrument Landing System (ILS). A manual precision 

approach is flown to appropriate minimums based on precise and continuous position 

error and range information displayed to the pilot. As with an ILS system this 

information is conveyed to the pilot through a set of needles on the appropriate display. 

Operational details are presented in the United States Navy Aircraft Carrier Operations 

Manual [6]. 

The azimuth and elevation signals transmitted from the carrier are stabilised with 

reference to a co-ordinate system referenced to the desired touchdown point on the 

carrier’s flight deck.  

This system, as with a conventional ILS system, is not an automatic approach controller 

but a source of guidance cues which can be coupled with an automatic approach 

controller as will be presented in the following section. 
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In contrast with the navigation strategy proposed in this study the Instrument Carrier 

Landing System provides navigation cues from a moving point, albeit with a degree of 

stabilisation with respect to ship pitch and heave motions, whereas the strategy 

proposed provides navigation cues from a point at which touchdown is predicted to 

occur.  

The relative merits of these navigation strategies rest in how well the Instrument Carrier 

Landing System can be stabilised with respect to the carrier’s motion and for the 

strategy proposed, how well the carrier’s motion can be predicted. While these facts 

may negate each other it is in their implementation that the proposed system may prove 

to be superior.  

As will be discussed in section 2.3.1, the noise induced into the Instrument Carrier 

Landing System by the radar, which is used to determine the aircraft’s position, has a 

negative effect on the precision of control when the system is coupled with an automatic 

approach controller. In addition, the Instrument Carrier Landing System does not fulfil 

the future military navigation requirement, which will also be discussed in section 2.3.1, 

and as such may become obsolete as early as 2009 [10].  

However, the proposed navigation strategy, which uses digital Differential Global 

Positioning System signals, will not have that noise induced into the system and also 

adheres to future military navigation requirements.  

2.2.5 Automatic Carrier Landing System 

The Automatic Carrier Landing System is designed to provide control of an aircraft 

during the final approach and landing sequence. It consists of two operating channels, 

each capable of controlling the approach and landing sequence of a returning aircraft to 

touchdown on the carrier’s flight deck. Each channel is capable of landing one suitably 

equipped aircraft per minute, allowing for multiple simultaneous approaches. Each 

channel has three primary modes of operation [4]. 

(1) Mode I – Fully automatic to touchdown.  

Mode IA – Fully automatic to minimums of 200 ft and one-half mile. 
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(2) Mode II – Semi automatic approach providing glide path and track 

deviation data in a similar manner as a Flight Director.  

(3) Mode III – Manual approach with the system providing aural cues only 

(talk down). 

In all of these modes there is communication between the pilot and the LSO to ensure 

the accuracy of the system. As with a manual approach the LSO is responsible for 

making the decision as to whether or not the aircraft will complete the approach to 

touchdown or be waved-off.  

Durand and Wasicko [3] discuss the fact that what the LSO and the pilot see during an 

approach is not the same and that problematic situations can arise because of these 

differing views. This manifests itself in the LSO giving the wave-off command to an 

approaching aircraft which is stabilised relative to the pilot’s visual reference but 

appears unstabilised relative to the LSO’s visual reference because the  LSO is standing 

on the pitching and heaving deck of the carrier.  

In the navigation strategy proposed an automatic wave-off mode can be easily 

implemented, which would not suffer from the problem identified by Durand and 

Wasicko [3] and as such would prevent successful approaches from being misinterpreted 

and being waved-off. 

A comprehensive presentation of the components that constitute Automatic Carrier 

Landing System and associated operating procedure are presented in the United States 

Navy Aircraft Carrier Operations Manual [6], the United States Navy Landing Signal 

Officers Reference Manual [4] and the United States Navy Training Manual: Aviation 

Electronics Technician 1 (Organizational), Intermediate [11], and the United States Navy 

Training Manual: Aviation Electronics Technician 4 – Radar Systems [12].  

These manuals provide much information not relevant to this study. A lot of the 

information on pertinent systems lacks engineering design detail and is intentionally 

presented for an operator of a system rather than as a detail design document. However, 

the anecdotal information presented is invaluable in understanding the related operating 

procedures and as an overview of how the aforementioned systems operates.  
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The Automatic Carrier Landing System is presented in detail by Davies and Noury [13] 

and a review of this is presented in section 2.3.1. 

2.3 CARRIER LANDING RELATED RESEARCH 

2.3.1 Navigation System 

Davies and Noury [13] of Bell Aerospace, the manufacturer of the Automatic Carrier 

Landing System currently in service, present a detailed technical description of the 

AN/SPN-42 system. This system is a carrier-based controller. A radar tracks the aircraft 

to determine its actual position and the system computes the aircraft’s distance from a 

stable horizontal coordinate system with origin at the average position of the intended 

touchdown point. This coordinate system is computed using the ship’s Euler angles, 

thus removing the effects of the ship’s motion on the measurement of the aircraft’s 

position in inertial space. 

Altitude and lateral position errors are generated based on the aircraft’s range, altitude 

and desired glide slope. These error estimates are amplified and sent to an α-β filter 

which estimates the aircrafts acceleration, velocity and position errors. These estimates 

are then passed through a Proportional-Integral-Derivative-Double Derivative (P-I-D-

DD) controller, which produce corrective pitch and roll commands required to direct the 

aircraft to and along the desired flight path. These commands are transmitted to the 

aircraft and implemented through the aircraft’s Automatic Flight Control System 

(AFCS). The use of the Automatic Carrier Landing System requires that the Automatic 

Power Compensation System (APCS), or autothrottle, is used to maintain a reference 

angle of attack and to improve phugoid damping. 

Prior to 12 seconds to go to touchdown the aircraft is directed to the average, rather than 

the actual, position of the touchdown point. This is done to reduce aircraft manoeuvring. 

However, if satisfactory landings are to be accomplished, the aircraft must be directed to 

the actual touchdown point during the last few seconds. At the 12 second to go mark the 

target is faded from the average position to the actual position of the touchdown point 

over a 2 second period. A phase lead of about 2 seconds is applied to this new target, in 

effect predicting the position of the desired touchdown point; this is to compensate for 
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the dynamic response lag inherent in altitude command control systems. This is known 

Deck Motion Compensation (DMC). 

Descriptions of the design procedure, the associated hardware, safety features and 

control laws are included in this report. Problems encountered during the design of the 

system and the solutions developed to overcome these are presented. Only the operation 

of the system in Mode I (fully automatic) is considered. Throughout the report the 

emphasis is on using well-known conventional control techniques coupled with sound 

engineering knowledge in the design process.  

Currently the AN/SPN-46 version of the automatic carrier landing system is in 

operational service. This system incorporates some upgrades from the AN/SPN-42, the 

most notable of which is the systems ability to control two aircraft on approach. 

The system described by Davies and Noury [13] is the benchmark against which the 

performance of the navigation system proposed in this study is to be measured against. 

An equivalent to the deck motion compensation mode is not necessary for the proposed 

navigation strategy as the aircraft will be guided to the predicted touchdown point from 

the initiation of the approach, although this predicted touchdown point may vary 

through the approach.  

Durand and Wasicko [3] single out for detailed study a stabilisation mode of the Fresnel 

Lens Optical Landing System. This system has been shown to not be of direct relevance 

to this study and as a result the analysis of this stabilisation mode is of no consequence.  

Urnes and Hess [14] in the development of the F/A-18A Automatic Carrier Landing 

System acknowledge the fact that the radar tracking system introduces noise into the 

control loop. Mook et al. [15] and Crassidis et al. [16] present, at different stages of 

development, a flight dynamics-based tracking filter to greatly reduce the noise 

introduced into the system by reducing or eliminating the need for the numerical 

differentiation associated with the Automatic Carrier Landing System radar tracking 

system. This study is limited to the pitch axis. Traditionally the addition of a noise 

rejection feedback loop lowers the sensitivity of the pitch command to noise. This 

occurs at the expense of an increased turbulence response A primary objective of the 
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Automatic Carrier Landing System is to limit the aircraft response to turbulence. 

Consequently, motivation existed to explore new methods of lowering the noise content 

of the pitch command without simultaneously increasing the response of the aircraft to 

turbulence. 

The filter presented uses airspeed and angle of attack measurements from the aircraft to 

synthesis a normal acceleration signal using a simplified lift model. A comparative 

study is presented based on the current α-β filter and the flight dynamics based filter and 

as a result a definition of both filters is presented. The F-4 aircraft was used as the 

subject aircraft for this study due to the availability of data. The F-4 pitch autopilot and 

autothrottle system are briefly discussed, and an informative discussion on the coupling 

of these systems is also presented. The optimisation techniques employed in the 

development of the filter are discussed in both papers. The results of this study were that 

the flight dynamics based filter rejected nearly 100% of the noise content in the pitch 

demand during the simulation study. 

As a follow on from the filter design, Crassidis and Mook [17] present a robust controller, 

utilising H∞ control design techniques which is designed to replace the P-I-D-DD 

controller in the Automatic Carrier Landing System. As only position measurements are 

required to develop the H∞ control signal the α-β tracking filter is not required. A 

comparison of the Automatic Carrier Landing System with the flight dynamics based 

tracking filter and the robust controller with a noise rejection loop is presented. The 

results show an increased system bandwidth when utilising the robust controller. The 

system attenuates the turbulence response by a factor of 2 in comparison to the 

Automatic Carrier Landing System with the flight dynamics based tracking filter.  

It has already been stated that the navigation system proposed will not be dependent on 

radar for aircraft position determination. As a result, the consequent control loops will 

not be subject to the noise induced by such a radar system. These studies however are 

important in highlighting a negative aspect of the current state of the art Automatic 

Carrier Landing System. The fact that the contributors to this study are based at the 

State University of New York at Buffalo and the manufacturer of the Automatic Carrier 
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Landing System, Bell Aerospace, are also based at Buffalo indicates possible 

collaboration.  

Costes et al. [18] and Le Moing [19] present a French study which proposes a new carrier 

landing procedure, for both manual and automatic approaches, using deck motion 

prediction to determine an updated flight path angle and approach airspeed during the 

final seconds of the approach in order to adhere to ramp clearance, sink rate and 

touchdown dispersion constraints. A fully integrated airborne system is proposed which 

includes the aircraft Flight Control System and the landing aid system. 

The new procedure effects approximately the final 10 seconds of the approach, a time 

frame where cited ship motion prediction studies indicate accuracy of the prediction is 

greatest. Results of automatic approaches in the presence of ship air wake are presented 

in which deck motion prediction is initiated five seconds prior to touchdown. At this 

point the desired flight path angle and airspeed are abruptly changed. The flight path 

angle is changed in order to maintain ramp clearance and the airspeed is changed 

correspondingly so that the sink rate at touchdown remains constant regardless of flight 

path angle. The results presented indicate that a reduction in touchdown dispersion and 

sink rate and an increase in ramp clearance can be achieved. 

This French study is forward thinking and represents a departure from the standard 

approach navigation strategy in that a variable flight path angle strategy is proposed. It 

shares the use of ship motion prediction with the navigation strategy proposed in this 

study, however in this study it is proposed to use ship motion prediction through the 

complete approach phase.  

The variable flight path angle approach strategy aims to substitute for the deck motion 

compensation mode currently in use. As a consequence of the proposed navigation 

strategy providing navigation guidance to a fixed point in space, which represents the 

predicted touchdown point, a variable flight path angle strategy is not necessary.  

McPeak [20] in a joint United States Air Force (USAF) and USN Mission Need 

Statement (MNS) defines the need to provide a rapidly deployable, adverse weather, 

adverse terrain, day-night, survivable, and mobile precision approach and landing 
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capability for world wide deployment and interoperability between the services. This 

system should allow aircraft to land on any suitable land or sea based surface. The 

development program resulted in what is known as the Joint Precision Approach and 

Landing System (JPALS). A Differential Global Positioning System was found to 

satisfy all the requirements of the study.  

Wallace [10] presents the results of a limited flight test program of an F/A-18A 

completing 10 fully automatic approaches to a carrier using Differential Global 

Positioning System. The system was shown to meet the certification criteria. A schedule 

presented by Wallace [10] shows the Joint Precision Approach and Landing System 

being phased into operation by the USN as early as 2009. 

The Joint Precision Approach and Landing System is important to this study as it states 

the future military navigation requirements over a time period where UAV carrier based 

operation can expect to become a reality and as a consequence any UAV carrier landing 

navigation system should address these requirements. In addition, it has been 

demonstrated that Differential Global Positioning System meets the requirements and as 

a result validates the use of Differential Global Positioning System in the proposed 

navigation strategy. 

What isn’t clear from Wallace [10] is the exact architecture of the navigation and flight 

control system combination used by the F/A-18A during these 10 fully automatic 

approaches. It is assumed that the aircraft relative position normally determined via 

radar is replaced with the Local Differential Global Positioning System and aspects such 

as the navigation strategy and flight control system remain unchanged.  

Fitzgibbon and Parkinson [21] present a study of using Global Positioning System (GPS) 

for use in automatic landing systems. Their study considered commercial applications as 

opposed to military applications. It should be noted that a position bias is introduced 

into the GPS signal for civil users by the military custodians of the system.  

A comparison between Differential Global Positioning System and standard Global 

Positioning System is presented. It was concluded that Differential Global Positioning 

System may satisfy the civil aircraft operations regulatory authorities’ criteria for fully 
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automatic approach and landing guidance but that the bias in the GPS signal makes it 

unsuitable when used in isolation. The fact that GPS provides direct velocity 

measurement and that no other landing aid has this capability is highlighted. 

The significance of the study completed Fitzgibbon and Parkinson [21] is superseded by 

the results presented by Wallace [10]. However Fitzgibbon and Parkinson [21] draw 

attention to the very useful fact that GPS provides direct velocity measurement, which is 

relevant to the proposed navigation strategy. 

2.3.2 Flight Control System 

Hess and Urnes [14] of the McDonnell Aircraft Company, manufacturer of the F/A-18A 

aircraft, present the design criteria and analysis methods used to develop the Automatic 

Carrier Landing System for the F/A-18A. Both the Stability Augmentation System 

(SAS) and autothrottle subsystem were configured with optimised control gains 

different from those gains considered optimum for manual flight approaches. The 

control strategy used is comparable to the baseline control strategy proposed in this 

study 

Discussions are included on sources of time delay in the complete system, which can be 

up to 250 ms, air turbulence as the dominant source of approach glide path and 

touchdown errors, radar tracking noise attenuation, structural mode and Automatic 

Carrier Landing System flight control system coupling avoidance. A discussion on the 

use of quad redundant command limiters to minimise the transient aircraft response due 

to failure of non redundant system components is also included, but this is of little 

relevance to this study as failure cases and Flight Control System reversion modes are 

not considered.  

Of particular interest to this study is the determination that air turbulence is the 

dominant source of glide path and touchdown errors. Attenuation of atmospheric 

disturbances is thus deemed a major design consideration in the design of the control 

strategies in this study. As previously stated radar noise is highlighted as a problem for 

the control loops. 
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Results from land and shipboard flight trials are included which show the system to 

have better touchdown dispersion characteristics to the F-4 aircraft’s equivalent system 

to which it is compared.  

This paper is significant in that it presents the development of an Automatic Carrier 

Landing System which is in operational service. The touchdown performance results 

from sea trials presented provide a limited source of data for comparison with the 

performance of the control strategies developed in this study.  

Fortenbaugh [22] presents a discussion of the practical integration of Direct Lift Control 

in the F-14A and associated Automatic Carrier Landing System. At the time that Direct 

Lift Control was added to the F-14A the aircraft was at an advanced stage of 

development and as a consequence design constraints were imposed. Direct Lift Control 

was implemented through the use of the aircraft’s spoilers and flaps. These constraints 

along with some lessons learned during the F-14A Direct Lift Control design study are 

presented. A preceding feasibility study indicated the superiority of altitude error as a 

variable for controlling the Direct Lift Control. As a result this method was used in this 

study. 

It is proposed that attributes of a good Automatic Carrier Landing System should be 

insensitivity to wide variations in trim conditions and insensitivity to widely varying sea 

states and atmospheric turbulence levels. This proposition is of direct relevance to this 

study and has been incorporated in the design of the flight control systems that follow. 

A statistical comparison of the baseline F-14A flight control system and that with Direct 

Lift Control shows that the Direct Lift Control system provides better flight path 

control, and consequently better ramp clearance and touchdown dispersion. This finding 

has direct relevance to this study and clearly sets a goal in relation to the relative 

performance of the baseline and Direct lift Control strategies developed . 

The results of a piloted study showed that the baseline system performed well up until 

the point where Deck Motion Compensation was introduced; at that point the aircraft 

made large attitude, angle of attack, and glideslope excursions with large touchdown 

dispersion while attempting to follow deck motions. The Direct Lift Control system was 



Background and Literature Review 

 

 - 26 - 

superior during the approach before introduction of Deck Motion Compensation; 

however the ride was rougher due to the rapidly alternating Direct Lift Control motion.  

After the point where Deck Motion Compensation was introduced the Direct Lift 

Control was much tighter, a more constant attitude, near optimum sink rate and closer 

glideslope control were evident. Large throttle motions, activated by the autothrottle, 

were evident with the Direct Lift Control system, but no accompanying unsatisfactory 

flight path control characteristics were noted.  

The main conclusion of this study, which is supported by statistical comparison results 

and pilot qualitative assessment, is that Direct Lift Control integration into the existing 

Automatic Carrier Landing System greatly enhances the approach and landing 

performance of the Automatic Carrier Landing System. This finding is significant to 

this study as it is demonstrated that Direct Lift Control has the potential for increasing 

the approach and landing performance when applied to the carrier landing task.  

The system presented by Fortenbaugh [22] uses Direct Lift Control to augment the 

existing F-14A Automatic Carrier Landing System which is comparable to the baseline 

control system of this study. The use of Direct Lift Control by Fortenbaugh [22] is 

different to that proposed in this study which proposes to couple Direct Lift Control 

with a constant pitch attitude control system. Fortenbaugh’s [22] system presents an 

alternative design which the Direct Lift Control system proposed in this study should be 

compared to. 

Martorella et al. [23] present a study on precision flight path control in carrier landing 

approach and put forth the opinion that this is a case for integrated system design. Their 

opinion is that the aircraft’s dynamic characteristics are augmented through the use of 

Command and Stability Augmentation Systems (CSAS), Autothrottle and Direct Lift 

Control in order to aid the pilot in maintaining precise flight path control. However, 

current specifications provide independent design criteria for each of these systems that 

do not specifically address interaction in terms of total flight path control. 

The purpose of the study was to improve approach flight path control quality for a high 

performance fighter using the full potential of its control capability by means of an 
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integrated system design. The study focused on the pitch axis. Qualitative design criteria 

are defined to reduce pilot workload relative to a baseline aircraft and provide 

acceptable transient excursions. These criteria are intuitive, such as “minimise aircraft 

flight path deviations caused by atmospheric disturbances”, but provide a useful design 

brief for the flight control systems to be developed in this study. 

A design based on the F-14A is presented, as the F-14 has all the control effectors and 

flight control elements needed. The authors are employees of the aircraft’s 

manufacturers, Grumman Aerospace Corporation, and thus have access to an extensive 

aircraft database. Simulation results are presented which show that the system 

developed meets the qualitative criteria; however, a comparison with the original system 

is not included but it is concluded that by complying with the criteria presented, a more 

effective flight path controller resulted.  

The focus of the study presented by Martorella et al. [23] is on piloted applications and as 

such much of what is presented is not directly applicable to this study. However, the use 

of Direct Lift Control is affirmation of the potential of this control strategy when 

applied to the carrier landing task.  

Huff et al. [24] present a follow up to the study presented by Martorella et al. [23]. In their 

study, the system presented by Martorella et al. [23] is the subject of a manned simulation 

study for both manual and automatically controlled carrier landings. A pilot comparison 

to the baseline F-14A flight control system shows that the new system reduces pilot 

workload and also facilitates more precise tracking and consequently better touchdown 

dispersion characteristics. A similar comparison is presented where the system is 

coupled with the Automatic Carrier Landing System in which the new system was 

shown to significantly reduce touchdown dispersion. All simulations were conducted 

without carrier pitch and heave motions. These results support the opinion set forth by 

Martorella et al. [23] that carrier landing is a case for integrated system design procedure. 

This fact is noted and applied in the development of the flight control systems that 

follows.  
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Clark and Miller [25] present an investigation of the use of vectored thrust during carrier 

landings. The aircraft considered is the F-8A with thrust being vectored from 

underneath the aircraft at a point forward of the exhaust nozzle and slightly aft of the 

centre of gravity. The study was limited to the aircraft’s pitch axis. Piloted fixed base 

flight simulator studies were conducted to obtain information on the effects of thrust 

vector angle, pitching moment due to thrust line offset from the centre of gravity, and 

thrust available for flight path control on performance of the landing task. The use of an 

Autothrottle in combination with vectored thrust was also investigated. Thrust vector 

angles of up to 76.5o were considered.  

The results show that vectored thrust offers substantial reductions in approach airspeed 

and sink rate, improvements in flight path control, and improvements in wave-off 

performance. However, these advantages are offset by a reduction in the thrust margin 

available for wave-off and as approach speed is reduced by increasing the thrust vector 

angle the elevator angle required to trim the aircraft is large; this is due to the large 

vectored thrust induced pitching moment and is compounded by the reduction in 

elevator effectiveness due to reduced airspeed. 

The manner is which Clark and Miller [25] apply the concept of vectored thrust is not 

similar to the manner proposed in this study. Clark and Miller [25] reduce the 

requirement of lift generated by forward speed by vectoring thrust downward at large 

angles to balance the forces and trim the induced moments using elevator angle. It is 

proposed in this case to use vectored thrust to supplement elevator pitch control by 

vectoring thrust through relatively small angles and to maintain a constant approach 

speed. Nonetheless Clark and Miller [25] present a novel, and arguably precarious, use of 

vectored thrust. 

Crassidis and Mook [26] present a simulation of an F-4A aircraft with pitch autopilot and 

autothrottle for use in investigations of aircraft tracking and control performance in an 

Automatic Carrier Landing System. The discussion presented is limited to the pitch 

axis. Both the pitch autopilot and the autothrottle are presented in detail and an 

informative discussion on the coupling of these systems is included. The pitch autopilot 

maintains a desired pitch attitude, while the autothrottle maintains the desired angle of 
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attack and minimises vertical acceleration changes in the aircraft. It is shown that the 

autothrottle reduces the aircraft’s response to atmospheric turbulence. 

The autothrottle does not respond to a pitch command, but rather to a change in angle of 

attack or vertical acceleration. These changes are delayed with respect to elevator 

movement based upon the aircraft’s response time. As a result the autothrottle control 

loops include an elevator feedback loop, which leads the aircraft’s response, in order to 

ensure tight control of angle of attack. 

After some consideration it was decided to implement a standard autothrottle in the 

control strategies developed in this study as opposed to that suggested by Crassidis and 

Mook [26]. The reason for this decision is that a standard autothrottle is used in aircraft in 

service for which there is published touchdown performance data available e.g. F-14A 

and F-4A. If the autothrottle system proposed by Crassidis and Mook [26] were 

implemented the baseline flight control system would not be directly comparable to 

these in service aircraft.  

Gerdes et al. [27] present the results of a piloted simulation study of a novel trajectory 

control system implemented to provide manual control of an A-7E during carrier 

approaches. The concept, called Total Aircraft Flight Control System (TAFCOS), 

utilises an inverse model of the aerodynamic and propulsion characteristics and employs 

feedforward control to provide the required acceleration command.  

Total Aircraft Flight Control System uses a balance of open loop feedforward control 

and closed loop feedback control. The presence of detailed models of aircraft force, 

moment and thrust characteristics in the feedforward path enable it to provide most of 

the control. Feedback is needed only to compensate for external disturbances and for 

differences between the models and the actual aircraft.  

Two control modes were studied, a vertical velocity command mode and a vertical 

acceleration command mode. The results of the studies show superior performance of 

this system when compared to the conventionally controlled aircraft. This, however, 

was less apparent for the cases where ship motion was included. The study shows that 

the Total Aircraft Flight Control System concept is feasible as an addition to a pre-
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existing Command and Stability Augmentation System and that it has potential as an 

improved mode of control over conventional control for the carrier approach task. 

However, it was concluded that further optimisation and development studies are 

needed to explore the full potential of the system and to determine what degree of 

improvement can be realistically expected.  

Meyer and Smith [28] in a paper published prior to Gerdes et al [27] present a detailed 

mathematical definition of the Total Aircraft Flight Control System based trajectory 

system and a comprehensive set of simulation results. 

The findings of Gerdes et al. [27] and by inference the paper by Meyer and Smith [28] is of 

little relevance to this study as their focus is entirely piloted control oriented. However, 

the discussion of the control problems associated with carrier landings and the pilot 

comments from the piloted simulations presented by Gerdes et al. [27] is of interest and 

help further the understanding of the carrier landing environment. 

Bannett [29] presents a detailed description of the theory of optimal control and the 

application of such on the design of an Automatic Carrier Landing System for an F-8C. 

The single command input of the longitudinal channel of the AN/SPN-42, elevator 

deflection, and autothrottle are employed to control airspeed, altitude and pitch attitude 

response for both deterministic and stochastic input. Bannett proposes that this system 

lacks independence in specifying the various responses for both inputs. In order to 

alleviate this problem and obtain good response characteristics for the critical variables, 

a multicontroller, multivariable design is employed.  

A longitudinal controller system incorporating command inputs of elevator, thrust and 

Direct Lift Control flaps is presented. The control system configuration is a 12 

parameter feedback system. The design procedure and its subsequent application to the 

F-8C is presented in detail. An assessment of the system design shows that the glide 

path tracking is very precise, and variations in aircraft position from the nominal glide 

path in the presence of carrier air-wake and carrier motion is held to a tight tolerance.  

While the optimal control aspect presented by Bannett [29] is not directly relevant to the 

flight control systems which are to be developed using classical control techniques in 
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this study, the inclusion of Direct Lift Control is relevant. The performance of the 

system indicates that Direct Lift Control coupled with elevator and thrust control 

provides very precise glide path tracking. This again supports the use of Direct Lift 

Control in this study. 

It is interesting to note that the majority of publications reviewed concentrated on 

control of the pitch axis. Durand and Wasicko [3] present a statistic to explain this. In 

1964 80% of all carrier landing accidents were vertical flight path control related, e.g. 

ramp strikes and hard landings [3]. This affirms the decision for this study to focus on 

pitch axis control strategies. 

2.3.3 Supplementary Research 

Bihrle [30] presents a study on aircraft characteristics that influence longitudinal handling 

qualities during a carrier approach. Approximately 7000 manual approaches were 

completed using a moving base simulator to evaluate the influence of short period 

frequency, damping ratio, load factor attainable per unit of angle of attack, tail length, 

operation on the backside of the trimmed power required versus speed curve, and engine 

thrust response on handling qualities. In addition, the influences of both an autothrottle 

and a Direct Lift Control system on the longitudinal handling qualities were 

investigated. 

It was found that the two most important quantities that affect the longitudinal handling 

qualities are the frequency of the short period mode and the magnitude of the load factor 

attainable per unit of angle of attack. The effectiveness of the pilot in the precision 

control loop is determined by the specific relationship between these two parameters 

known as the Control Anticipation Parameter (CAP). Upper and lower limits of Control 

Anticipation Parameter are presented. 

 It was found that damping ratio per se does not affect the precision control task. An 

influence of tail length on handling qualities was not detected. It was found that pilots 

operated well on the back side of the trimmed power required versus speed curve; 

however, beyond a certain point, performance was seen to degrade. This point was 

identified as where the slope of the curve is equal to -100 lbs per knot.  
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With respect to the operation of an Autothrottle and a Direct Lift Control system it was 

found that a poorly rated airframe, with respect to longitudinal handling qualities, can be 

appreciably upgraded by activating an Autothrottle system. The benefits to be realised 

from a Direct Lift Control system are most apparent for airframes that have both low 

CAP and load factor attainable per unit of angle of attack values. It is proposed that to 

realise the potential of a Direct Lift Control an effective Autothrottle system must be 

operating. 

The findings of Bihrle [30] with respect to the Control Anticipation Parameter and 

piloted operation on the back side of the power required versus speed curve are not 

directly relevant to this study. The findings with respect to Autothrottle and Direct Lift 

Control systems are directly applicable and are applied in the development of the flight 

control systems. Much of the discussion presented by Bihrle [30] serves to increase the 

understanding of the carrier landing environment from the point of view of Flight 

Control System development. 

Ebers et al. [31] present a study on ship motion effects on landing impact loads. A 

simulation study is discussed which considered V/STOL aircraft landing impact onto a 

moving deck. Surge, sway, heave, roll, pitch and yaw deck motions were considered for 

a selected ship hull, sea state, heading and ship speed. The results presented show that 

deck motions increase landing loads significantly. Three point, tail down and drift 

landing conditions were examined. In order to comply with landing loads criteria it is 

suggested that a maximum aircraft sink rate of 6.7 ft/sec be imposed in heavy sea 

conditions. The paper presents an interesting discussion on the effects of ship motion on 

landing impact loads; however the suggested maximum sink rate seems to be very 

restrictive and is not considered in the design and analysis of the flight control systems 

developed in this study but this should not preclude the findings of Ebers et al. [31] from 

being considered in follow on work from this study. 

Connelly [32] presents the development of a method of measuring the performance of an 

aircraft carrier approach and landing. The previous measure used, the Root Mean 

Square (RMS) of deviations from the desired glide path, can provide identical scores for 

both satisfactory and unsatisfactory flight paths. The method presented constructs a 
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second order performance model that measures performance according to how well the 

pilot controls the second derivative given the error and its first derivative. The results of 

the study were inconclusive with respect to the feasibility of the performance 

measurement method presented and as a consequence is not used in this study. 

As a result of the observation made by Connelly [32] with respect to the Root Mean 

Square of glide path deviations, and the lack of published carrier approach and landing 

performance criteria, it was decided to develop a set of dedicated performance metrics 

to be used in the analysis of a carrier approach and landing.  

Durand [33] presents a study on piloted longitudinal control during a carrier approach, 

focusing on the difficulty described by pilots as an inability to arrest sink rate or control 

altitude. It is suggested that this problem is theoretically traceable to a speed sensitive 

performance reversal associated with pilot control of attitude with elevator and altitude 

with throttle. The term performance reversal refers to a decreased altitude tracking 

bandwidth when the pilot is attempting to increase this bandwidth by tightening control 

with either stick or throttle. The speed at which this occurs closely corresponds to the 

minimum approach speed.  

A piloted simulation and subsequently a computer simulation study were conducted. An 

informative discussion is presented concerning the piloting techniques used during the 

different phases of an approach. It was found that a reduction in the static margin of the 

aircraft theoretically eliminated the reversal problem and experimentally received 

pronounced improvement in pilot ratings. It was also found that performance reversal 

was eliminated with pilot control of altitude with elevator, providing there is adequate 

means for holding constant airspeed. It was proposed that lower approach speeds are 

attainable for the pitch attitude and altitude controlled by elevator and speed controlled 

by throttle piloting technique compared with the pitch attitude controlled by elevator 

and height controlled by throttle method.  It was found during the piloted simulation 

phase of this study that a gradual switchover to elevator control of altitude was noted 

when within 5 to 10 seconds from the ramp.  Elevator control of altitude is used to make 

small precise height adjustments while all gross corrections are made with throttle 

irrespective of the approach phase.  
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Much of the study presented by Durand [33] is of little relevance to this study as the 

focus is entirely piloted control oriented; however, some insights into the control 

problems associated with carrier landings can be gleaned. The finding with respect to 

the use of elevator control for making precise height adjustments is of some interest as 

this method of control has been selected for the baseline control strategy. 

Brictson [34] presents a synopsis of a five-year program of human factors research on 

carrier landing performance. Empirical measures of day and night final approach to 

landing were recorded and used to describe differences in landing performance across a 

wide variety of aircraft, ship, pilot, LSO and environmental conditions. The empirical 

data were used to develop carrier landing performance criteria which were applied to 

evaluate and assess the relative influence of system components on carrier landing 

system effectiveness. However, these criteria were not presented.  

With respect to carrier landing accidents it was found that slow response, high approach 

speed aircraft accounted for the majority of aircraft involved and that pitching deck was 

found to be the most significant contributory factor in carrier landing accidents. As a 

result of this finding with respect to the pitching deck, and along with findings during 

the analysis of the performance of the control strategies developed as part of this study 

which concurred with this, a Variable Approach Speed Controller was developed. This 

system is presented in chapter 8. 

2.3.4 Ship Motion and Ship Motion Prediction 

Johnson [35] presents an analysis of aircraft carrier motions in high sea states as part of a 

program aimed at providing an analytical base useful in the development of improved 

carrier landing methods and systems. Pitch, roll and touchdown point displacement 

motion data for this study was recorded aboard the USS Independence. Characteristics 

of ship motion were observed and a short discussion on this is presented. Power 

Spectral Density (PSD) plots over appropriate time intervals were generated and these 

form the basis for the discussion presented by Johnson.  

It was found that for pitch and heave motions the centre frequency was typically 

between 0.5 and 0.7 rad/sec and the bandwidth was typically between 0.1 and 0.2 

rad/sec, characterising these motions as being essentially narrowband processes. The 
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general shapes of the PSD plots that show the roll spectra are more broad and flat in a 

head wave condition while in a beam wave conditions the spectra was found to have a 

very narrow band and highly peaked PSD profile. These results correlated well with 

prior studies and as a result it is suggested that these results be used in future analyses 

that require knowledge of large carrier motion characteristics. These results provide a 

useful means of evaluating the accuracy of a ship motion model at representing the 

motion of an aircraft carrier.  

Kaplan [36] presents a study of prediction techniques for aircraft carrier motions at sea. 

The focus of his study is a deterministic technique which uses wave height measured 

forward of the bow of the carrier as its input. A second method known as the Wiener 

prediction method is presented. This method is a statistical technique, where the 

predictor is derived on the basis of knowledge of the spectral characteristics of the 

stochastic variable under consideration. However, the implementation of this method 

requires a complete knowledge of the power spectrum of the signals to be predicted. 

The deterministic technique was found to have a prediction time of about 6 seconds. It 

is suggested that a Kalman filter applied to the wave motion input would have the effect 

of smoothing some of the prediction errors inherent in the technique; this would have 

the effect of extending the prediction time by up to an additional 3 seconds. With 

respect to the prediction time required by the proposed navigation strategy, this 

prediction method is not suitable for this study.  

Doolin and Sidar [37] present a study on the feasibility of real time prediction of aircraft 

carrier motion at sea. A predictor was designed on the basis of Kalman’s optimum 

filtering theory for the discrete time case, adapted for real time digital computer 

operation. A full derivation of this system is presented. The predictor uses power 

density spectrum function data for pitch and heave measured for various ships and sea 

conditions as its reference model.  

It was shown that motion can be predicted well for up to 15 seconds. An adaptive 

predictor scheme is suggested whereby ship motion variables are measured in real time 

and through the use of Fast Fourier Transform (FFT) algorithms a power density 

spectrum of the ships motion is calculated for use by the predictor. Again, with respect 
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to the prediction time required by the proposed navigation, this prediction method is not 

suitable for this study.   

Hess and Judd [38] present a study on improved Automatic Carrier Landing System 

using deck motion prediction. The study focused on the A-7E. Its slow response 

characteristics makes it a suitable aircraft to assess the benefits of deck motion 

prediction. A method of prediction is not presented; instead the Deck Motion 

Compensation mode of the Automatic Carrier Landing System was augmented to lead 

the actual ship motion and prediction was assumed to be exact. The results of this study 

show that deck motion prediction reduces touchdown dispersion. This study indicates 

that ship motion prediction has a positive effect on touchdown performance; however a 

method of ship motion prediction is not presented. 

Broome and Pittaras [39] present an adaptive ship motion predictor. The advantages of an 

adaptive solution is that no previous knowledge about the ship and the mathematical 

model describing its response to sea waves is necessary as a mathematical model is 

formulated on-line using System Identification (SI) techniques. The SI method is used 

and an Auto Regressive Moving Average with eXogenous Input (ARMAX) model is 

formulated and arranged so as to predict a selected variable. Real ship roll motion is 

used in the simulation of this technique. Results for prediction periods of 1, 5 and 10 

seconds are presented. The 1 second prediction period results compared very well with 

the actual motion while the 5 and 10 second prediction period results showed some 

deterioration. However, the prediction error did not increase in proportion to the 

prediction period. The predictor successfully predicted regular periodic motions, but 

performed less well in predicting sudden sharp motions. The predictor presented by 

Broome and Pittaras [39] is a follow on to that presented by Jefferys and Samra [40] 

In a subsequent PhD thesis Pittaras [41] fully developed the ideas introduced by Broome 

and Pittaras [39]. Background information into the system identification technique and 

the mathematical methods employed with the prediction technique are fully presented 

along with three case studies. One of the case studies includes comparison with an 

Extended Kalman Filter predictor. The results of this show that while the Extended 
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Kalman Filter successfully predicts the low frequency component of the motion the 

overall performance was marginally worse than the SI method. 

Broome and Hall [42] present an application of the prediction technique introduced by 

Broome and Pittaras [39]. The application presented is a display system that uses 

measured ship motion to predict and subsequently display actual and predicted ship 

motions and is used as a helicopter landing aid. Results of sea trials are presented which 

show that roll prediction reduced the number of landings where the ship roll angle 

would have been greater than a prescribed operating limit, in this case 5o, significantly. 

Broome [43] presents an extension to the previous work by examining the variation of 

ship motion due to ship heading changes relative to the dominant wave direction. Of 

particular interest was the variation in the coefficients of the Auto Regressive Moving 

Average with Exogenous Input model. The result of a ship changing heading was shown 

to cause a significant change on these coefficients. Considerable cross coupling of 

motion was evident in the data collected at sea between roll and heading. These changes 

to the coefficients of the model have the effect of reducing the accuracy of the 

prediction until a new model has been identified. A method was employed whereby the 

model was varied according to pre-calculated values of the coefficients as a function of 

heading; this had the effect of updating the model as the heading was changed reducing 

the time taken for the model to adapt to the new operating conditions. 

An adaptive predictor seems to address the shortfalls of the other available methods. In 

adaptive prediction there is no need to include any prior knowledge about the ship 

response in the algorithm. The ship mathematical model is formed on-line and is 

conveniently updated whenever it is necessary, due to changes in operating or weather 

conditions.  

Adaptive prediction promises to be the most suitable method for the purposes under 

consideration in this study, and in particular the research undertaken at the Department 

of Mechanical Engineering at University College London [39,40,41,42,43]. 

The main limitation of these adaptive prediction methods [39,40,41,42,43] is that no 

knowledge of the ship dynamics are assumed. The online model identification increases 
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the phase lags of the prediction scheme and hence reduces the bandwidth and associated 

prediction accuracy and accurate horizon times. Additional measurements of the sea 

state could also be incorporated with the effect of increasing the prediction horizon.  

In terms of predicting the three dimensional position of the touchdown point the latitude 

and longitude coordinates are relatively straightforward as the motion which has the 

greatest effect on these is essentially linear, i.e. aircraft carrier forward speed and 

direction. The vertical position of the predicted touchdown point is effected by two non-

linear aircraft carrier motions, pitch and heave, and as such represent the greatest 

challenge to prediction accuracy. 

2.4 FLIGHT CONTROL SYSTEM DESIGN 

A review of Flight Control System design literature directly associated with carrier 

landings has been presented in section 2.3.2. However, some more general Flight 

Control System design literature has been reviewed and is presented in this section. 

Flight Control System design is a multidiscipline activity. Knowledge of control theory, 

aerodynamics, aircraft flight dynamics and handling qualities, aero-servo-elasticity, 

aircraft loads, weight and balance, and simulation and modelling methods are required. 

A very accessible paper by Fielding [44] presents an overview of Flight Control System 

design and how these disciplines relate. 

The Research and Technology Organisation of the North Atlantic Treaty Organisation 

(NATO) present a report on ‘best practices’ of Flight Control System design [45]. The 

first part of this report presents examples of flight control design problems and lessons 

learned from these problems. These examples span the history of powered flight, from 

the Wright Flyer to the F-22. A series of recommended best practise are presented in 

relation to the design of flight control system based on lessons learned. Where 

appropriate these best practices have been applied. 

The second part of this report presents an extensive review of flying qualities, Pilot 

Induced Oscillations (PIO), and Modelling. This section provides an excellent reference 

source on these areas. A comprehensive reference list is also provided. This report, 
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especially the first part, is essential reading for anyone involved in the design and 

development of Flight Control Systems  

Throughout the course of this study two main reference texts were used. Cook [46] 

provides an invaluable reference for modelling, flight dynamics and basic Flight Control 

System design issues. McLean [47] provides an excellent reference text for more 

advanced Flight Control System design issues. 

In order to augment the available literature on Direct Lift Control and Thrust Vectoring 

techniques applied to carrier landing related Flight Control Systems literature relevant to 

other applications of these techniques were reviewed. A brief review of such literature is 

presented in the following sections. 

2.4.1 Direct Lift Control 

Prilliman et al. [48] and Henry et al. [49] present studies based on an F-8C aircraft 

modified to include Direct Lift Control. Neither paper presents a detailed description of 

the control system implementation. However, discussions are included on the 

aerodynamic implementation of Direct Lift Control and the benefits afforded by such a 

system during approach and landing. 

Although the same aircraft was used for both studies, some modification of the Direct 

Lift Control system was instigated as a result of the results presented by Prilliman et al. 

Both studies are concerned with manual operation of the Direct Lift Control system.  

The ailerons of the F-8C aircraft are positioned considerable inboard of the conventional 

aileron position and are drooped in the landing configuration. For the purposes of these 

studies the symmetric aileron deflection provided the means of aerodynamically 

effecting Direct Lift Control.  

An interconnect between aileron deflection and elevator was used to trim the Direct Lift 

Control induced pitching moment. For the study presented by Prilliman et al. [48] the 

neutral aileron droop deflection was reduced from the standard landing configuration.  
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The use of ailerons for Direct Lift Control had the effect of compromising lateral 

control authority, especially when the Direct Lift Control system deflected the ailerons 

to its maximum allowable deflection. This was found not to be a problem during the 

simulator and flight test trials presented by Prilliman et al. [48]. However the pilots 

expressed a desire for more lateral control authority.  

For the NASA study presented by Henry et al. [49] the neutral aileron position was 

reduced further and total aileron travel was increased. This had the dual effect of 

providing more lateral control authority and provided more ‘up-lift’ control for arresting 

excessive sink rates prior to touchdown. 

The inboard trailing edge flap deflection for landing was increased from 20 degrees to 

40 degrees. This had the effect of providing a linear relationship between Direct Lift 

Control induced pitching moment and symmetric aileron deflection. It also had the 

effect of recovering the lift lost due to the reduction in aileron droop. 

Two methods of activating the Direct Lift Control were provided. A bang-bang, or full 

authority only, and proportional control of the symmetric aileron deflection. A thumb 

wheel mounted on the centre stick was used as the pilot interface. It was noted that 

pilot’s preferred the proportional control method for small adjustments to aircraft 

approach glide path. 

Simulator and flight test results are presented by Prilliman et al. [48] of a comparison of 

the Direct Lift Control system and the standard aircraft controls. The intent was to 

augment the standard aircraft control mechanisms through the use of Direct Lift Control 

and so pilots used Direct Lift Control to correct small altitude errors and gross errors 

using standard aircraft controls. 

For the tests conducted it was found that there was significantly less dispersion in 

altitude error when using bang-bang or proportional Direct Lift Control as compared to 

standard aircraft controls alone. The flight test portion of this study conducted 

approaches to conventional runways as well as aircraft carriers.  

Henry et al. [49] presents the results of a flight test program of the F-8C Direct Lift 

Control aircraft augmented, as previously described. All approaches were flown to a 
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conventional runway. The conclusions of Henry et al. [49] concur with the conclusions of 

Prilliman et al. [48]. 

2.4.2 Thrust Vectoring 

The area of thrust vectoring has received considerable attention over the past two 

decades. There are many benefits to be afforded by the use of vectored thrust. These 

benefits include: low airspeed manoeuvring and agility; high angle of attack operations; 

recovery from deep stall or departure; backup for aerodynamic control surface in the 

case of damage or malfunction; reduction in trim drag; reduced tail size for reduced 

weight, drag and radar signature.  

The intent of this section is not to present a rigorous review all available related 

literature, but to briefly summarise the state of the art and to provide a context for the 

use of thrust vectoring in this study. 

Thrust vectoring is the capability to vector or point the thrust of an aircraft engine so as 

to control the aircraft. The thrust may be vectored by paddles located aft of the engine 

nozzle [50], by a gimballed engine nozzle [51] or by fluidic injected flow inside a fixed 

position engine nozzle [52]. 

Single engine aircraft employing thrust vectoring can use the vectored thrust as a means 

of pitch and yaw control. Twin engine aircraft employing thrust vectoring can use the 

vectored thrust for roll control as well as pitch and yaw control. Intuitively the control 

power of the vectored thrust is a function of thrust. 

Bowers et al. [53] present an overview of the High Alpha Research Vehicle (HARV) and 

the associated High Alpha Technology Program (HATP). An F-18 modified with three 

thrust vectoring paddles located aft of both engine nozzles was used to investigate 

control in the post-stall region of the high alpha envelope. Later in the research program 

forebody strakes were added to the aircraft.  

The research program consisted of three main phases. The first phase consisted mostly 

of aerodynamic research. The aerodynamic characteristics of the aircraft without thrust 

vectoring in the high alpha region were characterised. The second phase was dominated 
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by control research. The use of thrust vectoring increased the highest attainable alpha 

from 55 degrees for the basic aircraft to 70 degrees for the aircraft with thrust vectoring. 

The emphasis of the third phase was on forebody vortex control. A series of flight trials 

were conducted investigating the use of forebody strakes with and without thrust 

vectoring for enhanced roll control at high alpha. 

While the emphasis of the research presented by Bowers et al. [53] was on thrust 

vectoring at high angle of attack the inference is that thrust vectoring is a viable means 

of aircraft control.  

Bosworth and Stoliker [54] present a summary of flight test results of the X-31A 

Quasi-Tailless aircraft. The X-31A research aircraft has a thrust vectoring system 

similar to that of the F-18 HARV. In flight simulations were used to assess the effect of 

partial or total vertical tail removal. The rudder control surface was used to cancel the 

stabilising effects of the vertical tail, and yaw thrust vector commands were used to 

restabilise and control the aircraft. The desire to reduce or remove the vertical fin is 

driven by the desire to reduce an aircraft’s radar signature. 

A set of manoeuvres were flown to assess the effectiveness of yaw thrust vectoring to 

stabilise a tailless or reduced tail aircraft. These manoeuvres included a landing 

approach. This is significant in that a landing approach is flown at a low power setting, 

and hence reduced thrust vectoring control power. In order to increase the control 

power, speed brakes were deployed to increase the aircraft drag. A higher than normal 

power setting was thus used while the approach was flown at the normal speed. This 

had the effect of increasing the thrust vectoring control power. 

The flight test experiment presented by Bosworth and Stoliker [54] successfully 

demonstrated the ability to use thrust vectoring to replace the functions of stabilisation 

and turn coordination usually required of a rudder and vertical tail. Limitations were 

found when more control power was demanded than was available. 

In the context of this study, the use of thrust vectoring for stabilisation and control at 

approach power settings demonstrated by Bosworth and Stoliker [54] validate the use of 

thrust vectoring in this study. 
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3 DEVELOPMENT OF THE SIMULATION 
MODEL 

3.1 INTRODUCTION 

A simulation model is the most significant tool used in any Flight Control System 

design exercise. The confidence with which conclusions and recommendations can be 

made is directly proportional to the fidelity of the simulation model used. For this 

reason great attention was applied in the development of this simulation model.  

It was apparent from the literature survey that the simulation model necessary for this 

study required three main components: an aircraft model, an atmosphere model and an 

aircraft carrier dynamics model. The aim, with respect to all three components, was to 

develop a model that accurately describes reality and is appropriate to the carrier 

landing task. 

Figure 3-1 A Jindivik with Wing Tip Extensions 

The first component to be developed was the aircraft model. An aerodynamic and thrust 

model representative of a likely carrier based UCAV was sought. Factors such as 

physical size, weight, and performance were considered. Fortuitously such an aircraft 

model existed within Cranfield University [55]. Cranfield Aerospace Ltd. is the design 
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authority for the Jindivik UAV and previous flight dynamics investigations have been 

conducted on the aircraft by the staff of the College of Aeronautics. In addition, 

personal experience with the aircraft was gained through a previous study [56]. 

The Jindivik is a low/mid straight wing monoplane, controlled in pitch via elevators and 

trailing edge flaps, and in roll via ailerons alone, this aircraft does not have a rudder. A 

picture of a Jindivik is presented in Figure 3-1. The aircraft presented in Figure 3-1 has 

wing tip extensions, outboard of the wing pods, which are not included in the 

aerodynamic model used in this study. The Jindivik provides a suitable platform for this 

study owing to its physical size (length 23.25 ft, wingspan 21 ft), weight and 

performance. The aircraft’s flight envelope is presented in Figure 3-2. 
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Figure 3-2 Flight Envelope of the Mk 4A Jindivik 
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The aerodynamic model of the Mk 4A Jindivik presented by Gautrey and Cook [55] is 

based on manufacturer’s wind tunnel data and subsequent flight trial validation. This 
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aerodynamic data; although at the speeds of interest to this study flexibility is not a 

factor. 

The thrust model of the Jindivik’s engine, a Rolls-Royce Viper Mk 201 Turbojet, 

presented by Gautrey and Cook [55] is based on the model used in the Jindivik 

Procedural Trainer. 

Some modifications to the aerodynamic and thrust models were necessary in order to 

achieve the objectives of this study. Firstly a rudder model developed by Fitzgerald [56] 

was added to the basic model to allow independent control about all three axes. As 

Direct Lift Control is required, a spoiler model was developed using a method presented 

by ESDU [58,59,60]. Spoilers provide a means of dumping lift, while the aircraft’s trailing 

edge flaps can be used to increase lift. In addition, a conventional undercarriage model 

was added as the Jindivik uses a landing skid in place of standard undercarriage [61]. In 

order to facilitate thrust vectoring a simple thrust vectoring system was added to the 

thrust model. 

The aircraft model was completed with the addition of a Flight Control System 

developed by Fitzgerald [56]. A three axis Stability Augmentation System provides the 

airframe with consistent flying qualities characteristics across the entire flight envelope. 

Three basic autopilot modes were implemented, Altitude, Heading and an Autothrottle, 

to provide a means of controlling the aircraft. Associated sensor and actuator models 

were also included. 

The model developed by Gautrey and Cook [55] and subsequently used by Fitzgerald [56] 

was achieved using the Dymola simulation program. For this study Matlab and its 

associated graphical interface, Simulink, was chosen as the simulation platform. This 

choice was based on familiarity with the program, extensive use of this program in 

industry and the functionality which the program provides.  

The aircraft model was constructed in a modular manner to allow ease of 

reconfiguration and further development. The model was validated against the model 

presented by Gautrey and Cook [55] and also against the stability and control analysis of 

the basic airframe and augmented airframe presented by Fitzgerald [56]. 
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The second component of the simulation model to be developed was the atmosphere 

model. The underlying element of this is the International Standard Atmosphere [62] 

model which describes the atmospheric properties with respect to temperature, density 

and pressure from sea level to 65,617 ft i.e. the Troposphere and lower Stratosphere.  

While the altitudes of interest to this study are below 1000 ft the model was 

implemented in its entirety for completeness.  

From the literature review it was clear that atmospheric disturbance attenuation is a 

major consideration in the design of a Flight Control System for carrier based aircraft. 

Therefore it is crucial to model turbulence to a known and exacting standard. It was 

discerned from the literature review that it is necessary that the atmospheric disturbance 

model include atmospheric disturbances due to the motion and proximity of the aircraft 

carrier as well as inherent atmospheric disturbances [3,5].  

The Flying Qualities of Piloted Airplanes Military Specification document, 

MIL-F-8785C [63], presents such an atmospheric disturbance model. As this model is 

defined in the Military Specification document it is of a suitable standard and satisfies 

the objective of accurately modelling reality and it is appropriate to the carrier landing 

task.  

The MIL-F-8785C [63] atmospheric disturbance has four main elements: a turbulence 

model, a discrete gust model, a low altitude wind shear model and a carrier landing 

disturbance model. The model is defined from sea level to 80,000 ft. As with the 

International Standard Atmosphere the atmospheric disturbance was implemented in its 

entirety for completeness. 

A continuous time domain implementation of the MIL-F-8785C [63] atmospheric 

disturbance model was developed and integrated with the aircraft model. The 

atmospheric disturbance model outputs disturbance velocity components. These 

velocity components are summed to the aircraft velocity components with reference to 

the appropriate axes system. In effect, the disturbances defined by the MIL-F-8785C [63] 

atmospheric disturbance model are implemented as instantaneous aircraft velocity 

changes. 
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The final component of the simulation model to be developed was the aircraft carrier 

dynamics model. This model proved to be the most challenging with respect to the 

objectives of the simulation model development. A search was conducted for an 

appropriate model. Approximate models were found, such as summing sine waves of 

appropriate frequency and magnitude to represent pitch and heave motions. Such 

models, while adequate for approximating the motion of the aircraft carrier, would have 

the effect of reducing the fidelity of the entire model, and hence reducing the confidence 

in the conclusions and recommendations resulting from this study. 

The author of a commercially available ship motion model, SEAWAY [64,65,66], was 

contacted and a dialogue ensued which resulted in a copy of SEAWAY being made 

available for this study without charge. SEAWAY is a frequency domain ship motion 

Fortran simulation, based on linear strip theory, to calculate wave induced loads, 

motions, added resistance and internal loads for six degree of freedom displacements. 

The model was limited to a hull form most similar to that of an aircraft carrier. This 

model satisfies the objectives of the simulation model development. 

In order to integrate the aircraft carrier dynamics model into the complete model it was 

necessary to run the model off-line and store the aircraft carrier motion time history. 

When the complete model was executed the aircraft carrier time history was input to the 

simulation at each time step. This method of integration has the advantage of facilitating 

perfect ship motion prediction in an uncomplicated manner. 

A data flow diagram of the simulation model is presented in Figure 3-3. The simulation 

model is defined in the following sections and this definition is supplemented by 

Appendix A. The aerodynamic data from which the model is developed is not presented 

here; however, these are presented by Fitzgerald in a Cranfield University College of 

Aeronautics report [67]. 
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Figure 3-3 Simulation Model Data Flow Diagram 

3.2 AXES SYSTEM AND NOTATION 

Three axes systems are used in the development of this simulation model. A fixed axes 

system relative to a point on the surface of the earth, referred to as the ‘Earth Axes’, a 

fixed axes system relative to the aircraft’s centre of gravity, referred to as the ‘Body 

Axes’ and a fixed axes system relative to the aircraft carrier’s centre of gravity, referred 

to as the ‘Carrier Body Axes’. 

The Earth and Body axes systems follow the convention and notation defined by 

Cook [46]. This convention has been applied to the Carrier Body Axes system. 
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3.2.1 EARTH AXES 

The earth axes system, ( ), , ,E E E Eo x y z , used in this simulation is defined relative to a 

reference point 0o  on the surface of the earth which is the origin of a right-handed 

orthogonal system of axes ( )0 0 0 0, , ,o x y z , where 0 0o x  points to the north, 0 0o y  points to the 

east and 0 0o z  points vertically down along the gravity vector, as illustrated in Figure 3-4. 

As the distance travelled by both the aircraft and aircraft carrier in the simulation are 

relatively small when compared to the dimensions of the earth, the earth’s curvature is 

ignored and the earth’s surface is assumed to be flat. 

Figure 3-4 Earth Axes [46] 

3.2.2 AIRCRAFT BODY AXES 

The aircraft body axes system ( ), , ,B B Bo x y z  is defined as a right handed orthogonal axes 

system which is fixed in the aircraft and constrained to move with it. The origin o  of 

the axes is fixed coincident with the centre of gravity of the aircraft. The aircraft body 

axes system is presented in Figure 3-5. 
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Figure 3-5 Aircraft Body Axes [46] 

3.2.3 AIRCRAFT CARRIER BODY AXES  
The aircraft carrier body axes system ( ), , ,ac B B Bac ac ac

o x y z  is defined as a right handed 

orthogonal axes system which is fixed in the aircraft carrier and constrained to move 

with it. The origin of the axes system, aco , is fixed coincident with the centre of gravity 

of the aircraft carrier. All motion variables outputted by the carrier dynamics model are 

referenced to the aircraft carriers body axis system. The aircraft carrier body axes 

system is presented in Figure 3-6. 

 
 

Figure 3-6 Aircraft Carrier Body Axes 

3.2.4 AIRCRAFT NOTATION 

The motion of the aircraft is described in terms of force, moment, linear and angular 

velocities and attitude resolved into components with respect to the aircraft body axes 

system. These variables are presented in Figure 3-7 and summarised in Table 3-1. 
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Figure 3-7 Aircraft Motion Variables Notation [46] 

 

X Axial ‘drag’ force 

Y Sideforce 

Z Normal ‘lift’ force 

Sum of the components of aerodynamic, 
thrust and gravitational forces. 

L Rolling moment 

M Pitching moment 

N Yawing moment 

Sum of the components of aerodynamic, 
thrust and gravitational moments. 

p Roll rate 

q Pitch rate 

r Yaw rate 

Components of angular velocity. 

U Axial velocity 

V Lateral velocity 

W Normal velocity 

Total linear velocity components of the 
centre of gravity. 

φ Roll attitude 

θ Pitch attitude 

ψ Yaw attitude 

Components of angular attitude. 

Table 3-1 Aircraft Motion Variables Notation [46] 
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3.2.5 AIRCRAFT CARRIER NOTATION 

The motion of the aircraft carrier is described in terms of linear velocities and attitude 

resolved into components with respect to the aircraft carrier's body axes system. These 

variables are presented in Figure 3-8 and summarised in Table 3-2. 

 

 

Figure 3-8 Aircraft Carrier Motion Variables Notation 

 
Uac Axial velocity 

Vac Lateral velocity 

Wac Normal velocity 

Total linear velocity components of the 

centre of gravity. 

φac Roll attitude 

θac Pitch attitude 

ψac Yaw attitude 

Components of angular attitude. 

Table 3-2 Aircraft Carrier Motion Variables Notation 

3.2.6 CONTROL ANGLE DEFINITIONS 

The elevator, aileron and rudder control angle deflections are defined so that a positive 

control surface displacement gives rise to a negative aircraft response. Spoiler deflection 

is limited to travel in one direction and consequently this direction is defined as 

positive. 

The sign convention employed in the implementation of vectored thrust defines the 

longitudinal thrust vectoring angle, τθ , as being positive when deflected downwards, or 
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in the positive body axes z axis direction, and the lateral thrust vectoring angle, τφ , as 

being positive when deflected starboard. The definition of lateral thrust vectoring angle 

is opposite to the standard convention applied to aircraft control angle. 

3.3 AIRCRAFT MODEL  
The generic UCAV modelled is based on the aerodynamic properties of the Mk 4a 

Jindivik UAV and the engine characteristics of the Rolls-Royce Viper Mk 201 turbojet. 

The Mk 4a Jindivik UAV has elevator, aileron and trailing edge flap aerodynamic 

control surfaces and uses a skid as undercarriage. In this implementation the 

aerodynamic model has been augmented to include a rudder, spoilers and conventional 

undercarriage using methods presented by the ESDU [58,59,60,61,68]. Details of these 

modifications are presented in the following sections. The full definition of the 

aerodynamic model is presented by Fitzgerald in a Cranfield University College of 

Aeronautics report [67]. A three view drawing of the Mk 4a Jindivik is presented in 

Figure 3-9. 

Figure 3-9 Mk 4a Jindivik Three View Drawing 
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The aircraft model is presented in the form of a data flow diagram in Figure 3-10. The 

principle element of the aircraft model is the equations of motion. The equations of 

motion describe the motion of the aircraft in terms of its body axes velocity components 

and angular rates as a function of the disturbing forces and moments. The equations of 

motion are presented in section 3.3.2. 

Figure 3-10 Aircraft Model Data Flow Diagram 

In this case the disturbing forces and moments are defined as aerodynamic, thrust and 

gravitational. These forces and moments are defined in sections 3.3.3, 3.3.4 and 3.3.5 

respectively.  

The velocity components of the aircraft relative to the airflow are calculated by 

summing the aircraft body axes velocity components with the atmospheric disturbance 

velocity components referred to the aircraft’s body axes system. The aerodynamic and 

thrust moments and forces are calculated using the velocity components of the aircraft 

relative to the airflow. In this manner the effects of atmospheric disturbances on the 

aircraft motion is determined. 

The aircraft’s Flight Control System controls the aerodynamic and thrust forces and 

moments via the aerodynamic control surfaces, the throttle and thrust vectoring paddles 
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to attain the desired aircraft response. The Flight Control System, presented in section 

3.3.7, contains sensors, actuators, a three axis Stability Augmentation System and 

autopilot modes.   

3.3.1 LIMITATION OF MODEL 

The flight envelope limitations assumed for the aerodynamic model are as follows [55]: 

• Altitude between sea level and 20,000 ft. 

• True airspeed between 180 and 530 knots. 

• Bank angles up to 80 degrees. 

• Normal acceleration in the range –2g to +8g. 

• Maximum Mach number 0.86. 

The limitations are defined by the range in which aerodynamic data are available. The 

landing airspeed of the aircraft 140 knots. This is outside of the limits of the model. 

However, extrapolation of the aerodynamic data is acceptable as the aerodynamic 

properties of the aircraft are essentially linear in this region.  

There are two trailing edge flap positions of the Jindivik. When the trailing edge flap is 

fully retracted it is actually deflected 1 degree and when fully extended it is deflected 20 

degrees. Aerodynamic data for both flap positions has been included in the aerodynamic 

model. The aerodynamic properties are assumed to vary linearly when the trailing edge 

flap is in motion. 

For the purposes of the Direct Lift Control investigation the maximum deflection of the 

trailing edge flaps has been increased to 35 degrees and the aerodynamic properties 

have been linearly extrapolated accordingly. 

3.3.1.1 RUDDER 

The method of estimating the rudder control derivatives is applicable to low speed 

applications where the fin is reasonably well aft of the wing [68]. Low speed is not 

defined by ESDU nor is what is considered a reasonable distance of the fin from the 

wing. However, the speed considered in this study is considered to be acceptable as 
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being low speed. Also, the fin is not located close to the wing relative to the overall 

dimensions of the planform.  

Rudder characteristics generally depart slowly from linearity as rudder deflection 

increases beyond 10 or 20 degrees depending on the rudder nose shape. As the rudder 

modelled is hypothetical, and it has been modelled for the purposes of investigating yaw 

control on the aircraft, rather than the effects of a particular rudder design, the non-

linear characteristics have been ignored. 

3.3.1.2 SPOILERS 

The method of estimating spoiler aerodynamic effects is applicable to wing and flap 

geometry of the Jindivik. The airspeed and angle of attack range of the landing approach 

are within the applicability envelope of the estimation method. The spoiler geometry 

and position on the wing are in accordance with the method used. The increment of lift 

and drag coefficient estimated are accurate to within ± 10% [59,58,60]. This level of 

accuracy is acceptable as the spoilers modelled are hypothetical and adequately 

represent the effects of symmetric spoiler deflection. 

When a spoiler is suddenly extended at high rotational speed, the flow over the upper 

surface of the wing separates from the spoiler tip because of surface discontinuity. 

Because of the intensive shear flow near the tip, the resulting shear layer rolls up to 

form a strong starting vortex behind the spoiler. This starting vortex induces an initial 

increase in lift; this is referred to as adverse lift. Once the spoiler reaches its maximum 

deflection, the vortex stops growing and detaches from the spoiler tip to convect 

downstream. As the vortex moves farther downstream, the lift will decrease and 

eventually attain its steady state value. The effects of adverse lift are short in 

duration [69, 70].  

The effects of transient adverse lift induced by spoilers can be reduced by suitably 

positioning the spoiler on the wing and by introducing a gap between the spoiler and the 

wing [69]. In this implementation the transient adverse effects of spoilers is assumed 

negligible as it is assumed that if spoilers were to be designed so as to effect Direct Lift 

Control the design would be such as to minimise the adverse lift effects and the 

associated Direct Lift Control system would be tuned accordingly. 
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3.3.1.3 UNDERCARRIAGE 

The method of estimating the increment of total drag due to undercarriage deflection is 

accurate to within ± 30% [61]. This level of accuracy is acceptable as the undercarriage 

modelled is hypothetical and it has been included in the simulation model to 

approximate the drag effects due to the presence of conventional undercarriage. 

3.3.2 EQUATIONS OF MOTION 

The generalised six degree of freedom equations of motion of a rigid symmetric 

airframe having uniform mass distribution are presented in equation 3-1 [46]. By 

calculating the disturbing forces and moments, and knowing the initial values of the 

body axes velocities, Ui, Vi, Wi, and body axes rotational rates, pi, qi, ri,  the equations of 

motion can be solved for the body axes velocities, U, V, W, and body axes rotational 

rates, p, q, r.  
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The generalised equations of motion derived from first principles and the subsequent 

derivation of the aircrafts attitude, relative velocity, earth velocity and earth position are 

presented in Appendix A and the formulation of the aerodynamic, gravitational and 

thrust moments and forces are presented in the following section.  
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3.3.3 AERODYNAMIC FORCES AND MOMENTS 

All equations defining the aerodynamic forces and moments have been extracted from 

Gautrey and Cook [55]. These equations have been augmented to include the 

aerodynamic effects of a rudder, spoilers and conventional undercarriage. The 

aerodynamic effects of symmetric spoiler deflection and the effects of conventional 

undercarriage are defined in Appendix A. 

The aerodynamic effects of a rudder design for the Jindivik are presented by 

Fitzgerald [56]. In this MSc thesis Fitzgerald defines the geometry of a rudder design for 

the Jindivik and using methods presented by ESDU calculates the coefficients of 

sideforce, rolling moment and yawing moment due to deflection of that rudder.  

The body axes aerodynamic forces are defined as [55] 
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The body axes aerodynamic moments are defined as [55] 
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The lift coefficient, LC , is defined as [55] 

 T
L L Lwb T

SC C C
S

 = + 
 

 (3-4) 



Development of the Simulation Model 

- 59 - 

The wing-body lift coefficient, Lwb
C , is defined as [55] 

 ( )1 0L wb Lwb wb s
C a Cα α= − +  (3-5) 

Where Ls
C  is lift coefficient increment due to the symmetric deflection of spoilers and is 

defined in Appendix A. 

The tailplane lift coefficient, LT
C , is defined as [55] 

 1 2L TT T T
C a a ηα δ= +  (3-6) 

The drag coefficient, DC , is defined as [55] 

 
MD D D D D D Di Z C C s ucL Lcrit

C C C C C C C
>

= + + + + +  (3-7) 

where Ds
C  is the drag coefficient increment due to symmetric spoiler deflection 

and Duc
C is the drag coefficient increment due to the extension of undercarriage. Ds

C  and 

Duc
C  are defined Appendix A. 

The sideforce coefficient, YC , is defined as [55] 

 1
2Y Y Y R Y Tp v

C C ps C V C V ςς
δ= + +  (3-8) 

The derivation of the coefficient of sideforce due to deflection of rudder, YC
ς
, is 

presented by Fitzgerald [56]. 

The pitching moment coefficient, mC , is defined as [55] 
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 (3-9) 

The wing-body combination coefficient of normal force, zwb
C , is defined as [55] 

 ( )1 cos sinz L Dwb wb
C C Cα α= − +  (3-10) 

The wing-body combination coefficient of axial force, xwb
C , is defined as [55] 
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 sin cosx L Dwb wb
C C Cα α= −  (3-11) 

The rolling moment coefficient, lC , is defined as [55] 

 ( )l l l l T l T l Tr p v
C C r C p s C V C V C Vξ ςξ ς

δ β δ= + + + +  (3-12) 

The derivation of the coefficient of rolling moment due to deflection of rudder, lC
ς
, is 

presented by Fitzgerald [56]. 

The yawing moment coefficient, nC , is defined as [55] 

 ( )n n n n T n T n Tr p v
C C r C p s C V C V C Vξ ςξ ς

δ β δ= + + + +  (3-13) 

The derivation of the coefficient of yawing moment due to deflection of rudder, nC
ς
, is 

presented by Fitzgerald [56]. 

3.3.4 THRUST MODEL 

The Thrust characteristics of the Rolls-Royce Viper Mk 201 turbojet engine are 

implemented in the simulation model. The thrust model is presented in Appendix A.  

A simple thrust vectoring representation is implemented in the simulation. This 

implementation assumes perfect thrust vectoring, i.e. no loss of thrust due to vectoring. 

It also assumes that the thrust line is coincident with the body axes x axis. 

Consider the thrust force,Tτ , deflected vertically at some angle, τθ , and laterally at some 

angle, τφ , from an axes system ( ), , ,t t t to x y z , where ( )t to x  is coincident with the body 

axes x axis and the plane ( )t t to y z  is aligned with the engine exhaust nozzle. 
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Figure 3-11 Thrust Vectoring Force Components 

The axial and lateral components of thrust, ThrustX and ThrustY , are defined as 
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The normal component of thrust, ThrustZ , is defined as 

 sinThrust tZ Tτ θ=  (3-15) 

The moments about the ,x y  and z  aircraft body axes due to vectored thrust are defined 

as 
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where the axial distance from the aircraft’s centre of gravity to the engine exhaust 

nozzle, thrustl , in this case is defined as 

 ( )13.37 fthrust cgl h c t= −  (3-17) 
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3.3.5 GRAVITY MODEL 

As the body axes origin is coincident with the centre of gravity the gravitational forces 

and moments referred to the body axes may be defined as 
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where the direction cosine matrix, BED ,  is defined in Appendix A.  

3.3.6 MASS AND INERTIA PROPERTIES 

The zero fuel mass of the aircraft, 2716 lbszfm =  [55], the aircraft’s maximum fuel 

capacity is 153 gals (the mass of one gallon of fuel is 7.8 lbs). The movement of the 

position of the centre of gravity as a percentage of wing chord, cgh , and the aircrafts 

mass, m , with fuel burn is presented in Figure 3-12. The aircraft’s mass is hence defined 

as [55] 

 7.8zfm m f= +  (3-20) 

The moments of inertia about the ox , oy  and oz  axes are presented in Appendix A as a 

function of aircraft mass, m . All products of inertia are defined as 

 0xy xz yx yz zx zyI I I I I I= = = = = =  (3-21) 
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Figure 3-12 Centre of Gravity, cgh , and Aircraft Mass, m , as a Function of 
Useable Fuel [55] 

3.3.7 FLIGHT CONTROL SYSTEM 

A flight control system consisting of a sensor suite, actuators a three axis full authority 

Stability Augmentation System, and autopilot modes have been implemented in the 

simulation model to provide a means of controlling the aircraft and as a baseline for 

further flight control development studies.  

The general arrangement of the Flight Control System is presented in Figure 3-13. 

Variables which describe the aircraft’s state are passed through the sensor suite. The 

outputs of the sensor suite are measured variables describing the aircraft’s state. The 

sensor suite is discussed in section 3.3.7.1.  

The inputs to the actuator models are control surface demands and the outputs are 

control surface positions. The control surface demands are a sum of the autopilot and 

Stability Augmentation System control surface demands. The actuator models are 

discussed in section 3.3.7.2. 
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Figure 3-13 Flight Control System Data Flow Diagram 

The Stability Augmentation System consists of proportional control of feedback and 

feedforward signals for the purposes of augmenting the stability and control 

characteristics of the basic airframe. For illustration purposes the feedforward element 

of the Stability Augmentation System is not presented in Figure 3-13. The Stability 

augmentation system is discussed in section 3.3.7.3.  

The Autopilots consists of a combination of proportional, integral, and derivative 

control of an error signal in the feedforward path. The error signal is defined as the 

difference between the autopilot command and the appropriate aircraft state. The 

autopilot modes implemented in this model are discussed in section 3.3.7.4. 

3.3.7.1 SENSORS 

The sensor suite implemented in the simulation model includes an angle of attack probe, 

sideslip vane, accelerometers, rate gyros, attitude gyros, static and dynamic pressure 

sensors, Mach meter, altimeter and velocity meter. The majority of the sensor dynamics 

models have been extracted from Messina et al 

[71]. These models are defined in 

Appendix A. 

3.3.7.2 ACTUATORS 

Second order, no load, elevator, aileron, rudder, trailing edge flap, spoiler and thrust 

vectoring paddles actuator models presented by Messina et al 

[71] have been implemented 

in the simulation model. A first order undercarriage actuator model has also been 

implemented. These models are defined in Appendix A. 

It is accepted that the no load assumption will result in optimistic performance with 

respect to actuator rate limiting. However this is sufficient for the purposes of this study. 
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3.3.7.3 STABILITY AUGMENTATION SYSTEM 

A three axis stability augmentation system developed by Fitzgerald 

[56] has been 

implemented in the simulation model. The architecture, control laws and control system 

gains for the pitch, roll and yaw Stability Augmentation Systems are presented in the 

following sections. 

The stability augmentation system presented provides the aircraft with stability and 

control characteristics consistent to level 1 flying qualities characteristics, defined by 

the MIL-F-8785C [63], across the flight envelope. The approach controllers developed as 

part of this study has incorporated this system. A full stability and control analysis of 

the aircraft, with and without stability augmentation, as well as  the design of the 

Stability Augmentation System is presented by Fitzgerald [56]. 

3.3.7.3.1 PITCH STABILITY AUGMENTATION SYSTEM 

The pitch SAS architecture is presented in Figure 3-14 and the associated control laws 

are defined by equations 3-22 and 3-23 [56]. 

Figure 3-14 Pitch Stability Augmentation System [56] 

 act q sd trim
k k qθ ε ηη θ δ= − +  (3-22) 

 d Ts
k Vτ τδ τ= −  (3-23) 

The pitch SAS gains, qk , kθ  and kτ  are scheduled with dynamic pressure, dynq , and 

trailing edge flap position, fδ , to provide consistent stability and control properties 

across the flight envelope and configuration. qk , kθ  and kτ are defined in figures 3-15, 
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3-16 and 3-17. It should be noted that the trailing edge flap deflection is limited from 1 

to 20 degrees. 
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Figure 3-15 qk  as a Function of Dynamic Pressure and Flap Position 

[56] 
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Figure 3-16  kθ  as a Function of Dynamic Pressure and Flap Position 

[56] 
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Figure 3-17 kτ  as a Function of Dynamic Pressure and Flap Position 

[56] 

The control system gains qk , kθ  and kτ vary linearly with flap position, this may be 

expressed  as 

[56] 

 ( )20 1

1
1

19
f f

ff

k k
k k δ δ

δ δ= =

=

− 
= + −  

 
 (3-24) 

3.3.7.3.2 ROLL STABILITY AUGMENTATION SYSTEM 

The roll SAS architecture is presented in Figure 3-18 and the associated control law is 

defined by equation 3-25 [56]. 

Figure 3-18 Roll Stability Augmentation System [56] 

 act p sd
k k pφ εξ φ= −  (3-25) 
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The control system gains pk and kφ are selected as 

[56] 

 2.5 rad/rad/sec 2.2 rad/radpk kφ= − = −  (3-26) 

3.3.7.3.3 YAW STABILITY AUGMENTATION SYSTEM 

The yaw SAS architecture is presented in Figure 3-19 and the associated control law is 

defined by equation 3-27  

[56]. 

Figure 3-19 Yaw Stability Augmentation System 

[56] 

 act r sd d
k rζζ δ= −  (3-27) 

The control system gain rk is selected as 

 4.63rad/rad/secrk = −  (3-28) 

3.3.7.4 AUTOPILOTS 

An altitude acquire and hold autopilot, heading acquire and hold autopilot, and an 

autothrottle developed by Fitzgerald 

[56] have been implemented in the simulation model. 

These autopilots were implemented to provide a baseline Flight Control System and to 

facilitate investigation of control properties of the aircraft during the design of the 

approach controllers. These autopilots are defined in Appendix A. 

3.4 ATMOSPHERE MODEL 

The aerodynamic and thrust models presented are for an aircraft in atmospheric flight; 

hence a model of the International Standard Atmosphere [62], an atmospheric disturbance 

model [63] including a carrier airwake disturbance model 

[63] have been implemented. 

The aerodynamic and thrust forces and moments are calculated using the local 

temperature, pressure and density determined by the International Standard Atmosphere.  
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The output of the atmospheric disturbance model are disturbance velocity components 

relative to the earth axes system. The velocity of the aircraft relative to the airflow is 

calculated by summing the aircraft body axes velocity components to the disturbance 

velocity components suitably transformed relative to the body axes system. These 

relative velocity components are used in the calculation of the aerodynamic and thrust 

forces and moments; hence the atmospheric disturbance effects on the aircraft motion 

are determined.  

3.4.1 INTERNATIONAL STANDARD ATMOSPHERE 

The ISA implementation in the simulation model defines the atmospheric properties 

with respect to pressure, P , temperature,T , and density, ρ , from sea level to 65,617 ft, 

i.e. the Troposphere and the lower Stratosphere.  

The ISA is based on the assumption that the air consists of a perfect gas which obeys 

the equation of state  

 P RTρ=  (3-29) 

where the universal gas constant is defined as  

 ( )-17 -1 o8.31436 10 ergs mol KR x=  (3-30) 

Sea level pressure, OP , sea level temperature, OT , and sea level density, Oρ , are defined as 

 o
O

3
O

1013.25mb

T 288.15 K

0.07647425 lb/ft

OP

ρ

=

=

=

 (3-31) 

Temperature is defined to vary linearly from sea level with altitude, i.e. 

 ( )O LT T T h= +  (3-32) 

where the temperature lapse rate, LT , is defined as 
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O

O

0.00198 K/ft 0< h 36,089ft

0 K/ft 36,089< h 65,617ft

L

L

T

T

= − ≥

= ≥
 (3-33) 

By applying the equation of state, equation 3-29, at sea level and by combining this with 

the equation of state at any point in the atmosphere an equation of relative properties 

can be derived 

 
O O O

P T
P T

ρ
ρ

=  (3-34) 

Pressure, P , and density, ρ , may be calculated at any altitude in the ISA by 

simultaneous use of equations 3-29 and 3-34 using the definition of the universal gas 

constant, R , the sea level definition of pressure, OP , temperature, OT , and  density, Oρ , and 

the temperature,T , calculated using the appropriate lapse rate, LT . 

The local speed of sound in air, a , a function of local temperature, T , is defined as 

 a RTγ=  (3-35) 

where the specific heat ratio of air 1.4γ = . 

3.4.2 ATMOSPHERIC DISTURBANCE MODEL 

The atmospheric disturbance model implemented is that as presented in 

MIL-F-8785C [63]. There are three main components to this model: a turbulence model, 

a discrete gust model and a low altitude windshear model. Two turbulence models are 

presented in MIL-F-8785C, the von Karman form and the Dryden form. The Dryden 

form has been implemented in this instance due to ease of implementation in the time 

domain. In addition a steady wind model is also implemented. The method of 

integrating the disturbance models with the aircraft dynamics model is presented in 

Appendix A. 

3.4.2.1 TURBULENCE MODEL 

The Dryden form of the spectra for the turbulence velocities is 
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 (3-36) 

where , ,u v wL L L are the axial, lateral and normal turbulence scale lengths respectively and 

, ,u v wσ σ σ  are the axial, lateral and normal turbulence intensities. Turbulence scales and 

intensities are defined in Appendix A for low altitude and medium/high altitude cases. 

Equation 3-36 can be rewritten as a transfer function as presented in equations 3-37 

[72], 

which represents filters through which band limited white noise,ϖ , is passed to obtain 

the appropriate turbulence velocities. 
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 (3-37) 

where , ,t t tu v w  are the resulting axial, lateral and normal turbulence velocities and are 

defined with reference to the earth axes system.  

An example of turbulence at an altitude of 1000 feet generated in the aforementioned 

manner is presented in Figure 3-20. The turbulence intensities used here, and for all 

further instances involving turbulence are calculated using the following probabilities of 

exceedance: Light = 1, Moderate = 1x10-2 and Severe = 1x10-3. 
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Figure 3-20 Sample Turbulence Time History 
Light [       ] Moderate [       ] Severe [      ] 

3.4.2.2 DISCRETE GUST MODEL 

The discrete gust as defined by MIL-F-8785C 

[63] has the “1 – Cosine” shape given by 

equation 3-38 and illustrated in Figure 3-21. 
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 (3-38) 

 
 

Figure 3-21 Discrete Gust Profile  

[63] 
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Where gust magnitudes, , ,g g gu v w , are defined in Appendix A and gust lengths, , ,x y zd d d , 

are user defined so that the gust can be tuned to each of the natural frequencies of the 

aircraft and its FCS. Gust magnitudes are defined with reference to the earth axes 

system. 

An example of a two sided gust, i.e. dissipation of the gust defined as the negative of the 

onset, is presented in Figure 3-22. The gust lengths used in each case are , , 1110x y zd d d =  

feet. 
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Figure 3-22 Sample Discrete Gusts 
Light [       ] Moderate [       ] Severe [      ] 

3.4.2.3 WIND SHEAR 

The magnitude of the wind scalar shear, ww , is defined by equation 3-39, which 

expresses the mean wind profile as a function of altitude, h , and the wind speed at an 

altitude of 20 feet, 20u . In this application only vertical wind shear is considered. Wind 

shear is defined with reference to the earth axes system. 

 
( )
( )

0

20

0

ln
ln 20ws

h z
w u

z
=  (3-39) 
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where the altitude of zero wind shear 0 0.15z = feet for Category C flight phase and 

2.0 feet for other flight phases. Category C flight phase, as defined by 

MIL-F-8785C [63], are terminal flight phases that are normally accomplished using 

gradual manoeuvres and usually require accurate flight path control. Wind speed at an 

altitude of 20 feet, 20u , is defined in Appendix A. 

The wind shear at an altitude of 1000 feet as a function of probability of occurrence, χ , 

is presented in Figure 3-23. 
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Figure 3-23 Wind Shear at 1000 Feet as a Function of Probability of Occurrence 

3.4.2.4 STEADY WIND 

The axial and lateral steady wind components with reference to the earth axes system 

are defined as per equation 3-40. 

 
( )

( )

sin

cos

w w w

w w w

u U

v U

θ

θ

=

=

 (3-40) 

where wU  is the absolute magnitude of the steady wind and wθ  is the bearing of the 

steady wind. 
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3.4.3 CARRIER LANDING DISTURBANCE MODEL 

This model, defined in MIL-F-8785C, supplements but does not replace the low altitude 

model presented in section 3.4.2. The terminal approach carrier landing disturbance 

model is used during simulation of the last half mile of the carrier approach. The carrier 

landing disturbance model velocity components are defined relative to the aircraft 

carrier body axes system. Total disturbance velocities are computed by adding 

components caused by random free-air turbulence, 1 1 1, , ;u v w  steady carrier-wake 

disturbance, 2 2, ;u w  periodic ship-motion-induced turbulence, 3 3, ;u w  and random ship-

wake disturbance, 4 4 4, ,u v w . The total air disturbance components ,c cu v  and cw are then 

computed as: 

 

1 2 3 4

1 4

1 2 3 4

c

c

c

u u u u u

v v v

w w w w w

= + + +

= +

= + + +

 (3-41) 

3.4.3.1 FREE AIR TURBULENCE COMPONENTS 

The free air turbulence components, which are independent of aircraft relative position, 

are calculated by filtering the output of white noise generators to produce the following 

spectra: 
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Equations 3-42 can be rewritten as a transfer function as presented in equations 3-43 

which represent filters through which band limited white noise,ϖ , is passed to obtain 

the appropriate turbulence velocities. 
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3.4.3.2 STEADY COMPONENT OF CARRIER AIR WAKE  

The steady components of the carrier airwake consist of a reduction in the steady wind 

and a predominant upwash aft of the carrier which are functions of aircraft relative 

position. Figure 3-24 illustrates the steady wind functions 2 w du V  and 2 w dw V  as 

functions of aircraft position aft of the carrier’s centre of pitch, where w dV  is steady 

wind over the deck. For the purposes of this study it was assumed that the carrier’s 

centre of pitch is coincident with the carrier’s centre of gravity.  

Figure 3-24 Carrier Burble Steady Wind Ratios as a Function of Aircraft Relative 
Position, cX  [63] 
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3.4.3.3 PERIODIC COMPONENT OF CARRIER AIR WAKE  

The periodic component of the airwake varies with carrier pitching frequency, pω  pitch 

magnitude, acθ , wind over deck, w dV , and aircraft relative position, cX . These components 

are computed as per equation 3-44. 
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3

3

2.22 0.0009

4.98 0.0018
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ac w d c

ac w d c

T w d c
p

w d w d

u V X C

w V X C

V V XC cosine t
V V

θ

θ

ω

= +

= +

   − = + + +         

 (3-44) 

where carrier pitch frequency, pω , is in units of radians/sec, carrier pitch amplitude, acθ , 

in units of radians, random phase, P , in units of radians and aircraft relative position, cX , 

in units of feet. The u  component is set to zero for 2236cX < − feet, and the w  

component is set to zero for 2536cX < −  feet. 

In the actual implementation, carrier pitching frequency is not readily available; instead 

the dominant frequency of the PSD of carrier pitching motion is used. 

3.4.3.4 RANDOM COMPONENT OF CARRIER AIR WAKE  

The carrier related random velocity components are computed by filtering white 

noise, Rϖ , as per equation 3-45. 
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 (3-45) 

where the rms amplitude, ( )
4u cXσ , in units of feet/sec is presented in Figure 3-25, and the 

time constant, ( )cXτ ,  is also presented in Figure 3-25. The white noise, Rϖ , is calculated as 

per equation 3-46.  

 ( )
random number

sin 10
output 0.1R

j t
j

ωϖ π
ω

   
=    +   

 (3-46) 
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Figure 3-25 u-component Burble Time Constant and Variance of Random Carrier 

Airwake [63] 

3.4.3.5 CARRIER DISTURBANCE MODEL EXAMPLE 

An example of the disturbance velocities generated using the carrier disturbance model 

is presented in Figure 3-26. In this case, the carrier dynamics are defined by a speed of 

33 knots and a steady wind speed of 24.5 knots. 
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Figure 3-26 Carrier Disturbance Model Example 

3.5 AIRCRAFT CARRIER DYNAMICS MODEL 

A six degree of freedom ship motion simulation program called SEAWAY[64,65] has 

been integrated into the modelling environment. SEAWAY has been developed and 

validated through many years of industry and academic cooperation by Professor Johan 

Journée formerly of the ship hydromechanics laboratory at Delft University in The 

Netherlands. The extensive validation of this program is presented by Journée [66]. 

As previously stated SEAWAY is a frequency domain ship motion Fortran simulation, 

based on linear strip theory, to calculate wave induced loads, motions, added resistance 

and internal loads for six degree of freedom displacements. 

A hull form, Figure 3-27, which most resembled that of a typical modern aircraft carrier, 

was selected from the SEAWAY Users Manual [65] and dimensions of a typical modern 

aircraft carrier were extracted from public domain sources [73]. A sample copy of 

SEAWAY limited to the hull form and dimensions selected was supplied for the sole 

use of this study. Bilge keels which provide roll damping are included in this model. 

The bilge keels are not indicated in Figure 3-27. 
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Figure 3-27 Aircraft Carrier Hull Form [65] 

SEAWAY outputs frequency domain transfer functions due to wave height for the 

following variables: surge, heave and sway position perturbations referred to the aircraft 

carriers centre of gravity; pitch ( )acθ , roll ( )acφ  and yaw ( )acψ  attitudes referred to the 

aircraft carriers centre of gravity; and surge, heave and sway position perturbations at 

the touchdown point of the aircraft carriers flight deck, for a particular ship speed and 

relative direction between the wave and the bow of the ship. 

Surge is linear motion along the aircraft carrier body axes x axis direction. Sway is 

linear motion along the aircraft carrier body axes y direction. Heave is linear motion 

along the aircraft carrier body axes z axis. 

The first step to integrate the frequency domain transfer functions into the time domain 

simulation environment was to generate transfer functions using SEAWAY for a range 

of ship speeds (0-33 knots in 3 knot increments) and wave directions (0-360 degrees in 

5 degree increments). These transfer functions were arranged in a structure and a routine 

was developed which interpolates between data available in the structure in order to 

generate transfer functions for all ship speeds and wave directions within the stated 

speed and wave direction ranges. 

A time domain simulation of these transfer functions is realised through the process 

presented in Figure 3-28. A Power Spectral Density (PSD) representation of the ship 

Length at waterline: 317m Draught: 10m      Breadth 40m 
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motion is generated by multiplying the square of the frequency domain transfer 

function, ( )2

sH ω , by wave height over the same frequency range as per equation 3-47. 

The wave model used is the open ocean area Bretschneider model [65] as defined by 

equation 3-48. The appropriate values for significant wave height, 1 3H , and average 

wave period, 1T ,  as functions of wind speed at a height of 19.5m above the sea are listed 

in Table 3-3.  

Figure 3-28 Aircraft Carrier Motion Data Flow Diagram 
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Beaufort 

Scale 
1 2 3 4 5 6 7 8 9 10 11 12 

Wind Speed 

at 19.5m 

Above Sea 

(knots) 

2.0 5.0 8.5 13.5 19.0 24.5 30.5 37.0 44.0 51.5 59.5 >64.0 

1 3H   

(m) 

1.10 1.20 1.40 1.70 2.15 2.90 3.75 4.90 6.10 7.45 8.70 10.25 

1T  

(s) 
5.8 5.9 6.0 6.1 6.5 7.2 7.8 8.4 9.0 9.6 10.1 10.5 

Table 3-3 Bretschneider Wave Spectrum Parameters as a Function of Wind speed 

Wave Height to Ship 
Motion Variable 

Transfer Function 
(Frequency Domain) 

Bretschneider PSD 
Wave Model  

 

Ship Motion 
Variable Due 
to Particular 
Wave Height 

PSD 

PSD 
To 

Time Domain 

   Wind Speed 

Ship Speed 

Wave Direction 
Relative to Bow 

of Ship 

Aircraft 
Carrier 
Motion 
Variable 
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A time domain representation of a PSD is achieved by superpositioning of the sinusoids 

according to equation 3-49 [74]. 

 ( ) ( ) ( )
1

cosT m m m
m

y t S tω ω ω ψ
∞

=
= ∆ +∑  (3-49) 

In practice, the aircraft carrier motion is calculated prior to execution of the simulation. 

The carrier motion variables are then input to the simulation at each time step. The 

position variables, which are referred to the aircraft carrier’s body axes when generated, 

are transformed to the earth axes system when input to the simulation. The angular 

motion variables remain referred to the aircraft carrier’s body axes. 

The duration of the time history a particular motion variable generated in this manner is 

a function of the frequency range of the ship motion transfer function and the frequency 

increment by which it is defined. In this case, a time history of 623.3 seconds is 

generated for each motion variable. This time period is significantly greater than the 

time required to fly an approach from 500 feet to the aircraft carrier’s deck. 

In the case of the batch simulations, presented in Chapter 5, this 623.3 second period 

was divided into 5 sets as defined in Table 3-4. As the dominant frequency varies across 

the 623.3 period each of these five sets is unique. By simulating an approach using all 

five sets of motion variables a more accurate judgement can be made of the system 

under consideration for that set of carrier operating conditions. 

Set Start Time 
(seconds) 

End Time 
(Seconds) 

1 0 188.4 
2 125.6 314.1 
3 251.3 439.8 
4 376.9 565.4 
5 439.8 628.3 

Table 3-4 Carrier Motion Variables Time History Subsets 

The output of PSD to time domain calculations are perturbations about the steady state 

motion of the aircraft carrier. Hence it is necessary to add the steady state motion to 

perturbations to realise a model of the aircraft carrier’s true motion. 
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Figure 3-29 presents the longitudinal motion variables of the touchdown point on the 

aircraft carrier’s deck for a headwind 13.5 knots for aircraft carrier speeds of 0, 10 and 

33 knots. Figure 3-30 presents the same motion variables describing the touchdown 

point on the carrier’s deck for a constant aircraft carrier speed of 10 knots and 

headwinds of 2, 24.5 and 37 knots. Note that the touchdown point is 45 feet above the 

surface of the water. 

The output of the aircraft carrier dynamics model is used in the calculation of 

atmospheric disturbance due to the proximity and motion of the carrier as presented in 

section 3.4.3. The trajectory of the aircraft carrier is also used by the navigation system 

presented in Chapter 4. 
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Figure 3-29 Aircraft Carrier Motion Example: Wind Speed = 13.5 knots 

Variable Carrier speed: 0 knots [       ] 10 knots  [       ] 33 knots [       ] 
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Figure 3-30 Aircraft Carrier Motion Example: Aircraft Carrier Speed = 10 knots 

Wind Speed: 2 knots [       ] 24.5 knots [       ] 37 knots [       ] 

The trends presented in figures 3-29 and 3-30 are worth noting. The carrier motion is 

most stable at high speed and light wind conditions. Any departure from this condition, 

either by reducing the carrier’s speed or an increase in wind speed, has the effect of 

reducing the stability of the carrier. 

3.6 AIRCRAFT MODEL VALIDATION 

The aircraft model was validated against response time histories presented by Gautrey 

and Cook [55] and the stability and control analysis and autopilot response time histories 

presented by Fitzgerald [56].  

The design point used for the development of the approach controllers is steady level 

flight at 140 knots, 1000 ft, flaps 20 degrees, undercarriage extended and 20 gallons of 

useable fuel aboard. 

The stability and control parameters of the augmented airframe at the design point are 

presented in section 3.6.1. The aircraft’s response to control inputs at the design point 

are presented in section 3.6.2. 
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3.6.1 STABILITY AND CONTROL PROPERTIES OF DESIGN POINT 

Two three degree of freedom linear models of the basic airframe were extracted from 

the non linear model at the design point representing the longitudinal and 

lateral-directional dynamics. All control effectors were included with the exception of 

lateral vectored thrust as it is not used in this study. 

The appropriate Stability Augmentation System presented in section 3.3.7.3 was 

implemented in these linear models. This implementation included appropriate actuator 

and sensor models. The longitudinal and lateral-directional stability and control 

characteristics of the augmented airframe were then extracted and are presented in 

tables 3-5 and 3-6 respectively. 

Short Period Damping Ratio 0.76 

Short Period Frequency 5.5 rad/s 

Speed Subsidence Time Constant 3.44 seconds 

Pitch Subsidence Time Constant 0.98 seconds 

Table 3-5 Longitudinal Stability and Control Properties of Design Point 

Dutch Roll Damping Ratio 0.69 

Dutch Roll Frequency 4.87 rad/s 

Roll Mode Time Constant 0.11 seconds 

Spiral Mode Time Constant 0.96 seconds 

Table 3-6 Lateral-Directional Stability and Control Properties of Design Point 

The transfer function describing the pitch attitude response to pitch attitude demand is 

presented in equation 3-50. Elevator actuator and appropriate sensor dynamics are 

included in this transfer function. The sensors included are velocity, pitch attitude and 

pitch rate. This applies to all longitudinal transfer functions presented. 
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The transfer function describing the body axes axial velocity response to throttle 

demand is presented in equation 3-51.  

( )
( )
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 (3-51) 

The transfer function describing the pitch attitude response to trailing edge flap 

deflection is presented in equation 3-52. It should be noted that the trailing edge flap 

actuator is not included in this transfer function. 
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(3-52) 

The transfer function describing the pitch attitude response to symmetric spoiler 

deflection is presented in equation 3-53. It should be noted that the spoiler actuator is 

not included in this transfer function. 
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(3-53) 

The transfer function describing the pitch attitude response to longitudinal thrust 

vectoring paddle deflection is presented in equation 3-53. It should be noted that the 

thrust vectoring actuator is not included in this transfer function. 
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(3-54) 
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The transfer function describing the roll attitude response to roll attitude demand is 

presented in equation 3-55. In this case the aileron and rudder actuator dynamics are 

included as well as the yaw rate, roll rate and roll attitude sensor dynamics. This applies 

to all lateral-directional transfer functions presented. 
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(3-55) 

The transfer function describing the yaw rate response to yaw rate demand is presented 

in equation 3-56.  
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(3-56) 

3.6.2 CONTROL RESPONSES 

In the following sections the aircraft’s response to the various control effectors at the 

design point are presented. For each response a step input is injected into the system at 

the input to the applicable actuator at a time of 1 second and held for the duration of the 

response. For each response the three axis Stability Augmentation System is engaged. 

The input to each channel of the Stability Augmentation System is the steady state trim 

values before the control input is applied. Each response is initiated from trimmed flight 

at the design point flight condition. 
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3.6.2.1 ELEVATOR 

The aircraft response to a 1 degree step input to the elevator actuator at 1 second and 

held for the duration of the response is presented in Figure 3-31. The damping of this 

disturbance by the Stability Augmentation System is clearly evident. From the elevator 

angle time history it can be seen that the actuator dynamics are fast when compared to 

the aircraft’s response. 
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Figure 3-31 Aircraft Response to 1 Degree elevator Step 
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3.6.2.2 AILERONS 

The aircraft response to a 1 degree step input to the aileron actuator at 1 second and held 

for the duration of the response is presented in Figure 3-32. The damping of this 

disturbance by the Stability Augmentation System is clearly evident as is the effects of 

adverse aileron yaw. 
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Figure 3-32 Aircraft Response to 1 Degree Aileron Step 
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3.6.2.3 RUDDER 

The aircraft response to a 1 degree step input to the rudder actuator at 1 second and held 

for the duration of the response is presented in Figure 3-33. The damping of this 

disturbance by the Stability Augmentation System is clearly evident as is the coupling 

between the lateral and directional dynamics of the aircraft. 
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Figure 3-33 Aircraft Response to 1 Degree Rudder Step 
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3.6.2.4 THROTTLE 

The aircraft response to a 1000 RPM step input to the engine at 1 second and held for 

the duration of the response is presented in Figure 3-34. The Phugoid mode which 

would normally be excited by such a disturbance is clearly damped by the Stability 

Augmentation System. 
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Figure 3-34 Aircraft Response to 1000 RPM Throttle Step 
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3.6.2.5 LONGITUDINAL THRUST VECTORING 

The aircraft response to a 1 degree step input to the longitudinal thrust vectoring paddle 

actuator at 1 second and held for the duration of the response is presented in Figure 

3-35. The damping of this disturbance by the Stability Augmentation System is clearly 

evident.  

An appreciation of the relative control powers of the elevator and longitudinal thrust 

vectoring at this operating point can be extracted from this response. It can be seen that 

the effect of 1 degree of longitudinal thrust vectoring paddle deflection is trimmed by an 

additional -0.25 degrees of elevator deflection. This infers that at this operating point the 

elevator has four times the control power of vectored thrust. 
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Figure 3-35 Aircraft Response to 1 Degree longitudinal Thrust Paddle Step 
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3.6.2.6 TRAILING EDGE FLAPS 

The aircraft response to a 1 degree step input to the trailing edge flap actuator at 1 

second and held for the duration of the response is presented in Figure 3-36. The 

damping of this disturbance by the Stability Augmentation System is clearly evident. It 

can be seen that the extension of trailing edge flap has the effect of inducing a nose 

down pitching moment.  
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Figure 3-36 Aircraft Response to 1 Degree Trailing Edge Flap Step 
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3.6.2.7 SPOILER 

The aircraft response to a 1 degree step input to the spoiler actuator at 1 second and held 

for the duration of the response is presented in Figure 3-37. The spoiler induced 

pitching moment can be seen to be small when compared to that of the trailing edge 

flap.  The spoiler induced pitching moment is in the same sense as the trailing edge flap 

induced pitching moment, i.e. nose down. 
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Figure 3-37 Aircraft Response to 1 Degree Spoiler Step 
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3.6.2.8 UNDERCARRIAGE 

The aircraft response to the retraction of the aircraft’s undercarriage is presented in 

Figure 3-38. The reduction in drag is evident from the increase in speed. The damping 

of this disturbance by the Stability Augmentation System is clearly evident. Typically 

the retraction or extension of undercarriage could excite the phugoid mode if not 

compensated by the Stability Augmentation System or the pilot.  
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Figure 3-38 Aircraft Response to Retraction of Undercarriage 
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4 NAVIGATION SYSTEM 

4.1 INTRODUCTION 

A navigation system is a central element of any automatic landing approach system. The 

purpose of a navigation system is to provide guidance cues to the approach controllers. 

The approach controllers developed in this study are discussed in the following 

chapters.  

At present during a landing approach to a carrier an approach glide path is originated 

from a point on the carrier’s deck. A track approach path is generated similarly. As such 

the aircraft flies an approach to a moving point. Stabilisation systems are used to negate 

the effects of ship motion on the approach path; however, these systems have 

limitations. The current state of the art of carrier landing navigation systems does not 

meet the requirements of the Joint Precision Approach and Landing systems (JPALS) 

discussed in Chapter 2. 

As stated in the objectives in Chapter 1, the navigation concept developed in this study 

aims to build on the systems and procedures currently in place, account for future 

navigation requirements, account for ship motion through the use of ship motion 

prediction, facilitate the seamless integration of the UAV fleet with the piloted fleet and 

allow for truly autonomous carrier landing operations. In keeping with the limitations of 

the scope of this study, the Navigation System presented does not account for any pre 

‘tip-over’ navigation requirements. 

The concept developed is presented schematically in Figure 4-1. Carrier and aircraft 

positions are used to calculate the relative distance and velocity. The time to touchdown 

is computed using the relative distance and velocity. The position of the nominal 

touchdown point is predicted at that time in the future using ship motion prediction 

techniques. A 3 degree approach glide path is generated from that point and the 

aircraft’s vertical deviation from that approach glide path is calculated. Likewise, an 

approach track path is generated coincident with the carrier’s track and the aircraft’s 
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lateral deviation from that approach track path is calculated. The vertical and lateral 

deviations are the input to the approach controllers.  

Figure 4-1 Navigation System Data Flow Diagram 

Each component of the Navigation System is described in the following sections. 

Example approaches to landing using this system are presented. This chapter concludes 

with a critical assessment of this Navigation System. 

4.2 TIME TO TOUCHDOWN 

The Navigation System uses the aircraft’s and carrier’s earth axes position. This is to 

emulate the GPS reference system, and as such the system is conceptually compliant 

with JPALS requirements.   

The Navigation System is based on predicting the position of the touchdown point at a 

time in the future, which corresponds to that time at which the aircraft touches down on 

the aircraft carrier’s deck.  This time is a function of distance between the aircraft and 

the aircraft carrier and their relative velocity. 

Figure 4-2 Time to Touchdown Geometry 
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Time to touchdown, tdt , is defined as 

 td

dt
d

=  (4-1) 

where the distance between the aircraft and the touchdown point on the aircraft carrier’s 

deck, d , is defined as 

 ( ) ( ) ( )2 2 2

( ) ( ) ( )E E E E E Eac tdp ac tdp ac tdp
d x x y y z z= − + − + −  (4-2) 

In this implementation, the rate of change of distance between the aircraft and the 

touchdown point, d , is averaged over a period of a half a second. This is to reduce the 

time to touchdown estimate’s sensitivity to atmospheric disturbances. The period of half 

a second was determined through experiment performed with the simulation. 

4.3 SHIP MOTION PREDICTION 

As introduced in Chapter 2, various methods exist for predicting ship motion and, 

consequently, the position of the desired touchdown point. While it is beyond the scope 

of this research project to refine or adapt the methods of prediction that exist, a 

discussion of these methods is appropriate. 

The Kalman-Bucy filter in predictor form is used by Doolin and Sidar [37]. Mathematical 

models for ship motion in state-space form are obtained by fitting second-order transfer 

functions to experimentally derived power spectral densities for aircraft carrier heave 

and pitch motions. By arguing that heave and pitch motions are in fact narrow band 

processes, the Kalman filter is shown to give similar results to that of a predictor for the 

state of a harmonic oscillator. 

Any approach for ship motion prediction based on the Kalman-Bucy filter has to 

assume a mathematical model for the ship’s response. However, since the wave 

spectrum is not constant but changing, and especially so for a vessel manoeuvring in a 

seaway, the mathematical model on which the filter is based should be changing too. An 

Extended Kalman Filter could be used to improve predictions, as demonstrated by 
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Hinedi et al. [75]. However, extended Kalman filters are complex and sometimes 

encounter convergence problems.  

An adaptive predictor seems to address the shortfalls of the other available methods. In 

adaptive prediction there is no need to include any prior knowledge about the ship 

response in the algorithm. The ship mathematical model is formed on-line and is 

conveniently updated whenever necessary due to changes in operating or weather 

conditions.  

As adaptive prediction promises to be the most suitable method for the purposes under 

consideration in this research project. This discussion is focused on such and, in 

particular, the research undertaken by the Department of Mechanical Engineering at 

University College London [39,40,41,42,43]. 

4.3.1 ADAPTIVE PREDICTION 

Adaptive prediction is conceptually composed of two computational steps. Firstly, a 

model of the system is derived using a suitable System Identification method and, 

secondly, the identified model is used to predict ahead in time.  

This section on predictor theory outlines the methodology used in adaptive prediction 

and is extracted from Broome and Pittaras [39]. It should be noted that the notation is as 

presented by Broome and Pittaras [39] and care should be used so as to avoid confusion 

with the same notation used elsewhere in this thesis. From a notation point of view this 

section should be treated in isolation.  

Consider the following discrete-time mathematical model of a system with an input u  

(e.g. rudder and stabilisers) and output y  (e.g. heave and pitch angle) 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1A z y t B z u t C z e t− − −= +  (4-3) 

In general y ,u  and e  are vector signals of dimensions m , n  and m  respectively. A , B  

and C  are polynomial matrices in the unit delay operator 1z − , of the form 



Navigation System 

 

- 101 - 

 

( )

( )

( )

1 1
1

1 1 2
1 2

1 1
1

...

...

...

na
na

nb
nb

nc
nc

A z I A z A z

B z B z B z B z

C z I C z C z

− − −

− − − −

− − −

= + + +

= + + +

= + + +

 (4-4) 

where iA , iB  and iC  are real matrices of dimensions iA , iC , m mR ×∈ , m n
iB R ×∈ . ( )e t  is a 

noise term and is assumed to be a zero-mean stochastic process with Gaussian 

distribution. t  is a discrete time index and the unit delay operator operating on a discrete 

time signal ( )x t  has the effect that: ( ) ( )11x t z x t−− =  

Models of the form of equation 4-3 are called Auto Regressive Moving Average with 

eXogenous input (ARMAX). Given an ARMAX model a k-step ahead predictor of the 

system output, ( )ŷ t k t+  based on available input/output measurements up to and 

including time t  is given by 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆC z y t k t z y t z u t kα β− − −+ = + +  (4-5) 

where ( )1zα −  and ( )1zβ −  are polynomial matrices which are solutions to equations 

involving ( )-1 ziA , ( )-1ziB  and ( )-1ziC .  

It is noted in equation 4-5 that to predict the output, ( )y t , of a system k steps ahead, the 

future input strategy must also be known k steps ahead. In practice, several different 

strategies may be considered depending on whether the system operates in open or 

closed loop mode. However the method favoured is that of a restricted complexity 

predictor of the form 

 ( ) ( ) ( ) ( ) ( )1 1ŷ t k t P z y t Q z u t− −+ = +  (4-6) 

where ( )1P z−  and ( )1Q z−  are polynomial matrices of the form 

 
( )

( )

1 1
0 1

1 1
0 1

...

...

np
np

np
np

P z P Pz P z

Q z Q Q z Q z

− − −

− − −

= + + +

= + + +

 (4-7) 
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and m m
iP R ×∈ , m n

iQ R ×∈  

Equation 4-6 can be justified because normally the predictor equation can be expressed 

equivalently as an infinite sum of past system inputs and outputs 

 ( ) ( ) ( )
0 0

ˆ
i i

i i
y t k t Py t i Qu t i

∞ ∞

= =
+ = − + −∑ ∑  (4-8) 

where the terms of the infinite series { }iP  and { }iQ  diminish as i→∞ . In most practical 

cases, only the first few terms in the series are non-zero and hence the orders pn  and qn  

of the polynomial matrices  ( )1P z −  and ( )1Q z −  can be chosen accordingly. 

System Identification techniques are employed to obtain a model of the system in the 

form of equation 4-3. In System Identification a mathematical model giving an internal 

system description is not required. Instead, the system is treated as a black box with 

input and output signals sampled at discrete time intervals. When using System 

Identification methods it is algorithmically convenient to assume models as in equation 

4-3, because it can be written equivalently as  

 ( ) ( ) ( ) ( )1 1Ty t t t e tθ φ= − − +  (4-9) 

where 

 

( ) [ ]

( ) ( ) ( )
( ) ( )
( ) ( )

1 1 11 ... ... ...

1 [ 1 ...

1 ...

1 ... ]

T
na nb nc

T T T

T T

T T

t A A B B C C

t y t y t na

u t u t nb

e t e t nc

θ

φ

− =

− = − − − −

− −

− −

 (4-10) 

If ( )e t  in equation 4-9 is a zero-mean Gaussian random process then it is shown that the 

best one-step-ahead predictor for equation 4-9 is 
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( )( ) ( )

( ) ( ){ } ( ){ }

( ) ( )

ˆ 1; 1

1 1

1 1

T

T

y t t t E y t

E t t E e t

t t

θ

θ φ

θ φ

 − − =  

= − − +

= − −

 (4-11) 

If the one-step-ahead prediction error is denoted by ( )( ), 1t tε θ −  then  

 ( )( ) ( ) ( )( )ˆ, 1 1; 1t t y t y t t tε θ θ− − − −  (4-12) 

A frequently selected criterion of how well the model ( )tθ  performs in the long run is 

the sum of the squares of the prediction errors, or their Euclidean norms in the 

multivariable case 

 ( ) ( )( )
1

1 , 1
2

N
T

N
t

V t tθ ε θ
=

= −∑  (4-13) 

In System Identification the algorithms used are designed to minimise ( )NV θ . The 

general form of the basic algorithm is always 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ1t t t P t n t y t y tθ θ γ= − +  −    (4-14) 

where ( )tγ  is a time varying scalar gain, ( )P t  is a matrix related to the covariance 

matrix of estimates and ( )n t  is a matrix related to the gradient of ( )y t  with respect to 

( )tθ .  

Although prediction of system outputs can be effected in two steps, i.e. by first using a 

suitable identification method to derive a model as in equation 4-3 and then 

transforming it to arrive at a predictor equation as in equation 4-5, the advantage of the 

restricted complexity predictor is that it can be preparameterised in the form of equation 

4-11 so that the identification algorithm gives parameter estimates of the polynomial 

matrices ( )1P z −  and ( )1Q z −  directly. This can simply be accomplished by rewriting 

equation 4-11 as 

 ( )( ) ( ) ( )ˆ ; Ty t k t t t tθ θ φ+ =  (4-15) 
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where 

 
( )

( ) ( ) ( ) ( ) ( )

0 0... ...

... ...

T
np nq

T T T T

t P P Q Q

t y t y t np u t u t nq

θ

φ

 =  

=  − −  

 (4-16) 

At time t  prediction k steps ahead is calculated using equation 4-15, while for the 

parameter estimation the same equation is used but with shifted past system inputs and 

outputs as 

 ( )( ) ( ) ( )ˆ ; Ty t t k t k t k t kθ θ φ− − = − −  (4-17) 

This method when used without augmentation yields accurate predictions for up to 15 

seconds ahead. This time horizon is sufficient to allow flight path changes to be made 

safely, assuming a reasonable offset from the desired flight path when entering into that 

timeframe, owing to the aircrafts response time. However, this time horizon is not 

sufficient for the purposes of the system under investigation in this study which requires 

reasonably accurate predictions of the touchdown position from the initiation of the 

approach phase, approximately 70 seconds.  

Work has been conducted on methods of augmentation that would extend the accurate 

time horizon [43]. Such methods include feeding forward changes to the model which 

reflect changes in operating conditions, thus reducing the model adaptation time and 

similarly anticipating the slow changes in the sea state.  

4.3.2 SIMULATION IMPLEMENTATION 

As refinement of prediction methods is beyond the scope of this study, it was decided 

that accurately modelling a prediction method would not add any value to the study. 

Instead, the prediction method, is simulated using a simple look-up table.  

In order to assess the maximum potential performance enhancement to the autonomous 

approach and landing task derived from integrating touchdown point position prediction 

into the approach controllers, it is necessary to assume perfect prediction. In this case, as 

aircraft carrier motion is calculated prior to simulation of the approach, perfect 
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prediction is achieved by simply looking ahead on the time ‘history’ of the aircraft 

carriers motion variables.  

Time to touchdown, tdt , is input to look-up tables of the aircraft carriers motion variables 

and the predicted touchdown position, ( ), ,E E Eptd ptd ptd
x y z , and orientation, ( ), ,ac ac acptd ptd ptd

φ θ ψ , 

are output. 

At one second to touchdown, approximately the point at which the aircraft passes over 

the aircraft carriers ramp, the predicted touchdown point is held constant. 

4.4 FLIGHT PATH DEVIATIONS 

Vertical and lateral flight path deviations of the aircraft’s tail hook are calculated based 

on the aircraft’s position, ( ), ,E E Ex y z , the position of the predicted touchdown 

position, ( ), ,E E Eptd ptd ptd
x y z , and the track of the aircraft carrier, acλ . These deviations are the 

approach controller inputs. 

4.4.1 VERTICAL DEVIATION 

With reference to Figure 4-2 the relative distance between the predicted touchdown 

point and the aircraft projected on to the flat earth is defined as 

 ( ) ( )2 2

rd E E E Eptd ptd
d x x y y= − + −  (4-18) 

At distance rdd  from the aircraft carrier the aircraft tail hook desired altitude is defined 

as 

 tanth rdd
h d γ=  (4-19) 

where the approach flight path angle, γ , is defined as 3o for this study. 
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Figure 4-3 presents an illustration of the longitudinal plane geometry used in defining 

the deviation of the tail hook from the prescribed glide path.  

 

Figure 4-3 Approach Glide Path Deviation Geometry 

Noting that the aircraft altitude, h , is defined as 

 Eh z= −  (4-20) 

The tail hook altitude deviation from the prescribed glide path, hε , is defined as 

 th thd
h h H hε = − −  (4-21) 

where the height of the tail hook from the aircraft centre of gravity, thH , is defined as 

 sin costh th thH l hθ θ= +  (4-22) 

where the perpendicular distance from the axial body axis to the tail hook, thh , is defined 

as 

 3.2 ftthh =  (4-23) 

and the distance from the centre of gravity to the tail hook measured parallel to the axial 

body axis, thl , is defined as 
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 ( )10.85 ftth cgl h c= −  (4-24) 

4.4.2 LATERAL DEVIATION 

Figure 4-4 presents the relevant geometry for calculating the lateral deviation from the 

tail hook to the prescribed track.  

 

Figure 4-4 Track Deviation Geometry 

The distance from the aircraft centre of gravity to the prescribed track is defined as  

 
( )( ) ( )

2

m 1 m

m 1
E E ptd ptdx y y x

d λ λ

λ

λ

+ − + −
=

+
 (4-25) 

where the ‘slope’ of the prescribed track, mλ , expressed in degrees, is defined as 

 ( )m =tan 90 - acλ λ  (4-26) 

except in the case that the prescribed track is due north or due south. In such a case the 

slope of the prescribed track is defined as 
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 m =0λ  (4-27) 

The tail hook deviation from the prescribed track, dε , measured in feet, is defined as 

 ( )sinth acd d lε λ λ ψ= − −  (4-28) 

This definition results in a negative value for lateral deviation when the tail hook is to 

the left of the prescribed track, and similarly a positive value for lateral deviation when 

the tail hook is to the right of the prescribed path. 

4.5 SIMULATED APPROACHES 

The Navigation System was implemented in the simulation environment and 

simulations were conducted to validate the systems response. In instances where signals 

would be transmitted from the carrier to the aircraft perfect transmission has been 

assumed, i.e. no time delay or signal degradation has been modeled. 

Two example approaches are presented here to demonstrate the concept presented. The 

aircraft is controlled during these approaches by an autothrottle, a track controller and 

the baseline longitudinal approach controller. These systems are presented in full in 

chapters 5 and 6.  

The first approach has no atmospheric disturbances other than the steady wind 

associated with the aircraft carrier dynamics. The second approach includes moderate 

turbulence and aircraft carrier induced turbulence. The steady wind over the deck is 37.5 

knots and the aircraft carrier is steaming into the wind at 10 knots. 

4.5.1 NO ATMOSPHERIC DISTURBANCE APPROACH 

The positions of the aircraft and aircraft carrier during the no atmospheric disturbance 

approach are presented in Figure 4-5. All position variables are plotted against time to 

touchdown, tdt , which is calculated by the Navigation System as presented in section 4.2. 

The predicted position of the touchdown point, ( ), ,E E Eptd ptd ptd
x y z , the vertical deviation 

from the prescribed glide path, hε ,and lateral deviation from the prescribed track, dε , are 

presented in Figure 4-6. 
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Figure 4-5 Aircraft and Aircraft Carrier Position 
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Figure 4-6 Predicted Touchdown Position, Longitudinal and Lateral Deviations 
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4.5.2 ATMOSPHERIC DISTURBANCE APPROACH 
The positions of the aircraft and aircraft carrier during the approach are presented in 

Figure 4-7. Again, all position variables are plotted against time to touchdown, tdt , which 

is calculated by the Navigation System as presented in section 4.2. The predicted 

position of the touchdown point, ( ), ,E E Eptd ptd ptd
x y z , the vertical deviation from the 

prescribed glide path, hε ,and lateral deviation from the prescribed track, dε , are 

presented in Figure 4-8. The moderate turbulence and carrier induced turbulence 

velocities are presented in figures 4-9 and 4-10 respectively.  

The effect that the turbulence has on the prediction of the position of the touchdown 

point is evident when this approach is compared with the no turbulence case. As the 

aircraft progress along the prescribed glide path and track is altered by turbulence, the 

time to touchdown changes, and hence the predicted position of the touchdown point 

changes, which in turn leads to a change in prescribed glide path and track. In order to 

avoid unfavourable coupling, the time to touchdown is averaged over one half of a 

second as presented in section 4.2. 
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Figure 4-7 Aircraft and Aircraft Carrier Position 
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Figure 4-8 Predicted Touchdown Position, Longitudinal and Lateral Deviations 
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Figure 4-9 Atmospheric Turbulence 
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Figure 4-10 Carrier Induced Atmospheric Turbulence 

4.6 DISCUSSION 

The Navigation System presented here is a central element of this study. Assuming that 

GPS is used for position and velocity measurement, this system conceptually satisfies 

the Joint Precision Approach and Landing System requirements, and the systems 

operation, as applied in this instance, is compatible with current United States Navy 

operational procedures. The system can be used by piloted aircraft as well and UAVs 

and facilitates autonomous approaches to landing. In this regard, the system satisfies the 

constraints imposed upon it from the outset of this study and achieves the associated 

objectives of this study. 

Automatic wave-off monitoring can be provided by the Navigation System based on 

distance from the aircraft carrier and the vertical and lateral deviations from the desired 

approach flight path. This facilitates truly autonomous carrier operations and avoids the 

LSO perspective problem identified by Durand and Wasicko [3]. 
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The most significant contrast between this system and the system currently in use is that 

this system guides the aircraft to a pseudo-fixed point in space as opposed to a moving 

point. The system currently in use requires a stabilisation system in order to negate the 

effects of ship motion on the resulting guidance cues. This adds significantly to the 

complexity of the system. The system developed in this study does not need such 

stabilisation systems.  

In practice, the prediction of the touchdown point will not be perfect; hence the 

predicted touchdown point is pseudo-fixed. Assuming that ship motion prediction 

techniques are suitably tailored for this task it is extremely unlikely that predicted 

touchdown point will vary significantly during an approach. This will result in more 

stable approaches, especially in inclement atmospheric conditions as the instability due 

to ship motion will be effectively removed.  

In section 4.5, the concept is shown to operate successfully in the simulated 

environment. In Chapter 8, this system is extended to allow the aircraft to touchdown 

when the carrier’s pitch attitude is at an optimum condition for landing. The 

significance of this is that the detrimental effect of pitch attitude on the height that the 

aircraft passes over the carrier’s stern can be minimised, hence increasing the safety 

level of an approach to landing. This extension is not possible with the current state of 

the art Navigation System, and, even with less than perfect prediction techniques, 

provides a step forward in carrier landing navigation strategies. 

It is hoped that the demonstration of this concept will provide stimulus to refine the 

current adaptive prediction methods, or indeed provide motivation to develop a new 

prediction method specifically for this purpose. 

As previously stated, the research undertaken by the Department of Mechanical 

Engineering at University College London [39,40,41,42,43] is encouraging with regard to the 

prediction problem. The methods presented by this group appear to be very pure in a 

mathematical sense. It is thought that if these methods were coupled with prior 

knowledge of the ship’s operating conditions and characteristics, in a sense sacrificing 
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some of the mathematical purity, that the time horizon of accurate prediction could be 

extended to a more practical level for this application.  

Another approach would be to use several different prediction techniques in parallel. 

The results of these techniques could be synthesized so as to extract the maximum 

benefit from each method. 
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5 AUTOTTHROTTLE AND APPROACH 
TRACK CONTROLLER 

5.1 INTRODUCTION 

Three approach controllers have been developed which control the aircraft’s approach 

flight path, as generated by the Navigation System, and approach speed during a carrier 

landing approach. 

The general form of an approach controller is presented in Figure 5-1. The approach 

controllers’ consist of three components (1) An autothrottle, (2) An approach track 

controller and (3) an approach glide path controller. An autothrottle controls the 

aircraft’s speed via the throttle. A track controller controls lateral deviation from the 

approach track via ailerons and rudder. These two components are common to all three 

approach controllers developed. Each of the three approach controllers differs by the 

manner in which vertical deviation from the approach glide path is controlled. The 

approach glide path controllers are presented in Chapter 6. A comparative performance 

analysis of all three approach controllers is presented in Chapter 7. 

Figure 5-1 Approach Controller 
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The design and performance of the autothrottle and track controller are presented in the 

following sections of this chapter. Before reviewing these systems an overview of the 

design process employed in the development of all controllers is presented. 

5.2 DESIGN METHODOLOGY 

The design approach is based on standard design methods for classical control systems. 

Classical control systems have been used as they provide a high level of visibility in the 

design stage.  

The design began with an examination of the performance requirements of each 

controller along with the constraints on the systems. Published requirements for 

Automatic Carrier Landing Systems are not available in the public domain and as a 

result, performance requirements were defined for the performance of the track and 

approach glide path controllers. These requirements and constraints are presented in the 

following sections. 

From the non-linear simulation model, linearised longitudinal and lateral-directional 

decoupled models were extracted at the design point. The stability and control 

characteristics of the linear models were validated against those characteristics 

presented by Fitzgerald [56]. 

The appropriate Stability Augmentation System was implemented in the respective 

linear models. The stability and control characteristics of the augmented aircraft were 

validated against those characteristics presented by Fitzgerald [56]. The response of the 

linear models to small control inputs were validated against the response of the 

non-linear model to the same inputs.  

The architecture of the autothrottle, track controller and the three approach glide path 

controllers were defined using knowledge of the aircraft’s behaviour, the requirements 

and constraints of each system and the knowledge gained through the literature review. 

Having defined the architecture the control system gains were tuned using Simulink’s 

Non-linear Control Design (NCD) tool.  
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The NCD tool is an interactive Graphical User Interface (GUI). This tool can be placed 

in a Simulink model and the signal which is being controlled attached to it. The NCD 

tool takes the form of a response plot which presents the signal being controlled against 

time. Performance constrains are presented on this response plot. These constraints are 

user defined.  

During this design process, step inputs to the system being developed were used as 

inputs to the model. The tool requires that initial values of the controller gains are 

defined. The NCD tool then runs the simulation using the initial controller gain values 

and compares the response against the constraints. If the response is outside the defined 

constraints, the controller gains are varied and the new response is plotted. This process 

iterates until the response is within the performance constraints.  

This tool is very efficient when tuning controller gains, however care has to be 

exercised in its use as this tool does not replace good engineering judgement. This tool 

is a mathematical process and the response characteristics are limited to the time period 

defined in the simulation model. Therefore the long term performances of the resultant 

controller gains were examined before proceeding with the design process.  

The controllers used are Proportional Plus Integral (P+I) and Proportional Plus Integral 

Plus Derivative (PID) controllers. The proportional control provides feedback of the 

error signal. The integral term will drive the error to zero and the derivative term will 

smooth the transient response. The disadvantage of using a proportional controller is 

that if used in isolation it will have some error in its performance accuracy. The main 

disadvantage of an integral controller is that it introduces a pole at the origin on the 

s-plane together with 90 degree phase lag and is therefore destabilising. The main 

disadvantage of the derivative controller is that it is insensitive to slow varying error 

signals which results in drift and it can introduce noise. 

Having selected the control system gains in this manner, the frequency response 

characteristics of the controller were examined. For all controllers, the minimum 

acceptable gain margin was defined as 6 db and the minimum acceptable phase margin 

was defined as 30 degrees. These minimums are suggested by McLean [47].  
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The Military Specification document for Flight Control Systems Design, Installation 

and Test of Piloted Aircraft, Mil-F-9490 [76] was not available for reference; however 

Kanade et al. [77] quote Mil-F-9490 as requiring a minimum phase margin of 45 degrees 

and minimum gain margin of 6 db. This came to light after the controllers were 

designed and it was decided not to amend the design as a 30 degree phase margin 

minimum is adequate for the purposes of this study. 

The performance of the controllers was then assessed in the non-linear simulation 

model. This performance assessment consisted of step responses and the response to 

atmospheric disturbances. The final assessment consisted of testing the autothrottle, 

track controller and each of the approach glide path controllers in the non-linear 

simulation environment during approaches to landing using varying degrees of 

atmospheric disturbance and ship motion. 

This process is an iterative process and several iterations between the linear and the 

non-linear simulation environments were required until satisfactory performance was 

achieved. 

5.3 AUTOTHROTTLE 

Accurate control of airspeed during any approach to landing is paramount to a safe and 

efficient approach. This is especially true in the aircraft carrier landing environment 

which is dominated by atmospheric disturbances. It should be noted that the speed loop 

of the pitch stability augmentation system presented in Chapter 3 is disengaged when an 

autothrottle is engaged. 

5.3.1 PERFORMANCE CRITERIA 

Definitive performance requirements for carrier based UAVs were unable to be sourced 

during the course of this study. Similarly, performance requirements for Automatic 

Carrier Landing Systems were unable to be sourced due to security clearance 

restrictions. As a result, existing public domain performance requirements for piloted 

aircraft and UAVs have been used in addition to sound engineering judgement. 



Autothrottle and Approach Track Controller 

 

- 119 - 

Prosser and Wiler [78] present a first attempt at defining flying qualities requirement for 

Remotely Piloted Vehicles (RPV), based largely on military specifications for flying 

qualities of piloted aircraft, Mil-F-8785B [79]. Prosser and Wiler suggest that an 

Autothrottle system should maintain airspeed within ±5 knots or ±2%, whichever is 

greater, and that any periodic oscillations within this limit shall not interfere with 

mission performance.  

5.3.2 SYSTEM ARCHITECTURE 

The Autothrottle system architecture is presented in Figure 5-2. While the Proportional-

Plus-Integral (P+I) control of the error signal is as developed by Fitzgerald [56], the 

control system gains were optimised using the Simulink NCD tool.  

Figure 5-2 Autothrottle Architecture 

The control law for the autothrottle controller is defined as 

 pu iuk u k u dtτ ε εδ = + ∫  (5-1) 

The control system gains are selected as 
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5.3.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

The open loop frequency response characteristics of the autothrottle are presented in the 

form of a Bode diagram in Figure 5-3. The autothrottle control loop is broken along the 

feedback path. The phase margin is 98 degrees at 1.42 rad/s and the gain margin is 

infinite.  
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Figure 5-3 Autothrottle Open Loop Bode Diagram 

The closed loop frequency response characteristics are presented in the form of a Bode 

diagram in Figure 5-4. The closed loop bandwidth is 1.15 rad/s. No other loops are 

active for this response. 
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Figure 5-4 Autothrottle Closed Loop Bode Diagram 



Autothrottle and Approach Track Controller 

 

- 121 - 

The aircraft and autothrottle response to a unit step airspeed demand is presented in 

Figure 5-5. All variables presented in Figure 5-5 are perturbations around the trim flight 

condition, except for altitude and normal acceleration which are presented in true form. 

The rise time of the response is 1.14 seconds and the settling time is 2.45 seconds with 

no overshoot.  
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Figure 5-5 Autothrottle Response to Unit Step Demand 

5.3.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The Autothrottle response to a rectangular pulse speed demand is presented in Figure 

5-6. It should be noted that the baseline glide path controller, which is presented in 

Chapter 6, is actively controlling altitude deviations due to velocity change. It can be 

seen that the performance criteria presented in section 5.3.1 are achieved. 

The Autothrottle response to continuous moderate turbulence, as defined by 

Mil-8785C [63] and generated as presented in Chapter 3, with the baseline glide path 

controller controlling altitude deviations is presented in Figure 5-7. In this case, the 

airspeed is controlled to within ±0.1 knots, achieving the performance criteria presented 
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in section 5.3.1. It should be noted that engine speed is presented as a perturbation about 

the trim value, while all other variables are presented in true form. 
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Figure 5-6 Autothrottle Response to Rectangular Pulse Speed Demand 
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Figure 5-7 Autothrottle Response to Continuous Moderate Axial Turbulence 
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5.4 TRACK CONTROLLER 

Flying an approach onto the tight confines of the landing area of an aircraft carrier deck 

dictates precise control of the aircraft’s lateral position. A track controller has been 

developed which controls the aircraft with respect to lateral position deviation from the 

desired track. 

5.4.1 PERFORMANCE CRITERIA 

Prosser and Wiler [78] suggest that a heading hold autopilot should maintain the aircraft 

in its existing heading when engaged within a static accuracy of ±0.5 degrees in smooth 

air. When a heading autopilot is used to change heading, the system shall automatically 

turn through the smallest angle to achieve the heading change, and the bank angle while 

turning to the selected heading shall provide satisfactory turn rates and preclude 

impending stall. The aircraft shall not roll in a direction other than the direction required 

for the aircraft to assume its proper bank angle. In addition, the roll-in and roll-out shall 

be accomplished smoothly with no disturbing variation in roll rate. 

Many of these points are relevant to the operation of the track controller, however 

further performance requirements were imposed. In calm air a lateral position error of 4 

feet shall be corrected within five seconds with minimal sideslip during correction 

within ± 0.5 feet. The value of 4 feet was selected through investigation of the effects of 

varying lateral turbulence levels on aircraft lateral position. Atmospheric disturbances 

shall be attenuated. For steady state operation, track error shall not be greater than ± 0.5 

feet and sideslip angle should be zero. 

5.4.2 SYSTEM ARCHITECTURE 

The track controller system architecture is presented in Figure 5-8. This controller 

contains two components. The aircraft’s lateral position is controlled via ailerons while 

the aircraft’s sideslip is controlled via the rudder. The input to the lateral position 

controller is lateral position error as defined in Chapter 4. The input to the sideslip 

controller is measured sideslip angle. 
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The sideslip controller ensures that the aircraft aligns itself with the approach track. This 

ensures that the aircraft does not drift, especially important when close to the carrier 

deck. Ideally the aircraft should touchdown on the deck with zero sideslip. Any lateral 

velocity at touchdown has the effect of inducing a side load on the landing gear. The 

sideslip controller also provides turn coordination. 

 

Figure 5-8 Track Controller System Architecture 

The control law for the track controller is defined as 

 d p i d

dk k dt k
dt

ε
λ ε λ ε λ

λ
φ λ λ= + +∫  (5-3) 

where the control system gains are selected as 
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The control law for the sideslip controller is defined as 
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 d p i d

dr k k dt k
dt

ε
β ε β ε β

ββ β= + +∫  (5-5) 

The control system gains are selected as 

 

3.72 rad/rad

4.49 rad/rad

0.49 rad/rad

p

i

d

k

k

k

β

β

β

= −

= −

= −

 (5-6) 

It was found through testing that in order to optimise the systems performance for both 

steady wind and atmospheric disturbance operation, the bank angle demand, dφ , should 

be limited to 6 degrees. This is implemented for the responses presented in section 

5.4.4. 

5.4.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

The open loop frequency response characteristics of the sideslip controller are presented 

in the form of a Bode diagram in Figure 5-9. The control loop is broken at the output of 

the sideslip sensor. The roll Stability Augmentation System loops are closed. The phase 

margin is 88.5 degrees at 0.56 rad/s and the gain margin is 18.4 db at 6.28 rad/s.  

The closed loop frequency response characteristics of the sideslip controller are 

presented in the form of a Bode diagram in Figure 5-10. The roll Stability 

Augmentation System loops are closed. The closed loop bandwidth is 0.58 rad/s. This 

bandwidth is consistent with the fact that the aircraft’s directional dynamics are slower 

than pitch and roll. 
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Figure 5-9 Sideslip Controller Open Loop Bode Diagram 
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Figure 5-10 Sideslip Controller Closed Loop Bode Diagram 

The open loop frequency response characteristics of the lateral position controller are 

presented in the form of a Bode diagram in Figure 5-11. The Navigation System is not 

included in this response. Lateral position feedback was used to emulate the Navigation 
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System in the linear simulation model. The control loop is broken along the lateral 

position feedback loop. The sideslip control loop and yaw Stability Augmentation 

System loops are closed. The phase margin is 144 degrees at 1.76 rad/s and the gain 

margin is 49 db at 12.6 rad/s.  
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Figure 5-11 Lateral Position Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of lateral position controller are 

presented in the form of a Bode diagram in Figure 5-12. The sideslip control loop and 

yaw Stability Augmentation System loops are closed. The closed loop bandwidth is 1.21 

rad/s. 

The aircraft’s response to a unit step sideslip demand is presented in Figure 5-13. The 

rise time is 6.5 seconds and the settling time is 8 seconds. The roll Stability 

Augmentation System loops are closed for this response.   
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Figure 5-12 Lateral Position Controller Closed Loop Bode Diagram 
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Figure 5-13 Sideslip Controller Response to a Unit Step Demand 

The aircraft’s response to a unit lateral position demand is presented in Figure 5-14. The 

rise time is 7.2 seconds and the settling time is 13.5 seconds. The effects of adverse 



Autothrottle and Approach Track Controller 

 

- 129 - 

aileron yaw are evident in this response plot. As with the closed loop frequency 

response, the Navigation System is not included and the control loop is closed using 

lateral position. The sideslip and yaw Stability Augmentation System loops are closed. 
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Figure 5-14 Lateral Position Controller Response to a Unit Step Demand 

5.4.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The track controller response to a rectangular pulse lateral position demand is presented 

in Figure 5-15. The track controller response to continuous moderate lateral turbulence 

is presented in Figure 5-16. The autothrottle and baseline approach glide path 

controllers are active for both scenarios. The baseline approach glide path controller is 

presented in Chapter 6. The performance criteria presented in section 5.4.1 can be seen 

to be achieved. Considering the inherent atmospheric conditions of the carrier landing 

environment control of lateral position deviation in turbulence is an important design 

factor.  
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Figure 5-15 Track Controller Response to Rectangular Pulse Lateral Position Demand 
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Figure 5-16 Track Controller Response to Continuous Moderate Turbulence 
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6 APPROACH GLIDE PATH CONTROLLERS 

6.1 INTRODUCTION 

Three different approach glide path controllers have been developed to assess three 

different control strategies for suitability to the carrier landing task. The first, or 

baseline, approach glide path controller controls vertical deviation from the approach 

glide path using elevator control.  

The second approach glide path controller controls vertical deviation from the approach 

glide path using Direct Lift Control effected through trailing edge flaps and spoilers. 

The original intention was to develop a controller which responded to vertical 

deviations from the approach glide path with pure vertical translation of the aircraft. 

This required a constant pitch attitude to be maintained throughout the approach. A 

controller was developed which maintained a constant pitch attitude through trailing 

edge flap feedforward to elevator, to compensate for trailing edge flap induced pitching 

moment and active control of pitch attitude using elevator control. 

This approach glide path controller was found to be unsuitable for approach glide path 

control due to its slow response to large turbulence induced vertical deviations. A 

second Direct Lift Control strategy was examined. In this case the baseline approach 

glide path controller was augmented to include Direct Lift Control. This strategy was 

found to have acceptable performance in the presence of atmospheric turbulence.  

The third approach glide path controller comprises an addition of thrust vectoring to the 

Direct Lift Control system. In this instance, thrust vectoring is used to alleviate the 

magnitude of elevator pitch control required during the approach. The motivation for 

this has been presented in Chapter 1 and is concurred with by Friehmelt [81]. 
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6.2 BASELINE APPROACH GLIDE PATH 
CONTROLLER 

The baseline approach glide path controller controls vertical deviation via elevator. 

Tight control of vertical deviation is especially critical as the aircraft passes over the 

aircraft carriers ramp, a point on the approach which approximately coincides with the 

peak atmospheric disturbances due to the presence of the carrier. Therefore the approach 

glide path controller has been optimised for maximum attenuation of atmospheric 

disturbances.  

6.2.1 PERFORMANCE CRITERIA 

In the absence of available published requirements, the baseline approach glide path 

controller was designed to provide tracking of ±0.5 feet in steady wind conditions, 

attenuation of atmospheric disturbances and shall be capable of correcting a 4 foot 

deviation within 2 seconds to within ±0.75 feet.  

As motion of the touchdown point directly alters the vertical deviation from the desired 

glide path, the design deviation of 4 feet was chosen as it is representative of a sudden 

displacement of the desired touchdown point in a heavy sea state.   

6.2.2 SYSTEM ARCHITECTURE 

The baseline approach glide path controller architecture is presented in Figure 6-1. The 

input to the system is vertical deviation, hε , calculated by the Navigation System as 

presented in Chapter 4. A pitch attitude demand, dθ , is calculated based on Proportional-

Plus-Integral-Plus-Derivative (PID) control of vertical deviation. 

Figure 6-1 Baseline Glide Path Controller Architecture 
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The control law for the baseline approach glide path controller is defined as 

 d pe ie de

dhk h k h dt k
dt

ε
ε εθ = + +∫  (6-1) 

The control system gains are selected as 

 

0.00731 rad/ft

0.000869 rad/ft

0.00515 rad/ft

pe

ie

de

k

k

k

=

=

=

 (6-2) 

Pitch attitude demand, dθ , is limited to ± 10 degrees. 

6.2.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

Frequency response characteristics and step response of the baseline approach glide path 

controller presented do not have the Navigation System included. Essentially the 

Navigation System is a comparator, with the altitude demand a function of predicted 

touchdown point. The system from which the frequency response characteristics and 

step response have been extracted is presented in Figure 6-2 where it can be seen that 

the Navigation System has been replaced by a comparator. 

 Figure 6-2 Baseline Glide Path Controller Architecture for Linear Model 

The open loop frequency response characteristics of the approach glide path controller 

are presented in the form of a Bode diagram in Figure 6-3. The control loop is broken 

along the feedback path. The autothrottle loop is closed for this response. The phase 

margin is 30.2 degrees at 1.05rad/s and the gain margin is 6.89 db at 1.23 rad/s.  
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Figure 6-3 Baseline Glide Path Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of the baseline approach glide path 

controller are presented in the form of a Bode diagram in Figure 6-4.  The closed loop 

bandwidth is 1.83 rad/s. The same additional loops are active for the closed loop 

response as in the open loop response. 
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Figure 6-4 Baseline Glide Path Controller Closed Loop Bode Diagram 
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The aircraft response to a unit step altitude demand is presented in Figure 6-5. All 

variables are presented as perturbations about their trim value except for normal 

acceleration and altitude which are presented in their true form. The rise time of the 

response is 1.3 seconds and the settling time is 2.8 seconds with no overshoot. The 

autothrottle control loop was closed for this response. 
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Figure 6-5 Baseline Glide Path Controller Response to Unit Step Demand  

6.2.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The baseline approach glide path controller response to a rectangular pulse altitude 

demand is presented in Figure 6-6 along with the associated autothrottle response. Both 

systems can be seen to meet their respective performance criteria. The response of the 

baseline approach glide path controller and autothrottle to continued moderate vertical 

turbulence over a time period of 100 seconds is presented in Figure 6-7.  

The vertical turbulence velocity presented in Figure 6-7 is implemented as an 

instantaneous velocity increment of the aircraft measured at the centre of gravity of the 

aircraft. It can be seen that the aircraft’s response to turbulence is attenuated and the 
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aircraft’s axial velocity is maintained to within the autothrottle performance 

specification. 
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Figure 6-6 Baseline Glide Path Controller Response to Rectangular Pulse Altitude 
Demand 
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Figure 6-7 Baseline Glide Path Controller Response to Continuous Moderate Vertical 
Turbulence 
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6.3 DIRECT LIFT CONTROL APPROACH GLIDE PATH 
CONTROLLER 

A Direct Lift Control system employing trailing edge flaps and spoilers was developed. 

In order to attain pure vertical translation, it was necessary to develop a constant pitch 

attitude controller which negates the pitching moment induced by the trailing edge flaps 

and spoilers. When this system was tested for attenuation of atmospheric disturbances it 

was found that it responded slowly to non-zero mean disturbances, i.e. a disturbance 

which is concentrated in one sense, such as wind shear or non-zero mean turbulence. As 

a result, it was decided that this controller was not suitable for the carrier approach task. 

Following the work of Fortenbaugh [22] it was decided to investigate the performance of 

the baseline approach glide path controller augmented with Direct Lift Control. The 

Direct Lift Control system and the baseline approach glide path controller were 

integrated and it was found that no further tuning of the systems were required. The 

performance of this system was found to be suitable for the carrier approach task. 

It should be noted that several iterations of the design procedure presented in Chapter 5 

were completed before the decision on the suitability of the constant pitch attitude 

system for the carrier approach task was made. 

6.3.1 CONSTANT PITCH ATTITUDE DIRECT LIFT CONTROL SYSTEM 

The philosophy of this control strategy is to provide pure vertical translation of the 

aircraft with no pitching moment. This is attained by controlling lift through the use of 

trailing edge flaps and spoilers and negating the associated pitching moment by 

controlling the pitch attitude through the elevators.  

6.3.1.1 PERFORMANCE CRITERIA 

The performance criteria for this system are the same as presented in section 6.2.1. 

6.3.1.2 SYSTEM ARCHITECTURE 

The control system architecture for the constant attitude Direct Lift Control system is 

presented in Figure 6-8.  
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Figure 6-8 Constant Pitch Attitude Direct Lift Control System Architecture 

The Direct Lift Control loop consists of a lead compensator filter acting on vertical 

deviation from the approach glide path. The purpose of this filter is to essentially 

provide proportional and derivative control of the error signal. The filtered error signal 

is acted upon by a proportional gain, dlck . The proportional gain of the filter and the 

proportional gain dlck  provides a large proportional gain, as suggested by 

Fortenbaugh [22], which ensures the systems full authority on-off command for gross 

error control.   

Depending on whether the vertical deviation is positive or negative a switch routes the 

control signal to either the flap or the spoiler actuators. This ensures that only one Direct 

Lift Control aerodynamic effector is active at any instant. It should also be noted that 

the Direct Lift Control system’s trailing edge flap authority is limited to the range of 

20-35 degrees, i.e. the Direct Lift Control system cannot retract the flaps to a deflection 

angle less than that of the approach configuration.  

As the control power of the flaps and spoilers are not identical and they are both being 

effected by the same controller it is necessary to have a gearing ratio in one of the 

control paths, hence the gain fsgk  represents the ratio of flap to spoiler control power.  
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The lead compensator was tuned so as to provide the feedback signal with sufficient 

lead to minimise overshoot. The lead filer has the effect of retracting the active Direct 

Lift Control effector as the vertical deviation from the approach glide path approaches 

zero. The lead compensator was tuned to suit the dynamics of the spoiler and trailing 

edge flap dynamics. The centre frequency of the filter is 3 rad/sec. The large lead ratio 

of the lead compensator has the drawback of being sensitive to noise.  

The transfer function of the filter is defined as 

 1.2 1
0.1 1

fh s
h s
ε

ε

+
=

+
 (6-3) 

The Direct Lift Control gains are selected as 

 

fsg

5 deg/ft

k 2 deg/deg

dlck =

=
 (6-4) 

A pitching moment is induced due to the deflection of trailing edge flaps, and to a lesser 

degree the deflection of the spoilers. In order to attain pure vertical translation of the 

aircraft it is necessary to compensate for this. This is achieved in two ways. A flap to 

elevator feed forward gain, fek , is implemented as presented in Figure 6-9. This serves to 

adjust the elevator angle to negate the pitching moment induced by the trailing edge flap 

deflection. A pitch attitude PID controller is also implemented, thus providing closed 

loop control of pitch attitude, as presented in Figure 6-8. 

Figure 6-9 Flap to Elevator Feed Forward System 
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The control law for the pitch attitude controller is defined as 

 d ppa ipa dpa

dk k k
dt

ε
ε ε

θ
θ θ θ= + +∫  (6-5) 

The pitch attitude control system gains and the flap to elevator feed forward gain are 

selected as 

 

3.057 rad/rad

1.288 rad/rad

1.364 rad/rad

-0.00955  rad/deg

ppa

ipa

dpa

fe

k

k

k

k

=

=

=

=

 (6-6) 

6.3.1.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

The open loop frequency response characteristics of the pitch attitude controller are 

presented in the form of a Bode diagram in Figure 6-10. The control loop is broken 

along the feedback path. The autothrottle loop is closed for this response. The phase 

margin is 41.8 degrees at 8.02 rad/s and the gain margin is 7.98 db at 14.3 rad/s. 
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Figure 6-10 Pitch Attitude Controller Open Loop Bode Diagram 
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The closed loop frequency response characteristics of the pitch attitude controller are 

presented in Figure 6-11. The closed loop bandwidth is 14 rad/s. The same additional 

loops are active for the closed loop response as in the open loop response. 

Frequency (rad/sec)

P
ha

se
 (

de
g)

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

10
2

−360

−315

−270

−225

−180

−135

−90

−45

0

−70

−60

−50

−40

−30

−20

−10

0

10

 

Figure 6-11 Pitch Attitude Controller Closed Loop Bode Diagram 

The pitch attitude controller’s response to a unit step pitch attitude demand is presented 

in Figure 6-12. The rise time of the response is 1.47 seconds and the settling time is 6 

seconds with no overshoot. The autothrottle control loop was closed for this response. 

No other loops were active. 
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Figure 6-12 Pitch Attitude Controller Response to Unit Step Demand 

The open loop frequency response characteristics of the trailing edge flap controller 

loop are presented in the form of a Bode diagram in Figure 6-13. The autothrottle, pitch 

attitude and flap to elevator feed forward loops are closed for this response and the 

spoiler loop is isolated. The Navigation System is again replaced with a comparator and 

the system is used essentially as an altitude autopilot. The control loop is broken along 

the altitude feedback path. The phase margin is 51 degrees at 5 rad/s and the gain 

margin is 10.2 db at 11 rad/s. 
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Figure 6-13 Flap Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of the trailing edge flap controller 

are presented in Figure 6-14. The closed loop bandwidth is 9 rad/s. The same additional 

loops are active for the closed loop response as in the open loop response. 
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Figure 6-14 Flap Controller Closed Loop Bode Diagram 
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The open loop frequency response characteristics of the Spoiler controller loop are 

presented in the form of a Bode diagram in Figure 6-15. The autothrottle and pitch 

attitude loops are closed for this response and the trailing edge flap loop is isolated. The 

Navigation System is again replaced with a comparator as previously described. The 

control loop is broken along the altitude feedback path. The phase margin is 

37.9 degrees at 4.7 rad/s and the gain margin is 13.8 db at 15.1 rad/s. 
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Figure 6-15 Spoiler Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of the spoiler controller are 

presented in Figure 6-16. The closed loop bandwidth is 9 rad/s. The same additional 

loops are active for the closed loop response as in the open loop response. 
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Figure 6-16 Spoiler Controller Closed Loop Bode Diagram 

The constant attitude Direct Lift Control system’s response to a unit step altitude 

demand is presented in Figure 6-17. The rise time of the response is 2.2 seconds and the 

settling time is 5.9 seconds. 
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Figure 6-17 Constant Attitude Direct Lift Control System Response to a Unit Step 
Altitude Demand 
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6.3.1.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The response of the constant pitch attitude Direct Lift Control system to a rectangular 

pulse altitude demand is presented in Figure 6-18. The system’s response to continuous 

moderate vertical turbulence over a time period of 100 seconds is presented in Figure 

6-19.  

The response to the rectangular pulse altitude demand is not as fast as the baseline 

approach glide path controller to the same demand, however the change in pitch attitude 

is much less. When the response of this system to continuous vertical turbulence is 

compared to the response of the baseline approach glide path controller to the same 

disturbance, Figure 6-7, it can be seen that while Direct Lift Control system attenuates 

the disturbance of approximately zero-mean disturbances better, e.g. 0 to 20 seconds, it 

is slow in responding to disturbances concentrated in one sense, e.g.  30 to 45 seconds. 

As a result of this it was decided that this system is not suitable for the carrier approach 

task. 

995

1000

1005

A
lti

tu
de

(f
t)

139.5

140

140.5

u
(k

no
ts

)

−0.2

0

0.2

q
(d

eg
/s

)

−5

0

5

h
(f

t/s
)

−5

0

5

(d
eg

)

0.5

1

1.5

(g
)

−5

0

5

−500

0

500

(R
P

M
)

0

20

40

0

10

20

0 5 10 15 20
−2

0

2

0 5 10 15 20
−40

−20

0

z 
∆δ

 τ 
δ 

s δ f

. 

d 
θ 

θ 
(d

eg
)

(d
eg

)
(d

eg
)

(d
eg

)
(d

eg
)

α 

a 
δ 

η 

 

Figure 6-18 Constant Attitude Direct Lift Control System Response to Rectangular 
Pulse Altitude Demand 
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Figure 6-19 Constant Attitude Direct Lift Control System Response to Continuous 
Moderate Turbulence 

6.3.2 DIRECT LIFT CONTROL AIDED BASELINE SYSTEM 

Fortenbaugh presents a report on the integration of a Direct Lift Control system to the 

F-14A, a carrier based fighter aircraft [22]. In this instance Direct Lift Control is used to 

augment the existing longitudinal controller, which controls the aircraft’s horizontal 

stabilisers. It was therefore decided to investigate the use of Direct Lift Control to 

augment the baseline approach glide path controller. 

6.3.2.1 PERFORMANCE CRITERIA 

The performance criteria for this system are the same as presented in section 6.2.1. 

6.3.2.2 SYSTEM ARCHITECTURE 

The Direct Lift Control aided baseline approach glide path controller system 

architecture is presented in Figure 6-20. The PID control of vertical deviation from the 

approach glide path is as presented in section 6.2 and the Direct Lift Control loops are 

as presented in section 6.3.1. All control laws and control system gains are as previously 
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defined. A flap to elevator feed forward gain is implemented as presented in section 

6.3.1.2. 

Figure 6-20 Direct Lift Control Aided Baseline Glide Path Controller System 
Architecture 

6.3.2.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

When the Direct Lift Control system and the Baseline approach glide path controller 

were merged and their performance investigated it was found that no further tuning of 

the systems were necessary. As a result the Bode diagrams presented in this section 

were extracted from the non-linear simulation model using Simulink’s Linear Time 

Invariant (LTI) viewer and no step response from the linear environment is presented.  

For the extraction of Bode plots from the non-linear simulation model the Navigation 

system is replaced with a comparator as presented in Figure 6-21. For open loop 

responses the control loop is broken at the negative input to the comparator. The open 

loop frequency response characteristics of this system with the spoiler loop isolated are 

presented in the form of a Bode diagram in Figure 6-22. The autothrottle, baseline 

approach glide path controller and flap to elevator feed forwards loops are closed for 

this response. The gain margin is 10.4 db at 11 rad/s and the phase margin is 53.8 

degrees at 4.8 rad/s. 
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Figure 6-21 Direct Lift Control Aided Baseline Glide Path Controller System 

Architecture for Bode Plot Extraction from Non-Linear Model 
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Figure 6-22 Flap Controller and Elevator Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of the trailing edge flap controller 

are presented in Figure 6-23. The closed loop bandwidth is 8.97 rad/s. The same 

additional loops are active for the closed loop response as in the open loop response. 
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Recalling that the closed loop bandwidth of the baseline approach glide path controller 

is 1.83 rad/s it can be seen that the addition of Direct Lift Control has the effect of 

substantially increasing the bandwidth of the controller. 
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Figure 6-23 Flap Controller and Elevator Controller Closed Loop Bode Diagram 

The open loop frequency response characteristics of this system with the trailing edge 

flap control loop isolated are presented in the form of a Bode diagram in Figure 6-24. 

The control loop is broken in the same manner as above. The autothrottle and baseline 

approach glide path controller are closed for this response. The phase margin is 35.7 

degrees at 4.54 rad/s and the gain margin is 13.9 db at 15.11 rad/s.   
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Figure 6-24 Spoiler Controller and Elevator Controller Open Loop Bode Diagram 

The closed loop frequency response characteristics of this system with the trailing edge 

flap control loop isolated are presented in the form of a Bode diagram in Figure 6-25. 

The closed loop bandwidth is 8.84 rad/s. The same additional loops are active for the 

closed loop response as in the open loop response. 
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Figure 6-25 Spoiler Controller and Elevator Controller Closed Loop Bode Diagram 

6.3.2.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The response of the Direct Lift Control aided baseline approach glide path controller to 

a rectangular pulse altitude demand is presented in Figure 6-26. The system’s response 

to continuous moderate vertical turbulence over a time period of 100 seconds is 

presented in Figure 6-27. The response of the system to the rectangular pulse altitude 

demand can be seen to meet the performance criteria. When the system’s response to 

continuous moderate vertical turbulence to the response of the baseline system to the 

same disturbance, Figure 6-7, the benefits of Direct Lift Control are readily apparent. 
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Figure 6-26 Direct Lift Control Aided Baseline System Response to Rectangular Pulse 
Altitude Demand 
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Figure 6-27 Direct Lift Control Aided Baseline System Response to Continuous 
Moderate Turbulence 
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6.4 THRUST VECTORING SYSTEM 

The third system comprises of the addition of thrust vectoring to augment elevator pitch 

control to the Direct Lift Control aided baseline approach glide path controller. This 

system was developed to allow investigation of the feasibility of using vectored thrust to 

augment pitch control during a carrier approach.  

Due to reduced radar signatures, tailless aircraft are preferable for many operations. 

These aircraft present a challenge to flight control engineers. This planform is generally 

inherently unstable in roll and yaw. This infers that a Stability Augmentation System is 

required. The challenge presents itself in the limited number of aerodynamic control 

effectors on a tailless aircraft. It is typical that pitch, roll and yaw control is achieved 

through the same aerodynamic control effector.  

In order to maintain effectiveness of the Stability Augmentation System, it is imperative 

that the associated control effectors never become saturated. Such a situation would 

result in the aircraft’s stability and control properties reverting to those of the 

un-augmented airframe. Certain phases of flight require more control activity than 

others. The carrier landing environment is such a case. This is the motivation for this 

aspect of this study. The aim is to demonstrate the feasibility of using vectored thrust to 

augment elevator pitch control, and hence alleviate the demand on aerodynamic pitch 

control effector, during a carrier approach.  

In this instance vectored thrust is used to alleviate the required pitch control from the 

elevators while the aileron and rudders are controlled as normal, i.e. the aircraft 

simulated is not a tailless aircraft. The pitch control power of vectored thrust is a 

function of engine thrust. During a landing approach the engine thrust is relatively low, 

and similarly the pitch control power is also relatively low. Bosworth and Stoliker [54] 

suggest that drag increasing devices, such as spoilers, be deployed on approach in order 

to facilitate higher engine thrust while maintaining a constant approach speed in order to 

increase vectored thrust control power. As the spoilers are being used for Direct Lift 

Control purposes this has not been implemented here. 
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6.4.1 PERFORMANCE CRITERIA 

The performance criteria for this system are the same as presented in section 6.2.1. 

6.4.2 SYSTEM ARCHITECTURE 

The architecture of the vectored thrust loop control loop is presented in Figure 6-28 

which illustrates how the vectored thrust loop is integrated with the Direct Lift Control 

aided baseline approach glide path control system. The addition of the vectored thrust 

loop is effectively an augmentation to the Stability Augmentation System elevator loop, 

presented in Chapter 3. 

In this implementation thrust vectoring is used to alleviate elevator deflection about the 

trim elevator angle. This ensures that thrust vectoring deflection angles are kept at a 

minimum.  

Figure 6-28 Thrust Vectoring System Architecture 

The control law for the vectored thrust loop is defined as 

 q fe fact d
k k q kτ θ εθ θ δ= − +  (6-7) 

The control law for the elevator loop now becomes 

 act d te act d trim
k τ ηη θ δ= +  (6-8) 

The reduction in elevator demand gain, tek , is calculated as a function of relative control 

powers and for the design point is selected as: 

 0.76 rad/radtek =  (6-9) 
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For the nominal approach engine thrust the reduction in elevator demand gain, tek , is 

selected as  

 0.81 rad/radtek =  (6-10) 

These gains were selected so as to provide the equivalent total pitch control power of 

the elevators when 1tek =  and the vectored thrust is disengaged. This ensures that the 

effectiveness of the Stability Augmentation System is preserved when pitch control is 

shared between the elevators and vectored thrust. It should be noted that thrust vectoring 

and elevator actuators have the same dynamic properties. 

At both thrust settings the gains selected resulted in a slight increase in the Short Period 

damping ratio. The damping ratio of the standard augmented aircraft is 0.76. The 

damping ratio with the addition of thrust vectoring is 0.80 for both thrust settings. 

6.4.3 PERFORMANCE ASSESSMENT USING THE LINEAR MODEL 

Bode plots are generated in the same manner as described for the Direct Lift Control 

aided baseline approach glide path controller. The open loop frequency response 

characteristics of this system with the spoiler loop isolated are presented in the form of a 

Bode diagram in Figure 6-29. The autothrottle, baseline approach glide path controller, 

trailing edge flap and trailing edge flap to elevator feed forwards loops are closed for 

this response. The gain margin is 7.62 db at 10.3 rad/s and the phase margin is 32.9 

degrees at 5.68 rad/s.   
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Figure 6-29 Open Loop Thrust Vectoring Approach Glide Path Controller Bode 
Diagram with Spoiler Loops Isolated 

The closed loop frequency response characteristics of this system with the spoiler 

control loops isolated are presented in the form of a Bode diagram in Figure 6-30. The 

same loops are active as for the open loop response. The closed loop bandwidth is 10.3 

rad/s. When this is compared with the bandwidth of the Direct Lift Control aided 

baseline approach glide path controller, which is 8.97 rad/s, it can be seen that the 

addition of thrust vectoring has increased the bandwidth of the system. 
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Figure 6-30 Closed Loop Thrust Vectoring Approach Glide Path Controller Bode 
Diagram with Spoiler Loops Isolated Bode Diagram 

The open loop frequency response characteristics of this system with the trailing edge 

flap loop isolated are presented in the form of a Bode diagram in Figure 6-31. The 

autothrottle, baseline approach glide path controller and spoiler control loops are closed 

for this response. The gain margin is 13.5 db at 15.2 rad/s and the phase margin is 53.2 

degrees at 5.28 rad/s.   
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Figure 6-31 Open Loop Thrust Vectoring Approach Glide Path Controller Bode 
Diagram with Trailing Edge Flap Loops Isolated 

The closed loop frequency response characteristics of this system with the trailing edge 

flap control loops isolated are presented in the form of a Bode diagram in Figure 6-32. 

The same loops are active as for the open loop response. The closed loop bandwidth is 

9.67 rad/s. Recalling that the closed loop bandwidth of the Direct Lift Control aided 

baseline approach glide path controller with trailing edge flaps isolated is 8.84 rad/s it 

can be seen again that thrust vectoring has had the effect of increasing the bandwidth of 

the system. 
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Figure 6-32 Closed Loop Thrust Vectoring Approach Glide Path Controller Bode 
Diagram with Trailing Edge Flap Loops Isolated 

The system’s response to a unit step altitude demand with elevator and vectored thrust 

loops closed is presented in Figure 6-33. The trailing edge flap and spoiler loops are not 

active for this response. This can be compared to the baseline approach glide path 

controller response to a unit step altitude demand, Figure 6-5. All response variables are 

very similar with the exception of axial velocity,u , which is showing a larger 

perturbation in this case as a result of the rotation of the thrust line. 
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Figure 6-33 Thrust Vectoring System Response to a Unit Step Demand 

6.4.4 PERFORMANCE ASSESSMENT USING THE NON-LINEAR MODEL 

The system’s response to a rectangular pulse altitude demand is presented in Figure 

6-34. All control loops are closed for this response, i.e. autothrottle, elevator, trailing 

edge flaps and spoilers. The response can be seen to meet the applicable performance 

criteria. The response of the system to continuous moderate vertical turbulence over a 

time period of 100 seconds is presented in Figure 6-35. When this response is compared 

to that of the Direct Lift Control aided baseline approach glide path controller, Figure 

6-27, it can be seen that the response to atmospheric turbulence has been further 

attenuated due to the increased short period damping afforded by vectored thrust. 
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Figure 6-34 Thrust Vectoring System Response to Boxcar Altitude Demand 
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Figure 6-35 Thrust Vectoring System Response to Continuous Moderate Turbulence 
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7 COMPARATIVE ANALYSIS AND 
DISCUSSION OF APPROACH 
CONTROLLER DESIGNS 

7.1 INTRODUCTION 

To assess the performance of the approach controllers developed, a series of simulations 

with varying operating conditions were conducted. The objective of this simulation 

exercise was to characterise the performance of each controller with respect to its 

approach and touchdown performance in order to facilitate a comparison of all three 

controllers. Each approach controller was simulated operating in the same conditions. 

This allowed a direct comparison between each approach controller.  

In this and subsequent Chapters ‘baseline approach controller’ refers to the Autothrottle; 

baseline approach glide path controller; track controller and Navigation System 

combination. ‘Direct Lift Control approach controller’ refers to the Autothrottle, Direct 

Lift Control aided baseline approach glide path controller, track controller and 

Navigation System combination. ‘Thrust vectoring approach controller’ refers to the 

Autothrottle, Direct Lift Control aided baseline approach glide path controller with 

thrust vectoring, track controller and Navigation System combination. 

Operating parameters, such as turbulence intensity and wind speed, were varied and 

may exceed actual operating conditions. This was done to allow the limits of the 

approach controllers and Navigation System combinations to be determined and hence a 

more comprehensive comparison of the control strategies and associated flight control 

systems is achieved. Two sets of results are presented. 

(i) Approach Performance 

Three approach cases are presented to illustrate the approach performance of the 

approach controllers and Navigation System combination with respect to response to 

discrete atmospheric disturbances. The first case considered is a no disturbance case 
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which characterises the approach controllers steady state response. The second case 

introduces windshear, discrete gusts and carrier induced turbulence. The third case 

involves continuous atmospheric turbulence and carrier induced turbulence. 

(ii) Statistical Performance Analysis 

A statistical analysis of the approach controllers is presented: In the statistical analysis 

atmospheric turbulence, intensity and direction are varied for a set of carrier motion 

cases. In total, 1440 approaches, 480 per approach controller, are assessed in this 

analysis. 

In the absence of published Automatic Carrier Landing System’s performance 

requirements in the public domain, the relative performance of each system is 

determined and discussed.  

In total the results of 1449 approach simulations are presented representing various 

operating conditions which assess the limits of the system and characterise the approach 

performance and touchdown dispersion characteristics of each approach controller and 

Navigation System combination. These data are presented in a manner consistent with 

publications that quote the USN Automatic Carrier Landing System performance 

requirements [80] and allow for a direct comparison of these systems to systems in 

service. 

In order to assess the performance of each simulated approach, a set of performance 

metrics were defined. These are presented in section 7.2 and form the basis of the 

subsequent discussions. A discussion on the simulation procedures used precedes the 

results of the comparative analysis. This Chapter is concluded with a discussion on the 

findings of the comparative analysis. 

7.2 PERFORMANCE METRICS 

In order to assess and compare each simulated approach and touchdown on the carrier it 

was necessary to define quantitative performance metrics. No previous published study 

reviewed presented a set of performance metrics for the complete approach and landing 
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scenario. As a result, the following method of assessing the carrier approach and landing 

task was developed.  

An overview of the success criteria applied to the approach and landing task is 

presented in Figure 7-1. This is similar to the criteria presented by Durand and 

Wasicko [3] who concentrated on the segment of the approach from crossing the stern of 

the carrier to touchdown.  

A successful approach and landing is required to satisfy three conditions according to 

these criteria. During the approach phase, prior to passing the stern of the ship, the 

aircraft is required to remain within defined maximum allowable lateral and vertical 

deviations from the approach path. If the aircraft exceeds either of these maximum 

allowable deviations, the approach is ‘waved-off’. The second success criterion is that 

the aircraft has the pass over the stern, or ramp, of the carrier with adequate clearance. If 

the aircraft does not pass over with adequate clearance, the aircraft will strike the ramp. 

Finally, the aircraft is required to touchdown at least before the fourth and final arresting 

wire and within the lateral confines of the landing area. If the aircraft does not 

touchdown accordingly, the approach is terminated in a go-around. In naval aviation 

parlance a go around resulting from landing beyond the fourth arresting wire is known 

as a ‘bolter’. These criteria are fully defined in the following sections 

Figure 7-1 Approach and Landing Success Criteria 
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7.2.1 APPROACH DEVIATION PERFORMANCE 

Connelly [32] suggests that the Root Mean Square (RMS) of deviations from the desired 

approach glide path and approach track can provide identical scores for both satisfactory 

and unsatisfactory flight paths and, as such, is not a suitable performance metric for the 

assessment of the approach task. For example a low approach which results in an 

aircraft landing short of the runway, which is unacceptable, could have the same RMS 

deviation as a high approach which would result in an aircraft landing beyond the 

desired touchdown point but still acceptable from a safety standpoint. However, if used 

in conjunction with another performance metric, which ensures that satisfactory and 

unsatisfactory approaches are distinguishable, then the RMS of approach glide path and 

approach track deviations does provide a useful means of comparing different systems 

tracking performance. 

The method of assessing a satisfactory approach is achieved by applying the criteria that 

the Landing Signal Officers use in determining when to wave-off an automated 

approach.  

Figure 7-2 presents the vertical flight path control wave-off boundaries for both Mode I 

and II automatic approach modes [4]. Recalling from Chapter 2 that a Mode I approach 

is a full automatic approach to touchdown, and a Mode II approach is a semi automatic 

approach providing the pilot with approach glide path and approach track deviation data 

similar to a flight director. As Mode I is the mode with the most demanding level of 

autonomy those boundaries are applied.  

The illustration in the Landing Signal Officers Reference Manual [4] was not 

accompanied with a numerical definition of the boundaries; hence some speculation is 

necessary to extract numerical boundaries. The boundary applied in this case is defined 

as a maximum allowable vertical deviation from the desired approach glide path of 

±50 ft at 8,600 ft from touchdown reducing linearly to +10 ft, -5 ft at 1000 ft from 

touchdown. No maximum allowable vertical deviation is defined for a range of less than 

1000 ft. Past this point, the pilot is committed to landing on the carrier. This logic is 

adopted here.  
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Figure 7-2 Vertical Flight Path Control Wave-Off Boundaries [4] 

Figure 7-3 presents the lateral flight path control wave-off boundaries for both Mode I 

and II automatic approach modes [4]. In this case, the Mode I boundaries are also 

applied. The boundaries applied are defined as ± 22 ft at 2,250 ft from touchdown 

reducing linearly to ± 14 ft at 800 ft from touchdown. It is assumed that at a distance 

closer that 800 ft to touchdown, the aircraft will arrive safely on the landing area of the 

deck. 

For each simulated approach these boundaries are applied as part of the post processing 

of the simulation results. If the approach trajectory of the aircraft’s tail hook breaches 

these boundaries, the approach is classified as a ‘wave-off’ and none of the metrics 

defined in the following section are calculated. If the approach is classified as a 

wave-off, the time to touchdown at which the approach failed is recorded, along with 

the RMS value for deviation from the desired approach glide path, approach track, and 

approach speed, and whether the approach failed in a vertical or lateral sense. 
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Figure 7-3 Lateral Flight Path Control Wave-Off Boundaries [4] 

If the approach does not fail, and if a ramp strike does not occur, it is classified as a 

successful approach and the RMS value for deviation from the desired approach glide 

path, approach track, and approach speed are recorded. 
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With reference to Figure 7-4: During the simulated approach the trajectory of the 

desired touchdown point, as well as three other points, are recorded. These three points, 

A, B and C, represent the starboard and port extremities of the ramp and a point above 

the centreline located on a plane perpendicular to the flat earth surface.  

Figure 7-4 Touchdown Geometry Definition 

The ramp crossing height is determined by the perpendicular distance, relative to the flat 

earth, between the point at which the trajectory of the tail hook intersects the plane 

defined by the points A, B and C and the line joining the points A and B.  

If the ramp crossing height is negative, the approach is defined as a ramp strike and no 

further metrics are calculated. 

Ramp crossing height is determined by two main factors: (1) the approach glide path 

deviation at the instant that the aircraft crosses over the ramp and (2) the aircraft 

carrier’s pitch attitude at that instant. For this reason, it is necessary to consider both 

contributions when analysing ramp crossing height performance. Each of the approach 

controllers presented control approach glide path vertical deviation and do not account 

for the aircraft carrier’s pitch attitude. The contribution of the aircraft carrier’s pitch 

attitude to ramp crossing height is defined as 
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A ± 1 degree variation in aircraft carrier pitch attitude results in a vertical displacement 

of the ramp by ± 2.79 feet, or 33% of the clearance between the aircraft carrier’s ramp 

and the desired 3 degree approach glide path. 

7.2.3 TOUCHDOWN DISPERSION 

Ultimately, the task of any automatic landing system is to deliver the aircraft safely to a 

desired point on the landing surface. Hence, the most revealing performance metric of 

an automatic landing system is a measure of how close the system delivers the aircraft 

to the desired touchdown point.  

With reference to Figure 7-4, the touchdown point is determined by calculating the 

point at which the trajectory of the tail hook intersects the carrier’s deck, which is the 

plane defined by the points A, B and the desired touchdown point. The longitudinal and 

lateral displacements of the touchdown point from the desired touchdown point are 

determined by calculating the appropriate two-dimensional distance between the actual 

touchdown point and the desired touchdown point. 

If touchdown occurs more than 60 ft forward of the desired touchdown point, the 

approached is defined as a bolter.  

Landing forward of the desired touchdown point is defined as being positive 

longitudinal displacement, and landing to the port side of the centreline is defined as 

being positive lateral displacement.  

Fortenbaugh [22] quotes the USN Automatic Carrier Landing System requirements 

document [80] as specifying that the dispersion of longitudinal displacement at 

touchdown should be less than 40 feet during Mode 1 operation. No atmospheric 

disturbance properties are defined for this dispersion requirement. Fortenbaugh 

calculates the standard deviation for a set of longitudinal touchdown dispersions and 

compares with the 40 feet requirement. The same approach has been adopted in this 

study. 

For the statistical analysis where multiple approaches are simulated for a given carrier 

motion case for approaches that terminate with a successful touchdown, the mean 
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longitudinal and mean lateral touchdown displacements are calculated, along with the 

standard deviation of the touchdown displacements. This provides a means of 

comparing the performance of the systems with the only known Automatic Carrier 

Landing System requirement. 

7.2.4 VERTICAL RATES 

A useful set of performance metrics are the aircraft and aircraft carrier vertical rates. 

When the aircraft sink rate is compared to that of the nominal sink rate, the effects of 

atmospheric disturbances are evident.  

7.2.4.1 AIRCRAFT SINK RATE 

With reference to Figure 7-4, the aircraft sink rate at touchdown is defined as the 

instantaneous height rate referred to earth axes when the tail hook trajectory hook 

intersects the plane defined by the points A, B and the desired touchdown point. For the 

purposes of this study, sink rate is defined as being positive in the same direction as 

height rate, i.e. climb is positive and descent is negative.  

7.2.4.2 AIRCRAFT CARRIER HEIGHT RATE 

With reference to Figure 7-4. The aircraft carrier vertical rate at touchdown is defined as 

the instantaneous height rate referred to earth axes when the aircraft’s tail hook 

trajectory hook intersects the plane defined by the points A, B and the desired 

touchdown point. For the purposes of this study, aircraft carrier vertical rate is defined 

as being positive in the same direction as aircraft sink rate. 

7.3 METHOD OF SIMULATION 

The method that was found to maximise efficiency of the batch simulations, and which 

also allowed the data to be stored for post simulation inspection, without imposing large 

virtual memory requirements that would slow the simulation process down, or even halt 

the process, was to write data to a file upon completion of each simulated approach, and 

then post process these data files upon completion of the entire batch. 
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For each simulation the aircraft is flown through the simulated aircraft carrier’s deck, 

which is notionally at an altitude of 45 feet, to an altitude of 10 feet. This is to ensure 

that sufficient data is recorded to accurately define the point at which touchdown 

occurred during post processing of the data. Data is extracted from the simulation 

environment for the period of interest, from an altitude of 500 feet to an altitude of 10 

feet, and written to a unique data file identified by the approach controller in use, 

turbulence conditions, wind speed and aircraft carrier speed.  

During post processing, the approach performance metrics were calculated and written to 

a Matlab data structure. Also, it is during post processing that the trajectories of the points 

A, B and C are calculated. Each simulation takes between 8 and 10 minutes to process 

and the subsequent post processing takes between 4 and 6 minutes. The majority of the 

post processing time is due to time taken to read in the data files to the workspace.  

While there are 1449 simulation results presented in this Chapter, many more 

simulations were conducted in the design phase. Three sets of batch simulations of 300 

approaches and three sets of 180 approaches were conducted using two computers in an 

effort to increase time efficiency. 

Depending on the relative velocities of the aircraft and the aircraft carrier under 

consideration, the simulated approach is initiated at an appropriate distance from the 

aircraft carrier. All simulated approaches are initiated at an altitude of 1200 feet, but 

only data from an altitude of 500 feet to touchdown is considered in this analysis, i.e. 

from tip over to touch down. For approaches in atmospheric turbulence, the turbulence 

velocities are held at zero until the aircraft reaches an altitude of 500 feet.  In the case of 

carrier induced turbulence, the turbulence velocities are held at zero until the aircraft is 

within half a nautical mile of the aircraft carrier. As turbulence velocities are time 

variable they are calculated from initiation of the simulation.  

The purpose of initiating the simulated approaches at an attitude of 1200 feet is to 

ensure that the vertical, track and approach speed deviations are zero at an altitude of 

500 feet. As the relative distance between the aircraft and the aircraft carrier at initiation 

does not account for effects of steady wind on ground speed the initial vertical deviation 
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varies depending on the combination of wind speed and aircraft carrier dynamics. By 

experiment 1200 feet was found to be an appropriate altitude to initiate a simulated 

approach to ensure that these deviations were zero at an altitude of 500 feet.  

The duration of each approach from an altitude of 1200 feet is dependent on the relative 

velocities of the aircraft and aircraft carrier. The duration of a particular approach will 

vary slightly depending on which approach controller is being used. The difference in 

duration between the baseline approach controller and the Direct Lift Control approach 

controller has been found to be in the region of 0.3 seconds, with the Direct Lift Control 

approach controller approach being longer in duration. The difference between the 

Direct Lift Control approach controller and the thrust vectoring approach controller is in 

the region of 0.02 seconds and is considered negligible. The differences in the duration 

of the approach is due to the manner in which each system responds to the position error 

at the initiation of the simulation. This initial position error is identical for all three 

systems as a function of aircraft carrier speed and wind speed. 

As turbulence is time variable and it is generated from initiation of the simulation, albeit 

the velocities are held to zero until an altitude of 500 feet, for identical turbulence cases, 

depending on the approach controller in use at a particular time to touchdown, the 

turbulence velocities at that instant will be different as a function of approach controller. 

Essentially, the turbulence velocities are shifted in time by up to 0.3 seconds between 

the baseline approach controller and the Direct Lift Control approach controller or the 

thrust vectoring approach controller, i.e. Direct Lift Control approach controller or the 

thrust vectoring approach controller will experience the same turbulence profile but at a 

time to touchdown approximately 0.3 seconds closer to zero than baseline approach 

controller. This has a slight effect on touchdown performance and needs to be 

considered when comparing each systems performance. 

7.4 APPROACH PERFORMANCE TEST CASES 

The following three Test Cases are presented in order to illustrate the approach 

performance of the approach controllers and Navigation System. The metrics described 

in section 7.2 are used to assess the performance of each approach controller.  
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7.4.1 TEST CASE 1: NO ATMOSPHERIC DISTURBANCE 

The purpose of this Test Case is to determine the steady state, or nominal, performance 

of the system with respect to the performance metrics defined in section 7.2. This Test 

Case considered omits atmospheric disturbance other than the steady wind associated 

with the aircraft carrier dynamics. The ship motion for this case is the most stable case, 

i.e. 2 knot headwind with a ship speed of 33 knots.  

The vertical and lateral deviations from the approach path are presented in Figure 7-5. 

All parameters are plotted against time to touchdown, tdt , generated by the Navigation 

System. The pitch attitude and pitch attitude demand from the approach controllers are 

also presented. The pitch attitude of the Direct Lift Control approach controller and the 

thrust vectoring approach controller are both generally slightly greater than that of the 

baseline approach controller. 

Despite the fact that there is no external disturbances the Direct Lift Control approach 

controller and the thrust vectoring approach controller demand small but relatively high 

frequency activity from both the trailing edge flap and spoiler presented in Figure 7-6. 

This is due to the large lead ratio of the lead compensator in the Direct Lift Control 

system.  

The roll angle demanded by the approach controllers and the aircraft roll angle are also 

presented in Figure 7-5. Both of these are static at zero for all three approach 

controllers, reflecting the fact that there are no lateral disturbances. Similarly the rudder 

and aileron angle are zero as presented in Figure 7-6. The altitude and axial Earth 

position of both the aircraft and aircraft carrier are also presented in Figure 7-5.  

The approach speed is held constant at 140 knots by all three approach controllers, 

however it is interesting to note that the engine speed is higher and reduces slightly as 

the aircraft approaches touchdown for the Direct Lift Control approach controller and 

the thrust vectoring approach controller when compared with the baseline approach 

controller. This reduction in engine speed coincides with a reduction of pitch attitude for 

both approach controllers. 
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With reference to Figure 7-6 it can be seen that the Direct Lift Control approach 

controller and the thrust vectoring approach controller require more elevator movement 

than the baseline approach controller, as expected due to the feedforward flap to 

elevator gain. It was commented by Fortenbaugh [22] that Direct Lift Control increases 

actuator wear of both the Direct Lift Control surfaces and the elevator, the increased 

actuator activity is readily apparent in Figure 7-6. It can be seen that thrust vectoring 

approach controller demands less activity from the elevator than the Direct Lift Control 

approach controller. 

The performance metrics are presented in presented in Table 7-1. The RMS value of 

approach glide path, approach track and approach speed deviation for an ideal approach 

is zero. The ideal aircraft height over the ramp is 8.39 ft, assuming that the aircraft 

carrier has a pitch attitude of zero at the time that the aircraft passes over its ramp.  

Intuitively the ideal longitudinal and lateral touchdown dispersions are 0 feet in both 

instances. Based on an approach speed of 140 knots and a headwind of 2 knots the ideal 

aircraft sink rate at touchdown is -12.20 ft/s. 
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Figure 7-5 Selected Aircraft Parameters for No Atmospheric Disturbance Approach 
Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] Aircraft Carrier [       ] 
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Figure 7-6 Control Effectors Positions for No Atmospheric Disturbance Approach 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 

 
 

 Baseline Direct Lift 
Control 

Thrust 
Vectoring 

Approach Success Yes Yes Yes 

Approach Glide Path Deviation RMS 0.03 ft 0.03 ft 0.03 ft 

Approach Track Deviation RMS 0 ft 0 ft 0 ft 

Approach Speed Deviation RMS 0.01 kts 0.03 kts 0.04 kts 

Ramp Crossing Height 8.40 ft 8.40 ft 8.40 ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.01 deg -0.01 deg -0.01 deg 

Approach Glide Path Deviation at Ramp Crossing 0.04 ft 0.04 ft 0.04 ft 

Ramp Strike No No No 

Longitudinal Displacement at Touchdown 0.59 ft 0.91 ft 1.15 ft 

Lateral Displacement at Touchdown 0 ft 0 ft 0 ft 

Aircraft Sink Rate at Touchdown -12.18 ft/s -12.20 ft/s -12.22 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -0.08 ft/s -0.06 ft/s 0 ft/s 

Bolter No No No 

Table 7-1 Test Case 1 Performance Summary 
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7.4.2 TEST CASE 2: INTRODUCTION OF WINDSHEAR, DISCRETE GUST 
AND CARRIER INDUCED TURBULENCE 

The second Test Case includes vertical wind shear, an axial discrete gust, steady wind 

associated with the carrier dynamics and carrier induced turbulence. The carrier 

dynamics are the same as for Test Case 1. The purpose of this Test Case is to assess and 

compare the approach controllers’ response to discrete atmospheric disturbances. 

Longitudinal aircraft, approach controller and navigation parameters are presented in 

Figure 7-7, lateral parameters are presented in Figure 7-8, and the associated control 

effectors positions in Figure 7-10.   

The velocity components of each of the constituent disturbances, atmospheric 

disturbances velocities, ( ), ,a a au v w , which includes wind shear, discrete gusts and 

atmospheric turbulence, carrier induced turbulence velocities, ( ), ,c c cu v w , and steady 

wind velocities, ( ), ,w w wu v w , are presented in Figure 7-9 with reference to the earth axis 

system. The total disturbance velocity components, ( ), ,d d dU V W , are presented with 

reference to the body axis system. 

All parameters are plotted against the Navigation System generated time to 

touchdown, tdt . Time to touchdown, tdt , is defined in Chapter 4. Time to touchdown 

generally decreases as the aircraft approaches the carrier; however, in the presence of an 

atmospheric disturbance that impedes the aircraft’s progress, time to touchdown can be 

seen to increase. This manifests itself in what resembles a loop in the plot of a particular 

variable. This is evident in Figure 7-7 at the onset of the vertical wind shear. The 

associated performance summary is presented in Table 7-2.  
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Figure 7-7 Longitudinal Aircraft Variables for Test Case 2 
Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] Aircraft Carrier [       ] 
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Figure 7-8 Lateral Aircraft Variables for Test Case 2 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 
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Figure 7-9 Atmospheric Disturbances for Test Case 2 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 
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Figure 7-10 Control Positions Effectors for Test Case 2 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 
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 Baseline Direct Lift 

Control 
Thrust 

Vectoring 

Approach Success Yes Yes Yes 

Approach Glide Path Deviation RMS 3.53 ft 2.89 ft 2.42 ft 

Approach Track Deviation RMS 0 ft 0 ft 0 ft 

Approach Speed Deviation RMS 0.53 kts 0.56 kts 0.58 kts 

Ramp Crossing Height 7.47 ft 8.07 ft 8.4 ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.01 deg -0.01 deg -0.01 deg 

Approach Glide Path Deviation at Ramp Crossing -0.89 ft -0.28 ft 0.04 ft 

Ramp Strike No No No 

Longitudinal Displacement at Touchdown 11.69 ft 6.20 ft 0.54 ft 

Lateral Displacement at Touchdown 0 ft 0 ft 0 ft 

Aircraft Sink Rate at Touchdown -13.06 ft/s -17.12 ft/s -14.63 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -0.04 ft/s -0.04 ft/s -0.1 ft/s 

Bolter No No No 

Table 7-2 Test Case 2 Performance Summary 

With reference to Figure 7-7, it can be seen that both the Direct Lift Control approach 

controller and the thrust vectoring approach controller respond quicker to the wind shear 

and as a result deviate less below the desired approach glide path, with the thrust 

vectoring approach controller responding best in this regard. However, during recovery 

of the desired approach glide path both the Direct Lift Control approach controller and 

the thrust vectoring approach controller overshoot the zero deviation point to a greater 

degree than the baseline approach controller, with the thrust vectoring approach 

controller responding better than the Direct Lift Control approach controller in this 

regard. It is interesting to note that the vertical wind shear velocity reduced to zero at a 

point that all three approach controller’s height rate is at a maximum and acting in the 

opposite direction to the wind shear velocity, hence such a pronounced overshoot by all 

three approach controllers. 

The Direct Lift Control approach controller and the thrust vectoring approach controller 

return to a steady state zero approach glide path deviation condition quicker than the 
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baseline approach controller, reflected in the approach glide path deviation RMS values 

presented in Table 7-2. 

Under the wind shear condition it can be seen that all three approach controllers 

responded very similarly with respect to approach speed deviations. The cause of the 

deviation in all three cases is the sudden change in pitch attitude, which is identical for 

all three approach controllers, i.e. a maximum commanded pitch attitude change of 10 

degrees. 

The response of all three approach controllers to the axial gust are very similar. The 

direction of the gust is the reciprocal of the aircraft’s heading, i.e. a tail wind. Tail winds 

are not favourable during an approach for landing as they have the effect of lowering 

airspeed. An inspection of the engine speed shows a slight increase at the onset of the 

gust and a corresponding decrease as the gust dissipates for all three systems. This is to 

compensate for the loss of airspeed due to the tailwind.  

It is interesting to note that for all three approach controllers aircraft velocity was 

slightly high, 140.25 knots, at the onset of the discrete gust. For all three approach 

controllers the engine speed at the onset of the gust was at idle (idle engine speed is a 

function of altitude and Mach number). This is evident by the fact that the autothrottle is 

demanding a reduction in engine speed and the engine speed is static for this period. 

This aircraft is known for its lack of drag, even in the landing configuration, providing 

little aerodynamic braking during such an approach, hence the slight overspeed. 

When inspecting the time history of aircraft velocity for the Direct Lift Control 

approach controller and the thrust vectoring approach controller, care has to be paid in 

separating the response due to the gust and that due to the aircraft’s pitch attitude, 

recalling that u  is body axis velocity. During the last 15 seconds of the approach, the 

trailing edge flaps become quite active due to aircraft carrier induced turbulence, and 

hence trailing edge flap induced pitching moment. The velocity oscillations correlate to 

the pitch attitude oscillations. The pitch attitude, and as a result velocity, oscillations are 

less pronounced for the thrust vectoring approach controllers when compared to the 
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Direct Lift Control approach controllers. The baseline approach controller is immune 

from this phenomenon as the trailing edge flaps are static.  

There is a single lateral disturbance of almost negligible magnitude, carrier induced 

lateral velocity. The response of all three approach controllers to this disturbance is 

similar. While this disturbance is of almost negligible magnitude, and of zero mean, it is 

of high frequency, hence the high frequency roll rate and roll attitude demand signals. It 

should be noted that all three approach controller responses are plotted on the same 

axes, perhaps giving the impression of an even higher frequency response. 

With reference to Table 7-2 it can be seen that the thrust vectoring approach controller 

performs best in terms of approach glide path deviation RMS; however, the baseline 

approach controller performs marginally better with respect to approach speed deviation 

for reasons already discussed.  

With respect to ramp crossing height, it is readily apparent that the thrust vectoring 

approach controller performs best. The aircraft carrier’s pitch attitude at that instant is 

equal for all three systems. The approach glide path deviation of the baseline system at 

that instant is 10.5% of the ideal ramp crossing height, or 10.5% of the ideal safety 

margin at that instant. In this instance, it does not pose a threat to the safety of the 

approach. It is indicative of the systems’ performance.  

The thrust vectoring approach controller has the least longitudinal displacement at 

touchdown from the desired touchdown point with the baseline approach controller 

showing the least accurate performance. However, the sink rate at touchdown is 

significantly higher than the ideal sink rate for both the Direct Lift Control approach 

controller and the thrust vectoring approach controller, while the sink rate of the 

baseline approach controllers is also greater than ideal.  

As expected there is a finite lag between a given atmospheric disturbance event and an 

approach controller response, the duration of which is defined by the combination of the 

control system and aircraft dynamics. In this case, just before touchdown, the total 

vertical turbulence velocity changes from +3 ft/s at 1.25 seconds to touchdown to 

-3.5 ft/s at 0.4 seconds to touchdown.  
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The effects of this sudden change in vertical velocity are reflected in the higher than 

ideal sink rates. This change in total vertical turbulence velocity was preceded by a 

similar sudden change vertical turbulence velocity but in the opposite direction. The 

approach controllers were responding to this first change while the second vertical 

velocity change was occurring and had begun to respond to the second change as 

touchdown occurred. The fact that the approach controllers had begun to respond to the 

second change of total vertical velocity is evident by the fact that spoilers are retracted 

and the trailing edge flap extended at the touchdown instant. 

The fact that the Direct Lift Control approach controller and the thrust vectoring 

approach controller responds quicker to disturbances is manifest by greater changes in 

height rate. The result of this, coupled with the finite lag between the atmospheric 

disturbance event and the approach controller response, is a higher sink rate at 

touchdown due to the approach controller response to the first change in vertical 

turbulence velocity. This is compounded by the actual vertical turbulence velocity at the 

instant of touchdown. 

The higher sink rates of the Direct Lift Control approach controller and the thrust 

vectoring approach controller should not be correlated with the better longitudinal 

touchdown dispersion of these systems. The fact that the Direct Lift Control approach 

controller and the thrust vectoring approach controller have lower approach glide path 

deviation values indicate that the better longitudinal touchdown performance is due to 

the approach controllers better approach glide path tracking performance. 

Laterally there is no significant performance difference between all three systems, as 

expected, considering the lack of lateral disturbances. 

As with Test Case 1, the level of elevator actuator activity required for the Direct Lift 

Control approach controller and the thrust vectoring approach controller is greater than 

the baseline approach controller.  
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7.4.3 TEST CASE 3: CONTINUOUS THREE DIMENSIONAL TURBULENCE 
AND CARRIER INDUCED TURBULENCE 

The third Test Case includes three dimensional continuous moderate turbulence, steady 

wind associated with the carrier dynamics and carrier induced turbulence. The carrier 

dynamics are the same as Test Case 1. Longitudinal aircraft, approach controllers and 

navigation parameters are presented in Figure 7-11, lateral parameters are presented in 

Figure 7-12, the disturbance velocities are presented in Figure 7-13 and the associated 

control effectors positions are presented in Figure 7-14.  The disturbance velocities are 

presented similarly to Test Case 2 and again all parameters are plotted against the 

Navigation System generated time to touchdown, tdt . The associated performance 

metrics are presented in Table 7-3. 

With reference to Figure 7-11 it can clearly be seen that the Direct Lift Control 

approach controller and the thrust vectoring approach controller outperform the baseline 

approach controller with respect to attenuating the effects of vertical turbulence during 

the approach. This is reflected in the systems respective approach glide path deviation 

RMS values, which show that the thrust vectoring approach controller performs the best 

of the three systems.  

It is interesting to note that the thrust vectoring approach controller commands less 

trailing edge flap and spoiler activity in the latter stages of the approach, presented in 

Figure 7-14. This has the effect of introducing less trailing edge flap induced pitching 

moment, which is evident in Figure 7-11.  

Each of the three approach controllers has the same approach track controller. It is 

interesting to note that as the approach glide path deviation performance improves from 

the baseline approach controller to the thrust vectoring approach controller, the track 

deviation performance degrades, although the magnitude of degradation is insignificant, 

approximately 1.9 inches. 
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Figure 7-11 Longitudinal Aircraft Variables for Test Case 3 
Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] Aircraft Carrier [       ] 
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Figure 7-12 Lateral Aircraft Variables for Test Case 3 
Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] Aircraft Carrier [       ] 
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Figure 7-13 Atmospheric Disturbances for Test Case 3 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 
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Figure 7-14 Control Effectors Positions for Test Case 3 
 Baseline [       ] Direct Lift Control [       ] Thrust Vectoring [       ] 
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 Baseline Direct Lift 
Control 

Thrust 
Vectoring 

Approach Success Yes Yes Yes 

Approach Glide Path Deviation RMS 1.57 ft 0.68 ft 0.36 ft 

Approach Track Deviation RMS 0.26 ft 0.35 ft 0.42 ft 

Approach Speed Deviation RMS 0.33 kts 0.31 kts 0.29 kts 

Ramp Crossing Height 8.44 ft 8.99 ft 9.08 ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.01 deg -0.01 deg -0.01 deg 

Approach Glide Path Deviation at Ramp Crossing 0.08 ft 0.64 ft 0.73 ft 

Ramp Strike No No No 

Longitudinal Displacement at Touchdown 28.62 ft 1.58 ft -10.3 ft 

Lateral Displacement at Touchdown 0.72 ft 0.95 ft 0.77 ft 

Aircraft Sink Rate at Touchdown -17.87 ft/s -21.0 ft/s -16.58 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -0.05 ft/s -0.05 ft/s -0.04 ft/s 

Bolter No No No 

Table 7-3 Test Case 3 Performance Summary 

At the initiation of the approach, the atmospheric turbulence velocity profiles for all 

three axes is rectangular pulse-like. This turbulence profile has the effect of causing 

relatively large approach glide path and approach track deviations. With respect to 

approach glide path deviation the baseline approach controller responds less well in 

comparison to the Direct Lift Control approach controller and the thrust vectoring 

approach controller. However, with respect to lateral position deviation the baseline 

approach controller responded better than the Direct Lift Control approach controller 

and the thrust vectoring approach controller. The overshoot seen in the time history of 

lateral deviation of the baseline approach controller is increased for the Direct Lift 

Control approach controller and the thrust vectoring approach controller due to the 

extension of trailing edge flaps. The extension of the flaps while the aircraft was banked 

had the effect of compounding the effects of the lateral turbulence. 

In this case, the approach speed deviation performance improves from the baseline 

approach controller to the thrust vectoring approach controller, although the difference 

between approach speed deviation RMS values of these approach controllers is 
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practically negligible, 0.04 kts. From Figure 7-11 it can be seen that the autothrottle 

performance criteria specified in Chapter 5 is maintained. 

For all three approach controllers the aircraft passes over the ramp at heights greater 

than ideal. At that instance it can be seen that the baseline approach controller is closest 

to the ideal height while the Direct Lift Control approach controller is furthest from the 

ideal height.  In the case of atmospheric turbulence ramp crossing, height should be 

analysed in conjunction with approach glide path deviation RMS in order to assess an 

approach controllers ramp crossing height characteristics. The lower the approach glide 

path deviation RMS, the more likely an aircraft controlled by that approach controller 

will consistently pass over the ramp at the height indicated. In this case, the aircraft 

when controlled by the baseline approach controller passes over the ramp at a height 

closest to ideal, but has the largest approach glide path vertical deviation RMS value, 

indicating that it is less likely to consistently pass over the ramp at its indicated height 

than the aircraft controlled by the thrust vectoring approach controller which has the 

lowest approach glide path vertical deviation RMS value. 

With reference to Table 7-3, the longitudinal displacement at touchdown for the 

baseline approach controller is greater than 20 ft, but less than 60 ft, indicating that the 

aircraft landed beyond the third arresting wire, but before the fourth arresting wire. Both 

the Direct Lift Control approach controller and the thrust vectoring approach controller 

landed before the third wire. The higher than ideal sink rates at touchdown produced by 

all three approach controllers is explained similarly to Test Case 2.  

The lateral displacements at touchdown are all relatively small and within 2.76 inches of 

each other, and together with the track deviation RMS values indicate very precise track 

control in the presence of continuous moderate turbulence. 

The same conclusions can be drawn here as with Test Case 1 with respect to the level of 

actuator activity required for the Direct Lift Control approach controller and the thrust 

vectoring approach controller.  

In general, it can be seen that the thrust vectoring approach controller has the best 

performance with respect to attenuating the atmospheric disturbance effects on the flight 
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path. In this case, the only parameter in which the performance of the Direct Lift 

Control approach controller was better than the thrust vectoring approach controller is 

longitudinal displacement at touchdown. The baseline approach controller consistently 

performed least well.  

7.5 STATISTICAL ANALYSIS 

In order to investigate the limits of each approach controller, and to characterise its 

performance in a general sense, a series of simulations were conducted for varying 

atmospheric and aircraft carrier motion conditions for each of the three approach 

controllers.  

Aircraft carrier motion is defined by wind speed and aircraft carrier speed and the 

relative direction of the aircraft carrier and wind velocity vectors. As this study is 

limited to head wind conditions only, wind speed and aircraft carrier speed were varied. 

The combination of four wind speeds and three aircraft carrier speeds, giving a total of 

12 aircraft carrier motion cases, were considered. These speeds are listed in Table 7-4. 

As discussed in Chapter 3, five sets of aircraft carrier motion time histories are 

considered for each carrier motion case.  

Wind Speed (kts) 
[Beaufort Scale] 

Aircraft Carrier Speed 
(kts) 

2 [1] 0 

13.5 [4] 10 

24.5 [6] 33 

37 [8]  

Table 7-4 Aircraft Carrier Speeds and Wind Speeds Considered for Statistical Analysis 

For each of these sixty unique aircraft carrier motion conditions, a total of eight 

atmospheric disturbance conditions were considered as listed in Table 7-5. The purpose 

of turbulence cases 4, 6 and 8 is to allow any trends relating to the interaction between 

the approach glide path controller and the approach track controller to be identified. The 
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turbulence parameters used to define light, moderate and severe turbulence are defined 

in Chapter 3. 

 Turbulence Case 

 1 2 3 4 5 6 7 8 

Carrier Induced 
Turbulence No Yes Yes Yes Yes Yes Yes Yes 

Vertical 
Turbulence No No Light Light Moderate Moderate Severe Severe 

Axial 
Turbulence No No Light Light Moderate Moderate Severe Severe 

Lateral 
Turbulence No No Light No Moderate No Severe No 

Table 7-5 Atmospheric Disturbance Conditions Considered for Statistical Analysis 

For each of these 1440 simulated approaches, the performance metrics presented in 

section 7.2 have been calculated. For each set of five aircraft carrier motion time 

histories defined by wind speed and aircraft carrier speed, the mean and standard 

deviation of these metrics have been calculated. This statistical data forms the basis of 

the following sections and are tabulated in full in Appendix B. The following discussion 

concerns the mean data only, the standard deviation of the data is only discussed in the 

event that it indicates a large spread in performance.  

The discussion is presented in two sections. Firstly, the approach performance of each 

system, including ramp crossing height, is discussed per atmospheric disturbance case, 

and secondly, the touchdown performance of each system is discussed per atmospheric 

disturbance case.  

7.5.1 APPROACH PERFORMANCE 

7.5.1.1 NO ATMOSPHERIC DISTURBANCE 

The purpose of this atmospheric disturbance case is to provide a measure of how well 

the systems perform in ideal conditions. Any peculiarities associated with aircraft 

carrier motion will be evident in this case. The associated statistical data is presented in 

Appendix B, Tables B-1 to B-4.  
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A summary of the approach performance with respect to the success criteria is presented 

in Figure 7-15. Every approach for each approach controller for this atmospheric 

disturbance case is presented in Figure 7-15. Successful approaches are presented along 

with wave-offs due to exceeding lateral and vertical approach path deviations if 

applicable. Ramp strikes are not presented in Figure 7-15, or any subsequent similar 

Figure as no ramp strikes occurred in any of the 1440 simulated approaches. 

The 180 simulated approaches for the no atmospheric disturbance case are presented in 

Figure 7-15 with respect to the approach performance criteria in twelve sub-figures. The 

sub-figures are defined by a unique combination of wind speed and aircraft carrier 

speed. The five simulated approaches for each of the three approach controllers are 

presented for that combination of wind speed and aircraft carrier speed in each of the 

sub-figures. With reference to the legend accompanying Figure 7-15 the approach 

controllers are labelled along the horizontal axis and each of the five simulated 

approaches along the vertical axis for each sub-figure. Each simulated approach is 

represented by a block the colour of which is determined by the approach success 

criteria. In the case of Figure 7-15 all approaches were successful and as a result each 

simulated approach is presented in white. In similar figures for the remaining 

atmospheric disturbance cases, failed approaches are presented in grey and black as 

appropriate. These figures allow a large quantity of data to be accurately interpreted 

visually. 

As expected, all approaches for this atmospheric disturbance case were completed 

successfully. The largest mean approach glide path vertical deviation RMS value is 0.35 

ft recorded for the baseline approach controller for a wind speed of 37 knots and an 

aircraft carrier speed of 33 knots, while the majority of mean approach glide path 

vertical deviation RMS values were less than 0.05 ft. All approach track lateral 

deviation RMS values were zero. The largest approach speed deviation is 0.15 knots 

recorded for the Direct Lift Control approach controller for a wind speed of 13.5 knots 

and an aircraft carrier speed of 33 knots, while the majority of mean approach speed 

deviation RMS values were less than 0.05 knots.  
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The mean approach glide path vertical deviation at ramp crossing for all three approach 

controllers are all in the range of 0.05 to 0.01 ft, or 0.6 inches to 0.1 inches. The thrust 

vectoring approach controller consistently demonstrates the most precise tracking of the 

approach glide path, with the baseline controller being the least precise. However, 

considering the relative errors and the fact that the Test Case is extremely clinical, it has 

to be concluded that all three approach controllers demonstrate very precise approach 

glide path control from the initiation of the approach to touchdown.  

Any variations in mean ramp crossing height are solely due to the effects of aircraft 

carrier pitch attitude. This effect is greatest for the Direct Lift Control approach 

controller and the thrust vectoring approach when the aircraft carrier speed is 0 knots 

and the steady wind speed is 37 knots. The aircraft carrier pitch attitude at ramp 

crossing is -0.18 degrees, eroding the ramp crossing height by 0.5 feet.  
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Figure 7-15 Approach Performance – No Atmospheric Disturbance 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 
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7.5.1.2 NO ATMOSPHERIC DISTURBANCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controllers in an atmospheric disturbance case that is most representative of 

normal operating conditions.  

The associated statistical data is presented in Appendix B, Tables B-5 to B-8. A 

summary of the approach performance with respect to the success criteria is presented in 

Figure 7-16. Before reviewing the performance it should be recalled that the steady, 

periodic, and random components of the carrier induced turbulence are defined as 

functions of steady wind. 

All approaches are successful for this atmospheric disturbance case. As expected the 

mean approach glide path deviation RMS values increase as the wind speed increases 

regardless of the system. The thrust vectoring approach controller consistently performs 

best with the baseline approach controller performing the least well, with the notable 

exception of the 33 knots aircraft carrier speed, 2 knot steady wind case where the 

baseline approach controller outperforms both the Direct Lift Control approach 

controller and the thrust vectoring approach controller, with the Direct Lift Control 

approach controller performing the least well. 
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Figure 7-16 Approach Performance – No Atmospheric Disturbance and Carrier 
Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

With regard to mean approach glide path vertical deviation at ramp crossing, the 

absolute magnitudes for the thrust vectoring approach controller are consistently lower 

than both the Direct Lift Control approach controller and the baseline approach 

controller with the exception being the 10 knot aircraft carrier speed, 13.5 knot steady 

wind case where the baseline approach controller is of a lower absolute magnitude. 

However, when the mean approach glide path vertical deviation RMS values are 

inspected, it can be seen that the thrust vectoring approach controller provides more 

precise control over the duration of the approach and the baseline approach controller is 

the least precise. This case highlights the effects that the random nature of turbulence 

has on a point analysis and that in order to fully appreciate an approach controller’s 

performance, metrics should not be assessed in isolation. 
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For the more precise approach glide path controllers, the contribution of aircraft carrier 

pitch attitude can be seen to be greater than the glide path deviation contribution to 

deviation from the ideal ramp crossing height. 

The mean approach track lateral deviation RMS values are of the order of 0.07 feet to 0 

feet. With regard to mean approach speed deviation RMS, the trend indicates that the 

Direct Lift Control approach controller performs the least well with the baseline 

approach controller performing slightly better than the thrust vectoring approach 

controller.  

7.5.1.3 LIGHT TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controller in an atmospheric disturbance environment representative of a 

challenging but realistic operating condition 

In order to decouple the lateral and vertical performance of each system, two Test Cases 

are presented for light, moderate and severe atmospheric turbulence. In the first case, 

axial and vertical turbulence are applied as normal and the lateral turbulence velocity is 

fixed at zero. In the second case, all three turbulence velocities are applied as normal. 

The data discussed in this section are presented in Appendix B, Tables B-9 to B-16. A 

summary of the approach performance with respect to the success criteria for the two 

dimensional turbulence case is presented in Figure 7-17 and similarly for the three 

dimensional turbulence case in Figure 7-18. 

As with the preceding atmospheric turbulence case, the thrust vectoring approach 

controller more precisely controls approach glide path deviation, with the baseline 

approach controller performing the least well. In both the two and three dimensional 

cases, all five approaches for the 10 knot aircraft carrier speed, 24.5 knot wind speed 

case breach the approach glide path vertical deviation limits presented in Figure 7-2 for 

the baseline approach controller, while the Direct Lift Control approach controller and 

thrust vectoring approach controller continue to landing.  



Comparative Analysis and Discussion of Approach Controller Designs 

 

- 196 - 

0

1

2

3

4

5

# 
A

pp
ro

ac
he

s

C
ar

rie
r 

S
pe

ed
 =

 0
 k

no
ts

0

1

2

3

4

5

# 
A

pp
ro

ac
he

s

C
ar

rie
r 

S
pe

ed
 =

 1
0 

kn
ot

s

1 2 3
0

1

2

3

4

5

# 
A

pp
ro

ac
he

s

C
ar

rie
r 

S
pe

ed
 =

 3
3 

kn
ot

s

Approach Controller
Wind Speed = 2 knots

1 2 3
Approach Controller
Wind Speed = 13.5 knots

1 2 3
Approach Controller
Wind Speed = 24.5 knots

1 2 3
Approach Controller

Wind Speed = 37 knots  

Figure 7-17 Approach Performance – Light Two Dimensional Turbulence and Carrier 
Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

When the mean approach glide path vertical deviation RMS values are compared for the 

two and three dimensional turbulence cases, it can be seen that the lateral turbulence 

slightly degrades the approach glide path controller’s tracking performance. However, 

this is more evident for the baseline approach controller and less so for the thrust 

vectoring approach controller. 

The trend with respect to mean lateral deviation RMS for the three dimensional 

turbulence case indicates that at lower wind speeds the baseline approach controller 

controls approach track performance more precisely, while the thrust vectoring 

approach controller controls approach track performance the least well. However, at the 

maximum wind speed case, 37 knots, the lateral track control performance of the 

baseline approach controller degrades to such an extent that all five approaches for the 

cases of aircraft carrier speeds of 10 knots and 33 knots breach the lateral wave-off 

boundaries presented in Figure 7-3, while the corresponding approaches for the Direct 
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Lift Control approach controller and the thrust vectoring approach controller are 

successful with the exception of two approaches by the Direct Lift Control approach 

controller at an aircraft carrier speed of 10 knots. This indicates that more precise 

approach glide path deviation control benefits lateral track deviation control.  
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Figure 7-18 Approach Performance – Light Three Dimensional Turbulence and Carrier 
Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

With regard to mean approach speed RMS deviation, the Direct Lift Control approach 

controller consistently performs least well. At lower wind speeds, the baseline approach 

controller performs better than the thrust vectoring approach controller; however, this 

trend is reversed for the 24.5 knots and 37 knots wind speed cases. The maximum 

approach speed deviation RMS is 0.87 knots indicating that, in general, approach speed 

is controlled tightly by all approach controllers. 

The trend in mean ramp crossing heights is the same as the preceding case. The mean 

values of approach glide path vertical deviation RMS at ramp crossing are, in general, 

correlated to the overall approach glide path vertical deviation performance. There is no 
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appreciable difference in ramp crossing height performance between the two and three 

dimensional turbulence cases. 

7.5.1.4 MODERATE TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance environment is to assess the performance 

of the approach controllers in an atmospheric disturbance environment representative of 

a very challenging operating condition. 

The data discussed in this section are presented in Appendix B, Tables B-17 to B-24. A 

summary of the approach performance with respect to the success criteria for the two 

dimensional turbulence case is presented in Figure 7-19 and similarly for the three 

dimensional turbulence case in Figure 7-20. The trends discussed in the previous section 

in relation to each systems’ approach glide path vertical deviation, lateral approach track 

deviation, approach speed deviation and ramp crossing height performance are evident 

in this atmospheric case. However, in this case, the magnitudes of the turbulence 

velocities are greater and hence the frequency of wave-offs increases. 

All approaches for the 2 knot steady wind case for all aircraft carrier speeds are 

successful, albeit with higher vertical and lateral deviation RMS values that for the light 

turbulence case.  

For both the two dimensional and three dimensional turbulence cases in the 13.5 knots 

steady wind case at a carrier speed of 0 knots, all five baseline approach controller 

approaches exceed the approach glide path vertical deviation limits defined in Figure 

7-2. The corresponding Direct Lift Control approach controller and thrust vectoring 

approach controller approaches continue successfully to touchdown.  
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Figure 7-19 Approach Performance – Moderate Two Dimensional Turbulence and 
Carrier Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

For both the two dimensional and three dimensional turbulence cases at a wind speed of 

24.5 knots for all aircraft carrier speeds, all baseline approach controller approaches are 

terminated with a wave-off due to breaching the approach glide path vertical deviation 

limits defined in Figure 7-2. Again, all corresponding Direct Lift Control approach 

controller and thrust vectoring approach controller approaches continue successfully to 

touchdown. 

For the three dimensional turbulence case at the 37 knot wind speed case, all baseline 

approach controller approaches are terminated with a wave-off due to breaching the 

lateral approach track deviation limits defined in Figure 7-3. These wave-offs occur at a 

greater distance from intended touchdown than any of the previous wave-offs, 

indicating a very poor performance with respect to the precision of approach track 

deviation control.  
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Figure 7-20 Approach Performance – Moderate Three Dimensional Turbulence and 
Carrier Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

At the ship speed of 0 knots, at a wind speed of 37 knots, four Direct Lift Control 

approach controller and five thrust vectoring approach controller approaches are 

terminated with a wave-off for the same reasons, while the remaining Direct Lift 

Control approach controller approach is terminated in a wave-off for breaching the 

approach glide path vertical deviation limits presented in Figure 7-2. The mean time to 

touchdown of the Direct Lift Control approach controller and thrust vectoring approach 

controller lateral failures is approximately half of the baseline approach controller 

failure, indicating greater lateral deviation control but ultimately not precise enough. 

For the 10 knot aircraft carrier speed case, at a wind speed of 37 knots, four approaches 

of both the Direct Lift Control approach controller and thrust vectoring approach 

controller are terminated in a wave-off due to breaching the lateral deviation limits 

defined in Figure 7-3.  Once again the failure occurs closer to touchdown, which is 

indicative of better lateral deviation control when compared to the baseline approach 
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controller. The remaining approach from both the Direct Lift Control approach 

controller and thrust vectoring approach controller continue to touchdown. 

For the aircraft carrier speed of 33 knots one Direct Lift Control approach controller 

approach terminates in a wave-off for breaching the lateral deviation wave-off limits 

defined in Figure 7-3. Again, this failure occurs closer to touchdown than the 

corresponding baseline approach controller failures. The remaining approaches continue 

to touchdown.  

For the two dimensional case at the 37 knots wind speed case, all baseline approach 

controller approaches are terminated with a wave-off for breaching the approach glide 

path vertical deviation limits defined in Figure 7-2 for all aircraft carrier speeds. The 

corresponding Direct Lift Control approach controller and thrust vectoring approach 

controller approaches continue to touchdown. 

At the 37 knot wind speed case, it can be seen that while the approach glide path 

vertical deviation performance of the Direct Lift Control approach controller and the 

thrust vectoring approach controller was acceptable in some instances the lack of 

attenuation of the lateral turbulence caused the majority of these approach controllers 

approaches to be terminated with a wave-off. Whether or not this atmospheric 

disturbance case is representative of a deteriorated operational condition, the fact 

remains that a successful approach controller requires both precise approach glide path 

deviation and approach track deviation control. 

7.5.1.5 SEVERE TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controllers in an atmospheric disturbance environment representative of the 

worst case operational scenario. 

The data discussed in this section are presented in Appendix B, tables B-25 to B-32. A 

summary of the approach performance with respect to the success criteria for the two 

dimensional turbulence case is presented in Figure 7-21 and similarly for the three 

dimensional turbulence case in Figure 7-22. 



Comparative Analysis and Discussion of Approach Controller Designs 

 

- 202 - 

For both the two and three dimensional turbulence cases, at a wind speed of 2 knots and 

all aircraft carrier speeds, all approaches flown by all three approach controllers are 

successful and the same trends are evident in relation to their relative performance. The 

trends discussed in the previous sections, in relation to each approach controllers 

approach glide path vertical deviation, approach track deviation, approach speed 

deviation and ramp crossing height performance, are evident in this atmospheric case. 
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Figure 7-21 Approach Performance – Severe Two Dimensional Turbulence and Carrier 
Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 

For both the two and three dimensional turbulence cases, at a wind speed of 13.5 knots 

and at aircraft carrier speeds of 0 knots and 10 knots all baseline approach controller 

approaches are terminated with a wave-off due to breaching the approach glide path 

vertical deviation limits defined in Figure 7-2. All corresponding Direct Lift Control 

approach controller and thrust vectoring approach controller approaches continue to 

touchdown. For the three dimensional turbulence case at the same wind speed but at an 

aircraft carrier speed of 33 knots all approaches for all approach controllers execute a 

successful approach, with one exception. A single Direct Lift Control approach 
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controller approach is terminated with a wave-off due to breaching the lateral deviation 

limits defined in Figure 7-3. This failure occurs at a time to touchdown of 23.7 seconds, 

approximately 0.85 nautical miles from the touchdown point at an approximate altitude 

of 300 feet. With regard to the successful approaches at this wind speed, the same trends 

can be seen with respect to the systems relative performance.  

For both the two and three dimensional turbulence cases at a wind speed of 24.5 knots 

and for all aircraft carrier speeds all baseline approach controller approaches are 

terminated in a wave-off due to breaching the approach glide path vertical deviation 

limits defined in Figure 7-2. All corresponding Direct Lift Control approach controller 

and thrust vectoring approach controller approaches continue to touchdown, with the 

exception of two thrust vectoring approach controller approaches in the three 

dimensional turbulence case which are terminated due to breaching the lateral deviation 

limits defined in Figure 7-3. 
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Figure 7-22 Approach Performance – Severe Three Dimensional Turbulence and 
Carrier Induced Turbulence  

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Exceeded Vertical Deviation         , Exceeded Lateral Deviation     . 
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For the three dimensional turbulence cases at a wind speed of 37 knots and for all 

aircraft carrier speeds all baseline approach controller approaches are terminated in a 

wave-off due to breaching the lateral deviation limits defined in Figure 7-3 for all 

aircraft carrier speeds. For the 0 knot aircraft carrier speed case, all Direct Lift Control 

approach controller and thrust vectoring approach controller approaches are terminated 

for the same reason. For the 10 knots aircraft carrier case all Direct Lift Control 

approach controller and thrust vectoring approach controller approaches are also 

terminated for the same reason, with the exception of a single Direct Lift Control 

approach which continues to touchdown. For the 33 knots aircraft carrier case only two 

Direct Lift Control approach controller approaches are terminated for this reason while 

all other Direct Lift Control approach controller and thrust vectoring approach controller 

approaches continue to touchdown. 

For the two dimensional turbulence case at this wind speed, all baseline approaches are 

terminated with a wave-off due to breaching the approach glide path vertical deviation 

limits defined in Figure 7-2 for all aircraft carrier speeds. With the exception of two 

Direct Lift Control approach controller approaches being terminated for the same 

reasons at aircraft carrier speed of 10 knots and 33 knots, all other Direct Lift Control 

approach controller and thrust vectoring approach controller approaches continue to 

touchdown. 

7.5.2 TOUCHDOWN PERFORMANCE 

7.5.2.1 NO ATMOSPHERIC DISTURBANCE 

The purpose of this atmospheric disturbance case is to provide a measure of how well 

the systems’ perform in ideal conditions. The touchdown performance with respect to 

the success criteria for touchdown is presented in Figure 7-23 for all successful 

approaches for this atmospheric disturbance case. The touchdown dispersion of 

successful approaches is presented in Figure 7-24. The mean lateral and longitudinal 

touchdown displacements for each set of five approaches per aircraft carrier speed, wind 

speed and approach controller are presented in Appendix B Tables B-1 to B-4.  
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Figure 7-23 Touchdown Performance – No Atmospheric Disturbance 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

Success         , Bolter       . 

As expected the touchdown dispersion are centred on the desired touchdown point with 

a maximum longitudinal displacement of 1.7 feet. All lateral displacements are 0.01 feet 

of centre. The positions of the four arresting wires are indicated in each of the plots in 

Figure 7-24.  

The standard deviations, or dispersion, of all longitudinal displacements of all 

touchdowns per approach controller for this atmospheric disturbance case are presented 

in Table 7-6. As is expected, the touchdown dispersions are very low and adhere to the 

40 foot minimum dispersion requirement.   

Approach Controller Touchdown Dispersion 
Baseline 0.32 ft 

Direct Lift Control 0.38 ft 
Thrust Vectoring 0.42 ft 

Table 7-6 Touchdown Dispersion of all Touchdowns per System – No Atmospheric 
Disturbance 
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Figure 7-24 Touchdown Dispersion – No Atmospheric Disturbance 
Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-7 per 

approach controller.  

 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -12.19 -12.19 -12.19 -12.19 -12.19 -12.19 -12.18 -12.19 -12.19 

13.5 -11.18 -11.17 -11.17 -11.18 -11.17 -11.17 -11.17 -11.14 -11.17 
24.5 -10.22 -10.20 -10.20 -10.22 -10.20 -10.20 -10.21 -10.17 -10.18 
37 -9.14 -9.10 -9.10 -9.15 -9.10 -9.10 -9.13 -9.06 -9.07 

Table 7-7 Aircraft Mean Sink Rate at Touchdown (ft/s) – No Atmospheric Disturbance 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

From Table 7-7 it can be seen that sink rate reduces as the magnitude of the headwind 

increases, reflecting the fact that the magnitude of sink rate is equal to the magnitude of 

the component of normal the velocity resolved into earth axes. 
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7.5.2.2 NO ATMOSPHERIC DISTURBANCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controllers in an atmospheric disturbance case that is most representative of 

normal operating conditions.  

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-25 for all successful approaches for the no atmospheric 

disturbance and carrier induced turbulence case. The touchdown dispersion of 

approaches for this atmospheric disturbance case are presented in Figure 7-26. The 

mean lateral and longitudinal touchdown displacements for each set of five approaches 

per aircraft carrier speed, wind speed and approach controller are presented in Appendix 

B Tables B-5 to B-8. 

A single bolter occurred for this atmospheric disturbance case. This occurred at a wind 

speed of 37 knots and a ship speed of 0 knots, the worst case aircraft carrier motion 

case, for the Direct Lift Control approach controller. 
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Figure 7-25 Touchdown Performance – No Atmospheric Disturbance and Carrier 

Induced Turbulence 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

Success         , Bolter       . 
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Figure 7-26 Touchdown Dispersion – No Atmospheric Disturbance and Carrier 
Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The dispersion of all touchdowns per approach controller for this atmospheric 

disturbance case are presented in Table 7-8. The total dispersion of the baseline 

approach controller is the least relative to the Direct Lift Control approach controller 

and the thrust vectoring approach controller which is reflective of the approach glide 

path vertical deviation RMS performance of the Direct Lift Control approach controller. 

Similarly the Direct Lift Control approach controller outperforms the baseline approach 

controller as it did in general with respect to its approach performance. 

Approach Controller  Touchdown Dispersion 
Baseline 15.88 ft 

Direct Lift Control 9.93 ft 
Thrust Vectoring 4.88 ft 

Table 7-8 Touchdown Dispersion of all Touchdowns per System – No Atmospheric 
Disturbance and Carrier Induced Turbulence 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-9 per 

approach controller. The deviation from the ideal sink rates, presented in Table 7-7, is 

evidence of the effects of turbulence and manoeuvring as a result of that turbulence.  
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 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -14.33 -10.27 -10.63 -13.27 -11.41 -11.79 -14.02 -12.82 -11.58 

13.5 -11.27 -9.67 -10.13 -7.70 -10.48 -10.82 -14.02 -10.04 -10.46 
24.5 -11.62 -10.09 -9.30 -13.83 -9.63 -10.26 -11.57 -11.57 -10.10 
37 -10.83 -11.80 -8.19 -9.99 -9.75 -9.33 -13.71 -13.39 -10.90 

Table 7-9 Aircraft Mean Sink Rate at Touchdown (ft/s) – No Atmospheric Disturbance 
and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

7.5.2.3 LIGHT TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controller in an atmospheric disturbance environment representative of a 

challenging but realistic operating condition. 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-27 for all successful approaches for the light three dimensional 

turbulence and carrier induced turbulence case. A total of 6 bolters occurred for this 

atmospheric disturbance case. The touchdown dispersion of successful touchdowns for 

this atmospheric disturbance case are presented in Figure 7-28. The mean lateral and 

longitudinal touchdown displacements for each set of five approaches per aircraft carrier 

speed, wind speed and approach controller are presented in Appendix B Tables B-9 to 

B-12. The lateral touchdown dispersions can be seen to be very limited in range 
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Figure 7-27 Touchdown Performance – Light Three Dimensional Turbulence and 
Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Bolter       . 

 
 

 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -17 -9.99 -11.36 -16.46 -12.16 -12.32 -16.74 -12.66 -12.42 

13.5 -9.27 -9.37 -11.21 - -11.21 -11.54 -17.42 -10.68 -8.74 
24.5 -12.06 -9.34 -10 - -15.81 -10.71 -12.4 -10.55 -9.27 
37 -12.26 -11.68 -7.59 - -8.75 -8.95 - -12.34 -9.34 

Table 7-10 Aircraft Mean Sink Rate at Touchdown (ft/s) – Light Three Dimensional 
Turbulence and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
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Figure 7-28 Touchdown Dispersion – Light Three Dimensional Turbulence and Carrier 
Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-10 per 

approach controller for the three dimensional turbulence case and in Table 7-11 for the 

two dimensional turbulence case. 

As with the previous atmospheric disturbance case, the mean touchdown sink rates are 

seen to deviate from the ideal sink rate. As touchdown sink rate is not being controlled 

by a flare manoeuvre, this data serves only as an indicator of the level of turbulence and 

manoeuvring as a result of that turbulence. The fact that sink rates are seen to be very 

high provides motivation for a further study to investigate the feasibility of using a 

navigation strategy similar to that presented in Chapter 4 to project a non-linear flight 

path which would allow the sink rate to be arrested prior to touchdown. It is also 

interesting to note that there is little difference between the mean sink rates for the two 

and three dimensional turbulence cases, except for some carrier motion cases where 

there is a disparity in the number of successful approaches between the two and three 
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dimensional turbulence cases. This indicates that lateral turbulence and associated 

corrective manoeuvring does not have a significant effect on sink rate. 

 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -17.05 -9.73 -11.38 -16.51 -12.16 -12.37 -16.77 -12.64 -12.37 

13.5 -9.16 -9.41 -11.22 - -11.38 -11.54 -17.50 -10.38 -8.73 
24.5 -11.84 -9.5 -9.95 - -14.58 -10.72 -12.12 -9.27 -9.15 
37 -11.07 -11.50 -7.46 -9.54 -11.14 -10.49 -17.51 -14.59 -9.25 

Table 7-11 Aircraft Mean Sink Rate at Touchdown (ft/s) – Light Two Dimensional 
Turbulence and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-29 for all successful approaches for the light two dimensional 

turbulence and carrier induced turbulence case. As with the three dimensional 

turbulence case, a total of six bolters occurred for this atmospheric disturbance case. 
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Figure 7-29 Touchdown Performance – Light Two Dimensional Turbulence and 
Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 
Success         , Bolter       . 
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The touchdown dispersion of successful touchdowns for this atmospheric disturbance 

case are presented in Figure 7-30. The mean lateral and longitudinal touchdown 

displacements for each set of five approaches per aircraft carrier speed, wind speed and 

approach controller are presented in Appendix B Tables B-13 to B-16. 

Apart from the inclusion of approaches that were terminated in a wave-off due to lateral 

deviation during the three dimensional case, there is very little difference between the 

two dimensional turbulence and three dimensional turbulence touchdown dispersions. 
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Figure 7-30 Touchdown Dispersion – Light Two Dimensional Turbulence and Carrier 
Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The dispersion of all touchdowns per approach controller for the two dimensional 

turbulence case are presented in Table 7-12. The first set of touchdown dispersions are 

for successful touchdowns only, i.e. bolters are not included. The second set of 

touchdown dispersions are for all touchdowns. As the longitudinal touchdown 

dispersion is predominantly a function of approach glide path vertical deviation control, 

the two dimensional turbulence case data are used in determining the total longitudinal 

touchdown dispersions as this set of data contains more successful approaches and is 
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essentially a test of the approach glide path vertical deviation control isolated from the 

approach track controller. 

Approach 
Controller 

Longitudinal Touchdown 
Dispersion 

(Successful Touchdowns) 

Longitudinal Touchdown 
Dispersion 

(All Touchdowns) 
Baseline 15.87 ft 38.32 ft 

Direct Lift Control 9.93 ft 13.52 ft 
Thrust Vectoring 4.88 ft 4.88 ft 

Table 7-12 Touchdown Dispersions per Approach Controller – Light Turbulence and 
Carrier Induced Turbulence 

As the bolters are defined by the fact that the touchdown occurs at a distance of greater 

than 60 feet from the desired touchdown point, they have a noticeable effect on the total 

touchdown dispersions. It is not apparent from the limited data in the public domain 

whether or not to include the bolters when determining touchdown dispersion. In this 

case, regardless of whether or not bolters are included, all approach controllers conform 

to the 40 foot touchdown dispersion requirement. The trend continues to show that the 

thrust vectoring approach controller performs the best with the baseline approach 

controller performing the least well. 

7.5.2.4 MODERATE TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance environment is to assess the performance 

of the approach controllers in an atmospheric disturbance environment representative of 

a very challenging operating condition. 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-31 for all successful approaches for the moderate three 

dimensional turbulence and carrier induced turbulence case. The touchdown dispersion 

of successful touchdowns for this atmospheric disturbance case are presented in Figure 

7-32. The mean lateral and longitudinal touchdown displacements for each set of five 

approaches per aircraft carrier speed, wind speed and system are presented in Appendix 

B Tables B-17 to B-20.  
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The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-13 per 

approach controller for the three dimensional turbulence case. 

As with the light three dimensional turbulence case the lateral touchdown dispersion can 

be seen to be consistently very close to the centreline. 
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Figure 7-31 Touchdown Performance – Moderate Three Dimensional Turbulence and 

Carrier Induced Turbulence 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

Success         , Bolter       . 
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Figure 7-32 Touchdown Dispersion – Moderate Three Dimensional Turbulence and 

Carrier Induced Turbulence 
Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -19.38 -10.88 -11.07 -19.03 -12.77 -11.8 -19.21 -12.99 -11.91 

13.5 - -9.7 -12.1 - -12.98 -11.32 -20.64 -8.7 -7.22 
24.5 - -10.19 -12.02 - -11.22 -13.53 - -13 -8.25 
37 - - - - -7.67 -4.87 - -12.23 -12.97 

Table 7-13 Aircraft Mean Sink Rate at Touchdown (ft/s) – Moderate Three 
Dimensional Turbulence and Carrier Induced Turbulence 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-33 for all successful approaches for the moderate two dimensional 

turbulence and carrier induced turbulence case. The touchdown dispersion of successful 

touchdowns for this atmospheric disturbance case are presented in Figure 7-34. The 

mean lateral and longitudinal touchdown displacements for each set of five approaches 

per aircraft carrier speed, wind speed and system are presented in Appendix B Tables 

B-21 to B-24. 
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Figure 7-33 Touchdown Performance – Moderate Three Dimensional Turbulence and 

Carrier Induced Turbulence 
1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

Success         , Bolter       . 
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Figure 7-34 Touchdown Dispersion – Moderate Two Dimensional Turbulence and 
Carrier Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-14 per 

approach controller for the two dimensional turbulence case. The same conclusions can 

be made with respect to the mean sink rates at touchdown for this atmospheric 

disturbance case as with the previous case. Again there is little significant difference in 

mean sink rates at touchdown between the two and three dimensional turbulence cases, 

except for some carrier motion cases where there is a disparity in the number of 

successful approaches between the two and three dimensional turbulence cases. 
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 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -19.55 -10.3 -11.38 -19.24 -10.61 -12.46 -19.4 -14.06 -11.92 

13.5 - -9.92 -12.7 - -14.71 -11.3 -20.8 -8.67 -7.15 
24.5 - -12.25 -12.53 - -11.04 -13.63 - -13.76 -8.19 
37 - -7.59 -6.85 - -11.28 -12.8 - -11.11 -9.34 

Table 7-14 Aircraft Mean Sink Rate at Touchdown (ft/s) – Moderate Two Dimensional 
Turbulence and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

The dispersion of all touchdowns per approach controller for two dimensional 

turbulence case are presented in Table 7-15. As there are relatively few baseline 

approach controller successful touchdowns, the inclusion of the bolters have a very 

large effect on the total dispersion of the baseline approach controller.  

Approach Controller Longitudinal Touchdown 
Dispersion 

(Successful Touchdowns) 

Longitudinal Touchdown 
Dispersion 

(All Touchdowns) 
Baseline 40.26 ft  94.76 ft 

Direct Lift Control 21.67 ft 29.24 ft 
Thrust Vectoring 9.69 ft 9.69 ft 

Table 7-15 Touchdown Dispersions per System – Moderate Turbulence and Carrier 
Induced Turbulence 

The Direct Lift Control approach controller and the thrust vectoring approach controller 

meet the minimum touchdown dispersion requirement of 40 feet, with the thrust 

vectoring approach controller demonstrating very tight control. The baseline approach 

controller falls outside the 40 feet dispersion requirement, especially if all touchdowns 

are counted. 

Fortenbaugh [22] presents touchdown dispersions values for the F-4 and F-14A 

Automatic Carrier Landing Systems as being 39.7 ft and 40.53 feet respectively. In the 

case where only successful touchdowns are counted towards the total touchdown 

dispersion, the baseline approach controller can be seen to perform marginally better 

than the F-14A. The values for both the F-4 and F-14A were generated in a moderate 

disturbance environment. The F-4 data was collected during carrier trials with 

comparable atmospheric disturbances while the F-14A data was the result of simulation 

with comparable atmospheric disturbances.  
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The touchdown dispersion value quoted by Fortenbaugh [22]  for the Direct Lift Control 

aided F-14A is 20.58 ft, which is very similar to that value for the Direct Lift Control 

approach controller developed here when only successful touchdowns are included. This 

increases the confidence in the realism of these systems and also the benefit 

demonstrated by the thrust vectoring approach control system. 

7.5.2.5 SEVERE TURBULENCE AND CARRIER INDUCED TURBULENCE 

The purpose of this atmospheric disturbance case is to assess the performance of the 

approach controllers in an atmospheric disturbance environment representative of the 

worst case operational scenario. 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-35 for all successful approaches for the severe three dimensional 

turbulence and carrier induced turbulence case. The mean lateral and longitudinal 

touchdown displacements for each set of five approaches per aircraft carrier speed, wind 

speed and system are presented in Appendix B Tables B-25 to B-28.  
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The touchdown dispersion of successful touchdowns for this atmospheric disturbance 

case are presented in Figure 7-36. In this case, the lateral dispersions is seen to increase 

when compared to the moderate turbulence case but however remains at a very 

acceptable level. 
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Figure 7-36 Touchdown Dispersion – Severe Three Dimensional Turbulence and 
Carrier Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-16 per 

approach controller for the three dimensional turbulence case. The touchdown sink rates 

are again seen to deviate from the ideal, again an indication of the turbulence activity 

and the aircraft’s response to this turbulence. The mean touchdown sink rate is seen to 

increase to over -20 ft/s on occasion, and similarly decrease to as low as -7.15 ft/s. 
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 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -20.37 -9.44 -10.67 -20.11 -17.68 -11.31 -20.27 -13.95 -10.99 

13.5 - -14.13 -11.6 - -14 -10.63 -21.88 -10.77 -7.15 
24.5 - -10.78 -11.03 - -10.71 -14.46 - -12.13 -8.68 
37 - - - - -7.25 - - -11.82 -13.8 

Table 7-16 Aircraft Mean Sink Rate at Touchdown (ft/s) – Severe Three Dimensional 
Turbulence and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

The touchdown performance with respect to the success criteria for touchdown is 

presented in Figure 7-37 for all successful approaches for the severe two dimensional 

turbulence and carrier induced turbulence case. The mean lateral and longitudinal 

touchdown displacements for each set of five approaches per aircraft carrier speed, wind 

speed and system are presented in Appendix B Tables B-29 to B-32. 
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The touchdown dispersion of successful touchdowns for the severe two dimensional 

turbulence and carrier induced turbulence are presented in Figure 7-38. As with the 

moderate turbulence case there is a noticeable difference in the mean lateral touchdown 

dispersion between the two dimensional and three dimensional turbulence cases.  
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Figure 7-38 Touchdown Dispersion – Severe Two Dimensional Turbulence and Carrier 
Induced Turbulence 

Baseline [   ], Direct Lift Control [   ], Thrust Vectoring [   ] 

The mean aircraft sink rate at touchdown for successful touchdowns per aircraft carrier 

motion defined by wind speed and aircraft carrier speed is presented in Table 7-17 per 

approach controller for the three dimensional turbulence case. Again there is little 

significant difference in mean sink rates at touchdown between the two and three 

dimensional turbulence cases, except for some carrier motion cases where there is a 

disparity in the number of successful approaches between the two and three dimensional 

turbulence cases. 
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 Aircraft Carrier Speed (kts) 
 0 10 33 
 Approach Controller Approach Controller Approach Controller 

Wind Speed (kts) 1 2 3 1 2 3 1 2 3 
2 -20.62 -9.63 -11.63 -20.46 -17.13 -13.02 -20.53 -12.18 -11.26 

13.5 - -10.23 -13.21 - -14.4 -11.43 -22.16 -9.81 -6.7 
24.5 - -10.43 -13.04 - -10.95 -14.02 - -12.11 -8.04 
37 - -9.1 -6.86 - -9.44 -13.1 - -8.9 -8.5 

Table 7-17 Aircraft Mean Sink Rate at Touchdown (ft/s) – Severe Two Dimensional 
Turbulence and Carrier Induced Turbulence 

1= Baseline; 2 = Direct lift Control; 3 = Thrust Vectoring 

The dispersion of all touchdowns per system for two dimensional turbulence case are 

presented in Table 7-18. As there are some Direct Lift Control approach controller 

bolters of large magnitude the inclusion of these is seen to have a large effect on the 

total longitudinal dispersion.  

System Longitudinal Touchdown 
Dispersion 

(Successful Touchdowns) 

Longitudinal Touchdown 
Dispersion 

(All Touchdowns) 
1 44.55 ft 44.55 ft  
2 25.03 ft 37.51 ft 
3 13.08 ft 13.08 ft 

Table 7-18 Touchdown Dispersions per System – Severe Turbulence and Carrier 
Induced Turbulence 

In this case, the baseline approach controller is outside of the touchdown dispersion 

requirement range; however, not by a large amount. The Direct Lift Control approach 

controller is within the requirement in either case but comfortably within the 

requirement if only successful touchdowns are counted. As with the other cases, the 

thrust vectoring approach controller performs the best being within the requirement by a 

large margin.  

7.6 DISCUSSION 

The purpose of the preceding analysis was to assess the performance of each of the three 

approach controllers developed relative to each other. Two methods of analysis were 

used in order to achieve this comparative assessment. 
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The first method consisted of simulating the aircraft executing carrier landing 

approaches under the control of each of the three approach controllers and subject to 

discrete atmospheric disturbance events. This allowed the approach controllers’ 

response to a discrete event to be directly compared. The differences in response are 

directly related to the control strategies and implementation. 

The second method of assessment consisted of a statistical analysis comprising of 480 

simulated carrier landing approaches for each of the three approach controllers subject 

to varying ship motion and turbulence characteristics. This method allowed trends in the 

performance of each approach controller to be identified. 

In order to quantitatively analyse each of the simulated approaches a set of performance 

metrics were defined. These performance metrics fully define the approach and 

touchdown performance based on operational procedures and desired performance 

irrespective of approach controller used. 

Implicit in each of the simulated approaches is the active guidance cues generated by 

the Navigation System. The navigation strategy has been demonstrated as being feasible 

through the preceding simulated approaches. Ship motion prediction underpins the 

navigation strategy, and for the purposes of this study perfect prediction has been 

assumed. In reality, this level of accuracy is not achievable.  

The effect that non-perfect prediction would have on the results presented is that some 

corrective manoeuvring would be required during the approach to reflect the fact that 

the predicted touchdown point is converging on the actual touchdown point. The 

magnitude of this corrective manoeuvring is a function of prediction accuracy. 

However, as current accurate prediction horizons are in the region of 10 to 15 seconds, 

the amount of corrective manoeuvring required would diminish to insignificance over 

the last half nautical mile of the approach, especially when compared with the 

manoeuvring required as a result of carrier induced turbulence over this period. Hence, 

while the results presented should be assessed with the fact that perfect ship motion 

prediction has been assumed, the overall performance of each approach controller 
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would not be appreciably adversely affected, and the trends presented in the results with 

regard to the approach controller’s relative performance would not be affected. 

The results presented demonstrate that each of the three approach controllers developed 

are capable of controlling the aircraft through a carrier approach and landing, albeit with 

varying levels of precision in turbulent conditions. 

The benefits of the addition of Direct Lift Control to the baseline approach controller 

are evident in the enhanced approach glide path tracking precision and resulting 

touchdown dispersion accuracy. The increased approach glide path tracking is due to the 

faster reaction to a vertical displacement from the desired approach glide path due to an 

atmospheric disturbance or navigation cue. This faster reaction is due to the direct 

control of the lift vector afforded by Direct Lift Control in addition to the response of 

the baseline approach controller. 

The significance of the addition of thrust vectoring to the Direct Lift Control aided 

approach controller is the demonstration of the use of thrust vectoring as a means to 

alleviate the magnitude of elevator pitch control required during approach. As described 

in Chapter 6, the short period damping ratio has been increased slightly as a result of the 

thrust vectoring control system gain. The increased short period damping ratio has had 

the effect of augmenting the aircraft’s attenuation of atmospheric disturbances. The 

control loop bandwidth was also increased as a result of the addition of thrust vectoring. 

Care should be exercised not to associate the increased atmospheric disturbance 

attenuation of the thrust vectoring approach controller with the addition of the thrust 

vectoring itself, but with the augmentation of the aircraft’s dynamic characteristics. 

The implication of this use of thrust vectoring is that it could be used as a means to 

augment a conventional aircraft’s longitudinal stability and control properties at 

different phases of flight independently to augmentation provided by the elevator. As 

vectored thrust is most efficient over small angles of deflection auxiliary stability 

augmentation is possible with little impact on the resultant axial thrust. A possible flight 

phase requiring auxiliary stability augmentation is a carrier landing approach in 

turbulence. 
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With respect to the approach track performance, it was found that increased approach 

glide path precision benefits the precision with which the approach track is maintained. 

In general, approach track control is less problematic than approach glide path control. 

While turbulence in the Earth's boundary layer is modelled in the simulation the change 

in steady wind speed due to the proximity of the Earth’s surface is not. In the carrier 

landing environment the dominant atmospheric effect, and hence the atmospheric effect 

of most importance in the design of an approach controller is that of total turbulence, i.e. 

the sum of atmospheric and carrier induced turbulence. The slow moving change of 

wind speed as a function of altitude due to the presence of the Earth's surface would 

have little, if any, effect on the approach controllers performance when compared with 

the effects of the faster rate of change of wind velocity due to turbulence. 

The correlation of the touchdown dispersion characteristics of the F-14A baseline 

aircraft and the F-14A Direct Lift Control aided aircraft to the baseline approach 

controller and the Direct Lift Control aided baseline approach controller provides a 

sense of confidence in the results obtained in this study. 

The potentially adverse effect that the aircraft carrier’s pitch attitude can have on the 

aircraft’s ramp crossing height is clearly evident in the preceding analysis. The erosion 

of ramp crossing height due to aircraft carrier pitch attitude is irrespective of how 

precisely the approach glide patch is maintained. The navigation strategy developed in 

Chapter 4 accounts for the position trajectory of the desired touchdown point but does 

not account for the motion of the aircraft carrier as a whole. As a result of this a brief 

study was undertaken to examine the feasibility of extending the Navigation System to 

account for the pitching motion of the aircraft carrier. This is presented in Chapter 8.  
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8 VARIABLE APPROACH SPEED 
CONTROLLER 

8.1 INTRODUCTION 

From the results presented in Chapter 7 it is clear that, regardless of how well an 

approach controller maintains the desired approach glide path, the pitch motion of the 

aircraft carrier can have a detrimental effect on the ramp crossing height. In the instance 

where an aircraft is below the approach glide path a negative aircraft carrier pitch 

attitude could have catastrophic consequences. Brictson [34] also presents, in the findings 

of a five-year study of human factors research on carrier landing performance, that the 

pitching deck is a major contributory factor in carrier landing accidents.  

Current operational procedures rely on the judgement of the Land Signal Officer and the 

pilot to avoid such a situation. For UAV operations, the pilot is removed from this 

scenario, and as a consequence the pilot’s judgement is removed. 

A Variable Approach Speed Controller was developed to synchronise the time at which 

the aircraft crosses the ramp with the minimum absolute carrier pitch attitude attainable. 

This strategy is based on defining an approach speed range instead of a single approach 

speed. This Variable Approach speed strategy was developed to augment the navigation 

strategy presented in Chapter 4. The Variable Approach Speed Controller is presented 

schematically in Figure 8-1.  

Figure 8-1 Variable Approach Speed Controller Data Flow Diagram 
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Using the aircraft’s current airspeed, the Time to Touchdown and closure rate, both 

generated by the Navigation System presented in Chapter 4, the distance of the desired 

touchdown point from the ramp, and the approach speed range, a Time to Ramp range is 

determined.  

Using ship motion prediction techniques, the predicted aircraft carrier pitch attitude over 

the Time to Ramp range is determined. The minimum absolute predicted aircraft carrier 

pitch attitude is selected from that range. It is important to note that it is the minimum of 

the absolute values that is selected. This ensures that the predicted carrier pitch attitude 

closest to zero is selected. The Time to Ramp, corresponding to the minimum absolute 

predicted aircraft carrier pitch attitude, is used to determine the approach speed. This 

will result in the aircraft passing over the ramp at that predicted aircraft carrier pitch 

attitude. This approach speed is then used as the approach speed demand by the 

autothrottle presented in Chapter 5.  

There is no indication in the literature reviewed that such a strategy has been 

investigated. Research has been undertaken involving updating approach speed but 

differences exist. Research undertaken as part of the French Future Nuclear Carrier 

program [18,19] proposed a control strategy that uses ship motion prediction. This strategy 

involves continually updating the desired flight path angle to compensate for the aircraft 

carrier pitch attitude during the last 10-15 seconds of the approach. In addition, the 

strategy also involves continually updating the aircraft approach speed as appropriate, in 

order to maintain a constant vertical rate. 

The French study aimed to augment the current navigation strategy, which is a landing 

approach to a moving point as opposed to the navigation strategy presented in this 

study. The navigation strategy presented in Chapter 4 determines the position of the 

desired touchdown point using ship motion prediction techniques and then defines an 

approach flight path to that pseudo-fixed point. 

Under the strategy proposed in the French study, the approach speed is not updated 

throughout the duration of the approach, but only in the last 10-15 seconds and it is 

updated as a function of flight path angle in order to maintain a constant vertical rate. 
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As approach speed is aircraft dependent, it is thought that the variable approach speed 

strategy does not violate the constraints of adhering to the USN operational procedures, 

although in practice the spacing requirements for multiple aircraft approaches may need 

refinement to allow for situations where the second aircraft on approach is flying a 

faster approach than the first aircraft. It is thought that given the mixed fleet of carrier 

based fixed wing non V/STOL that such a situation is already accounted for. 

The Variable Approach Speed strategy was developed to compliment the Navigation 

System presented in Chapter 4 and the Approach Controllers presented in Chapters 5 

and 6. Figure 8-2 shows how the Variable Approach Speed Controller is integrated with 

the Navigation System and the Approach Controllers. 

Figure 8-2  Variable Approach Speed Controller Integrated with Navigation System 
and Approach Controllers 
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The minimum Time to Touchdown, 1t , corresponding to the maximum approach speed, 

maxu , is defined in equation 8-1. 

 
( )
( )1

max

s s

td

s

u d u
t t

u d u

 + −
 =
 + − 

 (8-1) 

The bracketed expression in equation 8-1 expresses the current ground speed as a 

percentage of ground speed if the aircraft were at the maximum approach speed. The 

inclusion of the rate of change of distance between the aircraft and the desired 

touchdown point, d , allows for the effect of wind on ground speed to be accounted for 

without need for direct measurement of wind. 

The maximum Time to Touchdown, 2t , is determined similarly 
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 (8-2) 

As the Variable Approach Speed control strategy aims to synchronise aircraft carrier 

pitch motion with the time the aircraft passes over the ramp rather than at touchdown it 

is necessary to adjust the range of Time to Touchdown accordingly. The minimum Time 

to Ramp, 1t ′ ,  and the maximum Time to Ramp, 2t ′ , is defined as  

 

1 1

2 2

160

160

t t
d

t t
d

′

′

 = −   

 = −   

 (8-3) 

The distance between the desired touchdown point and the ramp, when projected on to 

the flat earth when the aircraft carrier pitch attitude, is zero is 160 ft. The small effect 

that a non-zero aircraft carrier pitch attitude has on the distance between the desired 

touchdown point and the ramp when projected onto the flat earth is neglected in light of 

the groundspeed and the magnitude of aircraft carrier pitch attitude involved. Similarly, 

the Time to Ramp at any instant is determined by the Time to Touchdown at that instant 

as per equation 8-4. 
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 160
tr tdt t

d
 = −   

 (8-4) 

Using ship motion prediction techniques, the aircraft carrier pitch attitude over the time 

range defined by 1t ′  and 2t ′  is predicted. The ability to predict the aircraft carrier pitch 

attitude is the key element to this control strategy. A discussion of ship motion 

prediction techniques is presented in Chapter 4 and a review of related research is 

presented in Chapter 2. 

The minimum absolute aircraft carrier predicted pitch attitude over the time range 

defined by 1t ′  and 2t ′  is determined. The absolute value is used in order to ensure that the 

aircraft carrier pitch attitude closest to zero is selected as aircraft carrier pitch attitude 

can be positive or negative.  The Time to Ramp corresponding to the minimum absolute 

aircraft carrier predicted pitch attitude,
mintr c
t

θ
, is then used to calculate the approach speed 

required to synchronise the aircraft passing over the ramp with the aircraft carrier pitch 

attitude according to equation 8-5. 
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This Variable Approach Speed demand is then used as the airspeed demand by the 

Autothrottle as presented in Figure 8-3. 

Figure 8-3 Variable Approach Speed Controller Data Flow Diagram 
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8.2.1 IMPLEMENTATION 

For the purposes of this investigation, an approach speed range has been defined as 

135-140 knots. This range is not selected based on aerodynamic characteristics of the 

aircraft, but is chosen to provide a sufficient corresponding Time to Ramp range to 

allow a proper assessment of the benefits that Variable Approach Speed may afford.  

In the simulation Test Cases presented in the following section, the Variable Approach 

Speed control strategy is implemented from an altitude of 500 ft at which point the 

aircraft is stabilised on the approach flight path. All navigation parameters prior to this 

are identical to that of the system presented in Chapter 4. 

As with the Navigation System, perfect prediction is assumed. As aircraft carrier motion 

is calculated prior to simulation of the approach, perfect prediction is achieved by 

looking ahead on the time ‘history’ of the aircraft carrier pitch attitude for the Time to 

Ramp range. The Time to Ramp range was divided into 21 equally spaced times, and 

the aircraft carrier pitch attitude was predicted at each of those times. The minimum 

absolute aircraft carrier pitch attitude was determined and the Variable Approach Speed 

demand was determined as presented in section 8.2.  

8.3 COMPARISON TEST CASE 

In order to evaluate the benefits of the Variable Approach Speed control strategy, a 

comparison between the Baseline Approach Controller with a fixed approach speed and 

the Baseline Approach Controller with the Variable Approach Speed Controller was 

conducted.  

The worst-case aircraft carrier motion the provided the largest aircraft carrier pitch 

attitude variation was selected. This aircraft carrier motion is defined by a steady wind 

of 37 knots and an aircraft carrier speed of 0 knots. No atmospheric disturbances other 

than the steady wind associated with the aircraft carrier motion were simulated. Selected 
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aircraft and aircraft carrier variables along are presented in Figure 8-4. The approach 

performance metrics calculated for each system are presented in Table 8-1. 
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Figure 8-4 Variable Approach Speed Test Case 1 
Baseline Approach Controller [    ], Baseline Approach Controller with Variable 

Approach Speed Controller [     ], Speed Demand [    ] 

It should be noted that the variables presented in Figure 8-4 are plotted against Time to 

Touchdown. The aircraft passes over the ramp approximately 1 second prior to 

touchdown. Based on the flight deck geometry, and an approach glide path of 3 degrees, 

the ideal ramp crossing height is 8.39 ft.  

From the data presented in Table 8-1 it is clear that the Variable Approach Speed 

Controller successfully controls speed so as to cross the ramp at the minimum absolute 

aircraft carrier pitch attitude. Using the Variable Approach Speed Controller, the aircraft 

passed over the ramp when the aircraft carrier pitch attitude was -0.03 deg as opposed to 

-0.36 deg when flying at the fixed approach speed of 140 knots. This difference in 

aircraft carrier pitch attitude is equivalent to a difference in ramp crossing height of 

0.92 ft.  
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 Standard 
Approach 

Speed 
Controller 

Variable 
Approach 

Speed 
Controller 

Approach Success Yes Yes 

Approach Glide Path Deviation RMS 0.06 ft 0.55 ft 

Approach Track Deviation RMS 0 ft 0 ft 

Approach Speed Deviation RMS 0.08 kts 0.44 kts 

Ramp Crossing Height 7.47 ft 8.68 ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.36 deg -0.03 deg 

Approach Glide Path Deviation at Ramp Crossing 0.075 ft 0.39 ft 

Ramp Strike No No 

Longitudinal Displacement at Touchdown 1.64 ft -11.52 ft 

Lateral Displacement at Touchdown 0 ft 0 ft 

Aircraft Sink Rate at Touchdown -9.14 ft/s -8.75 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -1.46 ft/s -2.16 ft/s 

Bolter No No 

Table 8-1 Variable Approach Speed Test Case Performance Summary 

As the aircraft’s approach speed is reduced, the time to touchdown is increased, thus the 

predicted position of the touchdown point updates accordingly. It can be seen from time 

history of the altitude of the desired touchdown point on the aircraft carriers deck, tdph , 

that the rate of change of this parameter is greatest around the time of touchdown. As a 

result of this, small changes in time to touchdown due to changes in aircraft speed 

correspond to large changes in vertical position of the predicted touchdown point. 

Changes in the vertical position of the predicted touchdown point have a 1:1 effect on 

the vertical position of the approach glide slope. This has a large effect on the approach 

glide path deviation performance. 

It should be noted that as with all previous approaches analysed, ramp crossing height is 

determined by two main components, approach glide path deviation at ramp crossing 

and the aircraft carrier pitch attitude at ramp crossing. In the case of the Variable 

Approach Speed Controller the aircraft passes the ramp with a greater positive approach 

glide path deviation than when flying at the fixed approach speed of 140 knots. This is 
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due to the motion of the predicted vertical position of the desired touchdown point, 

which is due to the change in approach speed. 

In Chapter 7 the approach glide path deviation performance of the Direct Lift Control 

Approach Controller and the Thrust Vectoring Approach Controller were shown to be 

superior to the Baseline Approach controller. The inference is that either of these 

systems coupled with the Variable Approach Speed Controller would result in less 

approach glide path deviation at ramp crossing. 

The reduced approach speed selected by the Variable Approach Speed Controller also 

has the effect of reducing the rate of descent and, as a consequence, the aircraft sink rate 

at touchdown is reduced when compared to the standard approach speed case. 

8.3.1 TURBULENCE AND ENGINE SPOOL TIME EFFECTS 

In order to assess the effects of turbulence and engine spool time on the performance of 

the Variable Approach Speed Controller a series of simulations were conducted with 

varying turbulence intensity and engine spool times.  

For the same aircraft carrier speed and wind speed as considered in section 8.3 the 

approach performance metrics were calculated for the variable approach speed 

controller operating in axial atmospheric turbulence intensities of light, moderate and 

severe. The approach performance metrics are presented in Table 8-2. In this case the 

engine dynamics are ideal, i.e. engine spool time is not considered as in all other cases. 

For the same aircraft carrier speed, wind speed and turbulence cases the approach 

performance metrics were calculated with the engine dynamics modeled as a first order 

lag with a time constant of 1.2 seconds. This set of approach performance metrics are 

presented in Table 8-3. 
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Turbulence Intensity Light Moderate Severe 

Approach Success Yes Yes Yes 

Approach Glide Path Deviation RMS 0.78 ft 1.14 ft 1.32 ft 

Approach Track Deviation RMS 0 ft 0 ft 0 ft 

Approach Speed Deviation RMS 0.45 kts 0.45 kts 0.45 kts 

Ramp Crossing Height 8.36 ft 8.09 ft 7.95ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.034 deg -0.036 deg -0.036 deg 

Approach Glide Path Deviation at Ramp Crossing 0.07 ft -0.19 ft -0.33 ft 

Ramp Strike No No No 

Longitudinal Displacement at Touchdown 32.3 ft 34.85 ft 35 ft 

Lateral Displacement at Touchdown -0.1 ft -0.1 ft -0.1 ft 

Aircraft Sink Rate at Touchdown -7.82 ft/s -7.76 ft/s -7.69 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -2.05 ft/s -2 ft/s -1.98 ft/s 

Bolter No No No 

Table 8-2 Variable Approach Speed Turbulence Performance Summary – Ideal Spool 

 

Turbulence Intensity Light Moderate Severe 

Approach Success Yes Yes Yes 

Approach Glide Path Deviation RMS 0.86 ft 1.8 ft 1.34 ft 

Approach Track Deviation RMS 0 ft 0 ft 0 ft 

Approach Speed Deviation RMS 0.58 kts 0.67 kts 0.72 kts 

Ramp Crossing Height 8.25 ft 7.75 ft 7.43 ft 

Aircraft Carrier Pitch Attitude at Ramp Crossing -0.034 deg -0.034 deg -0.034 deg 

Approach Glide Path Deviation at Ramp Crossing -0.03 ft -0.54 ft -0.86 ft 

Ramp Strike No No No 

Longitudinal Displacement at Touchdown 6.21 ft 3.09 ft -1 ft 

Lateral Displacement at Touchdown 0 ft 0 ft 0 ft 

Aircraft Sink Rate at Touchdown -8.32 ft/s -7.8 ft/s -7.62 ft/s 

Aircraft Carrier Vertical Rate at Touchdown -2.36 ft/s -1.98 ft/s -1.93 ft/s 

Bolter No No No 

Table 8-3 Variable Approach Speed Turbulence Performance Summary – Non Ideal 
Spool 
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It can be seen from Tables 8-1 and 8-2 that the effects of the axial turbulence have very 

little effect on the performance of the Variable Approach Speed Controller. As the 

intensity of the turbulence is increased the vertical glide path deviation increases, 

however the magnitude is small.  

By comparing the data presented in Tables 8-2 and 8-3 it can be seen that the effects of 

engine spool time, for the range considered, are negligible with respect to the 

performance of the Variable Approach Speed Controller. As expected the approach 

speed RMS values increase as turbulence intensity increases.  

8.4 SUMMARY 

The motivation to develop a Variable Approach Speed Controller to synchronise the 

aircraft’s approach with the aircraft carriers pitching motion came from the results of the 

approach controllers’ comparative analysis. It was shown in Chapter 7 that aircraft 

carrier pitch attitude can have a significant effect on the clearance between the aircraft 

and the aircraft carrier’s ramp regardless of how well approach glide path is maintained. 

In addition, Brictson [34] presents findings from a study of human factors on carrier 

landing performance which state that carrier pitching motion is a major contribution to 

carrier landing accidents.  

The strategy investigated involves defining an approach speed range for an aircraft 

rather than a single approach speed. For an aircraft on approach to a carrier, ship motion 

prediction techniques are used to determine the carrier’s pitch attitude when the aircraft 

is predicted to pass over the carrier’s ramp over a time range corresponding to that 

approach speed range. The aircraft’s approach speed is then adjusted so that the aircraft 

passes over the ramp at a time when the aircraft carrier’s pitch attitude is at the absolute 

minimum attainable over that approach speed range. 

The Variable Approach Speed Controller was developed to augment the Navigation 

System presented in Chapter 4. There is no indication that a Variable Approach Speed 

Controller has previously been investigated in the literature reviewed during the course 

of this study. 
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A performance comparison between the Baseline Approach Controller approaching an 

aircraft carrier at a fixed approach speed and the Baseline Approach Controller using the 

Variable Approach Speed Controller was presented in section 8.3. The results show that 

the Variable Approach Speed Controller successfully synchronised the aircrafts 

approach with the pitching motion of the aircraft carrier. 

As the ramp of the aircraft carrier is located 160 feet aft of the desired touchdown point 

a pitch attitude of -1 degree results in a vertical displacement of 2.79 feet of the ramp, or 

one third of the ideal ramp crossing height. In heavy sea conditions, which give rise to 

large ship pitch motion, the Variable Approach Speed Controller has the potential to 

increase the level of approach safety with respect to ramp crossing height. This is 

significant as heavy seas are generally accompanied by atmospheric turbulence which 

has a degrading effect on approach glide path vertical deviation control. 

The Variable Approach Speed Controller uses ship motion prediction in the same way 

as the Navigation System presented in Chapter 4. Both of these systems are limited by 

the current state of the art of ship motion techniques. As previously stated the research 

undertaken at the Department of Mechanical Engineering at University College 

London [39,40,41,42,43] is encouraging with regard to the prediction problem. The benefits 

of using ship motion prediction techniques as an integral part of a carrier landing 

navigation system are apparent when the results of the Variable Approach Speed 

Controller and the benefits afforded by the Navigation System presented in Chapter 4 

are considered. It is hoped that these findings will provide stimulus for further ship 

motion prediction research. 
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9 CONCLUSIONS AND 
RECOMMENDATIONS  

9.1 INTRODUCTION 

The preceding research demonstrated how ship motion prediction can be used as an 

integral part of a navigation aid to increase the level of safety associated with aircraft 

carrier landing operations and hence expand the operational envelope for aircraft carrier 

landings. 

Three flight control strategies applied to the carrier landing task were assessed for 

suitability for application to future carrier based UAV planforms. The results presented 

demonstrated that autonomous UAV carrier landing operations is feasible, even in 

inclement atmospheric conditions.  

An Adaptive Approach Speed Controller was developed which, using ship motion 

prediction, controls the aircraft’s approach speed so as to synchronise the aircraft’s 

approach with the carrier’s pitching motion. This strategy has the potential to increase 

the level of safety of a carrier landing approach by mitigating the possibility of a ramp 

strike. This strategy also has the potential to increase the carrier operational envelope. 

9.2 CONCLUSIONS 

From the analysis and discussions in the preceding chapters the following conclusions 

can be made with regard to the Navigation System: 

 A Navigation System was developed conceptually which (1) adheres to the 

current operating procedures, (2) requires less associated systems than the 

current Instrument Carrier Landing System, (3) accounts for future military 

navigational goals, (4) facilitates the seamless integration of the UAV fleet with 

the piloted fleets and (5) allows for truly autonomous carrier landing operations. 
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 The Navigation System, which uses ship motion prediction, has been 

demonstrated within the scope of this study as being a feasible option for a 

future carrier landing navigation system. 

 An Adaptive Approach Speed Controller, which uses ship motion prediction, 

was developed and was demonstrated as a feasible means of synchronising an 

aircraft’s approach with the pitching motion of the carrier. 

 The Adaptive Approach Speed Controller was developed to augment the 

Navigation System. Together these systems have the potential to increase the 

level of safety associated with carrier landings and potentially increase the 

carrier landing operational envelope. 

From the analysis and discussions in the preceding chapters the following conclusions 

can be made with regard to the control systems: 

 Direct Lift Control can be used to augment the performance of a standard glide 

path controller with respect to glide path tracking and touchdown dispersion 

performance. The benefits afforded by Direct Lift Control are more apparent in 

the presence of atmospheric disturbances. 

 A constant attitude DLC system is not suitable for the aircraft carrier approach 

task given the nature of the likely atmospheric disturbances. 

 Thrust vectoring can be used to alleviate the demand on an aircraft’s 

aerodynamic pitch control effector. This may be particularly useful to future 

tailless aircraft carrier based UCAVs where longitudinal and lateral directional 

control share aerodynamic control effectors; especially so considering the likely 

atmospheric disturbance conditions and resulting increased demand for pitch 

control, coupled with the inherently directional unstable planform of a tailless 

aircraft. 

 Thrust vectoring provides a means of providing auxiliary stability augmentation 

during phases of flight which may require increased stability. Such a situation is 
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a carrier landing approach where increased pitch stability results in increased 

attenuation of atmospheric disturbances.  

9.3 RECOMMENDATIONS FOR FURTHER WORK 

To realise the potential of the Navigation System and Adaptive Approach Speed 

Controller, a ship motion prediction algorithm is required with a suitable time horizon. 

It is thought that the research undertaken at University College London [39,40,41,42,43] 

would provide the most promising starting point for such an endeavour.  

Lateral and Directional control during aircraft carrier landing approaches will become 

more challenging for future UCAV planforms. While the method of alleviating the 

demand on a shared aerodynamic control effector, as used on tailless aircraft, has been 

demonstrated, further work should assess the full potential of vectored thrust as both a 

secondary lateral directional and pitch control effector. 

Based on the work presented, an investigation into the feasibility of extending the 

Navigation System to generate a non-linear, flare-like, flight path prior to touchdown 

with the aim of arresting sink rate at touchdown is proposed. Such a situation would 

have operational benefits allowing aircraft to be lighter as less structural reinforcement 

would be needed. The reduction in weight would allow aircraft to carry more fuel or 

payload increasing the aircraft’s range or effectiveness. 
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APPENDIX A SIMULATION MODEL 
DEVELOPMENT 

A.1 DYNAMICS MODULE 

A.1.1 EQUATIONS OF MOTION OF A RIGID SYMMETRIC AIRCRAFT 

Newton’s second law of motion states that the acceleration of a body as produced by a 

force is directly proportional to the magnitude of the force, in the same direction of the 

force and inversely proportional to the mass of the body. This is presented in equation 

A-1. 

 F ma=  (A-1) 

In the development of the equations of motion of a rigid symmetric aircraft the objective 

is to realise Newton’s second law of motion for each of the six degrees of motion. The 

subsequent derivation is based on that presented by Cook 

[46]. 

A.1.1.1 THE COMPONENTS OF INERTIAL ACCELERATION 

Consider the point p(x, y, z) of the not necessarily rigid body presented in Figure A-1 

whose acceleration components are (ax, ay, az) and velocity components are (u, v, w). 

The velocity components at p(x, y, z) relative to o are given by  

 

u x ry qz

v y pz rx

w z qx py

= − +

= − +

= − +

 (A-2) 

The corresponding components of acceleration at p(x, y, z) relative to o are given by 
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x

y

z

a u rv qw

a v pw ru

a w qu pv

= − +

= − +

= − +

 (A-3) 

 

 

Figure A-1 Motion Referred to Generalized Body Axes 

[46] 

By superimposing the velocity components of the cg (U, V, W) on to the local velocity 

components (u, v, w) the absolute, or inertial, velocity components ( , ,u v w′ ′ ′ ) of the point 

p(x, y z) are obtained. Where the expressions for (u, v, w) are substituted from equation 

A-2, this becomes 
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u U u U x ry qz

v V v V y pz rx

w W w W z qx py

′ = + = + − +

′ = + = + − +

′ = + = + − +

 (A-4) 

In this case we assume that the body is rigid, hence 

 0x y z= = =   (A-5)  

Similarly, the components of inertial acceleration ( , ,x y za a a′ ′ ′ ) at the point p(x, y z) are 

obtained by substituting the expressions for ( , ,u v w′ ′ ′ ), equations A-4, in place of 

(u,v,w) in equations A-3. Thus 

 

x

y

z

a u rv qw

a v pw ru

a w qu pv

′ ′ ′ ′= − +

′ ′ ′ ′= − +

′ ′ ′ ′= − +

 (A-6) 

Differentiating equations A-4 with respect to time and noting that since a rigid body is 

being considered equation A-5 applies, then 

 

u U ry qz

v V pz rx

w W qx py

′ = − +

′ = − +

′ = − +

 (A-7) 

Thus, by substituting equations A-4 and A-7 into equations A-6 the inertial acceleration 

components of the point p(x, y z) in the rigid body are obtained which, after some 

rearrangement, may be written  

 

2 2

2 2

2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x

y

z

a U rV qW x q r y pq r z pr q

a V pW rU x pq r y p r z qr p

a W qU pV x pr q y qr p z p q

′ = − + − + + − + +

′ = − + + + − + + −

′ = − + + − + + − +

 (A-8) 
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A.1.1.2 THE GENERALIZED FORCE EQUATIONS 

Consider an incremental mass δm at point p(x, y z) in the rigid body. Applying 

Newton’s second law, equation A-1, to the incremental mass, the incremental 

components of force acting on the mass are given by ( , ,x y zma ma maδ δ δ′ ′ ′ ). Thus the total 

force components (X,Y,Z) acting on the body are given by summing the force 

increments over the whole body, whence 

 

x

y

z

ma X

ma Y

ma Z

δ

δ

δ

′Σ =

′Σ =

′Σ =

 (A-9) 

Substituting the expressions for the components of inertial acceleration ( , ,x y za a a′ ′ ′ ) from 

equations A-8 and A-6 into equations A-9 and since the origin of the axes coincide with 

the cg 

 0mx my mzδ δ δΣ = Σ = Σ =  (A-10) 

Therefore, the resultant components of total force acting on the rigid body are given by 

 

( )

( )

( )

m U rV qW X

m V pW rU Y

m W qU pV Z

− + =

− + =

− + =

 (A-11) 

where m is the total mass of the body. 

A.1.1.3 THE GENERALIZED MOMENT EQUATIONS 

Consider the moments produced by the forces acting on the incremental mass δm at 

point p(x, y z) in the rigid body. The incremental force components create an 

incremental moment component about each of the three body axes. By summing these 

over the whole body the moment equations are obtained. The moment equations are the 

realisation of the rotational form of Newton’s second law of motion.  
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For example, the total moment L about the ox axis is given by summing the incremental 

moments over the whole body.  

 ( )z zm ya za Lδ ′ ′Σ − =  (A-12) 

Substituting in equation A-12 for
y

a′ and
z

a′ obtained from equations A-8 and noting that 

equation A-10 applies then, after some rearrangement, equation A-12 may be written  

 
( ) ( )

( ) ( ) ( )

2 2 2 2

2 2

p m y z qr m y z
L

r q myz pq r mxz pr q mxy

δ δ

δ δ δ

 Σ + + Σ − +
=  − Σ − + Σ + − Σ 

 (A-13) 

Terms under the summation sign Σ in equation A-13 have the units of moment of 

inertia; thus, it is convenient to define the moments and products of inertia as set out in 

Table A-1.  

( )2 2
xI m y zδ= Σ +  Moment of inertia about ox axis 

( )2 2
yI m x zδ= Σ +  Moment of inertia about oy axis 

( )2 2
zI m x yδ= Σ +  Moment of inertia about oz axis 

xyI mxyδ= Σ  Product of inertia about the ox and oy axes 

xzI mxzδ= Σ  Product of inertia about the ox and oz axes 

yzI myzδ= Σ  Product of inertia about the oy and oz axes 

Table A-1 Moments and Products of Inertia 

In a similar way the total moments M and N about the oy and oz axes respectively are 

given by summing the incremental moment components over the whole body 

 
( )

( )

x z

y x

m za xa M

m xa ya N

δ

δ

′ ′Σ − =

′ ′Σ − =

 (A-14) 

Substituting xa′ , ya′  and za′  obtained from equations A-8, in equations A-14, noting that 

equation A-10 applies and making use of the inertia definitions expressed in Table A-1, 
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then the total moment L about the ox axis , the total moment M about the oy axis and the 

total moment N about the oz axis are given by equations A-15. These represent the 

moment equations of a generalized rigid body and describe the rotational motion about 

the orthogonal axes through its cg since the origin of the axes system is coincident with 

the cg of the body.  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

x y z xy xz yz

y x z yz xz xy

z x y yz xz xy

I p I I qr I pr q I pq r I r q L

I q I I pr I pq r I p r I qr p M

I r I I pq I pr q I qr p I q p N

− − + − − + + − =

+ − + − + − − + =

+ − + − + − − + =

 (A-15) 

A.1.1.4 THE GENERALIZED EQUATIONS OF MOTION 

Together, equations A-11 and A-15 comprise the generalized six degrees of freedom 

equations of motion of a rigid symmetric airframe having a uniform mass distribution.  

By calculating the disturbing forces and moments, and knowing the initial values of the 

body axes velocities, Ui, Vi, Wi, and body axes rotational rates, pi, qi, ri,  the equations of 

motion can be solved for the body axes velocities, U, V, W, and body axes rotational 

rates, p, q, r.  

The disturbing forces (X,Y,Z) and moments (L,M,N) are due to aerodynamics, thrust and 

gravity and are defined in Chapter 3. 

A.1.2 ROTATION IN SPACE 

The Euler angles,φ , θ  and ψ , which describe the  angular orientation of the body axes 

system relative to the earth axes system are derived from the rotation rates, p, q and r, 

through the use of Euler parameter quaternions. The Euler parameter equations are well 

behaved and have no singularities, unlike the method of calculating the Euler angles 

directly from the rotational rates. The direction cosine matrix relating the earth axes 

system to the body axes system can also be calculated using the Euler parameters. 

The equations implemented in the simulation model are presented in the following 

sections. The derivation from first principles of the Euler parameters from rotational 
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rates, and subsequently the Euler angles and direction cosine matrix, is presented by 

Kuipers 

[82].  

A.1.2.1 EULER PARAMETERS 

The rate of change of the Euler parameters, e0, e1, e2, and e3, with respect to the rotational 

rates, p, q and r, is presented in equation A-16.  

 

0 0

1 1

2 2

3 3

0
01

02
0

e ep q r
e ep r q
e eq r p
e er q p

− − −    
    −    =
    −
    

−    

 (A-16) 

Where the initial values of the Euler parameters e0, e1, e2, and e3 are calculated from the 

initial Euler angles φi, θi and ψi, as in equations A-17. 

 

0

1

2

3

cos cos cos sin sin sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

cos sin s sin cos sin
2 2 2 2 2 2

sin cos cos cos sin sin
2 2 2 2 2 2

i i i i i i

i i i i i i

i i i i i i

i i i i i

e

e

e co

e

ψ θ φ ψ θ φ

ψ θ φ ψ θ φ

ψ θ φ ψ θ φ

ψ θ ψ θ φφ

= +

= −

= +

= −

 (A-17) 

 
 

A.1.2.2 EULER ANGLES 

The Euler Angles,φ ,θ  and ψ , are defined as functions of Euler parameters, e0, e1, e2, 

and e3, as in equations A-18. 
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( )

( )( )

( )

0 1 2 31

2 2 2 2
0 1 2 3

1
1 3 0 3

0 3 1 21

2 2 2 2
0 1 2 3

2
tan

sin 2

2
tan

e e e e
e e e e

e e e e

e e e e
e e e e

φ

θ

ψ

−

−

−

 +
=  − − + 

= − −

 +
=  + − − 

 (A-18) 

A.1.2.3 DIRECTION COSINE MATRIX 

The earth axes from aircraft body axes direction cosine matrix, EBD , is defined as a 

function of Euler parameters, e0, e1, e2, and e3, as presented in equation A-19. 

 
( ) ( )

( ) ( )
( ) ( )

2 2 2 2
0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2
0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 0 1 2 3 0 1 2 3

2 2
2 2
2 2

EB

e e e e e e e e e e e e
D e e e e e e e e e e e e

e e e e e e e e e e e e

 + − − − +
 = + − + − − 
 − + − − + 

 (A-19) 

Having calculated the earth axes from aircraft body axes direction cosine matrix, EBD , 

the body axes from earth axes direction cosine matrix, BED , may be calculated as per 

equation A-20. 

 1
BE EBD D−=  (A-20) 

A.1.3 AIRCRAFT RELATIVE VELOCITIES 

The relative velocity components of the aircraft relative to the airflow are defined as 

 
R d cE

R BE d BE cE

R d cE

U U U u
V V D V D v
W W W w

      
      = − −       
             

 (A-21) 

where the disturbance velocities, , ,d d dU V W , are defined as 

 

d t g w

d t g w

d t g ws

U u u u

V v v u

W w w w

= + +

= + +

= + +

 (A-22) 
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The carrier landing disturbance model velocity components relative to the earth axes 

system, , ,c c cE E E
u v w , are defined as 

 
c cE

c EB cE ac

c cE

u u
v D v
w w

   
   =   
     

 (A-23) 

Where the earth axes from aircraft carrier body axes direction cosine matrix is defined 

in terms of the aircraft carriers Euler angles, , ,ac ac acφ ψ θ , as presented in equation A-24 

 

 

cos sin sin cos sin cos
cos cos

sin cos sin sin

sin sin sin sin sin cos
sin cos

cos cos cos sin

sin cos sin cos cos

ac ac ac ac ac ac

ac ac

ac ac ac ac

ac ac ac ac ac ac

EB ac acac
ac ac ac ac

ac ac ac ac ac

D

ψ θ φ ψ θ φ
ψ θ

ψ φ ψ φ

ψ θ φ ψ θ φ
ψ θ

ψ φ ψ φ

θ θ φ θ φ

 
 − +


=  + −


 −
 













 (A-24) 

Atmospheric disturbance velocity components due to turbulence, , ,t t tu v w , 

gusts, , ,g g gu v w , wind shear, ww , and proximity to an aircraft carrier, , ,c c cu v w , are  defined 

in Chapter 3. 

A.1.4 AIRCRAFT EARTH VELOCITIES 

The aircraft’s true velocity components relative to the earth axes system are calculated 

by multiplying the earth from body axes direction cosine matrix by the relative velocity 

vector. 

 
E R

E EB R

E R

U U
V D V
W W

   
   =   
      

 (A-25) 
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A.1.5 AIRCRAFT EARTH POSITION 

The aircraft’s position relative the earth axes system is calculated by integrating the 

aircraft’s earth axes velocities with respect to time relative to the aircraft’s initial 

position as per equation A-26. 

 

E E i E

E E i E

E E i E

x x U

y y V

z z W

= + ∫

= + ∫

= + ∫

 (A-26) 

where ( ), ,E E Ei i i
x y z  is the aircrafts initial earth axes position. 

A.1.6 AIRCRAFT CARRIER EARTH VELOCITIES 

The aircraft carrier’s true velocity components relative to the earth axes system are 

calculated by multiplying the earth from aircraft carrier body axes direction cosine 

matrix by the aircraft carrier body axis velocity vector. 

 
E

ac ac

E EB ac
ac ac

ac
Eac

U U
V D V

WW

        =        

 (A-27) 

where the aircraft carrier body axis velocities are defined as 

 
ac ac

Trim Pertac

ac ac ac
Trim Pert

ac
ac ac

Trim Pert

U xU
V V y
W W z

   
     
     = +     
      

   

 (A-28) 

where ac
Trim

U , ac
Trim

V  and ac
Trim

W  are the steady state axial, lateral and normal aircraft carrier 

velocities and where ac
Pert

U , ac
Pert

V  and ac
Pert

W  are the axial, lateral and normal position 

perturbations outputted by the carrier dynamics model. Similarly, the body axis 

velocities of the touchdown point on the carrier’s deck is defined as 
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( )

( )

( )

( )

( )

( )

acacac tdp Pert tdpTrim

ac acac tdp Trim Pert tdp

ac tdp ac acTrim Pert tdp

xUU

V V y

W W z

          = +               

 (A-29) 

where 
( )

ac
Pert tdp

x , 
( )

ac
Pert tdp

y  and 
( )

ac
Pert tdp

z  are the axial, lateral and normal position 

perturbations of the touchdown point outputted by the carrier dynamics model. 

A.1.7 AIRCRAFT CARRIER EARTH POSITION 

The aircraft carrier’s centre of gravity position relative the earth axes system is 

calculated by integrating the aircraft carrier’s earth axes velocities with respect to time 

relative to the aircraft carrier’s initial position as per equation A-30.  

 

E E i Eac ac ac

E E i Eac ac ac

E E i Eac ac ac

x x U

y y V

z z W

= + ∫

= + ∫

= + ∫

 (A-30) 

where ( ), ,E i E i E iac ac ac
x y z  is the aircraft carrier’s initial earth axes position  

Similarly the touchdown position on the aircraft carrier’s deck relative to the earth axes 

system is defined as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

E EE i tdpacac tdp ac tdp

E EE i tdpacac tdp ac tdp

E EE i tdpacac tdp ac tdp

x x U

y y V

z z W

= + ∫

= + ∫

= + ∫

 (A-31) 

where ( )( ) ( ) ( ), ,E tdp E tdp E tdpi i i
x y z  is the aircraft carrier’s initial earth axes position. 
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A.2 AERODYNAMICS MODEL 

A.2.1 SPOILER AERODYNAMICS 

Symmetric deflection of flat type spoilers with no porosity has been modelled using 

methods presented in the appropriate ESDU documents 

[58,59,60]. A ‘spoiler’ attached to 

the upper surface of the wing will cause the flow to separate, literally ‘spoiling’ the 

flow, and usually resulting in a loss of lift and increase in drag. The increment in lift 

coefficient and the increment in drag coefficient due to symmetric deflection of the 

spoilers are presented in sections A.2.1.1 and A.2.1.2 respectively. Note that 

asymmetric deflection of spoilers is not considered in this instance. 

The necessary spoiler geometry definitions are presented in Figure A-2. The 

aerodynamic effects due to symmetric spoiler deflection are implemented so as to allow 

the user to define the spoiler geometry.  

 
Figure A-2 Spoiler Geometry Definition 

[58,59,60] 

flap flap

area sS  

oη

iη
= =

A

A′

wsc spoiler 
t rc c=

ifη
ofη  

sx  

s

A
 

A′

hx  
hsc

sδ  

c
sph

sz

fδ  

fc
teh
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A.2.1.1 SPOILER LIFT COEFFICIENT INCREMENT 

The total lift coefficient increment (usually negative, i.e. a decrement) due to symmetric 

spoiler deflection, Ls
C , is defined as 

[59] 

 
1 1L L Ls s sf f

C C C
δ δ= >

= +  (A-32) 

where the lift coefficient increment due to symmetric spoiler deflection with trailing 

edge flaps retracted,
1Ls f

C
δ =

, is defined as 

[58] 

 ( )11 2
Ls

L o is wbf

C
C a

δ π
∞

=
= Φ − Φ  (A-33) 

The two dimensional lift coefficient decrement due to symmetric spoiler deflection, Ls
C ∞ , 

is presented in Figures A-4 and A-5 for o0α =  and o10α =  respectively as a function of 

spoiler chordwise position, sx c ,  and the parameter H c , where 

[58] 

 eff sH h z= +  (A-34) 

where sz  is the section ordinate at the spoiler position and effh  is an effective spoiler 

height, which for a flat-type spoiler with no porosity 

[58] and is defined as 

 eff sp sh h k=  (A-35) 

where sk  is a function of spoiler deflection angle, sδ , and is presented in Figure A-3 and 

the height of the deflected spoiler, sph , is defined as 

 sinsp hs sh c δ=  (A-36) 
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Figure A-3  sk  as a Function of Spoiler Deflection Angle, sδ  

[58] 

 

 
Figure A-4 Ls

C ∞−∆  as a Function of sx c  and H c  for o0α =  

[58] 
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Figure A-5 Ls

C ∞−∆  as a Function of sx c  and H c  for o10α =  

[58] 

A linear variation of Ls
C ∞ with angle of attack is assumed. The wing-body combination 

lift curve slope, 1wb
a , is defined by Fitzgerald in a Cranfield University College of 

Aeronautics report [67]. The part-span correction factors, oΦ  and iΦ  are functions of oη  

and iη  respectively expressed as a percentage of the semi-span, s , and are presented in 

Figure A-6. 
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Figure A-6 Part-Span Correction Factor 

[58] 

The lift coefficient increment due to symmetric spoiler deflection with trailing edge 

flaps deflected,
1Ls f

C
δ >

, is defined as 

[59] 
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 ( )11

1
2

te
L s oe ies f wbf

hC k a
cδ π>

  = − Φ − Φ  
  

 (A-37) 

where s f
k , presented in Figure A-7,  is a function of trailing edge flap deflection, fδ , and 

is assumed to vary linearly with angle of attack. 
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Figure A-7 s f

k  as a Function of Trailing Edge Flap Deflection, fδ  

[59] 

The distance from the trailing edge of the deflected trailing edge flap to the wing chord 

line, teh , is defined as 

[59] 

 sinte f fh c δ=  (A-38) 

where fc  is the trailing edge flap chord length.  

The inboard and outboard extremities are iη  and oη  for the spoiler, and ifη  and ofη  for 

the trailing edge flap, expressed as a percentage of the wing semi-span s . The spoiler is 

assumed to separate the flow over any portion of the trailing edge flap behind the spoiler 

or within 0.15c  of the ends of the spoiler, thus giving an effective spanwise extent for 

the separated flow over the trailing edge flap, defined by ieη  and oeη . 

The effective inboard limit, ieη , is defined as 

[59] 

fδ  (deg) 

sfk  

10oα = 0oα =  
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and 

0.3when

0.3 0.3when

ie if if i

ie i if i

A

A A

η η η η

η η η η

= ≥ −

= − < −
 (A-39) 

Similarly, the effective outboard limit, oeη ,is defined as 

[59] 

and 

0.3when

0.3 0.3when

oe of of o

oe o of o

A

A A

η η η η

η η η η

= ≤ +

= + > +
 (A-40) 

where the aspect ratio, A , is defined as 

 
2bA

S
=  (A-41) 

The functions ieΦ  and oeΦ  are obtained from Figure A-6 for the effective spanwise 

limits ieη  and oeη .  

A.2.1.2 SPOILER DRAG COEFFICIENT INCREMENT 

The total drag coefficient increment due to symmetric spoiler deflection is defined as 

[60] 

 D D Ds is os
C C C= +  (A-42) 

The increment in induced drag coefficient due to symmetric spoiler deflection, Dis
C , is 

defined  as 

[60] 

 
2

2 Ls
D iw L sis s D

ws o i

CcC C k
c

ε
η η

  
= +   −  

 (A-43) 

where the wing downwash in the region of the spoiler, iwε ,is defined as 

[60 

 
( )2

1.2 L L Lf f
iw

o f

C C C
A A

ε
π π η

− ∆ ∆ 
= +  

 
 (A-44) 

where o f
η is expressed as a percentage of the semi-span, s . The increment in total lift 

coefficient due to trailing edge flap deflection, L f
C∆ , is defined as 
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 ( )20 1
19
L f f

L ff

C
C δ δ=

∆ 
∆ = −  

 
 (A-45) 

where the increment in total lift coefficient due to full trailing edge flap deflection, 

20L f f
C

δ =
∆ , was derived using the definition of lift coefficient presented by Fitzgerald in a 

Cranfield University College of Aeronautics report [67] and is presented in Figure A-8 as 

a function of dynamic pressure.  
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Figure A-8 L f
C∆  as a Function of Dynamic Pressure 

The total lift coefficient increment due to symmetric spoiler deflection, Ls
C , is as defined 

by equation A-32. The spoiler induced drag factor, sD
k , presented in Figure A-9 as a 

function of the aspect ratio of the shaded area of wing in Figure A-2, sA . 
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Figure A-9 sD

k  as a Function of sA  
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where sA  is defined as 

[60] 

 ( )o i
s

ws

s
A

c
η η−

=  (A-46) 

where oη  and iη  are expressed as a percentage of the wing semi-span, s . 

The increment in profile drag coefficient due to symmetric spoiler deflection, Dos
C , in 

equation A-42 is defined as 

[60] 

 ( )( )21.2 sin s o i hs
Dos

sc
C

S
δ η η−

=  (A-47) 

where oη and iη are expressed as a percentage of the wing semi-span, s . Spoiler chord 

length, hsc , as defined in Figure A-2. 

A.2.1.3 IMPLEMENTATION 

The geometrical definition of the spoiler implemented for the purposes of this study is 

presented in Table A-2. An assessment in terms the lift and drag increments sensitivity 

to geometrical variations was conducted before the geometry was fixed. Apart from 

increasing the area of the spoiler, which intuitively increases its effectiveness, the 

chordwise position of the spoiler and the relative position of the trailing edge flap had 

the greatest effect on increasing the spoiler effectiveness. The further aft that the spoiler 

was position in a chordwise sense increased the lift decrement and drag increment. The 

greater the overlap between the spoiler and the trailing edge flap had the same effect. 

4.125ftoη =  1.33ftifη =  
2.125ftiη =  2.5fthx =  

276fts =  0.5fthsc =  
4ftws t rc c c c= = = =  0.086ftsz =  

9.4fts =  1ftfc =  
7.13ftofη =   

Table A-2 Spoiler Geometry 

The method of calculating the lift and drag increments due to spoiler deflection 

presented in sections A.2.1.1 and A.2.1.2 is not formulated for implementation in a 
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simulation environment. As a result, the lift and drag coefficient increments at zero 

spoiler deflection are non zero. To avoid this situation the effects of the spoiler is faded 

in linearly from zero over the first two degrees of spoiler deflection. This ensures that 

when the spoilers are stowed there are no induced aerodynamic effects. 

In this instance, the spoiler deflection has been limited to 20 degrees. Over this range, 

the lift and drag coefficient increments due to spoiler deflection are approximately 

linear. The lift and drag coefficient increments over this range for the spoiler defined by 

the geometry in Table A-2 is presented in Figures A-10 and A-11 respectively. 

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

δ s 

C
 L 

s 

(deg)  
Figure A-10 Lift Coefficient Increment due to Symmetric Spoiler Deflection 
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Figure A-11 Drag Coefficient Increment due to Symmetric Spoiler Deflection 

A.2.2 UNDERCARRIAGE AERODYNAMICS 

The primary aerodynamic effect that the aircraft undercarriage has on the total aircraft 

aerodynamics is an increment in total drag; all other effects are neglected in this 

instance. A simple method for the estimation of the increment in aircraft drag due to the 

extension of undercarriage presented by ESDU has been implemented 

[61]. The drag 

coefficient increment due to undercarriage fully extended, Duc
C , is defined as 

 ( )0.785

uc mto
Duc

k m g
C

Sµδ
 

=   
 

 (A-48) 

where the coefficient, uck , is defined as a linear interpolation as a function of flap angle 

between the undercarriage drag coefficient with flaps retracted and that with flaps 

extended. 

 ( )20 1

1
1

19
uc ucf f

uc uc ff

k k
k k δ δ

δ
δ= =

=

− 
= + −  

 
 (A-49) 
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where 3

1
3.3x10uc f

k
δ

−

=
=  and 3

20
1.8x10uc f

k
δ

−

=
= [61]. Undercarriage deflection, µδ , is defined in 

Chapter 3. The maximum take-off mass of the aircraft, 3909.4lbs,mtom =  and acceleration 

due to gravity, 232.17417ft/sec .g =  

A.3 THRUST MODEL 

The thrust model presented here has been extracted from Gautrey and Cook [55]. The 

engine intake pressure, intakeP , and intake temperature, intakeT , are defined by equations A.3-1 

and A.3-2 respectively.  

 ( )3.521 0.2M
144intake

PP = +  (A.3-1) 

 ( )21 0.2MintakeT T= +  (A.3-2) 

Atmospheric pressure, P , and temperature,T , are defined in section 3.4.1. Engine mass 

flow, m , is defined as  

 intake
m h

intake

Pm k k
T

=  (A.3-3) 

where the altitude correction factor, hk , is defined as a function of engine intake 

pressure, intakeP . The mass flow coefficient is defined, mk , is defined as a function of 

engine speed and intake temperature. 

Engine intake drag is defined as  

 int
TmVD

g
=  (A.3-4) 

Pressure ratio, ratioP , is defined as 

 ( )3.521 0.2MratioP = +  (A.3-5) 
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Equivalent non dimensional engine speed corrected for temperature, ndN , is defined as 

 
max

1 288.2
1nd

intake

NN
N T

 
=  

 
 (A.3-6) 

1N  is engine speed and max1N  is the maximum engine speed. 

Engine pressure recovery, recP , is defined as a function of Mach number and engine 

pressure recovery factor 
cPre

k . 

Intake pressure ratio, int ratioP , is defined as 

 
( )

1
int ratio

rec ratio

P
P P

=  (A.3-7) 

Non dimensional gross thrust, Gnd
T , is a function of intake pressure ratio, int ratioP , and non 

dimensional engine speed, ndN . 

Gross thrust, GT , is defined as 

 int

1

144

Gnd

ratio

G TG

T
P

T k P

 
−  

 =  (A.3-8) 

where TG
k  is the gross thrust factor. 

Thrust,Tτ , is defined as 

 intGT T Dτ = −  (A.3-9) 
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A.4 AIRCRAFT INERTIA PROPERTIES 

 

Figure A-12 xI  as a Function of Aircraft Mass [55] 

 

Figure A-13 yI  as a Function of Aircraft Mass 

 [55] 

 

Figure A-14 zI  as a Function of Aircraft Mass 

 [55] 
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A.5 FLIGHT CONTROL SYSTEM 

A.5.1 SENSORS 

A.5.1.1 ANGLE OF ATTACK PROBE 

The probe quantity is calculated first by passing the angle of attack at the centre of 

gravity through a filter whose transfer function is presented in equation A-50 [71] which 

represents the probe dynamics. The probe dynamics are assumed constant through the 

operational envelope. 

 ( )
( )

1
0.073 1

localprobe s
s s

α
α

=
+

 (A-50) 

The local probe angle of attack is then adjusted as a function of airspeed and pitch rate 

to correct for the pitch rate induced upwash. Equation A-51 [71] defines the sensed angle 

of attack, sα . 

 P
s loacl probe

T

l q
V

α α
 

= − 
 

 (A-51) 

Where the distance from the centre of gravity to the angle of attack probe, Pl , is defined 

as 

 12.85 (f )p cgl h c t= +  (A-52) 

It should be noted that the angle of attack probe is assumed to be located at the tip of the 

boom extending from the nose of the aircraft.  

The sensor output is limited in the range of +1 to -0.25 radians. 

A.5.1.2 SIDESLIP VANE 

The sideslip vane is modelled as a simple filter which represents the vane dynamics. 

This filter, the transfer function of which is presented in equation A-53, is based on that 

of the angle of attack probe presented in section A.5.1.1. Factors such as offset from the 

centre of gravity and local aerodynamic influences are not modelled. The output of the 

sideslip vane filter is limited to ±30 degrees. 
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 ( )
( )

1
0.073 1

s s
s s

β
β

=
+

 (A-53) 

It should be noted that the sideslip vane is assumed to be located at the tip of the boom 

extending from the nose of the aircraft. At this location it is assumed that the vane is not 

effected by the aerodynamic effects of the fuselage. 

A.5.1.3 ACCELEROMETER 

The inertial acceleration components of a point p(x, y z) in a rigid body can be 

calculated using equation A-8. In this case the point p(x, y z) is the location of the 

accelerometers on the aircraft relative to the centre of gravity. The accelerations are 

passed through a filter, the transfer function of which is presented in equation A-54 [71], 

which represents the accelerometer dynamics. The outputs of the accelerometer are 

limited to ±4g for lateral and axial accelerations and ±10g for normal accelerations. 

 
( )
( )

( )
( )

( )
( ) ( )( )

2

2 2

34.557
2 0.707 34.557 34.557

x y zs s s

x y z

a s a s a s
a s a s a s s s

= = =
+ +

 (A-54) 

In this case the accelerometer is located on the centreline of the aircraft, 7.43 feet 

forward of the leading edge of the wing and 1 foot below the body axes x axis. 

A.5.1.4 RATE GYROS 

Equations A-55 [71] and A-56 [71] represent the second order transfer functions of the 

filters applied to the body axes angular rates in units of degrees per second. The output 

of the roll rate filter is limited to ± 300 degrees per second while the output of the pitch 

rate and yaw rate filters are limited to ± 100 degrees per second 

 ( )
( ) ( )( )

2

2 2

90
2 0.8 90 90

sp s
p s s s

=
+ +

 (A-55) 

 ( )
( )

( )
( ) ( )( )

2

2 2

200
2 0.89 200 200

s sq s r s
q s r s s s

= =
+ +

 (A-56) 
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A.5.1.5 ATTITUDE GYROS 

The attitude gyro is modelled as a simple first order filter the transfer function of which 

is presented in equation A-57. The output of the attitude gyros are limited to ±90° for 

pitch attitude, ±180° for roll and yaw attitudes. 

 ( )
( )

( )
( )

( )
( )

1
0.025 1

s s ss s s
s s s s

φ θ ψ
φ θ ψ

= = =
+

 (A-57) 

A.5.1.6 STATIC AND DYNAMIC PRESSURE 

The static and dynamic pressure sensors are modelled as simple first order filter the 

transfer function of which is presented in equation A-58. 

 ( )
( )

( )
( )

1
0.025 1

dyn ss

dyn

q sP s
P s q s s

= =
+

 (A-58) 

A.5.1.7 MACH NUMBER 

The Machmeter is modelled as a simple first order filter the transfer function of which is 

presented in equation A-59. The output of the Machmeter is not limited. 

 ( )
( )

M 1
M 0.025 1

s s
s s

=
+

 (A-59) 

A.5.1.8 ALTITUDE 

The altimeter is modelled as a simple first order filter; the transfer function of which is 

presented in equation A-60. The output of the altimeter is not limited. 

 ( )
( )

1
0.025 1

sh s
h s s

=
+

 (A-60) 

where height, h , is defined as 

 Eh z= −  (A-61) 

A.5.1.9 VELOCITY 

As a result of both the static and dynamic pressure sensors having the first order 

characteristics presented in equation A-58 it follows that the velocity will have at best 
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the same characteristics. Hence equation A-62 represents the velocity channel 

characteristics of the air data computer. The output of the speedometer is not limited. 

 
( )
( )

1
0.03 1

T s

T

V s
V s s

=
+

 (A-62) 

A.5.2 ACTUATORS 

A.5.2.1 ELEVATOR 

The elevator actuator dynamics are represented by the transfer function presented as 

equation A-63 [71] . The elevator rate limit is defined as ± 40 deg/sec and the associated  

position limit is defined as ±45 degrees. 

 ( )
( ) ( )( )

2

2 2

30.74
2 0.509 30.74 30.74act d

s
s s s

ηδ
η

=
+ +

 (A-63) 

A.5.2.2 AILERON 

The aileron actuator dynamics are represented by the transfer function presented as 

equation A-64 [71]. The aileron rate limit is defined as ±100 deg/sec and the associated 

position limit is defined as ±40 degrees. 

 ( )
( ) ( )( )

2

2 2

75
2 0.59 75 75act d

s
s s s

ξδ
ξ

=
+ +

 (A-64) 

A.5.2.3 RUDDER 

The rudder actuator dynamics are represented by the transfer function presented as 

equation A-65 [71]. The rudder rate limit is defined as ±82 deg/sec and the associated 

position limit is defined as ±45 degrees. 

 ( )
( ) ( )( )

2

2 2

72.1
2 0.69 72.1 72.1act d

s
s s s

ςδ
ς

=
+ +

 (A-65) 
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A.5.2.4 TRAILING EDGE FLAP 

The trailing edge flap actuator dynamics are represented by the transfer function 

presented as equation A-66 [71]. The trailing edge flap rate limit is defined as ±18 

deg/sec and the associated position limit is defined as +1 degree to +35 degrees. 

 ( )
( ) ( )( )

2

2 2

35
2 0.71 35 35

f

act d

s
f s s s
δ

=
+ +

 (A-66) 

A.5.2.5 SPOILER 

The spoiler actuator dynamics are represented by the transfer function presented as 

equation A-67. In this case the spoiler actuator dynamics are the same as the aileron 

actuator dynamics. The spoiler rate limit is defined as ±100 deg/sec and the associated 

position limit is defined as +20 degrees. 

 
( )
( ) ( )( )

2

2 2

75
2 0.59 75 75

s

act d

s
s s s s
δ

=
+ +

 (A-67) 

A.5.2.6 THRUST VECTORING PADDLES 

Both the longitudinal and lateral thrust vectoring paddle actuators have the same 

dynamic properties as the elevator actuator; these dynamics are represented by the 

transfer function presented as equation A-68. The thrust vectoring paddles rate limit is 

defined as ±100 deg/sec and the associated position limit is defined as ±45 degrees. 

 
( )
( )

( )
( ) ( )( )

2

2 2

30.74
2 0.509 30.74 30.74

act d act d

s s
s s s s

θ φτ τ

τ τ

δ δ
θ φ

= =
+ +

 (A-68) 

A.5.2.7 UNDERCARRIAGE 

The undercarriage actuator is modelled as a first order lag as represented by the transfer 

function presented as equation A-69. The position limits are 0 to +1, where 0 represents 

the undercarriage in the retracted position and +1 represents the undercarriage in the 

fully extended position. The undercarriage actuator dynamics dictate an extension time, 

or retraction time, of approximately 5.5 seconds. 

 ( )
( )

1
0.75 1act d

s
s s

µδ
µ

=
+

 (A-69) 
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A.5.3 AUTOPILOTS 

A.5.3.1 ALTITUDE ACQUIRE AND HOLD 

The altitude acquire and hold autopilot architecture is presented in Figure A-15 and the 

associated control law is defined by equation A-70  

[56]. 

Figure A-15 Altitude Acquire and Hold Autopilot [56] 

 d hp hi hd

dhk h k h k
dt

ε
ε εθ = + +∫  (A-70) 

The control system gains hpk , hik and hDk are selected as [56] 

 

0.006 rad/ft

0.000005 rad/ft

0.0065 rad/ft

hp

hi

hd

k

k

k

=

=

=

 (A-71) 

The pitch attitude demand, dθ , is nominally limited to +15 degrees and -10 degrees [56]. 

A.5.3.2 AUTOTHROTTLE 

The autothrottle architecture is presented in Figure A-16 and the associated control law 

is defined by equation A-72  

[56]. 

Figure A-16 Autothrottle 

[56] 

 ( ) Vp Vis k V k Vτ ε εδ = + ∫  (A-72) 

The control system gains, vpk  and vik , are selected as 

[56] 

Augmented Aircraft 
Dynamics 

hε  
PID 

dθ
Σ shSensor 

Suite dh  
+  

−  

Augmented Aircraft 
Dynamics 

Vε  
P+I 

τδ
Σ Ts

VSensor 
Suite dmdV  

+  

−  
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500 RPM/ft/sec

5 RPM/ft/sec

vp

vi

k

k

=

=
 (A-73) 

A.5.3.3 HEADING ACQUIRE AND HOLD 

The heading acquire and hold autopilot architecture is presented in Figure A-17 and the 

associated control law is defined by equation A-74 [56]. 

Figure A-17 Heading Acquire and Hold Autopilot 

[56] 

 ( )d p is k kψ ε ψ εφ ψ ψ= + ∫  (A-74) 

The proportional control system gain, pkψ , is scheduled with airspeed while the integral 

control system gain, ikψ , has a single value. These are selected as 

[56] 

 

( )

( ) ( )

( )
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720
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0.00005rad/rad

p

p

p

i

k u

k u

k u

k

ψ

ψ

ψ

ψ

= ≤

− = + − 
 

= ≥

=

 (A-75) 

The roll attitude demand, dφ , is nominally limited to ±45 degrees 

[56]. 

A.6 ATMOSPHERIC DISTURBANCE 

The atmospheric disturbance model implemented in the simulation model is that 

presented in MIL-F-8785-C 

[63]. All data presented are from this source unless otherwise 

stated. It consists of a definition of a turbulence model, a gust model, a low level wind 

shear model and a carrier landing disturbance model. All disturbance velocity 

components are aligned with the earth axes system. 

Augmented Aircraft 
Dynamics 

εψ  
P+I 

dφ
Σ sψSensor 

Suite dψ  
+  

−  
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A.6.1 MEDIUM-HIGH ALTITUDE DISTURBANCE MODEL 

The scales and intensities are based on the assumption that turbulence above 2,000 feet 

is isotropic, then 

  
u v w

u v wL L L

σ σ σ= =

= =
 (A-76) 

A.6.1.1 TURBULENCE  

The turbulence scale lengths when using the Dryden turbulence model are 

 1,750ftu v wL L L= = =  (A-77) 

Root-mean-square turbulence intensities are presented in Figure A-18 as functions of 

altitude and probability of exceedance, χ ,  

A.6.1.2 GUSTS 

Gust lengths, , ,x y zd d d , are user defined. It is usual to choose values of gust lengths so 

that the gust is tuned to the natural frequencies of the aircraft and its flight control 

system. 

Gust magnitudes , ,g g gu v w  are determined from Figure A-19 using values of , ,x y zd d d  

defined by the user, and the appropriate RMS turbulence intensities from Figure A-18. 
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Figure A-18 Turbulence Exceedance Probability 

[63] 

 
Figure A-19 Magnitude of Discrete Gusts 

[63] 
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A.6.2 LOW ALTITUDE DISTURBANCE MODEL 

A.6.2.1 WIND SHEAR 

The wind speed at 20 feet above the ground, 20u , is shown in Figure A-20 as a function 

of probability of occurrence, χ . The values to be used for the different intensities of 

atmospheric disturbance are indicated.  

Figure A-20 Wind Speed at 20 Feet Above the Ground[63] 

 

A.6.2.2 TURBULENCE 

The appropriate scale lengths are presented in Figure A-21 as functions of altitude. The 

turbulence intensities to be used uσ  and vσ  are presented in Figure A-22 as functions of 

wσ  and altitude, h , where wσ  is defined as  

200.1w uσ =  (A-78) 
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Figure A-21 Low Altitude Turbulence Integral Scales 

[63] 

A.6.2.3 GUSTS 

Gust lengths, , andx y zd d d are user defined. It is usual to choose values of gust lengths so 

that the gust is tuned to the natural frequencies of the aircraft and its flight control 

system. 

Gust magnitudes , ,g g gu v w  are determined from Figure A-19 using values of 

, andx y zd d d defined by the user and the appropriate values from Figures A-21 and A-22. 
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Figure A-22 Horizontal Turbulence RMS Intensities 
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APPENDIX B APPROACH CONTROLLER 
STATISTICAL COMPARATIVE 
ANALYSIS DATA 

B.1 INTRODUCTION 

The data in the following Tables forms the basis for the discussion presented in section 

7.5. Five approaches were simulated for each aircraft carrier motion case. Aircraft 

carrier motion is defined by aircraft carrier speed and wind speed. For each set of five 

approaches the performance metrics presented in section 7.2 were calculated. The mean 

and standard deviation of these metrics per aircraft carrier motion case are tabulated in 

Tables B-1 to B-32. The Tables are arranged in order of atmospheric disturbance case as 

presented in Table 7-5. The notation used in Tables B-1 to B-32 is defined in Table B-0. 
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# Successful Approach The number of successful approaches  
hε rms, hεσ rms  (ft) Mean and standard deviation of approach glide path vertical deviation 

RMS of successful approaches 

ελ rms, εσλ rms (ft) Mean and standard deviation of approach track lateral deviation RMS of 
successful approaches 

uε rms, uεσ rms (kts) Mean and standard deviation of approach speed deviation RMS of 
successful approaches 

# Failed Approaches Vert The number of approaches which were classified as a wave-off due to 
breaching the approach glide path vertical deviation limits 

tdt , tdtσ  (sec) Mean and Standard deviation of Time to Touchdown at which the failed 
approaches breached the approach glide path vertical deviation limits 

hε rms, hεσ rms  (ft) Mean and standard deviation of approach glide path vertical deviation 
RMS of failed approaches up to the time of failure 

ελ rms, εσλ rms (ft) Mean and standard deviation of approach track lateral deviation RMS of 
failed approaches up to the time of failure 

uε rms, uεσ rms (kts) Mean and standard deviation of approach speed deviation RMS of failed 
approaches up to the time of failure 

# Failed Approaches Lat The number of approaches which were classified as a wave-off due to 
breaching the approach track lateral deviation limits  

tdt , tdtσ  (sec) Mean and Standard deviation of Time to Touchdown at which the failed 
approaches breached the approach glide path vertical deviation limits 

hε rms, hεσ rms  (ft) Mean and standard deviation of approach glide path vertical deviation 
RMS of failed approaches up to the time of failure 

ελ rms, εσλ rms (ft) Mean and standard deviation of approach track lateral deviation RMS of 
failed approaches up to the time of failure 

uε rms, uεσ rms (kts) Mean and standard deviation of approach speed deviation RMS of failed 
approaches up to the time of failure 

# Ramp Strikes The number of Ramp Strikes 

rh , rhσ  (ft) Mean and standard deviation of approach glide path vertical deviation at 
ramp crossing for successful approaches 

rhε , rhεσ  (ft) Mean and standard deviation of ramp height at crossing for successful 
approaches 

crθ , crσθ  (deg) Mean and standard deviation of aircraft carrier pitch attitude at ramp 
crossing for successful approaches 

# Bolters The number of Bolters that occurred for successful approaches 
dX , dXσ  (ft) Mean and standard deviation of longitudinal touchdown position for 

Bolters 
dY , dYσ  (ft) Mean and standard deviation of lateral touchdown position for Bolters 

# Successful Touchdowns The number of successful touchdown  
dX , dXσ  (ft) Mean and standard deviation of longitudinal touchdown position for 

successful touchdowns 

dY , dYσ  (ft) Mean and standard deviation of lateral touchdown position for successful 
touchdowns 

h , hσ  (ft) Mean and standard deviation of aircraft sink rate at touchdown for 
successful touchdowns 

Ch , Chσ  (ft) Mean and standard deviation of aircraft carrier height rate at touchdown 
for successful touchdowns 

Table B-0 Appendix B Table Notation 
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 Wind Speed = 2 Knots 
No Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.028409 9.39E-06 0.008057 1.30E-05 0.004522 4.06E-06 
ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.008707 0.00015 0.005211 0.000315 0.00113 8.81E-05 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4066 0.035197 8.3746 0.029444 8.368 0.029453 
rhε , rhεσ  (ft) 0.045307 1.14E-05 0.014049 1.07E-05 0.007531 3.25E-06 
crθ , crσθ  (deg) -0.00859 0.012605 -0.00886 0.010547 -0.00886 0.010547 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.75763 0.14353 0.27021 0.009746 0.14297 0.041253 
dY , dYσ  (ft) -0.00709 0.0058 -0.00029 0.000325 -0.0017 0.000328 
h , hσ  (ft) -12.1921 4.47E-05 -12.1911 5.48E-05 -12.1906 0 
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Ch , Chσ  (ft) -0.013092 0.082476 -0.027981 0.046889 -0.02645 0.043779 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.028186 1.85E-05 0.009142 0.000101 0.006931 0.000301 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.008939 7.14E-05 0.009913 0.000484 0.005214 0.000253 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4518 0.042796 8.4163 0.029368 8.4117 0.029518 
rhε , rhεσ  (ft) 0.044939 4.35E-05 0.015065 0.000328 0.010403 0.000389 
crθ , crσθ  (deg) 0.007746 0.015339 0.005727 0.01054 0.005754 0.010482 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.62946 0.28139 0.30572 0.047802 0.22587 0.016638 
dY , dYσ  (ft) -0.01639 0.000412 -0.00367 0.002685 -0.00178 0.000937 
h , hσ  (ft) -12.1914 4.47E-05 -12.1909 5.48E-05 -12.1898 4.47E-05 
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Ch , Chσ  (ft) -0.06303 0.073729 0 0 0.038 0.057538 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.025848 7.07E-05 0.030968 0.001557 0.034991 0.002413 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.008919 6.10E-05 0.027087 0.002977 0.02466 0.002599 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4182 0.01371 8.4255 0.008882 8.4295 0.006294 
rhε , rhεσ  (ft) 0.041053 8.94E-05 0.048309 0.00163 0.052337 0.004345 
crθ , crσθ  (deg) -0.00289 0.004941 -0.0029 0.002991 -0.00291 0.003001 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.58313 0.060275 0.80373 0.26539 0.82307 0.23709 
dY , dYσ  (ft) -0.00928 0.003292 -0.0107 0.005755 -0.00934 0.007422 
h , hσ  (ft) -12.1831 8.94E-05 -12.1882 0.033633 -12.1868 0.01189 
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Ch , Chσ  (ft) -0.014516 0.041569 -0.004582 0.053127 -0.016358 0.064838 

  
  

Table B-1 No Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
No Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.036393 4.12E-05 0.007986 1.52E-05 0.004537 3.98E-06 
ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.015332 3.21E-05 0.007018 0.000232 0.00212 0.000175 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4293 0.070835 8.4357 0.061915 8.4293 0.061932 
rhε , rhεσ  (ft) 0.053467 1.61E-05 0.013974 1.30E-05 0.007546 3.38E-06 
crθ , crσθ  (deg) -0.00337 0.025362 0.013059 0.022176 0.013059 0.022176 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.92331 0.19877 0.24224 0.023018 0.14573 0.032211 
dY , dYσ  (ft) -0.00972 0.004563 -0.00136 0.000875 -0.00136 0.000797 
h , hσ  (ft) -11.1839 0 -11.1744 0 -11.1738 7.07E-05 

C
ar

ri
er

 S
pe

ed
 =

 0
 K

no
ts

 

Ch , Chσ  (ft) -0.071307 0.25375 -0.029733 0.041366 -0.02953 0.042692 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.035508 3.32E-05 0.00923 0.000289 0.00673 0.000528 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.014714 1.05E-05 0.009692 0.000881 0.005219 0.000408 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4049 0.054107 8.411 0.04892 8.4066 0.048603 
rhε , rhεσ  (ft) 0.052664 8.36E-05 0.015259 0.000551 0.010563 0.00071 
crθ , crσθ  (deg) -0.01182 0.019398 0.003774 0.017575 0.003853 0.017463 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.85493 0.040756 0.38969 0.059238 0.18058 0.059608 
dY , dYσ  (ft) -0.00365 0.002187 -0.00206 0.002323 -0.00208 0.001317 
h , hσ  (ft) -11.1835 0.00011 -11.1741 0.000114 -11.173 5.48E-05 
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Ch , Chσ  (ft) 0.13189 0.21523 0 0 0.32374 0.72421 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.032966 0.000137 0.039113 0.001828 0.049181 0.001518 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.01545 5.66E-05 0.14773 0.00358 0.021093 0.003219 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4206 0.028313 8.4414 0.027234 8.4454 0.03003 
rhε , rhεσ  (ft) 0.048456 0.000242 0.054373 0.002882 0.058994 0.004278 
crθ , crσθ  (deg) -0.0047 0.010224 0.000634 0.010229 0.000405 0.010248 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.96805 0.26038 1.1559 0.17487 1.0841 0.17596 
dY , dYσ  (ft) -0.00515 0.002035 -0.00535 0.004311 -0.00457 0.00352 
h , hσ  (ft) -11.1737 0.00013 -11.1407 0.021387 -11.1665 0.008191 
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Ch , Chσ  (ft) -0.001455 0.058454 0.01461 0.055944 0.04585 0.058925 

  
Table B-2 No Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24 .5 Knots 
No Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.045564 0.000186 0.007981 6.87E-05 0.00454 2.10E-05 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.047085 0.000201 0.007851 0.000842 0.002331 0.000562 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.6055 0.29894 8.5275 0.19088 8.5208 0.191 
rhε , rhεσ  (ft) 0.063133 0.000226 0.013957 4.67E-05 0.007548 1.76E-05 
crθ , crσθ  (deg) 0.056275 0.10713 0.045939 0.06837 0.045838 0.068391 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.94063 0.048129 0.20897 0.026654 0.11173 0.021842 
dY , dYσ  (ft) -0.01249 0.005207 -0.00239 0.001837 -0.0013 0.00082 
h , hσ  (ft) -10.2223 8.94E-05 -10.2018 8.37E-05 -10.2012 0.00011 
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Ch , Chσ  (ft) 0.38925 0.85172 -0.080966 0.26178 -0.08515 0.2693 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.046741 0.000446 0.010208 0.001171 0.005465 0.001191 
ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.059174 0.000447 0.010318 0.001072 0.036848 0.000388 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.5293 0.24215 8.3053 0.23035 8.2987 0.2307 
rhε , rhεσ  (ft) 0.063813 0.000369 0.015968 0.001784 0.009371 0.002159 
crθ , crσθ  (deg) 0.028747 0.0868 -0.03434 0.081963 -0.03434 0.081963 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.91155 0.2416 0.37872 0.069889 0.23658 0.10052 
dY , dYσ  (ft) -0.01661 0.008479 -0.00404 0.00142 -0.00149 0.000893 
h , hσ  (ft) -10.2206 0.000451 -10.2017 0.000342 -10.2038 0.000308 
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Ch , Chσ  (ft) -0.035042 0.42994 0.01002 0.45875 -0.026605 0.48814 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.040929 0.000432 0.041626 0.002074 0.04497 0.004565 
ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.044223 0.00166 0.13379 0.011875 0.028372 0.004836 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4765 0.082129 8.5318 0.15828 8.5269 0.16163 
rhε , rhεσ  (ft) 0.056907 0.000734 0.059861 0.004123 0.057414 0.00267 
crθ , crσθ  (deg) 0.012295 0.029667 0.031052 0.056931 0.030165 0.057739 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.90707 0.31038 1.0043 0.095595 0.97342 0.2217 
dY , dYσ  (ft) -0.00969 0.009275 -0.00733 0.007043 -0.00401 0.003488 
h , hσ  (ft) -10.2109 0.000526 -10.1714 0.021448 -10.1839 0.01919 
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Ch , Chσ  (ft) -0.011555 0.2036 -0.15853 0.21742 -0.17262 0.17167 

  
Table B-3 No Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
No Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.057883 0.000668 0.007814 4.57E-05 0.005017 0.000367 
ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.068555 0.00187 0.01734 0.00165 0.014406 0.003842 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.5194 0.63918 7.8756 0.35989 7.8699 0.35898 
rhε , rhεσ  (ft) 0.068783 0.001534 0.013701 3.88E-05 0.007942 0.000234 
crθ , crσθ  (deg) 0.023426 0.2294 -0.18742 0.12887 -0.18738 0.1285 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 1.2354 0.36572 0.37598 0.084746 0.16692 0.12919 
dY , dYσ  (ft) -0.01827 0.015763 -0.00594 0.004413 -0.00356 0.003921 
h , hσ  (ft) -9.1485 0.000812 -9.0975 0.000114 -9.0949 0.000374 
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Ch , Chσ  (ft) 0.57805 1.4951 -0.10628 0.63458 -0.077666 0.62217 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.056979 0.001225 0.010896 0.001202 0.006861 0.001984 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.067851 0.001469 0.008401 0.003379 0.037544 0.000781 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.511 0.50673 8.692 0.66493 8.6861 0.66613 
rhε , rhεσ  (ft) 0.06876 0.001058 0.016963 0.002299 0.011151 0.003251 
crθ , crσθ  (deg) 0.020397 0.18174 0.10376 0.23739 0.10376 0.23739 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 1.2087 0.38122 0.37212 0.048063 0.29354 0.052643 
dY , dYσ  (ft) -0.01365 0.005874 -0.00561 0.004647 -0.00421 0.002079 
h , hσ  (ft) -9.1479 0.001488 -9.0961 0.000638 -9.0988 0.000472 
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Ch , Chσ  (ft) 0.26626 1.3202 0.33093 0.65182 0.42974 0.71802 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.35219 0.2612 0.09294 0.011975 0.059546 0.003461 

ελ rms, εσλ rms (ft) 0 0 0 0 0 0 
uε rms, uεσ rms (kts) 0.20319 0.092745 0.52541 0.008633 0.3671 0.012988 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.4365 0.62339 8.3742 0.49032 8.3687 0.46456 
rhε , rhεσ  (ft) 0.074998 0.002991 0.074823 0.008505 0.057044 0.008578 
crθ , crσθ  (deg) -0.00852 0.22258 -0.03076 0.17289 -0.02635 0.1638 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 1.2341 0.41807 1.2579 0.16825 1.1191 0.35555 
dY , dYσ  (ft) -0.01609 0.009862 -0.00846 0.007116 -0.00581 0.00357 
h , hσ  (ft) -9.1287 0.009639 -9.0643 0.016786 -9.0722 0.011995 
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Ch , Chσ  (ft) 0.04177 1.0193 -0.31795 1.2319 -0.80744 1.0529 

  
Table B-4 No Turbulence – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Carrier Induced Turbulence Only 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.1945 0.001919 0.23989 0.009191 0.10632 0.000659 
ελ rms, εσλ rms (ft) 0.00013 9.95E-06 0.000149 1.03E-05 0.000162 5.45E-06 
uε rms, uεσ rms (kts) 0.023896 0.00033 0.10868 0.005559 0.070318 0.000315 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.9877 0.035765 8.1852 0.038558 8.2546 0.030201 
rhε , rhεσ  (ft) -0.37349 0.002191 -0.17528 0.01185 -0.10588 0.001106 
crθ , crσθ  (deg) -0.00861 0.012671 -0.00886 0.010547 -0.00888 0.010471 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 25.6301 1.1323 -2.1452 0.45314 -2.1164 0.028456 
dY , dYσ  (ft) -0.05692 0.031232 0.015044 0.013196 0.039924 0.001542 
h , hσ  (ft) -14.328 0.018595 -10.2778 0.015422 -10.6301 0.002561 
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Ch , Chσ  (ft) -0.01789 0.085611 -0.029417 0.049724 -0.026228 0.053777 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.15497 0.00114 0.17994 0.002473 0.11719 0.001761 

ελ rms, εσλ rms (ft) 0.000129 1.59E-05 0.000318 3.99E-05 0.000156 1.04E-05 
uε rms, uεσ rms (kts) 0.019467 0.000143 0.11466 0.001907 0.081241 0.000448 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.761 0.044018 8.4366 0.028717 8.3797 0.029148 
rhε , rhεσ  (ft) -0.64575 0.001632 0.035274 0.010325 -0.02174 0.000627 
crθ , crσθ  (deg) 0.007691 0.015372 0.005753 0.010484 0.0058 0.010433 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 22.0552 0.014662 -1.3544 0.79247 -1 3.75E-05 
dY , dYσ  (ft) -0.01716 0.007566 -0.00244 0.001858 0.003578 0.00477 
h , hσ  (ft) -13.2771 0.001437 -11.4148 0.12116 -11.7935 0.006298 
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Ch , Chσ  (ft) 0.05285 0.056681 0.02793 0.049749 0.0293 0.05549 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.12748 0.000562 0.30884 0.13761 0.14062 0.003517 

ελ rms, εσλ rms (ft) 0.000141 4.08E-06 0.004992 0.007221 0.000315 2.44E-05 
uε rms, uεσ rms (kts) 0.015854 5.68E-05 0.13687 0.043892 0.082871 0.002188 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.8357 0.014423 9.1916 0.9861 8.3917 0.010323 
rhε , rhεσ  (ft) -0.54142 0.000689 0.81438 0.98982 0.014601 0.003171 
crθ , crσθ  (deg) -0.0029 0.004956 -0.00288 0.002949 -0.00292 0.002908 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 18.434 0.7859 -5.8229 6.9457 1.2761 0.16149 
dY , dYσ  (ft) 0.057657 0.002691 0.12159 0.20171 0.009309 0.001747 
h , hσ  (ft) -14.018 0.01303 -12.8227 1.9436 -11.5766 0.01045 
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Ch , Chσ  (ft) -0.00844 0.020511 -0.007451 0.034216 -0.009741 0.041485 

  
Table B-5 Carrier Induced Turbulence Only – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Carrier Induced Turbulence Only 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.34304 0.010357 0.2484 0.011407 0.10934 0.001008 
ελ rms, εσλ rms (ft) 0.002262 6.42E-05 0.00218 5.10E-05 0.002173 2.76E-05 
uε rms, uεσ rms (kts) 0.066409 0.001931 0.11115 0.003879 0.079494 0.000554 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.8892 0.064668 8.3396 0.055143 8.3554 0.062863 
rhε , rhεσ  (ft) 1.5153 0.01247 -0.08049 0.011026 -0.06443 0.001599 
crθ , crσθ  (deg) -0.00406 0.02685 0.012483 0.021979 0.012398 0.021948 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -15.438 0.62888 -2.4385 0.93097 -2.0022 1.2899 
dY , dYσ  (ft) 0.025459 0.008815 0.015964 0.019951 0.04576 0.013289 
h , hσ  (ft) -11.2679 0.021826 -9.6737 0.080543 -10.1311 0.062807 

C
ar

ri
er

 S
pe

ed
 =

 0
 K

no
ts

 

Ch , Chσ  (ft) -0.076482 0.27288 -0.045674 0.064583 -0.042107 0.04083 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.30391 0.003405 0.23138 0.005191 0.12011 0.002679 

ελ rms, εσλ rms (ft) 0.002799 4.86E-05 0.002525 0.000214 0.002146 8.45E-05 
uε rms, uεσ rms (kts) 0.057753 0.000713 0.13175 0.007922 0.088679 0.000916 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.3374 0.055238 8.6426 0.071152 8.5288 0.045631 
rhε , rhεσ  (ft) -0.01736 0.001332 0.24504 0.055743 0.13089 0.016942 
crθ , crσθ  (deg) -0.01091 0.019577 0.004403 0.016723 0.004526 0.016579 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -17.4775 1.0984 -2.8078 0.55722 -1.1337 0.29873 
dY , dYσ  (ft) 0.049808 0.020492 0.04659 0.017996 0.014435 0.007456 
h , hσ  (ft) -7.7044 0.01885 -10.488 0.069987 -10.8214 0.051295 
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Ch , Chσ  (ft) 0.07922 0.10927 0.07585 0.17294 0.06947 0.1674 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.3343 0.00088 0.21818 0.035596 0.10974 0.001511 

ελ rms, εσλ rms (ft) 0.002419 0.000114 0.004354 0.000799 0.002339 9.51E-05 
uε rms, uεσ rms (kts) 0.056647 0.000165 0.24492 0.003692 0.086965 0.002281 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.0149 0.029771 8.5585 0.4267 8.5765 0.032022 
rhε , rhεσ  (ft) 0.64236 0.00507 0.17046 0.41772 0.18893 0.004733 
crθ , crσθ  (deg) -0.00456 0.010312 0.000994 0.010185 0.000831 0.010202 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -2.537 0.015861 -5.7731 4.9082 -0.42088 0.41538 
dY , dYσ  (ft) 0.01071 0.003901 -0.01488 0.030072 -0.01337 0.008323 
h , hσ  (ft) -14.0211 0.00363 -10.0384 1.4218 -10.4567 0.024722 
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Ch , Chσ  (ft) 0.00123 0.037962 0.03007 0.041307 0.02851 0.040394 

  
Table B-6 Carrier Induced Turbulence Only – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Carrier Induced Turbulence Only 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.55418 0.013288 0.31879 0.082763 0.13139 0.01474 
ελ rms, εσλ rms (ft) 0.005018 0.000639 0.003807 0.000639 0.00339 8.92E-05 
uε rms, uεσ rms (kts) 0.12218 0.002964 0.14247 0.026063 0.10289 0.008646 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.2757 0.29291 8.595 0.27965 8.49 0.19995 
rhε , rhεσ  (ft) 1.7325 0.012897 0.089036 0.15672 -0.01481 0.043782 
crθ , crσθ  (deg) 0.056556 0.10878 0.043241 0.069432 0.042816 0.069518 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 0.34965 0.19131 0.007619 10.0356 -2.5369 1.0741 
dY , dYσ  (ft) 0.004714 0.003564 0.065553 0.060329 0.030273 0.017505 
h , hσ  (ft) -11.6157 0.003776 -10.0932 2.0339 -9.297 0.16443 
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Ch , Chσ  (ft) 0.16976 0.37913 -0.1108 0.26945 -0.11389 0.26785 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.5815 0.020658 0.29665 0.1506 0.14591 0.007176 

ελ rms, εσλ rms (ft) 0.004429 0.000548 0.003956 0.000903 0.003611 0.000138 
uε rms, uεσ rms (kts) 0.13288 0.003376 0.15159 0.041409 0.10218 0.004735 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.0071 0.23465 8.6508 0.20679 8.5062 0.31243 
rhε , rhεσ  (ft) 1.5487 0.026868 0.35575 0.19713 0.21091 0.085926 
crθ , crσθ  (deg) 0.026191 0.088465 -0.03229 0.087543 -0.03223 0.087906 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 27.794 2.5592 -4.5517 4.3672 -3.6838 2.469 
dY , dYσ  (ft) 0.12825 0.092587 0.026091 0.058567 0.029049 0.018478 
h , hσ  (ft) -13.831 0.059201 -9.6319 1.5996 -10.2644 0.30168 
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Ch , Chσ  (ft) -0.037711 0.44374 0.06555 0.45883 0.01732 0.53484 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.53397 0.002546 0.2459 0.11468 0.12469 0.003935 

ελ rms, εσλ rms (ft) 0.005042 0.001507 0.004399 0.000705 0.003496 0.000186 
uε rms, uεσ rms (kts) 0.12069 0.000429 0.23798 0.025627 0.094549 0.001301 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.067 0.088658 9.1694 1.2575 8.7015 0.15917 
rhε , rhεσ  (ft) 1.6548 0.02132 0.69089 1.3405 0.2244 0.012433 
crθ , crσθ  (deg) 0.009681 0.028621 0.033399 0.054136 0.032899 0.054665 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -11.1448 0.81794 0.070082 3.9375 0.33815 1.0228 
dY , dYσ  (ft) -0.04418 0.02053 0.027107 0.055471 -0.01405 0.002716 
h , hσ  (ft) -11.5737 0.004109 -11.5744 3.4642 -10.0911 0.19688 
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Ch , Chσ  (ft) -0.038446 0.1784 0.14449 0.15462 0.11481 0.15541 

  
Table B-7 Carrier Induced Turbulence Only – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Carrier Induced Turbulence Only 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.8021 0.011113 0.59526 0.17189 0.26752 0.075124 
ελ rms, εσλ rms (ft) 0.041742 0.004173 0.021073 0.028556 0.006846 0.00082 
uε rms, uεσ rms (kts) 0.21671 0.002944 0.21545 0.032942 0.16893 0.017557 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 11.2605 0.63156 9.6187 2.7945 7.5611 0.70053 
rhε , rhεσ  (ft) 2.7556 0.13402 1.7456 2.6425 -0.31266 0.43669 
crθ , crσθ  (deg) 0.042844 0.26311 -0.18339 0.124 -0.18314 0.12336 

# Bolters 0  1  0  
dX , dXσ  (ft) -   - 84.831 0 -   - 

dY , dYσ  (ft) -   - -0.52769 0 -   - 
# Successful Touchdowns 5  4  5  

dX , dXσ  (ft) -3.7371 0.38899 0.47227 34.1129 6.5494 11.0921 
dY , dYσ  (ft) 0.031143 0.084192 -0.45694 0.73352 0.1239 0.33719 
h , hσ  (ft) -10.8258 0.07717 -11.7977 4.4986 -8.1876 1.1315 
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Ch , Chσ  (ft) 0.51808 1.4332 0.13189 0.69645 -0.040168 0.65713 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.86331 0.031991 0.64317 0.15944 0.30674 0.080391 

ελ rms, εσλ rms (ft) 0.035828 0.007854 0.020887 0.012994 0.005483 0.001074 
uε rms, uεσ rms (kts) 0.23411 0.004054 0.22752 0.02363 0.1534 0.017171 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.5679 0.50765 9.0955 1.2402 9.0363 0.8391 
rhε , rhεσ  (ft) 2.1454 0.14801 0.40808 0.6808 0.34834 0.16378 
crθ , crσθ  (deg) 0.013363 0.21783 0.10822 0.24509 0.1084 0.24537 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -9.2699 1.4327 -1.7816 9.2599 -8.2642 6.1037 
dY , dYσ  (ft) -0.00641 0.10115 -0.03546 0.48289 0.10909 0.14589 
h , hσ  (ft) -9.9869 0.086303 -9.7509 3.1143 -9.3331 0.73204 
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Ch , Chσ  (ft) -0.079632 1.2336 0.32912 0.64985 0.29827 0.62384 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.1084 0.15042 0.68057 0.033945 0.32695 0.047624 

ελ rms, εσλ rms (ft) 0.069231 0.049594 0.040817 0.036528 0.007352 0.001225 
uε rms, uεσ rms (kts) 0.31911 0.049932 0.66333 0.027901 0.47614 0.016945 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.6205 0.73007 10.9472 1.6885 8.8781 0.6766 
rhε , rhεσ  (ft) 2.1981 0.08422 2.6889 2.0602 0.61047 0.45987 
crθ , crσθ  (deg) 0.013314 0.28655 -0.04547 0.20335 -0.04212 0.19548 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -3.6408 0.9683 -3.2073 14.191 1.9962 2.9142 
dY , dYσ  (ft) -0.05896 0.089616 0.48743 0.82319 -0.011 0.045825 
h , hσ  (ft) -13.7123 0.1244 -13.3899 2.3664 -10.9055 0.65771 
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Ch , Chσ  (ft) 0.2103 0.96318 -0.35934 1.0874 -0.27486 0.95104 

  
Table B-8 Carrier Induced Turbulence Only – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Light Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.75299 0.000633 0.53813 0.006489 0.28713 0.000484 
ελ rms, εσλ rms (ft) 0.095701 9.23E-05 0.47806 0.005048 0.22706 0.00061 
uε rms, uεσ rms (kts) 0.15212 8.96E-05 0.23225 0.000718 0.21555 0.000116 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.1767 0.036176 8.6401 0.15476 8.6184 0.031164 
rhε , rhεσ  (ft) 0.81553 0.001788 0.27946 0.13868 0.25777 0.001308 
crθ , crσθ  (deg) -0.00864 0.012803 -0.00881 0.010775 -0.00883 0.0107 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 29.4622 0.83952 -7.9893 1.0274 -1 3.25E-05 
dY , dYσ  (ft) 0.41102 0.0021 3.944 0.055349 0.93575 0.000927 
h , hσ  (ft) -17.0079 0.011907 -9.9881 0.12231 -11.3559 0.003622 
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Ch , Chσ  (ft) -0.018104 0.085896 -0.028903 0.046459 -0.030378 0.047237 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.74338 0.000697 0.41633 0.007932 0.2851 0.001614 

ελ rms, εσλ rms (ft) 0.097437 4.39E-05 0.32705 0.007066 0.23107 0.000323 
uε rms, uεσ rms (kts) 0.14928 0.000149 0.20719 0.000186 0.22074 0.000672 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.3207 0.044232 8.2275 0.033068 8.289 0.029236 
rhε , rhεσ  (ft) -0.08573 0.00177 -0.17358 0.005877 -0.11212 0.001015 
crθ , crσθ  (deg) 0.007575 0.015431 0.005673 0.010657 0.005673 0.010657 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 37.8586 0.94603 1.2384 0.10584 4.738 0.070506 
dY , dYσ  (ft) 0.34815 0.010769 1.2287 0.025061 0.90144 0.002004 
h , hσ  (ft) -16.4626 0.030914 -12.159 0.022386 -12.3154 0.005308 
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Ch , Chσ  (ft) 0.05318 0.057053 0.04035 0.071309 0.0402 0.071561 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.74033 0.001176 0.32418 0.011444 0.2661 0.005313 

ελ rms, εσλ rms (ft) 0.10049 0.000226 0.17351 0.012257 0.21449 0.002898 
uε rms, uεσ rms (kts) 0.14947 0.000113 0.17989 0.003567 0.19216 0.006645 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.3224 0.014372 8.0356 0.058858 8.1445 0.012864 
rhε , rhεσ  (ft) -0.05467 0.000526 -0.34158 0.058947 -0.23254 0.006178 
crθ , crσθ  (deg) -0.00291 0.00498 -0.00289 0.002964 -0.00293 0.002993 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 23.9838 0.009645 4.9859 0.46637 5.8395 0.27807 
dY , dYσ  (ft) 0.3876 0.000294 0.90582 0.013625 0.8875 0.00235 
h , hσ  (ft) -16.7362 0.005049 -12.6603 0.073121 -12.4196 0.02608 
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Ch , Chσ  (ft) -0.009052 0.020977 -0.008312 0.036101 -0.007884 0.036725 

  
Table B-9 Light Turbulence 3D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Light Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.93892 0.004821 0.54081 0.034488 0.28676 0.000959 
ελ rms, εσλ rms (ft) 0.049725 0.000608 0.25202 0.002993 0.22 0.001788 
uε rms, uεσ rms (kts) 0.2228 0.001604 0.24582 0.000769 0.21781 0.000417 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.0277 0.061403 9.3935 0.29713 8.5316 0.069463 
rhε , rhεσ  (ft) 0.65195 0.011233 0.97269 0.24686 0.11099 0.008713 
crθ , crσθ  (deg) -0.00339 0.025352 0.012734 0.022068 0.012651 0.022039 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -29.5646 1.4282 -2.3286 1.6252 3.3538 0.38395 
dY , dYσ  (ft) 0.51071 0.002732 1.3303 0.17894 0.93643 0.005322 
h , hσ  (ft) -9.2736 0.091993 -9.3702 0.19064 -11.2143 0.037638 
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Ch , Chσ  (ft) -0.076416 0.27208 -0.032597 0.04627 -0.020831 0.029861 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.95265 0.004647 0.42854 0.031929 0.29036 0.00271 

ελ rms, εσλ rms (ft) 0.051039 0.000901 0.32962 0.081708 0.22081 0.004408 
uε rms, uεσ rms (kts) 0.22306 0.000502 0.21734 0.017458 0.22636 0.000776 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.2294 0.054826 8.3926 0.066171 8.3834 0.054988 
rhε , rhεσ  (ft) -1.1234 0.001718 -0.00428 0.028566 -0.01382 0.012504 
crθ , crσθ  (deg) -0.0116 0.01944 0.004172 0.016909 0.004283 0.016748 

# Bolters 5  0  0  
dX , dXσ  (ft) 97.7432 5.1377 -   - -   - 

dY , dYσ  (ft) 0.54321 0.026737 -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 1.9417 2.9355 6.2805 0.60443 
dY , dYσ  (ft) -   - 1.3779 0.4197 0.88805 0.010179 
h , hσ  (ft) -   - -11.2131 0.33282 -11.5404 0.020256 
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Ch , Chσ  (ft) -   - 0.07946 0.15468 0.06908 0.16754 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.0453 0.001444 0.62804 0.038807 0.28089 0.004364 

ελ rms, εσλ rms (ft) 0.067737 0.000995 0.39542 0.090221 0.29092 0.005242 
uε rms, uεσ rms (kts) 0.20656 0.000304 0.33728 0.009391 0.18235 0.001962 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.5804 0.029117 8.4782 0.85199 7.7383 0.02992 
rhε , rhεσ  (ft) 0.20814 0.003687 0.090439 0.86081 -0.64898 0.007628 
crθ , crσθ  (deg) -0.00464 0.010269 0.000909 0.01017 0.000714 0.0102 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -31.8684 0.039636 4.644 10.0829 -2.7107 0.33528 
dY , dYσ  (ft) 0.34676 0.003095 1.7692 1.2264 1.8633 0.015725 
h , hσ  (ft) -17.4238 0.008921 -10.6792 1.7873 -8.7437 0.025338 
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Ch , Chσ  (ft) 0.00199 0.034707 0.04615 0.054412 0.03071 0.043428 

  
Table B-10 Light Turbulence 3D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Light Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4143 0.006273 0.55588 0.045056 0.29331 0.005423 
ελ rms, εσλ rms (ft) 0.20498 0.009597 0.21522 0.024996 0.19663 0.007426 
uε rms, uεσ rms (kts) 0.30098 0.001957 0.26312 0.007925 0.22418 0.002717 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.6486 0.28492 10.5568 0.43641 8.5493 0.22112 
rhε , rhεσ  (ft) 0.10549 0.026 2.0491 0.43673 0.042782 0.034691 
crθ , crσθ  (deg) 0.056542 0.1087 0.043846 0.069116 0.043412 0.069347 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -33.6716 3.5848 0.60598 1.2817 4.2681 0.70009 
dY , dYσ  (ft) 1.913 0.063792 0.86257 0.42579 0.9492 0.034925 
h , hσ  (ft) -12.0607 0.067105 -9.3434 0.67426 -10.0018 0.34228 
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Ch , Chσ  (ft) 0.15023 0.41121 0.037447 0.064157 -0.11357 0.33444 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 0.6165 0.12496 0.3342 0.011278 

ελ rms, εσλ rms (ft) -   - 0.76066 0.077646 0.52903 0.008338 
uε rms, uεσ rms (kts) -   - 0.2396 0.016106 0.1987 0.0056 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ  (sec) 6.1343 0.039347 -   - -   - 
hε rms, hεσ rms (ft) 1.2891 0.008184 -   - -   - 

ελ rms, εσλ rms (ft) 0.087176 0.006666 -   - -   - 
uε rms, uεσ rms (kts) 0.30198 0.005602 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 9.6153 0.77388 8.8357 0.34041 
rhε , rhεσ  (ft) -   - 1.3209 0.86261 0.54174 0.1119 
crθ , crσθ  (deg) -   - -0.03254 0.08687 -0.0327 0.086955 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 2.2391 16.1087 -9.5521 1.4894 
dY , dYσ  (ft) -   - 3.192 1.9239 0.17427 0.053642 
h , hσ  (ft) -   - -15.8075 1.493 -10.7064 0.16136 

C
ar

ri
er

 S
pe

ed
 =

 1
0K

no
ts

 

Ch , Chσ  (ft) -   - 0.03108 0.57377 0.0321 0.52944 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.476 0.004965 0.63298 0.021327 0.28434 0.013287 

ελ rms, εσλ rms (ft) 0.2572 0.002286 0.37337 0.035684 0.27662 0.005571 
uε rms, uεσ rms (kts) 0.30219 0.002482 0.32404 0.014637 0.18204 0.00401 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.4625 0.087802 8.7153 0.49949 8.013 0.23527 
rhε , rhεσ  (ft) 1.0495 0.008827 0.23723 0.62907 -0.4632 0.080958 
crθ , crσθ  (deg) 0.009912 0.02867 0.033256 0.054257 0.032564 0.055278 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -37.4475 0.94437 -1.2803 1.7172 -4.1928 1.4879 
dY , dYσ  (ft) 1.9571 0.019262 3.2859 0.67953 1.8235 0.035436 
h , hσ  (ft) -12.4017 0.029948 -10.5456 1.1009 -9.2665 0.43663 
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Ch , Chσ  (ft) -0.039169 0.19303 0.08573 0.15908 0.15038 0.17196 

  
Table B-11 Light Turbulence 3D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Light Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7447 0.023923 0.73648 0.12313 0.46406 0.018419 
ελ rms, εσλ rms (ft) 2.2156 0.28796 0.26634 0.092103 0.20119 0.046091 
uε rms, uεσ rms (kts) 0.38894 0.00798 0.26986 0.012828 0.2518 0.005207 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) - - - - - - 
hε rms, hεσ rms (ft) - - - - - - 
ελ rms, εσλ rms (ft) - - - - - - 
uε rms, uεσ rms (kts) - - - - - - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) - - - - - - 
hε rms, hεσ rms (ft) - - - - - - 
ελ rms, εσλ rms (ft) - - - - - - 
uε rms, uεσ rms (kts) - - - - - - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 6.3937 0.71996 8.9805 1.9337 7.9724 0.68446 
rhε , rhεσ  (ft) -2.1345 0.077304 1.1091 1.748 0.099058 0.39711 
crθ , crσθ  (deg) 0.051219 0.2783 -0.18401 0.12437 -0.18332 0.12404 

# Bolters 0  1  0  
dX , dXσ  (ft) - - 97.5187 0 - - 

dY , dYσ  (ft) - - 1.2586 0 - - 
# Successful Touchdowns 5  4  5  

dX , dXσ  (ft) -77.2127 17.294 1.0548 43.4578 -4.8024 18.605 
dY , dYσ  (ft) 0.95637 0.51573 1.4731 1.2829 0.55944 0.43015 
h , hσ  (ft) -12.2668 0.88136 -11.6752 2.6364 -7.5894 0.46166 
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Ch , Chσ  (ft) 0.56021 1.2624 0.19992 0.77282 0.05762 0.74408 
# Successful Approaches 0  3  5  
hε rms, hεσ rms  (ft) - - 0.76645 0.11623 0.87974 0.26831 

ελ rms, εσλ rms (ft) - - 1.5178 0.56168 1.5719 0.44252 
uε rms, uεσ rms (kts) - - 0.42754 0.032511 0.57214 0.10992 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) - - - - - - 
hε rms, hεσ rms (ft) - - - - - - 

ελ rms, εσλ rms (ft) - - - - - - 
uε rms, uεσ rms (kts) - - - - - - 
# Failed Approaches Lat 5  2  0  
tdt , tdtσ  (sec) 9.5547 0.1837 6.9715 0.28503 - - 
hε rms, hεσ rms (ft) 1.5916 0.01186 0.6146 0.086161 - - 

ελ rms, εσλ rms (ft) 2.0373 0.013287 1.3866 0.1171 - - 
uε rms, uεσ rms (kts) 0.38649 0.009394 0.40982 0.009432 - - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) - - 8.4398 0.14439 8.0611 0.70966 
rhε , rhεσ  (ft) - - 0.37472 0.59573 -0.47658 0.58547 
crθ , crσθ  (deg) - - -0.11466 0.21963 0.054572 0.28374 

# Bolters 0  0  0  
dX , dXσ  (ft) - - - - - - 

dY , dYσ  (ft) - - - - - - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) - - 24.6896 20.9166 9.4889 3.0967 
dY , dYσ  (ft) - - -0.58994 0.79492 -0.6567 0.84053 
h , hσ  (ft) - - -8.7543 3.43 -8.9542 1.218 
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Ch , Chσ  (ft) - - -0.49169 1.46 -0.75949 1.3929 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) - - 1.0123 0.26398 0.39639 0.031626 

ελ rms, εσλ rms (ft) - - 0.33879 0.11641 0.30723 0.011874 
uε rms, uεσ rms (kts) - - 0.71805 0.057495 0.51986 0.03313 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) - - - - - - 
hε rms, hεσ rms (ft) - - - - - - 

ελ rms, εσλ rms (ft) - - - - - - 
uε rms, uεσ rms (kts) - - - - - - 
# Failed Approaches Lat 5  0  0  
tdt , tdtσ  (sec) 7.7895 0.065863 - - - - 
hε rms, hεσ rms (ft) 1.7751 0.041954 - - - - 

ελ rms, εσλ rms (ft) 1.6395 0.079805 - - - - 
uε rms, uεσ rms (kts) 0.42678 0.021603 - - - - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) - - 11.3726 2.5473 9.467 0.32262 
rhε , rhεσ  (ft) - - 3.1126 2.1599 1.1979 0.25901 
crθ , crσθ  (deg) - - -0.04482 0.20207 -0.04158 0.19502 

# Bolters 0  0  0  
dX , dXσ  (ft) - - - - - - 

dY , dYσ  (ft) - - - - - - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) - - 5.3734 29.3842 3.3941 2.1108 
dY , dYσ  (ft) - - -1.5181 1.0626 -0.10393 0.059159 
h , hσ  (ft) - - -12.3413 3.2081 -9.3433 0.25602 
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Ch , Chσ  (ft) - - -0.32452 0.98357 -0.2554 0.93223 

  
Table B-12 Light Turbulence 3D and Carrier Induced Turbulence – Wind 37 Knots 



Appendix B 

 

- 305 - 

 Wind Speed = 2 Knots 
Light Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.76093 0.00049 0.536 0.006043 0.28956 0.000584 
ελ rms, εσλ rms (ft) 0.000114 1.40E-05 0.000597 0.000381 0.000156 5.66E-06 
uε rms, uεσ rms (kts) 0.15357 9.98E-05 0.23266 0.000376 0.21666 0.000143 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.2215 0.036026 8.4745 0.11249 8.6336 0.031171 
rhε , rhεσ  (ft) 0.86041 0.001859 0.11382 0.092451 0.27305 0.00135 
crθ , crσθ  (deg) -0.00864 0.012803 -0.00881 0.010775 -0.00883 0.0107 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 30.0683 0.31814 -7.6874 0.041976 -1 2.46E-05 
dY , dYσ  (ft) 0.032666 0.021505 0.021781 0.010876 0.003876 0.000484 
h , hσ  (ft) -17.0526 0.002568 -9.7378 0.059312 -11.3818 0.003964 
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Ch , Chσ  (ft) -0.019481 0.083089 -0.029872 0.048141 -0.030103 0.046166 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.75096 0.00036 0.41744 0.007495 0.28737 0.002062 

ελ rms, εσλ rms (ft) 0.000174 2.22E-06 0.000425 4.78E-05 0.000166 7.16E-06 
uε rms, uεσ rms (kts) 0.15073 0.000139 0.2071 0.000329 0.22166 0.000472 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.3789 0.044651 8.2282 0.033224 8.2848 0.029684 
rhε , rhεσ  (ft) -0.02753 0.002122 -0.17289 0.006444 -0.1163 0.000847 
crθ , crσθ  (deg) 0.007575 0.015431 0.005673 0.010657 0.005673 0.010657 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 38.1067 1.1677 1.8712 0.05245 5.3021 1.1549 
dY , dYσ  (ft) 0.065648 0.013443 0.01259 0.003504 0.065126 0.00996 
h , hσ  (ft) -16.5129 0.037739 -12.1596 0.019823 -12.371 0.020644 
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Ch , Chσ  (ft) 0.05338 0.057332 0.03991 0.053861 0.03323 0.065371 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.74877 0.000377 0.33125 0.041145 0.27174 0.007949 

ελ rms, εσλ rms (ft) 0.000177 1.03E-06 0.000219 2.96E-05 0.000203 1.64E-05 
uε rms, uεσ rms (kts) 0.15061 0.000201 0.18202 0.008634 0.19361 0.004028 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.3591 0.014812 8.0351 0.097079 8.1329 0.010004 
rhε , rhεσ  (ft) -0.01802 0.001983 -0.342 0.094059 -0.24417 0.00501 
crθ , crσθ  (deg) -0.00291 0.00498 -0.00293 0.002998 -0.00291 0.003001 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 23.818 0.006299 4.6928 0.58465 6.3659 0.48465 
dY , dYσ  (ft) -0.04942 0.002973 0.013069 0.01034 0.01707 0.007618 
h , hσ  (ft) -16.7684 0.002565 -12.6363 0.069451 -12.37 0.010753 
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Ch , Chσ  (ft) -0.008898 0.020589 -0.009072 0.032887 -0.008231 0.036274 

  
Table B-13 Light Turbulence 2D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Light Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.9486 0.004894 0.52089 0.025578 0.29016 0.001014 
ελ rms, εσλ rms (ft) 0.002382 0.000143 0.003988 0.002008 0.00226 6.41E-05 
uε rms, uεσ rms (kts) 0.22519 0.001631 0.24545 0.001373 0.21892 0.000553 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.9521 0.062133 9.6166 0.32743 8.5408 0.069327 
rhε , rhεσ  (ft) 0.5763 0.010526 1.1957 0.27623 0.12019 0.008496 
crθ , crσθ  (deg) -0.00339 0.025352 0.012763 0.022047 0.012651 0.022039 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -29.9237 1.2997 -0.3744 1.2762 3.5572 0.15641 
dY , dYσ  (ft) 0.022183 0.047188 0.019333 0.059365 -0.0141 0.006533 
h , hσ  (ft) -9.1586 0.082909 -9.4136 0.26564 -11.2275 0.033594 
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Ch , Chσ  (ft) -0.080747 0.27775 -0.025148 0.048544 -0.032732 0.048196 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 0.96839 0.004578 0.4251 0.023401 0.2917 0.002432 

ελ rms, εσλ rms (ft) 0.002603 9.14E-05 0.002417 0.000376 0.002178 0.000131 
uε rms, uεσ rms (kts) 0.22541 0.000509 0.21688 0.015599 0.22707 0.000698 
# Failed Approaches Vert 0  0  0  

tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  

tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  

rh , rhσ  (ft) 7.1999 0.058724 8.6085 0.48622 8.3866 0.054394 

rhε , rhεσ  (ft) -1.1526 0.005688 0.21164 0.47777 -0.0107 0.011736 

crθ , crσθ  (deg) -0.01171 0.019418 0.004172 0.016909 0.004325 0.016823 
# Bolters 5  0  0  

dX , dXσ  (ft) 103.1492 5.1404 -   - -   - 

dY , dYσ  (ft) 0.10952 0.18605 -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 3.3552 1.5538 6.6981 0.43512 

dY , dYσ  (ft) -   - -0.00399 0.029081 -0.01318 0.005988 
h , hσ  (ft) -   - -11.3975 0.25195 -11.5426 0.019323 
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Ch , Chσ  (ft) -   - 0.0109 0.074166 0.06606 0.15688 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.0537 0.001242 0.59601 0.033964 0.28194 0.004705 

ελ rms, εσλ rms (ft) 0.002536 6.61E-05 0.006246 0.003392 0.002256 5.81E-05 
uε rms, uεσ rms (kts) 0.20918 0.000158 0.3323 0.004391 0.18232 0.002614 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.6261 0.0345 9.006 0.069454 7.6869 0.031316 
rhε , rhεσ  (ft) 0.25381 0.007087 0.61824 0.0685 -0.70033 0.011822 
crθ , crσθ  (deg) -0.00462 0.010276 0.000895 0.010189 0.000703 0.010221 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -32.207 0.014616 -3.0562 3.02 -3.0656 0.29784 
dY , dYσ  (ft) 0.040912 0.005981 0.084558 0.079881 -0.02272 0.007397 
h , hσ  (ft) -17.4963 0.004948 -10.3817 0.15128 -8.7346 0.02303 
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Ch , Chσ  (ft) 0.00205 0.035133 0.03275 0.043887 0.0335 0.046387 

  
Table B-14 Light Turbulence 2D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Light Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4518 0.00673 0.55672 0.037917 0.29532 0.006545 
ελ rms, εσλ rms (ft) 0.022798 0.00405 0.006704 0.003593 0.003332 0.000112 
uε rms, uεσ rms (kts) 0.29898 0.001952 0.26342 0.0055 0.22492 0.002563 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.785 0.29461 10.7405 0.3873 8.5676 0.20559 
rhε , rhεσ  (ft) 0.24176 0.009738 2.2329 0.42289 0.061167 0.027712 
crθ , crσθ  (deg) 0.056565 0.1086 0.043799 0.069106 0.043412 0.069347 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -28.6812 3.47 1.4846 0.96511 4.0643 0.72537 
dY , dYσ  (ft) 0.004059 0.20249 -0.04911 0.14303 -0.01833 0.046382 
h , hσ  (ft) -11.8408 0.080814 -9.5057 0.54908 -9.9529 0.28664 
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Ch , Chσ  (ft) 0.16486 0.4154 -0.13167 0.1483 -0.081196 0.31374 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 0.58151 0.14693 0.33633 0.012159 

ελ rms, εσλ rms (ft) -   - 0.004544 0.000842 0.003756 0.000249 
uε rms, uεσ rms (kts) -   - 0.2294 0.027103 0.19713 0.005579 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.2815 0.0331 -   - -   - 
hε rms, hεσ rms (ft) 1.2875 0.008181 -   - -   - 

ελ rms, εσλ rms (ft) 0.007313 0.002478 -   - -   - 
uε rms, uεσ rms (kts) 0.30119 0.005382 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 9.1027 0.3593 8.8277 0.34338 
rhε , rhεσ  (ft) -   - 0.80893 0.20387 0.53341 0.11475 
crθ , crσθ  (deg) -   - -0.03276 0.08676 -0.03258 0.086934 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - -0.72552 15.0519 -10.2436 1.5157 
dY , dYσ  (ft) -   - 0.039871 0.1042 0.060116 0.044715 
h , hσ  (ft) -   - -14.5834 2.2762 -10.7206 0.16141 
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Ch , Chσ  (ft) -   - -0.008508 0.50086 0.04416 0.54934 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.5248 0.003125 0.55079 0.067278 0.28647 0.008295 

ελ rms, εσλ rms (ft) 0.019165 0.006013 0.006466 0.003112 0.00352 0.000221 
uε rms, uεσ rms (kts) 0.295 0.002295 0.3226 0.017709 0.18365 0.006003 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.4963 0.081797 8.8516 0.7102 7.9715 0.22798 
rhε , rhεσ  (ft) 1.0829 0.0197 0.37362 0.74801 -0.5048 0.075418 
crθ , crσθ  (deg) 0.010099 0.028778 0.033219 0.054389 0.03259 0.055303 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -35.4799 1.0276 -3.4408 5.8132 -4.3257 1.735 
dY , dYσ  (ft) -0.06942 0.027797 0.026699 0.029348 -0.02787 0.0144 
h , hσ  (ft) -12.1199 0.034149 -9.2671 1.2698 -9.1454 0.37614 
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Ch , Chσ  (ft) -0.040407 0.18786 0.14912 0.17005 0.1425 0.16833 

  
Table B-15 Light Turbulence 2D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Light Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7083 0.02044 0.73537 0.1127 0.46712 0.019287 
ελ rms, εσλ rms (ft) 0.057778 0.019851 0.009533 0.003234 0.006866 0.000988 
uε rms, uεσ rms (kts) 0.31841 0.001936 0.26969 0.013804 0.25229 0.00471 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 6.8567 0.64303 8.9378 2.1812 7.967 0.69942 
rhε , rhεσ  (ft) -1.6547 0.15011 1.0657 2.0095 0.094296 0.39984 
crθ , crσθ  (deg) 0.045164 0.26662 -0.18373 0.12456 -0.18353 0.12389 

# Bolters 0  1  0  
dX , dXσ  (ft) -   - 132.8435 0 -   - 

dY , dYσ  (ft) -   - 3.5863 0 -   - 
# Successful Touchdowns 5  4  5  

dX , dXσ  (ft) -69.1491 15.3286 25.2529 19.9773 -5.4916 20.0865 
dY , dYσ  (ft) -0.19891 0.77033 -0.14958 0.16933 -0.24371 0.5113 
h , hσ  (ft) -11.0674 0.59006 -11.5039 2.9082 -7.4605 0.49997 

C
ar

ri
er

 S
pe

ed
 =

 0
 K

no
ts

 

Ch , Chσ  (ft) 0.55376 1.2966 -0.069147 0.826 -0.00293 0.75493 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.8329 0.007996 0.5973 0.12911 0.39254 0.038043 

ελ rms, εσλ rms (ft) 0.049708 0.014021 0.010677 0.005055 0.008194 0.003658 
uε rms, uεσ rms (kts) 0.33448 0.000527 0.24113 0.027946 0.20963 0.010869 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 5.9888 0.5171 9.527 1.9043 9.5857 1.2456 
rhε , rhεσ  (ft) -2.4314 0.1579 0.84054 2.2011 0.89893 0.70882 
crθ , crσθ  (deg) 0.012518 0.2225 0.10786 0.24464 0.10797 0.24454 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -73.0662 23.3334 -9.9502 10.2276 -8.6081 8.3878 
dY , dYσ  (ft) 0.069564 1.1091 0.013846 0.34596 -0.08767 0.18111 
h , hσ  (ft) -9.5394 0.87824 -11.143 3.8942 -10.4897 1.117 
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Ch , Chσ  (ft) -0.086717 1.1877 0.30682 0.65584 0.34659 0.56212 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 2.2474 0.03002 1.0656 0.30125 0.40473 0.025564 

ελ rms, εσλ rms (ft) 0.079825 0.022 0.034024 0.013285 0.021941 0.012162 
uε rms, uεσ rms (kts) 0.43545 0.021005 0.72668 0.056698 0.52093 0.030597 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 13.4789 0.79918 11.3505 2.6015 9.4153 0.3145 
rhε , rhεσ  (ft) 5.0523 0.043937 3.0906 2.5951 1.1438 0.24858 
crθ , crσθ  (deg) 0.014804 0.29152 -0.04485 0.20184 -0.04075 0.194 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -6.4213 2.3914 10.3955 30.9484 3.6782 2.4769 
dY , dYσ  (ft) 0.059219 0.088959 0.018837 0.69255 0.021891 0.052142 
h , hσ  (ft) -17.5133 0.10875 -14.5886 1.6062 -9.2533 0.24618 
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Ch , Chσ  (ft) 0.22368 0.97868 -0.33138 1.035 -0.28386 0.96248 

  
Table B-16 Light Turbulence 2D and Carrier Induced Turbulence – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Moderate Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4116 0.000419 1.224 0.001659 0.63518 0.00249 
ελ rms, εσλ rms (ft) 0.26203 0.002342 1.0673 0.00699 0.94408 0.00081 
uε rms, uεσ rms (kts) 0.3186 0.000218 0.43924 0.000845 0.44337 0.001308 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.4399 0.036404 11.0816 0.027248 8.7796 0.03191 
rhε , rhεσ  (ft) 2.0789 0.001274 2.7209 0.010869 0.41891 0.001404 
crθ , crσθ  (deg) -0.00866 0.01297 -0.00878 0.010926 -0.00878 0.010926 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 29.4796 0.42861 12.8225 0.46214 1.5023 0.028241 
dY , dYσ  (ft) 0.85715 0.001798 8.134 0.044402 3.0167 0.023315 
h , hσ  (ft) -19.3793 0.00811 -10.8754 0.062383 -11.0681 0.004828 
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Ch , Chσ  (ft) -0.02102 0.08069 -0.03561 0.041535 -0.048634 0.064227 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4105 0.000616 1.1692 0.004254 0.66472 0.000669 

ελ rms, εσλ rms (ft) 0.31015 0.001363 0.91751 0.003737 0.93586 0.00225 
uε rms, uεσ rms (kts) 0.31521 0.000293 0.40718 0.001662 0.44951 0.000865 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.9835 0.044136 8.0331 0.032672 8.3951 0.029808 
rhε , rhεσ  (ft) 0.57759 0.001789 -0.36772 0.007601 -0.00573 0.000726 
crθ , crσθ  (deg) 0.007419 0.015488 0.005591 0.010833 0.005591 0.010833 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 42.4438 0.95868 8.1619 0.95958 6.7688 0.56081 
dY , dYσ  (ft) 0.83079 0.00606 5.1491 0.077239 3.2135 0.024557 
h , hσ  (ft) -19.033 0.016165 -12.7747 0.3209 -11.7983 0.011244 
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Ch , Chσ  (ft) 0.05428 0.059027 0.04119 0.06889 0.03074 0.051167 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4272 0.000261 1.0867 0.033337 0.68136 0.007701 

ελ rms, εσλ rms (ft) 0.28392 0.000856 0.99454 0.025072 0.94963 0.009367 
uε rms, uεσ rms (kts) 0.31768 0.000166 0.39533 0.008688 0.42497 0.004202 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 8.905 0.015113 7.0347 0.54844 8.0815 0.013095 
rhε , rhεσ  (ft) 0.52789 0.001418 -1.3424 0.54192 -0.29567 0.014042 
crθ , crσθ  (deg) -0.00291 0.004996 -0.00292 0.003059 -0.0029 0.003075 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 25.7483 0.003745 16.8581 23.4431 5.5165 0.48089 
dY , dYσ  (ft) 0.81188 0.000246 4.2982 0.82503 2.2467 0.14446 
h , hσ  (ft) -19.2092 0.001369 -12.9866 1.2869 -11.9066 0.014592 
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Ch , Chσ  (ft) -0.008702 0.019972 -0.006599 0.028794 -0.008002 0.035493 

  
Table B-17 Moderate Turbulence 3D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Moderate Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1276 0.050714 0.65134 0.000701 
ελ rms, εσλ rms (ft) -   - 0.90977 0.061951 0.85449 0.002553 
uε rms, uεσ rms (kts) -   - 0.41556 0.01859 0.44705 0.000571 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ  (sec) 6.1627 0.014483 -   - -   - 
hε rms, hεσ rms (ft) 1.4185 0.001461 -   - -   - 
ελ rms, εσλ rms (ft) 0.11306 0.00153 -   - -   - 
uε rms, uεσ rms (kts) 0.37872 0.002102 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.1472 0.40733 8.9089 0.059448 
rhε , rhεσ  (ft) -   - 1.7258 0.46667 0.48759 0.002758 
crθ , crσθ  (deg) -   - 0.012944 0.022082 0.012898 0.022124 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 12.3045 0.57808 9.2123 0.40026 
dY , dYσ  (ft) -   - 5.5398 1.3268 4.4173 0.044846 
h , hσ  (ft) -   - -9.7038 0.3999 -12.1006 0.063868 
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Ch , Chσ  (ft) -   - -0.026725 0.049619 -0.021796 0.043628 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.973 0.005813 1.0824 0.025416 0.69468 0.001542 

ελ rms, εσλ rms (ft) 0.33034 0.006465 1.0009 0.044862 0.89317 0.006428 
uε rms, uεσ rms (kts) 0.44357 0.001477 0.40712 0.005311 0.45363 0.001252 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 6.6071 0.053972 8.0904 0.29198 8.5571 0.049926 
rhε , rhεσ  (ft) -1.7442 0.00281 -0.30631 0.33232 0.16064 0.006621 
crθ , crσθ  (deg) -0.01216 0.019335 0.00409 0.017136 0.004011 0.017243 

# Bolters 5  0  0  
dX , dXσ  (ft) 210.3439 3.8004 -   - -   - 

dY , dYσ  (ft) 6.2814 0.07198 -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 27.113 29.0534 11.328 0.1106 
dY , dYσ  (ft) -   - 4.3475 1.0184 3.5638 0.10409 
h , hσ  (ft) -   - -12.9831 3.162 -11.323 0.030423 
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Ch , Chσ  (ft) -   - 0.07257 0.13012 0.07615 0.17497 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.8545 0.001411 1.117 0.059137 0.70389 0.012338 

ελ rms, εσλ rms (ft) 0.15364 0.001758 4.0571 0.51982 4.3664 0.14084 
uε rms, uεσ rms (kts) 0.38798 0.000847 0.50517 0.021977 0.45901 0.012332 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ  (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.9181 0.028454 9.9004 0.082792 7.9195 0.044561 
rhε , rhεσ  (ft) -0.45403 0.003067 1.5129 0.090994 -0.46741 0.033869 
crθ , crσθ  (deg) -0.0047 0.010224 0.000816 0.010222 0.000606 0.010232 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -55.7027 0.24317 -7.899 0.97894 -5.4207 0.66652 
dY , dYσ  (ft) 0.36522 0.008476 3.8845 1.0709 3.214 0.21941 
h , hσ  (ft) -20.6363 0.00305 -8.6984 0.10957 -7.2207 0.02193 
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Ch , Chσ  (ft) 0.00332 0.034259 0.03078 0.04247 -0.03163 0.044051 

  
Table B-18 Moderate Turbulence 3D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Moderate Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1327 0.06157 0.65129 0.008289 
ελ rms, εσλ rms (ft) -   - 0.91301 0.077869 0.76492 0.011679 
uε rms, uεσ rms (kts) -   - 0.41959 0.014501 0.45404 0.001999 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.667 0.009772 -   - -   - 
hε rms, hεσ rms (ft) 1.7484 0.005338 -   - -   - 
ελ rms, εσλ rms (ft) 0.18263 0.007399 -   - -   - 
uε rms, uεσ rms (kts) 0.38366 0.001397 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 11.0766 1.2706 8.9399 0.22217 
rhε , rhεσ  (ft) -   - 2.5676 1.2568 0.43114 0.048549 
crθ , crσθ  (deg) -   - 0.044324 0.069043 0.044229 0.069092 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 16.9847 7.2355 14.9927 0.70426 
dY , dYσ  (ft) -   - 6.7417 1.2426 4.3971 0.21071 
h , hσ  (ft) -   - -10.1941 2.8379 -12.0199 0.35037 
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Ch , Chσ  (ft) -   - -0.11682 0.31738 -0.10313 0.28592 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.0911 0.014488 0.71918 0.019114 

ελ rms, εσλ rms (ft) -   - 1.7087 0.08697 1.9085 0.072968 
uε rms, uεσ rms (kts) -   - 0.37627 0.004256 0.4224 0.005502 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.9348 0.008124 -   - -   - 
hε rms, hεσ rms (ft) 2.0417 0.008971 -   - -   - 

ελ rms, εσλ rms (ft) 0.22844 0.044531 -   - -   - 
uε rms, uεσ rms (kts) 0.42024 0.004881 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 7.5585 0.55549 9.7694 0.25806 
rhε , rhεσ  (ft) -   - -0.73561 0.67732 1.4763 0.12225 
crθ , crσθ  (deg) -   - -0.03264 0.086322 -0.03301 0.085867 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 10.2946 5.0883 7.9568 3.3752 
dY , dYσ  (ft) -   - 6.2421 0.4436 6.8157 0.26929 
h , hσ  (ft) -   - -11.219 1.6866 -13.5318 0.48374 
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Ch , Chσ  (ft) -   - -0.041616 0.44895 0.05663 0.59353 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1499 0.059972 0.73104 0.019478 

ελ rms, εσλ rms (ft) -   - 3.2607 1.0521 4.4552 0.068244 
uε rms, uεσ rms (kts) -   - 0.48402 0.012979 0.45339 0.019072 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.538 0.011606 -   - -   - 
hε rms, hεσ rms (ft) 1.9666 0.001293 -   - -   - 

ελ rms, εσλ rms (ft) 0.36591 0.091321 -   - -   - 
uε rms, uεσ rms (kts) 0.39677 0.003412 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.6883 0.84831 8.4006 0.16967 
rhε , rhεσ  (ft) -   - 2.2113 0.83899 -0.07437 0.13087 
crθ , crσθ  (deg) -   - 0.032853 0.054854 0.032119 0.055783 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - -18.0064 5.7611 -10.6544 0.84334 
dY , dYσ  (ft) -   - 2.6671 1.524 2.9649 0.56393 
h , hσ  (ft) -   - -12.9907 1.511 -8.2468 0.16172 

C
ar

ri
er

 S
pe

ed
 =

 3
3 

K
no

ts
 

Ch , Chσ  (ft) -   - 0.13269 0.1668 -0.14352 0.16343 

  
Table B-19 Moderate Turbulence 3D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Moderate Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  0  0  
hε rms, hεσ rms  (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Vert 0  1  0  
tdt , tdtσ (sec) -   - 5.7566 0 -   - 
hε rms, hεσ rms (ft) -   - 1.5856 0 -   - 
ελ rms, εσλ rms (ft) -   - 2.7508 0 -   - 
uε rms, uεσ rms (kts) -   - 0.52483 0 -   - 
# Failed Approaches Lat 5  4  5  
tdt , tdtσ (sec) 13.9873 0.096764 6.5151 0.4055 7.1675 0.25936 
hε rms, hεσ rms (ft) 2.7839 0.055737 1.4065 0.10211 1.175 0.19751 
ελ rms, εσλ rms (ft) 2.1388 0.018996 2.5338 0.13213 2.721 0.26334 
uε rms, uεσ rms (kts) 0.47129 0.025308 0.54191 0.011774 0.66178 0.026378 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - -   - -   - 
rhε , rhεσ  (ft) -   - -  - 0  
crθ , crσθ  (deg) -   - -   - -   - 

# Bolters 0  0   -   - 
dX , dXσ  (ft) -   - -  - 0  

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  0   0   

dX , dXσ  (ft) -   - -   - -   - 
dY , dYσ  (ft) -   - -   - -   - 
h , hσ  (ft) -   - -  - -  - 
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Ch , Chσ  (ft) -   - -   - -   - 
# Successful Approaches 0  1  1  
hε rms, hεσ rms  (ft) -   - 1.6371 0 2.0073 0 

ελ rms, εσλ rms (ft) -   - 3.0316 0 3.0107 0 
uε rms, uεσ rms (kts) -   - 0.56028 0 0.77395 0 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 5  4  4  
tdt , tdtσ (sec) 14.1493 0.012482 7.278 1.9237 7.6036 0.37635 
hε rms, hεσ rms (ft) 2.8986 0.042638 1.3498 0.070349 1.2268 0.037327 

ελ rms, εσλ rms (ft) 2.1355 0.058306 2.7701 0.24284 3.1033 0.47411 
uε rms, uεσ rms (kts) 0.5404 0.010429 0.52435 0.028811 0.70372 0.07059 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 9.0362 0 10.8696 0 
rhε , rhεσ  (ft) -   - 0.3215 0 1.3546 0 
crθ , crσθ  (deg) -   - 0.11796 0 0.40455 0 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  1  1  

dX , dXσ  (ft) -   - -13.0357 0 -22.452 0 
dY , dYσ  (ft) -   - -0.58265 0 -1.8912 0 
h , hσ  (ft) -   - -7.6695 0 -4.8772 0 
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Ch , Chσ  (ft) -   - 1.4266 0 1.138 0 
# Successful Approaches 0  4  5  
hε rms, hεσ rms  (ft) -   - 3.5316 1.2165 2.5934 0.44206 

ελ rms, εσλ rms (ft) -   - 4.7269 0.77742 2.1733 0.079865 
uε rms, uεσ rms (kts) -   - 0.81385 0.047396 0.96051 0.072892 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 5  1  0  
tdt , tdtσ (sec) 11.2553 0.054584 8.0955 0 -   - 
hε rms, hεσ rms (ft) 3.1813 0.016788 2.1356 0 -   - 

ελ rms, εσλ rms (ft) 1.5775 0.027839 1.8105 0 -   - 
uε rms, uεσ rms (kts) 0.47471 0.032634 0.66913 0 -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 11.4173 1.3098 11.109 2.141 
rhε , rhεσ  (ft) -   - 2.6912 0.99847 2.7282 1.336 
crθ , crσθ  (deg) -   - 0.12205 0.23286 -0.00158 0.30437 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  4  5  

dX , dXσ  (ft) -   - -9.6356 3.3229 -4.0993 4.0638 
dY , dYσ  (ft) -   - 7.884 9.1468 -3.565 0.72817 
h , hσ  (ft) -   - -12.2345 1.9236 -12.9691 1.631 
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Ch , Chσ  (ft) -   - 0.47669 0.83051 -1.4544 3.7625 

  
Table B-20 Moderate Turbulence 3D and Carrier Induced Turbulence – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Moderate Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4454 0.000362 1.1879 0.002291 0.64668 0.001027 
ελ rms, εσλ rms (ft) 0.000117 6.48E-06 0.00047 4.11E-05 0.000209 1.50E-05 
uε rms, uεσ rms (kts) 0.32557 0.000185 0.43801 0.001024 0.44648 0.000391 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 10.662 0.036142 10.6173 0.13681 8.9544 0.032673 
rhε , rhεσ  (ft) 2.3009 0.000942 2.2565 0.13048 0.59366 0.002311 
crθ , crσθ  (deg) -0.00866 0.01297 -0.00874 0.010971 -0.00878 0.010926 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 30.3163 1.2504 11.3541 0.96694 4.3496 0.33367 
dY , dYσ  (ft) 0.098371 0.021878 -0.02275 0.014258 0.018901 0.004358 
h , hσ  (ft) -19.5454 0.007735 -10.2966 0.12575 -11.3751 0.029743 
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Ch , Chσ  (ft) -0.021606 0.090693 -0.036398 0.04069 -0.031078 0.039326 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4456 0.000172 1.158 0.001265 0.67109 0.00092 

ελ rms, εσλ rms (ft) 0.000187 1.47E-06 0.000919 0.000178 0.000252 2.85E-05 
uε rms, uεσ rms (kts) 0.32246 0.000162 0.41206 0.001177 0.45208 0.000975 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.253 0.044505 8.5459 0.037454 8.4276 0.029801 
rhε , rhεσ  (ft) 0.84718 0.001791 0.14511 0.038653 0.026828 0.001369 
crθ , crσθ  (deg) 0.007386 0.015497 0.005564 0.010892 0.005564 0.010892 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 43.4008 0.010286 2.7559 0.27031 11.4168 0.060027 
dY , dYσ  (ft) -0.0146 0.009857 -0.02082 0.005294 0.008315 0.003448 
h , hσ  (ft) -19.2354 0.000598 -10.6121 0.022457 -12.4586 0.008377 
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Ch , Chσ  (ft) 0.05491 0.059621 0.04594 0.079649 0.03487 0.057219 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.4625 0.000525 1.1006 0.023522 0.68288 0.003618 

ελ rms, εσλ rms (ft) 0.000151 8.33E-07 0.001184 0.000556 0.00018 1.77E-05 
uε rms, uεσ rms (kts) 0.32453 0.000192 0.3889 0.014224 0.43266 0.003688 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.1721 0.015753 6.2633 0.30119 8.0985 0.009056 
rhε , rhεσ  (ft) 0.79501 0.00236 -2.1138 0.30478 -0.27863 0.004038 
crθ , crσθ  (deg) -0.00291 0.004998 -0.00291 0.003049 -0.0029 0.003079 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 25.3036 0.15152 44.8088 21.8786 8.2311 0.56932 
dY , dYσ  (ft) 0.009494 0.002125 -0.03746 0.060327 0.048351 0.008183 
h , hσ  (ft) -19.3962 0.003216 -14.0632 1.0955 -11.9206 0.008937 
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Ch , Chσ  (ft) -0.009432 0.020894 -0.009235 0.027731 -0.008513 0.032666 

  
Table B-21 Moderate Turbulence 2D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Moderate Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1923 0.009455 0.6582 0.002287 
ελ rms, εσλ rms (ft) -   - 0.002217 0.000118 0.002203 0.000144 
uε rms, uεσ rms (kts) -   - 0.43345 0.002134 0.45014 0.000614 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.1476 0.016712 -   - -   - 
hε rms, hεσ rms (ft) 1.4683 0.001895 -   - -   - 
ελ rms, εσλ rms (ft) 0.003804 0.000449 -   - -   - 
uε rms, uεσ rms (kts) 0.38499 0.001742 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.5547 0.46279 8.9278 0.03457 
rhε , rhεσ  (ft) -   - 2.1332 0.5181 0.50641 0.032871 
crθ , crσθ  (deg) -   - 0.012979 0.02215 0.012938 0.022185 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 15.1632 1.3207 12.4493 0.070998 
dY , dYσ  (ft) -   - -0.01793 0.037549 0.0182 0.010096 
h , hσ  (ft) -   - -9.9164 0.3883 -12.6941 0.061868 
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Ch , Chσ  (ft) -   - -0.024443 0.051198 -0.021446 0.071488 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 2.0833 0.006283 1.0903 0.02289 0.7029 0.002279 

ελ rms, εσλ rms (ft) 0.009009 0.001244 0.003525 0.000974 0.002738 4.45E-05 
uε rms, uεσ rms (kts) 0.44403 0.000932 0.40994 0.002422 0.45592 0.002559 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 6.4649 0.048943 8.1644 0.24421 8.5032 0.051498 
rhε , rhεσ  (ft) -1.886 0.005307 -0.23202 0.27671 0.10675 0.006967 
crθ , crσθ  (deg) -0.01228 0.019314 0.004011 0.017243 0.004011 0.017243 

# Bolters 5  1  0  
dX , dXσ  (ft) 225.5366 3.7892 61.084 0 -   - 

dY , dYσ  (ft) -0.52947 0.14448 0.18612 0 -   - 
# Successful Touchdowns 0  4  5  

dX , dXσ  (ft) -   - 39.3256 21.6101 16.8619 1.0309 
dY , dYσ  (ft) -   - -0.12774 0.042394 0.025757 0.018941 
h , hσ  (ft) -   - -14.7133 2.8283 -11.3066 0.044334 
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Ch , Chσ  (ft) -   - 0.09572 0.12708 0.06934 0.15844 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.8919 0.002569 1.1544 0.046715 0.69395 0.009443 

ελ rms, εσλ rms (ft) 0.003544 0.000853 0.003616 0.000615 0.002974 0.000267 
uε rms, uεσ rms (kts) 0.39465 0.00024 0.49425 0.014589 0.45233 0.005253 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.8912 0.029966 9.7596 0.13888 7.7719 0.036318 
rhε , rhεσ  (ft) -0.48088 0.002133 1.3722 0.15907 -0.61489 0.030917 
crθ , crσθ  (deg) -0.00471 0.010216 0.000773 0.010211 0.00055 0.010256 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -56.3178 0.67466 -11.1526 1.5716 -6.8971 0.32971 
dY , dYσ  (ft) 0.025237 0.048231 -0.02232 0.013777 -0.01622 0.012543 
h , hσ  (ft) -20.7958 0.00951 -8.673 0.31491 -7.1491 0.032031 
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Ch , Chσ  (ft) -0.00267 0.033649 0.02857 0.040621 -0.03078 0.044047 

  
Table B-22 Moderate Turbulence 2D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Moderate Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.2099 0.078052 0.66409 0.006814 
ελ rms, εσλ rms (ft) -   - 0.005755 0.001303 0.00424 0.000224 
uε rms, uεσ rms (kts) -   - 0.44532 0.02441 0.45702 0.00167 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.7289 0.009437 -   - -   - 
hε rms, hεσ rms (ft) 1.7936 0.005858 -   - -   - 
ελ rms, εσλ rms (ft) 0.021345 0.004297 -   - -   - 
uε rms, uεσ rms (kts) 0.38071 0.000772 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 12.4763 1.6759 9.008 0.27053 
rhε , rhεσ  (ft) -   - 3.9674 1.8081 0.49921 0.081208 
crθ , crσθ  (deg) -   - 0.044289 0.06883 0.044231 0.069141 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 22.9182 9.5725 20.1463 1.6832 
dY , dYσ  (ft) -   - -0.0747 0.12768 0.087574 0.064429 
h , hσ  (ft) -   - -12.2507 1.8325 -12.5293 0.47137 
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Ch , Chσ  (ft) -   - 0.08705 0.30159 -0.086886 0.28366 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1281 0.067406 0.71772 0.023146 

ελ rms, εσλ rms (ft) -   - 0.004394 0.000623 0.005642 0.000687 
uε rms, uεσ rms (kts) -   - 0.3862 0.015368 0.41696 0.004133 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.9875 0.009219 -   - -   - 
hε rms, hεσ rms (ft) 2.0843 0.008795 -   - -   - 

ελ rms, εσλ rms (ft) 0.028031 0.014838 -   - -   - 
uε rms, uεσ rms (kts) 0.41677 0.003773 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 7.3586 0.7368 9.6821 0.30121 
rhε , rhεσ  (ft) -   - -0.93447 0.80953 1.3889 0.15415 
crθ , crσθ  (deg) -   - -0.03301 0.085867 -0.03297 0.0858 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 1.2012 5.3648 -0.57532 3.6339 
dY , dYσ  (ft) -   - 0.009379 0.045299 0.07333 0.019508 
h , hσ  (ft) -   - -11.0365 1.5103 -13.6305 0.46838 
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Ch , Chσ  (ft) -   - 5.94E-05 0.53298 -0.009531 0.51445 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.1601 0.058404 0.7314 0.021851 

ελ rms, εσλ rms (ft) -   - 0.012213 0.005814 0.006385 0.00095 
uε rms, uεσ rms (kts) -   - 0.47868 0.010423 0.44602 0.005767 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.6142 0.006833 -   - -   - 
hε rms, hεσ rms (ft) 2.0454 0.003238 -   - -   - 

ελ rms, εσλ rms (ft) 0.037099 0.005938 -   - -   - 
uε rms, uεσ rms (kts) 0.39749 0.000824 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 11.0982 0.63842 8.3053 0.13237 
rhε , rhεσ  (ft) -   - 2.6212 0.48708 -0.16923 0.075827 
crθ , crσθ  (deg) -   - 0.032847 0.054821 0.031985 0.055917 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - -18.9955 1.7946 -12.231 0.75391 
dY , dYσ  (ft) -   - -0.19048 0.16738 -0.04771 0.033543 
h , hσ  (ft) -   - -13.7642 1.538 -8.1851 0.060968 
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Ch , Chσ  (ft) -   - 0.13758 0.16727 -0.14648 0.17134 

  
Table B-23 Moderate Turbulence 2D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Moderate Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.3147 0.1108 0.77881 0.042037 
ελ rms, εσλ rms (ft) -   - 0.008013 0.00257 0.007614 0.001255 
uε rms, uεσ rms (kts) -   - 0.42882 0.020846 0.46482 0.003325 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.189 0.097167 -   - -   - 
hε rms, hεσ rms (ft) 3.0197 0.041803 -   - -   - 
ελ rms, εσλ rms (ft) 0.061284 0.006996 -   - -   - 
uε rms, uεσ rms (kts) 0.36683 0.001343 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 7.0487 1.2632 8.7782 0.38932 
rhε , rhεσ  (ft) -   - -0.82273 0.95635 0.90774 0.48973 
crθ , crσθ  (deg) -   - -0.18399 0.12471 -0.18433 0.12497 

# Bolters 0  2  0  
dX , dXσ  (ft) -   - 109.8193 62.2663 -   - 

dY , dYσ  (ft) -   - 1.7596 3.1854 -   - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) -   - 20.7396 24.9111 9.5161 2.6203 
dY , dYσ  (ft) -   - -0.08365 0.12093 -0.13245 0.11706 
h , hσ  (ft) -   - -7.5893 4.136 -6.8462 0.74185 
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Ch , Chσ  (ft) -   - 0.0833 0.87806 -0.034178 0.72732 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.2641 0.13424 0.76414 0.042965 

ελ rms, εσλ rms (ft) -   - 0.019943 0.017196 0.0097 0.004019 
uε rms, uεσ rms (kts) -   - 0.42961 0.0311 0.42494 0.00607 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.5042 0.059259 -   - -   - 
hε rms, hεσ rms (ft) 3.1126 0.032815 -   - -   - 

ελ rms, εσλ rms (ft) 0.094112 0.053802 -   - -   - 
uε rms, uεσ rms (kts) 0.37153 0.000613 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 7.9604 1.0321 10.0073 0.75317 
rhε , rhεσ  (ft) -   - -0.72365 0.72129 1.3225 0.19314 
crθ , crσθ  (deg) -   - 0.10701 0.24322 0.10729 0.24339 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 12.4695 17.0776 8.0962 4.969 
dY , dYσ  (ft) -   - -0.23091 0.38156 -0.12178 0.12122 
h , hσ  (ft) -   - -11.2777 2.4248 -12.7923 1.4241 
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Ch , Chσ  (ft) -   - 0.27777 0.71369 0.36674 0.71478 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.6445 0.34927 0.87419 0.09192 

ελ rms, εσλ rms (ft) -   - 0.052291 0.036661 0.055405 0.036109 
uε rms, uεσ rms (kts) -   - 0.82733 0.040499 0.76317 0.06844 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 5.46 0.012604 -   - -   - 
hε rms, hεσ rms (ft) 3.3175 0.0173 -   - -   - 

ελ rms, εσλ rms (ft) 0.095495 0.031144 -   - -   - 
uε rms, uεσ rms (kts) 0.43086 0.023632 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 12.7317 1.786 9.619 0.74335 
rhε , rhεσ  (ft) -   - 4.4678 2.087 1.343 0.26987 
crθ , crσθ  (deg) -   - -0.04344 0.19947 -0.03913 0.18837 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 19.1967 22.8168 5.1574 12.0345 
dY , dYσ  (ft) -   - -0.31569 0.47797 -0.32616 0.64181 
h , hσ  (ft) -   - -11.1073 3.0162 -9.343 1.6439 
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Ch , Chσ  (ft) -   - -0.36755 1.0278 -0.41102 1.0115 

  
Table B-24 Moderate Turbulence 2D and Carrier Induced Turbulence – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Severe Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7171 0.00087 1.4028 0.003104 0.84755 0.002065 
ελ rms, εσλ rms (ft) 0.33261 0.000265 1.5552 0.008372 1.3125 0.000331 
uε rms, uεσ rms (kts) 0.40087 0.00066 0.56589 0.001362 0.58902 0.002661 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 11.0157 0.036463 10.2663 0.095672 8.7433 0.031347 
rhε , rhεσ  (ft) 2.6546 0.000727 1.9054 0.10991 0.38257 0.001976 
crθ , crσθ  (deg) -0.00867 0.013037 -0.00874 0.011075 -0.00876 0.011001 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 28.5322 1.2487 17.2834 3.1262 0.99222 0.014493 
dY , dYσ  (ft) 1.3041 0.004944 9.022 0.11903 5.5252 0.019771 
h , hσ  (ft) -20.3691 0.012915 -9.4399 1.0738 -10.6674 0.002858 
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Ch , Chσ  (ft) -0.021519 0.084403 -0.036687 0.036554 0 0 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7201 0.000683 1.4774 0.009953 0.89364 0.0019 

ελ rms, εσλ rms (ft) 0.35172 0.001775 1.4309 0.009715 1.3565 0.007863 
uε rms, uεσ rms (kts) 0.39677 0.000526 0.56083 0.001807 0.60114 0.002209 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.3321 0.044556 8.5033 0.21564 8.4097 0.031076 
rhε , rhεσ  (ft) 0.9263 0.001726 0.10264 0.22467 0.008913 0.000691 
crθ , crσθ  (deg) 0.007353 0.015505 0.005536 0.010951 0.005564 0.010892 

# Bolters 0  4  0  
dX , dXσ  (ft) -   - 65.3239 3.0025 -   - 

dY , dYσ  (ft) -   - 8.841 0.056725 -   - 
# Successful Touchdowns 5  1  5  

dX , dXσ  (ft) 42.8033 1.1756 56.4408 0 6.3516 0.042447 
dY , dYσ  (ft) 1.3469 0.003754 8.74 0 3.4937 0.029595 
h , hσ  (ft) -20.1112 0.02069 -17.6786 0 -11.3115 0.008045 
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Ch , Chσ  (ft) 0.05512 0.059961 -0.025572 0 0.03251 0.053518 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7465 0.001565 1.4642 0.027571 1.0159 0.00342 

ελ rms, εσλ rms (ft) 0.33431 0.000303 1.4495 0.11734 1.1361 0.012149 
uε rms, uεσ rms (kts) 0.40052 0.000355 0.55755 0.012023 0.68711 0.00618 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.2656 0.014496 6.7675 0.45507 7.8851 0.013691 
rhε , rhεσ  (ft) 0.88848 0.001657 -1.6097 0.4496 -0.49203 0.012515 
crθ , crσθ  (deg) -0.00291 0.005003 -0.0029 0.003107 -0.0029 0.003149 

# Bolters 0  1  0  
dX , dXσ  (ft) -   - 67.8612 0 -   - 

dY , dYσ  (ft) -   - 7.3189 0 -   - 
# Successful Touchdowns 5  4  5  

dX , dXσ  (ft) 24.7651 0.11038 42.0625 6.4956 6.1546 0.14824 
dY , dYσ  (ft) 1.224 0.001502 7.6687 0.26476 7.018 0.2525 
h , hσ  (ft) -20.2676 0.001482 -13.9537 0.61091 -10.9896 0.029493 
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Ch , Chσ  (ft) -0.009981 0.021587 -0.017258 0.029595 0.008424 0.026864 

  
Table B-25 Severe Turbulence 3D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Severe Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4398 0.007445 0.83004 0.001967 
ελ rms, εσλ rms (ft) -   - 1.4359 0.013757 1.2846 0.010891 
uε rms, uεσ rms (kts) -   - 0.54317 0.002362 0.59059 0.002709 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.3924 0.006403 -   - -   - 
hε rms, hεσ rms (ft) 1.6749 0.000959 -   - -   - 
ελ rms, εσλ rms (ft) 0.20667 0.003685 -   - -   - 
uε rms, uεσ rms (kts) 0.44407 0.0019 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.5907 0.10572 8.8041 0.058789 
rhε , rhεσ  (ft) -   - 2.169 0.16418 0.38259 0.005283 
crθ , crσθ  (deg) -   - 0.013059 0.022176 0.012979 0.02215 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 27.513 6.2128 6.4372 0.12122 
dY , dYσ  (ft) -   - 8.1264 0.30005 5.1633 0.10629 
h , hσ  (ft) -   - -14.1278 1.3171 -11.6053 0.072834 
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Ch , Chσ  (ft) -   - -0.01869 0.051844 -0.019761 0.035881 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4809 0.029249 0.92735 0.004768 

ελ rms, εσλ rms (ft) -   - 1.4519 0.011864 1.582 0.016803 
uε rms, uεσ rms (kts) -   - 0.56347 0.007933 0.60792 0.00332 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.9125 0.005307 -   - -   - 
hε rms, hεσ rms (ft) 1.6811 0.001923 -   - -   - 

ελ rms, εσλ rms (ft) 0.172 0.00118 -   - -   - 
uε rms, uεσ rms (kts) 0.4316 0.000571 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 8.1841 0.49485 8.4336 0.051806 
rhε , rhεσ  (ft) -   - -0.21204 0.45607 0.037075 0.025089 
crθ , crσθ  (deg) -   - 0.003894 0.017538 0.00405 0.017318 

# Bolters 0  4  0  
dX , dXσ  (ft) -   - 73.4125 1.1803 -   - 

dY , dYσ  (ft) -   - 8.5822 0.25752 -   - 
# Successful Touchdowns 0  1  5  

dX , dXσ  (ft) -   - 32.611 0 7.6969 0.13472 
dY , dYσ  (ft) -   - 8.3652 0 3.1292 0.034786 
h , hσ  (ft) -   - -14.0488 0 -10.6313 0.017617 
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Ch , Chσ  (ft) -   - -0.081385 0 0.05682 0.13361 
# Successful Approaches 5  4  5  
hε rms, hεσ rms  (ft) 2.2233 0.005267 1.5687 0.053046 1.0079 0.023244 

ελ rms, εσλ rms (ft) 0.28153 0.009517 6.1273 1.2769 7.5636 0.19628 
uε rms, uεσ rms (kts) 0.46637 0.000915 0.6228 0.004387 0.61541 0.010123 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  1  0  
tdt , tdtσ (sec) -   - 23.7178 0 -   - 
hε rms, hεσ rms (ft) -   - 0.66845 0 -   - 

ελ rms, εσλ rms (ft) -   - 6.6148 0 -   - 
uε rms, uεσ rms (kts) -   - 0.3025 0 -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.5162 0.048597 8.4605 0.15101 7.4395 0.049601 
rhε , rhεσ  (ft) -0.8559 0.022435 0.073339 0.13977 -0.94732 0.038717 
crθ , crσθ  (deg) -0.00471 0.010211 0.000691 0.011782 0.000557 0.010217 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  4  5  

dX , dXσ  (ft) -65.2116 0.70027 -29.9151 4.4578 -14.3743 0.31907 
dY , dYσ  (ft) 0.10067 0.041727 3.4066 2.6376 1.9858 0.20466 
h , hσ  (ft) -21.8785 0.024216 -10.7727 0.68056 -7.146 0.048247 

C
ar

ri
er

 S
pe

ed
 =

 3
3 

K
no

ts
 

Ch , Chσ  (ft) 0.00383 0.034027 0.02235 0.040343 0.02956 0.04109 

  
Table B-26 Severe Turbulence 3D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Severe Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4321 0.004723 0.8275 0.010077 
ελ rms, εσλ rms (ft) -   - 1.4228 0.06183 1.2419 0.007602 
uε rms, uεσ rms (kts) -   - 0.53213 0.002668 0.59074 0.002275 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.7985 0.005458 -   - -   - 
hε rms, hεσ rms (ft) 2.0932 0.003352 -   - -   - 
ελ rms, εσλ rms (ft) 0.35532 0.023845 -   - -   - 
uε rms, uεσ rms (kts) 0.43781 0.00104 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.1376 1.0934 8.9801 0.18018 
rhε , rhεσ  (ft) -   - 1.6281 0.91151 0.47132 0.037155 
crθ , crσθ  (deg) -   - 0.04449 0.068952 0.044222 0.069 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 21.9741 4.3811 12.534 1.2804 
dY , dYσ  (ft) -   - 6.6085 0.67583 7.6363 0.081734 
h , hσ  (ft) -   - -10.7821 1.6627 -11.0273 0.50662 
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Ch , Chσ  (ft) -   - -0.063812 0.33761 -0.089055 0.26701 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4348 0.011097 0.9522 0.023452 

ελ rms, εσλ rms (ft) -   - 4.2913 0.083329 4.1216 0.080179 
uε rms, uεσ rms (kts) -   - 0.53387 0.01211 0.57761 0.002576 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 7.0403 0.008114 -   - -   - 
hε rms, hεσ rms (ft) 2.4528 0.012731 -   - -   - 

ελ rms, εσλ rms (ft) 0.31584 0.054501 -   - -   - 
uε rms, uεσ rms (kts) 0.46901 0.005736 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 6.9283 0.55089 9.7336 0.12894 
rhε , rhεσ  (ft) -   - -1.3645 0.68031 1.4406 0.22207 
crθ , crσθ  (deg) -   - -0.03309 0.08545 -0.03304 0.085391 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 5.9704 13.0015 16.2611 4.787 
dY , dYσ  (ft) -   - 7.3863 0.45957 8.7006 0.90874 
h , hσ  (ft) -   - -10.7059 2.5363 -14.4594 0.4433 
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Ch , Chσ  (ft) -   - 0.01097 0.56783 0.01869 0.59357 
# Successful Approaches 0  5  3  
hε rms, hεσ rms  (ft) -   - 1.5728 0.056703 1.1075 0.073815 

ελ rms, εσλ rms (ft) -   - 5.7805 1.1688 7.7291 0.081132 
uε rms, uεσ rms (kts) -   - 0.60693 0.005064 0.65767 0.044116 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.6645 0.010244 -   - -   - 
hε rms, hεσ rms (ft) 2.3138 0.003465 -   - -   - 

ελ rms, εσλ rms (ft) 0.42552 0.096943 -   - -   - 
uε rms, uεσ rms (kts) 0.44914 0.001036 -   - -   - 
# Failed Approaches Lat 0  0  2  
tdt , tdtσ (sec) -   - -   - 23.7808 0.12813 
hε rms, hεσ rms (ft) -   - -   - 0.46279 0.001226 

ελ rms, εσλ rms (ft) -   - -   - 6.6958 0.12206 
uε rms, uεσ rms (kts) -   - -   - 0.24098 0.00414 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 9.181 0.23509 8.0132 0.16377 
rhε , rhεσ  (ft) -   - 0.70413 0.11581 -0.50345 0.034386 
crθ , crσθ  (deg) -   - 0.032818 0.054794 0.047044 0.057998 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  3  

dX , dXσ  (ft) -   - -29.0933 1.2472 -18.4705 1.013 
dY , dYσ  (ft) -   - 4.1856 1.3028 3.0859 1.7495 
h , hσ  (ft) -   - -12.1282 0.29961 -8.6801 0.25491 
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Ch , Chσ  (ft) -   - 0.13254 0.17005 0.0642 0.17081 

  
Table B-27 Severe Turbulence 3D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Severe Three Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  0  0  
hε rms, hεσ rms  (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 5  5  5  
tdt , tdtσ (sec) 12.9132 0.071991 6.9221 0.29336 7.3324 0.27889 
hε rms, hεσ rms (ft) 3.7328 0.003964 2.0806 0.17706 1.5725 0.11607 
ελ rms, εσλ rms (ft) 2.6053 0.006966 2.5626 0.16892 3.1065 0.70725 
uε rms, uεσ rms (kts) 0.66632 0.017298 0.59793 0.028908 0.71548 0.011001 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - -   - -   - 
rhε , rhεσ  (ft) -   - -   - -   - 
crθ , crσθ  (deg) -   - -   - -   - 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  0  0  

dX , dXσ  (ft) -   - -   - -   - 
dY , dYσ  (ft) -   - -   - -   - 
h , hσ  (ft) -   - -   - -   - 
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Ch , Chσ  (ft) -   - -   - -  - 
# Successful Approaches 0  1  0  
hε rms, hεσ rms  (ft) -   - 2.2308 0 -   - 

ελ rms, εσλ rms (ft) -   - 4.4194 0 -   - 
uε rms, uεσ rms (kts) -   - 0.62602 0 -   - 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 5  4  5  
tdt , tdtσ (sec) 13.0678 0.11172 7.0195 0.22352 7.5712 0.17578 
hε rms, hεσ rms (ft) 3.7787 0.008635 1.9351 0.10738 1.7784 0.4635 

ελ rms, εσλ rms (ft) 2.6352 0.031912 3.0731 0.65002 2.9965 0.55411 
uε rms, uεσ rms (kts) 0.70834 0.016119 0.58537 0.031248 0.76709 0.11161 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.4082 0 -   - 
rhε , rhεσ  (ft) -   - 1.6809 0 -   - 
crθ , crσθ  (deg) -   - 0.12248 0 -   - 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  1  0  

dX , dXσ  (ft) -   - 4.6965 0 -   - 
dY , dYσ  (ft) -   - -1.0653 0 -   - 
h , hσ  (ft) -   - -7.2475 0 -   - 
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Ch , Chσ  (ft) -   - 1.2733 0 -   - 
# Successful Approaches 0  3  5  
hε rms, hεσ rms  (ft) -   - 5.2302 1.6148 2.9719 0.42417 

ελ rms, εσλ rms (ft) -   - 5.481 0.94179 3.5966 0.82746 
uε rms, uεσ rms (kts) -   - 0.85157 0.061454 0.94676 0.090705 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 5  2  0  
tdt , tdtσ (sec) 10.8122 0.029963 12.7035 7.2034 -   - 
hε rms, hεσ rms (ft) 2.5936 0.025914 3.7281 0.028903 -   - 

ελ rms, εσλ rms (ft) 1.1308 0.069127 3.1111 0.29748 -   - 
uε rms, uεσ rms (kts) 0.35769 0.032646 0.7634 0.05307 -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 11.7072 0.93344 11.1303 0.91769 
rhε , rhεσ  (ft) -   - 2.9242 0.14682 2.757 0.77455 
crθ , crσθ  (deg) -   - 0.14243 0.28601 -0.00426 0.3125 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) -   - -7.5676 7.2499 6.081 10.8936 
dY , dYσ  (ft) -   - 12.7818 12.429 3.1534 4.582 
h , hσ  (ft) -   - -11.8266 0.87027 -13.7989 2.2766 
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Ch , Chσ  (ft) -   - 0.36137 0.95696 -0.37574 1.2965 

  
Table B-28 Severe Turbulence 3D and Carrier Induced Turbulence – Wind 37 Knots 
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 Wind Speed = 2 Knots 
Severe Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7695 0.000647 1.4197 0.004313 0.86231 0.000479 
ελ rms, εσλ rms (ft) 0.000135 2.65E-06 0.000242 4.53E-05 0.000267 1.31E-05 
uε rms, uεσ rms (kts) 0.40995 0.000182 0.56004 0.001783 0.59325 0.00173 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 11.3721 0.036452 9.1096 0.27483 9.1241 0.033 
rhε , rhεσ  (ft) 3.0111 0.000686 0.74872 0.25472 0.76326 0.003458 
crθ , crσθ  (deg) -0.00867 0.013037 -0.00872 0.011095 -0.00874 0.011075 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 29.2925 1.2643 12.8167 2.3264 9.7065 0.024105 
dY , dYσ  (ft) 0.10101 0.02981 0.030914 0.010021 0.004071 0.001692 
h , hσ  (ft) -20.6219 0.017342 -9.6301 0.33898 -11.6262 0.010882 
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Ch , Chσ  (ft) -0.021177 0.087265 -0.033885 0.036616 -0.03998 0.045575 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.7732 0.00061 1.4965 0.013482 0.90365 0.00096 

ελ rms, εσλ rms (ft) 0.000156 2.76E-06 0.000443 0.000149 0.000183 1.93E-05 
uε rms, uεσ rms (kts) 0.40655 0.000345 0.5547 0.00044 0.6046 0.001026 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.7337 0.04443 8.7256 0.21413 8.4714 0.030361 
rhε , rhεσ  (ft) 1.328 0.001657 0.325 0.21478 0.070824 0.004005 
crθ , crσθ  (deg) 0.00732 0.015514 0.005508 0.01101 0.005508 0.01101 

# Bolters 0  4  0  
dX , dXσ  (ft) -   - 65.8897 2.117 -   - 

dY , dYσ  (ft) -   - 0.11878 0.066859 -   - 
# Successful Touchdowns 5  1  5  

dX , dXσ  (ft) 44.6747 0.009012 48.7605 0 17.0451 1.1701 
dY , dYσ  (ft) -0.02406 0.013557 0.013769 0 -0.01321 0.065118 
h , hσ  (ft) -20.4617 0.002197 -17.1335 0 -13.0176 0.078024 
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Ch , Chσ  (ft) 0.05489 0.0608 0.03432 0 -.03496 0.05373 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 1.8002 0.000294 1.4479 0.015116 0.99353 0.00567 

ελ rms, εσλ rms (ft) 0.00013 8.27E-07 0.000271 3.32E-05 0.000206 1.63E-05 
uε rms, uεσ rms (kts) 0.40979 0.00019 0.55673 0.009143 0.68011 0.00511 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 9.6554 0.011626 8.0512 0.50362 8.2405 0.011145 
rhε , rhεσ  (ft) 1.2783 0.00238 -0.32599 0.50695 -0.13667 0.004119 
crθ , crσθ  (deg) -0.00291 0.005005 -0.0029 0.003177 -0.00289 0.003191 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) 25.4762 0.011859 19.7994 9.0646 12.925 0.36689 
dY , dYσ  (ft) 0.069144 0.006052 0.026625 0.050475 0.01647 0.0181 
h , hσ  (ft) -20.5265 0.003427 -12.177 1.2619 -11.2606 0.025945 
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Ch , Chσ  (ft) -0.010112 0.023159 -0.008286 0.029385 -0.007689 0.02754 

  
Table B-29 Severe Turbulence 2D and Carrier Induced Turbulence – Wind 2 Knots 
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 Wind Speed = 13.5 Knots 
Severe Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4473 0.005962 0.83946 0.000952 
ελ rms, εσλ rms (ft) -   - 0.003108 0.000113 0.002408 3.91E-05 
uε rms, uεσ rms (kts) -   - 0.54123 0.002131 0.59376 0.003393 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.3829 0.006324 -   - -   - 
hε rms, hεσ rms (ft) 1.7539 0.001123 -   - -   - 
ελ rms, εσλ rms (ft) 0.003721 8.98E-05 -   - -   - 
uε rms, uεσ rms (kts) 0.45281 0.001338 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.0738 0.37789 9.1904 0.060877 
rhε , rhεσ  (ft) -   - 1.6519 0.42985 0.76845 0.004522 
crθ , crσθ  (deg) -   - 0.013139 0.022201 0.013139 0.022201 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 15.5047 2.3189 15.5474 0.15851 
dY , dYσ  (ft) -   - 0.05354 0.014635 -0.02301 0.006845 
h , hσ  (ft) -   - -10.2339 0.19085 -13.212 0.061564 
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Ch , Chσ  (ft) -   - -0.027054 0.048913 -0.022168 0.053049 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4863 0.029025 0.93681 0.004337 

ελ rms, εσλ rms (ft) -   - 0.00374 0.000292 0.002616 0.00022 
uε rms, uεσ rms (kts) -   - 0.56253 0.007199 0.61048 0.004383 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 6.9011 0.006246 -   - -   - 
hε rms, hεσ rms (ft) 1.76 0.001823 -   - -   - 

ελ rms, εσλ rms (ft) 0.008487 0.000329 -   - -   - 
uε rms, uεσ rms (kts) 0.44092 0.000728 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 8.9286 0.69601 8.5982 0.059492 
rhε , rhεσ  (ft) -   - 0.53261 0.65386 0.20221 0.022686 
crθ , crσθ  (deg) -   - 0.003858 0.017604 0.003853 0.017463 

# Bolters 0  2  0  
dX , dXσ  (ft) -   - 70.6807 2.2493 -   - 

dY , dYσ  (ft) -   - -0.17582 0.016614 -   - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) -   - 40.4921 12.5542 18.884 0.96098 
dY , dYσ  (ft) -   - -0.09248 0.049684 -0.04609 0.019535 
h , hσ  (ft) -   - -14.404 2.2692 -11.4315 0.04728 
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Ch , Chσ  (ft) -   - -0.027869 0.057038 0.06528 0.14895 
# Successful Approaches 5  5  5  
hε rms, hεσ rms  (ft) 2.2838 0.002481 1.6017 0.066628 0.98461 0.011836 

ελ rms, εσλ rms (ft) 0.002587 0.000161 0.002711 0.000194 0.003267 0.000154 
uε rms, uεσ rms (kts) 0.4738 0.000529 0.61412 0.006353 0.57631 0.004883 
# Failed Approaches Vert 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) 7.6014 0.033216 8.2854 0.021815 7.6264 0.039284 
rhε , rhεσ  (ft) -0.77064 0.008174 -0.10184 0.014578 -0.76023 0.013474 
crθ , crσθ  (deg) -0.00472 0.010208 0.000703 0.010221 0.000495 0.010261 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 5  5  5  

dX , dXσ  (ft) -65.7448 0.58705 -29.5199 0.74079 -11.6388 0.73921 
dY , dYσ  (ft) -0.05262 0.050731 -0.02762 0.039332 -0.02595 0.007347 
h , hσ  (ft) -22.1557 0.015261 -9.8064 0.16039 -6.6947 0.054359 
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Ch , Chσ  (ft) 0.00358 0.032787 0.03087 0.041065 0.03421 0.048771 

  
Table B-30 Severe Turbulence 2D and Carrier Induced Turbulence – Wind 13.5 Knots 
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 Wind Speed = 24.5 Knots 
Severe Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4648 0.017657 0.84416 0.009436 
ελ rms, εσλ rms (ft) -   - 0.004168 0.000149 0.003828 0.000188 
uε rms, uεσ rms (kts) -   - 0.53408 0.004674 0.59298 0.003771 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.8644 0.005817 -   - -   - 
hε rms, hεσ rms (ft) 2.1936 0.00612 -   - -   - 
ελ rms, εσλ rms (ft) 0.05164 0.006287 -   - -   - 
uε rms, uεσ rms (kts) 0.43854 0.001071 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 10.5087 0.51441 9.3199 0.18108 
rhε , rhεσ  (ft) -   - 1.9983 0.32305 0.8106 0.04603 
crθ , crσθ  (deg) -   - 0.044815 0.068985 0.044434 0.069037 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - 23.2159 5.6033 22.5882 1.3808 
dY , dYσ  (ft) -   - 0.10643 0.076802 0.13845 0.065327 
h , hσ  (ft) -   - -10.429 1.9378 -13.0391 0.36473 
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Ch , Chσ  (ft) -   - -0.062745 0.29903 -0.091653 0.3061 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.4091 0.022008 0.94129 0.025824 

ελ rms, εσλ rms (ft) -   - 0.006551 0.001035 0.004306 0.000321 
uε rms, uεσ rms (kts) -   - 0.51676 0.008661 0.55245 0.004074 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 7.0919 0.004732 -   - -   - 
hε rms, hεσ rms (ft) 2.5195 0.01318 -   - -   - 

ελ rms, εσλ rms (ft) 0.043587 0.012992 -   - -   - 
uε rms, uεσ rms (kts) 0.47358 0.00473 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 6.8524 0.55731 9.5948 0.14733 
rhε , rhεσ  (ft) -   - -1.4409 0.7001 1.3026 0.21029 
crθ , crσθ  (deg) -   - -0.03293 0.085218 -0.03331 0.084755 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - -4.5159 10.3618 -0.37963 4.052 
dY , dYσ  (ft) -   - 0.072425 0.024347 0.04279 0.025549 
h , hσ  (ft) -   - -10.9494 2.0265 -14.0163 0.096672 
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Ch , Chσ  (ft) -   - 0.03852 0.52576 0.01651 0.56512 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.6114 0.047239 1.0639 0.063339 

ελ rms, εσλ rms (ft) -   - 0.009806 0.003 0.01114 0.002268 
uε rms, uεσ rms (kts) -   - 0.59761 0.009678 0.60945 0.031947 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 8.7528 0.008923 -   - -   - 
hε rms, hεσ rms (ft) 2.4647 0.003802 -   - -   - 

ελ rms, εσλ rms (ft) 0.035709 0.02002 -   - -   - 
uε rms, uεσ rms (kts) 0.45469 0.000831 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 9.0391 0.22949 8.0219 0.10734 
rhε , rhεσ  (ft) -   - 0.56273 0.12511 -0.45204 0.11772 
crθ , crσθ  (deg) -   - 0.03263 0.055093 0.031777 0.056169 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  5  5  

dX , dXσ  (ft) -   - -32.5634 1.6419 -17.5908 0.68359 
dY , dYσ  (ft) -   - 0.089464 0.066068 -0.03914 0.07629 
h , hσ  (ft) -   - -12.1186 0.40346 -8.0392 0.27836 
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Ch , Chσ  (ft) -   - 0.13574 0.17038 0.13771 0.16539 

  
Table B-31 Severe Turbulence 2D and Carrier Induced Turbulence – Wind 24.5 Knots 
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 Wind Speed = 37 Knots 
Severe Two Dimensional Turbulence and Carrier Induced Turbulence 

 System 1 System 2 System 3 
# Successful Approaches 0  5  5  
hε rms, hεσ rms  (ft) -   - 1.5794 0.027938 1.0335 0.029613 
ελ rms, εσλ rms (ft) -   - 0.007694 0.002668 0.007537 0.001256 
uε rms, uεσ rms (kts) -   - 0.54667 0.030161 0.60958 0.008464 
# Failed Approaches Vert 5  0  0  
tdt , tdtσ (sec) 9.3798 5.9505 -   - -   - 
hε rms, hεσ rms (ft) 3.6983 0.28403 -   - -   - 
ελ rms, εσλ rms (ft) 0.081177 0.066278 -   - -   - 
uε rms, uεσ rms (kts) 0.35448 0.041865 -   - -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 
ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 6.3987 0.93279 8.6287 0.23038 
rhε , rhεσ  (ft) -   - -1.4705 0.63339 0.75925 0.39917 
crθ , crσθ  (deg) -   - -0.1848 0.12544 -0.18471 0.12551 

# Bolters 0  3  0  
dX , dXσ  (ft) -   - 105.8593 50.0656 -   - 

dY , dYσ  (ft) -   - -2.006 1.9946 -   - 
# Successful Touchdowns 0  2  5  

dX , dXσ  (ft) -   - 52.1065 4.5682 10.7715 1.9485 
dY , dYσ  (ft) -   - -0.36966 0.009008 -0.13564 0.14007 
h , hσ  (ft) -   - -9.0983 2.889 -6.8634 0.12376 
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Ch , Chσ  (ft) -   - -0.43788 0.31836 -0.078391 0.76975 
# Successful Approaches 0  3  5  
hε rms, hεσ rms  (ft) -   - 1.5141 0.11677 0.99761 0.033346 

ελ rms, εσλ rms (ft) -   - 0.013288 0.001881 0.008679 0.004146 
uε rms, uεσ rms (kts) -   - 0.56369 0.040642 0.57508 0.013705 
# Failed Approaches Vert 5  2  0  
tdt , tdtσ (sec) 7.0197 0.029028 8.2747 0.15726 -   - 
hε rms, hεσ rms (ft) 3.8979 0.042344 1.3779 0.042282 -   - 

ελ rms, εσλ rms (ft) 0.082066 0.041047 0.008119 0.002138 -   - 
uε rms, uεσ rms (kts) 0.37243 0.004108 0.52839 0.011879 -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 7.5174 0.99556 10.0082 1.1041 
rhε , rhεσ  (ft) -   - -1.2716 0.35178 1.3251 0.48362 
crθ , crσθ  (deg) -   - 0.14455 0.24043 0.10668 0.24257 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) -   - -2.9884 6.7467 6.9643 7.9152 
dY , dYσ  (ft) -   - 0.008445 0.1159 -0.14849 0.14315 
h , hσ  (ft) -   - -9.4401 1.8281 -13.0983 1.0812 
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Ch , Chσ  (ft) -   - 0.23577 0.52485 0.35528 0.66922 
# Successful Approaches 0  3  5  
hε rms, hεσ rms  (ft) -   - 1.6778 0.14334 1.1635 0.13067 

ελ rms, εσλ rms (ft) -   - 0.061327 0.02565 0.067916 0.035222 
uε rms, uεσ rms (kts) -   - 0.87229 0.013792 0.83694 0.017262 
# Failed Approaches Vert 5  2  0  
tdt , tdtσ (sec) 18.5238 0.15814 9.0416 0.55402 -   - 
hε rms, hεσ rms (ft) 3.0219 0.030594 1.6486 0.12066 -   - 

ελ rms, εσλ rms (ft) 0.043537 0.012731 0.005435 0.002019 -   - 
uε rms, uεσ rms (kts) 0.33133 0.041371 0.72939 0.005119 -   - 
# Failed Approaches Lat 0  0  0  
tdt , tdtσ (sec) -   - -   - -   - 
hε rms, hεσ rms (ft) -   - -   - -   - 

ελ rms, εσλ rms (ft) -   - -   - -   - 
uε rms, uεσ rms (kts) -   - -   - -   - 
# Ramp Strikes 0  0  0  
rh , rhσ  (ft) -   - 11.4239 1.1993 9.9274 0.63839 
rhε , rhεσ  (ft) -   - 2.9775 0.50061 1.6482 0.17491 
crθ , crσθ  (deg) -   - 0.021889 0.25019 -0.03798 0.18772 

# Bolters 0  0  0  
dX , dXσ  (ft) -   - -   - -   - 

dY , dYσ  (ft) -   - -   - -   - 
# Successful Touchdowns 0  3  5  

dX , dXσ  (ft) -   - 13.3203 3.6109 4.5349 20.0613 
dY , dYσ  (ft) -   - 0.37966 0.52377 0.31943 0.55029 
h , hσ  (ft) -   - -8.9011 0.44596 -8.4915 1.6583 

C
ar

ri
er

 S
pe

ed
 =

 3
3 

K
no

ts
 

Ch , Chσ  (ft) -   - 0.08378 1.2161 -0.31257 1.0459 

  
Table B-32 Severe Turbulence 2D and Carrier Induced Turbulence – Wind 37 Knots 




