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Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal
amplitude probability density functions are disclosed. The method relies on initially transforming a
white noise sample set of random Gaussian distributed numbers into a corresponding set with the de-
sired spectral distribution, after which this colored Gaussian probability distribution is transformed via
an inverse transform into the desired probability distribution. In most cases the method provides satis-
factory results and can thus be considered an engineering approach. Several illustrative examples with
relevance for optics are given. © 2012 Optical Society of America
OCIS codes: 030.1640, 120.7250, 030.1670, 030.6140, 030.6600.

1. Introduction

Optical sensing has been of uttermost importance
for centuries and will gain increasingly more impor-
tance as the development of new optical sources
with improved performance appear, combined with
increased calculating power for signal analysis. As
the interaction between target and electromagnetic
field usually involves objects that can be described
in only statistical terms, the outcome of the interac-
tion itself will have to be described in the same
terms. Thus, the statistics involved in the light/object
interaction has to be understood in order to arrive at
relevant parameters for the experiment. Likewise,
the optimization of the measurement system will
rely to a large extent on the proper understanding
of the entire process. Needless to say, the full-scale
setup can hardly be established before the perfor-
mance has been contemplated, calling for simulation
of the light/matter interaction. Therefore, fast and

yet reliable simulation of this interaction is of crucial
importance and is the subject of this study.

Various fields within optics call for such simula-
tions, here focusing on simulation of 2D distribu-
tions, usually related to space variables. Within
remote sensing, the phase disturbance between the
receiver and the transmitter will due to phase distur-
bances in the path introduce intensity fluctuations,
the statistical properties of which have to be under-
stood in order to optimally retrieve the information.
Thus, a 2D simulation of this phase perturbation
scenario based on its power spectral density (PSD)
and probability density function (PDF) is crucial [1].
Within microscopy, increased interest in light scat-
tering from tissue in order to predict anomalies
has appeared [2]. As biological tissue can best be
described in statistical terms, the scattering para-
meters may reveal important changes within the
tissue itself [3]. Recently, scattering of polarized light
from biological tissue has shown promise for extract-
ing new parameters, likewise calling for simulations
[4]. Within sensing of dynamical properties of solid
surfaces, knowledge about the scattering structure
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becomes of importance, especially when the surface
roughness does not exceed the optical wavelength,
and/or the correlation length of the scattering struc-
ture becomes comparable with the illumination spot.
Furthermore, the importance of a simulation in-
creases when the PDF or the PSD depend on the di-
rection, i.e., the structure is not isotropic. In case the
surface roughness exceeds the wavelength and the
illuminated area contains many correlation cells of
the surface, the statistical parameters tend toward
a Gaussian PDF, in which case the analysis is
strongly simplified and thus has extensively been
the subject of investigation. The statistical proper-
ties governing measurement of surface translation
have previously been examined [5]. Of great impor-
tance here are situations where the signal consists of
a sum of independent speckle contributions, in which
case the statistical properties of the signal will have
to be dealt with in details. An established method for
measuring speckle displacement and thus surface
movements is based on spatial filtering [6]. Here the
spatial properties of the spatial distribution of the
scattered intensity is important and strongly relies
on the surface characteristics of the object. Statistics
for glints from the ocean surface is a special applica-
tion where knowledge about the scattering surface is
imperative [7]. The distribution and strengths of the
2D distribution of reflective slopes here is responsi-
ble for the mean number of glints and the associated
strength distribution for the glints. Unfortunately,
the models for the surface statistics do not easily lead
to analytical solutions, so one has to resort to simu-
lations. Lately the issue of singularities in electro-
magnetic fields has become of increased interest
due to the possibility of very precise localization of
their position, which facilitates increased accuracy
in determining speckle displacement and thus the
dynamics of an object [8]. Here, as well, the need
for simulation of the statistics of the structure be-
comes important. Finally, the distinction between
scattering off stochastic surfaces having random
and fractal characteristics has gained renewed inter-
est due to the possibility of telling the difference be-
tween healthy and malignant tissue [9].

A method for simulation of homogeneous non-
Gaussian stochastic vector fields has been published
[10]. A random white Gaussian field is used as the
seed, subsequently shaped into the desired PSD
using an FFT algorithm. Finally, the derived repre-
sentation is nonlinearly shaped in order to obtain the
PDF. This calls for a series of iterative steps in order
to arrive at reasonable results.

Methods for simulating 1D signals with a given
PDF and PSD have previously been presented, start-
ing with a Gaussian sample field followed by spectral
shaping and then mapping this into a non-Gaussian
PDF with a nonlinear and iterative process [11]. The
iterative steps are here needed in order to arrive at a
satisfactory result. A method specially developed in
order to cope with PDFs where the inverse cumula-
tive distribution function (CDF) is unavailable but

reliance on digital simulation of the inversion pro-
cess has been devised [12]. An alternative procedure
has been developed, on the basis of the Markov
theory, in which matching of the spectral density is
accomplished by adjusting the drift coefficient alone,
which is then followed by adjusting the diffusion
coefficient to match the probability density [13].

Working with 2D signals, the amount of data
needed for arriving at relevant results is usually
large. Therefore, one may take advantage of symbolic
programs likeMathematica andMatLab, which have
analytical inversions of most CDFs, including some
that were not available in [11]. Therefore, the pre-
sent method will provide faster and usually suffi-
ciently accurate results for random samples with
given PSD and PDF. The method presented here for
2D signals with physically realizable PSDs is based
on a previously presented method for 1D signals and
will not require any iterations in order to arrive at
results for engineering purposes [14]. Although this
method does not conserve the PSD exactly, it yields
highly accurate numerical results for a wide range of
probability distributions and target PSDs that are
sufficient for system simulation purposes. Thus by
using modern fast computers one can even in 2D
obtain fast and reliable results with this method.
Apparently, this mapping technique is not well
known to the optics community and it is our intent to
indicate its usefulness and viability as a simulation
tool for a wide range of practical applications. In any
case, if more accurate results are desired, one can im-
plement the iterative process outlined in [10] by
properly expanding the method to encompass 2D sig-
nals. An iterative approach has been introduced [15]
in which the Fourier transformmethod is used to cre-
ate a Gaussian random process with the desired
PSD, after which a memoryless nonlinear transfor-
mation is used to derive the PDF. The reason for this
method and not the inverse CDF method is, accord-
ing to the authors, that the CDF in many cases is not
analytically convertible, as required. But by using
built-in functions in analytical programs such as
Mathematica and MatLab, one can benefit from the
curve-fitting programs and thus achieve excellent
results.

The straightforward noniterative inverse CDF
method, as implemented here, is based on generating
a white noise (noncolored) sample of a Gaussian
distribution, which is easily obtained from many
computer programs (e.g., Mathematica, Matlab, even
Excel). In this paper and in [14] we consider only real
stationary processes that are characterized by hav-
ing autocorrelation functions with the property that
their first and second derivatives evaluated at zero
time and/or lag equals zero and is negative, respec-
tively [16]. In particular, exponential decaying and
exponential decaying cosine autocorrelation func-
tions are not considered because their first and sec-
ond derivatives evaluated at the origin are −1 and 1,
respectively, and thus cannot be representative of
real physical processes.
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It is evident that it is impossible to check the
accuracy of the resulting simulations for all possible
PDFs and PSDs, and the interested user of this tech-
nique should use the method described here to see if
this method is viable for any given case of interest. In
this regard we note for an arbitrary PDF we pre-
sented in Appendix B of [14] a general rule of thumb
to obtain the parameter range where a single (i.e.,
noniterative) application of the inverse CDF method
yields satisfactory results. The same procedure can
be employed for the 2D situation presented here.
Outside this parameter range of applicability, the
agreement between the simulated and target PSD
degrades but does not significantly distort in shape.
In any case, a slight discrepancy between the desired
and the obtained simulation has to be weighed
against the validity of the physical assumptions lead-
ing to the model.

In Section 2, we describe the method for creating a
sample of a signal with a desired PDF and PSD, fol-
lowed by a treatment and discussion for a series
of examples, relevant within optics. These examples
include the gamma distribution, the log-normal
distribution, and the Rice–Nakagami distribution,
relevant for treating integrated speckles, light propa-
gation through optical turbulence, and speckles
superimposed with a reference wave, respectively.
Concluding remarks are given in Section 3.

2. Two-Dimensional Simulations of a Stochastic
Process

In this section we extend the analysis in [14] and
present a method by which 2D spatial spectrally
colored non-Gaussian homogeneous stochastic fields
can be generated, consistent with an arbitrary spa-
tial PSD. Although for clarity of presentation we
specialize to 2D fields (e.g., speckle intensity field
distribution in an observation plane), the extension
of the method presented here to three or more di-
mensions is straightforward. Consider an arbitrary
stationary stochastic 2D random field Z�x; y� charac-
terized at each point in the fx; yg plane by a given
PDF pZ�z� [or equivalently by the corresponding CDF
FZ�z�]. As discussed and explicitly demonstrated in
[14], for a single application of the inverse CDF
transform method one obtains very good agreement
for both the simulated samples of non-Gaussian
probability distributions and the given PSD, as is
the case for all the examples considered here.

In what follows, we denote random fields by upper-
case letters and the values they assume at each point
by lowercase letters, and pZ and FZ are referred to as
the “target PDF” and “target CDF,” respectively.
Following the development in [14], we assume that
a procedure is available for generating independent
white noise samples of a random field Z1�x; y� (e.g., a
Gaussian random field). Then the random variable
at each point fx; yg

Z0 � F−1
Z �FZ1

�z1�� (1)

where F−1
Z is the inverse target CDF, has the distri-

bution FZ. Therefore, target distribution samples of
Z can be generated from Z1 transformed according to
Eq. (1). In the following, for brevity in notation, we
omit the subscripts on the distribution under consid-
eration. As discussed in [1], the major advantage of
this type of Monte Carlo simulation is that accurate
results can be readily obtained in a timely manner
for any random variable whose distribution function
is known either analytically or numerically.

Here, as in [14], we use, via a single application of
Eq. (1), a zero mean, unit variance colored (with a gi-
venPSD)Gaussian distribution as a “seed” to obtain a
large number of independent samples of a given tar-
get distribution. For a large number of samples, this
Gaussian seed produces corresponding sample values
that have arbitrary means and variances, as impli-
citly contained in the inverse of the target CDF, with
a corresponding (spatial) power spectrum that is a sa-
tisfactory approximation between the simulated and
target PSDs that are sufficient for system simulation
purposes. Thus, thismethod can be regarded as an ac-
curate engineering approximation, which can be used
for awide range of practical applications. Herewe use
the Fourier transform spectral representation meth-
od applied for simulation purposes by Yamazaki and
Shinozuka [17] and Shinozuka and Deodatis [18]. In
thismethod, asusedhere, a discrete 2DFourier trans-
form of N ×N independent zero mean, unit variance
Gaussian distributed spatial sample values is pre-
formed. Denote the spatial sample length in both
the x and y coordinate by L and the corresponding
sample spacing by lS, respectively, where L � NlS.
These white noise samples are then “colored” in the
Fourier domain by multiplying each of the i-j-th spa-
tial wavenumber components by

������������������������������������
2S�Kxi;Kyj�ΔK

p
,

where S is the PSD of interest, Kxi and Kyjare the
ith and jth spatial wavenumbers in the x and y direc-
tions, respectively, ΔK � KU∕N ×N, and KU repre-
sents an upper cutoff wavenumber beyond which
the PSDmay be assumed to be zero for either physical
or mathematical reasons. Although the technique
used here to obtain “colored” stochastic field samples
is applicable to non-isotropic spatial power spectra
(i.e., physical situations where the spatial field corre-
lation depends on direction), we assume for simplicity
that isotropic conditions are applicable, as they
are for many physical situations (e.g., stellar scintil-
lation, laser induced speckle). Consequently, here we

assume that the PSD is a function of
��������������������
K2

x �K2
y

q
[19].

As an aid to the reader in making this article self-
contained we explicitly present the various PDFs
and PSDs illustrated here that were also used in [1].

As an example of the utility of the present method,
we consider, as in [14], the continuous beta distribu-
tion with shape parameters α and β, whose mean and
variance are given byα∕�α� β� and αβ∕��α� β�2
�1� α� β��, respectively. The CDF and correspond-
ing inverse CDF of the beta distribution are given
by [20]
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F�z� � BetaRegularized�z; α; β�; for 0 ≤ z ≤ 1; (2)

F−1�z� � InverseBetaRegularized�z; α; β�;
for 0 ≤ z ≤ 1.

(3)

A beta distribution with shape parameter α � 4, β �
2 is chosen here in order to consider a skewed distri-
bution, and following Yamazaki and Shinozuka [17]
we choose a Gaussian shaped target PSD of the form

S�K� � σ2l2C
4π exp�−�K2

x � K2
y�l2C∕4�; (4)

where σ2 is the variance and lC is a measure of the
spatial correlation length of the underlying process.
Here and in what follows it is implicitly understood
that the variance of the target distribution is identi-
cal to the variance obtained by integrating the PSD
over all spatial wavenumbers. In Fig. 1 the beta sto-
chastic field is shown as generated for the Gaussian
shaped PSD with the number of data points equal to
104 (N � 100) and lC � 10lS.

As another illustrative example, we apply the non-
iterative inverse CDF method to an example of a
PDF and PSD regarding ocean wave surface heights,
where the empirical model PDF is given by [21]

p�z� � 2ϕ2�κ�z
�1 − κz�3 exp

�
−ϕ2�κ�

�
z

1 − κz

�
2
�
;

for 0 ≤ z < 1∕κ;
(5)

where z � H∕Hrms is the normalized wave height, H
is the wave height, Hrms is the root mean square
wave height, 0 ≤ κ ≤ 1 is a dimensionless parameter
that controls the shape of the wave height distribu-
tion [for κ � 0 Eq. (5) is the Rayleigh distribution,
and for κ → 1 it becomes the Dirac Delta distribu-
tion], and ϕ�κ� � �1 − κ0.944�1.187. The corresponding
CDF and inverse CDF are given by

F�z� � 1 − exp
�
−ϕ2�κ�

�
z

1 − κz

�
2
�
; for 0 ≤ z < 1∕κ;

(6)

F−1�z� � ϕ�κ�
�������������������������
− log�1 − z�

p
� κ log�1 − z�

ϕ2�κ� � κ2 log�1 − z� ;

for 0 ≤ z ≤ 1.

(7)

The authors of [21] used a shape parameter κ � 0.5
and the Pierson Moskowitz PSD given by

SPM�K� � 4σ2
K5

N

exp�−K−4
N �; (8)

where KN � lC
��������������������
K2

x �K2
y

q
is the normalized spatial

wavenumber, lC is a measure of the spatial correla-
tion length, and σ2 is the variance of the process.
Figure 2 shows an example of a resulting spatial field
distribution section consisting of 104 sample points,
and lC � 10lS.

We next present illustrative examples based on the
noniterative inverse CDF method of stochastic field
distributions primarily of interest to the optics com-
munity. As indicated above, in what follows, it is im-
plicitly understood that the variance corresponding
to the target PDF is identical to the variance ob-
tained by integrating the PSD over all wavenumbers.

A. Gamma Distribution

The gamma distribution has been used extensively in
the literature to model the PDF of integrated speckle
either from spatial or time averaging [22,23]. The
CDF and corresponding inverse CDF are given by

F�z� � 1 −
Γ�m;mz�
Γ�m� ; for z ≥ 0; (9)

F−1�z� � Q−1�m; 0; z�; for 0 ≤ z ≤ 1; (10)

Fig. 1. (Color online) The beta stochastic field generated for the
Gaussian shaped PSD with the number of data points equal to 104

(N � 100), and lC � 10lS.

Fig. 2. (Color online) Ocean height field for a Pierson–Moskowitz
PSD with an empirical model, Eq. (5), for the PDF, here for a
resulting spatial field distribution section consisting of 104 sample
points, and lC � 10lS.
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where for simplicity in notation we have normalized
the (intensity) level, z, to its mean; Q−1�m; 0; z� is the
inverse gamma regularized function; and Γ�m;mz� is
the incomplete gamma function [20]. The parameter
m can be physically interpreted as the mean number
of speckles contained within a collecting aperture
[23]. Two correlation functions commonly appearing
in measurements related to speckle phenomena are
the Gaussian, given by Eq. (4), used in speckle corre-
lation [5], and that obtained from laser reflection off of
a rough circular surface of diameter D given by [22]

S�υ��(�
2

��
2

p
λR

πD

�
2
�
cos−1�υlC�− υlC

���������������������
1− �υlC�2

p �
; for 0 ≤ υlC ≤ 1

0 otherwise
;

(11)

where υ �
����������������
υ2x � υ2y

q
is the corresponding spatial fre-

quency; lC � λR∕πD is a measure of the speckle size;
λ is the optical wavelength; and R is the distance be-
tween the circular diffuse surface and the observation
plane. Figures 3(a) and 3(b) show an example of a re-
sulting fully developed speckle (m � 1) spatial inten-
sity field distribution section consisting of a section
200 × 200 sample points, and lC � 10lS for the
Gaussian and circular aperture PSD, respectively.
Examination of these figures reveals that both PSDs
produce qualitatively similar distributions, with the
ratios of maximum/minimum values of 50.2 and
53.1 dB, respectively. To illustrate the effects of inte-
grated speckle we plot in Fig. 4 the intensity field dis-
tribution for the PSD resulting from a Gaussian
aperture and m � 7.5. The corresponding sample
mean, variance, and ratio of maximum/minimum
values are 1.04, 0.124, and 10.1 dB, respectively.

B. Log-Normal Distribution

The log-normal distribution for the irradiance distri-
bution is applicable for laser propagation through
the atmosphere under weak scintillation conditions
[24]. As an illustrative example we consider the
optical irradiance statistics associated with ground-
based stellar observations at modest elevation

angles. Under conditions where the log-intensity
variance σ2ln I ≪ 1, the log-normal CDF, and the cor-
responding inverse CDF can be expressed as

F�z� � 1
2

�
1� erf

�
log z� σ2ln I∕2���

2
p

σln I

��
; for z ≥ 0; (12)

F−1�z� � exp�zσln I − σ2ln I∕2�; for 0 ≤ z ≤ 1; (13)

where z denotes the irradiance level normalized to its
mean value. For weak scintillation conditions,
Tatarskii has shown that the spatial log-intensity
correlation coefficient and corresponding PSD are
given by [25]

S�K� � 2.577
ω8∕3

�
1 −

8Γ�17∕6�
11Γ�7∕3�K2 Im�eiω2

U�K��
�
; (14)

where

U�K� � π
sin�πb�

�
1F1�a; b;−iK2�
Γ�b�Γ�a − b� 1�

−
�−iK2�1−b1F1�a − b� 1; 2 − b;−iK2�

Γ�a�Γ�2 − b�

�
: (15)

“Im” denotes the imaginary part, a � 1∕2, b � −4∕3
and 1F1�·� is the Kummer confluent hypergeometric

Fig. 3. (Color online) Example of a resulting fully developed speckle (m � 1) spatial intensity field distribution section consisting of a
section 200 × 200 sample points, and lC � 10lS for the Gaussian (a) and circular aperture (b) PSD, respectively.

Fig. 4. (Color online) Integrated speckle field for the PSD
resulting from a Gaussian aperture and m � 7.5.
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function. In Fig. 5 we plot the normalized intensity
field distribution for the log-normal distribution for
σ2ln I � 0.3 for lC � 5lS.

C. Rice–Nakagami Distribution

As a final example, we illustrate the utility of obtain-
ing a simulated stochastic field distribution whose
corresponding CDF cannot be obtained analytically.
We consider the Rice–Nakagami distribution [26].
The PDF and CDF of the Rice–Nakagami are given
by

p�z� � 2z exp�−�z2 � C2��I0�2zC�; for z ≥ 0; (16)

F�z� �
Z

z

0
2μ exp�−�μ2 � C2��I0�2μC�dμ;

for 0 ≤ z ≤ 1;
(17)

where I0�·� is the modified Bessel function of first
kind of order zero, C is a real constant, and both z
and C are normalized to the “square root” of twice
the variance of the underlying normal distribution
[26]. In a variety of applications, the Rice–Nakagami
distribution is used to model the intensity distribu-
tion in a speckle pattern that consists of a specular
component and a diffuse scattered component [27].
In order to obtain a colored Rice–Nakagami sample
distribution we proceed as in [14]. First, for a given
value of C a tabulated set of data values in the form
fF�zi�; zig over a suitable range of z-values is obtained
via numerical integration of Eq. (17). Next for the
Rice–Nakagami distribution an accurate nonlinear
fit of this “data set” to a model inverse CDF function
of the form F−1

RN�z� � azn � a1z� a3z3 � a5z5 �
b log�1 − z� is made, where a, n, a1, a3, a5, and b
the model fit parameters to be determined. Finally,
this analytic model is then used in Eq. (1) to obtain
the suitable colored Rice–Nakagami sample distribu-
tion. We choose C � 1 to illustrate the efficacy of this
method [28]. Figure 6 shows the excellent com-
parison of the inverse CDF (dotted points) obtained

numerically to the analytic model (solid curve) ob-
tained via the least squares fit. Figure 7 is the corre-
sponding intensity field distribution for the PSD
resulting from a circular aperture, 104 sample points,
and lC � 10lS.

3. Concluding Remarks

A method for creating 2D distributions of signals
with a desired PDF and PSD has been described.
In contrast to previous methods, this method is
noniterative and does not rely on autoregressive
methods. This means that the creation of a given
sample of reasonable size can be performed within
a reasonable time, and thus a statistical reliable
sample for analysis can be obtained. The method
is based on establishing a 2D grid of Gaussian dis-
tributed random numbers, followed by spectral shap-
ing with the desired spectrum. Finally, an inverse
method is applied to the numbers in the grid, in order
to achieve the desired PDF. It has previously been
shown [14] that the autocorrelation function—and
thus the PSD—in most cases are only slightly influ-
enced by the inverse method. The inverse method
relies on having an analytical expression for the
inverse of the CDF of the desired PDF. Several exam-
ples relevant within optics have been treated, one of

Fig. 5. (Color online) The log-normal normalized intensity field
distribution for σ2ln I � 0.3 for lC � 5lS.

Fig. 6. (Color online) Comparison between the inverse CDF
(dotted points) obtained numerically and the analytic model (solid
curve) obtained via the least squares fit for the Rice–Nakagami
distribution.

Fig. 7. (Color online) The intensity field distribution for the PSD
resulting from a circular aperture, 104 sample points, and
lC � 10lS for the Rice–Nakagami distribution.
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which (the Rice–Nakagami PDF) has no analytical
expression for the inverse CDF. Here an excellent
approximation has facilitated the inversion.
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