
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Spatial filtering velocimetry of objective speckles for measuring out-of-plane motion

Jakobsen, Michael Linde; Yura, Harold; Hanson, Steen Grüner

Published in:
Applied Optics

Link to article, DOI:
10.1364/AO.51.001396

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jakobsen, M. L., Yura, H. T., & Hanson, S. G. (2012). Spatial filtering velocimetry of objective speckles for
measuring out-of-plane motion. Applied Optics, 51(9), 1396-1406. DOI: 10.1364/AO.51.001396

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13787822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/AO.51.001396
http://orbit.dtu.dk/en/publications/spatial-filtering-velocimetry-of-objective-speckles-for-measuring-outofplane-motion(38cb4d02-479b-4179-8c25-1ad066c54c9d).html


Spatial filtering velocimetry of objective speckles
for measuring out-of-plane motion

M. L. Jakobsen,1,* H. T. Yura,2 and S. G. Hanson1

1DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark,
P.O. Box 49, DK-4000, Roskilde, Denmark

2Electronics and Photonics Laboratory, The Aerospace Corporation, P.O. Box 92957,
Los Angeles, California, 90009, USA

*Corresponding author: mlja@fotonik.dtu.dk

Received 29 August 2011; revised 10 November 2011; accepted 10 November 2011;
posted 14 November 2011 (Doc. ID 153671); published 19 March 2012

This paper analyzes the dynamics of objective laser speckles as the distance between the object and the
observation plane continuously changes. With the purpose of applying optical spatial filtering velocime-
try to the speckle dynamics, in order to measure out-of-plane motion in real time, a rotational symmetric
spatial filter is designed. The spatial filter converts the speckle dynamics into a photocurrent with a
quasi-sinusoidal response to the out-of-plane motion. The spatial filter is here emulated with a CCD
camera, and is tested on speckles arising from a real application. The analysis discusses the selectivity
of the spatial filter, the nonlinear response between speckle motion and observation distance, and the
influence of the distance-dependent speckle size. Experiments with the emulated filters illustrate per-
formance and potential applications of the technology. © 2012 Optical Society of America
OCIS codes: 030.1640, 120.7250, 030.1670, 030.6140, 030.6600, 070.6110.

1. Introduction

Speckle photography (SP) or digital speckle photo-
graphy (DSP) [1,2] are well established techniques
using the speckle dynamics to measure in-plane
translation or deformation of an object. By adding
a reference field, incident on the observation plane,
speckle interferometry and SP or DSP can be com-
bined to measure both the two in-plane and the
out-of-plane components of movements [3] of an ob-
ject surface. Typically, the speckle or interference
patterns are acquired by a camera and then post-
processed with fringe analysis and/or correlation
techniques to provide field measurements giving a
high degree of spatial information.

The techniques of SP and DSP have also been com-
bined with optical spatial filtering velocimetry
(OSFV) [4] in order to carry out single-point mea-

surements of moving particles or rigid objects [5].
Such techniques can be integrated conveniently into
a compact optical sensor [6], providing nearly real-
time measurements of one or two components of an
object in-plane motion [7]. The out-of-plane compo-
nent can be addressed by adding a reference field
incident onto the observation plane, and designing
multiple spatial filters that can deal with a com-
pound intensity structure of random speckles and
regular fringes, and thus give independent and si-
multaneous velocity measurements [8]. Such a velo-
city measurement technique is anisotropic in the
sense that the out-of-plane motion will be resolved
with a resolution that is one or two magnitudes high-
er than in the resolution for measurement of the two
in-plane motions.

Speckle dynamics and OSFV have also been ap-
plied to measure the axial motion or the temporal
distance from a sensor to the object. When objective
speckles are observed at a distance L from the object,
the speckle dynamics, due to an in-plane object1559-128X/12/091396-11$15.00/0
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motion, will reflect the ratio (L∕R) of the distance of
propagation (L) to the radius (R) of curvature of the
phase front of the illuminating beam at incidence
with the object plane [9,10]. Thus, by measuring
the corresponding velocity of the speckles in two axi-
ally displaced observation plans (L1 and L2), given
the radius of curvature R, the absolute distance to
the moving object can be determined in nearly
real-time by using OSFV [11].

In this manuscript the covariance function of two
intensity distributions acquired in the observation
plane before and after an axial translation is deter-
mined in order to describe the radial speckle mo-
tions. Accordingly, a spatial filter is designed that
can measure the radial motion of the speckles and
distinguish whether the speckle pattern is expand-
ing or contracting relative to the origin of the obser-
vation plane.With this filter we can directly measure
the radial speckle motion as a response to the axial
motion of an object. This is demonstrated experimen-
tally, and finally possible applications are discussed.
The purpose of this work is to demonstrate and study
the possibility of using OSFV for measuring out-of-
plane object motions in real-time.

2. Theory

In a Cartesian-coordinate coordinate system s �
�x; y; z� we consider two parallel planes; the observa-
tion plane, which is fixed relative to the coordinate
system and intersects the z-axis at z, and the object
plane which moves parallel with the z-axis with a
velocity of vz. A position in the observation plane is
described by the two-dimensional Cartesian coordi-
nates, p � �px;py�. A position in the object plane is
described by the two-dimensional Cartesian coordi-
nates, r � �x; y�. Both coordinate systems share their
respective origin with the z-axis at any time.

As illustrated in Fig. 1, a Gaussian beam propa-
gates toward the object plane, parallel with the z-axis
and with the field distribution centered on the z-axis.

The case is constrained to jvzj ≪ c, the speed of light,
where the field can be considered as quasi monochro-
matic with a wavelength of λ. The object plane inter-
sects the Gaussian field, Ui�r�, at the position of
z � 0 at time t1. In the object plane the Gaussian
field is characterized by an e−2 radius w0 for the in-
tensity distribution and a radius R of curvature for
the phase front of the field.

An object moves along with the object plane, hav-
ing a velocity given as: v�t� � �vx; vy; vz�. This means
that the object can move in-plane relative to the ob-
ject plane, described by a two-dimensional (2D) velo-
city vector, vr � �vx; vy�. The surface of the object is
rough in the sense that its rms roughness is larger
than λ, and that the diameter of the surface illumi-
nation is larger than any lateral scale of the surface
roughness. Therefore, in the observation plane we
observe an intensity distribution giving rise to fully
developed speckles [12], described by the 2D Carte-
sian coordinates, p. The intensity distribution is ac-
quired at t1, and again, after a time lag of τ at
t2 � t1 � τ. The shift in object position along the z-
axis (vzτ) during the time lag τ is considered so small
that it does not change the parameters �w0;R� of the
incident beam.

A. Speckle Dynamics due to 3D Movement of an Object

The dynamics of the speckles due to the movement of
the object during the time lag can be described by the
normalized spatio-temporal covariance function of
the two acquired intensity distributions:

Cn�p1; p2; τ� �
hI�p1; t1�I�p2; t1 � τ�i − hI�p1; t1�ihI�p2; t1 � τ�i

f�hI�p1; t1�2i − hI�p1; t1�i2��hI�p2; t1 � τ�2i − hI�p2; t1 � τ�i2�g1∕2; �1�

where the angular brackets denote the ensemble
average of the intensity distributions. In this paper
we assume quasi-monochromatic conditions and sta-
tionary, isotropic statistical conditions for the object
surface. In the object plane, and in the observation
plane, the field is described using the complex optical
scalar fields. In the observation plane, we expect that
the complex scalar field has circular symmetric

Fig. 1. Schematics of the setup used for the theoretical descrip-
tion. The object is considered a transparent diffuser.
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complex Gaussian statistics [12], in which case we
can use

Cn�p1; p2; τ� �
jΓ�p1; p2; τ�j2

Γ�p1; p1; 0�Γ�p2; p2; 0�
; �2�

where

Γ�p1; p2; τ� � hU�p1; t1�U��p2; t2�i (3)

is the mutual intensity of the optical field and the
asterisk denotes the complex conjugate.

The optical scalar field U�p; t� in the observation
plane can be expressed via the Green’s function,
G�r; p�, as a function of the field, Us�r; t�, scattered
at the target surface (S):

U�p; t� �
Z
S
d2rUs�r�G�r; p; t�; �4�

where the Green’s function continuously varies ac-
cording to the time-dependent distance between
the object and the observation plane:

G�r; p; t� � −
ik

2π�z − vz�t − t1��

× exp
�
−

ik
2�z − vz�t − t1��

�r2 − 2r · p� p2�
�
(5)

for t ∈ �t1; t2�. Equation (5) describes the paraxial ver-
sion of the Green’s function [13] for free-space propa-
gation. The length of the optical wave vectors is
denoted as k � 2π∕λ.

The transmitted optical field at the object plane is
modeled as

Us�r� � Ui�r; t�Ψ�r; t�; �6�

whereUi�r� is the optical field, incident on the object
plane, andΨ�r; t� is the stochastic complex amplitude
transmittance, which describes the surface of the dif-
fuser. The statistics of the stochastic transmittance is
assumed to be stationary and isotropic. Therefore,
the speckles observed in the observation plane are
fully developed speckles. However, the modulus
jΨ�r; t�j is assumed to be constant and set equal to
unity. Following the analysis, described in [14], the
correlation function for the amplitude transmittance
can be found as

hΨ�r1; t�Ψ��r2; t�i � const: × δ�r1 − r2�; �7�

i.e., the amplitude transmittance in a point is uncor-
related with the amplitude transmittance in any
other point on the object, except for the point itself.
Therefore, the mutual coherence function for the
transmitted field follows as

Γs�r1; r2; τ� � hUs�r1; t1�U�
s �r2; t2�i

∝ Ui�r1�U�
i �r2�δ�r2 − r10�; (8)

where r01 is the position at time t2 of the scatterer on
the object surface that was located at position r1 at
time t1. Further, an unimportant constant value
has been discarded.

Inserting Eqs. (4) and (8) into Eq. (3), the mutual
coherence function of the optical field obtained at the
observation plane becomes

Γ�p1;p2;τ��
Z
S
d2rUi�r�U�

i �r0�G�r;p1;t1�G0��r0;p2;t1�τ�;
�9�

where similarly to r0 � r� vxyτ, the Greens function
becomes G0�r0; p; t� � G�r� vxyτ; p; t� τ�.

The stationary, complex optical scalar field Ui�r�
incident onto the object is, to within an unimportant
multiplicative factor:

Ui�r� � exp
�
−�x2 � y2�

�
1

w2
0

� ik
2R

��
: �10�

The sign convention used for the curvature is such
that a converging illuminating beam corresponds to
R < 0, whereas a diverging beam corresponds to
R > 0. Substituting Eqs. (5) and (10) into Eq. (9), per-
forming the resulting Gaussian integrations, and
simplifying yields:

Cn�p;Δp; vz; τ� �
exp

�
−

�
vxyτ
w0

�
2
�

��
1� vzτ

z

�
2
�

�
vzτ
lz

�
2
�

× exp
�
−
1

ρ2z

�
Δp −

�
1� z

R

�
vxyτ

� vzτ
z

�
p�

�
1
2
� z

R

�
vxyτ

��
2
�
; (11)

where

ρ2z � ρ20
��

1� vzτ
z

�
2
�

�
vzτ
lz

�
2
�
; �12�

ρ20 � 8z2

k2w2
0

�mean speckle radius�; (13)

and

lz �
4z2

kw2
0

�mean speckle length�: (14)

As presented in Eq. (11), the covariance function
consists of two major factors: The first factor de-
scribes the decorrelation of the correlation peak as

1398 APPLIED OPTICS / Vol. 51, No. 9 / 20 March 2012



a function of in-plane and out-of-plane movement of
the object. The second factor describes the position of
the correlation peak as a function of the three-
dimensional (3D) movement of the object during
the time lag τ.

In case the object carries out an in-planemovement
of vxyτ during the time lag τ (i.e., vz � 0), theposition of
the correlation peak describes a similar in-plane
translation of the speckles in the observation plane.
The relation between movement of the speckles and
object is specified as Δp � �1� z∕R�vxyτ, as it can
be found in [9,10,14]. The decorrelation length of
the speckles equals the radius w0 of the beam at in-
cidence at the object.

In case the object carries out a movement along the
z-axis only (i.e., jvxy � 0j), we acquire the first series of
intensities at ti for the ensemble-average covariance
function at position p � �px;py�given the initial object
distance z. Then, moving the object a distance of vzτ
and acquiring the second series of intensities at
ti � τ, the position of the correlation peak can be found
from Eq. (11) for jvxy � 0j as:

Δp � −
vzτ
z

p: �15�

Therefore, in the observation plane the speckles will
move along a straight line defined by the origin
and the initial position of observation (p). In the
Cartesian-coordinate system, the position of the cor-
relation peak can be found at the point of intersection
between the observation plane and a straight line
locked to the origin of the object plane—i.e., the center
of the illuminated area. As mentioned earlier, the ori-
gin of the object plane defines the intersection be-
tween the object and the center of the incident field
(Ui�⋅�). Further, the orientation of this straight line
is fixed, and it can be defined from the initial point
(p) of observation at SP � �px;py; z� and the initial po-
sition SC � �0; 0; 0� of the origin of the object plane.

Typically, l2z ≫ ρ02, therefore, on average, 3D
speckles tend to be elongated structures which are
orientated along straight lines, which all originate
from the origin of the object plane and point in any
direction toward the observation plane. As the object
and the object plane move along the z-axis, the 3D
speckles will move along, as long as the beam para-
meters in the object plane remain constant. This is in
full agreement with predictions in the literature
[15,16] for a static (jvxy � 0j) object, where the obser-
vation plane is scanned along the z-axis instead.
However, as we shall come back to later, the indivi-
dual 3D speckles are not aligned exactly with
these lines.

Therefore, in case vz < 0, the distance between the
object and the observation plane increases with time
t, and accordingly the correlation function will mea-
sure a radial movement of the speckles away from
the origin of the observation plane. A reversal of
the z-velocity will reverse the radial displacement
of the speckles. According to Eq. (15), the radial

speckle speed in response to a certain out-of-plane
movement of the object will increase proportional
to themodulus of p. Further, considering out-of-plane
movements, which are comparable to the initial z-
values, the nonlinear dependency of z on the re-
sponse will become apparent.

In case the object carries out a movement which
combines both an in-plane movement of vxyτ and
an out-of-plane movement of vzτ during the time
lag τ, and given an arbitrary position p of observa-
tion, the peak of the correlation function describes
a shift in the speckle pattern at observation point
p by Δp:

Δp � vxyτ −
vzτ
z

�
p� 1

2
vxyτ

�
; �16�

where we, for simplicity, have assumed that R → ∞.
The line describing the position of the peak correla-
tion as a function of vzτ does not point toward the ori-
gin of the object plane, as it was the case for jvxy � 0j.
Neither does the line follow the usual in-
plane speckle motion found in Eq. (11) as
Δp � �1� z∕R�vxyτ. Instead, the line points toward
the position at SC � �vxτ∕2; vyτ∕2; 0� in the object
plane, and a line through any other observation point
does the same. This is in full agreement with the pre-
diction for dynamic speckles given by [15]. However,
this result is not in agreement with [16], where the
1∕2 factor in Eqs. (11) and (16) is replaced with the
incorrect factor of 1. Note that even though the lines
of position of peak correlation functions do not follow
the usual in-plane speckle motion found in Eq. (11) as
Δp � �1� z∕R�vxyτ, so do the individual 3D speckles
indeed. The difference appears because the covar-
iance function is based on ensemble averaging many
3D speckles, and they point at random positions
within the illuminated spots on the object surface.

B. Spatial Filter

Generally, in optical spatial filtering velocimetry [4],
a dynamic intensity distribution I�p� illuminates a
spatial filter with an intensity transmittance of
t�p − q� and produces a resulting photocurrent i�q�
of a value, depending on the position of the intensity
distribution relative to the filter. The filter will be lo-
cated in the observation plane p, and the displace-
ment of the intensity distribution across the filter
is described by q:

i�q� �
Z

∞

−∞

dpI�p�t�p − q�: �17�

In case optical spatial filtering velocimetry is applied
to a one-dimensional, in-plane translation of an in-
tensity distribution relative to the filter [5], the in-
tensity transmittance t�p� for the optimum spatial
filter will have a one-dimensional repetitive struc-
ture. Therefore, the intensity transmittance obeys
that t�p� � t�p�Λ� where the direction of Λ defines
the direction of the displacement or velocity
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component to be measured, and jΛj defines the struc-
tural period of the intensity transmittance. For in-
stance, the intensity transmittance could be a
cosine function. Then, the first derivative of the spa-
tial phase of the intensity transmittance along the
direction of Λ will be constant. Typically, an addi-
tional filter having the same transmission function,
though shifted π∕2 relative to the first filter, is added
in spatial filtering velocimetry to produce two photo-
currents in phase quadrature. Both filters observe
the same speckle pattern, thus the two photocur-
rents are strongly correlated, and the direction of
the speckle motion can be found.

However, as described in Eq. (15) the speckle mo-
tion we intend to measure in this paper is moving in
radial direction away or toward the center of the ob-
servation plane, and with a velocity given at a point
in the observation plane which is proportional to the
radial distance jpj. Therefore, a structured detector
arrangement, which is rotationally symmetric with
regard to the center of the observation plane, is re-
quired. In principle, a pair of detectors organized as
coinciding rings will provide two signals with a mu-
tual time delay, which can be extracted with cross-
correlation function. However, in order to gain a
higher selectivity of the spatial filter [4], additional
pairs of detector rings must be added to the struc-
ture. Further, in order to match the position-
dependent gain of the speckles movement, Eq. (15),
the filter period, as a function of radius rp in the ob-
servation plane, must increase linearly with the rp.
Therefore, the first derivative of the phase θ�rp� with
respect to rp can be written as:

dθ�rp�
drp

� 2πα
rp

; �18�

where α is a constant. Equation (18) is reorganized
and integrated in order to derive θ�rp�:Z θ

θ0
dθ�rp� � 2πα

Z
r

r0

drp
rp

; �19�

where the boundary condition, θ0 � θ�r0�, defines the
(arbitrary) absolute phase. We find:

θ�rp� − θ0 � 2πα ln
�
rp
r0

�
: �20�

And finally, the complete intensity transmission
function for the filter becomes:

t�rp� � cos
�
2πα ln

�
rp
r0

�
� θ0

�
: �21�

Applying a second filter similar to Eq. (21), though
inserting θ0 → θ0 � π∕2 instead, two photocurrents
in mutual phase quadrature will be available and
thus provide information on to what extent the
speckle pattern is expanding or contracting.

Figure 2 shows the intensity transmission function
of the filter specified in Eq. (21) within the range of
rp ∈ �1; 512�, and for rp > 512 the transmission func-
tion equals 0. The brightest level indicates a filter va-
lue of one, while the darkest level indicates a filter
value of minus one. Approaching the origin of the ob-
servation plane, the spatial frequency of the periods
of the filter function will increase beyond any prac-
tical use for the application (see Section 4 for more
details) or ultimately it will be limited by the resolu-
tion of the medium implementing the filter.

The rotational symmetric power spectrum of the
filter function can be found as a function of 1∕rp
by using the Fourier–Bessel transform. In Fig. 3,
the power of the Fourier–Bessel transform of the fil-
ter function illustrated in Fig. 2 is plotted (see
Appendix A for an analytic solution). The discrete
and nonequidistant spatial frequencies present in
the filter function are apparent. Considering fully-
developed speckles, the spatial density, size and in-
tensity of the speckles throughout the observation
plane are uniform. Therefore, for a given object posi-
tion, Fig. 3 illustrates that the contributions to the
signal in the range of spatial frequencies from
0.020 to 0.028 are weighted higher than the contri-
butions from the rings responsible for spatial
frequencies higher than 0.028. Generally, this phe-
nomenon will cause the phase-shifted filter outputs
to be mutually unbalanced in terms of their low-
frequency contents.

Generically, the two photocurrents can be balanced
without affecting the filter signals by defining an
even number of angular sectors in the transmission
function, where the phases between adjacent sectors

Fig. 2. Intensity transmission function in Eq. (21) plotted as a
function of radius in the observation plane. The plot uses the fol-
lowing parameters; r0 � 1, θ0 � 0, α � 10 and for the range of
rp ∈ �1;512�. For rp > 512 we set t�rp� � 0.
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are shifted π mutually. Letting φ denote the angular
coordinate of the polar coordinate system, the new
transmission function becomes:

t�rp� �

8>><
>>:
cos

�
2πα ln

�
rp
r0

�
� θ0

�
; for π

2n < φ ≤ π
2

�
n� 1

2

�
; n � −2;−1; 0; 1

cos
�
2πα ln

�
rp
r0

�
� π � θ0

�
; for π

2

�
n� 1

2

�
< φ ≤ π

2 �n� 1�; n � −2;−1; 0; 1
: �22�

In Fig. 4 the transmission function in Eq. (22) is illu-
strated. In this case the number of sectors is eight.

Given the distance (z) between the object and the
observation plane, the speckle statistics provide a
constant speckle size and speckle density throughout
the observation plane. However, in case the distance
increases, the speckle pattern expands, and while the
speckles slowly decorrelate, the size of the individual
speckles increase to fill out the expanding speckle
pattern, accordingly. The mutual distance between
the speckles will change as anticipated by the filter
design. Thus, as the object distance increases, the
average number of speckles leaving an arbitrary ring
i at radius ri will be the same as the average number
of speckles entering the next ring i� 1 at radius ri �
1 for ri � 1 > ri. Therefore, the groups of speckles in-
itially interrogated by the different rings will move
consistently from one ring to the next as the object
distance increases or decreases. In other words, the
selectivity of this filter depends on either the number
of rings, contributing to the signal, or speckle decorr-
elation, in this specific case defined by the mean
speckle length lz.

This consideration is the same for a linear filter,
and the higher the selectivity of the filter is, the more
oscillations the average burst will contain, and the

smaller the random measurement errors will be.
However, by increasing the selectivity with regard
to radial speckle movement, the sensor at the same
time becomes less tolerant with respect to simulta-
neous in-plane motion.

3. Experiments and Results

As illustrated in Fig. 5, a HeNe laser provides the
coherent illumination of the object, through an aper-
ture. The aperture only facilitates alignment of the
setup. The laser emits light at a wavelength of λ �
632 nm and the beam is effectively collimated
through the setup and provides an illuminating spot
with a radius of w0 � 0.81 mm at the object, which is
a transparent glass plate. The surface facing away
from the laser is glass-blown to an extent that it pro-
duces fully developed speckles in the observation
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Fig. 3. Power of the Fourier–Bessel transform of the transmis-
sion function in Fig. 2 plotted as a function of radial frequency, nor-
malized with the sample frequency.

Fig. 4. Intensity transmission function in Eq. (22) plotted as a
function of radius in the observation plane. The plot uses the fol-
lowing parameters; r0 � 1, θ0 � 0, α � 10 and for the range of
rp ∈ �1;512�. For rp > 512 we set t�rp� � 0.
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plane. The object is mounted on a motorized micro-
meter stage, which displaces the object along the op-
tical axis in steps of Δz � −0.01 mm with a total
displacement of 23.0 mm. Note that in this experi-
ment the object moves toward the aperture. From
the object surface, scattered light propagates
through a distance of z to the observation plane,
where a CCD camera is located. The CCD camera ac-
quires black and white images of the speckles with a
resolution of 1024 × 1280 pixels. The distance be-
tween the pixels in the camera is 5.2 μm × 5.2 μm.
The electronic noise is reduced by ensemble aver-
aging five images for each acquisition. In the experi-
ment, any lateral motion of the illuminating spot as
it translates axially is sought to be minimized.
Therefore, the alignment of the CCD relative to
the incidence of the beam coming directly from the
laser beam is critical. The object is removed tempo-
rally, and normal incidence of the laser beam onto the
CCD is achieved by directing its reflection from the
CCD array back through the setup (300 mm) and
back through a 0.5 mm ∅ hole in the aperture.
The experiment starts with a distance between ob-
ject and the CCD of z � �25.4� 23.0� mm, while
the experiment ends at a distance of 25.4 mm. There-
fore through the experiment, the speckle pattern col-
lapses, and the mean speckle radius decreases from
ρ0 � 17 μm to ρ0 � 8.9 μm as the object moves from
position z � 48.4 mm to z � 25.4 mm, respectively.
The corresponding lengths lz of the speckles as 3D
structures [Eq. (14)] become 1.4 mm and 0.4 mm, re-
spectively. Thus, the individual steps (Δz) along the
optical axis are significantly smaller than the mean
speckle lengths, while the total travel is significantly
larger. For each step, a speckle pattern is acquired
with the CCD camera and saved for later post-
processing.

To illustrate the speckle motion as a function of the
out-of-plane motion of the object, the speckle images
are processed using speckle-correlation techniques.
For the object position (z) the corresponding speckle
image is divided into 7 × 9 interrogation areas of
256 × 256 pixels and separated by 128 × 128 pixels.
Each interrogation area is cross-correlated with the
interrogation area located at the same position in the
speckle image acquired at the object position
(z − 50Δz), respectively. A combined peak search in
the correlation function, and a determination of the
centroid position within the top 90% of the correla-

tion peak, provide a vector in the observation plane.
This vector is a local measurement in the observation
plane of the speckle shift, occurring due to the move-
ment of the object from position z to position
z − 50Δz. Plotting all the vectors obtained from
two images acquired in the observation plane at ob-
ject positions of z � 54.5 mm and z − 50Δz �
55.0 mm (data from different experiment where
vzτ < 0) the vector map, illustrated in Fig. 6 appears.
The speckle pattern is expanding, thus all the vectors
point away from a position which approximately co-
incides with the center of the image, and the lengths
of the individual vectors are proportional to their dis-
tance to the center of the image, as it is predicted
in Eq. (15).

The center of expansion is estimated by determin-
ing the first order of momentum of the reverse vector
lengths:

rc�r0; c0� �

�P1024
r�1

P1280
c�1

r
jΔp�r;c�j2 ;

P1024
r�1

P1280
c�1

c
jΔp�r;c�j2

�
P1024

r�1

P1280
c�1

1
jΔp�r;c�j2

:

�23�

Processing the images acquired within the relevant
range of positions, and determining the centers of all
the corresponding maps, we find that throughout the
full range of 23.0 mm the average center of the ex-
pansion is located at rc;all � �549.5; 598.3� with a sys-
tematic error of less than 1 pixel, and a standard
deviation of 4.5 and 8.2 pixels in vertical and horizon-
tal direction, respectively. The estimate of the aver-
age center (rc;all) of expansion or contraction for a
given experiment then defines the center for the com-
puter generated spatial filter and will be applied to
the data acquired in the same experiment.

The spatial filtering velocimetry is implemented
by postprocessing the speckle images in a computer.

Fig. 5. Schematics of the experimental setup are illustrated.
The object is a glass plate with a diffuse surface facing the
CCD camera.

Fig. 6. Vector map is obtained by measuring the local speckle
movement as the object moves away from the observation plane
from position z � 54.5 mm to z�Δz � 55.0 mm.
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The speckle image acquired at object position z is de-
noted as Isp�r; c; z�, where (r, c) address the individual
pixels in the image. The filter functions are imple-
mented as electronic images sθ�r; c�, having the same
resolution as the speckle images of 1024 × 1280 cells.
The index indicates the initial phase θ�r0� of the filter
at rp � r0. During processing, the speckle image ac-
quired at the object position z, each pixel in the
speckle image is multiplied with the corresponding
pixel in the filter image, and all the products are
added together to produce a photocurrent iθ�z�:

iθ�z� �
X1024
r�1

X1280
c�1

Isp�r; c; z�sθ�r; c�: �24�

Stepping through all speckle images, a complete re-
cord of the photocurrent iθ�z� can be plotted as a func-
tion of object position z.

In Fig. 7(a) the photocurrents of i0�z� and iπ∕2�z� are
plotted as a function of z, for the filter function
described in Eq. (21) for α � 40, θ0 � 0. Clearly the
individual photocurrents oscillate with a quasi-sinu-
soidal dependency of z, and the two plots are shifted
by a phase difference of π∕2. The sign of the phase
shift between the two photocurrents changes as
the direction of object movement changes. Appar-
ently, the envelopes of the two photocurrents are dif-
ferent and drift apart throughout the relevant range
of z values. Figure 7(b) shows the photocurrents of
i0�z� and iπ∕2�z� for the filter function described in
Eq. (22) (θ0 � 0), and applied to the same speckle
images as in Fig. 7(a). In this case, clearly the two
photocurrents are balanced throughout the relevant
range of z-values. For that reason, the filter function
in Eq. (22) will be used throughout the rest of the
experiments.

In order to determine long-range displacements
throughout many oscillations in the photocurrents,
the phase of the oscillations is determined as the
angle of the phasor from the polar form of the two
signals in mutual phase quadrature. However, the
z-dependency in Eq. (15) makes such applications
more circumstantial. More details on this can be
found in the discussion.

To accommodate the application for small-range
displacement or for vibration sensing, we select a
range of z, withinwhich the responses for both signals
i0�z� and iπ∕2�z� provide well defined oscillations.
According to [17] the probability of random phase
changes is conditioned strongly by the amplitude of
the signal. In case of high-signal amplitudes, theprob-
ability for a random phase change becomes very low,
thus for this application a suitable z-position with
high-signal amplitude is chosen at z � 28.9 mm. Os-
cillating motions with three different amplitudes are
generated with the motorized stage: 0.015 mm,
0.15 mm, and 2.0 mm. The smallest amplitude is sig-
nificantly smaller than the actual mean speckle
length (lz ∼ 0.15 mm) at z � 28.9 mm, while the lar-
gest amplitude is significantly larger. In order to
make the measurements independent of the oscilla-
tory response function of the filter, again the displace-
ment is determined as the angle of the phasor from
the polar form of the two photocurrents in mutual
phase quadrature.

In Fig. 8(a) the measurements of an oscillating mo-
tion is plotted as a function of steps of the stage. The
amplitude for the motions is set to 0.15 mm. The cor-
responding power spectrum is plotted in Fig. 8(b) and
readings of the peak power in the harmonics provide
a distortion factor of 0.016. The background is estab-
lished 40 dB below the signal level, thus, the noise-
equivalent power corresponds to an amplitude of
1.5 μm. In Table 1 the data obtained for all three
cases are listed.

4. Discussion

Equation (15) shows that the response to out-of-
plane object motion on the speckle motion depends
on both the position (p) of observation in the observa-
tion plane, and the distance (z) between the object
and the observation plane. The spatial filters de-
scribed in Eq. (22) corrects for the dependency re-
garding p. However, moving the object through an
axial displacement that is compatible with the dis-
tance z, the dependency of 1∕z will appear as a non-
linear effect in the measurements of vzτ. In Fig. 9 the
displacement is measured as the angle of the phasor
from the polar form of the two photocurrents and
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Fig. 7. Photocurrents of i0�z� and iπ∕2�z� are plotted as a function of object positions z. Left plot (a) illustrates the filter function described
in Eq. (21), while right plot (b) illustrates the filter function described in Eq. (22). The common parameters for the filters are; α � 40 for
rp ∈ �1;512�, while t�rp� � 0 for rp > 474.
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plotted as a function of the distances z. Clearly, the
curve deviates from a straight line as a function of z.

As the object moves from the starting position
(z1 � 48.4 mm) to position z, the filter tracks a se-
lected spatial speckle structure contracting by jΔpj
in the radial direction with regard to the origin of
the observation plane. The selected speckle structure
is defined by Eq. (18), thus, the phasor angle changes
as function of radial speckle movement jΔpj just as
fast as the filter changes phasor as a function of drp.
In the observation plane, rp can substitute jpj di-
rectly, and Eq. (15) provides that jΔpj∕jpj � dz∕z for
small steps of Δz. Finally, the corresponding change
in phasor angle for the photocurrents becomes:

dθ � 2πα
rp

drp � 2πα
z

dz: �25�

After integrating from z1 to z, the phasor angle for
the photocurrents as a function of z becomes

θ�z� � 2πα ln
�
z1
z

�
; �26�

where the boundary of θ�z� is set to zero at z � z1.
Plotting Eq. (26) in Fig. 9, the overall trend of the
measured curve agrees with the theoretical curve
within the random deviations. The standard devia-
tion of the difference between the measured curve
and theoretical curve predicted by Eq. (26) is ap-
proximately of�2.8 rad, and corresponds to a displa-
cement of approximately 0.5 mm. Therefore, the
technology could be addressed to application where
the range of displacements is either much larger
than, or less than, the mean speckle length. In case
of long range measurements, two devices located
with a known difference in distance to the object

could measure the axial motion of the object simul-
taneously. Then, the nonlinear effect could provide
an estimate of the absolute distance to the object
and compensate the measurements for the influence
of the nonlinear effect accordingly.

In Fig. 10 the power of the Fourier–Bessel trans-
form of the speckle patterns is plotted for two dis-
tances of the object, z1 and z2, where z1 � 25.4 mm
and z2 � 48.4 mm. The power of the Fourier–Bessel
transform of the transmission function of the filter
(α � 40) is plotted in Fig. 10 as well. The radius of
the illumination spot is assumed to be the same
for both object positions. Therefore, the power spec-
tra represent the two speckle patterns, characterized
by speckle sizes of ρ1 � 8.9 μm and ρ2 � 17 μm. Ac-
cording to Eq. (17), the total power of the photocur-
rent from the filter will be proportional to the product
of the power spectrum of the filter function and the
power spectrum of the speckle pattern [5]. Clearly,
the product involving the power spectrum of the
speckle pattern with a speckle size of ρ1 collects
contributions from significantly more rings than
the product involving the power spectrum of the
speckle pattern with the mean speckle size of ρ2.

Table 1. Data and Measurements on Oscillating Motions

Amplitude of
oscillation (mm)

Step size Δz
(mm)

Distortion
factor (-)

Rel. background
noise (dB)

0.015 0.001 0.16 −35
0.15 0.01 0.016 −40
1.0 0.03 0.018 −60

Axial position of object, z (mm)
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Fig. 9. Displacement is measured as the angle of the phasor
based on the polar form of the two photocurrents in mutual phase
quadrature. The angle is plotted as a function of the distance z be-
tween the object and the filter. The filter [Eq. (22)] parameters are
α � 40 for rp ∈ �1;512�, while t�rp� � 0 for rp > 474.
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Fig. 8. To the left, the measured displacement of the object is plotted as a function of steps of the stage. The amplitude of the oscillation is
0.15 mm. To the right , the power spectrum obtained for 67 oscillations is plotted. The filter [Eq. (22)] parameters are; α � 40 for
rp ∈ �1;512�, while t�rp� � 0 for rp > 474.
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Therefore, the speckle size and its variation as a
function of object position influence both the signal
level and the selectivity of the filter.

A way to obtain a more uniform speckle size
throughout the entire range of distances between
the filter and the object is to illuminate the object
with a laser beam, which diverges from a waist lo-
cated at the center of the filter. The beam is emitted
normal to the observation plane and beyond a dis-
tance compatible with the confocal parameter of
the laser beam, the radius of the beam will increase
linearly with the distance to the object. Therefore, ac-
cording to Eq. (13) the speckle radius observed in the
filter plane will remain constant and independent of
the distance between the object and the filter. How-
ever, now the speckles will decorrelate as the radius
of the beam varies as well.

The principle of the spatial filter technique is
based on the light intensity. Therefore, the technique
is applicable to incoherent illumination of objects as
well. The principle of the filter relates to the scale
and rotation invariance properties of the Fourier–
Mellin transform, used as an image processing
technique for image recognition and distance
measurements [18].

The benefits of the medium-precision technology
appear when these filters can be implemented opti-
cally, and the photodetectors can be hardwired to
produce the two photocurrents in real time [19]. In
that case, the benefits are real-time processing of ty-
pically speckle correlation issues by optical spatial
filtering velocimetry, and compact vibration or dis-
placement sensor designs [20] can be produced at
a low cost for industrial applications and naviga-
tional devices.

5. Conclusion

A spatial filter function has been designed for track-
ing objective speckle patterns expanding or contract-

ing in the filter plane according to out-of-plane
motion of an object, moving away from, or toward,
the filter, respectively. The filter is designed to reduce
the uneven contributions from the rings of various
radii. The filters are emulated with a CCD camera,
but applied to speckle images from real applications.
Measurements of long range displacements (23 mm)
are obtained giving a random error of �0.5 mm.
Measurements of short range out-of-plane vibrations
are obtained with a noise-equivalent power corre-
sponding to amplitudes of 1 μm.

Appendix A

The rotational symmetric expression in Eq. (21) is
inserted into the Fourier–Bessel transform:

G�f p� �
Z

R

0
rp cos

�
2πα ln

�
rp
r0

�
� θ0

�
J0�2πrpf p�drp;

(A1)

where f p is the spatial radial frequency, the size of
the filter is limited to a radius of R, and for simplicity
θ0 → 0. After integration, the power of Eq. (A1) is
found, and after additional reduction we find the
power of the Fourier–Bessel transform of Eq. (21):

G�f p� �
R4

16�1� π2α2�2

× Im

"
�2πα − 2i� exp

�
−i2πα ln

�
R
ro

��
×1F2�1 − iπα; f1; 2 − iπαg;−π2R2f 2�

#
2

;

(A2)

where the hypergeometric function 1F2�⋅� is derived
from the generalized hypergeometrical function
pFq�⋅� [21]:

pFq�a; b; z� �
X∞
k�0

�a1�k…�ap�k
�b1…�bq�k

zk

k!
: (A3)

The shape of the ensemble average speckle appears
from spatial auto-covariance of the intensity distri-
bution of the speckle patterns. The spatio-temporal
covariance function equals the spatial auto-
covariance in the limit of τ → 0. Further, introducing
the polar coordinate system to the auto-covariance
function we find:

RI�rp� � exp
�
−
r2p
ρ20

�
: (A4)

Then, the power of the Fourier–Bessel transform can
be found as:

G�f p� �
Z

R

0
rpRI�rp�J0�2πrpf p�drp � ρ20

2
exp�−π2ρ20f 2p�:

(A5)
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Fig. 10. Power of Fourier–Bessel transforms of the filter function
[Eq. (21)] is illustrated together with the power spectra of the
speckle patterns expected at z � 48.4 mm and z � 25.4 mm.
The filter parameters follows as α � 40 for α � 40, while t�rp� �
0 for rp > 512.
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