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Indledning: 

 

Biogas har været anvist som et at de områder hvor der er positiv samfundsøkonomisk 

regnskab. Udbredelse af biogas kræver dog fortsat optimering og forbedring af anlæggets 

økonomi. Uforudsete procesudfald forekommer med mellemrum på biogasanlæg, hvor 

processen pludselig hæmmes og biogasproduktionen ophører helt eller delvist, ofte uden 

at årsag kan identificeres entydigt. Disse procesuheld varer ofte relativt lang tid med 

alvorlige økonomiske konsekvenser for anlæggene. Der mangler stadig grundlæggende 

viden med henblik på at identificere årsager og mekanismer, dels for at kunne forebygge 

og, hvis uheldet indtræffer, hurtigst muligt at kunne genoprette processen.  

Det overordnede mål med projektet har været at udvikle værktøjer til at forstå og undgå 

procesudfald og opnå en mere stabil drift i danske biogasanlæg. Man kan dog stadig, på 

trods af agtpågivenhed, forvente at procesudfald ind i mellem vil opstå på de danske 

biogasanlæg, og projektet her derfor også fokuseret på udvikling af forskellige strategier 

til genopretning af processen når uheldet har været ude. 

 

I denne rapport er resultater fra projektet EFP 05 med titel: ”Årsager til proces-ustabilitet 

i biogasanlæg og strategier for forebyggelse og genopretning af processen” rapporteret.  

  

Sammenfatning: 

 

Arbejdet i projektet har været koncentreret omkring 3 emner: 

 

1: Kortlægning af årsager til ubalance i Danske biogasanlæg 

Det indledende arbejde var koncentreret om indsamling af data og en række interviews af 

forskellige biogasfællesanlæg. Fra dette kortlægningsarbejde kom det frem at de 

hyppigste årsager til ubalancer var: 

- høj koncentration af ammoniak  

- høj koncentration af langkædede fedtsyrer  

- skumning i forlager- og rådnetanke 

- temperaturforstyrrelser 



 

En korrelation mellem øget rest-biogasproduktion (suboptimale proces betingelser) og 

høj fraktion af industriaffald i råvare blev også observeret. Proces-ubalancer og 

suboptimal drift opstår hovedsageligt på grund af: 

 

- utilstrækkelig viden om biomassens sammensætning, 

- utilstrækkelig viden om biomassens nedbrydning karakteristika, 

- utilstrækkelig proces overvågning, især med hensyn til flygtige fedtsyrer, og 

- utilstrækkelig forlagerkapacitet hvilket forårsager uhensigtsmæssig blanding og 

hindrer nøjagtig dosering af de forskellige biomasser. 

 

2: Strategier for etablering af biogas processen efter ammoniumhæmning 

Formålet med denne undersøgelse var at afprøve forskellige strategier for at finde den 

bedste strategi mht. den hurtigste proces-genoprettelse efter ammoniumhæmning. Der 

blev både udført batch og kontinuerlige reaktoreksperimenter. Biogasprocessen blev 

hæmmet med tilsætning af ammonium direkte i reaktor og efter 3-5 dage blev følgende 

strategier forsøgt: 

a) Fortynding med vand (50% fortynding) 

b) Fortynding med podemateriale (50% fortynding) 

c) Fortynding med frisk gylle eller 

d) Ingen fortynding (vente på at processen selv reetablerer sig). 

 

Strategierne a) til c) med forskellige former for fortynding medførte den hurtigste 

procesgenoprettelse i forhold til d) uden fortynding. Den største methanproduktion under 

proces-genoprettelsen blev opnået ved fortynding med frisk gylle. Processen var dog ikke 

stabil og en stor koncentration/ophobning af propionat blev observeret under forløbet. 

Dette kan tyde på en usikkerhed ved at anvende denne strategi, idet den potentielt kan 

medføre yderligere procesustabilitet hvis genopretningsforsøg ikke lykkes umiddelbart. 

Derfor anses den bedste og sikreste strategi for oprettelse af biogasprocessen at være 

fortynding af den hæmmede proces med podemateriale (udrådnet gylle) for en hurtig og 

stabil reetablering af processen. Denne metode kan evt. kombineres med vand og/eller 



frisk gylle fortynding, afhængigt af omstændighederne og tilgængelighed af egnet 

podemateriale. 

Udover laboratorieforsøgene fulgtes processen i et fuld-skala biogasanlæg som var 

ammoniumhæmmet pga tilsætning af minkgylle. Som reetableringsstrategi blev anlægget 

fodret med frisk gylle (uden minkgylle) hvilket gradvist reducerede 

ammoniumkoncentrationen i reaktoren. En fuldstændig reetablering af processen blev 

opnået efter 31 dage, hvilket er signifikant længere tid end i laboratorie eksperimenterne. 

Fra både laboratorie og fuldskala observationer kan man konkludere at man med fordel 

kan genoprette processen med en fortyndingsstrategi. Strategien med at vente (til at 

processen selv stabiliseres) var det dårligste valg. 

 

3: Strategier for genetablering af biogasprocessen efter lipidhæmning 

Formålet med denne undersøgelse var at forsøge forskellige strategier for at finde den 

bedste måde til at genoprette processen efter hæmning ved tilsætning af fedtstoffer. 

Biogasprocessen blev hæmmet ved tilsætning af 5 g/l oleat direkte i reaktoren. 

Reetablerings strategier der blev anvendt kan deles i følgende typer: 

 

• Indfødningsstrategier: 

o ingen indfødning eller, 

o kontinuerlig indfødning med frisk gylle (HRT 20 dage). 

• Fortyndingsstrategier - Erstatning af 40% af reaktorindholdet med: 

o frisk gylle 

o podemateriale (udrådnet materiale fra reaktorer før hæmningen)  

o  vand  

• Absorptionsstrategier - Tilsætning af: 

o fibre (filtreret udrådnet gylle) 

o bentonit, i samme mængde som den tilsatte oleat dvs. 5 g-VS/l. 

 

Eksperimenterne blev udført i 2 faser, hvor indfødningen af reaktorerne med gylle blev 

stoppet i fase 1 efter introduktion af hæmningen, hvor imod fase 2 koncentrerede sig om 



at finde genoprettelsesstrategier hvor indfødning af reaktorerne med gylle ikke blev 

stoppet efter introduktion af hæmningen, men derimod fortsat blev fodret med gylle.  

 

Resultaterne kan opsummeres som følgende: 

Samudrådning af gylle med fedtholdigt affald kan forbedre biogasproduktionen og 

dermed økonomien i gyllebaserede biogasanlæg. Fedt er dog potentielt hæmmende for 

biogasprocessen og biogasanlæg kommer til tider ud for ubalance pga af tilsætning af 

fedtholdigt affald. Langkædede fedtsyre (LCFA) koncentrationer højere end 1.0 g L-1 

hæmmede gylleudrådning i batch og semi-kontinuerte forsøg, som resulterede i 

midlertidigt ophør/reduktion af biogasproduktionen. LCFA hæmningerne var reversible.  

Af de undersøgte genopretningsstrategier, viste det sig at den mest anvendte strategi, som 

er at stoppe indfødning og afvente processens selv-stabilisering, var den dårligste 

strategi. Proces genopretning var langsomst og processen var mest ustabil med meget 

høje VFA niveauer. Reetableringsstrategier med fortydning af reaktorerne med aktivt 

podemateriale fra en ”sund” reaktor, for at forøge biomasse/LCFA forhold, eller 

tilsætning af lipidabsorberende materiale for at adsorbere LCFA og dermed reducere 

den aktive LCFA koncentration, var de bedste genoprettelses strategier. Effekten af fiber 

tilsætning var sammenlignelig med bentonittilsætning.  

Gentagen udsættelse af processen for oleat-belastning medførte større robusthed i 

processen mod hæmning. Dette er konsistent med tidligere undersøgelser som viste at det 

var ophobning af fri LCFA som var den hæmmende komponent, når mikroflora ikke 

tidligere var tilvænnet lipid og dermed havde opbygget fornøden kapacitet til at nedbryde 

fri LCFA i takt med frigivelse fra indledende nedbrydning af lipid. 

 

I løbet af projektet er udarbejdet et antal artikler.  

 

Disse er vedlagt denne rapport, hvor en mere detaljeret beskrivelse af forsøg og resultater 

kan findes.  
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The present study focuses on process imbalances in Danish centralized biogas plants treating

manure in combination with industrial waste. Collection of process data from various full-scale

plants along with a number of interviews showed that imbalances occur frequently. High

concentrations of ammonia or long chain fatty acids is in most cases expected to be the cause of

microbial inhibitions/imbalances while foaming in the prestorage tanks and digesters is the most

important practical process problem at the plants. A correlation between increased residual

biogas production (suboptimal process conditions) and high fractions of industrial waste in the

feedstock was also observed. The process imbalances and suboptimal conditions are mainly

allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate

knowledge about the waste degradation characteristics, 3) inadequate process surveillance,

especially with regard to volatile fatty acids, and 4) insufficient pre-storage capacity causing

inexpedient mixing and hindering exact dosing of the different waste products.

Key words | centralized biogas plants, codigestion, industrial waste, process imbalances

INTRODUCTION

Today, 20 centralized biogas plants (Figure 1) and more

than 60 farm-scale plants are in operation in Denmark.

The main purpose of the centralized plants is to treat

livestock manure and reuse the material as fertilizer (Ahring

et al. 1992; Hjort-Gregersen 1999; Seadi 2000). The methane

yield from manure is relatively small and in order to

increase the biogas production, the plants co-digest manure

together with other organic waste from food industries

and municipalities (Angelidaki & Ellegaard 2003). The

co-substrates—rich in lipids, proteins and carbohydrates—are

essential for the plant’s economy, but might lead to

disturbances if not handled properly. Several of the Danish

centralized biogas plants have been exposed to process

imbalances that could be directly related to the composi-

tion of the substrate. However, the significance of the

problem is unknown and only a few studies has been

carried out (Planenergi 2001; Hartmann et al. 2004;

Angelidaki et al. 2005). In the present study we, therefore,

focus on this topic. We present data obtained from several

of the Danish centralized biogas plants and give examples of

imbalances caused by the treatment of organic industrial

waste. We propose reasons for the cause of the imbalances

on a practical and microbial level and verify our theories

with data from experiments in our laboratory.

MATERIALS AND METHODS

Biogas output and screening of process imbalances

at the biogas plants

Process data, i.e. biogas production, from the plants was

obtained directly from the plants (measured daily) or via

the Danish magazine “Dansk Bioenergi” (monthly average).

doi: 10.2166/wst.2008.507
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A number of interviews with plant managers were also

carried out. The obtained data and information was analyzed

and used for estimating the frequency of the process failures

and for setting up additional experiments (case studies)

investigating relevant topics related to specific inhibition

incidents at the plants.

Case studies

Effect of codigestion of manure together with blood

The effect of temperature on the process stability during

codigestion of blood and cattle manure was investigated in

a lab-scale experiment consisting of two 4.5 litre continu-

ously stirred tank reactors (CSTR). One reactor was

operated at mesophilic conditions (378C) with a hydraulic

retention time (HRT) of 20 days and 4 litres working

volume. The reactor was inoculated with digested material

from a mesophilic full-scale biogas plant. The second

reactor was operated at thermophilic conditions (538C)

with a HRT of 15 days and a working volume of 3 litres.

This reactor was inoculated with digested material from a

thermophilic full-scale biogas plant. Both reactors were fed

once a day with cattle manure (7.0% TS, 5.5% VS, pH 7.21)

that was diluted with distilled water in a ratio of 10:7.

During start up (approximately 4 weeks) the feed volume

was slowly increased to 100 ml/d. From day 0–17 of the

experimental period the loading was 100 ml/d (period 1)

and from day 16–39 full loading—200 ml/d—was applied

(period 2–4). From day 40 the reactors was fed 160 ml

manure/d supplemented with 40 ml blood/d (19.1% TS,

18.0% VS, 16.0 g-N/l) (period 3). This procedure was

continued until the end of the experiment in the mesophilic

reactor while blood was omitted from the feedstock of the

thermophilic reactor from day 60 due to a low methane

production and high volatile fatty acid levels (VFA). From

day 60 to the end of the experiment the thermophilic

reactor was, therefore, only fed with 200 ml manure/d

(period 4).

Toxicity test of tall oil

The toxicity effect of tall oil on the anaerobic digestion of

cattle manure was tested in batch experiments. Tall oil is a

viscous yellow-black odorous liquid obtained as a bypro-

duct of the Kraft process of wood pulp manufacture. Tall oil

contains rosins, unsaponifable sterols (5–10%), resin acids

(mainly abietic acid), long chain fatty acids (mainly palmitic

acid, oleic acid and linoleic acid, fatty alcohols, sterols, and

other alkyl hydrocarbon derivates. To 1 litre serum bottles

was added 150 ml cattle manure (7.0% TS, 5.5%) and

250 ml inoculum (3.6% TS, 2.8% VS) from a pilot-scale

reactor treating cattle manure. The bottles were flushed

with N2, closed with butyl rubber stoppers and aluminium

crimps, and incubated at 558C. Eight days after when a

steady methane production was obtained, the bottles were

opened and different concentrations of tall oil were added:

0.1 g/l, 1.2 g/l, 3 g/l, 6 g/l, 10 g/L. Finally the bottles were

flushed and closed as explained before, vigorously agitated

and incubated at 558C. Control bottles had no added tall oil

and blanks consisted of 150 ml water and 250 ml inoculum

without added tall oil. The experiment was performed in

triplicates. The methane production was measured fre-

quently during the entire experiment.

Estimation of the methane potential left

in the residuals

Estimation of the residual methane production, left over in

the effluent-biomass, was determined in digested biomass

Figure 1 | The typical process flow at Danish centralized biogas plant. The plants

range in digester size from 750 m3 to 8500 m3. Approximately 75% of the

bio mass treated is animal manure while the remaining 25% mainly

consists of waste from the food processing industry. It should be noted

that variations from this illustration exists. For instance, is the number of

pre-storage tanks and digesters between 1 and 3.
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from the main digestion step as well as from down stream

digestion/storage steps from a number of centralized biogas

plants. Samples of 300 ml was transferred to 1 litre serum

bottles flushed with 80%/20% N2/CO2 and incubated at

the same temperature as the main reactor were operating

under. The methane production was measured frequently

over a period of approximately two months. The ammonia

concentration of the biomass was determined before

incubation.

Analytical methods

pH and ammonia-N/total-N content were determined using

standard methods (Standard Methods for the Examination

of Water and Wastewater 1995). CH4 production in batch

experiments was measured by GC using flame ionization

detection. CH4 and CO2 production from lab-scale reactors

were determined by GC using thermal conductivity detec-

tion. For VFA determination, 1 ml samples was acidified

with 70ml 17% phosphoric acid, centrifuged at 10,500 rpm

for 20 min, and analyzed on GC equipped with flame

ionization detector.

RESULTS AND DISCUSSION

Examples of biogas output from centralized biogas

plants and unknown process imbalances

As mentioned, the frequency of process imbalances is

unknown but the overall impression from the data collec-

tion and interviews was that imbalances in average occurs

approximately once per year at the plants. Typical examples

of the biogas output from three different plants are

illustrated in Figure 2a–c. During a period of 3 years one

plant (Figure 2a) had 4 production failures all lasting 3–6

weeks while another plant (Figure 2b) had one severe

process imbalance lasting for several months. The third

plant that is illustrated (Figure 2c) was exposed to two

severe imbalances during a period of 10 years. The cause of

imbalance in all examples was unknown but according to

the interviews inhibition by long chain fatty acids (LCFA)

was suspected in Figure 2b, while ammonia inhibition was

suspected in Figure 2c.

Examples of well defined process imbalances

and case studies

Example 1: ammonia inhibition caused by

degradation of blood

Figure 3a shows the reactor performance of a full-scale

plant during digestion of blood. The plant has a reactor

capacity of 7,600 m3 and consists of three equal sized

reactors that are operated at 538C with a HRT of

approximately 17–18 days. The plant treats approximately

362 tons manure/d together with approximately 75 tons/d

alternative waste (organic industrial waste). From the

beginning of September 2005 the organic industrial waste

consisted of blood from pigs. An increase in ammonia

concentration and VFA was seen immediately and from the

middle of October a decrease in biogas production of

approximately 32% was observed. The blood was omitted

from the feedstock from the 10th of November and approxi-

mately 2 weeks after the biogas production was back at the

original level. The whole inhibition period of the methane

production lasted for approximately 6 weeks. Not surpris-

ingly the data from the plant shows that the process

imbalance could have been avoided if the warning by the

increasing VFA concentrations had been applied in the

operation procedures. Besides this, the sudden sharp

increase in ammonia concentration also gave an indication

of a rather unrestricted reactor operation and an unbalanced

process. The data also raises the question if the operation

temperature of the plant was suitable for treatment of the

blood and if blood should have been added to the reactors

at all. It is well known that the inhibitory effect of ammonia

increases with temperature (Anthonisen et al. 1976). In this

context, the process at the full-scale plant was simulated in

a lab-scale reactor experiment at mesophilic and thermo-

philic temperatures (Figure 3b–d). The loading with blood

was approximately the same as in the full-scale plant

(18–20% w/w). As in the full-scale plant an immediate

significant increase in VFA concentration in the thermo-

philic reactor was observed when blood was added, while a

more moderate increase was seen in the mesophilic reactor.

A clear increase in methane production was also observed

(highest in the mesophilic reactor) due to an increase of

the organic loading with easily degradable blood. This

pattern was also seen in the full-scale plant. The methane
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production in the thermophilic reactor started to decrease

after only 6 days of feeding with blood and the production

never fully recovered during the experimental period,

despite the fact that the reactor was not added blood from

day 60. An inhibition/decrease of the methanogenesis in the

mesophilic reactor was also seen from approximately day

55. Interestingly, the free ammonia concentration (NH3) in

that reactor were not high and well below the inhibitory

Figure 2 | Typical methane production profiles at three centralized biogas plants in Denmark. Several process inhibitions can be distinguished.
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level of 0.7–1.0 g-N/l that previously has been suggested

(Angelidaki & Ahring 1993; Hansen et al. 1998). This pattern

illustrates that not only free ammonia but also other

components in the blood affected the process stability of

the reactors.

The results of this case study show that operation

temperature has a high impact on process stability during

codigestion of manure with pig’s blood. The results also

show that it was not possible to obtain a stable codigestion

of manure with blood neither at thermophilic nor meso-

philic temperatures when applying the same loading

conditions as at the full-scale plant. Therefore, we conclude

that blood should only be added in small amounts and

under careful process monitoring in order to avoid process

inhibition at the plant. However, the present case study

also illustrates one of the practical problems that many of

the biogas plants are facing. Due to contract obligations

the plants are sometimes forced to take in large amounts

of industrial waste at inappropriate moments. Because of a

limited prestorage capacity (Figure 1) the waste is sub-

sequently fed to the reactors at a loading rate that is

unsuitable for obtaining a stable process.

Example 2: acute inhibition by tall oil

During spring 2006 two mesophilic centralized biogas

plants were subject to severe process inhibitions. In one

of the plants, the reactors needed to be emptied and

re-inoculated with digested biomass in order to re-establish

the production. Prior to the inhibition the plant had been

added tall oil twice within a few days in an amount of 6 g/l.

Apparently, the tall oil had an acute toxic effect to the

process. The methane potential of tall oil was estimated

by the supplier to be “high”, but no practical evaluation of

the degradability/toxicity of the product was performed

before it was added to the plant. The inhibitory threshold

level of tall oil was evaluated in our laboratory (batch tests)

and found to be as low as between 0.1 to 1.2 g/l (Figure 4).

Figure 3 | Anaerobic co-digestion of pigs blood and cattle manure at (a) full-scale conditions and (b–c) lab-scale conditions. (b–d) Period 1: half loading (100 ml manure/d); Period 2:

full loading (200 ml manure/d); Period 3: 40 ml blood/d and 160 ml manure/d; Period 4: 40 ml blood/and 60 ml manure/d in the mesophilic reactor, 200 ml manure/d in the

thermophilic reactor.
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Although inhibitions caused by LCFA sometimes can be

easily distinguish in batch experiments than in reactor

systems (Nielsen & Ahring 2006), the results shows that the

knowledge about the waste composition and its degradation

characteristic was inadequate. This example of a process

imbalance is also a result of a practical problem that the

centralized biogas plants often are facing. The amount of

industrial organic waste is inadequate and strong compe-

tition for this limited resource exists. In order to withhold

an acceptable biogas production some plants are, therefore,

willing to take risks and treat unknown waste products.

Example 3: foaming in pre-storage tanks and reactors

Foaming in the pre-storage is a problem repeatedly

observed at the Danish biogas plants. A sudden lowering

of pH due to inexpedient mixing of different waste types

leading to a CO2-stripping is normally considered as the

main reason for foaming incidents. The practical reason for

most of the foaming problems is a limited number (1–3) of

pre-storage tanks forcing the plants to mix the different

waste products before feeding to the reactors (Figure 1).

Therefore, construction of more prestorage tanks would

have helped in limiting this problem.

Sometimes foaming is not only observed in the pre-

storage tanks but also occurs inside the reactors. This is

illustrated in Figure 5. In this plant the foaming also affected

the biogas production. Foaming started in the beginning of

April 2003 and happened frequently during a period of

almost 2 years. As a consequence of the foaming a slow but

long term decrease in methane production was observed.

Thus from June 2004 to March 2005 the production was

32% lower than before the foaming problems started.

According to an interview with the plant the foaming

could not be related to a specific substrate and the problem

ended just as suddenly as it had started.

From the results of the case studies and data collection, it

is our impression that more knowledge about the waste

products is needed at the biogas plants. This is especially

important with regard to different degradation character-

istics such as the toxicity levels (exemplified in case study 2)

and the formation of inhibitory by-products such as ammonia

(exemplified in case study 1). This can be obtained by some

of the simple experiments that were used in the present

study. From a “practical point of view” other improvements

could be obtained by constructing more pre-storage tanks.

This action would help on foaming problems and at the same

time ensure a more precise dosing of the individual waste

product, for instance blood, which would help increasing

the process stability. Finally, a more precise identification

and removal of the complex/inhibiting waste types, such as

tall oil, would be possible if more pre-storage tanks were

build, since the product could be analyzed/tested before

feeding it to the reactors. All in all, it is our believe that

construction of more prestorage tanks would be very helpful

and seems as a simple way for lowering the number of process

imbalances at the centralized biogas plants in Denmark.

Methane potential left in the residuals

Besides actual process failures, approximately 25% of

the biogas plants had an unexploited methane potential of

20 to 30% in the residual (Table 1). Such suboptimal

Figure 4 | Toxicity effect of various concentrations of tall oil on the anaerobic

digestion of cattle manure in batch vials. The figure shows the

development of methane production following addition of tall oil. Values

are given as means of triplicates with standard deviations.

Figure 5 | Methane production profile of a centralized biogas plants during a period of

frequent foaming in the pre-storage tanks and the reactors.
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process conditions are often long term and more difficult to

recognize than actual process failures. Identification requires

either correlation of the plant’s methane production with

the expected methane production based on the influent

feedstock or estimation of the process stability as indicated

by VFA levels or by estimation of the residual methane

potential of effluent biomass.

In Table 1 the estimated methane loss has been related

to various operation parameters that potentially could affect

the significance of the methane loss. Although the loss is a

product of the listed parameters and that large variations in

the parameters occur between the plants some tendencies

can be seen. Low manure fractions in the feedstock (high

fractions of industrial waste) were connected to large

methane potential losses possibly due to a higher organic

loading of the reactors. Additionally, short HRT’s in the

reactors could also be connected to high residual methane

potentials although some plants with low HRT in the

reactors had a lower methane loss (Filskov and Vaarrst-

Fjellerad) than that some plants with a longer HRT

(Blåbjerg and Lintrup). The reason for this inconsistency

is that, some of the plants with a short HRT in the reactors

has a long HRT in the post-storage tanks and a therefore a

rather large fraction of the methane production is obtained

via this second digestion step. No connection was observed

between the operation temperature and the methane loss

because the retention times in general has been correctly

incorporated in the reactor configuration, i.e. mesophilic

plants on average has a longer retention time (29 days) than

thermophilic (16 days) plants.

Suboptimal process conditions caused by high ammonia

concentrations in the reactors (.4 g-N/l) have previously

Table 1 | Methane loss (%) at the Centralized biogas plants related to various operation conditions. The loss was estimated as the amount of methane produced from the residuals

compared to the methane production of the plant

Plant Methane loss (%) Temperature (m/t)p Manure content (%) HRT reactor (days) HRT post-storage (days) Ammonia-N (g/l)

,10% methane loss

Filskov 2.9 t 68 9 50 3.3

Studsgaard 3.6 t 91 20 15 3.6

Vegger 4.4 t 81 19 34 3.1

Vaarst-Fjellerad 6.1 t 73 12 53 1.6

Blåhøj 8.3 t 83 15 16 3.1

Revninge 9.8 m 82 67 67 4.3

Average 5.9 79.7 23.7 39.2 3.2

10–20% methane loss

Snertinge 10.3 t 59 20 6 3.0

Fangel 10.5 m 82 21 15 3.5

Lemvig 11.0 t 73 15 3 2.3

Hashøj 11.8 m 67 20 5 5.6

Nysted 14.0 m 87 32 15 4.4

Thorsø 15.0 t 94 16 6 3.8

Sinding-Ørre 17.4 t 72 18 1.7

Average 12.9 76.3 20.3 8.3 3.5

.20% methane loss

Vester Hjermitslev 20.1 m 67 23 41 6.4

Lintrup 21.2 t 76 19 3 3.1

Blåbjerg 27 t 63 15 4 3.8

Ribe 30.7 m 71 11 2.8

Average 24.8 69.3 16.0 16.0 4.0

pm ¼ mesophilic, t ¼ thermophilic.
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been reported as a reason for high methane potentials in

the residuals (Angelidaki et al. 2005), which often is used

as a guideline at the Danish centralized biogas plants. Such

pattern—although weak—was also seen in the present study.

Plants with a residual methane potential below 10% had

on average an ammonia concentration of 3.2 g-N/l while in

plants with a residual methane potential of more than 20%

the average concentration was 4.0 g-N/l. In this context,

estimation of ammonia might in some cases be useful—as

seen in case study 1 with digestion of blood—and regular

measurement of the ammonia concentration is performed at

a few plants. However one should not forget that ammonia

concentration does not reflect the state of the process, but

are a cause of an unrestricted reactor operation. Further-

more, the high impact of ammonia adaptation on the

inhibitory level (Angelidaki & Ahring 1993; Hansen et al.

1998) makes ammonia concentration somewhat difficult to

use as an indicator of suboptimal reactor performance.

CONCLUSIONS

From our interviews with various plant managers together

with our data-collection and lab-results we conclude that

the most frequent process imbalances that occurs at the

Danish centralized biogas plants are related to the compo-

sition and handling of the substrates. High concentrations

of ammonia and long chain fatty acids is often the cause of

inhibition but foaming might also affect the biogas output of

the process. The high concentrations of inhibitory com-

pounds are allowed to occur as a result of:

(a) Inadequate knowledge about the substrate composition.

(b) Inadequate knowledge about the degradation charac-

teristics of the waste, especially with regard to toxicity

level, formation of by-products and biogas potential.

(c) Inadequate process surveillance, especially with regard

to volatile fatty acids.

(d) Insufficient pre-storage capacity and inexpedient mixing

of the different waste products in pre-storage tanks

inducing foaming, and hindering exact dosing of specific

waste types to the reactors.
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a b s t r a c t

Strategies for recovery of ammonia-inhibited thermophilic biogas process, were evaluated in batch and
lab-scale reactors. Active methane producing biomass (digested cattle manure) was inhibited with NH4Cl
and subsequently, 3–5 days later, diluted with 50% of water, or with 50% digested manure, or with 50%
fresh manure or kept undiluted. Dilution with fresh cattle manure resulted in the highest methane pro-
duction rate during the recovery period while dilution with digested cattle manure gave a more balanced
recovery according to the fluctuations in volatile fatty acids. Furthermore, the process recovery of a
7600 m3 biogas plant suffering from ammonia inhibition was observed. The ammonia concentration
was only gradually lowered via the daily feeding with cattle manure, as is the normal procedure at Danish
full-scale biogas plants. Recovery took 31 days with a 40% methane loss and illustrates the need for devel-
opment of efficient process recovery strategies.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Anaerobic digestion is a technology widely used for treatment
of organic waste. During the process the waste is degraded with
a simultaneous energy production in the form of biogas (CH4,
CO2). In Denmark alone, 20 centralized biogas plants - with a reac-
tor volume of 550–8500 m3 – are in operation along with more
than 80 farm-scale plants. The main purpose of the plants is to di-
gest livestock manure together with organic industrial waste from
slaughterhouses, food processing industries etc. (Ahring et al.,
1992). A drawback of co-digesting manure and industrial waste
is the presence of high ammonia (NHþ4 /NH3) concentrations in
the reactors, emerging from a high natural ammonia concentration
in manure and from the production of ammonia during the
degradation of proteins, often present in high concentrations in
industrial waste (Nielsen and Ahring, 2007; Ramsay and
Pullammanappallil, 2001). Ammonia is essential for bacterial
growth but also inhibits the anaerobic digestion process if present
in high concentration. Free (un-ionised) ammonia (NH3) has been
pointed out as the cause of inhibition in high ammonia loaded pro-
cesses (Sprott et al., 1984). The free ammonia concentration is a
function of total ammonia concentration (NHþ4 + NH3) of tempera-
ture, pH (Anthonisen et al., 1976) and pressure (C02) (Vavilin et al.,
1995). Thus, an increase in temperature or pH will lead to an in-

crease in the fraction of free ammonia while increasing total gas
pressure leads to decreasing inhibition from free ammonia due to
a lowering of pH. Studies have suggested that adapted anaerobic
digestion of livestock manures is inhibited at a NH3-concentration
of 0.7–1.1 g-N L�1(Angelidaki and Ahring, 1993a; Hansen et al.,
1998) while the concentration needed for inhibition of an una-
dapted process can be as low as 0.08–0.10 g L�1 (Braun et al.,
1981; de Baere et al., 1984). Inhibition might also be related to to-
tal ammonia concentration (Kayhanian, 1999; Sprott and Patel,
1986; Wiegant and Zeeman, 1986). In this context, inhibition has
been reported to start at a total ammonia-N level of 1.5–2.0 g L�1

(Hashimoto, 1986; Van Velsen, 1979). However, an ammonia-N
tolerance of up to 3–4 g L�1 for an adapted process has also been
reported (Angelidaki and Ahring, 1993a).

Ammonia inhibition might affect the digestion process to differ-
ent levels ranging from mild suboptimal reactor performances
(‘‘inhibited steady state”) where mainly the methanogens are inhib-
ited and VFA are accumulated to severe inhibition affecting all
stages of the digestion process (Angelidaki and Ahring, 1993a; Han-
sen et al., 1998; Nielsen et al., 2007). In worst case the inhibition
might last for several months resulting in serious economical losses
to the biogas plants. Numerous studies have focused on the preven-
tion of various process imbalances, particularly via development of
different process control strategies and via automation and
enhancement of process monitoring (Ahring et al., 1995; Boe
et al., 2007; Cord-Ruwisch et al., 1997; Hansson et al., 2002,
2003; Hill and Holmberg, 1988; Hill et al., 1987; Marchaim and
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Krause, 1993; Nielsen et al., 2007; Pind et al., 2002; Sterling et al.,
2001; Steyer et al., 1999; Switzenbaum et al., 1990). Other studies
have tried to come up with practical solutions for overcoming inhi-
bition. Addition of materials – such as bentonite, glauconite and
phosphorite – with ion exchange capacity, have been able, to some
extent counteract inhibition and aid process recovery (Angelidaki
and Ahring, 1993b; Hansen et al., 1999; Krylova et al., 1997). Low-
ering the temperature from thermophilic (55 �C) to more moderate
conditions (40–50 �C) resulted in increase of the methane yield of
an inhibited reactor. This process improvement was ascribed to
the lowering of the free ammonia concentration due to temperature
decrease (Angelidaki and Ahring, 1994). However, the total ammo-
nia concentration will not be changed during such procedures and
many Danish biogas plants prefer to operate at thermophilic tem-
peratures, due to the generally higher degradation rates and better
sanitation effect (Angelidaki and Ellegaard, 2003). Increasing the C/
N ratio of the feedstock has been used to prevent ammonia inhibi-
tion and shift slightly elevated ammonia concentrations into the
range necessary for optimum biogas production. However, during
more serious inhibition levels this procedure will contribute further
to inhibition and makes recovery of the process difficult (Kayha-
nian, 1996, 1999). Finally, dilution of the reactor content with fresh
water can be an effective method for lowering the ammonia con-
centration. A side effect of this procedure can be a serious decrease
in biogas production and biotransformation capacity depending on
the reactor system (high-solids reactor) (Kayhanian, 1999).

Despite the significant amount of literature on the subject,
ammonia inhibition is still an everyday threat at biogas plants per-
forming codigestion and process imbalances caused by ammonia is
frequently reported. Careful substrate management and early
detection of inhibitions is, of cause, essential in order to minimize
the economic losses. However, since these preventive measures of-
ten fail; it is important to establish solid knowledge for recovering
the process as quickly as possible. Therefore, the purpose of the
present study was to test different strategies for obtaining a fast
recovery of the biogas process in manure based biogas plants suf-
fering from ammonia inhibition.

2. Methods

2.1. Recovery strategies

The general outline of the experiments in the study was to im-
pose ammonia inhibitions during anaerobic digestion of cattle
manure and subsequently test different strategies in order to facil-
itate the recovery of the process. The tests were carried out in
batch and continuously fed lab-scale reactor experiments and
one of the strategies was also applied on a full-scale biogas plant
suffering from ammonia inhibition. Since ammonia is not degraded
during anaerobic digestion we decided to base the recovery strat-
egies on simple dilution methods. The strategies were as follows:

– Recovery strategy 1 (RS1). In this strategy no changes were made
in the original operation parameters following a pulse load
ammonia inhibition. i.e., in the batch tests no dilution was
applied (self-recovery), and in the continuously fed reactor
experiments the daily feeding with fresh manure was continued
and thus the ammonia concentration was only gradually low-
ered through effluent wash out.

– Recovery strategy 2 (RS2). In this strategy the inhibited biomass
was diluted with distillated water in order to obtain a well
defined lowering of the ammonia concentration (Kayhanian,
1996).

– Recovery strategy 3 (RS3). The biomass was diluted with effluent
(digested biomass) that had been saved from a reactor treating

cattle manure. The design of the strategy was to make a moder-
ate lowering of the ammonia concentration (effluent contains
ammonia) with simultaneous addition of a non-inhibited active
biomass.

– Recovery strategy 4 (RS4). The biomass was diluted with fresh
manure. The intension of this strategy was to make a moderate
lowering of the ammonia concentration (as in RS3) with simul-
taneous addition of easily degradable material to stimulate a
high methane production concurrent with recovery.

2.2. Batch experiments

Blended cattle manure and the effluent from an anaerobic ther-
mophilic (55 �C) lab-scale digester treating cattle manure was
mixed in the ratio 3:5. The total solids concentration (TS) and vol-
atile solids (VS) of the mixture was 23.6 g�1 and 16.2 g L�1, respec-
tively. The total-N concentration was 3.0 g L�1 and the ammonia-N
concentration was 2.4 g L�1. The mixture was distributed in
amounts of 40 ml in 116-ml vials and the vials were incubated at
55 �C. Following nine days of steady methane production, NH4Cl
was added to the vials to obtain a final concentration of 7.0 g to-
tal-N L�1 and 6.4 g ammonia-N L�1. The vials were then incubated
for another 3 days at 55 �C and the different recovery strategies
were subsequently carried out: RS(1) continued incubation at
55 �C and no further changes. RS(2) the vial contents were diluted
with 40 ml of distillated water, resulting in a total nitrogen concen-
tration of 3.5 g L�1. RS(3) the vial contents were diluted with 40 ml
of effluent, resulting in a total nitrogen concentration of 5.2 g L�1.
RS(4) the vial contents were diluted with 40 ml fresh cattle man-
ure, resulting in a total nitrogen concentration of 4.6 g L�1.

Following the recovery attempts, the vials were incubated at
55 �C for a period of 29 days. Vials that were only added efflu-
ent:manure mixture (no NH4Cl) were incubated at 55 �C during
the whole experimental period and served as control vials. All
experimental series were conducted in triplicates. The methane
production was measured 3–4 times a week in all vials of each ser-
ies and the volatile fatty acids concentration (VFA) was measured
1–2 times a week in one vial of each series. Before each incubation
the vials were flushed with N2/CO2 (80%/20%), to obtain anaerobic
conditions, and subsequently closed with butyl rubber stoppers
and aluminum crimps.

2.3. Reactor experiments

Four 4.5 L continuously stirred tank reactors (CSTR) with a
working volume of 3.0 L (Angelidaki and Ahring, 1993a) were inoc-
ulated with effluent from a stable pilot-scale CSTR operating on
cattle manure at 55 �C. The reactors were named R1, R2, R3, R4
according to the different recovery strategies that later were to
be tested. The reactors were stirred by a propeller every third min-
ute for one minute at 100 rpm and operated at 52–54 �C. Two dif-
ferent batches of cattle manure were used as feedstock. Both
batches were kept at 4 �C and blended before use. The blended
manure was mixed with tap water in the ratio 1:2 in order to en-
able automatic feeding. During start up and from day 0–26 of the
experimental period the TS/VS content of the diluted manure were
16.5/12.0 g L�1 and the ammonia-N concentration 0.86 g L�1. From
day 26–53 of the experimental period the TS/VS content of the di-
luted manure were 27.1/21.2 g L�1 and the ammonia-N concentra-
tion 1.7 g L�1.

Start-up took two weeks. During this period the reactors were
gradually fed with 0–150 ml per day cattle manure. The reactors
were subsequently operated at full loading (200 ml d�1) for an-
other two weeks before initiation of the experiment (day 0). The
hydraulic retention time (HRT) of the reactors during full loading
was 15 days. The reactors were feed four times every 6 h.
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Ammonia inhibition was induced at day 16 of the experimental
period. The reactors were added NH4Cl in an amount resulting in a
free ammonia concentration (NH3) of 1.2 g-N L�1. This value was
chosen in order to exceed the level of 1.1 g-N L�1 that was found
to cause inhibition by Hansen et al. (1998). Specifically the reactors
were added the following amounts of NH4Cl: RS(1) 30.0 g L�1.
RS(2) 36.2 g L�1. RS(3) 38.7 g L�1. RS(4) 39.3 g L�1. The amounts
were slightly different in each case due to differences in initial
pH level. Following inhibition the daily feeding with 200 ml cattle
manure was continued.

The recovery strategies were carried out at day 21 of the exper-
imental period: RS(1) no changes in operation. RS(2) 50% of the
reactor volume was removed and substituted with water. The dilu-
tion ratio of 50% was chosen in order to obtain a theoretical free
ammonia concentration below the inhibitory level of 0.7 g-N L�1

suggested by Angelidaki and Ahring, 1993a. RS3) 50% of the reactor
volume was removed and substituted with effluent that had been
collected during the period of stable operation. The total-N and
ammonia-N concentration of the effluent was 1.77 and
1.13 g L�1, respectively. RS4) 50% of the reactor volume was re-
moved and substituted with undiluted fresh cattle manure with
a TS/VS content of 49.6 g L�1 and 36.0 g L�1, respectively. The to-
tal-N and ammonia-N concentration of the manure was 4.22 and
2.57 g L�1, respectively.

In all four strategies the daily feeding with 200 ml diluted cattle
manure was continued until the termination of the experiment at
day 53. During the experiment the reactor performance was ana-
lyzed with regard to methane production, VFA concentration, pH
and ammonia concentration.

2.4. Full-scale observations

During a period of one and a half year the process at a full-scale
biogas plant was followed in order to observe possible process
imbalances caused by ammonia inhibition. The plant has a reactor
capacity of 7600 m3 and consists of three equal sized reactors that
are operated at 53 �C with a HRT of approximately 17–18 days. The
plant treats approximately 362 tons manure d�1 together with
approximately 75 tons d�1 alternative waste (organic industrial
waste). Samples from reactor one were send to our laboratory 3–
5 times a week. The samples were frozen and analyzed once a
month with regard to VFA concentration. Monitoring of the biogas
production was done at the plant as well as a weekly measurement
of ammonia concentration and pH of the reactor. From the 10th of
October 2006 a significant increase in VFA concentrations was ob-
served and from the 16th of October a decrease in biogas produc-
tion was also seen. Before the imbalance (middle of September) the
substrate had been supplemented with waste from a mink farm.
This waste normally has an high ammonia content and was possi-
bly the cause of the imbalance. However, no analysis of the waste
was made by the plant, but a strong indication of an ammonia inhi-
bition was given by a clear increase in ammonia concentration
simultaneous with the increase in VFA. A strategy similar to RS1
was used to mitigate the ammonia inhibition and facilitate the
recovery of the process. Thus feeding with industrial waste, includ-
ing mink farm waste was immediately stopped from the 18th of
October and replaced by manure. RS1 was chosen as the preferred
strategy since the plant found this procedure to be safer with re-
gard to overloading and easier to perform than the other strategies.

2.5. Analytical methods

TS, VS, pH and ammonia content were determined using stan-
dard methods (Greenberg et al., 1998). CH4 production from the
batch experiments was measured by gas chromatography using
flame ionization detection. CH4 and CO2 production from the reac-

tors were determined by gas chromatography using thermal con-
ductivity detection. For manual VFA determination 1 ml of
sample was acidified with 70 ll 17% phosphoric acid, centrifuged
at 10,500 rpm for 20 min, and analyzed on a GC equipped with
flame ionization detector.

3. Results and discussion

3.1. Batch experiments

Addition of NH4Cl resulted in a 53% decrease in methane pro-
duction from day 0 to day 3 (Fig. 1). Thus, the control vials pro-
duced 35 ml CH4 while an average production of 16.5 ml CH4

were obtained from the test vials. Shortly after the initiation of
the recovery strategies a further aggravation of the process was ob-
served for RS2 (water dilution) and RS3 (effluent dilution) vials
when compared to RS1 (no dilution) vials. However, at the end of
the experiments the accumulated methane production in RS2 vials
were comparable to the control vials while the methane produc-
tion of RS1 and RS3 vials only corresponded to 64% and 83% of
the control vials, respectively. In RS4 vials (fresh manure dilution)
a complete recovery of the accumulated methane production was
observed only three days after the initiation of the recovery strat-
egy. Furthermore, the strategy led to a significant increase in meth-
ane production and at day 29 RS4 vials had produced 476 ml CH4

corresponding to 420% of the control vials. However, in batch
experiments the addition of extra substrate without loss of bacte-
rial culture does not match the situation in a continuously oper-
ated process.

From the results of the batch experiments, RS4 seems as the
best strategy due to the fast recovery and increase of the methane
production. A full recovery of the process was also achieved with
RS2 but it took a considerably longer time than with RS4, although

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

m
et

ha
ne

 (m
l)

Recovery

0

100

200

300

400

500

600

0 5 10 15 20 25 30
time (days)

m
et

ha
ne

 (m
l) Recovery

Fig. 1. Batch experiments. A 3:5 mixture of cattle manure and digested manure
were incubated in batch vials at 55 �C. NH4Cl was added when a steady methane
production was observed in order to induce an ammonia inhibition. Three days
later different recovery strategies were carried out in order to mitigate the amm-
onia inhibition and facilitate the recovery of the process. The figure shows the
methane production with standard deviations following addition of NH4Cl. N: RS1,
h: RS2, �: RS3, s: RS4, �: Control vials.
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the ammonia concentration was lower in RS2 vials than in RS4
vials. The recovery efficiency of the methane production was,
therefore, not only related to the ammonia concentration but also
to the substrate composition. Complete recovery of the methane
production was not possible by application of RS1 and RS3. In
RS1 vials the process was still inhibited at the end of the experi-
ment because the ammonia concentration was not lowered. Insuf-
ficient lowering of the ammonia concentration was possibly also
the reason why the process never totally recovered in RS3 vials.

3.2. Reactor experiments

The output of the lab-scale reactor experiment is illustrated in
Figs. 2 and 3. Before addition of NH4Cl a stable process (i.e. stable
methane production and stable VFA levels) was observed for all
reactors. The average methane production was 234 ml g VS�1 for
R1, 226 ml g VS�1for R2, 263 ml g VS�1for R3 and 246 ml g VS�1for
R4. The acetate and propionate concentration was below 1 mM for
all reactors. Addition of NH4Cl (day 16) resulted in an immediate
inhibition of methanogenesis in all four reactors, and a slight drop
in pH from approximately 7.6 at day 16 to 7.3 at day 19. No
remarkable increase in the VFA concentrations was observed,
which illustrates that the ammonia inhibition was an overall inhi-
bition of the process and not only an inhibition of methanogenesis.

The initiation of the different recovery strategies at day 21 gave a
performance pattern resembling the one in the batch experiment,
but with some differences:

R1 (no changes in operation parameters). The inhibition in R1
continued until day 29 because of the rather slow dilution of the
reactor content that was obtained via the continued daily feeding
with cattle manure. From day 29 the methane production started
to recover and at day 31–32 the production was at a level similar
to the one before inhibition. A relatively high methane production
was observed in the days following termination of the inhibition
(32–42), possibly because of a surplus of fresh manure that had
not been degraded during the inhibition period. At the end of the
experiment the production had stabilized at the original level. A
significant increase in acetate was observed from 15 mM to
52 mM (day 25–30) just before the methane production started
to recover, which gave evidence that the fermentation processes
recovered before methanogenesis. The delayed increase in propio-
nate concentration and slow return back to the normal level (day
28–53) indicated that the syntrophic bacteria degrading propio-
nate were the slowest growing and the last microorganisms to re-
cover. In this context, it can be concluded that propionate gave the
best indication of when the entire process had stabilized, which is
in accordance to other studies (Nielsen and Ahring, 2006; Nielsen
et al., 2007). The free ammonia concentration was 1.2 g-N L�1
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when the inhibition was initiated but three days after the inhibi-
tion the concentration had decreased to a level of approximately
0.55 g-N L�1 (in all four reactors) due to a lowering in pH. The inhi-
bition in R1 continued from day 19 to day 29 although the NH3-
concentration was well below the suggested levels of 0.7 g-N L�1

to 1.1 g-N�1 (Angelidaki and Ahring, 1993a; Hansen et al., 1998).
This pattern illustrates that not only free ammonia but also addi-
tional factors might have been causing inhibition of the process.
This could have been the increase in NHþ4 concentration (Sprott
and Patel, 1986), lowering of pH or an increase in salinity (Cl�) (Ge-
bauer, 2004; Jackson-Moss et al., 1989; Panswad and Anan, 1999;
Vijayaraghavan and Ramanujam, 1999).

R2 (water dilution). Diluting with water gave an efficient lower-
ing of the ammonia concentration, although not a 50% decrease as
expected, probably due to a shift in ionic balance. In addition to
this, the dilution rate of ammonia from day 22–53 was lower in
R2 than in the other reactors, despite the similar feeding rate and
feedstock. Nevertheless, the recovery of the methane production
started earlier in R2 than in R1 because of the more efficient low-
ering of the ammonia concentration. Full recovery of the methane
production in R2 was, however, obtained only one day before R1,
corresponding to nine days after initiation of the recovery strategy.
Furthermore, no peak production was observed in the days follow-
ing termination of the inhibition (32–42) as seen in R1. As a conse-
quence of this the total methane production in R2 during the
recovery periods (day 21–42) was 8% lower than in R1. This illus-
trates a loss of methane potential when the reactor content was di-
luted with water, a problem also reported by Kayhanian (1999). In
comparison, this problem was not observed in the batch experi-
ment because the substrate was retained in the vials when per-
forming the recovery strategy. The increase in propionate
concentration in R2 during the recovery was comparable to the
propionate increase in R1, but the increase in acetate concentration
was more moderate in R2 because of the lower substrate concen-
tration and lower fermentation.

R3 (effluent dilution). An efficient reestablishment of the meth-
ane production in R3 was observed following initiation of RS3.
The production started to increase immediately after effluent
was added and had returned to the original level after only five
days (day 26–28). The total methane production in R3 during
the recovery periods (day 21–42) were 13% and 23% higher than
the productions in R1 and R2, respectively. A small peak in meth-
ane production was observed at day 29 possibly because of a
small surplus of fresh manure that had not been degraded during
the inhibition (like in R1). However, the biogas production from
day 26 to day 53 was comparable to the production before the
inhibition because the dilution with effluent did not change the
composition of the reactor content with the exception of the
ammonia concentration. The increase in acetate concentration
following inhibition was in the same range as during the water
dilution (R2) and much more moderate than in R1. A peak in pro-
pionate was also observed during the recovery in R3 but in con-
trast to the other reactors the increase started earlier and the
return was faster. The observed methane and VFA patterns illus-
trate a fast recovery of not only the methanogens but also the
syntrophic consortia in R3, when compared to the other reactors.
The reason was possibly due to the concept of RS3, i.e. addition of
a non-inhibited active biomass in combination with a lowering of
the ammonia concentration.

R4 (fresh manure dilution). Reestablishment of the methane pro-
duction in R4 following initiation of RS4 was in the same range as
in R3 and took only 5–6 days. However, a significant peak in the
production from day 29 to 39 gave an additional methane produc-
tion during the recovery periods (day 21–42) of 60%, 74% and 42%
in comparison to R1, R2 and R3, respectively. The increased pro-
duction was a consequence of the easily degradable extra organic

matter in the fresh manure used for dilution. This is a rather posi-
tive result with regard to minimization of the economic losses fol-
lowing the ammonia inhibition. However, reactor R4 was clearly
more unstable than R2 and R3 as indicated by the higher VFA
and lower pH. The drop in pH from 7.3 at day 19 to 7.0–7.1 from
day 23–27 was a consequence of the increase in acetate concentra-
tion and a rather low buffer capacity of the reactor content due to
the dilution of the feedstock. Most methanogens have a pH opti-
mum between 6.5 and 8.0 and the drop was as such not critical.
However, a further decrease in pH as a consequence of an in-
creased loading and a subsequent increase in VFA could have been
fatal. It is our believe that the process of reactor R4 was more
unstable than in R2 and R3 during the recovery period because
of the high organic loading, obtained from the dilution of the reac-
tor content with fresh manure. When compared to R1 the process
in R4 did on the other hand not seem more negatively affected.

3.3. Full-scale observations

From the 1st of August until the 15th of October the biogas pro-
duction at the full-scale plant was 20,000–25,000 m3 d�1 with a
methane content of approximately 65% (Fig. 4a). From the middle
of September a gradual increase was observed in ammonia concen-
tration, probably due to the feeding with organic waste from a
mink farm. The VFA concentration started to increase from the
10th of October and from the 16th of October a sudden decrease
in biogas was observed (Fig. 4b,c). The recovery attempt (similar
to RS1) was initiated at the 18th of October. This resulted in an
immediate reduction of the ammonia concentration but no clear
impact on the biogas production was observed until the 21st of
November. As a consequence of this, the recovery time of the over-
all process at the full-scale plant was considerably longer than in
R1 of the lab-scale reactor experiments. This may be due to dissim-
ilarities between the full-scale plant and the lab-scale reactors
with regard to operating conditions, feedstock composition and
reactor characteristics. Nevertheless, strategies based on the same
principles as RS1 are normally used at Danish biogas plants and the
data obtained from the full-scale plant stresses out the need for
development of efficient recovery strategies following ammonia
inhibition.

3.4. Evaluation of the recovery strategies

In the present study the recovery strategies were based on two
different parameters: the ammonia concentration following initia-
tion of the recovery and the substrate composition. However, when
evaluating the various strategies it is difficult to relate the effi-
ciency of the strategy directly to either the ammonia concentration
or the substrate composition. This was particularly seen in the
batch experiments where the recovery was more efficient with
manure dilution than with water dilution although the ammonia
concentration was higher. Furthermore, various counter effects of
the different processes occurring during anaerobic digestion might
obscure the evaluation. For instance, addition of easily degradable
substrate (manure) might result in overloading of the reactor and
result in increase of the VFA level and thereby decrease of the
pH. This was particularly illustrated in the R4 reactor experiment.
A lowering of pH will reduce the negative effect of free ammonia
via a decrease in free ammonia concentration but might in extreme
cases also deteriorate the process by and inhibiting
methanogenesis.

It is also important to mention that the scope of the study was
to compare the effect of diluting the biomass of ammonia-inhibited
reactors with different substances. Due to the workload of a CSTR
experiments only one dilution rate was selected (50%) in which
the free ammonia concentration in theory was lowered from a
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level of 1.2 g-N L�1 which is higher than the inhibitory level
(1.1 g-N L�1) suggested by Hansen et al. (1998) to 0.6 g-N L�1

which is lower the inhibitory level suggested by Angelidaki and
Ahring (1993a). The outcome of the strategies could have been
different if other dilution rates had been used or if the ammonia
concentrations in the reactors had differed.

In the batch experiments a full methane production recovery
was observed via application of RS2 and RS4. In comparison, a full
recovery was observed for all strategies in the reactors. The meth-
ane production of R1 and R2 showed almost the same recovery
time of app. 9–10 day. However, the lower methane production
in R2 does not favor RS2 and the very slow full-scale recovery ex-
cludes RS1 as a recommendable strategy. R3 and R4 had a similar
methane recovery time of 5–6 days but R4 had a significant higher
methane production in the days following recovery. This fact fa-
vors RS4 seen from a ‘‘plant-managers point of view” where a high
biogas production is preferable due to the economic aspects. How-
ever, the pronounced fluctuations in other process parameters (pH
and VFA) give evidence of an unstable process following the recov-
ery of methane production. Application of RS4 requires full focus
on all process parameters, which are unusual at large scale biogas
plants. A strategy similar to RS4 with several consecutive dilution
steps in stead of one, could perhaps stabilize the recovery process.
The more moderate fluctuations in process parameters in R3, espe-
cially propionate, show a more stable recovery process and favor

RS3 in comparison to the other strategies. However, various prac-
tical obstacles might to some extent be associated with this strat-
egy. Typically, the effluent storage capacities immediately
available at plant premises (Danish biogas plants) makes up only
approximately 1/4–1/3 of the reactor volume, which restricts the
dilution potential. As a solution to this problem, older digested
manure is often available from seasonal storage tanks, but at some
distance requiring costly road transport. Contamination of the
effluent with the inhibiting component – in this case ammonia –
might be another obstacle. Early detection of the process imbal-
ance is, therefore, crucial in order to moderate the ammonia in-
crease in the effluent. The ammonia concentration level in the
reactors during normal operation is also important for the applica-
bility of the strategy. In the present study the ammonia concentra-
tion of the effluent was only 1.1 g-N L�1 due to the dilution of the
manure, but the average ammonia concentration in Danish cen-
tralized biogas plants is usually in the range 2.5–3.5 g-N L�1

(Angelidaki et al., 2005; Nielsen and Ahring, 2007). It is therefore
expected that the lowering of the ammonia concentration via dilu-
tion with effluent will be less pronounced at full-scale plants than
in the reactor experiments of the present study. The ammonia con-
centration in fresh manure is normally slightly lower than the
effluent, but still in the range of 2–4 g-N/L. It is however, easier
to find ‘‘fresh” manure with relatively low ammonia concentration
(eg. cattle manure instead of pig manure) and use it for dilution of
ammonia-inhibited processes. Therefore, for practical applications,
the best solution for the plants seems to be RS3 in combination
with either RS2 or RS4. The ratio between the different strategies
depends on the ammonia concentration in the reactor/effluent/
fresh manure, the effluent storage capacity of the plant, the deliv-
ery capacity of fresh manure and the organic loading of the reac-
tors. It should also be emphasized that efficient monitoring of
process parameters such as VFA is not only important for early
indication of process inhibitions but also during recovery of an
inhibited process.

4. Conclusions

The results of the present study show that it is possible to im-
prove the recovery speed and stability of an ammonia-inhibited
anaerobic digester treating cattle manure by dilution of the bio-
mass with water, reactor effluent and manure. From an economical
point of view, dilution with manure was the most efficient strategy
because of a high methane production during the recovery period.
However the most stable recovery process was observed when the
biomass was diluted with reactor effluent.
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a b s t r a c t

Long chain fatty acids (LCFA) concentrations over 1.0 g L�1 were inhibiting manure thermophilic diges-
tion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production.
The aim of the work was to test and evaluate several recovery actions, such as reactor feeding patterns,
dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery
of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for
increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA and reducing the bio-
available LCFA concentration, were found to be the best recovery strategies, improving the recovery time
from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by
repeated inhibition and process recovery. The subsequent exposure of the anaerobic biomass to an inhib-
itory concentration of LCFA improved the recovery ability of the system, indicated as increasing degrada-
tion rates from 0.04 to 0.16 g COD_CH4/g VS day. The incubation time between subsequent pulses, or
discontinuous LCFA pulses, seems to be a decisive process parameter to tackle LCFA inhibition in manure
anaerobic co-digestion.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Anaerobic digestion is a process widely applied for treatment of
organic wastes and residues, and in Denmark particularly for man-
ure treatment. The economic viability of manure-based Danish
centralized and farm-scale biogas plants depends on, among other
factors, the specific production of methane per unit of treated
waste material. The high water content, together with the high
fraction of fibers in manure, is the main reasons for the low meth-
ane yield per weight. However, manure is excellent as a ‘‘matrix” to
allow anaerobic digestion of concentrated industrial wastes due to
its high buffering capacity and its content of a wide variety of
nutrients, necessary for optimal bacterial growth (Angelidaki and
Ellegaard, 2003). On the other hand, wastes from food industry,
and especially lipid containing wastes, have a high methane poten-
tial which can contribute to increase biogas production and conse-
quently to improve the plant economy (Salminen and Rintala,
2002a).

In anaerobic treatment systems, lipids are rapidly hydrolysed
by extracellular lipases to long chain fatty acids (LCFA) and glyc-
erol. LCFA are further degraded to acetate and hydrogen through

b-oxidation process (Weng and Jeris, 1976). Exploitation of the bio-
gas potential of lipids is difficult, because lipid containing wastes
often have low content of nutrients, low alkalinity (Angelidaki
and Ahring, 1997a,b) and, mainly, due to their toxicity towards
the anaerobic digestion process (Hanaki et al., 1981; Hwu et al.,
1996; Rinzema et al., 1994). Moreover, problems with anaerobic
treatment of lipids are caused by the adsorption of light lipid layer
around biomass particles causing biomass flotation and wash-out
(Hwu et al., 1997).

Adsorption of LCFA onto the microbial surface has been sug-
gested as the mechanism of inhibition, affecting transportation of
nutrients to the cell (Alves et al., 2001a,b; Hwu et al., 1998). The
LCFA inhibition is dependent on the type of microorganism, the
specific surface area of the sludge, the carbon chain length and of
the saturation (C@C) of LCFA (Hwu et al., 1996; Salminen and Rint-
ala, 2002a). It has been reported that LCFA are inhibiting anaerobic
microorganisms at very low concentrations, with IC50 values for
oleate over 50 and 75 mg L�1 (Alves et al., 2001b; Hwu et al.,
1996), palmitate over 1100 mg L�1 (Pereira et al., 2005) or stearate
over 1500 mg L�1 (Shin et al., 2003), at mesophilic temperature
range. Although thermophiles are more susceptible to LCFA
toxicity compared to mesophiles, they recover faster after LCFA-
inhibition due to their faster growth rates (Hwu and Lettinga,
1997). Methanogens were reported to be more susceptible to LCFA
inhibition compared to acidogens (Lalman and Bagley, 2002;
Mykhaylovin et al., 2005; Pereira et al., 2003). Fortunately,
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inhibition caused by LCFA is a reversible process; neither
syntrophic acetogenic nor methanogenic activities were irrevers-
ibly damaged, since the rate of methane formation increased dra-
matically within a short time after the LCFA-biomass associated
degradation had recommenced (Pereira et al., 2003, 2005).

Inhibition by LCFA is often causing serious process problems in
biogas plants. Therefore, methods to overcome inhibition would
have a significant advantage for the safe and stable operation of
co-digestion plants. Although LCFA are inhibitory for the anaerobic
biogas process at low concentrations, acclimatization of the anaer-
obic process to LCFA has been reported. Continuous or pulse expo-
sure has lead to increased tolerance to LCFA (Alves et al., 2001a;
Cavaleiro et al., 2008; Hwu et al., 1997). Moreover, methods such
as co-digestion (Fernandez et al., 2005), addition of adsorbents
(Angelidaki et al., 1990) or addition of easily-degradable co-sub-
strates, like glucose and cysteine (Kuang et al., 2002, 2006), have
been used for overcoming LCFA inhibition. Discontinuous feeding
of the system to promote development of an active anaerobic com-
munity, able to efficiently convert lipid-rich effluents, has been
also suggested (Cavaleiro et al., 2008; Nadais et al., 2006).

Although many studies are dealing with LCFA inhibition, only
limited attention has been paid to recovery strategies for an anaer-
obic process that has been inhibited by LCFA. In the present study
we have tested and evaluated different strategies based on feeding
patterns, dilution and absorption strategies, for fast recovery of
LCFA inhibited anaerobic digestion of manure. The recovery strat-
egies were investigated in batch and semi-continuously fed reac-
tors. Moreover, the effect of process acclimatization was
investigated by repeated inhibition by LCFA and subsequent pro-
cess recovery.

2. Methods

2.1. Analytical methods

Total solids (TS), volatile solids (VS), total Kjeldhal nitrogen
(TKN), ammonia nitrogen (NH4

+–N) and pH were determined
according to Standard Methods (APHA-AWA-WEF, 1995). Methane
content (CH4) and volatile fatty acids (VFA) in batch and semi-con-
tinuously fed reactors were measured with GC-TCD (MGC 82-12,
Mikrolab a/s, Denmark) and GC-FID (GC 20100, Shimatzu, Japan),
fitted with packed (1=4” Molsieve+1/4”Cromosorb 102 and reference
column: 1/8” Molsieve) and capillary (ZEBRON Phase ZB-FFAP) col-
umns, respectively, as described elsewhere (Angelidaki et al.,
1990).

For determination of LCFA in biological samples, some direct
procedures based on direct methanolic–HCl solution were tested
with good results (Neves et al., 2009; Sönnichsen and Müller,
1999). In the present study, a new method using clorotrimethylsi-
lane (CTMS) as fatty acids methyl esters (FAME) catalyst, without
prior extraction over lyophilized samples, was developed, based
on Eras et al. (2004) methodology. This methodology can be used
to determinate total fats and LCFA in solid, liquid or paste samples.

Moreover, the method allows small amount of sample to be used,
reducing the reaction temperature and processing time, character-
istics often needed on biological samples. Anaerobic reactor sam-
ples, from 0.5 to 1 mL, were transferred together with Extraction
Standard (ES), heptadecanoic acid (C17:0, 51610 Fluka puriss
>99.0%), to screwed pirex glass tubes (10 mL) and lyophilized over-
night at �40 �C. For soluble LCFA (LCFAS) determination, samples
were previously centrifuged (2 � 3500 rpm) and only soluble frac-
tion was placed on the pirex tubes. Afterwards a magnetic stir bar
was introduced together with 0.5 mL of CTMS (CTMS GC Panreac
352776.0207) and 1 mL of N2 saturated methanol, under a hood
fume, tighten the vials with Teflon screw cup and shacked at vortex
for 1 min. The tubes were introduced into aluminium block and
maintained in stirring and heating (90 �C) for 1.5 h reaction time.
When the vials were at room temperature, were opened and 1–
5 mL of hexane was added (dilution in order to obtain the desired
concentration of 0.5–600 mg L�1). Commercial powder NaHCO3

was added till no reaction (effervescence) was detected, and finally
2 mL of saturated solution of NaHCO3 was added. The vials were
shaken in vortex again and centrifuged (10 min 3500 rpm) till
phase separation. 900 lL of the organic phase were directly trans-
ferred to GC vial, together with 100 lL of methyl pentadecanoate
(C15:0 FAME, Fluka 76560 puriss. p.a. standard for GC) as internal
standard (IS).

FAME were identified and quantified by GC 3800 gas chromato-
graph (Varian, USA), fitted with CP7489:CP-Sil 88 FAME capillary
column (50m � 0.25mm � 0.2 lm, Varian, USA), flame ionization
detector (FID) and equipped with auto sampler (CP 8400. Varian,
USA). The FID was supplied with H2 and synthetic air, while He
was used as carrier and make-up gas with a flow rate of
2 mL min�1. Samples of 1 lL were injected in split mode. The oven
initial temperature was 60 �C during 1 min, then increased to
100 �C at 25 �C min�1, to 160 �C at 10 �C min�1, to 240 �C at
4 �C min�1, with a final isotherm step of 5 min. Injector and detec-
tor temperature were set constant at 270 �C and 300 �C, respec-
tively. 36 different FAME from C6:0 to C24:1 were calibrated
using FAME GC mixture (Supelco 18919-1AMP FAME Mix C4–
C24) and IS, from 0.5 to 600 mg/L, The recovery of LCFA, was deter-
mined by the ES (C17:0) recovered in blanks and real digested
manure samples, and it was always over 87.5% in all
determinations.

2.2. Substrates and inoculum

Cow manure was used as basis substrate. The manure was di-
luted with distilled water in order to decrease the ammonia level
and ensure that LCFA was the only inhibitor in the experiments.
The diluted manure used had an average concentration of 2.5%
TS and 2.0% VS (Table 1).

Digested thermophilic effluent from a biogas pilot-scale plant
(PP), digesting cow manure located at DTU (Kongens Lyngby, Den-
mark), with an average concentration of 3.0% TS and 2.2% VS, was
used as initial inoculum for experiments. In the subsequent exper-
iments, inoculum was provided from the effluent of the reactors

Table 1
Analysis of substrate, inoculum and adsorbents used in the experiments.

Diluted manure Inoculum Fibers Bentonite

BTA E1 E2 BTA E1 E2 E1 E2 E1&E2

TS (%w/w) 2.40 ± 0.05 2.45 ± 0.42 2.34 ± 0.73 3.02 ± 0.01 2.05 ± 0.29 2.04 ± 0.15 59.60 ± 7.96 21.01 ± 0.72 94.04
VS (%w/w) 2.0 ± 0.05 1.98 ± 0.38 1.93 ± 0.65 2.25 ± 0.01 1.47 ± 0.20 1.44 ± 0.18 34.80 ± 4.87 18.80 ± 0.70 5.09
TKN (g/kg) – 1.31 1.41 ± 0.25 – – 1.32 ± 0.06 – 5.17 ± 0.20 0.28 ± 0.21
NHþ4 –N (g/kg) – 1.05 0.92 ± 0.03 – – 0.91 ± 0.05 – 1.76 ± 0.34 –
pH – 7.52 7.49 ± 0.24 – – 7.68 ± 0.19 – 8.21 ± 0.01 �8 (10% H20)
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used in the present experiments. Table 1 summarizes the charac-
teristics of substrates, adsorbents and inoculum used in batch
and semi-continuously fed reactors.

To impose LCFA inhibition to the biogas process, a LCFA mixture
(LCFA), consisting of sodium oleate (C18:1), sodium stearate
(C18:0) and sodium palmitate (C16:0) in a ratio of 40:10:50 (w/
w/w), respectively, (analytical grade, BDH Chemicals Ltd., Poole
England), was used. This LCFA simulated the three major constitu-
ents in slaughterhouse wastewater sludge (Hwu et al., 1998),
which is considered to be one of co-substrates interesting in man-
ure based biogas plants.

Commercial powder bentonite (Al2O3 � 4SiO2 � H2O Prod 18609
Sigma–Aldrich, St. Louis, USA) and fibers, obtained from filtered di-
gested manure, were used as absorbents for the experiments test-
ing adsorption strategies. Initially, fibers were obtained from a
Danish manure centralized biogas facility, while in the subsequent
experiments were manually obtained by filtration of digested
manure from a pilot-scale plant (Kongens Lyngby, Denmark). This
caused some changes in composition (Table 1), however; the same
VS amount of fibers were added to the reactors in all experiments.

2.3. LCFA toxicity assay (BTA)

A batch toxicity assay (BTA) was carried out to determine the
toxicity level of LCFA, in manure based system, in order to estimate
the amount to be added in reactors for achieving a clear long last-
ing inhibition of the anaerobic process.

120 ml vials were used in the BTA with a working volume of
40 ml. The assay included: blanks (30 ml of inoculum and 10 ml
of distilled water), controls (30 mL of inoculum and 10 mL of di-
luted manure) and test vials with 30 ml inoculum and 10 ml of dif-
ferent dilutions of LCFA. The vials were inoculated under anaerobic
conditions, while gassing with N2 gas. Subsequently, the vials were
closed with rubber stopper and aluminium crimps and were incu-
bated at 55 �C without agitation. The methane production in the
head space of the vials was monitored by gas chromatography un-
til biogas production ceased. Each LCFA concentration was con-
ducted in triplicate.

LCFA was added in the vials as a pulse, when the methane pro-
duction from manure was increasing exponentially (at day 5). LCFA
was added to a total concentration of 1.0, 2.5, 4.0 and 6.0 g L�1 cor-
responding to 2.8, 7.0, 11.2 and 16.8 g COD L�1. Subsequently, vials
were vigorously agitated until the LCFA was dissolved/emulsified.
No LCFA was added in blanks and controls.

2.4. Reactors set-up, recovery strategies (E1 and E2)

To test the different recovery strategies eight reactors were
used. Glass vials (2.2 L total volume; 1.0 L working volume) closed
with a rubber stopper were used as reactors. Through the rubber
stoppers glass tubes with attached maprene tubes, were inserted
for feeding and sampling (liquid/gas). Feeding was applied once a
day (in semi-continuous experiments). The produced biogas,
recovered in aluminium bags (PET/MET-ALU), was measured daily
by water displacement system. The methane content of the gas
was measured by GC analysis.

Recovery experiment 1 (E1) was aiming to test recovery strate-
gies on un-adapted biomass (not pre-exposed to LCFA). All the
reactors were run with manure until the process was stabilised
(daily fed with fresh manure with a organic loading rate (OLR) of
1.0 g VS L�1 day�1 and an hydraulic retention time (HRT) of
20 days). This was done for achieving a stable methane production
before inhibiting them with the LCFA (4 g L�1). A control reactor
(Rcontrol), not inhibited and fed daily with fresh manure, was run
during the whole experimental period. No feeding was applied to
the reactors after inhibition (except for one case, see below). The
recovery actions tested were:

� Feeding strategies: (a) No-feeding (Rno-feed) and (b) continuous
feeding (Rfeed) with fresh manure, and HRT of 20 days corre-
sponding to an OLR of 1.0 g VS L�1 day�1.

� Dilution strategies: Replacement of 40% of the reactor content by:
(a) fresh manure (Rmanure); (b) digested manure or effluent from
reactors before inhibition (Rinocula) and (c) water (Rwater).

� Adsorption strategies: (a) Addition of fibers (Rfiber), obtained from
filtered digested manure and (b) addition of bentonite powder
(Rbentonite), both in the quantity of 5 g VS L�1.

E1 was repeated twice (RUN1 and RUN2), or two LCFA pulses
were applied.

Recovery experiment 2 (E2) was aiming to test recovery strate-
gies in the same reactors, pre-exposed to LCFA from E1. The reac-
tors in E2 were daily fed with manure, and were subsequently
exposed to inhibition by pulse addition of LCFA. The main differ-
ence between E1 and E2 was that in experiment E1 daily feeding
with manure was ceased after LCFA was applied (except for Rfeed),
while in experiment E2 the daily feeding of the reactors with man-
ure continued also after the initiation of the recovery strategy (ex-
cept for Rno-feed). E2 was repeated twice (RUN3 and RUN4), or two
subsequent LCFA pulses were applied. Analysis of LCFA-FAME time
course was only monitored in E2 by GC-FID.

The Rno-feed was run only twice (one for E1 and other for E2 cor-
responding to RUN1 and RUN3), due to the long recovery time
needed. For all the experiments, the recovery strategies tested
were applied 48–72 h after inhibiting the system, in order to sim-
ulate full scale plant conditions, considering that some time would
be necessary in an industrial facility to detect the inhibition prob-
lem and to apply the corrective strategy (at least 2 days without
biogas production). The reactors were kept inside 55 �C incubators
with continuous shaking during the whole experimental time. The
experimental set up is summarized in Table 2.

To compare process performance in consecutive inhibited-
recovered reactors, recovery time (days), the maximum methane
production rate (g COD_CH4 g�1 VS day�1) and acetate maximum
consumption rate (g COD_Ac g�1 VS day�1) were calculated, per
unit of initial measured VS (biomass). The recovery time was calcu-
lated as the time between the initiation of the recovery action and
the time when the methane production rate exceeded the mean
value of control reactor (Rcontrol). The maximum methane produc-
tion rate was calculated as the maximum slope of the methane
yield curve, while the acetate consumption rate was calculated

Table 2
Summary of the experimental set-up.

Exp Reactor
configuration

Temp. (�C) Agitation LCFA pulse (g L�1) RUN Recovery strategies Manure after
recovery action

BTA Batch 55 No 1.0, 2.5, 4.0 and 7.0 – – –
E1 Semi-continuous 55 Shaker 4 RUN1 & RUN2 No-feed, feed, inocula, manure, water, bentonite, fiber No (except Rfeed)
E2 Semi-continuous 55 Shaker 4 RUN3 & RUN4 No-feed, feed, inocula, manure, water, bentonite, fiber Yes (except Rno-feed)
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as the maximum slope of the acetate consumption profile, when
maximum methane production rate was achieved.

3. Results and discussion

3.1. LCFA toxicity assay

The methane production time course from the LCFA toxicity as-
say is shown in Fig. 1. The methane production ceased after LCFA
pulse, shown in Fig. 1 as a decrease in the accumulated net meth-

ane production, because the methane production from control
vials was subtracted (Control plotted in Fig. 1). For all concentra-
tions of LCFA over 1 g L�1 tested, clear inhibition was detected.
The methane production ceased and did not recover the control va-
lue for up to 12–17 days for LCFA concentrations of 2.5–4.0 g L�1.
For vials in witch 6.0 g L�1 was added, more than 20 days elapsed
before methane production was recovered. From results, a concen-
tration of 4.0 g L�1 was chosen as the target LCFA concentration to
impose inhibition on subsequent experiments E1 and E2, due to
the clear and long lasting inhibition caused at this concentration.

After the initial inhibition, the process self-recovered for all
tested concentrations (Fig. 1). This is in accordance with previous
results, where the same pattern was observed, a temporary inhibi-
tion that was monitored as a lag-phase. This phenomenon was re-
ported to be adscribed to surface adsorption and transport sites
(Cavaleiro et al., 2008; Pereira et al., 2005).

3.2. E1: LCFA inhibition of un-adapted semi-continuous reactors and
subsequent application of recovery strategies (no feeding after
recovery action was applied)

As a part of the recovery strategy, the daily feeding with manure
was ceased in all the reactors, after application of the LCFA pulse,
except for the Rfeed strategy and the Rcontrol, which were fed daily
with diluted fresh manure with an HRT of 20 days. It was clear that
the strategy of self-recover process (Rno-feed) was the strategy that
resulted in the slowest recovery time, which was over 40 days,
compared to 9 or 7 days in Rfeed for RUN1 and RUN2, respectively
(Fig. 2, and Table 3). Additionally, VFA accumulation in Rno-feed

was significantly higher, 92.8 mM compared to 47.2 mM or
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Fig. 2. Methane production (L CH4/L day) and VFA concentration (mM) during E1 (no feed after recovery action was applied). Arrows indicate the LCFA pulse (4 g/L) and the
time of recovery action application.
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54.8 mM in Rfeed for RUN1 and RUN2, respectively. The daily feed-
ing of the reactor with manure (Rfeed), resulted in reduction of the
inhibitory LCFA concentration, due to dilution by feeding. By calcu-
lating the expected methane production from the substrates intro-
duced in Rno-feed (methane production measured/theoretical
production expected), it was found that over 90% of the expected
methane production was achieved. Oppositely, low methane
recovery was obtained in Rfeed, indicating that part of the LCFA
was washed undegraded out of the reactor, allowing the system
to recover faster.

The fastest recovery time was obtained, as expected, when the
inhibited reactor was diluted with inoculum (Rinocula). 3 days after
the application of the recovery action, the process recovered and
the lowest VFA accumulation was registered, 28.3 mM (Fig. 2 and
Table 3). Dilution strategies, with the replacement of 40% of reactor
content, resulted in dilution of the initial LCFA concentration, esti-
mated on 2.4 g L�1 (60% compared to the initial concentration). The

reactor diluted with manure (Rmanure) also showed a fast recovery
time (4 days), but the maximum methane production rate and the
maximum VFA accumulated levels in Rmanure were also higher, due
to the extra organic material contained in the fresh manure com-
pared to Rinocula (Fig. 2 and Table 3). However, in the second run
(RUN2) those differences disappeared, with a very similar behav-
iour of Rinocula and Rmanure. The dilution introduced in Rwater had a
positive effect on the first run (RUN1) over inhibition, but the
recovery time increased on the second run (RUN2), from 5 to
20 days (Table 3), by the consecutive wash out of biomass and
residual organic matter (2 consecutive dilutions by water intro-
duced in only 21 days without feeding the system). The longer
recovery time in the Rwater was attributed to the decrease also in
the biomass content of the reactor which was not the case when
dilution was made by inoculum (Rinocula) and fresh manure
(Rmanure). The content of biomass relative to LCFA concentration
has been described as critical for the hydrolysis and acidification

Table 3
Process parameters obtained during E1 (RUN1 and RUN2).

RUN Max Prod. Rate (L CH4/L day) Max VFA (mM) Recovery time (days)

1 2 1 2 1 2

Rcontrol 0.38 0.41 09.0 05.1
Rno-feed 0.89 92.8 40
Rfeed 1.04 1.15 47.2 54.8 9 7
Rinocula 0.81 0.50 28.3 47.9 3 3
Rmanure 1.17 1.34 39.7 43.3 4 3
Rwater 0.72 0.66 28.6 32.7 5 20
Rbentonite 0.99 1.29 50.1 56.3 7 17
Rfiber 1.39 1.68 39.2 83.7 5 6
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Fig. 3. Methane production (L CH4/L day) and VFA concentration (mM) during E2 (semi-continuous feeding with manure after recovery action was applied). Arrows indicate
the LCFA pulse (4 g/L) and the time of recovery action application.
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of lipids (Miron et al., 2000; Salminen and Rintala, 2002b). The
lipid-to-inoculum ratio has been previously shown to affect spe-
cific methanogenic activity during slaughterhouse waste digestion
and LCFA inhibition (Salminen et al., 2000). Similarly, we can con-
clude that the inhibitory effect of LCFA was not only depended on
the LCFA concentration, as it was shown in batch toxicity assays
(Fig. 1), but also on the LCFA/biomass ratio, as it was shown by
recovery time (Table 3) during discontinuous reactors operation
when dilution with inoculum was applied.

The addition of adsorbents such as bentonite (Rbentonite) or fibers
(Rfibers) had a positive effect on the recovery of the LCFA pulse,
compared to the Rfeed (reduction of the recovery time from 9 days
in Rfeed to 7 or 5 days in Rbentonte or Rfiber in RUN1, respectively),
with similar or lower VFA levels in reactors where absorbent were
added (Fig. 2 and Table 3). Another advantage of using adsorbents
as process recovery agents, compared to dilution strategies was the
possibility of utilization of the total biogas potential contained in
the LCFA, as LCFA was retained in the reactor, contrary to the dilu-
tion strategies, where a significant part of the initial LCFA concen-
tration (40%) was removed undegraded from the system. An
exception of adsorption recovery actions behaviour was reported
in E1, in the second run (RUN2), with an increase in recovery time
(6–17 days). This was due to the lower amount of bentonite and fi-
bers (2.22 g VS L�1) that were used in RUN2 compared to the RUN1,
as it was assumed that fibers and bentonite were still inside the
reactors in significant amounts (reactors were not fed during E1,
and only small amounts were retrieved for sampling analyses).
This behaviour would be discussed later, together with E2 results.

3.3. E2: LCFA inhibition of pre-exposed biomass in semi-continuously
fed reactors and subsequent application of recovery strategies (daily
feeding with manure after recovery action was applied)

This experiment was started approx. 2 months after experiment
E1 was finished. During those 2 months the reactors were incu-
bated at 55 �C as batches. Thereafter, semi-continuous feeding of
the reactors started with one daily feeding with diluted fresh man-
ure at an HRT of 20 days until constant production from diluted
manure. Opposite to E1 feeding with manure was maintained dur-
ing the entire experiment, except for Rno-feed, to simulate full scale
co-digestion operation where feeding is rarely stopped.

As in E1, the Rno-feed was the slowest to recover in experiment
E2, although the recovery time was reduced to 10 days compared
to 40 days in E1, and with lower accumulated VFA levels (Fig. 3
and Table 4). Daily feeding of the reactor with manure (Rfeed), im-
proved the process performance, due to dilution and washing ef-
fect, in accordance with experiment E1. However,
discontinuation of the feeding is the most common action, to re-
cover inhibition in full scale biogas plants. It is broadly accepted
that when a process is inhibited and stressed, continuing reactor
loading would lead to further VFA accumulation and maybe acidi-
fication. However, in our study, where LCFA inhibition was the

cause of imbalance, waiting for process self-recovery was the
worse strategy.

The effect of the dilution strategies in experiment E2 was sim-
ilar to experiment E1 (Figs. 2 and 3) and was confirmed by the to-
tal LCFA degradation profiles of Rinocula and Rwater. The
concentration of total LCFA (C18:1, C18:0 and C16:0 in Fig. 4)
was reduced immediately after the dilution action with inoculum
or water, to 60%, of the original LCFA concentration. The main dif-
ference between Rinocula and Rwater was the higher content of
microbial biomass in Rinocula, resulting in a faster LCFA degrada-
tion rate (slopes in Fig. 4) and consequently in shorter recovery
time and lower VFA accumulation levels compared to Rwater, both
in RUN3 and in RUN4 (Table 3). In Rwater dilution strategy in E2 a
clear improvement compared to E1 was observed (Tables 3 and 4),
reducing the differences with the other dilution strategies (Rwater

compared to Rinocula or Rmanure in Table 4) by new biomass and or-
ganic matter introduced during daily feeding with manure. Dilu-
tion by manure still showed faster recovery compared to
dilution with water (Table 4), which might be due to the higher
biomass/LCFA ratio in Rmanure compared to Rwater. Similar results,
where increasing the biomass/LCFA ratio by e.g. recirculation,
could successfully recover LCFA inhibited process, have previously
been reported (Hwu et al., 1997; Mladenovska et al., 2003; Salmi-
nen and Rintala, 2002b). In industrial facilities is not always easy
to obtain new uninhibited inoculum, therefore, in such cases, dilu-
tion by fresh manure might be more practical.

Addition of adsorbents (Rbentonite and Rfiber) as recovery strategy
in experiments E2 improved the recovery time compared to Rfeed,
from 4–5 days to 2–3 days, and showed a higher utilization of LCFA
(Fig. 3 and Table 4), which was in accordance to the observations in
E1. Beccari et al. (1999) observed positive effect of bentonite addi-
tion during anaerobic degradation of olive oil mill wastewaters,
while Nielsen and Ahring (2006), reduced oleate inhibition by add-
ing biofibers (digested fibers) to continuously fed reactors digest-
ing manure. Those reports proposed that adsorbents were able to
bind the lipids or LCFA on their surface, lowering the adsorption
to the microbial cells, and thus stimulating methane production.
Adsorption is considered as a rapid physico–chemical mediated
phenomenon, while desorption is biologically mediated (Hwu
et al., 1998; Nadais et al., 2003; Ning et al., 1996). Bentonite and
fibers were added to the reactors 2 days after the LCFA pulse, and
consequently a significant part of LCFA may have already been ad-
sorbed to the biomass. This previous absorption to biomass might
have been the reason for the absence of clear effect in Fig. 4, where
the concentration of total LCFA just after the application of
recovery strategy in Rfiber or Rbentonite was quite similar to Rfeed.
By measuring the soluble fraction of LCFA (LCFAS) i.e. the fraction
non-associated to particles, in RUN4, the day after the application
of the recovery strategy, a lower concentration of LCFAS was found
in Rbentonite (81.4 mg C18:1 L�1 or 110.7 mg C16:0 L�1) compared to
Rfeed (179.4 mg C18:1 L�1 or 270.7 mg C16:0 L�1). This was consis-
tent with the assumption that absorbents such as bentonite can re-

Table 4
Process parameters obtained during E2 (RUN3 and RUN4).

RUN Max Prod. Rate (L CH4/L day) Max VFA (mM) Recovery time (days)

3 4 3 4 3 4

Rcontrol 0.37 0.39 04.8 04.3
Rno-feed 0.77 60.4 10
Rfeed 1.14 1.64 56.3 65.3 4 5
Rinocula 0.82 0.90 26.4 37.7 3 3
Rmanure 0.96 1.07 39.3 36.6 4 2
Rwater 0.83 0.76 26.6 31.4 5 7
Rbentonite 1.47 1.88 51.2 41.0 2 3
Rfiber 1.13 1.58 56.1 49.3 3 3
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sult in recovery of the process, by binding LCFA and thus removing
the cause of inhibition.

In E1 a reduced (Rfiber) or negative (Rbentonite) effect of recovery
action in the RUN2 was observed (RUN1 compared to RUN2 in
Fig. 2 and Table 3). This could be explained with the assumption
that the residual absorbents from RUN1 may not possess the same
absorbent capacity as ‘‘un-used” adsorbents. Active adsorption
sites of remaining adsorbents might have been occupied by bio-
mass or remaining organic matter. Adsorbents, like bentonite, have
been described as support matrices for immobilization of anaero-
bic consortia, due to their adsorption capacity over microorganism
(Chauhan and Ogram, 2005; She et al., 2006). During the E2, in both
runs of adsorption strategies (RUN3 and RUN4), the same quantity
of adsorbents was used (5 g VS L�1), resulting in a very similar
behaviour of the system for both runs (Fig. 3 and Table 4).

From the present results, it seems that LCFA inhibition is related
with binding of LCFA to the microbial surface causing physical hin-
drance of the transport of nutrients through the cell membrane,
and thus causing inhibition of cell function. Other possible mecha-
nisms of resistance, such as flocculation, aggregation or complex
structures formation (adsorbent-cell-LCFA) have also been re-
ported (Hulshoff Pol et al., 2004; Kuang et al., 2002, 2006). In any
case, addition of organic or inorganic material, such as fibers from
digested manure or cheap clay minerals like bentonite as remedi-
ation medium for lipid inhibited processes, could with advantage
be introduced in industrial plants.

3.4. Adaptation of the system to LCFA pulses

The system was adapted to repeated exposure of the biomass
LCFA in both E1 and E2 experiments. Direct comparison between
E1 and E2 is not possible as different feeding patterns were ap-
plied. However, in two of the reactors the exact same strategies
and feeding procedure were applied for all the runs; namely in
Rno-feed and Rfeed.

From the Rno-feed, the process adaptation after the repeated LCFA
pulses can be clearly seen as a reduction of the recovery time from
40 to 10 days and as a lower VFA accumulation, 92.8 mM compared
to 60.4 mM for the RUN1 and RUN3, respectively (Figs. 2 and 3, and
Tables 3 and 4). The observed adaptation is in agreement with pre-
viously reported by Cavaleiro et al. (2008), Nadais et al. (2006), and
Sousa et al. (2007), where is it proposed that discontinuous treat-
ment of LCFA, or LCFA pulses, would promote the development of
an active anaerobic community, able to efficiently degrade LCFA.
It is important to mention that, during the time between experi-
ment E1 and E2, the reactors have been incubated without feeding,
as batches, for a period of 2 months. In the literature, periods of
non-feeding have been related with an improvement of the capac-
ity for degradation of fatty wastes in terms of production, adsorp-
tion capacity and system stability (Coelho et al., 2006).

The other strategy that had identical set-up for all the runs and
can easily be used for elucidation of any adaptation of the process
was the strategy applied in Rfeed. In Fig. 5 all Rfeed experiments (E1
and E2) are shown together, with overlapping time axis, in order to
be able to visually compare the time needed for process recovery
(days), the maximum specific methane production rate (g
COD_CH4 g�1 VS day�1) and acetate maximum consumption rate
(g COD_Ac g�1 VS day�1) as process parameters. The process
seemed to adapt to the LCFA, with subsequent LCFA pulses. Only
in RUN4 similar recovery time was achieved but, for all subsequent
runs, higher maximum methane production or acetate maximum
degradation rates were observed (Fig. 5). Nielsen and Ahring
(2006) have similarly shown that a system submitted to previous
oleate pulses, induced an increase in the tolerance level of aceto-
clastic methanogens towards oleate. The adaptation or increased
resistance to LCFA detected in Rfeed and Rno-feed, can possibly be
attributed to an increase in microbial biomass (higher biomass/
LCFA ratio), or to changes in the microbial populations (selection
of more LCFA resistant species), or changes in population structure
(aggregate formation or more resistant structures).

E2 comparison LCFA profiles of Rfeed,
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Fig. 4. LCFA degradation profiles during E2 (semi-continuous feeding with manure after recovery action was applied) for control (Rfeed), dilution and adsorption strategies.
Arrows indicate the LCFA pulse (4 g/L) and the time of recovery action application.
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4. Conclusions

Among the seven recovery strategies tested and evaluated, dilu-
tion of the reactors content with inoculum, thus increasing the bio-
mass/LCFA ratio, or the addition of adsorbents, were found to be
the best strategies to recover thermophilic manure reactors sub-
mitted to LCFA inhibition. The use of adsorbents seems to be the
most reliable strategy for application on industrial facilities, where
it is not easy to introduce dilution, emerging as a simple, feasible
and cost-effective solution. The effect of adsorbents was related
with competition with biomass in adsorbing LCFA, thus reducing
their inhibitory effect, mainly due to the surface adsorption and
transport sites saturation. On the other hand, broadly accepted
practice, in real plants, to stop the feeding when an inhibition/
imbalance of the process is detected revealed to be the worst ap-
proach to face LCFA inhibition in terms of recovery time and pro-
cess stability.

Repeated subsequent LCFA pulses on biogas reactors, resulted in
faster recovery of the system, both in batch and semi-continuous
reactors, and in an enhancement in methane production and ace-
tate consumption rates, suggesting an increase or adaptation/toler-
ance process.
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ABSTRACT: Batch activity tests and molecular profiling of the microbial community structure were 
performed on biomass samples taken at different times during continuous operation of biogas reactors, 
operated at 55C, with manure as a basis substrate, and submitted to successive inhibitory pulses with 
long-chain fatty acids (LCFA). Experimental data of the activity tests and microbial composition analysis 
were integrated into a mathematical model.  
Improvement of hydrogenotrophic and acidogenic (ß-oxidation) activity rates was detected upon 
successive LCFA pulses, while a diferential toxicity effect over anaerobic trophic groups was observed. 
Recovery capacity was measured, while an adaptation process to LCFA inhibition was confirmed.  
DGGE population profiles of 16S rDNA eubacterial and archaeal genes revealed that no significant 
changes on microbial community composition took place upon loading with LCFA. The sequencing of 
DGGE predominant bands showed close phylogenetic affinity to ribotypes from specific ß-oxidation 
bacteria families (Syntrophomonas and Clostridiaceae), while the main syntrophic archaeae domain was 
related with the genus Methanosarcina.  
To explain the reported adaptation process, the hypothesis of an increase in the population of specific 
LCFA degrading microorganism, was further supported by mathematical modeling. From experimental 
and simulation results, the need to introduce modifications in the IWA ADM1 Model, related to LCFA 
degradation, was evidenced. New kinetics considering the relation between inhibitory substrate and 
specific biomass, as an approximation to the adsorption process, improved the model fiting and provided 
a better insight on the physical nature of the LCFA inhibition process. 
 
KEYWORDS: thermophilic anaerobic digestion, LCFA inhibition-adaptation, 16S rDNA profiling, 
ADM1 model. 
 
 
INTRODUCTION 
 

Lipid containing wastes are interesting substrates for biogas production because due to 

their high methane yield potential. Lipids are initially hydrolyzed to glycerol and long 

chain fatty acids (LCFA), which are further converted, by syntrophic acetogenic 

bacteria, to hydrogen (H2) and acetate (Ac), and finally to methane (CH4) by 

methanogenic archaea. The degradation pathway of LCFA, are through ß-oxidation, has 

been reported as the rate-limiting step of the whole anaerobic digestion process (Lalman 

and Bagley, 2002). Recent advances in molecular microbial ecology techniques have 

brought new insights on the microorganisms that are involved in the ß-oxidation 

process. LCFA-degrading bacteria were found to be closely related to the 

Syntrophomonadaceae or Clostridiaceae families (Hatamoto et al., 2007; Sousa et al., 

2007). These microorganisms are commonly proton-reducing acetogenic bacteria that 



require the syntrophic interaction with H2-utilizing methanogens and acetoclastic 

methanogens (Schink, 1997; Sousa et al., 2007). 

LCFA are known to inhibit the methanogenic activity and its accumulation in anaerobic 

reactors is commonly reported as a major operational problem. These effects were 

initially attributed to permanent toxicity resulting from cell damage and are known to 

affect both syntrophic acetogens and methanogens (Rinzema et al., 1994; Hwu et al., 

1998). Further studies have demonstrated that LCFA inhibition is reversible and that 

microorganisms, after a lag phase, are able to efficiently methanise the accumulated 

LCFA (Pereira et al., 2004). Physical adsorption of LCFA and their accumulation on the 

cell wall has recently been proposed as the main inhibitory mechanism. LCFA 

accumulation on the cell walls appears to create a physical barrier that hinders the 

transfer of substrates and metabolites (Pereira et al., 2005).  

Despite the fact that LCFA inhibition is well documented and has a significant impact 

on the anaerobic digestion process, this phenomenon has neither been included in IWA 

ADM1 reference model (Batstone et al., 2002). Some models have been developed so 

far, in which the LCFA inhibition is mainly modeled as a non-competitive process on 

the lipolytic, acetogenic or methanogenic activities (Angelidaki et al., 1999; Salminen et 

al., 2000; Lokshina et al., 2003). However, the microbial aspects of the LCFA 

adaptation process remain poorly characterized, and further modelling developments are 

still required in order to link the results from physiological activity test and the 

characterization of microbial population dynamics throughout whole process. 

Adaptation to inhibitory levels of LCFA has recently been reported in the thermophilic 

co-digestion with manure (Palatsi et al., 2009). In that particular study, biomass was 

successively exposed to inhibitory pulses of LCFA and the acclimatization process was 

characterized by monitoring the decreasing duration of the recovery time, the increasing 

methane yield, and the higher degradation rates measured. The outflow of the described 

reactors was used in the present study as source of LCFA inhibited and non-inhibited 

biomass. A similar behavior on inhibition and adaptation processes has also been 

reported in other recent studies on anaerobic co-digestion of lipids (Nielsen and Ahring, 

2006; Cavaleiro et al., 2009). Currently, there is a poor evidence on whether this 

adaptation process is the result of a microbial population shift towards the enrichment of 

specific and better adapted LCFA-degraders (population adaptation or microbial 

community structure changes), or to the phenotypic adaptation of the existing 

microrganisms to high LCFA concentrations (physiological acclimatation). 



The aim of the present study is to gain a deeper insight on the LCFA inhibition and 

adaptation process of the anaerobic consortium, by analyzing and comparing biomass 

samples obtained from reactors exposed to LCFA pulses (Palatsi et al., 2009). These 

samples were characterized in terms of specific physiological activity rates and of the 

microbial structure, by means of anaerobic batch activity test and by culture-

independent molecular profiling, respectively. The results were used in the development 

and testing of a new mathematical model for the simulation of inhibition and adaptation 

process. 

 
 
MATERIAL AND METHODS 
 

Analytical Methods 

Total solids (TS), volatile solids (VS), total Kjeldhal nitrogen (TKN), ammonia nitrogen 

(NH4
+-N) and pH were determined according to Standard Methods (APHA, 

AWA,WEF, 1995). 

Methane content in the biogas (%CH4) and volatile fatty acids concentration in the 

liquid media (VFA), corresponding to Acetate (Ac), Propionate (Pr), iso-Butyrate (iso-

Bu), n-Butyrate (n-Bu), iso-Valerate (iso-Va), n-Valerate (n-Va) and Hexanoate (Hex), 

were measured in a gas chromatograph fitted with a flame ionization detection, GC-FID 

(GC 20100, Shimatzu, Japan). Two different capillary columns: Porapak 60/80 

Molsieve (6ft 3mm) and ZEBRON Phase ZB-FFAP (30mx0.53mmx1.00 µm), were 

used for CH4 or VFA determination, respectively, as described elswere (Angelidaki et 

al., 2007). 

 

Biomass and specific batch test 

Samples from the outflow of semi-continuous thermophilic (55ºC) laboratory reactors, 

fed with manure, and exposed to two successive LCFA pulses (4 g L-1), were used in 

subsequent anaerobic batch assays as inoculum, and as biomass to run molecular 

microbiology analysis. Manure inflow, used as the basic substrate, maintained reactor 

hydraulic retention time (HRT) at 20 days, with a corresponding organic loading rate 

(OLR) of 1.0 g VS L-1 d-1. Fresh manure was diluted with distilled water in order to 

decrease the ammonia level (1.41±0.25 g TNK L-1; 0.92±0.03 g NH4
+-N L-1) and ensure 

that the pulse of LCFA was the only inhibitory compound throughout the experiments. 

Samples were withdrawn from the reactors at different stages; before each LCFA pulse 



(samples I and III), when the process was clearly inhibited (samples II and IV), and 

when it recovered and reached a new steady state (sample III and V). The sampling 

program is shown in Table 1. The time between sampled biomass I and III was 25 days, 

and between samples III and V was 24 days. So, in all cases, more than one HRT was 

allowed before it was assumed that a new state was established.  

Analysis of LCFA concentrations in reactors showed that the concentration of LCFA at 

sampling time II and IV was ≈4 g L-1, while LCFA were not detected at samples III and 

V. More detailed experimental set-up and results from reactors operation can be found 

in Palatsi et al. (2009). 

Specific batch activity tests of non-inhibited (samples I, II and V) and LCFA inhibited 

biomass (samples II and IV) were performed in anaerobic batch assays with specific 

substrates, according to Table 1. Glass bottles (118 mL total volume) were inoculated 

with 2.5 g VS L-1 of sampled biomass, resuspended in basic anaerobic medium 

(Angelidaki et al., 2007), previously amended with 31mM NaHCO3. A reducing 

solution of sodium sulfide (3.20 mM Na2SO3) was also added, to fill up the glass bottles 

up to a final total liquid volume of 50 mL. pH was also adjusted (7.5-8.0). The flasks 

were stirred and bubbled with N2 gas in order to remove O2, before closing them with 

rubber stoppers and aluminium crimps. In order to measure the aceticlastic 

methanogenesis and acetogenic activity rates, the bottles were amended with 20mM and 

10mM of acetate (Ac) and butyrate (Bu), respectively, while the hydrogenotrophic 

methanogenesis was assayed by injecting 70 mL H2 and 40 mL CO2 in flasks headspace 

(1atm, 20ºC), according to the assay described in Angelidaki et al.(2007). Inhibited and 

non-inhibited biomass, without the addition of any synthetic substrate, were included as 

controls to determine the methane production derived from the depletion of the LCFA 

adsorbed onto the biomass (for samples II and IV) and from from utilization of residual 

organic matter present in the samples (for samples I, III and V). The activity tests  (for 

all series) were conducted in quadruplicate (3 vials for CH4 analysis + 1 vial for VFA 

determination). CH4 and VFA were monitored in the headspace and in the liquid 

medium, respectively. Batch tests set-up and monitored variables are presented in Table 

1.  

The specific biomass activity rate was determined by linear regression on the initial 

slope of the accumulated methane production curve per VS content of biomass (mg 

CODCH4 g VS-1 d-1). For substrates that are not directly converted into methane, like 

butyrate or LCFA, the methane production rate is only a valid measure of syntrophic 



activity, when the aceticlastic and hydrogenophilic steps are not the rate limiting 

process (Dolfing and Bloemen, 1985). Consequently, the maximum specific substrate 

utilization rate in the assays with butyrate was also calculated from the steepest linear 

decline in substrate concentration (mg CODBu g VS-1 d-1), as described by Nielsen and 

Ahring (2006). In control vials with the inhibited sampled biomass (control +LCFA) in 

Table 1, the LCFA maximum specific utilization rate was estimated from the initial 

maximum slope of Ac production (mg CODAc g VS-1 d-1), assuming that Ac was the 

main product from LCFA β-oxidation (Batstone et al., 2002).  

 

Table 1. Summary of batch tests set-up and monitored variables in assays. 

Sample 
LCFA 

inhibition 
Days from 

LCFA pulse 
Added  
substrate (k) 

Initial substrate conc. in vials  
(kg COD m-3) 

Monitored 
variables (j) 

H2/CO2
(A) Sgh2(0)=0.04/0.04/0.04 SgCH4 

Ac Sac(0)=1.49/1.50/1.31 Sac, SgCH4 
Bu Sbu(0)=1.76/1.67/1.54 Sbu, Sac, SgCH4 

I  
III 
V 

NO 
-1 
+24 (-1) 
+48 (+23) 

Control - Sac, SgCH4 
H2/CO2

(A)(+LCFA) Sgh2(0)=0.04/0.04(+Sfa(0)=2.23/2.64) Sac, SgCH4 
Ac(+LCFA)  Sac(0)=2.00/1.35(+Sfa(0)=2.23/2.64) Sac, SgCH4 
Bu(+LCFA) Sbu(0)=2.00/1.67(+Sfa(0)=2.23/2.64) Sbu, Sac, SgCH4 

II 
IV 

YES 
+2 
+27 (+3) 

Control(+LCFA) (+Sfa(0)=2.23/2.64) Sac, SgCH4 

Note: Roman numbers indicate biomass samplings from reactors. LCFA pulses were introduced in reactors on day 0 and day 25. 
Days in parenthesis indicates time from the second LCFA pulse. (A) Gas substrate units kmol m-3. Sfa(0) is LCFA remaining 
concentration from reactors pulse (4 g L-1) adsorbed onto biomass introduced in vials. 
 

Molecular analysis of microbial community structure 

The effect of LCFA pulses, and subsequent biomass inhibition and adaptation response, 

on the anaerobic microbial community composition was analyzed at beginning and at 

the end of reactor operation (samples I and V, according to Table 1). Since the main 

LCFA-degrading microorganisms are proton-reducing bacteria, it is important to 

monitor the dynamics not only of the syntrophic eubacteria but also of the archaeal 

community in microbial studies related to LCFA inhibition and adaptation processes. 

Reactor samples of 2 mL were fixed in 1 mL of guanidine thyocyanate (4M-Tris-Cl pH 

7.5:0.1M, autoclaved) and 0.5 mL of N-lauroyl sarcosine (10% N-LS autoclaved) as 

decribed previously. Fixated samples were immediatly frozen and stored at -20ºC until 

further processed. 

The total sample DNA was extracted by using the PowerSoil DNA isolation kit (MoBio 

Laboratories Inc., USA), according to the instructions of the manufacturer. The V3-V5 

variable regions of the eubacterial 16S rDNA gene was amplified by the polymerase 

chain reaction (PCR) using the F341 and R907 primers (Yu and Morrison, 2004). A 

nested approach was used to amplify archaeal 16S rDNA, based on Raskin et al. (1994). 



The primer pairs ARCH0025F-RCH151R and F344-R915 were used respectively for 

the first and the nested PCR reactions. The products of the nested PCR were used in 

subsequent DGGE analysis. The forward primer used in the generation of the DGGE 

amplicons included a GC clamp at the 5’ in order to stabilize the melting behavious of 

the DNA fragments during DGGE. All PCR reactions were performed in a Gradient 

Mastercycler (Eppendorff, Germany). 

Approximately 300 ng of purified PCR product was loaded onto a 8% (w/v) 

polyacrylamide gel (0.75 mm), with a denaturing chemical gradient ranging from 30 to 

70% (100% denaturant stock solution contained 7M urea and 40% formamide). DGGE 

was performed in 1×TAE buffer (40 mM tris, 20 mM sodium acetate, 1 mM EDTA, pH 

7.4) using a DGGE-4001 System (CBS Scientific, USA) at 100 V and 60°C for 16 h. 

DGGE gels were stained for 45 min in 1×TAE buffer containing SybrGold (Molecular 

Probes, USA) and then scanned under blue light by means of a blue converter plate and 

a transilluminator (GeneFlash Synoptics Ltd., USA).  

Relevant DGGE bands were excised with a sterile filter tip, resuspended in 50 µl 

sterilized Milli-Q water, and stored at 4°C overnight. These extracts were subsequently 

reamplified by PCR and sequenced. Sequencing was accomplished using the ABI prism 

BigDye Terminator v. 3.1 cycle sequencing kit (Perkin-Elmer Applied Biosystems, 

USA) and an ABI 3700 DNA sequencer (Perkin-Elmer Applied Biosystems, USA), 

according to instructions of manufacturer. Sequences were edited using the BioEdit 

software package v. 7.0.9 (Ibis Biosciences, USA) and compared against the NCBI 

genomic database with the BLAST search alignment tool (Altschul et al., 1990). 

Nucleotides sequences obtained in the present study have been deposited in the 

GenBank database under accession numbers XXXX-XXXX expected 01/08/09 GenBank. 

 

Mathematical modeling and parameter estimation 

Processes related monitored variables (Table 1) were modeled with IWA ADM1 as 

basis model, implemented in MatLab (The Mathworks, USA), applying same structure, 

nomenclature and units (Batstone et al., 2002). Data obtained from activity batch test 

were used to estimate several unknown parameters and the initial biomass 

concentrations, as explained below. The default values for kinetic parameters and 

stochiometric coefficients suggested by Batstone et al.(2002), for thermophilic 

operation, were adopted, with the following exceptions: a) The value of LCFA 

inhibition of hydrogenoctrophic methanogenesis (KI,h2 fa), which is not given for 



thermophilic range by Batstone et al.(2002), was assumed to be the same as for 

mesophilic, KI,h2 fa=5 10-6 kg COD m-3; b) The adopted value for the liquid-gas mass 

transfer coefficient was kLa= 45 d-1; c) The pH was assumed to be constant, since a 

buffering solution was added to each vial and no significant pH change was detected. In 

all simulations, the initial value for inorganic nitrogen was Sin(0)=10-2 kmol-N m-3. 

Initial specific substrates concentrations in each vial, used as model initial vector, are 

described in Material and Methods section and in Table 1. 

Time course of monitored variables obtained from batch vials with non-inhibited 

biomass (samples I, III and V), with H2/CO2, Ac and Bu as substrates (Table 1), were 

used to estimate by sequential optimization procedure (step-by-step, where values found 

were then used as fixed parameters in next step) the initial H2, Ac and Bu degraders 

populations, Xi(0) (kg COD_X m-3), using ADM1 and its default biochemical 

parameters values (Batstone et al., 2002), as indicated in Table 2. 

Different approaches were considered concerning the modelling of the inhibition 

phenomena observed on the biomass activity tests with inhibited biomass (samples II 

and IV, according to Table 2). The first assumption consisted on a direct application of 

the IWA ADM1 Model using the suggested biochemical parameters (Batsone et al., 

2002) and the calculated initial biomass content (Xh2(0), Xac(0), and Xbu(0)), for assays I 

and III. This initial biomass content was considered to be equal to samples II and IV, 

respectively, since the time delay between the sampling of non-inhibited and inhibited 

biomass was only 2-3 days (Table 1). With those assumptions, the initial amount of 

LCFA degrading microorganisms, Xfa(0) (kgCOD_X m-3), and the maximum LCFA 

uptake rate, km,fa (kg COD_S kg COD_X-1 d-1), were estimated by a multiple parameter 

optimization procedure, using the time evolution data of the monitored variables during 

activity tests of samples II and IV, according to Table 2. 

The second approach, named as Inhibition Model, considered the uptake of LCFA to be 

described by the Haldane’s inhibition kinetics and both methanogenic processes (uptake 

of acetate and hydrogen) to be affected by a non-competitive term with a common 

LCFA inhibition constant, KI (kgCOD_SI m-3), as shown in Table 2. Such inhibition 

kinetics have already been proposed by other authors. Angelidaki et al. (1999), studying 

manure codigestion with glycerol trioleate or bentonite bound oil degradation, 

considered a non-competitive LCFA inhibition to the lipolitic, acetogenic and 

methanogenic steps and the Haldane inhibition kinetics on the ß-oxidation process. 

Salminen et al.(2000) and Lokshina et al.(2003), using solid slaughterhouse waste, 



considered a non-competitive inhibition kinetics due to LCFA, affecting acetogenesis 

and methanogenesis. With those assumptions, new initial values for Xfa(0), km,fa and KI, 

were estimated by multiple parameter optimization (Table 2). 

 
Table 2. Process rates modifications used in different model approaches 

Batch 
Model 

approach 
Process rate (ρj, kg COD m-3 d-1) Optimized parameters 

I,III,V IWA ADM1 IWA ADM1 )0(),0(),0(2 buach XXX  
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Nomenclature and units were maintained from IWA ADM1 (Batstone et al., 2002). 

 

The last approach, was named as Inhibition-Adsorption Model, and included an 

approximation of the physical adsorption of LCFA onto biomass, as an inhibition 

mechanism. Adsorption is considered as a rapid physico-chemical phenomenon, while 

desorption (degradation) is a biologically mediated process by LCFA-degraders (Hwu 

et al., 1998). Pereira et al. (2004) proposed a modification of the Haldane equation for 

the LCFA inhibition process, which consider ths biomass-associated substrate per VS 

unit, Sba (Msubstrate Mbiomass
-1), instead of the total substrate concentration (Sfa). 

Consequently, by adopting this concept, the proposed Inhibition-Adsorption Model 

assumes the following hypothesis: a) Inhibition of LCFA uptake process can be 

expressed by the Haldane kinetics; b) A Non-competitive reversible inhibition term can 

be used on acetogenesis and methanogenesis; c) In the the previous inhibition processes, 

the inhibitory constant (KI) is replaced by a new inhibitory term, KIFA=K I
’·Xfa/Sfa, 

proportional to the specific ratio between the LCFA degrading population and the 

substrate (Xfa/Sfa), being higher (less inhibition) when this ratio value increases (Table 

2). 



The objective function to be minimized in sequential optimization procedures, for each 

step or specific substrate, k, was calculated according to Eq 1;  
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Eq.1 

Where, *
kjiy represents the measured value of variable j, in vial k, at time i, and kjiy is the 

corresponding simulated value. Variable j from vials k has kjn  measured values at 

successive different times i. The weight factor, kjw , used in optimization was defined as 

Eq 2; 

[ ] 12** ))min()(max(
−−= kjikjikjkj yynw  Eq.2 

with )max( *
kjiy  and )min( *

kjiy , being the maximum and minimum measured value of 

varaible j in vial (step) k. The objective function used in the multiparameter estimation 

with datasets II and IV was calculated according to Eq.3, and the optimization routine 

followed the downhill simplex method (Nelder and Mead, 1965) as implemented in the 

MatLab package. 
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Eq.3 

Model data fitting accuracy was measured by the coefficients of determination R2 

defined in Eq.4; 
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Eq.4 

where *
kjiy is the mean of kjn  measured values of variable j from vial k. 

 
 
RESULTS AND DISCUSSION 

 
Specific batch tests 

First set of batch tests analyzed were the ones with biomass taken from reactors just 

before the application of LCFA pulses (samples I and III in Table 1), or when system 

had recovered from previous inhibition stage (samples V in Table 1). Table 3 

summarizes the results of activity batch tests on specific substrates; H2/CO2, Ac and Bu, 

respectively, as model substrates for the main trophic groups. Mean separation was 



performed on the calculated rates by Multiple Range Test (MRT) with a significance 

level α= 0.05 (Sheskin 2000). 

 

Table 3. Substrate utilization rates of non-inhibited biomass (I. III and V). 
Substrare Unit I III V 
H2/CO2 mg CODCH4/g VS-1 d-1 91.13±5.89 a 131.69±6.61 b 147.24±3.70 c 
Ac mg CODCH4/g VS-1 d-1 127.75±6.53 a 122.92±8.25 a 135.02±10.70 a 

mg CODCH4/g VS-1 d-1 183.40±18.82 a 181.77±2.57 a 183.87±37.40 a Bu 
mg CODBu/g VS-1 d-1 -263.80 -285.83 -230.86 

Note: Different letters in rows indicate significant differences between rates (α=0.05). 
 

From the results on net methanogenic activities (Table 3), a significant increase on the 

hydrogenotrophic methanogenic activity rate was observed (from 91.13 to 147.24 mg 

CODCH4 g VS-1 d-1), while the net acetoclastic methanogenic activity remained at 

relatively similar level along time (127.75, 122.92 and 135.02 mg CODCH4 g VS-1 d-1). 

These results are in agreement with previous findings on suspended sludge and fixed 

bed reactors subjected to LCFA inhibition, which concluded that hydrogenotrophic 

methanogens appeared to be more resistant to LCFA inhibition than acetoclastic 

methanogens (Templer et al., 2006). It may thus be expected an improvement on the 

hydrogenotrophic activity, compared to acetoclastic methanogens, upon successive 

inhibition-recovery stages, a trend that has been observed in the present study (Table 3).  

Concerning the the acetogenic activity, the n-butyrate (Bu) uptake rate remained fairly 

constant (263.80, 285.83 and 230.86 mg CODBu gVS-1 d-1 respectively for samples I, III 

and V) and no significant statistical differences were found in terms of methane 

production rate (CODCH4) (Table 3). Similary, Nielsen and Ahring (2006) found that, 

the maximum substrate utilization rate for Ac and Bu, in biomass from thermophilic 

reactors fed with a mixture cattle and pig manure, subjected to oleate pulses (2 g L-1), 

decreased or remained constant, while the methanogenic activity rate from H2/CO2, but 

also from formate and Ac, experienced an increase. 

To analyse the inhibitory effect of LCFA pulses on specific activities of representative 

trophic groups, a second sets of batch tests were run with biomass, sampled 2-3 days 

after each LCFA pulse, and when biogas production in the reactor evidenced a clear 

inhibition behavior (samples II and IV, according to Table 1). Tests were performed 

with H2/CO2, Ac, and Bu as methanogenic and acetogenic model substrates, 

respectively. The sampled biomass (II and IV) presented remaining adsorbed LCFA 

concentration. Additionally, one vial was included as control, (Control + LCFA) which 

was incubated with only this sample, without any substrate supplementation, in order to 



follow the ß-oxidation process. The specific activities of inhibited biomass are 

summarized in Table 4. 

 
Table 4. Substrate utilization rates of LCFA inhibited biomass (II and IV). 
Substrate Units II IV 
H2/CO2(+LCFA) mg CODCH4/g VS-1 d-1 67.57±7.88 a 90.76±2.67 b 
Ac(+LCFA) mg CODCH4/g VS-1 d-1 44.63±1.30 a 56.67±4.43 a 

mg CODCH4/g VS-1 d-1 183.95±3.80 a 174.05±15.39 a Bu(+LCFA) 
mg CODBu/g VS-1 d-1 -183.24 -161.81 
mg CODCH4/g VS-1 d-1 163.35±8.75 a 218.77±16.08 b Control(+LCFA) 
mg CODAc/g VS-1 d-1 104.93 153.62 

Note: Different letters in rows indicate significant differences between rates (α=0.05). 
 

In general, a clear reduction in all monitored metabolic activities was observed upon the 

application of a LCFA pulse (Table 4 compared to Table 3). During activity batch tests 

of the LCFA inhibited biomass, the remaining LCFA concentration (from the reactor 

pulse and adsorbed onto the biomass) was completely consumed and methane 

production reached a maximum plateau close to the theoretical value. These results 

confirm that LCFA inhibition is a reversible phenomenom, since neither syntrophic 

acetogenic nor methanogenic activities were irreversibly damaged, in accordance to 

what has previously been reported (Pereira et al., 2004). Acetoclastic methanogenesis 

was the most affected by LCFA activity with 44.63-56.67 mg CODCH4 gVS-1 d-1 

compared to 127.75-122.92 mg CODCH4 g VS-1 d-1 for the LCFA-inhibited and 

uninhibited biomass respectively (Table 3). Those vials exhibited not only lower 

methane production rates but also a longer lag-phase, compared to the activities before 

the LCFA pulse. It has been proposed that accumulation of LCFA, adsorbed onto the 

biomass, can hinder the transfer of substrates and products throught the membrane, 

causing a delay in the initial methane production (Pereira et al., 2005). The hypothesis 

of LCFA-induced transport limitation phenomena, was reinforced by the fact that H2, 

the smallest methanogenic substrate molecule, was reported to be the first to be 

transformed into methane, suggesting a faster transport of this molecule through the 

adsorbed LCFA layer, in relation to other substrates of higher molecular weight, in 

LCFA inhibited systems (Pereira et al., 2005). In agreement with this, the measured 

hydrogenotrophic methanogenic activity was less affected by the LCFA inhibitory pulse 

in the present assays, with rate values of 90.76 mg CODCH4 gVS-1 d-1 (Table 4), similar 

to initial system hydrogenotrophic activity, prior to the LCFA inhibitory pulse (91.13 

mg CODCH4 g VS-1 d-1 on Table 3).  



It has also been described in literature that methanogens are more susceptible to LCFA 

inhibition than acidogens (Lalman and Bagley, 2002; Mykhaylovin et al., 2005), which 

is also in agreement with the lower differences in acetogenic activities detected on Bu 

vials, before and after LCFA inhibition (I-II on Table 3 and III-IV on Table 4).  

In relation to the control vials, LCFA batchs (Control+LCFA), a clear improvement on 

the ß-oxidation process along time was observed (from 163.35 to 218.77 mg CODCH4 g 

VS-1 d-1 or from 104.93 to 153.62 mg CODAc g VS-1 d-1 in terms of substrate production 

rate, Table 4). Mladenovska et al. (2003) described the biomass of digested manure and 

lipids to be more active and with higher initial rates of methane production than the 

biomass of solely digested manure (not exposed to lipids). These results were related to 

the importance of the interaction microorganism-substrate-particle size and, in 

particular, on the effect of lipids over aggregation and cell density. Pereira et al.(2004) 

reported an enhancement on the microbial activity upon depletion of adsorbed LCFA, 

by an increase or development of specific degrading populations, while Nielsen and 

Ahring (2006) also reported increasing oleate tolerance (from 0.3 to 0.7 g L-1), in 

manure thermophilic systems exposed to oleate pulses, suggesting different 

explanations for this behavior, like the induction of higher hydrolysis rates, an increase 

on biomass concentration or changes in the microbial composition. 

The observed differential LCFA inhibition effect on distinct trophic groups might, in 

principle, to be related to an enrichment of specific populations involved on LCFA 

degradation process. Nevertheless, a shift in bacterial and archaea communities could 

not be excluded. Those hypotheses will be discussed further, by means of molecular 

biology techniques and mathematical modelling tools.  

 

Microbial community structure  

The DGGE molecular profiling of PCR amplified eubacterial and archaeal ribotypes 

was performed on biomass samples taken at the beginning and at the end of reactors 

operation (Samples I and V, according to Table 1). Despite the fact that both sampling 

events were separated in time by more than 40 days (equivalent to two HRT intervals), 

and the biomass suffered two inhibitory LCFA pulses and subsequent recoveries stages 

during this period, no significant differences were observed in the microbial community 

structure of eubacteria and archaeae (Figure 1). 

Up to 12 bands from the DGGE profiles were successfully excised, reamplified and 

subsequently sequenced. BLAST sequences comparison against NCBI genomic 



database resulted mainly in close maches with sequences of uncultured microorganism 

related to families of Clostridiaceae, Syntrophomonadaceaae, Bacillaceae and 

Synergites, all from the Firmicutes eubacterial phylum (Figure 2). Members from these 

taxa are well known as LCFA degrading anaerobic syntrophic bacteria (Sousa et al., 

2007; Hatamoto et al., 2007). 

 
Figure 1. DGGE profiles on eubacterial and archaeal 16S rDNA amplified from samples I and V. A 
standard ladder (L) has been used at both gel ends in order to check the DNA migration homogeneity. 
Successfully excised and sequenced bands have been named with lower-case letters. 
 

One of the DGGE depicted ribotypes (band e) was relatively homologous (95%) to 

sequences from uncultured bacteria in different anaerobic digesters and, more distantly 

(93%), to Syntrophomonas wolfei strain, as the closest phylogenetically defined match. 

Syntrophomonas genus has been described previously as specific syntrophic LCFA 

degrading bacteria (Lorowitz et al., 1989; Sousa et al., 2008).  

The Clostridiaceae appears to be one of the most represented bacterial families in the 

microbial community of anaerobic digesters. In our study, band f is closely related to 

uncultured bacteria previously found in different solid waste-thermophilic anaerobic 

bioreactors (96-97% of sequence homology) and to strains of Clostridium stercolarium 

and Clostridium thermocellum (95%). This later species is also the closest cultivated 

microorganism to the sequence of band g (93%). Despite the fact that band a is 

clustered with other sequences from the Clostridiaceae family, it has a poor homology 

with database sequences from uncultured and cultured species related to clostridia. 

Besides the β-oxidation process, Clostridium species are related to peptide and 

polysaccharides degradation in thermophilic anaerobic systems and, have been found to 



be particulary resistant to the environmental changes experienced during the anaerobic 

storage and management of pig slurry (Peu et al., 2006). 
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Figure 2. Phylogenic eubacteria tree of 16S rDNA from DGGE excised bands and from closely related 
sequences deposited at the GenBAnk database (accession numbers are given between box brackets). The 
tree was generated using the Neighbour-joining algorithm and the Kimura 2-parameter correction, and 
was bootstrapped 1000 times. still some revision is needed 
 

Band j was identical to the type strain sequence of the described Bacillus infernus. This 

halotolerant and thermophilic bacterium is the only strictly anaerobic species in the 

genus Bacillus and is able to grow on formate and lactate with Fe(III), MnO2, 

trimethylamine oxide, or nitrate as an electron acceptor (Boone et al., 1995). This 

microorganism has been isolated from deep terrestrial subsurface areas and, to our 



knowledge, there are no previous records of its occurrence in anaerobic digesters. Yet, a 

very similar uncultured ribotype (99% sequence homology) was obtained during the 

composting of hyperthermophilically pre-treated cow dung wastes (Figure 2).  

The sequence from band d was identical to a number of uncultured ribotypes obtained 

from solid waste anaerobic digesters. This sequence is also closely related to that of the 

species Anaerobacterium mobile (98% sequence homology). This is a novel anaerobic, 

thermophilic, and sliglhy halotolerant bacterium able to ferment organic acids and some 

carbohydrates into acetate, hydrogen, and CO2. The typestrain was isolated from 

anaerobic wool-scouring wastewater treatment laggon (Menes and Muxi, 2002). 

No reference strains were found to be sufficiently related to the sequences from bands h, 

i, k and e for its phylogenetic assignment. The sequence from band i was highly 

homologous, or ever identical, to a number of uncultured ribotypes obtained from 

different mesophilic and thermophilic anaerobic digesters degrading organic solid 

wastes (Goberna et al., 2009; Kröber et al., 2009; Tang et al., 2004). Interestingly, these 

environments also contained ribotypes that were closest related to the band h, though 

sequence homology was relatively low in this case (90%). On the other hand, bands h 

and k were both related to uncultured bacteria from thermophilic microbial fuel cell 

(Wrighton et al., 2008), with a sequence homology of 90% and 96%, respectively. 

Similary, the sequence of band e is also highly homologous (99%) to other uncultured 

ribotypes obtained from the same composting sample that has previously been reported 

from band j (Figure 2). 

In relation to the archaeal domain, a single predominant band was observed in the 

DGGE profiles (band l). The associated sequence was 97% homologous to that of the 

Methanosarcina thermophila type strain. This thermophilic archeon is a methanogen 

that has been found in a wide variety of thermophilic anaerobic digesters treating 

organic wastes. Sequence homology of band l was higher in relation to another strain of 

the same species that was enriched in thermophilic anaerobic digester operated at high 

concentration of volatile fatty acids (Hori et al., 2006). Mladenovska et al.(2003) 

compared a digestion of cattle manure at mesophilic conditions to digestion of a mixture 

of manure with glycerol trioleate (2% w/w). They did not find any differences in the 

diversity of archaea species, although the reactors showed different performance. The 

vast majority of clones they detected were phylogenetically close to Methanosarcina 

siliciae. In our study, the origin of the inoculum and the daily manure feeding system 

might have exherted a strong influence on enrichement of specific methanogenic 



populations. Karakashev et al. (2005) studied the influence of environmental conditions 

and feeding on methanogenic populations in a real scale biogas plants, reporting a 

dominance of Methanosarcinaceae members on manure digesters. Kaparaju et al.(2009) 

also reported the predominance of Methanosarcinaceae on the pilot plant (Kogens-

Lyngby, Denmark), which was used as source of inoculum for semi-continuous reactors 

sampled in the present study (Palatsi et al., 2009).  

 

Mathematical modeling and parameter estimation 

Data from batch activity assays were used to test the three model approaches 

summarized in Table 2, in order to determine whether the detected improvement or 

adaptation process can be explained by an increase of specific degrading populations 

(Xi), and/or a modification of the adsorption-inhibition process, assuming that microbial 

composition shift was not the reason for the observed adaptation. 

The IWA ADM1 Model simulations and the experimental data from batch activity test 

with not inhibited biomass (batch with samples I, III and V), are shown in Figure 3. The 

coefficient R2 of the experimental data fit ranging from 0.78 to 0.99, for H2/CO2, Ac 

and Bu vials, respectively. Estimates of the initial biomass content of specific trophic 

groups, Xi(0), are summarized in Table 5a. When the initial population concentration, 

Xi(0), and the maximum uptake rate, km,i, were simultaneously estimated at each step, 

the obtained km,i values were relatively close to those suggested by Batstone et al.(2002) 

and no significant differences in the coefficients of determination were found. 

Moreover, at the tested initial substrate concentrations (in activity assays, Si(0)>>>Ks i), 

the effect of changing the half saturation constants (Ksi) resulted in small variations in 

the final results. For that reason, the sequential parameter estimation of initial Xi values, 

by adopting suggested biochemical parameters from IWA ADM1 (Batstone et al., 

2002), was considered adecuate.  

 
Table 5a. Estimated parameter values for non inhibited batch 
tests data sets I, III and V  

Results Model 
approach 

Estimated 
parameter I III V 

Xh2(0) 5.89 10-4 5.08 10-4 2.33 10-3 

Xac(0) 1.30 10-2 1.26 10-2 1.70 10-2 IWA ADM1 

Xbu(0) 5.53 10-4 1.52 10-3 1.68 10-3 

Units; Xi ( kg COD m-3) 
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Due to technical difficulties on the measurement of the CH4 production in batch V, 

caused by an operational problem on the GC-FID, model fitting in this batch, was based 

mainly on the VFA production-degradation profile (Figure 3). Based on the estimated 

initial biomass content of specific microorganisms, Xi(0), results, an initial acetoclastic 

methanogenic population stability can be outlined (Table 5a). However, the initial 

hydrogenotrophic methanogenic population Xh2(0) increased along sampling time, 

which could explain the improvement of the hydrogenotrophic activity (H2/CO2) 

observed (Table 3). From the microbial community analysis, it was not possible to 

differentiate between methanogenic populations, because the most abundant isolated 

archaeae was affiliated with the group Methanosarcina (Figure 2), which are able to 

produce CH4 via Ac and also via H2/CO2 (Balch et al., 1979).  

In the analysis of batch data-sets II and IV, the initial amount of hydrogenotrophic 

methanogens Xh2(0), aceticlastic methanogens Xac(0), and butyrate acetogens Xbu(0), 

were assumed to be the same as in tests I and III respectively (Table 5a), as explained in 

the Material and Methods section. The initial content of LCFA in batch tests II and IV 

(Sfa(0), 2.23 and 2.64 kg COD m-3) was the remaining concentration from the previous 

LCFA pulse in the reactor, adsorbed on the biomass. As general procedure, in each 

tested approach with inhibited batch tests data, a multiple parameter estimation (Xfa(0), 

km,fa and KI) was performed for batch test II and the obtained kinetic parameter values 

were then used in the estimation of the initial LCFA degraders population, Xfa(0), as 

sole parameter optimized in batch test IV (Table 5b). 

The first approach to estimate Xfa(0) and km,fa parameters was the IWA ADM1 Model 

(Table 2). Figure 4 shows the predicted values for each modeled variable versus the 

experimental data. Although the predicted CH4 production curve and Sac or Sbu 

evolution values are acceptable in some cases, it was not possible to find an unique set 

of parameters (Xfa(0) and km,fa) able to fit all experimental data together, with 

sufficiently high coefficients of determination (Figure 4). Hence, the need to introduce 

modifications in IWA ADM1 model, in order to express adequately the LCFA 

inhibition process is justified.  

The second tested approach, named Inhibition Model, introduced the Haldane inhibition 

kinetics for the ß-oxidation and the reversible non-competitive inhibition kinetics for 

acetate or hydrogen methanogenesis (Table 2), as previously reported (Angelidaki et al., 

1999; Salminen et al., 2000; Lokshina et al., 2003). The optimized parameter values for 

batch test II are shown in Table 5b. An increase in the initial LCFA degrading 



population, Xfa(0), from 2.40 10-3 to 4.45 10-2 kgCOD_X m-3, in batch test IV was 

detected, maintaining a maximum degradation rate and inhibition constant of 

km,fa=21.69 kg COD_S kg COD_X-1 d-1 and KI=3.35 kg COD m-3, respectively. 

Coefficients of determination and model fitting are shown in Figure 4. 

The last approach, called Inhibition-Adsorption Model, replaced the constant inhibitory 

factor, KI, by a term KIFA proportional to the ratio Xfa/Sfa (Table 2) to model the 

adsorption effect of LCFA on the cell walls. Estimated parameter values for test II were 

presented in Table 5b. An increase in the initial LCFA degrading population, Xfa(0), 

from 9.89 10-4 to 1.30 10-3 kg COD m-3, was also detected at sample IV (Table 5b), 

while initial KIFA(0) value remained between 1.15-1.15 kg COD m-3. The obtained 

coefficients of determination and model fitting are shown in Figure 4. The best model 

fittings were obtained with the Inhibition-Adsorption Model, although the obtained 

parameter set is not probable unique and these results could be considered as a first 

approach to express the importance of the LCFA/biomass ratio in the adsorption-

inhibition process. The Inhibition-Adsorption Model was able to reproduce not only the 

lower production rates when system was inhibited but also the longer lag-phase during 

system inhibition. 

Table 5b. Estimated parameters values for inhibited batch 
tests data sets II and IV. 

Results Model 
approach 

Estimated 
parameter II IV 

faX  3.00 10-4 3.70 10-3 IWA 
ADM1 

famk ,  22.37 22.37 

faX  2.40 10-3 4.45 10-2 

famk ,  21.69 21.69 
Inhibition 
Model 

IK   3.35 3.35 

faX  9.89 10-4 1.30 10-3 

famk ,  124.33 124.33 
Inhibition-
adsorption 
Model 

IK  2.37 103 2.37 103 

Units; Xi (kg COD m-3); Km,fa (kg COD_S kg COD_X-1 d-1); 
KI and KI

’ (kg COD m-3) 
Modelling results suggest that adsorption plays a key role in the overall LCFA 

inhibition-adaptation process, and that there is a need to introduce modifications in IWA 

ADM1 model when dealing with degradation of lipids. The proposed Inhibition-

Adsorption Model, which produces a better fit of the experimental results than classical 

models, and provides a better representation of the physical nature of the overall LCFA  
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inhibition process. More work and new experimental data, designed specifically to 

study biosorption, are needed to mathematically express the adsorption-inhibition 

process. It is important to notice that for all tested models, or approaches, an increase in 

the initial hydrogenotrophic methanogens and LCFA degrading population occurred 

along time. This phenomenon, together with the stability of the microbial community 

composition found previously, might explain the observed LCFA adaptation process, as 

the result of the physiological acclimatation of existing populations. 

 

 

CONCLUSIONS  

In a multidisciplinary approach, LCFA inhibition and adaptation processes have been 

investigated using biomass exposed to successive inhibition-recovery stages by means 

of specific activity batch test, the characterization of the microbial populations by 

culture-independent molecular biology tools, and the mathematical modeling of the 

involved biochemical and physical processes. 

Specific acivity test evidenced: the differential sensitivity of LCFA over major 

microbial trophic groups, the system recovery capacity and the adaptation of the ß-

oxidazing bacteria and syntrophic methanogens upon exposition to succesives LCFA 

inhibitory pulses.  

On the other hand, the application of LCFA pulses had little effect on the microbial 

community structure of eubacteria and archaeae by DGGE 16S rDNA, and many of the 

identified microorganisms were closely related to previously identified microorganisms 

found in anaerobic digesters where relatively high concentrations of LCFA are likely to 

occur, like Clostridiaceae and Syntrophomonadae for eubacteria and Methanosarcina 

for archaeae domains 

Modeling results suggest that there is a need to introduce modifications on IWA ADM1 

model when dealing with lipids degradation, and that the adsorption process plays a key 

role in the overall LCFA inhibition-adaptation process. The proposed Inhibition-

Adsorption Model produces a better fit of results than classical inhibition models, and 

better expresses the physical nature of the overall LCFA inhibition process, was just a 

preliminary approximation and should be submitted to further improvements. The 

obtained increase in initial hydrogenotrophic methanogens and LCFA degradering 

population concentration along time, together with microbial community structure 



analysis, could explain the reported adaptation process on reactors by physiological 

process. 
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