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Waste and 
climate 
– energy recovery 

and greenhouse gases

Thomas H. Christensen

Introduction
Society is politically, economically and technically facing the increas-
ing challenge of climate change and struggling to reach targets for re-
ducing greenhouse-gas emissions. No single solution is available, and 
every sector of society must analyze its current contribution and con-
sider how to improve performance.

Th is focus on climate change and greenhouse gases has also infl u-
enced waste management. Th e main purpose of waste management is 
to remove the waste from industrial and residential areas without ad-
versely aff ecting public health and the environment. Nevertheless, so-
ciety’s need to fi nd renewable energy sources and reduce greenhouse-
gas emissions has given a new dimension to waste management: how 
and how much can waste management contribute to this societal chal-
lenge of reducing greenhouse-gas emissions?

Waste management primarily emits greenhouse gases because of fuel 
use in collection trucks and facilities and waste treatment: for example, 
incinerating plastic or releasing methane (CH4) from an anaerobic di-
gestion process. However, waste management can also produce energy 
that may replace the energy from fossil fuel and recover materials, 
thereby conserving energy in producing new resources and products. 
Th e challenge is to fi nd a balance between emitting greenhouse gases 
and contributing to reducing the emissions of greenhouse gases at the 
societal level that lead to the best overall contribution to reaching the 
goal of reducing these emissions. A life-cycle perspective is needed to 
balance between aspects because the actual emissions and the reduc-
tions take place in diff erent sectors of society and sometimes in diff er-
ent countries. Th e greenhouse-gas issues have been instrumental in 
changing the focus from managing waste as a problematic residue to 
managing waste as a potential residual resource.
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During the past decade, the DTU Department of 
Environmental Engineering has performed labora-
tory research, pilot-scale experiments and full-
scale testing with the aim of establishing mass bal-
ances, energy budgets and emission accounts for 
waste management technologies. Th e technological 
insight and data form the basis for modeling waste 
management technologies and systems with re-
spect to resource and energy recovery. Th e EASE-
WASTE (Environmental Assessment of Solid 
Waste Systems and Technologies) model integrates 
this in a life-cycle perspective and has been used 
for calculating the greenhouse-gas accounts pre-
sented here.

Greenhouse gases in waste management
Th e main greenhouse gases in waste management 
are carbon dioxide (CO2) of fossil origin, CH4 and 
nitrous oxide (N2O). Occasionally, chlorofl uorohy-
drocarbons (CFCs) from old refrigerators and in-
sulation materials and sulfur hexafl uoride (SF6) 
from, for example, thermal glass may locally be a 
source of greenhouse gases.

CO2 of fossil origin primarily originates from the 
use of electricity and fuel and from the combustion 
of plastic materials. Energy use is associated with 
all technical processes within waste management, 
while the contribution from plastic is from waste 
incineration or waste-to-energy plants. CO2 of re-
cent biogenic origin is considered neutral with re-
spect to global warming. Most organic material in 
the waste originates from short-rotation crops and 
thus was recently synthesized by taking up CO2 
from the atmosphere. Forestry has a longer rota-
tion period, but paper waste is only a small con-
tributor to the stock of biological carbon bound by 
forestry, and this justifi es the assumption that bio-
genic CO2 from waste management can be consid-
ered neutral with respect to global warming. How-
ever, this implies that biogenic carbon not released 
to the atmosphere as CO2, such as that stored in 
the soil aft er applying compost or buried in a land-
fi ll, avoids emission and should thus be ascribed a 
negative global warming potential of –3.67 kg of 
CO2 equivalent per kg of carbon stored. Th e time 
horizon associated with the consideration of stored 
carbon is discussed later. Fig. 10.1 illustrates in an 
idealized world, using paper as a specifi c case, how 

carbon is circulated and used within and between 
the waste sector, the paper industry, the energy 
sector and the forestry sector. Modeling of the con-
tributions to increased CO2 in the atmosphere for a 
range of waste management scenarios involving re-
cycling paper, incinerating paper with and without 
energy recovery, landfi lling paper and using forest-
ry biomass for energy production showed that this 
global warming potential is internally consistent 
and thus useful for assessing how waste manage-
ment best contributes to reducing greenhouse-gas 
emissions.

CH4 has a global warming potential 25 times 
higher than that of CO2. It originates from degrad-
ing organic matter under anaerobic conditions. 
Th e main sources of CH4 within waste manage-
ment are landfi lls and anaerobic digesters. Mi-
croniches in composting processes may be anaero-
bic, and composting processes may thus also re-
lease small amounts of CH4, but rarely does more 
than a few percent of the degraded carbon become 
CH4. Given the high global warming potential of 
CH4, strict control of release is important. Th e 
means include collection and fl aring or using the 
gas or using biofi lters in which biological processes 
oxidize CH4 into CO2.

N2O has a very high global warming potential of 
298 kg of CO2-equivalent per kg of N2O. N2O is 
primarily formed during the biological conversion 
of nitrogen: during oxidation of ammonium into 
nitrite and nitrate and during reduction of nitrate 
into nitrite and free N2. Very little of the nitrogen is 
released as N2O, and its formation is hard to con-
trol. Composting processes and the use of compost 
in soil are likely to be the main sources within 
waste management.

Waste collection and transport
Waste collection and transport are primarily linked 
to diesel combustion and do not diff er from any 
other bulk transport by truck. Much of the cost of 
waste management is associated with collecting 
and transporting waste, and much is done to mini-
mize the costs. Th is usually involves optimizing 
collection schemes and transport routes, implicitly 
reducing fuel consumption. However, as illustrated 
later, the energy and global warming aspects of 
waste collection and transport are minor compared 
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with the recovery and recycling aspects of the col-
lected waste.

Recycling materials
Recycling of materials in the waste oft en saves sub-
stantial energy in the industries using the recov-
ered materials instead of virgin materials. Th ese 
savings are accounted for in the involved industrial 
sectors, but since waste management provides the 
materials, these savings are considered indirect 
savings downstream to waste management.

Metals such as aluminum, steel, iron and copper 
require substantial energy to produce from ore, 
and scrap metal is a valuable material for smelters. 
Recovering the metals from scrap is less energy in-
tensive, and the overall recycling process saves en-
ergy. Th e greenhouse-gas savings are substantial: 

for example, 5000–19,000 kg of CO2 equivalent per 
ton of aluminum and 500–2400 kg per ton of steel. 
Th e actual value depends on the technology used 
and the location of the smelter. Smelters running 
on hydroelectric power may reduce greenhouse-
gas emissions less.

Glass recycling involves cleaning and reusing 
bottles and remelting crushed glass (cullet) for 
producing new glass containers and bottles. De-
pending on purity, cullet can be added in signifi -
cant quantities to the production of new glass from 
virgin materials (quartz sand, soda, lime, etc.), re-
ducing the melting temperature and hence the en-
ergy needed. About 400 to 1400 kg of CO2 equiva-
lent is saved per ton of glass waste.

Recycling is simple for clean plastic of a single 
type, such as pure low-density polyethylene. Th e 
mechanical process involves melting, extrusion 
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and granulate production. For dirty and mixed 
plastic, the process is more complicated and de-
manding. Virgin production of plastic uses about 
twice as much energy as the energy content bound 
in the plastic itself. Plastic recycling saves 0–1500 
kg of CO2 equivalent per ton.

Paper and cardboard recycling saves from minus 
300 to plus 1200 kg of CO2 equivalent per ton. Th e 
actual savings depend on the product quality and 
the pulping technologies. Most recycling processes 
are primarily based on fossil energy, whereas some 
virgin technologies use energy from biomass. If the 
biomass saved by recycling paper is assumed to 
substitute for fossil fuel, the overall saving is prob-
ably 1800–4400 kg of CO2 equivalent per ton. Th is 
aspect nicely demonstrates that reprocessing the 
waste material requires energy but the savings de-
pend on what it replaces, perhaps not directly but 
at the system boundary. Th e latter is not always 
easy to defi ne, because it depends on so many oth-
er factors in society.

Th e stipulated greenhouse-gas savings from re-
cycling waste are substantial, but the quantity and 
quality of materials are important from a waste 
management viewpoint. Th us, based on 1 ton of 
waste, paper recycling is by far the dominant recy-
cling activity reducing greenhouse-gas emissions.

Incineration
Incinerating waste releases signifi cant energy. Th e 
lower heating value of waste is typically around 10 
GJ/ton depending on what the waste contains. 
Modern incinerators produce electricity and heat, 
with the heat oft en used for district heating. Th e 
electricity produced amounts to 20–28% of the 
lower heating value, and with fl ue gas condensa-
tion the overall energy recovery may be close to 
100%. Th e electricity is sold to the grid, where it 
replaces electricity that elsewhere would have been 
produced at high marginal cost. Th e source of this 
marginal electricity determines the potential sav-
ings. In Denmark, this is usually electricity pro-
duced from coal without co-production of district 
heating. Th e savings are therefore likely to be high, 
probably about 0.9 kg of CO2 equivalent per kWh 
of electricity produced. Elsewhere, the marginal 
production of electricity may diff er. In the scenario 
calculations shown later, European mixed electric-

ity was used, which is close to the greenhouse-gas 
emissions from electricity produced using natural 
gas: about 0.5 kg of CO2 equivalent per kWh.

Th e substitution value of the heat produced 
largely depends on the local conditions, because 
hot water and steam cannot be transported very far 
without substantial losses. If the local district heat-
ing system is small and hosts a power plant, then 
producing heat in the waste incinerator, even if fed 
to the district heating system, may not substantial-
ly reduce greenhouse-gas emissions if the power 
plant already has excess heat. Th us, estimating the 
substitution value of the heat produced by inciner-
ating waste may require more detailed analysis of 
the local conditions and heat market.

Th e incinerator itself also emits greenhouse gas-
es from combustion of plastic materials and any 
use of fossil fuels for start-up operations, whereas 
the CO2 from organic waste is considered neutral. 
Depending on the waste incinerated, about 30–
50% of the CO2 emitted is of fossil origin. Th e cur-
rent information is based on calculations consider-
ing the expected composition of the waste and the 
observed energy content, but methods for direct 
measurement in the fl ue gas are underway. A pre-
cise estimate is important because waste incinera-
tors, in contrast to power plants, are not subject to 
CO2 quotas but part of the national reporting on 
greenhouse-gas emissions.

An additional option is producing fuel from the 
waste that can be used in power plants and indus-
trial kilns (such as cement kilns) to replace fossil 
fuels, oft en coal. Power plants and industrial kilns 
usually have less extensive fl ue-gas cleaning sys-
tems, so using a refuse-derived fuel requires a 
clean waste fraction. In particular, the mercury and 
the chloride concentrations must be closely con-
trolled. Refuse-derived fuel can be used fl exibly 
and directly replaces coal based on the energy con-
tent. As shown later, this may provide some advan-
tage compared with electricity production in an in-
cinerator if this electricity replaces marginal elec-
tricity based on natural gas.

Balancing the direct emissions from the inciner-
ator against the savings obtained from the electric-
ity and the heat produced that otherwise would 
have been generated from fossil fuels, 100–800 kg 
of CO2 equivalent per ton of waste may be saved 
overall.
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Biological treatment
Composting organic waste involves aerobic degra-
dation and generates CO2 and compost. Th e com-
posting process emits few greenhouse gases, pri-
marily from the use of machinery and emissions of 
CH4 from anaerobic niches in the waste and small 
amounts of N2O from the mineralization of nitro-
gen. Th e overall emissions are believed to be about 
minus 10 to plus 300 kg of CO2 equivalent per ton 
of organic waste.

Digestion of organic waste is an anaerobic degra-
dation of the organic waste in a closed reactor. Th e 
main product is biogas, constituting about equal 
quantities of CH4 and CO2. Th e CH4 is oft en used 
to produce electricity and sometimes heat for dis-
trict heating. Th e greenhouse-gas emissions are re-
lated to the use of fuels and unintended leakage of 
CH4. Savings are obtained from the electricity and 
heat delivered to society. Th e overall emissions are 
believed to be between minus 300 to 0 kg of CO2 
equivalent per ton of organic waste.

Th e stabilized organic products from biotreat-
ment used on land for crop production supply the 
soil with nutrients and organic matter. If the or-
ganic residue is used rationally according to a fer-
tilization scheme, it may substitute for the produc-
tion and use of the mineral fertilizers N, P and K 
(N and P are the most important nutrients in this 
context). Th is may save 4–80 kg of CO2 equivalent 
per ton of incoming organic waste. Th e carbon in 
the stabilized material will slowly decompose in 
the soil. Th is process may take decades; in particu-
lar, the compost has a high fraction of humus-like 
material that degrades very slowly. Model calcula-
tions show that, aft er 100 years in the soil, the com-
post may still have about 10% of the carbon left . 
Th is should be considered a saving in greenhouse-
gas emissions of 2–70 kg of CO2 equivalent per ton 
of organic waste.

Landfi lling
Landfi lling waste generates CH4 and CO2 from the 
anaerobic degradation of the organic matter. Th e 
degradation process continues for decades aft er 
disposal. Most of the CH4 is generated within 30 
years aft er disposal, but even aft er 100 years about 
half the biogenic carbon is left  in the landfi ll.

In engineered landfi lls, the landfi ll gas is extract-

ed by vacuum and burned to convert CH4 to CO2. 
If the amount of gas is limited or highly variable, 
the gas is burned in a fl are, but substantial gas is 
oft en used to generate electricity by burning the 
gas in an engine with a generator. Sometimes the 
heat is also used, at least for internal purposes at 
the landfi ll.

Much of the gas is not collected unless the land-
fi ll is covered by a synthetic liner. Th e uncollected 
gas may escape through cracks or coarse soil and 
emits substantial greenhouse gases. If the gas fl ow 
is low and distributed over large areas of the land-
fi ll, the CH4 may get oxidized passing through the 
soil cover. CH4-oxidizing bacteria are present in 
most landfi ll cover soils and use oxygen diff using 
in from the atmosphere to oxidize CH4 rising from 
the waste below. Th e CH4 is oxidized into CO2, 
thus reducing the global warming potential from 
25 kg of CO2 equivalent per kg of CH4 to 0 kg of 
CO2 equivalent per kg of biogenic CO2. However, if 
the fl ow is high or the soil too compact, CH4 oxidi-
zation is limited.

Th e biogenic carbon left  in the landfi ll aft er 100 
years, the time period modeled, is a greenhouse-
gas saving and ascribed a negative global warming 
potential as described earlier. For 1 ton of munici-
pal waste with a substantial content of organic 
waste and paper (without separate recycling 
schemes), the biogenic carbon left  equals as much 
as a saving of 130–180 kg CO2 per ton of waste 
landfi lled.

Th e overall greenhouse-gas contribution from 
landfi lling may be minus 70 to plus 170 kg CO2 
equivalent per ton.

System considerations
Th e input to the waste management system is the 
waste in terms of quantity and composition. Mu-
nicipal solid waste is oft en one third paper and pa-
per products by weight, one third kitchen organic 
waste and one third other waste. Fig. 10.2 shows 
model estimations of the energy that can be recov-
ered from 1 ton of waste by a range of waste man-
agement scenarios. For all the scenarios, collecting 
and transporting the waste is a very small part of 
total energy. Using 10–15 liters of diesel for collect-
ing and transporting 1 ton of waste is not impor-
tant when the waste contains the equivalent of 
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200–250 liters of diesel per ton. Seven scenarios 
have been modeled.

A: A modern landfi ll with a high level of gas col-
lection using the collected energy for generating 
electricity recovers 0.25 GJ net per ton of waste. 
Th is scenario is included as a reference since land-
fi lling organic waste is prohibited in many coun-
tries.

B: Incineration with 20% electricity generation 
and 40% heat recovery for district heating saves 6 
GJ net per ton of waste. Th e heat recovery rate is 
typical for Europe but low for Denmark, with 65–
80% heat recovery given the extensive district heat-
ing.

C: A refuse-derived fuel fraction is produced 
and used in a power plant instead of coal. Th e re-
maining waste is stabilized by composting and 
landfi lling. Th is mechanical-biological treatment 
technology is common in central Europe. Th is 
saves about 6 GJ per ton, equivalent to the amount 
of coal saved without considering how the coal is 
converted into energy at this point. Th is emphasiz-
es the fact that energy recovery not only depends 
on the amount recovered but also on the form. For 
the other scenarios, the energy is in the form of 
electricity and heat.

D: Th is scenario also focuses on landfi lling, but 
much waste is recycled before landfi lling: paper, 
plastic and metal. Th e overall savings are 3.7 GJ per 
ton, of which paper recycling is the major contrib-
utor.

E: Th is scenario has the same recycling scheme 
as in D, but the residual waste is now incinerated, 
with energy recovery similar to B. Th e overall en-
ergy saved is now about 8 GJ per ton: paper recy-
cling, electricity generation and heat production 
are the three main contributors.

F and G. Th ese two scenarios are identical to E 
except that an organic fraction is collected sepa-
rately at the source: in F for composting and in G 
for anaerobic digestion. Digesting organic waste 
generates some electricity from the biogas pro-
duced, but the overall energy recovery is nearly 
identical, about 8 GJ per ton. Paper recycling and 
energy recovery from incineration are predomi-
nant. 

Fig. 10.3 presents the same scenarios expressed in 
net CO2 equivalent per ton of waste. Th e picture is 
somewhat similar to that in Fig. 10.2, since all 
waste-management scenarios emit negative green-
house gases or reduce global warming. However, 
two issues are diff erent.
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Th e fi rst diff erence between energy recovery and 
reductions in greenhouse-gas emissions is that the 
scenarios with signifi cant landfi lling (A and D) 
contribute relatively more to reducing greenhouse 
gases than they do to energy recovery. Th is is due 
to the biogenic carbon left  in the landfi ll aft er the 
100-year period considered for the modeling. 
About half the organic carbon is still present in the 
landfi ll and thus constitutes a saved emission since 
biogenic carbon, if released as CO2, is considered 
neutral.

Th e second diff erence between the energy recov-
ery and the reduction in greenhouse-gas emissions 
is that scenario C, which produces refuse-derived 
fuel for use in power plants, reduces greenhouse 
gases the most. Th is is because this scenario is 
credited the full greenhouse-gas emissions avoided 
from burning coal, whereas many of the other sce-
narios that recover the same amount of energy are 
credited the greenhouse-gas emissions from pro-
ducing average European energy, resembling using 
natural gas, which produces less greenhouse gases 
than coal.   

Th e scenario modeling shows that waste man-
agement can contribute to reducing greenhouse-
gas emissions, primarily through energy recovery 
and paper recycling. Storing organic carbon in 
landfi lls is also an option but less attractive than 
recovering the energy in the waste. Waste manage-
ment can probably recover net energy of about 8 
GJ per ton of municipal waste, and the net reduc-
tion in greenhouse gases could be about 500 kg of 
CO2 equivalent per ton of waste. Th e actual value 
depends strongly on the type of energy replaced by 
the energy recovered from incineration. Th is re-
duction in greenhouse-gas emissions from waste 
management corresponds to about 2% of the cur-
rent load caused by an average European person.

Conclusion
Waste management can contribute to society’s ef-
forts to reduce greenhouse-gas emissions by mini-
mizing its own use of fossil fuels, by increasing the 
recycling of materials and energy recovery and by 
binding biogenic carbon in soil and landfi lls. Th e 
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scenario modeling suggests that energy recovery 
and paper recycling are the most important factors 
in reducing greenhouse-gas emissions. Waste man-
agement may reduce current net greenhouse-gas 
emissions from an average European person by 
about 2%.

For waste management, the challenge is to devel-
op a system that uses the least energy, minimizes 
greenhouse gases and maximizes energy recovery 
and material recycling. Th e challenge is to balance 
material recycling and energy recovery and to 
maintain the overall perspective, although much of 
the reduction in greenhouse gases is outside the 
waste management system. Th e solution is to de-
velop transparent data on all levels and to establish 
models synthesizing the complex data into com-
municable terms. Climate-friendly waste manage-
ment is not the solution but one of many necessary 
contributions to meeting targets for reducing 
greenhouse-gas emissions. Th e waste needs to be 
managed, so why not do it the climate-friendly 
way?
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