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Biotechnology was the fi rst technology to 
produce chemicals, fuels and other indus-
trial products. Goods were produced on a 

large scale based on biomass as early as the 19th 
century. Early industrial products from biomass 
include pulp and paper production from wood, 
nitration of cellulose from guncotton and viscose 
silk, soluble cellulose for fi bers, production of 
furfural for nylon and production of acetate, lactic 
acid, citric acid and ethanol. Later, fossil fuels set 
the progress of biomass-based production of in-
dustrial products on standby.

Th ere is general concern about the current 
fossil-fuel system, which is largely based on fi nite 
resources that are not sustainable. In addition, the 
political volatility of many oil-producing countries 
and the rapid fl uctuation of the fuel market are 
encouraging governments to plan long term to 
decouple from dependence on fossil fuels. Concern 
about the instability of fossil-fuel supply, limits on 
fossil-fuel reserves and especially environmental 
concerns have brought new focus on white bio-
technology. White (or green) biotechnology uses 
biomass as feedstock instead of fossil fuels for 
production by biological conversion processes, 
bio-based fuels, chemicals, solvents etc. Using 
biomass as a raw material instead of fossil fuel has 
the advantage of working in a closed sustainable 
carbon cycle, in contrast to the open cycle of using 
fossil fuel with net release of greenhouse gases to 
the atmosphere (Fig. 8.1).

Numerous compounds can be produced from 

biomass, although only a few can be produced eco-
nomically compared with present fossil fuel–based 
technology. Besides the interest in new chemicals, 
a strong interest in producing biofuels and bioen-
ergy has brought biotechnology into focus.

Biomass
Globally, biomass resources are mainly from wood 
and agricultural products and waste. Agricultural 
residue mainly comprises lignocellulosic biomass. 
Lignocellulose is the term for the structural parts 
of plants. It consists of cellulose, hemicellulose and 
lignin. Cellulose is an organic polysaccharide of 
glucose and can be broken down by enzymes (cel-
lulases and glucosidases), although the process is 
slow. Hemicellulose is a heteropolysaccharide con-
taining mainly C-5 sugars such as xylose and arabi-
nose and the C-6 sugar mannose. Th e composition 
of hemicellulose varies between plant species. 
Lignin is a term for amorphous, three-dimensional 
polymers that have a phenylpropane structure. 
Lignin is very resistant to degradation and can be 
used for combustion if it can be separated in dried 
form since it has a high heat value.

Many biofuels are derived from sugar cane, corn 
and wheat. Cereal straw represents the largest bio-
mass resource from agriculture in Denmark (5.2 
million tons in 2006): 26% is directly burned for 
household heating and in power plants, 19% for 
fodder and 12% for bedding; the remainder (43%) 
is plowed in. Other major resources in Denmark 
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Fig. 8.1. The closed carbon cycle using biomass as raw material for fuels, chemicals and energy in contrast to using 

fossil fuel as raw material and releasing net carbon
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include wood, manure and organic waste from 
industry and households. In addition, extensive 
grasslands and dedicated energy crops could be 
considered if they can serve other additional eco-
system purposes such as landscape management, 
groundwater protection, biodiversity and carbon 
sequestration and preventing nutrient leaching.
A recent report shows that converting straw from 
Denmark’s agricultural sector into bioethanol can 
cover up to 30% of the existing fossil fuel con-
sumed in transport (Fig. 8.2). Wood resources can 
contribute 10% and various types of waste biomass 
an additional 6%. Fish and slaughterhouse waste 
can cover up to 9% of current diesel consumption. 
However, if such extensive resources are used, this 
might have other eff ects on agricultural ecosys-
tems, such as reducing soil carbon stocks and soil 
fertility and infl uencing biodiversity.

Biorefi neries
A biorefi nery integrates biomass conversion 
processes to produce fuels, electrical power and 
chemicals from biomass. By producing multiple 
products, a biorefi nery can take advantage of the 
diff erences in biomass components and intermedi-
ates and maximize the value derived from the bio-
mass feedstock according to the market situation 
and biomass availability. Th e bulk of the products 
are biofuels and bioenergy, and chemicals are pro-
duced in smaller amounts. Although the amounts 
of other products are small, they oft en have much 
higher specifi c value.

Biorefi nery systems and design
Biomass is complex. Plant biomass consists of the 
basic products carbohydrate, lignin, protein and fat 
and a variety of substances such as vitamins, dyes, 
fl avors and aromatic compounds.

Many biorefi nery concepts have emerged in 
recent years based on diff erent feedstocks or/and 
diff erent processes and products.

Four main types of biorefi nery systems have 
been defi ned recently:
• lignocellulosic biorefi neries, based on wood and 

straw;
• whole-crop biorefi neries, based on such raw ma-

terials as grain and maize (whole crop);
• green biorefi neries, based on grasses;
• two-platform biorefi neries, with sugar and syn-

gas (synthesis gas) platforms; and
• oily-crop biorefi neries based on whole-crop uti-

lization of oily crops.
Many of the proposed biorefi nery systems focus 

on producing fuels for transport. However, new 
ideas are emerging continually, such as biorefi ner-
ies based on cultivating algae, especially aft er the 
ethical quandaries of using agricultural soil for 
producing biofuels have emerged.

Achieving a high degree of advanced process-
ing is theoretically possible technically. Techni-
cal, socioeconomic, political and environmental 
interaction plays an important role in developing 
biorefi neries (Fig. 8.3).

Economics is oft en the most important factor 
determining the application of the technology. 
However, political decisions and priorities can 
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oft en motivate development, which results in 
technologies that are more advanced and price 
reductions. Logistical issues and infrastructure are 
also important factors and depend on medium- to 
long-term political strategic planning.

Biorefi neries based on oily crops
Signifi cant investment has been made in the 
biodiesel sector in recent years. Th e European 
Union has become the world leader in biodiesel 
production, and demand for biodiesel fuel for cars 
is increasing. However, producing biodiesel com-
petitively and sustainably is diffi  cult. Th e Rapeseed 
Biorefi nery (a project coordinated by DTU with 
the participation of the University of Southern 
Denmark, Faculty of Life Sciences of the University 
of Copenhagen, Aarhus University, Novozymes 
A/S and Emmelev Mølle A/S) will utilize the whole 
crop of rapeseed biomass (in contrast to the seeds 
only, which is the practice today) by combining 
seed and straw processing. Besides food and ani-
mal feed, the rapeseed biorefi nery can produce 
a multitude of biofuels, bioenergy, fertilizers and 
high-value chemicals (Fig. 8.4).

Technology Economics

Logistics Politics

Fertilizer

Electricity Heat High-value products
(such as chemicals)

Biodiesel Bioethanol Biohydrogen

Fig. 8.4. The DTU rapeseed biorefi nery

Fig. 8.3
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Th e rapeseed plant is divided into two streams: 
the seeds and the straw.

Th e seeds are treated by an innovative enzymatic 
process (hemicellulase), resulting in four frac-
tions (hulls, oil, sugar and protein). Biodiesel is 
produced from the oil fraction by transesterifi ca-
tion with methanol. High-value chemicals (phos-
pholipids, tocopherols, sterols, dicarboxylic acids 
and epoxidized oleochemicals) are also derived. 
Th e glycerol released in biodiesel production as a 
byproduct can also be used for producing high-
value-added products. Alternatively, extremely 
thermophilic microorganisms can be used to con-
vert glycerol to ethanol or butanol.

High-value products such as antioxidants, glu-
cosinolates, anticancer pharmaceuticals and high-
quality protein rich in lysine and methionine can 
be recovered from the other parts (hulls, syrup and 
protein).

From straw, hexoses can be converted to bio-
ethanol by yeast and pentoses can be converted 
to biohydrogen. Alternatively, pentoses can be 
converted to bioethanol by extremely thermophilic 
bacteria. Th e effl  uents from diff erent processes will 
be treated anaerobically to stabilize them and to 
produce methane. Finally, the treated effl  uents will 
be used as biofertilizer.

By using the whole rapeseed crop (seeds and 
straw), energy production will increase from 28% 
of the total plant energy content (by using the seeds 
only) to 49% (by using the whole crop producing 
second-generation biofuels) along with the produc-
tion of high-value-added products and biofertilizer.

Converting lignocellulosic matter to 
bioethanol
Diesel and gasoline constitute the main fuels used 
for transport. Th e world’s main oil reserves are 
found in a small part of the world, mainly in Mid-
dle Eastern countries, which reduces the security 
of energy supply for many other countries. Domes-
tic production of fuels, such as bioethanol, reduces 
dependence on oil-producing countries. In addi-
tion, oil reserves are limited and alternative renew-
able energy sources are therefore required eventu-
ally. Environmental awareness and the threatening 
climate change have resulted in extreme interest 
in biofuels. Finally, bioethanol is a renewable en-

ergy source that can be directly implemented in 
the established transport systems as an additive to 
gasoline.

Th e use of ethanol for road vehicles is not new. 
Already in 1908, Henry Ford used ethanol to run 
his motor vehicle, believing it would be the fuel 
of the future. Ethanol later proved not to be eco-
nomically competitive with fossil oil as this sector 
matured and more-abundant resources were iden-
tifi ed.

Mature technologies for bioethanol produc-
tion are based on using substrates such as sugar 
cane juice or cornstarch. Th ese are also called 
fi rst-generation technologies. Since the cost of raw 
materials can exceed 50% of the cost of bioethanol 
production, and because of the recent competition 
between producing food or biofuel on scarce land, 
recent eff orts have focused on using lignocellulosic 
biomass.

Lignocellulosic biomass is the most abundant 
type of biomass on earth. Large amounts of lig-
nocellulosic biomass are wasted today as agricul-
tural residue, such as corn or rice stover, biofi ber, 
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Fig. 8.5. The DTU rapeseed biorefi nery concept
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woodchips, waste etc. However, in contrast to the 
established fi rst-generation technology, technolo-
gies for lignocellulosic ethanol production (also 
called second-generation technologies) have not 
yet been fully developed. Th e fi rst-generation tech-
nologies mainly include fermentation and distilla-
tion, whereas new process steps are needed for the 
second generation (Fig. 8.6).

Fig. 8.7. summarizes the main diff erences be-
tween fi rst- and second-generation ethanol pro-
duction.

Although using lignocellulosic biomass for 
producing biofuels has obvious advantages, the 
process is also facing signifi cant challenges that 
need to be addressed to enable second-generation 
bioethanol production:
• biomass pretreatment;
• new eff ective enzymes are needed;
• utilization of the hemicellulose part of the sugar 

(mainly consisting of pentoses); and
• disposal of effl  uents.

Pretreatment and enzymatic hydrolysis
Since the cellulose and hemicellulose are embed-
ded in lignin, a pretreatment step is necessary 
before the polymers can be broken down to simple 
sugar by enzymes for subsequent fermentation. 
Several techniques have been developed for this 
purpose, including acid and alkaline hydrolysis 
and elevated temperature and pressure. One of 
these techniques, wet oxidation (high temperature 
and pressure with added oxygen) was originally 
developed within the Risø DTU National Labora-
tory for Sustainable Energy for extracting uranium 
from ore from Kvanefj eldet in Greenland. Th is 
technique also turned out to be able to break down 
complex organic compounds and was therefore 
exploited for pretreating straw. Th e technique is, 
however, quite energy-intensive and thus expen-
sive. Other techniques such as wet explosion and 
treatment with hydrogen peroxide are more ag-
gressive and more expensive. In practice, a simpler 
hydrothermal solution seems to be more feasible, 

Pretreatment Hydrolysis Fermentation Distillation

•   The substrate is 
storage polysaccharides:
sucrose from sugar cane 
and starch from corn and wheat.

•   Biomass is not pretreated before
enzymatic hydrolysis.

•   Optimized commercial enzymes 
are available.

•   The substrate is 
structural polysaccharides:
lignocellulosic material
(straw, corn stover, wood and waste).

•   Biomass needs to be pretreated to
facilitate enzymatic hydrolysis.

•   Expensive, noncommercial
enzymes are available.

Fig. 8.6. Process steps for producing bioethanol from lignocellulosic biomass

Fig. 8.7. Main diff erences between fi rst- and second-generation ethanol production
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such as that DONG Energy developed in the 
EU-funded IBUS (Integrated Biomass Utilization 
System) project. Th e biomass is generally heated to 
150–200°C during the pretreatment step. Another 
important part of the pretreatment is to separate 
lignin from cellulose, because lignin cannot be 
converted to ethanol.

Aft er the pretreatment, the cellulose and hemi-
cellulose are hydrolyzed to monosaccharides by 
means of enzymes. Cellulose is broken down by 
cellulase followed by glucosidase. Breaking down 
hemicellulose requires another set of enzymes 
including xylanase. Th is enzymatic hydrolysis is 
normally carried out at a temperature of 50°C.

Utilization of hemicellulose
Sugar is released aft er pretreating lignocellulosic 
material. Two types are released: hexoses (the main 
constituent of cellulose) and pentoses. Hexose can 
eff ectively be converted to bioethanol, and the 
process is carried out with high yield and produc-
tivity by Saccharomyces cerevisiae or recombinant 
S. cerevisiae. S. cerevisiae is by far the best-known 
ethanol producer today but cannot convert pentose. 
No eff ective microorganisms for the industrial 
conversion of pentose (the main constituent in 
hemicellulose) to bioethanol have been found yet, 
although several promising recombinant candidates 
for pentose fermentation have been described and 
presented as future solutions. Meanwhile, these 
organisms have not yet proven their applicability on 
a large scale. Th ese organisms oft en have relatively 
low productivity, low ethanol tolerance and high 
sensitivity to the inhibitors present in the hydroly-

sate (the liquid stream of thermal pretreatment of 
lignocellulose biomass) from the pretreatment step.

DTU is working in several directions to fi nd 
cost-eff ective methods of utilizing pentose. Due to 
the limitations in the conversion of pentose into 
bioethanol, an obvious solution would be to inves-
tigate alternative methods of utilization.

Conversion of pentose to ethanol
An ideal microorganism to be used as an industrial 
ethanol producer for second-generation ethanol 
production should fulfi ll several requirements, 
such as:
• fermenting essentially all the carbohydrate pres-

ent in lignocellulose;
• ethanol tolerant; and
• substrate tolerant.

Many fermentative extremely thermophilic mi-
croorganisms have the capacity to produce ethanol 
from pentose and hexose. DTU has screened in hot 
springs, anaerobic digesters, sediments and other 
places. Several candidates have been enriched or 
isolated from the screening.

One very promising microorganism has been 
isolated from an extremely thermophilic process 
(70°C) operated as a continuously mixed reactor 
with household waste at a retention time of 1–2 
days (Fig. 8.8). Th is organism can be directed to 
produce ethanol with a high yield (>70% at low 
pH, about 5); at higher pH, it produces more hy-
drogen. Th is possibility for manipulating the meta-
bolic pathway of the microorganism enables prod-
ucts to be altered according to the market situation 
and the demand for specifi c products. 

Fig. 8.8. Newly isolated organism that can 

convert xylose to ethanol



TECHNICAL UNIVERSITY OF DENMARK 90

Converting pentose to biohydrogen
Fermentative biohydrogen production is an emerg-
ing technology and has received increasing interest 
in recent years as a sustainable energy source for 
fuel cells. Th e dark fermentative hydrogen process 
is environmentally friendly, cost-eff ective and 
sustainable. Moreover, this process is considered a 
promising treatment technology for organic waste 
and/or residue with simultaneous clean, highly 
effi  cient energy production. During the dark fer-
mentation process, hydrogen is produced together 
with CO2 in the gas phase and organic acids and 
solvents in the liquid phase as the end-products. 
Substrates that have been used for hydrogen dark 
fermentation are mainly carbohydrate-contain-
ing feedstock such as glucose, sucrose and starch. 
We have used pentose for producing biohydro-
gen. Cultures of extremely thermophilic bacteria 
have been enriched for biohydrogen production 
and adapted to convert hydrolysate. Hydrolysate 
contains most of the pentose and is a harsh envi-
ronment for microbial growth because of several 
toxic substances formed during the thermal pre-
treatment process. Compounds such as furfural, 
hydroxymethyl-furfural and organic acids are 
examples. Long-term adaptation of the enriched 
microbial culture enabled the organic compounds 
in hydrolysate to be converted to hydrogen and 
entirely detoxifi ed.

We have developed a two-step process in which 
biohydrogen is produced in a fi rst step and meth-
ane in a subsequent step (Fig. 8.9). Th e process can 
be optimized by recycling the methane produced 
through the hydrogen reactor and thus reducing 
the hydrogen partial pressure, resulting in thermo-
dynamically increased effi  ciency.

Th e gas mixture produced comprises CH4 and 
H2. Using this in internal combustion engines leads 
to many advantages in terms of combustion effi  -
ciency and engine performance due to the specifi c 
physical and chemical properties of the two fuels.

A new process was developed recently that ap-
plies a slight voltage potential in the reactor to 
convert the organic matter into hydrogen: electro-
hydrogenesis.

Biogas
Th e biogas process is an established technology 
and considered the most effi  cient way to convert a 
broad range of biomass to energy. Although biogas 
has mainly been used for producing electricity and 
heat, biogas can be upgraded for use in transport. 
However, infrastructure is required to use it gener-
ally in transport. Nevertheless, the biogas process 
is very versatile and non-selective with regard to 
substrate and is therefore an excellent way to re-
move organic matter and polish effl  uent streams. 
Codigestion of waste streams has been shown to be 
a way of optimizing the bio-gas process to increase 
substrate utilization and to decrease process inhibi-
tion. Biogas is a complex microbiological process 
requiring diff erent groups of bacteria to collaborate 
in a balanced way for successful digestion.

Fig. 8.10 shows the anaerobic digestion process 
schematically.

Several groups of microorganisms are involved 
in the conversion process, such as hydrolytic, ac-
idogenic and acetogenic bacteria and methanogen-
ic Archae. Archae are distinctive from bacteria and 
are supposedly older evolutionary than bacteria.

We examined the distribution of Archae and 
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Fig. 8.9. Process for producing hythane (H2 + CH4 mixture)
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bacteria in biogas plants in Denmark by using spe-
cifi c probes targeting 16S RNA, which can produce 
diff erent colors for bacteria and Archae. Fig. 8.11 
shows the distribution of bacteria and Archae in 
the Fangel biogas plant. Understanding the factors 
determining the establishment of specifi c metha-
nogens may enable manipulation of the microbial 
composition of a biogas reactor and thereby in-
crease the effi  ciency of the reactors.

Sustainability of biofuels
For biofuels, the focus should be on the potential 
of biofuels to reduce global warming: reducing 
emissions of greenhouse gases (most importantly 
CO2, N2O and CH4). Several other issues are also 
highly relevant such as air pollution with soot, 
aerosol particles, nitric oxide, carbon monoxide 
and ozone, which aff ects human health. In ad-
dition, ozone is a greenhouse gas and negatively 
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aff ects plant growth. Th e energy used to produce, 
handle and process the feedstock should be consid-
ered as well as the change of land use for growing 
fuel crops and their potential infl uence on food 
production and food prices.

Sustainability analysis is quite complicated, and 
comparing analyses is oft en diffi  cult. An activity 
has therefore been started to certify biofuels using 
a common set of criteria.

As shown previously, a wide variety of feedstock 
can be used for biofuels.  Th e task of calculating 
the sustainability of biofuels is not easy, and there 
is some controversy about exactly how much 

greenhouse-gas emissions are reduced depend-
ing on how many factors the analysis includes. 
Fig. 8.12. gives an overview of the global warming 
potential of various biofuels relative to gasoline. 
Biogas from manure has the lowest global warming 
potential, but lignocellulosic ethanol, which typi-
cally saves 50–80% compared with fossil fuel, is an 
attractive technology. Corn ethanol and biodiesel 
from rapeseed oil save much less, oft en only about 
20%. However, for biodiesel only seeds were used, 
whereas using the whole plant can substantially 
change the sustainability of oil seed plants for en-
ergy production. Another benefi t of bioethanol is 
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Fig. 8.12. Relative global warming potential of biofuels (source: Zah et al. 2007)
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that replacing as little as 6% of the gasoline avoids 
the need to add the toxic methyl tertiary-butyl 
ether (MBTE) to increase the octane rating.

When land-use change is considered, the green-
house-gas balance might become negative. A 
recent study comparing energy solutions for trans-
port concluded that the highest-ranking solutions 
were wind-powered battery-electric or hydrogen 
fuel cell vehicles. Th e lowest-ranking solutions 
were corn and lignocellulosic ethanol. It was even 
concluded that they may actually worsen climate 
and air pollution. Th e main reasons for this are 
that, despite the relatively high overall greenhouse-
gas savings, there are other environmental issues, 
especially for lignocellulosic ethanol, which re-
quires a large land footprint and results in high air 
pollution, increasing mortality rates.

Th e use of biomass for biofuels should therefore 
be considered carefully, and biorefi neries should be 
justifi ed not solely on their biofuel production but 
also on the production of high-value products that 
can substitute for fossil fuel.
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