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Abstract

The report contains a review of basic models and mathematical tools used in economic analysis of
environmental regulation problems. It starts with presentation of basic models of capital
accumulation, resource depletion, pollution accumulation and population growth, as well as
construction of utility functions. Then the one-state variable model is discussed in details. The
basic mathematical methods used consist of application of the maximum principle and phase
plane analysis of the differential equations obtained as the necessary condition of optimality. A
summary of basic results connected with these methods is given in appendices.

ISBN 87-550-2263-4
ISSN 0106-2840

Grafisk Service, Risg, 1996



Contents

1 Introduction

2 Review of Models
2.1 A Prototype Basic Model

................................

2.2 Capital . .. ... e
9.3 RESOUICES « v v o v o v ot et et b e e e e et ot et eea e s oo e ne e

9.3.1 Nonrenewable RESOUICES . . » « ¢ v v v v o v e o v v vt e v oo e e o s oo o

9.3.2 Renewable Resources. . . . . . .« v o i ittt i i i e it
2.4 POlIUBIONL » v v v e e e e e e e e et e e e e e e e e e e e e e e e e
0.5 LaDOUT & v v e e o e v ot et e e e e e e e e e e e e e e e e
2.6 UtilityFunction . . . . . . . o v ottt e e e

2.7 Environment Regulation

A.1.3 State Constraints
A.2 Discrete Time Problems

.................................

3 A One State Variable Pollution Problem
3.1 Assumptions and Problem Formulation . .......................
3.2 Some Solution Properties . . . .. ... ..t i e
3.2.1 Discussionof Ag . ...... ... .. e e e e
822 Solutionat P=10 . . . . v vt vt i et et et e e e e e
3.9.3 Solutionsat C=00rC=K . .. . @ i i i i it it etneenenss
3.2.4 Summary of Boundary Solutions . . ... ... ......... ...
3.3 Phase Plane Analysis — Equilibrium at an Interior Point . . . ... ... .. ....
3.3.1 State-Costate Phase Plane. . . . . . . .« ¢« c it i v v it v it i e
3.3.2 State-Control Phase Plane. . . . . . . . ... ... oo
3.4 Phase Plane Analysis — Stationary Solution on Boundaries . . . .. ... .. .. ..
3.4.1 Discussion of Stationary Solutions on Boundaries . . . ... ... ... ...
3.4.2 State-Control Phase Plane. . . . . .. .. . ..
3.4.3 State-Costate Phase Plane. . . .. .. . .. .. . . o
3.5 Summary of the One State Variable Problem . ... .................
4 Conclusions and Further Research
A The Maximum Principle
A.1 Continuous TimeProblems . . . . . .« o v it o it i it i e e e e e
A1l NoState Constraints . . . v v v v v v v o et e et e e e e e e e e
A1.2 Infinite HOPIZOM & .« v v v v v et e e e e e e e e e e e e v e e e e e e e e e e

.................................

.................................

41

42
42
42
45
46
47



CONTENTS 2

B Phase Plane Analysis 49
B.1 One-Dimensional State . . . . . . . . . . . o i i it i e 49
B.1.1 Problem Formulation . ... ... ... ..t 49

B.1.2 AnEquilibifum . . . . ... .. . e e 50

B.1.3 State-Control and State-Costate Differential Equations. . . . .. ... ... 51

B.1.4 Classification of Steady-State Solutions . . .. ... ... .......... 52

B.1.5 Phase Planes . . . . . . .t i i it it e e e e e e e e e e e e 54

B.2 Two or More-Dimensional State . . . . . . . .. .. .. . .. 61



Chapter 1
Introduction

Usually there is a tradeoff between economic development and preservation of the environment. The
difficulty in economic tackling of the problem arises because of difficulty in estimating the values
of wildlands and its benefits to the human life, and moreover in prediction of the future values and
benefits, like e.g. from preserving natural biota or botanic specimen. This is also connected with
irreversibility of many development projects when their influence on the environment is considered.
It was probably John Stuart Mill [50] who first emphasized the importance of the environment for
the quality of life. More elaborated views on the economics of the problem, influencing further
studies, were, however, formulated only in the 1960s, with the works of Kratilla [39] and Boulding
[6]. These issues have further been intensively discussed in the economic literature and an extensive
list of literature on this subjects can be found in survey papers, like [22] or [13].

This report is concerned with the use of mathematical models in the study of economic environ-
mental issues, and specifically, the dynamic models. There is quite a tradition that the dynamic
economic problems involving the dynamic models are coped with by using the optimal control the-
ory. This idea can be traced to early applications of variational methods in [20], [58] or [32], but
mainly arose in the second half of the 1960s where newly developed control theory tools like the
maximum principle and dynamic programming went into use. In the 1970s many books presenting
this approach appeared, and particularly the very influential book by Arrow and Kurz [1]. See also
the historical remarks in [21]. For the discussion of static models and methods of its analysis see
e.g. [4] or [64].

There is quite a handful of books dealing with the economics of environment, like [9], [17}, [64],
[35], [21], [12], [4]. But the area discussed in this report includes also many vast subjects with
independent developing literature. This is cited in Chapter 2 where these subjects are shortly
presented.

The aim of this report is twofold. One is to review the area and to introduce the reader,
possibly not deeply acquainted with it, with models, methods and problems spotted there. This is
mainly expected to be achieved in Chapter 2. The second is connected with a deeper mathematical
analysis of the models and methods. This subject is included in Chapter 3, where the one state
variable model is extensively analysed. This chapter comprises also nonstandard analysis of the
phase planes with a stationary point on a boundary, which has been found either to be presented
in error or missing in the literature. Appendices A and B contain short presentations of the basic
theoretical tools used in the analysis.

The limitations connected with the presently available time resources drove us to the idea of
presenting the results at the present stage of research. However, the survey of problems is by
no means completed here and some further research problems to be explored are mentioned in
Chapter 4. These are expected to be the subject of future activity.




Chapter 2

Review of Models

When we talk on preservation of natural environments, we usually have to take into account
at least (1) the pollution connected with the human activity, and specifically with production,
(2) the exploitation of natural resources, which may be connected with pollution, but also with
deteriorating its natural beauty and scenic wilderness, and (3) that part of the capital, which
is connected with the above activities. Quality of the environment is also connected with (4)
population growth which leads to congestion. In this chapter we concentrate on reviewing some
basic models describing these four activities and notions connected with them. For other reviews
the reader is referred to [67] and [8].
To allow for better comparison, all values below are expressed in monetary equivalents.

2.1 A Prototype Basic Model

We start with the following prototype optimization model

ma:z:z'miz:e{/;oo e~%U(C, Q, P)dt} (2.1)

constrained by p(t) C H(K.LQ,P,A) (2.
R(t) =G(R,K,L,Q) (2.3)

K(t)=W(K,C,A,Q,L,1I) (2:4)

L(t) = $(L,C, P) (2.5)

P(0) = Py, R(0) = Ro, K(0) = Ko, L(0) = Lo (2.6)

where U is a so-called utility function, C is consumption, P is a pollution stock, R represents
remaining reserves of a resource and @ its extraction, K is the capital, I is the investment, and L
is the labour (as a constant part of population), all in time ¢. A are the expenses connected with
the abatement of pollution. H, G, S, W are some, unspecified yet, functions. The discount rate
& says how much weight we give to the utility function in the future, as compared to the present
value. Small § (e~% decreasing slowly) is connected with a higher evaluation of the utility function
in the future. Big & (e~%* decreasing quickly) is connected with neglection of the future values of
the utility function (the myopic point of view).

Let us assume that 1
ZH(K’ L,Q,P,A)= h(k,q,p,a) (2.7

4
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%G(R, K,L) = g(r, k) (2.8)
%W(K, C,A,Q,L)=w(k,c,a,q) (2.9)
%S(L, C, P) = s(c,p) (2.10)
Then the above model can be transformed to per capita values
)= 20,0 = 2. k0 = T (.11)
o)) = Sit) = o) = 503 .12
As generally, for z(t) = X (t)/L(t) )
. X XL
E=T T (2.13)
then the equations (2.2) - (2.4), (2.6) take the following form
B(t) = —s(c, p)p(t) + h(k,c, 9, 0) (2.14)
#(t) = —s(c,p)r(t) +9(r, k) (2.15)
k(t) = —s(c,p)k(t) + w(k, ¢, ,9) (2.16)
p(0) = po, 7(0) =70, £(0) = ko (2.17)

This transformation is used if growth of labour has to be considered, and is particularly useful
when s(c,p) = s is a constant (the geometrical growth of labour). For the constant labour the
equations (2.2), (2.3) and (2.4) are rather used.

Let us notice that the assumptions (2.7)—(2.10) can be satisfied for some classes of functions.
Take for example functions that are linear in their arguments. Other classes will be considered in

the sequel.
In the next sections we shall discuss the elements of the above model in more details.

2.2 Capital

The following mathematical model of the capital accumulation is due to Ramsey [58]. It has the

form
K(t) = —eK(t) + I(t) (2.18)

where « is the rate of the capital depreciation. As before, K is the capital and [ is the investment.
Let us assume that the output of the economy is given by a production function

Y =€ F(K,L,R) (2.19)
where 8 is a rate of technical progress. The production is divided as follows
Y (t) = C(t) + I(t) + A(2) (2.20)
Inserting I(t) from above in (2.18) we get
K(t) = —aK(t) + " F(K,L, R) — C(t) — A(¢) (2.21)
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An often used form of the production function is the CES (constant elasticity of substitution)
production function

F(K,L,R) = [BK~I7 4 g, 1= 4 gy Rl-DIo)e/lo=1) (2:22)

where §; >0,i=1,2,3, 01+ B2+ fs=1and 0 <o <o0,0# 1L
A special case of the above, for ¢ — 1, is of importance. We have

F(K,L,R) = eo/te=) oK (e=0/7 4., L(7=1/7 g, p(“=1)/7] (2.23)
Denote the exponent above by {(¢). Using the de L’Hospital rule we have

(o-1)/c (0—-1)/c (o—-1)/o
lim {(¢) = lim B, K + ol + PR ] =
o—1 o—=1 (0‘ - 1)/0‘

1/02[B KD/ InK + B L~/ L + B3 RC-V/°InR] _

= lim

o—+1 1/02[By K(o~1)/o 4 By Lle=1)/7 4+ B3 R(9-1)/7]
=filnK+fInL+BInR (2.24)
Then
lim F(K, L, R) = efrnK+PalnLtfsinR — b1 [Pz pbs (2.25)
o=1
This limit function is called the Cobb-Douglas production function
F(K,L,R)= KPLP=RF> (2.26)
As limy 00 ”—;—1- =1, then
all’ngo F(K,L,R)= /K + p2L + B3R (2.27)

Also transforming this in a similar way as in the previous paragraph we get for o — 0

}1}}% F(K,L,R)=min{K, L, R} (2.28)

Thus taking into account the above limits we can define the CES function for all values of 0 < o <
0.

Let us notice that for all the above production functions the transformations of the kind (2.7)-
(2.10) are valid.

The production function in the model (2.21) must be specified before its solution is attempted.
The solution is induced by the factors present in the production function and therefore the model
has an exogenous character. Recently some interest emerged in specifying an endogenous capital
model. It started with the works of Romer [60], Lucas [41], Barro [2] and Rebelo [59], see also [3],
and is often referred to as Rebelo or Barro-Rebelo model. It is assumed in it that the production
function is proportional to the capital, that is

Y(t) = aK(t)
This way the model (2.21) takes the form
K@) = (e — a)K(t) — C(t) — A(t) (2.29)

which in many instances will be much easier to cope with than the model (2.21). Notice that
formally this model can be also obtained from (2.22) taking 8 = 1 or from (2.28) under assumption
on the limiting role of the capital on the production function.
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2.3 Resources

The problem of natural resources exhaustion was a subject of interest already in the 19th century
when Malthus discussed the food limitation for the growth of human population, with exponentially
growing population and limited agricultural land. The mathematical treatment of this subject
began, however, with the work of Hotelling [32] in 1931. In 1950s Gordon [27] and Schaefer [61]
discussed some economic questions connected with fishery, treated as a common resource. The
Hotelling ideas were also continued by Gordon [28]. In 1970s, partially due to the Club of Rome
activity (see [48], [49]) and the oil crises, the problem of resources exhaustion became quite a
popular subject in the economic literature. Many now classical papers were presented at the
Symposium on the Economics of Ezhaustible Resources and printed in The Review of Economic
Study, [15], [68], [70], [71]. This subject is also extensively discussed in books, see e.g. [9], [17],
[29], [65], [21], [12]. The detailed model depends very much on the particular case considered, see
e.g. [55). However, a rough classification of cases is possible. This is what will be done in the
sequel.

2.3.1 Nonrenewable Resources

Nonrenewable resources are usually related to mining. The models of nonrenewable resources
usually are classified into two groups: pure depletion or exhaustible resources, and nonrenewable
resources with possibility of discoveries.

Exhaustible Resources

The model in this case takes the very simple form
R(t) = —Q(t) (2.30)
R(0) = Ro (2.31)

where Q(t) is extraction of the resource. The extraction may depend on the demand D which can
then be a function of the price m(t), which leads to the dependence in the form

R(t) = —D(x(t)) (2.32)
Under competition a so called Hotelling rule is often applied
w(t) _
) - ) (2.33)

which connects the change of price with the ”inflation” coefficient 8. The Hotelling rule gives the
simple equation for prices w(t) = m(0)e’*. Then denoting by T the time when reserves will be
exhausted we go to the following simple problem

T
/ Q(t)dt = Ro (2.34)
0

Q(T) = D(x(0)e’T) =0 (2.35)

Now the latter equation may be solved for m(0) which then allows us to calculate T’ from the
former.
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This solution is usually compared either with the monopolistic one, i.e. when the price is
determined by a monopolist, who would wish to maximize

T
/0 S [r(Q(1)Q(E) — Cs(Q)]dt (2.36)

subject to (2.30), where C's is the cost of extraction; or with the social optimum one, where the
problem is to maximize

/ . et U(Q(t))dt (2.37)
o

subject to (2.30), where U is a suitably defined utility function. Both the above are optimal control
problems which can be further analyzed using e.g. maximum principle conditions and phase plane
analysis as given in the Appendices, see also the literature cited above.

Exploration and Discoveries

The problem can be slightly more complicated if ezploration and discoveries may augment reserves.
Let then X (t) represent cumulative discoveries. We may now write a model for discoveries

X () = d(B@), X(2)), X(0)=Xo (2.38)

where d is a discovery-rate function depending on E(t) — the exploratory effect, which usually will
be a function of the capital allocated for exploration. Including the effect of discoveries in (2.30)
we get

R(t) = d(E(t), X (t)) — Q(t), R(0)=Ro (2.39)
This case then leads to a two-state ((2.38) and (2.39)) optimization problem. Note that the
objective function should now include the cost of exploration.

Research and Development

Another possibility to enhance the time of using an exhaustible resource is in change of technology.
This is usually connected with research and development in the area. Constant progress can be
described by the rate # connected with the production function (2.19). Here we consider the case
of one change in technology. Assume that the breakthrough occurs at time 7. This will influence
consumption C and extraction of the resource @, and possibly also the utility function U. Then
the objective function takes the form

T oo
/ e_&U1 (Cl, Q1)dt +/ e—'atUz(Cz, Qz)dt (2.40)
0 T

Time T depends on the level of knowledge X (). We assume that the level necessary for the
breakthrough is X;, that is the time T is given by

T: X(T) =X, (2.41)

Accumulation of knowledge may be described by a differential equation dependent on the capital
Kp(t) allocated to the research and development

X(¢)=D(Kp(t)), X(0)=0 (2.42)

If this equation is a deterministic one, then T" can be found from the relation

/ " DK @)t = X, (2.43)
0



CHAPTER 2. REVIEW OF MODELS 9

and the problem reduces to an optimal control problems with a slightly more complicated objective
function (2.40).

However, we may consider that actually the dependence (2.42) is a stochastic one, and therefore
T is a stochastic variable, see [15], [18], [34]. We assume then that it is desired to optimize the
expected value of the objective function (2.40)

T <]
E{ /0 =T, (C1, Q1)dt + /T U, (Cs, Q2)dt} - (2.44)

with respect to the stochastic variable T. Moreover, we assume that the probability of discovery
of the new technology is known and described by the probability density function w(T), such that

/ ()T =pp <1 (2.45)
0

This means that we allow for the nonnegative probability py = 1 — pp that the new technology
will not be discovered at all. Now we can write the objective function as

) ’ oo T )
N /o e~y (Cr, Qu)dt + /0 (D) /0 UL (Cy, Q1) dt + /T e~y (Cy, Qa)di}dT  (2.46)

Denoting -
/T e=3tUy (Ca, Qa)dt = W(Ca(T), Qa(T)) (2.47)

and integrating the second (nested) integral in (2.46) by parts we get

00 [=%] 00 00 ¢
- / &30, (C1, Q1) dt + f e=3tU, (Ch, Qu)dt / w(t)dt - / U, (Cr, Q1) / w(r)drdt+
0 0 0 1] 0

o0 o] o]
+ /0 W(TYW (Co(T), @o(T))dT = /o =3 (Cr, Q1)low + QUE)dE + fo ()W (Ca, Qa)dt
(2.48)
where Q(t) = [;° w(r)dr. This way the objective function (2.44) is reduced to the deterministic
one, without averaging. This again allows us to apply the optimal control theory approach. Let us,
however, observe that the requirements of knowledge of the probability characteristics, necessary
for determining py and w(7), may be limiting its use.

2.3.2 Renewable Resources

Renewable resources consist of biological populations which can reproduce and grow, or some
inanimate resources which are subject to supplementary flux, like water or wind.

Growth Function

The models connected with this kind of resources need to take into account the nature of growth
of the resource. This may require rather thorough knowledge of the underlying phenomena, like
biology of the species considered or climate and geology of the terrain. As usual in the economic lit-
erature, we consider that the amount of the resource stock R(t) changes, when unaltered, according

to a differential equation .
R(t) = G(R(t)), R(0)= Ro (2.49)

where G is called the growth function. In the case of biological populations examples of such models
may, for example, comprise:
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the Malthus [45] model R(t) = vR(t), with a constant v,
e the Verhulst [74] model R(t) = vyR(t)[1 — %ﬂ], with constants vy, W,
e the Gompertz [26] model R(t) = yR(t) ln(%), with constants v, W,

e the Monod [51], [52] model R(t) = 7R(t)WJi§)m, with constants «, W, where S(t) is the
amount of substance which limits the growth (like e.g. food),

o the Lotka-Volterra [40], [75] predator-prey model R;(t) = vRi(f) — aRi(t)Ra(t), Ro(t) =
BR1(t)R2(t) — £Ra(t),, with constants v, a, 8, & (in this case two species are taken into ac-
count),

and many other, see also Section 2.5 Labour.
In the case of nonbiological resource often stochasticity of the supplementary flux has to be
considered. This will not be considered here.

Harvesting

The renewable resource may be harvested. This notion, typically used for biological populations,
can also mean exploitation of an inanimate resource, e. g. ground water, with supplementary flow.
The rate of harvest (yield) Y per unit time will usually depend on effort” E(t) and the available
stock, such that

Y (&) = M(E(), R(?)) (2.50)
Then the relation (2.49) takes the form
R(t) = G(R()) - Y () = G(R()) — M(E(t), B(t)), R(0)= FRo (2.51)

A possible concept here is to keep the resource on a constant level. Then R(t) =0 and we get the

set of algebraic equations
G(R)-Y =0, Y=M(E,R) (2.52)

Which, after having eliminated R, allow us to find the sustained yield function Y = Y'(FE) and the
level of the resource stock R(E). With the above, given the stock R, the yield can be optimized.
More generally we can introduce an objective function (usually a benefit) to find an optimal
effort. Here also the monopolist and social optimum can be considered. An important issue,
however, is to avoid overexploitation of the resource, which may result in stock eztinction. This in
particular may easily happen when no regulation is imposed (common-property resource). When
connected with the capital equation a question of optimal investment strategy may arise, see [12].

2.4 Pollution

Pollution models are often even more difficult to build than those for resources. First of all, the
harmful influence of a pollutant is usually related to its concentration, which may be difficult
to calculate knowing the emissions. Moreover, the emission of some pollutants may be difficult
to estimate, as it may be distributed on bigger regions or, even more troublesome, related with
some processes of not fully known nature. Secondly, the flows of the pollutant may be of a
rather complicated nature, including dispersion in air, surface and/or underground water, or soil,
with possibility of interactions. It can travel with the receiving media to remote sites and influence
environment far from the place of their disposal. The site of the pollutant’s deposit may depend on
random phenomena, like meteorological conditions. Some pollutants can also accumulate in living
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organisms, giving rise to its propagation in food chains. Finally, the pollutants are usually subject
to different chemical and/or biological transformations, often only little known. Fundamentals of
modelling and many examples of models can be found in [33].

The early papers on economic analysis of dynamic models of pollutants and waste accumulations
appeared at the beginning of 1970s, [36], [57], [66], [14], [44], [62], [76]. Probably the best exposition
of the early models is in [25], see also the review paper [67].

The early papers on economic dynamic pollution problems took a rather simplistic models of
pure accumulation of the pollutant or accumulation with a possibility of its degradation

P(t) = E(t) — BP(t), P(0)=Po (2.53)

where P is the pollutant stock, B > 0 is the rate of its degradation and E is emission. The
emission is often connected with the production, as it is frequently understood that the pollutants
are mostly emitted as wastes in the production processes.

Unlike in the resource sector, here abatement of the pollution is possible (which may also include
recycling of the waste). This is mainly connected with capital K4 allocated to the abatement
technology. Then the model takes the form

P(t) = E(t) — BP(t) — A(K4), P(0)=Po (2.54)

Important issues in the pollution modelling are connected with the technical progress and
international dimension of polluting activity.

2.5 Labour

When longer times and bigger territories, like countries, continents or the globe, are considered, the
change in labour due to growth of population has to be considered. The models here are usually
of the exogeneous kind - they do not depend on other model variables. For deeper description of
population models see [37].

The most popular model used in the economic considerations is the Malthus model [45] of
exponential growth. It has the form

L) =~L(t), L(0)= Lo (2.55)

where ¥ is a constant, called the intrinsic rate of growth. It has a simple solution, very suitable for
calculation of per capita values
. L(t) = Loe™ (2.56)

This model describes the constant growth of the population and therefore has only limited appli-
cations, mainly for shorter time horizons. There are other models which take into account some
saturation effects. For example the Verhulst model [74]

. Lt

L) =vL@)[1 - _I/(V). , L(0)= Lo (2.57)
where 4 and W are constants, and W is called the carrying capacity of the environment. Its solution
is a famous logistic curve

W

14 Zlog-vt

L(t) (2.58)
with the limit lim;—co L(t) = W. Another famous model of this kind is the Gompertz model [26]

L) = vL(t) 1n(z%), L(0) = Lo (2.59)
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where v and W are constants. Its solution takes the form
Lo -t
t) = —)¢ 2.
L) = W(72) (260)

and again we have lim; o, L(t) = W.

More complicated models take into account the age distribution in the population. The models,
mainly developed in the first half of this century, include integral, matrix, difference and partial
differential equations ones. This subject is extensively studied in demography, see e.g. [37], [38].

2.6 Utility Function

The shape of the utility function is important in the theoretical analysis of the economic problems
in environment, as visualized in Appendix B. The important characteristics for the analysis are
the second (partial) derivatives Uxx of the utility function with respect to any of its argument X.
In the stochastic setting the following notions are often used:

o risk aversion, if Uxx < 0 (U concave in X),
o risk preference, if Uxx > 0 (U convex in X),
o risk neutrality, if Uxx =0 (U linear in X).

Another important characteristic may be separability of U, e.g. when U(C, P) = U1(C) + Uz2(P).

Detailed definition of the utility function is basically related to the possibility of measuring
the benefits and costs of environmental policy. While it may be comparatively easier to do for
many resource problems involving goods which can be bought and sold on markets, and which
thus can be easily expressed in monetary terms, this is hardly the case in pollution problems. The
direct estimation is sometimes possible when the cost of abatement is considered (like expenditures
on cleaner fuels, abatement control equipment, etc.) or after damages caused by pollution have
occurred (usually in forestry, fishing, and agriculture). But even then the possibility of adjustment
of firms or individuals to the changes caused by pollution has to be considered. Such adjustment
can, for example, include irrigation of the land or alterations in the cultivated plants or number of
acres planted, as well as passing on part of the cost increase to consumers.

The direct estimation is, however, not possible for such goods as clean air or water. To find
values of this kind of goods some indirect methods of measurements have been developed. The
detailed discussion of these methods is out of the scope of this paper. It can be found, for instance,
in a recent survey [13], from where also the classification given below has been taken.

Let us introduce the damage function S(P, Z) that links pollution P and another factor Z with
some, perhaps abstract, value S. S may be, for example, time spent on recreation, swimming
or boating on a lake, or the number of average days in a year with some respiratory problems
due to air pollution. Z may be connected with some actions undertaken to mitigate the effect of
pollution, like willingness to travel to a lake being more far than a close, but polluted one. Or
moving to another part of the city, or another city. Or just buying some medicine to relieve the
respiratory symptoms due to air pollution. Now, with a known change in pollution it is possible to
measure the corresponding changes of the factor Z. Thus, if Z is expressed in monetary equivalent,
it allows us to calculate willingness of people to pay for improvement in environmental standard.
This approach was called the averting behaviour approach.

A closely related way, called the weak complementarity approach, is connected with valuating
factors which are complementary to environment quality, like for example more visits to a recre-
ational site when the source of pollution was removed and the environment cleaned, or increase in
the household prices there.
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A third approach use hedonic market methods. This approach exploits the concept of hedonic
prices. This is a notion that the price of a good can be decomposed into the prices of the attributes
that make up the good. For example, the price of a house may include air quality, or wages for
a job may include risk of death. Then regressing the prices on the corresponding attributes the
value of the clear environment can be estimated.

Although sometimes imprecise, this valuation techniques has been applied in many practical
problems, see [13], and may help in developing the utility function for a specific case.

2.7 Environment Regulation

A central idea in pollution control is connected with the fact that the firms, looking for optimal
production conditions in a competitive environment, may discharge excessive wastes, engaging
this way in excessive polluting activities. Let us consider an example which for simplicity is a
static case, that is the variables are constant in time. We assume that all the functions below
are sufficiently smooth. Assume now that a firm discharges a waste with emission E. The waste
contains a pollutant such that its flow to the environment is P(E). The firm production function
F depends on some input X (which may be the capital, the labour etc.), the emission E and
pollution P, i.e. its form is F(K, E, P(E)). We adopt some conditions

oF oF apP

a—E'ZO, a—P'SO, 6_E>0 (2.61)
Moreover we assume that the functions above are concave. The optimal emission for the firm can
be found from the first order necessary optimality conditions

dF _OF  OFdP _
dE ~ OE ' OPdE
The social optimum will involve some utility function U(F, P) and we assume that

au ou
EF >0, -55 <0 (263)

and that the function U is concave. Now, the first order necessary optimality conditions are

dU 00U ,8F 9FdP, 0UdP

0 (2.62)

VoA AT A T T ) A (2.64)
or
8F 0OFdP ©6UdP ,0U
25" 9pdE T 9P dE/ 9F = (2.65)

Let us denote the social optimum by E®. Due to the assumptions we have

dF F OFdP ou dP ,3U
A e = (B O e = (S P ls >0 (2.66)
We see that the social optimum does not give the optimal solution for the firm. Moreover, to get
the optimal solution it would be necessary for the firm to increase the emission of wastes. Thus
the firm optimizing its production discharges excessive waste. To reach the social optimum some
additional restrictions on emission should be imposed.
The problem of externalities, like the one in the above example, was considered by Pigou [56]
who proposed to use taxes as a regulator. In the above example, denoting the tax for the excessive
emission by ), we get the new function for the firm to be optimized

F(K,E,P(E))+ \E — E®) (2.67)
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with the optimality condition
dF _OF OFdP

-5 opaE M0 (2.68)
This condition is equal to the social optimum condition if
8U dP ,8U

As more parties are involved the problem becomes more difficult and, moreover, complications
arise connected with imperfect information and defensive activities of the victims. That is why the
Pigouvian taxes have been repeatedly attacked. The early criticism is due to Coase [10], whose
argument was that the distortions associated with the externalities would be resolved through bar-
gaining among interested parties. This may be, however, difficult to implement in many conflicts
involving pollution. Some other actions, like subsidies for lowering the emission, marketable emis-
sion permits, effluent charge etc., were discussed. There is also a possibility to use legal liabilities
after pollution effects has been found. A good source of discussion of different actions and their
impacts are [64] and [4]. For review of problems related with the policy instruments and reaction
of the involved actors as well as of the literature see also [13].

As the direct approach involving calculation of damages caused by some parties to other con-
stitute big obstacles, other solutions seem more practically relevant. A popular approach is to
determine first some standards for environmental quality which enables then to design a regula-
tory system to achieve these standards. This often leads to so called command-and-control policy,
as opposed to economic incentives mentioned above.



Chapter 3

A One State Variable Pollution
Problem

Although theoretically possible, the detailed analysis of the problem (2.1) - (2.6) seems rather
cumbersome. Various simpler models have been therefore proposed and analyzed. The simplest
one with the one state variable will be reviewed in this chapter.

If the labour growth is constant or given exogeneously (and then eliminated), then there are
three possible variations of the problem (2.1) — (2.6) giving rise to one state variable problems.
These are: with the pollution accumulation model, with the capital accumulation model, and with
the model describing dynamics of a resource extraction. We discuss here only the first of them.
The early formulations of this problem is due to Plourde [57] and Keeler at al. [36] but its main
analysis was done by Forster [25]. Besides the discussion of the standard equilibrium model we
give here also full discussion of the nonstandard models with no equilibrium points but only steady
state stationary points on the boundaries. The discussion of other models can be found elsewhere.
The book [21] is a good source where also discussion of the Ramsey model of capital accumnulation
can be found, together with pollution treated as a static variable. Various resource extraction
models are also extensively discussed in [9] and [12].

3.1 Assumptions and Problem Formulation

The utility function is here expressed as a smooth (twice continuously differentiable, including
continuities at the boundaries of the feasibility set) finite value function which depends on only
two variables: consumption and pollution, i.e. it has the form U(C, P). It is also assumed that in
the interior and on the boundary (except possibly in few places where it will be clearly stated) of
the set of feasible solutions

Uc>0, Usc <0, Up<0, Upp <0, Ucp <0 3.1)

For some technical proofs we assume sometimes that the higher cross derivatives of the above

function are zero, i. e.
Ucxpr =0 for £>0,1>0,k+1>2 (3.2)

Notice that this assumption is always true when the function U is separated in C' and P. We call
the functions satisfying the above condition weakly connected in arguments. It is further assumed
that a fixed output K < oo is produced over the time. It is allocated to consumption C' and

15
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pollution control (abatement) K4 so that
K = C(t) + Ka(t) (3.3)

The stock of pollution increases according to the equation (2.54) discussed in the section 2.4, which
in this case has the form

P(t) = E(C(t)) — A(Ka(t)) — BP(t), P(0)=Py>0 (3.4)
A function Z is again defined as a smooth (as in the case of U) finite function
Z(C)=E(C)—A(K-C) (3.5)

and the following assumptions are taken in the interior and on the boundary (with some exceptions
as described before) of the set of feasible controls

z'(c)>0, Z"(C)>0 (3.6)
and we assume that Z is bounded on [0, K]. We also assume that there exists Cp such that
Z(Cb) =0 and that 0 < Co < K. Then

<0 if 0<C<Cp (netabatement)
Z(C)=< =0 if C=0GCo (net sustainability) (3.7

>0 if Co<C<K (netpollution)

Thus the problem can be formulated as follows

max / e ®U(C,P)dt, §>0 (3.8)
0

P=2Z(C)—pBP, P(0)=P,>0 (3.9)
C>0, K—-C>0, P>0 (3.10)

Notice that because of the assumptions taken

{o] o0
/ e *U(C, P)dt < f e U(K,0)dt < U(K,0)/8 < o0 (3.11)
0 0
Thus the integral exists.

Different simpler formulations of the above problem has been considered, for instance as il-
lustrative examples in [12] or [63], often with some economic interpretation. The simplifications
mainly include separation in parameters of the utility function and often linearity of the equation
of motion (3.9). An extension of this problem, for the case when the utility function depends on
the derivative (rate) of the pollution accumulation P was discussed in [73]. However, in this paper
the utility function is separable and the equation of motion is linear.

Let us now define the (current value) Hamiltonian and Lagrangean functions (see Appendix A)

H(C,P,X) = X\U(C,P)+ A[Z(C) — BP] (3.12)
L(C, P, )\, p1, i, p3) = H(C, P,A) + 1 C + pa(K — C) + p3P (3.13)
Then the necessary (maximum principle) optimality conditions are
Cc*= argmg.xf{(C, P*, ) (3.14)
Le=X2Uc+XZ'(C*)+ p1—p2 =0 (3.15)
At = (J-I-ﬁ)/\* —Up —ps (3.16)
pC* =pp(K - C*")=psP* =0, 1; 2>0, i=1,2,3 (3.17)
(Ao,/\‘) ?é (0, 0), /\o =0 or 1 (318)

and additionally (3.9) — (3.10).
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3.2 Some Solution Properties

3.2.1 Discussion of A

Let us consider first the case Ap = 0. In this case the solution does not depend on the utility
function but is determined by constraints. Indeed, the Hamiltonian (3.12) now is

H(C,P,)\) = \[Z(C) - BP] (3.19)
From (3.18) we have A* # 0. When A* > 0, then the maximum of H(C, P*,)\*) is at the value
maximizing Z(C), that is at C = K (full pollution). Solving the equation (3.9) we get in this case

P(t) = Poe™P* + —Z%)(l —eP >0 (3.20)

Then from (3.17) p3 = 0 and from (3.16) we get at the steady state

§+p
As \* is continuous in £, this contradicts our assumption A* > 0.

Now assume A* < 0. Then the value maximizing the Hamiltonian is C = 0 (full abatement).
In this case, as Z(0) <0

A+ <0 (3.21)

—pt o Z(8) (1 _ Bt 1 — fPo
P(t)={ PoePt 4 2 (1 —e7Pt) for 1< 5In(l — ) (3.22)

0 otherwise

But then, fort > % ln(l—-g%j), the abatement K —Cj is sufficient which means that the sustainable
value C = Cg > 0 can be shifted to consumption, increasing this way the utility function. Then
C = 0 does not maximize the Hamiltonian. This contradiction finally eliminates the case Ag = 0
and therefore we have Ag = 1.

3.2.2 Solution at P=0

We start this case again with discussion of solutions on the boundaries. Solution of the equation
(3.9) is

P(t) = Poe™* + / t e=Pt=7) Z[C(7))dT (3.23)

Then, if C > Co (i.e. Z > 0), then P() > 0 for all finite ¢. If not, then there exist at least some
interval at the beginning where P() > 0 (because Py > 0 and Z is bounded). Therefore pu3 =0,
at least for a sufficiently small £. Let us also notice as a byproduct of this analysis that as by
assumption Z(C) < Z(K), then P(t) < Poe™? + L Z(K)(1 ~ e~Pt). Then solution of the above
differential equation is bounded and the asymptotical solution is bounded by Z(K)/B-

Let us, however, notice that the steady state (equilibrium) solution may or may not be on a
boundary P = 0, dependent on some function characteristics [24]. For this let us consider the
costate-state (A - P) plane (see Appendix B) and assume that g; = 0,7 = 1,2,3. For the curve
A* =0 we have from (3.16) and (3.1)

Up

AM=—
i+ 8

<0 for P>0 (3.24)
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Now, differentiating (3.15) with respect to P we get

1Dy — _ Ucp
C'(P) = ~g— wzrcy 2 (3.25)

and, finally, differentiating (3.24) with respect to P yields

Upp + UcpC’'(P) <
5+ 8

So the curve A\*(P) is strictly decreasing. Its value for P — 0% is given by

N*(P) = 0 (3.26)

. . _ limp_,0+ UP(C, P) — 3\
Pll)rf)l‘l' AN (P) = Fy =X (3.27)
Let us now consider the curve P = 0. From (3.9) we have
%(C)

P=—-7 3.28
5 (3.28)

and then Z(CVC (O
POy = '—(%L (3.29)

Again from (3.15), differentiating now with respect to A*

UccC'(A*)+UcpP'(X)+ Z'(C)+ X*Z2"(C)C'(X\*) =0 (3.30)

which, after some small algebraic manipulations, gives

[z

) =~ s 87 27(C) ¥ UerZ' (©)

0 (3.31)

So the curve P(A*) is strictly increasing.
We can find the value of Ap giving P(Ap) = 0. At P =0 we get Z(C) = 0 which is satisfied
for C = Cy (net sustainability assumption). Then from (3.15) we have

NP = _%6‘3;)0) (3.32)

Now (see also Fig. 3.1), if AP < A%, then the curves for A* = 0 and P = 0 cut for P > 0 and
the steady state value of pollution is positive. Otherwise the steady state value of pollution is 0
and the asymptotic stationary point! is (A}, 0), with X* = 0 for pz = (6 + B)AF — Up(Co,0). A
condition to assure the positive steady state pollution may be A* = 0 which is for example satisfied

for
lim Up(C,P)=0 forany C (3.33)
P—0+

INotice that the stationary point in [24] is misplaced due to not considering the constraint P > 0 there. There
may be an asymptotic solution on a boundary, not violating the constraint, but this may happen only when the
curves for A* = 0 and P* = 0 cut at the boundary.
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equilibrium

stationary point

Figure 3.1: The equilibrium (case 1) and the stationary point (case 2) at the costate-state phase
plane.
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3.2.3 Solutionsat C=0orC=K

From the equation (3.15) we get
Uc + 1 — p2
x __ MLl S ') .34
A Z(C) (3.34)
Thus, if C* is in the interior of the interval [0, K] (where p1 = pa = 0), then A\* < 0 and the
Hamiltonian is concave there. Then from the maximization in (3.14) we can get a solution in the
interior or possibly at a boundary point.
Solutions at the boundaries 0 or K can be eliminated by making appropriate assumptions on
the problem functions. As we have

Z'(C)=F'(C)+ A(K - C) (3.35)
then
lim A(C)=+4+c0 = lim Z'(C) =+ (3.36)
K -0+ C—K-

Now, Uc must be bounded at K because the function U is increasing and concave with respect
to C. If we confine ourselves to finite y5 (or finite A*), then we get from (3.34) A* = 0. But this
cannot be true all the time as from (3.16) we have in this case (notice that uz = 0)

M=-Up>0 (3.37)

Thus with the assumption (3.36) the solution cannot be at C = K for finite A*.
However, we cannot take a similar assumption at C' = 0, because Z is increasing and convex.
Therefore Z'(0) must be finite. Instead, another assumption may be taken

lim Uc(C,P)=o0 forany P >0 (3.38)
C-ot

With the above from (3.15) either A* or p2 must be infinite. So it is impossible to satisfy the
condition (3.15) for finite values of the involved variables.

3.2.4 Summary of Boundary Solutions

Summarizing, the following assumptions are sufficient to keep the solution out of the boundaries
(for finite values of variables):

lim Up(C,P)=0 for any C (to have P > 0) (3.39)
P50+
lim Z'(C)=+oc0 (to have C < K) (3.40)
C—oK-
lim Ucg(C, P)= oo for any P > 0 (to have C > 0) (3.41)
C—0+

A possible shape of the Z(C) curve is depicted at Fig. 3.2.
Let us, finally, check the constraint qualification. Calculating the matrix (A.21) we get

1 ¢ 0 0
-1 0 K-C 0 (3.42)
Pc 0 0 P

The troubles with the full rank may occur when Pz = 0 for P = 0 and either C =0 or C = K.
From (3.15) we have for P =0 .
Pe =2'(C) (3.43)



CHAPTER 3. A ONE STATE VARIABLE POLLUTION PROBLEM

Z(C)

Co

z(C)

Figure 3.2: A possible shape of the function Z(C).
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Then P¢ > 0 except possibly at C = 0, if Z’(0) = 0. The latter case is, however, not feasible
with our assumptions on Z(C) because then P = 0 and C = 0 (full abatement under no pollution).
Thus, even when Pc = 0 at some ¢/, then it could only be at this specific time, with Pg > 0 for
t > t'. We can then conclude that the constraint qualifications are satisfied.

3.3 Phase Plane Analysis — Equilibrium at an Interior Point

Let us now analyze the solution on the phase planes. This actually will follow closely the steps
presented in the Appendix B (notice, however, that now the assumptions on the equation of motion
function are different). We assume first that the equilibrium is in the interior of the feasible set,
that is p; = 0,7 = 1,2, 3. The equilibrium is given by the stationary point of the equations (1. 8),
(1.14) and (1.151)

Z(C*) = BP* (3.44)
Uc+AZ'(C*)=0 (3.45)
6+B8X*-Up=0 (3.46)

Notice that the solution to the above equations exists and is unique because both Z/(C*) > 0 and
z"(Cc*) > 0.
3.3.1 State-Costate Phase Plane

The equilibrium point at the costate-state phase plane has been analyzed at the Fig. 3.1. However,
we change now the coordinates to comply with the Appendix B. The isoclines /\* =0and P=0
divide the orthant into four isosectors I, II, III, IV, see Fig. 3.3. Denote

Z(C(\,P))—BP=N(\P) {=P} (3.47)

We have
Np =Z'(C(A\ P))Cp - (3.48)

But, taking into account the partial derivative of (3.15) with respect to P we get

_ Ucp
Cp= Uoc + 22" (CO\ P)) <0 (3.49)

so that
Np <0 (3.50)

This means that to the right of the curve P=0 (in the isosectors III and IV) there is P < 0 and
to the left (in the isosectors I and II) P > 0.
Similarly denote

(6+BA-Up(C(\,P),P)=M(\P) {=i} (3.51)
and calculate
My =6+ 8—-UcpCi (3.52)
But then the partial derivative of (3.15) with respect to A is
ZI
Cr=- (C, P) >0 (3.53)

Ucc + AZ"(C(A, P))

so that
M, >0 (3.54)
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and X > 0 above the curve A = 0 (i.e. in the isosectors I and IV) and X < 0 below the curve
A =0 (ie. in the isosectors II and IIT). The results of the above analysis is also presented on the
Fig. 3.3. We see that there are two convergent orbits, 02 and o4 which are stable solutions to our
equations. For a given Py, choosing appropriately A(0) at ¢ = 0 on the optimal path it is possible
to enter one of these optimal paths which lead to to the equilibrium. The optimal consumption is
calculated by maximizing the Hamiltonian.

3.3.2 State-Control Phase Plane
Let us now analyze the state - control (P - C) phase plane. The curve ¢, (P) for P =0 is given by

Z(e1(P))—pP =0 (3.55)
so we have 5
¢y (P) = m >0 (3.56)

Thus it is increasing.
To find the equation for C let us differentiate (3.15) with respect to ¢ which yields

UccC +UcpP+AZ' (C) +22"(C)C =0 (3.57)
and insert for A from (3.16) and for A again from (3.15) to get

_ (6+B)Uc +UpZ'(C) — UcpP

Uoo — UcZ"(C)/Z'(C) (3.58)

Thus the curve ¢(P) for C =0 has to satisfy the following equation (notice that Uc, Up and Ucp
depend on cz(P) as well)

(6 +B)Uc + UpZ'(c2(P)) ~ UcpP =0 (3.59)
Now, taking the partial derivative with respect to P we have

(8 + B)Uccca(P) + Ucp] + [Ucpcy(P) + Upp)Z' (c2)+

+Up 2" (c2)cy(P) — [Ucapcy(P) + Ucps)P — UcpPp =0 (3.60)
From (3.9) we get )

Pp =2Z'(C)cy(P)— B (3.61)
so at the equilibrium (i.e. for P= 0), or for U being weakly connected in the arguments we finally
have

dUcp + UppZ'(C)

<0 (3.62)

P) = =G5 B)Uec + UrZ7(C)

Thus the equilibrium point is (at least locally - but we soon learn that it is globally) unique.
Moreover, denoting (we use the same letters as previously but obviously the functions are
different)
M(C,P)=Z(C)-BP (3.63)

N(C,P)= (6 +B)Uc + UpZ'(C) — UcpP (3.64)

we get
Mp=—-f<0 (3.65)
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Figure 3.3: Analysis of the equations on the state-costate phase plane.
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so P < 0 in the isosectors III and IV, and P > 0 in the isosectors I and II. Similarly, at P=0 (ox
for U being weakly connected in the arguments)

Ne =0+ B)YUcc +UpZ"(C) <0 (3.66)

As the denominator in (3.58) is negative and does not cha.nge its sign in the vicinity of the equi-
librium, then C > 0 in the isosectors I and IV and C < 0 in the isosectors III and IV (see Fig.
3.4).

Again, the optimal path depends on Py. For Py > Py the optimal solution may lie, for smaller
t, partly on the axis (i.e. for C = 0 — full abatement case). This will not be the case when (3.41) is
satisfied. Also for Py < P, the solution may be partly on the boundary for smaller ¢ (for C = K).
This will not be the case when (3.40) is true. Notice, however, that both (3.40) and (3.41) are only
the sufficient conditions, that is the solution may not be on the respective boundaries even when
they are not satisfied. A p0531ble optimal trajectory lying partially on the boundaries is depicted
at the Fig. 3.4.

Let us notice that from (3.58) we may characterize the equilibrium in the following way. It
exists if the solution to the equation

6+800(c, 25 1 uper, Xz =0 (3.67)
satisfies Cp < C* < K. Then
,_2(C) . Us(chETY
Pr=2, X (3.68)

Let us rewrite the equation (3.67) in the following way and denote the left side by L(C*) and the
right side by R(C*)

L(c) = MZ(—CZLE_)) =-vp(c", 22 = ric) (3.69)
We have e
oy et e @) v on
and o
R(C") = 228 +;f;ﬂ"c_l >0 (3.71)

Thus the left side is decreasing in C* while the rigtht side is increasing.Therefore they may cut at
most in one point and there may be not more than one equilibrium.

Notice, however, that the height and slope of the R(C*) depend on the discount factor 4, as
presented on Fig. 3.5. We see that raising § (move towards the myopic point of view) increases
the solution value of consumption C*. Reduction of é (higher concern for the future) moves the
optimal consumption closer to the zero pollution value.

As there is at most one equilibrium point, one might be interested what happens to the paths
diverging away from the equilibrium. We know that the asymptotic solution for P is bounded and
then the set of possible asymptotic solutions on the state - control phase plane is also bounded.
So the paths cannot diverge to infinity here. The evolution of these paths will be discussed when
the boundary stationary points are considered.
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Figure 3.4: Analysis of the equations on the state-control phase plane.
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Figure 3.5: Dependence of the optimal consumption on the value of 4.
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3.4 Phase Plane Analysis — Stationary Solution on Bound-
aries
3.4.1 Discussion of Stationary Solutions on Boundaries

Let us consider now cases when the asymptotic solution is on a boundary. The analysis of the
cases when the equilibrium is on a boundary (the point is attained asymptotically) does not differ
significantly from the one for the equilibrium in the interior. However, if a boundary is attained
at the finite time, then the asymptotic analysis of the Appendix B is not valid, as there is no
equilibrium. Yet we can still follow some analysis of possible asymptotic solutions on the phase
plane.

A finite steady state stationary solution at boundaries must satisfy the following equations

Z(C*) - BP* =0 (3.72)
Uc + M2/ (C*) + p1 — iz = 0 (3.73)
+B)A —~Up—p3=0 (3.79)

Let us check all boundaries in turn.
For P = 0 we have from (3.72) Z(C) = 0, that is C = Cy which is on neither of boundaries
C=0o0r C=K, then py = 1o = 0. Moreover we have there

Uc(Co,0)

N =-Zcy

<0, ps=(6+P)A" - Up(Co,0) (3.75)
So there may be a stationary point? (Co, 0, A¥) on the boundary P = 0 if the following inequality

holds
(6+ﬂ)UC(0010)+ UP(CO’ O)ZI(CO) <0 (3.76)

Let us interpret this inequality geometrically on the state - control phase plane, see Fig. 3.6.
From (3.58) on the line P =0 we have

[Ucc(C,0) - Uc(C,0)2"(C)/2'(CIC = (6 + B)Uc (C,0) + Up(C,0)2'(C) — Ucp(C,0)P (3.77)

Then, if the inequality in (3.76) becomes equality, then the point (Cy, 0) is en equilibrium because
P=0 there, and therefore also C' = 0 must hold. Now, for C' = Co we have (§ + B)Ucc(Co,0) +
Up(Co,0)Z"(Co) < 0 (this is also valid on the whole hne if U is weakly connected in the arguments)
so that the right hand side decreases with increase of C. Therefore, if (3.76) is satisfied, then the
only possibility to get C = 0 is to move downwards. Then the curve C = 0 cuts the hne P=0
below Cp. Similarly, when the inequality in (3.76) is reversed, then the curve C = 0 cuts the line
P =0 above Cy, in which case there is an equilibrium in the interior of the feasible space. So there
may be no stationary point, a stationary point or an equilibrium in (Cp, 0), depending on problem
functions.
On the state-costate phase plane from (3.76) we get

Up(C0,0) _ _Uc(Co,0)

A
N =515 Z'(Co)

=P (3.78)

which means that the curve A = 0 cuts the axis P = 0 below the point where the curve P = 0 cuts
it.

2In [25) another point is claimed to be a stationary one for P = 0. However, it does not lie on the curve P = 0.
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é=0,ﬂ3=0

C=0,p3>0

Figure 3.6: Dependence of the place of the curve C = 0 in relation to the curve P = 0 on the value
of pa.
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For C' =0 it is impossible to satisfy the equation (3.72) for P > 0. So there is no asymptotical
stationary solution there.
For C = K we have p; = 0, then from (3.72)

2(x)

P = = p3=0 (3.79)
B
from (3.74)
Up (K, PX)

W=m 2o 3.80
5+8  ° (3.80)

and from (3.73)
p2 = Uc (K, PX) + A5 Z'(K) (3.81)

So there is an asymptotic stationary solution here, if the following inequality holds
Z(K Z(K
(6 + B)Uc(K, %) + Up(K, %)Z’(K) >0 (3.82)

To interpret geometrically the above inequality on the state-control phase plane, see Fig. 3.7,
we again rewrite (3.58) for the line C = K as

[Ucc(K, P) - Uc(X, P)Z2"(K)/Z'(K))C = (6 + B)Uc(K, P) + Up(K, P)Z'(K) — UcpP (3.83)

At the point (K, PX) (or on the whole line for the function U weakly connected in arguments) the
expression on the right hand side decreases with increasing P (notice that Pp= —~p < 0 there). If
(3.82) holds, then to get C = 0 it is necessary to move right (increase P). Thus the curve C =0
cuts the hne C = K at P > PX_ If the inequality in (3.82) is reversed, the curve C = 0 cuts the
line C = K at P < PX when there is an equilibrium in the interior of the feasible space. If there
is the equality, then the curve cuts the line at PX and there is an equilibrium at the boundary,
and it is attained asymptotically. We conclude that the point (X, P, A5) may be no stationary
point, a stationary point® or the equilibrium.
On the state-costate phase plane from (3.82) we get

Ug(K,P¥) _ Up(K,PK)

M= Z'(K) S+ P

=X<0 (3.84)

Which means that there is a stationary point there if the curve A = 0 cuts the line P = P¥ above
the point where it is first reached by the curve P = 0.

From the discussion of the condition (3.67) we conclude that there may be either the stationary
point at (Co,0) or at (K, PX) and never in both of them at the same time.

Analyzing the dependence of the conditions (3.76), (3.78), (3.82) and (3.84) on the discount
factor ¢ we see that increasing J (moving towards the myopic point of view) we decrease the
possibility of having the asymptotic stationary solution at the zero pollution consumption level Cjy
while increasing the possibility of having it at no abatement level C' = K.

3.4.2 State-Control Phase Plane
The Stationary Solution at P =0

We consider first the case when the stationary point is at (Cp, 0). The analysis of the slope of the
curve P = 0 done before is valid here, so the slope is positive. The curve cuts the axis C at the

3This stationary point was overlooked in [25].
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K

C=0
p2 >0

Figure 3.7: Dependence of the place of the curve C' = 0 in relation to the curve P = 0 on the value
of Ha.




CHAPTER 3. A ONE STATE VARIABLE POLLUTION PROBLEM 32

point Co. It also cuts the horizontal line C' = K at the point PX. The curve € = 0 cuts the axis
C at the point C€. Its slope was calculated before only in the equilibrium and therefore the result
obtained there is not valid here unless we assume that the function U is weakly connected in the
arguments. We assume here that the slope is decreasing.

Now the curves P =0 and € = 0 divide the set of feasible points (fr 0KC<K,P> 0) into
three isosectors denoted I, I1, and III, see Fig. 3.8. The previous analysis of the signs of P is still
valid here, so P>0in the isosector I and P < 0 in the isosectors II and IIL. To find the signs of
C we should now determine the sign of the following expression

N¢ = (8 + B)Ucc + UpZ"(C) — Ugap P (3.85)

which depends on the unknown sign of Ugzp. We assume that N¢ is positive, which is true at
least when C€ is close to Cg and P is close to 0 or the function U is weakly connected in the
arguments. Then A > 0 at the isosectors I and II, and ) < 0 at the isosector IV.

We see that the paths being close to the origin (0,0) approach the axis C either directly, or
first touching the axis P. Then they ”jump” to the point (Co,0). Among them there is a path
going directly to this point, denoted on the figure o. The path lying above o converge to the point
(K, Px). They may cut the curve P =0 and approach the point from the left or approach the
point from the right. Some of them may do it reaching first the line C = K.

We show now that the path o is optimal. The paths above it diverge and cannot be optimal
(this claim will be proved when considering the state - costate phase plane). Let us consider then
paths lying below it, which all satisfy the necessary optimality conditions, and specifically those
which approach the axis C directly, not through the axis P (the latter can be, however, treated in
a similar way). The points on the path move to some time, say ¢, to the axis C and after that
they stay in the point (Cp, 0). The time t° can be found from the equation (3.9), by separation of

variables and integration, as
£ = / °__dp (3.86)
Py Z(C) - ﬂP

Then the objective function can be written as

J= / ) e~%tU(C, P)dt + / e~ %*U(Cy, 0)at

tD
= / e~ (C, P)dt + %e“”uU(Co, 0) (3.87)
0
Let C° be the value of C where the path touches the axis C. Now

dj _

& =W (C",0) - U(Gh, 015 + + T etUG(C,P)+ UR(C, PO (3.89)

where P = p(C) is the equation describing the path curve, solved for P. These can be done, as we
assumed that this path is strictly decreasing. We have p/(C) < 0, and therefore the integral above
is positive. Further, we have U(C",0) - U(Cj,0) < 0 because C° < Cj and U is strictly increasing

in C. Now " ") - ©)
(3 Z'(C) - Bp'(C
— = — _—dP <0 3.89
ac /,, Z(C) - P (3:89)
Then we conclude that iy
>0 (3.90)

dc
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1 m

Figure 3.8: Analysis of the equations on the state-control phase plane for the case when the
stationary solution is on the boundary P = 0.
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so every path lying above gives better value of J. From these o is then the best.

Let us also notice that the paths which diverge from the point (Cp, 0) are finally trapped in the
point (X, PX) which is still a point of attraction although it is not optimal (does not satisfy the
necessary conditions).

The Stationary Solution at C =K

The curves P = 0 and C =0 divide now the set of feasible solutions to three isosectors: I, IT and
IIL. From the analysis done for the equilibrium point, under possible suitable assumption on the
slope of the curve C =0, we have that P < 0 to the right of the curve P = 0, i.e. in the isosectors
IT and III, and P > 0 to the left of it, i.e. in the isosector I. Similarly C > 0 above the curve
C =0, i.e. in the isosector III, and C < 0 below it, i.e. in the isosectors I and II. We see, Fig.3.9,
that there are only two converging (optimal) paths, lying on the boundary C = K. All other paths
diverge away from the stationary point and go to the axis P = 0 below the curve P = 0. These
points on the axis cannot satisfy the necessary optimality conditions, as will be obvious from the
analysis of the state - costate phase plane.

3.4.3 State-Costate Phase Plane

We start the discussion of this case with examining the structure of the state-costate phase plane.
We consider the points satisfying the necessary conditions. For a given P the values X corresponding
to the consumptions from inside the feasible set are given by the relation

__Uc(C,P)
AC,P)= Z(0) (3.91)
As we have Voo Z/(C) — Ung(C
Ao = —JeeZ(€) = UcZ"(C) (3.92)

[z ()

then the region on the state-costate phase plane corresponding to the set of consumptions from
inside the feasible set is given by

Uc(0, P) Uc(K,P)
B 2/(0) <A<- CZ'(K) (3.93)
As
Ap = —&— >0 (394)

z'(C)

then both boundary curves are nondecreasing in P. Those values of A which are above this region,

1.e.
—Uc(K, P) + 2
Z'(K) ’
correspond to the points on the boundary C = K, and those below

Uc(O, P) +
z(0) -

A=

p2 >0 (3.95)

A=-— g >0 (3.96)

correspond to the points on the boundary C = 0.
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stationary point
P

Figure 3.9: Analysis of the equations on the state-control phase plane for the case when the
stationary point is on the boundary C = K.
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The Stationary Solution at P =0

The situation on the state - costate phase plane, for the case when the point at (Co,0,2F) is
the stationary one, is presented on the Fig.3.10. The curve P = 0, after having reached the
point (PX,\X), which is on the boundary of the ”feasible” region, goes further vertically, with
the change of A related only to the change of pus. As there is no asymptotic stationary point
. . _ s _ Up(K,PX) . : K 3
in this case at C' = K, from (3.84) we find that A* = “F75— is not higher than A™, that is

in the ”feasible” region. The curves P = 0 and A* = 0 divide the orthant into three isosectors
denoted I, II and III. The previous analysis leading to (3.50) and (3.54) is still valid here, as long
as A < _2%(%1 &f up(P), i.e. it is in the interior of the ”feasible” region. Above up(P) the value
C = K is constant and therefore its derivatives are equal to zero. Although both Np and M) keep
above up(P) the same signs as below it, the derivatives on up(P) may not (and as far as Ucp < 0 do
not) exist. However, as both one-sided derivatives at any point of up(P) (excluding, of course, the
derivative Np at PX) exist and have the same sign, then those functions have there a generalized
gradient (the subgra.dlent for N and the supergradient for M), not containing 0. Although there
may be then a jump in derivatives P and A on up(P) this cannot change the general direction of
evolution of paths there. Therefore we have P<0on the right side of the curve P = 0 (isosectors
II and IIT) and P > 0 on the left side (isosector I). Also A* > 0 above the curve A* = 0 (isosectors
I and II) and A < 0 below it (isosector III).

The paths entering the isosector I cannot stop at the P axis because we have there A* > 0. So
they cross it, which involves C = K to fulfill (3.15), and continue with C = K (otherwise (3.15)
cannot be satisﬁed). As it cannot go back to negative values it must continue until PX = Z(K)/8,
which is a stationary solution of the evolution of the pollution stock equation (3.9). We show that
these paths, as well as all other in the "boundary” region (for C + K) diverge with A* — oo and
that these paths are not optimal.

Let us consider the evolution of a path starting from a point (Po, A(0)) in the region where
C = K, ie. A(0) > up(P). Notice that because A > 0 there (under the understanding of
derivatives on up(P) as discussed above), then A(0) > lp—é%l. For this case we can solve the
equation of motion as follows
Z(K)

B

Thus P(t) = P¥, and PK < P(t) < P, for Pp > PX and Py < P(t) < PX for Py < PK. The
equation for A is

P(t) = Pee P + (3.97)

=6+ B8\ —Up(K, P(t)) > 0 (3.98)

which can be solved as

¢
A(t) = A(0)el6+A) _ / A=Y (K, P(r))dr =
[

= G+ (0) — / O (K, P(r))dr] (3.99)
0

Let us denote the last integral above by ((t). It can be bounded as follows

1—e- (6482 x 1 — e~ (5+R) 0 K
Wmm{UP(K,P ),UP(I{,P())} SC(t) S ——J—ﬂ—max{Up(K,P ),UP(I{ P )}
(3.100)

Notice that on the left side of PX (for Py < PX) the value A(0) is always above the upper bound
on ((t). This is so because of the conditions A> 0 and Up(Po, K) > Up(P%,K) for P, < P,
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Because the point (K, P¥) is not a stationary one, then from (3.84) we have

Up(K, PX) Uc(K, PX)
§+p T Z(K)

= up(P¥X) (3.101)

that is XS is in the ”feasible” region on the state-costate phase plane?. But up(PK ) is nondecreas-
ing. As to the right of PX we have Up(Po, K) < Up(P%,K), then all A(0) in the ”boundary”
region must also be above the upper boundary for {(z). Thus we see that all paths starting from
the "boundary” (C = K) region satisfy A(0) > 22x{Ve(X, P)Up(K,PF)} By simple change of the
time origin we can have the same condition for all paths whlclf have entered the ”boundary” region.
[1]

But for A(0) > mex{Ue (KP ) UKD} e have A(t) > ael®*P)t | where a is a constant, and

therefore

lim e~ ae®+P) = o (3.102)

t—o00
The problem is autonomous, the set of feasible consumptions [0, K] is finite. The convex hull of
the set of possible derivatives is H = {Z(C) — BP|C € [0, K]} = [Z(0) — BP, Z(K) ~ BP]. For
Py < PX we have 0 € H and therefore all paths approaching the line P = PX from the left side
are not optimal because they do not satisfy the condition (A.17).

As all paths considered are in the region where C = K, then the correspondmg utility function
is U(K, P). However, Up < 0, then all path to the right of the line P = P¥ give smaller value of
the objective function than those to the left and therefore are also not optimal. This terminates
the argument of nonoptimality of diverging paths.

Let us note that the path starting from the point A(0) = %ﬁ_l = PX stays there

because for them P = A = 0. However, for this path the necessary optimality conditions are not
satisfied, and namely the condition (3.73), and the path staying there cannot be optimal.

The paths converging to the stationary solution may be only found in the isosectors II and
TII. They all approach the axis A and when touching it ”jump” to the point AP, Among them
one comes directly to the point A¥ (denoted o on the Fig. 3.10). We show that it is optimal.
Indeed, all paths above it finally diverge and were shown above to be nonoptimal. At the same
time calculating the partial derivative of U(C(), P), P) with respect to A we get

Uvn=UcCr>0 (3.103)

Thus, for all paths below o it is possible to choose a bigger value of A to get a bigger value of the
utility function. Then o must be optimal.

The Stationary Solutionat C = K

The situation on the state-costate phase plane is presented on the Fig. 3.11. As the analysis of

the changes of the signs of P and A done for the equilibrium is still valid here, under discussion of

differentiability in the previous section, we have P < 0 to the right of the curve P=0 (isosectors

II and I1I) and P > 0 to the left of it (isosectors IV and I). We also have A > 0 above the curve
= 0 (isosectors IV and I11) and A < 0 below it (isosectors I and II).

Now (PX,\K) is above up(P) (in the region of boundary points) and we see that is a saddle
point. There exist only two paths converging to it, which correspond to the convergent solutions
of A(t), shown to be impossible in the previous section. All other path diverge away. Those above
diverge to the infinite point (PX, c0). As shown above, they are not optimal. Those below hit the
line A = 0 below AF. However, these points do not satisfy the necessary optimality conditions and
therefore these paths cannot be optimal. Thus the only optimal point is (PX,)5).

4Contrary to the assumption on the "boundary” solution which makes this point not to satisfy the necessary
optimality conditions.
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Figure 3.10: Analysis of the equations on the state-costate phase plane for the case when the
stationary point is on the boundary P = 0.
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Figure 3.11: Analysis of the equations on the state-costate phase plane for the case when the
stationary point is on the boundary C = K.
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3.5 Summary of the One State Variable Problem

The general one state variable pollution problem (3.8) - (3.10) has always the unique optimal
solution under assumptions taken. Depending on the problem function characteristic the optimal
solution converges in time to either an equilibrium point in the interior of the set of feasible
solutions, or to an equilibrium point on one of the boundaries P = 0 or C' = K, or to an asymptotic
stationary point on one of these boundaries. Besides the optimal paths converging to the optimal
asymptotic solution (for the stationary point on a boundary P = 0 also some nonoptimal paths
converge to the asymptotic optimal solution as well) there are nonoptimal paths which diverge to
the nonoptimal asymptotic solution with the infinite costate variable or fall in the set of points
unable to satisfy the necessary optimality conditions.



Chapter 4

Conclusions and Further Research

This report is closed in Chapter 3 with the analysis of the one state variable model. However, some
two state variable models have also been analyzed in the literature. Section B.2 in Appendix B
gives a short introduction to the basic theoretical tool which can be used there. Leaving apart the
labour model there are three possible combinations of the pairs of different one state variable models
among those listed in Section 2.1. Two of them include the pollution model. These pairs are: 1)
pollution accumulation - capital accumulation models, and (2) pollution accumulation - resource
extraction models. Pair (1) is a direct extension of the Forster one dimensional model discussed in
the previous chapter, with the dynamic description of the capital accumulation (growth) replacing
the static description of the Forster model.

Both pairs were discussed in the literature. Examples for the pair (1) may include [63], ch.5,
sec.2, ex.3 (growth that pollutes), [42], [43] (which is also presented in [21], sce.15.2) or [77] and
examples for the pair (1) [12], sec.4.33 (resource depletion and residual accumulation), [63], ch.3,
sec.8, ex.12 (resource extraction with waste) or [72].

The models used there are usually of a simpler form than the one discussed in the previous
chapter. Very often the utility function is separable in its arguments and the equations of motion
are linear or at least separable and partly linear. Cases of more complicated formulation are either
treated for the finite horizon ([63] where the products of arguments is present in the functions) or
numerically (like in the Luptacik and Schubert model, see [21]). More general model problem was
considered in [72] where Jacobian matrix analysis was used, as presented in Section B.2. These
examples show increasing difficulty when a general theory and methods of analytical analysis are
being developed for the multistate variable models.

Yet many real cases do involve much more than one or two state variables. Their analysis can
now only be provided by numerical computations. With this respect the discrete time models are
quite often considered, as more suitable for computer applications. There are, however, differences
in application of continuous and discrete time models. For instance, the maximum principle does
not always hold true for the discrete time problems, even when similar assumptions on the problem
functions are taken, see Section A.2 in Appendix A. The solution of the nonlinear difference
equations may be chaotic, even for quite simple functions, see e.g. [47] or [19], which is not a
case for the continuous time analogues. Thus simplification in computations are to some extent
counterweighted by more difficult analysis and uncertainty in the form of produced results.

There are more issues which were considered in the pollution control modelling literature.
Examples include knowledge accumulation (or technology development) questions (e.g. [8]), trans-
boundary pollution problems involving bargaining among many parties ([23]) or imperfect infor-
mation and its influence on solutions obtained ([16], [69]). Many interesting issues can be also
found in real system analysis, like in the case of abatement of CO, emission ([46], [54]).
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Appendix A

The Maximum Principle

This Appendix aims at summarizing some basic results necessary for understanding the text of the
report. No stress is put on proving the results or treating them with a particular mathematical
rigour. For proofs, more results and economic interpretation see e.g. [21], [63], [35].

We assume throughout that the functions below have all continuous partial derivatives whenever
necessary.

A.1 Continuous Time Problems

A.1.1 No State Constraints

Let us consider the following standard control problem

T
maximize {/0 U(z(t), u(t), t)dt + F(z(T), T)} (A1)
subject to
#(t) = F(a(2), (), 1) (A.2)
ut)eV, 0<t<T
z(0) ==z (given) (A.3)
where z(t) and u(t) may be vector variables, and introduce the Hamiltonian
H(z(t), u(®), n(8),8) = U(z(2), u(t), t) + n(t) f(2(2), u(t), ?) (A.4)

where 7(¢) is called the adjoint or costate variable. In the vector case the product of two vectors
above and in the sequel is the scalar product. Then necessary conditions for a maximum (the
mazimum principle) are that optimal values z*(t), u*(t), n* (¢) necessarily satisfy

H(z"(2),w"(8),7"(£),1) = e, H(z" (), u(t),n" (), 1)

i = -2 0100 "
71 = T

42
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If F(z(T),T) =0, then the last condition, called the transversality condition reduces to
7°(T) =0 (A.6)

Usually the conditions above are given together with the initial constraints to form the closed set
of equations for necessary solutions to the problem (A.1)

_ 0H(="(8), w(8), 7" (%), %)

#(0) 0]
@) eV, 0<t<T
:B*(O) =20

When an optimal solution is inside the constraint set V (this may be the case when there is no
constraint on u(t), i.e. u(t) can take any value), then the maximum condition on Hamiltonian can
be changed to the stationary condition

OH (z*(t), w* (1), 1" (8),%) _
Ou(t)

In this case it is equivalent to the first order necessary conditions derived using the (linear) La-
grangian technique. Sometimes the terminal condition in (A.1) may be specified

z(T) € X7 (A7)

Then the transversality condition (last of equations (A.5) or equation (A.6)) has to be substituted
with more complicated conditions. Specifically, let:

L. z(T)=2r (fixed)

2. z(T) > zp (fixed)

3. (T) free
Then after redefining the Hamiltonian (which is at least necessary for cases 1 and 2 above) to

H(z*(T),u*(T),7*(T), T) = oV (z(t), u(t), ) + n(8) f(=(), u(2), ?) (A-8)

we have, in addition to two first conditions in (A.5), the following transversality conditions:

1. 7*(T) no condition

2. 7°(T) > ns LI with [ (T) — ng FEE Dl (T) — 27] =0

0" dz(T) 0 dz(T)

3. (T) = oy EEG
and moreover
(n3, 7" (t)) #(0,0), mg=0o0rl

In the vector case the inequalities above are component-wise (in fact also all three conditions
above may be considered to be component-wise). Notice that condition 3 is actually the same as
the transversality condition in (A.5), only adapted to the new definition (A.8) of the Hamiltonian.

One more class of problems of interest is connected with the free end time, when T is subject
to optimization. This class of problems will not be considered here.
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If we define the value function

T
J@¢)=nw§/ U(e(t), u(t), )t
u(t) Jg
then, assuming J to be continuously differentiable, for the optimal solution there holds

7" (t) = __BJ(;: 1)

This gives the marginal value for the state at time {. With this in mind the variable 7*(t) is often
called the shadow price.

In the economic literature discounted objection functions are often considered. Then the prob-
lem is

maximize {/T U(z(t), u(t), t)e~%dt + F(z(T), T)e T} (A9)
0
subject to
z(t) = F(=(2), u(t), t)
u(t)eV, 0<t<T (A.10)
z(0)=xz0 (given)
The Hamiltonian for this problem is
H(z(t), u(®), n(2),1) = U (z(t), u(t), t)e™% + n(t) ((t), u(t), 2) (A.11)
but it is common to define in this case a so called current value Hamiltonian
H((t), u(t), M#),2) = H(z(2), u(t), n(t), 1)e® = U(z(t), u(t), ) + MO F(0(t), u(t),2)  (A.12)
where A(t) = % 5(t). Now we have

() = -3H<$"<t)bz*( g),n* (t),%)

_ aU(z'(t),u*(t),t) -5t * 3f(:c*(t),u*(t),t)
ST om0

and .
ﬁt (t) = —§)\* (t)e-—-ét + Xte—é't

Inserting the latter to the former we get

_RE (), v ©.X(0,9
Oz(t)

A*(2) — 6X*(8) =

It is easy to see that the other conditions are not affected by the change of the Hamiltonian
definition and finally we get the set of necessary conditions for the problem (A.9)

ﬁ@WMﬂ&YMﬁ=£%§mf@w@AWM)

_ _OH(z*(),w (1), X (1), 1)

A (8) — 6% (2) 520)
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dF(z*(T),T)
dz(T)

(0 = 8H (z*(t), u*(t), A* (2), 1)
- AA(2)
u(@)eV, 0<t<T

z* (0) =20

Simple calculations show that when an optimal solution is inside the constraint set V' the maximum
condition can also in this case be replaced by the stationary condition

D1 (= (8) w* (1), " (1)1
du(t)

Earlier conditions (A.7) and specification (A.8) for the problem also apply.

X(T) = (A.13)

=0

A.1.2 Infinite Horizon

Another interesting problem may be connected with the infinite horizon. Then the problem with
the discounted objective function (A.9) changes to

maximize {/:0 U(z(t), u(t), t)e~*dt} (A.14)

subject to
#(t) = £(a(t), u(t), 2 (A.15)
ut) €V, t>0
z(0) ==zo (given)

This, of course, is connected with the requirement that the integral (A.14) is finite for all feasible
control functions. (The case when this requirement is not fulfilled is considered in [63].) For the
problem (A.9) only two first conditions of (A.5) are valid (for the Hamiltonian with 7). Any
asymptotic conditions of the type (A.7) require in this case more assumptions, see [21] or [63] for
details.

However, if the problem is autonomous, i.e. U and f do not depend explicitly on t (U; = f; = 0)
then the following condition applies

Jim H(o* (0, 0" (0),1(0) = Jim e (" (), (1), ) = 0 (a.16)

Moreover, if U > 0 for all admissible z(t) and u(t) (or V is a finite set), and zero is in the interior of
the convex hull of the set of possible speeds for the admissible controls, i.e. 0 € int co{f(z*,u)|u €
V} for sufficiently big values of £, then

o 8N () —
tl_l)n;e A)=0 (A.17)

An additional condition can be formulated if the function H%(z,n,t) = maxuev H(z,u,7,1t) is
concave in z, for any 7 and £. Then for any admissible z(t)

Jim =% A(8)[z(t) — 2*(t)] > 0 (A-18)

provided 75(t) exists.
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A.1.3 State Constraints

In some problems state constraints may be necessary. Then general form of this kind of problem
might take the form

maximize { / * (), u(t), O + F(e(T),T)) (A.19)
0
subject to
z(t) = f(z(2), u(t),?) (A.20)
o), 56,920, 0<t<T
z(0)==z¢ (given)

In this case, for the maximum principle to hold, a constraint qualification must be satisfied. It can
take the form that the following compound matrix

(de(=" (1), v (1),1)
Ou(t)

diag(g(=*(t), u*(2), 1))] (A.21)

has the full rank, where diag(g(z* (), u*(t), 1)) is a square matrix with zeros except the main diag-
onal, where elements of the vector g(z*(t), u*(t),t) are placed. This condition can also equivalently

be written that the matrix M’—;%};')‘—.(ﬂﬁ has full rank, where gg(z*(t), u*(t),1) is the vector of

active constraints in an optimal solution, i.e. it contains these and only these constraints which
satisfy gg(z*(¢), u*(¢),t) = 0. In other words, this can be formulated that the derivatives, with
respect to u(t), of active constraints at an optimal solution z*(t), u*(t) be linearly independent.
Let us additionally define the Lagrange function L, with the Hamiltonian definition (A.8), and the
set of feasible controls Q as

L{=(t), u(2), n(2), p(2), 1) = H(z(2), u(t), n(2), 1) + p(t)g(=(t), u(2), 1) (A.22)
Qz(2),8) = {u(?) | 9(=(¢), u(t),¢) > 0}

then an optimal solution z*(t), u*(t), 7§, n*(t), #* (t), satisfying a constraint qualification, necessar-
ily satisfy
H(z*(t),u*(t),7*(),1) = max H(z*(2),u(t),n*(t),¢
@@ @@ = mee | H 0,600,700

RO CRA R dCNOR) (A23)

OL(z" (&), w(8), (&), (1), ¥) _
du(t)
(o, 7" (8)) # (0,0), mg=0o0r1
p(t) >0, p*(t)g(z*(t),u*(t),t) =0 (complementary slackness)
g(z(t),u(®),t) >0, 0<t<T

7" (T) = 5 ———dF(Z Eg D

z*(0) = o

Similarly as before, if F(z(T),T) = 0, then the last but one condition (the transversality condition)
reduces to

7" (T)=0
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and with the end conditions
a(w(T):T) >0, b(:l:(T),T) =0

the transversality condition becomes

L 4F (=*(T),T) da(z*(T),T)

\ ab(=*(T), T)
"O=""g7 T g

92(T)

+8

with the complementary slackness condition
a>0, aaz*(T),T)=0

Let us notice that this is actually a more general form of conditions given after (A.7).
The discounted case also can be treated similarly as before, resulting in a change of the condition
for the adjoint variable

A*(t) — 6)t = _aL(m‘ (t)’ u*(ati’(‘?)‘(t)’“*(t)’t) (A'24)

other conditions being of the same form.

A.2 Discrete Time Problems

Some problems in pollution control can be more conveniently formulated as a discrete time prob-
lems. The discrete time analogue of the problem (A.1) - (A.3) will be

N-1

maximize { Y | Un(2n,tn) + F(zn)} (A.25)
n=0
subject to
Tnil =fn($n,un), n=0,1,...,N—-1 (A'26)

unEVn, n=0,1,.-.,N_1
zo (given)

Provided u, is not constrained or an optimal solution is inside the constraint set, by simple
Lagrange multiplier reasoning a set of equations necessary for a solution to be optimal can be
obtained. Defining the Hamiltonian

Hu(Zn,un) = Un(@n, tn) + Mot1Fn (2n, tn) (A.27)
the stationary solution satisfies the following equations for n =0,1,...,N —1
OHn(zh,ua) _
Ouy,

7)* = aHﬂ (mn’ un) (A.28)

n 0z,

3;+1 = fa(zy, up)
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zy==z¢ (given)

Similarly as in the continuous time for F(zy) = 0 the last but one (transversality) condition
changes to
Ty =0

and for a specified end value condition it is substituted with more complicated conditions.

However, unlike in the continuous time, now the first equation cannot be simply changed to
the maximum of the Hamiltonian over V;, with respect to u,. For this an additional assumption
of the directional convezity must be satisfied [30], [31], [7]). Those problems which do not possess
this property may be approached by using the generalized marimum principle [53]. In order not
to complicate the presentation this material will not be given here.

For a discounted problem we have

N-1

maximize {Z P Un(zn, un) + p~ F(zn)) (A.29)
n=0
subject to
Tng1 = fal@n,un), n=0,1,...,N—1 (A.30)

U €V, n2=0,1,...,N—-1

zg  (given)

where p is the discount factor. Sometimes also a discount rate & is used. They are connected by the
equation p = ﬁ. Similarly as in the previous subsection we can define the new costate variable

An = p~"1, and introduce the current value Hamiltonian as
ﬁn(xna un) = P_an(mn; un) =U, (xn, un) + PAn-!-lfn (xn: un) (A~31)
which then lead to the necessary conditions forn =0,1,...,N —1

6ﬁn($;)u;) = 0
Oun
A# —- 61?,,(:::;,11;)
n Oz
3:;-;-1 = falzh,uy)
up €V

1 4F(z3)
N~ dzy

(A.32)

zg==z¢ (given)




Appendix B

Phase Plane Analysis

B.1 One-Dimensional State

In the economic literature the infinite horizon problem is often considered. The appropriate maxi-
mum principle equations for this case were presented shortly in Appendix A. We discuss now this
case in more detail. To allow the graphical presentation and also to make the analysis simpler we
assume now that z(t) and u(t) are scalar functions. Moreover, we assume that all functions are
twice continuously differentiable.

B.1.1 Problem Formulation

Let us consider then the following control problem with discounting
o0
maximize { / U(a(t), u(t)e="tde} (B.1)
0
subject to
(£) = f(=(2), u(?))
z(0) = zo (given)

Note that the functions do not depend on ¢ and there is no restriction neither on z(t) nor u(t).
The maximum principle conditions are now as follows

O (" (1), (X () _
du(t)

e (1) — ox7(g) = -2 @ w0, )7 (), 1)

9z (t)
o) = QA (2 (1), v (8), A" (2), 2)
(1) = ()
z* (0) =X

which, from the current value Hamiltonian definition, can be written also as

U (z*(2),u*(t)) | v, OF(z™(8),uw*(2)) _
0 I N

49
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A (t) — &\ (t) - _aU(+gt’)u*(t)) —X* (t)%;ﬁﬂ (B'2)
&* (1) = f(z* (), v* (1))
z*(0) = 2o

B.1.2 An Equilibrium

We would like now to examine how a solution is evolving in time and specifically for long times
(asymptotically). It may be expected that in many real life problems the functions should stabilize
in time (e steady state solution). In particular we see that any constant functions (z*,u*, %)
satisfying )

() =u*(t) = A"(t) =0
may be solutions of the system of equations. Any point satisfying the above conditions is also
called a critical point or an equilibrium. The maximum conditions at the equilibrium reduce now

to
oU (z*, u*) £ OF(z*,u*)
Ou +A du
_ 6f(a:‘,u‘)))\, _ OU(z*,u*)
Oz Oz

=0

(6 =0 (B.3)

fz*,u")=0
These form three algebraic equations with three unknowns. Provided that M—;:"—".z # 0 we get

from the first one
oU(z*,u*)
du
Substituting the above into the second equation in (B.3) and assuming additionally that ﬂj—(;;’—".)- #
0 gives
0f(z*,uwt)  Fo) e ur)
Oz U(ztut) Gy

du

=5 (B.5)

Together with the third equation in (B.3)
flz*,u*) =0

they may (possibly) give solutions for the steady state values (z*,u*) which can then be used to
find the solution for A* from (B.4). Let us summarize also the assumptions taken

a *’ * 3U :t’ *
Mo g0 aa T4 (B.)
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B.1.3 State-Control and State-Costate Differential Equations

To find the asymptotic behaviour of a solution we have to analyze again the system of equations
(B.2). However, to present the solution on a plane we have to deal only with two differential
equations. Thus one of three unknown functions must be eliminated. Out of three possibilities
usually two are considered: (1) eliminate A*(t), then deal with the state—control case (z*(t), u*(2)),
(2) eliminate u* (), then deal with the state-costate case (z*(t), \*(t)). The trajectories of these
solutions can be drawn on planes (z*, u*) or (z*, A*), respectively. They are called the phase planes.
We start analysis with the former.

To simplify notation we drop now all the arguments except time and denote the derivatives
with respect to non—time arguments by a subscript. This allows us to write the system of equations
(B.2), after dropping the last one, which is not relevant for the asymptotic analysis, as

Us+ X () =0

X (t) = 6N (t) = =Us — () e (B.7)
e (t)=f
Now, under assumption that f, # 0 at (z*(t), u*(t)), from the first equation we get
U,
A (t) = —— B.8
)= ®5)

and differentiating the same equation with respect to time
Uuwi® (£) + Uutt* (€) + X (€) fu + A () (fus” () + fuut* () =0
Substituting now for X*(¢) from the former and for &*(¢) from the third equation in (B.7) yields

(Ui — Uu%)fr ) + (Vus — Uu-’%)f 43" () =0

Substituting now for A*(t) in the second equation in (B.7) we have
‘o Ud
X)) =-Us - —f-—(d — fz) (8.9)

Now, from both the above we get

fuu

(Uuu - Uu’f_)u*(t) + (Uuz: - Uu fuz

fu
If the expression before 4*(¢) is nonzero, then by introduction of a suitable function A this can

be written as the first equation below. Then also the second equation is rewritten from (B.2) to
complete the system of equations.

)f - szu - Uu(a - fs) =0 (B.].O)

a*(8) = h(z* (), v (2)) (B.11)
&*(t) = f(=*(t),v"(2))

These are the equations for the state—control phase plane analysis. Note that during the derivation
we assumed that at (z*(t),u*(t)) the following holds

fu#0 and Uyu— Uu%‘.‘ﬂ #0 (B.12)
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Note also that with the assumptions taken both functions on the right side in (B.11) are twice
continuously differentiable.

For the second case, i.e. state-costate equations, we assume that the first equation in (B.7)
can be solved for u*(2), at least locally. For this we have to have at (z*(2), u*(?))

Uuu + A* (t)fuu 715 0

Note that because of (B.8) the above is equivalent to the second condition of (B.12). Then from the
implicit function theorem we know that there exists a function u* (t) = @(z*(t), A*(t)) that satisfies
the first equation of (B.7) identically. Moreover, this function is twice continuously differentiable.
Inserting 4 in the second and third equation of (B.7) we get a system of two differential equations,
which by introduction of suitable functions ¢ and g may be written as

X (8) = q(=* (1), X" (t)) (B.13)

" (¢) = g(z*(2), A" (t))
The functions ¢ and g are twice continuously differentiable, as well.

B.1.4 Classification of Steady-State Solutions

To proceed further we need to recall some facts from the theory of ordinary differential equations,
see e.g. [11] or [5]. To focus attention we concentrate on equations (B.11). The right hand sides
can be linearized around a critical point giving

() = fa (=" (), () (2" (2) — &%) + fu(e" (2), v () (w" () ~ w*) + O(r?) (B.14)
(1) = ko (2" (2), u* (1)) (=" (t) — 27) + hu (2" (2), u* () (u* (t) — w*) + O(?)
where 7 = \/(2*(¢) — 2*)2 + (u*(f) — u*)2. We assume that f,h, — fuhz # 0, as otherwise these
linear parts would be linearly dependent. Then (z*,u*) is the only critical point of the linear
system of equations.

Consider now the asymptotic behaviour of the linear part of the system (B.14). The solution
of this system depends on the eigenvalues of the following Jacobian matrix

_| = fu
=i & ]

where again the arguments (z*(z), u*(t)) have been dropped to simplify notation. Notice that with
the assumptions taken above the Jacobian matrix J is nonsingular. The eigenvalues can be found
by solving the characteristic equation

det[J — sI] = f’h: y hufi s

The eigenvalues depend on the determinant

A= (f:p + hu)2 - 4(thu - fuh:c) = (f:: - hu)2 + 4fuhz

= 52 - (fa: + hu)s + (fa:hu - fuhz) =0

and are given by
s12 = %(fs +hy £ /A)
Let us also notice that from the Vieta formulae we have
5182 = fphy — fuhy =det J (B.15)

Thus if det J < 0, then A > 0 and the solutions are real and of the opposite signs.
The eigenvalues may be classified as follows ([11], Chapter 15):
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(1) real and distinct when A > 0,
(2) complex conjugate when A < 0, and
(3) double real when A = 0.
Now, the equilibrium of the nonlinear system of equations can be classified as
(i) an unstable node if both eigenvalues are real and s3,53 > 0,
(ii) a stable node if both eigenvalues are real and s1,s2 <0,
(ili) a saddle point if both eigenvalues are real and s; - s2 < 0,
(iv) a stable spiral if both eigenvalues are complex and their real part is negative,
(v) an unstable spiral if both eigenvalues are complex and their real part is positive,

(vi) a center (with solutions on circles) if both eigenvalues are complex and their real part is zero;
then the asymptotic solutions are periodic, i.e. stable but not strictly stable.

In the cases (ii) and (iv) any solution starting in the neighbourhood of the equilibrium will converge
to it. In the cases (i) and (v) any solution starting in the neighbourhood of the equilibrium will
diverge out of it. In the case (vi) any solution will tend to a periodic steady state function, which
is represented as a circle on the phase plane. In the case (iii) the solution may be convergent or
divergent.

The solution of the linearized equation is of the form

z*(t) — z*
[ u* 8 — ] = aWre™ + bipe (B.16)
where W) and W5 are the eigenvectors of the linearized system, given by the equation

(J-s;DW; =0, i=1,2 (B.17)

Notice that because s; is an eigenvector of the matrix J, then the matrix J — s;I is a singular
matrix and therefore the equation (B.17) has nonzero solutions for W; (they actually all lie on a
halfline for each s;). Specifically, the steady state solutions for the case (1) above (viz., A > 0)
are of the form

v%(t) = cne® +cipe®?* i=1,2

where v;(t) is either z*(t) —z*fori=1or u* (2) — u* for i = 2. For the case (2) it is of the form
v;(t) = [e;1 cos(Bt) + ciosin(Bt)]e*  i=1,2

where « is a real part and 8 is an imaginary part of the complex eigenvalues. Finally, for the case
(3) the steady state solution is of the form

'U,'(t) = [c,-l + c,-gt]e"' i=1,2

as in this case s1 = s; = s.

We now return to the nonlinear system of differential equations. Under the assumptions on
twice continuous differentiability and nonsingularity of the Jacobian matrix J, the point (z*,u*)
is an isolated critical point, i.e. there exist a circle around it in which there is no other critical
point. Moreover, the following results are true ([11], Chapter 15):
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1. stable nodes and spirals of the linear system correspond to stable nodes and spirals of the
nonlinear system, respectively,

2. a center of the linear system corresponds to a center or a spiral (stable or unstable) of the
nonlinear system,

3. a saddle point of the linear system corresponds to a saddle point of the nonlinear system;
moreover in this case there exist only two orbits converging to the equilibrium, any other
orbits tend away from them as ¢ — oco; there exist also two and only two orbits diverging
from the equilibrium, any other orbit tends to them as  — oo.

Intuitively the last case is obvious when we take into consideration (iv) and the solution for (1).
If 53 < 0 < s2, then the converging solutions are those, for which ¢;2 = 0 and the diverging those,
for which ¢;; = 0.

B.1.5 Phase Planes

Given a problem at hand the asymptotic solution may then be found as described above. Moreover,
the analysis of the problem can be conveniently done on a phase plane. Before presenting this
possibility we need some assumptions. In the economic models some ”standard” set of assumptions
on functions U and f is usually taken. We give such two sets of assumptions below, but other
variants are also possible. Basically, (1) below pertains to the resource exploitation models and
(2) to poltution control models.

Assumptions connected with the utility (or cost) function U:

(U1) (1) Uz > 0 (U increasing in z), or (2) U, < 0 (U decreasing in z),
(U2) Uzz <0 (U concave in z),

(U3) (1) Uu <0 (U decreasing in u), or (2) Uy > 0 (U increasing in u),
(U4) Uy <0 (U concave in u),

(U5) Uuz <0.

In resource exploitation control models = may be the resource stock and u the effort of its ex-
ploitation. This gives intuitive meaning to assumptions (1) in (U1) and (U3). In pollution control
models z may be pollution and u consumption which gives intuitive meaning to assumption (2) in
(U1) and (U3). Assumptions on concavity (U2) and (U4) are often regarded as risk aversion of
the planner.

Assumptions connected with the equation of motion function f:

(M1) (1) fz < 0 (f decreasing in z), or (2) f> > 0 (f increasing in z),
(M2) frz <0 (f concave in z),

(M3) (1) fu > 0 (f increasing in u), or (2) fu < 0 (f decreasing in u),
(M4) fuu <0 (f concave in u),

(M5) fuz <O.

With the interpretation as above (M3) (1) says that the rate of the resource stock exploitation
increases with bigger effort and (M3) (2) says that rate of pollution stock accumulation increases
with bigger consumption. Other are just reasonable convenient assumptions not contradicting the
intuition.

Moreover, the following additional assumption is usually made:
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(C) Uuu + fuu <0 (at least one of the functions U or f is strictly concave in u).

Let us check that with these new set of assumptions our old assumptions are satisfied. The
first condition in (B.12) follows directly from (M3). The second condition in (B.12) is implied by
(U4), (M3), (M4) and (C). Also assumptions (B.6) are obviously satisfied. Moreover

Huu = Uuu + A (t)fuu
As from (B.4) A*(t) > 0 then the Hamiltonian is concave in u(¢). This means that its stationary
point, if exists, is unique.
The State-Costate Phase Plane

We analyze now the state-costate phase plane. We start with the partial derivatives of the implicit
function #(z*(t), A*(t)) solving the first equation of (B.7). Calculating the partial derivatives with
respect to z*(t) and \*(t), respectively, we have

Uuully + Uyz + A‘(t)(fuuﬁz + fuz) =0

Then Uus + X ()5
Ax - _ uzr uz < 0 B.l
% = e F A () fa = (B-18)

as from (B.8), (U3) and (M3) we have A*(t) > 0. Similarly we get
A Ju >0 for (1)
O T T + X () Fu { <0 for (2) (B.19)

On the phase plane the critical point can be found as an intersection of two isoclines £*(t) =
and A’ (t) = 0, see Fig. B.1. Let us show that the intersection point is unique. Consider first the
case £ = 0. We look for the derivative, at the point z*, of the implicit function A, (z) satisfying
the last equation of (B.7) for 2*(t) = 0, i.e the equa.tion

f(‘c: ﬁ(z) Al(m))) = g(x,/\l (:U)) =0

Differentiating with respect to =

Fot Fullis +a —dA;f) )=0

and taking into account (B.18) and (B.19) we have

da(z) 1 . fo {>0 for (1) (B.20)

= a et <o for 2)

Similarly for the function Ay(z) satisfying the equation for A(t) =0, i.e. from the second of
equations (B.7)

[6 — fz (2, Az, A2(2))]A2(2) = Uz (=, i(, A2(z)) (B.21)
Differentiating with respect to = we get
"‘(f:r::z: + fzuﬁz\ d/\2( ))/\ ( ) + (5 f )dAz(m) = Ua:z + Uzuﬁ)\‘—i%)'

or

dAa() _ Uz + A" foo <0 for (1)
dz 8= fo— @r(Usu = X" fau) { >0 for (2) (B.-22)
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where the following inequalities were used

>0 for (1)

§-f { <0 for (2) (B-23)

(see (B.21)) and X* > 0 (from (B.8)). Then for the case (1) the curve A;(z) is increasing and

Az(z) decreasing. So they cut in one point. For the case (2) the slopes change but are also of the

opposite sign. So also in this case the curves cut in one point. Notice, that the formulae (B.20)

and (B.22) allow us to calculate the directions of the solution trajectories (orbits) going to or from
the equilibrium. )

Now, the isoclines #(t) = 0 and A(t) = 0 divide the positive orthant into four isosectors labeled

on the figure I, II, III and IV. Let us consider the behaviour of the orbits in different isosectors,

Let us begin with the isocline &(¢) = 0. For a constant ) we have (recall from (B.13) that & = g)

_ <0 for (1)
g”—f”{ >0 for (2)

As g = 0 for z = z*, from the above we conclude that

.| <0 for (1)

L >0 for (2)
So with the growing time the horizontal direction of the move of the point on the orbits above the
curve () = 0 (i.e. in the isosectors I and IV) is leftwards for the case (1) and rightwards for the
case (2), and below the curve (in the isosectors IT and III) in opposite directions. This is visualized
by appropriate arrows in the isosectors on the Fig. B.1 (for the case (2), but similar drawing can
be made for the case (1)). )

Let us consider now the isocline A(t) = 0. For a constant = we have from (B.9) (recall also

from (B.13) that A =gq)

_ - . J >0 for (1)
g = —Usutly +6 — fr = Afoutis { <0 for (2)

(Note that for (2) from (B.23) 6 — f, < 0 for A(t) = 0, then because of continuity this must be true
in some neigbourhood of this line.) On the same reason as above the vertical direction of the point
above the curve A(f) = 0 (in the isosectors I and II) is upwards for the case (1) and downwards for
the case (2), and below the curve (in the isosectors III and IV) in opposite directions.

Thus looking at the Fig. B.1 (for the case (2)) we see that the equilibrium is a saddle point.
There are two orbits (0o; and 03) converging to the equilibrium, two (o2 and o4) diverging from it,
and the rest tends away from o; or o3 to o0, or 04.

This elementary analysis will be now followed by the analysis of the Jacobian matrix. We have

det J = [ Z: ‘Zi } = 920 — 9AGs

The derivatives g. and g were already calculated. For the other we have

0 = i, N) = fuin >0

gz = —Uzz — A* (t)f:::t Z 0
then det J < 0 which means that the eigenvalues are real and of opposite signs (recall (B.15)).
Thus the equilibrium is a saddle point.

Let us notice that the directions of the orbits converging to and diverging from the equilibrium,
besides of calculating the slopes of ), (z) and Az(x), can be also found by calculating eigenvectors
of the Jacobian matrix J. If we have s; < 0 < s2, then in (B.16) W and —W; are the directions
of the convergent orbits and Wy and —W, are those of the divergent ones.
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Figure B.1: Evolution of steady state solutions around an equilibrium (a saddle point type) at the
state-costate phase plane for the case (2).
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The State-Control Phase Plane

Let us consider now the state-control phase plane, i.e. the system (B.11). Now the critical point
can be found as an intersection of the isoclines #(¢) = 0 and 4(t) = 0, see Fig. B.2. Let us show
that the intersection point is also unique in this case. Let us start with the curve uz(z) satisfying
the equality for ¢*(t) =0, i.e. f(z,uz(z)) = 0. From the implicit function theorem we have

from assumptions (M1) and (M3). Then the function uz(z) increases with z.

Consider now the curve ui(z) for 4*(t) = 0. Here we calculate the derivative only in the
equilibrium, i.e. at the point satisfying #*(t) = 0 and A*(t) = 0. This still needs some more
calculations to be done. For 4*(¢) = 0 from (B.10) we have

Ve =0 22)f U - U5 — £2) =0 (B.24)

Differentiating now both sides with respect to  (with « = u;(z)), and making use of the condition
z*(t) = f = 0, after some algebraic manipulations we get

dul(a:) _ (Uu:c - Uu%)fz - U::::cfu - U:cfu:c - Uu:(a - fa:) + qua:z
&= = U Fuu ¥ Uan(3 = 15) <0 (B:25)

Taking now into account the appropriate assumptions (U) and (M) as well as the inequalities (B.23),
which are valid because the derivative is in the equilibrium point, we find that the denominator
is nonzero (recall (C)) and that the function u;(z) is either decreasing with z or is constant
(horizontal line). In both cases there is one and only one intersection point of the curves u;(z)
and us(z). This means that the equilibrium point is unique. To be physically feasible, this point
should be in the positive orthant > 0,u > 0.

The isoclines #(¢) = 0 and (¢} = 0 divide the positive orthant into four isosectors labeled on
the figure I, II, IIT and IV. Let us consider the behaviour of the orbits in different isosectors. Above
the curve £(t) = f(z,u) = 0, for a constant u, we have

<0 for (1)
f{>0 for§2)

because of the appropriate assumptions on f;. Then in the isosectors I and II a point on the orbit
with the growing ¢ moves letfwards for the case (1) and rightwards for the case (2). It is also
obvious, that it moves in the opposite directions in the isosectors III and IV.

Let us now consider the orbits above the curve () = 0. From the next equation after (B.8)

we have .
_ JuA(E) + (Uuz + A(t) fuz)2(2)
Uuu + /\(t)fuu
This equation is more difficult to analyze. However, as we know that the sign of u(t) is the same
on each side of the curve u(t) = 0 we consider the line where #(z) = 0. At this line we have

u(t) =

Ful(t)
Uuu + A(t)fuu (B26)

The denominator is always negative. At the equilibrium point /\(t) = 0. Let us check then only
the sign of the numerator partial derivative in u. Denote I(z,u,\) = ~ Ful(t) = fulUs— A6 = £2)).
We have

u(t) I_.;,=0 = —

lu = fuuMt) + fulUsu = Ma(6 = f2) + Afia]
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Figure B.2: Evolution of steady state solutions around an equilibrium (a saddle point type) at the
state-control phase plane for the case (2).
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At the equilibrium the first component on the right hand side is zero. Moreover, from the first
equation of (B.7) we get

A =_Uuu+/\fuu{ <0 for (1)

fu >0 for (2)
Thus at the equilibrium

Iu = fu(U:cu + /\fzu) + (6“ fu)(Uuu + /\fuu)

and, taking into accout (B.23)

0 for (1
l"{ §0 for ng

Finally

>0 for (2)

Then above the curve %(t) = 0 (in the isosectors II and III) the points on the orbits move downwards
for the case (1) and upwards for the case (2) and below the curve (in the isosectors I and IV) in
the opposite directions. The resulting saddle point neighbourhood is presented on Fig. B.2.

Now, at the equilibrium, from (B.26) the elements h, and h, of the Jacobian matrix for the
equations (B.11) are

d(t){ <0 for (1)

he — _ fude + (Uus + A(0) fus) s
o Usu + A(t) fuu

because at the equilibrium A(t) = #(t) = 0. Then we have &, = fz and from the second and the
first of equations (B.7)

de = ~(Uss + M(t) foz) — fiu(Uzu + A1) fou) (8 — fo)

so at the equilibrium

h. = (UID-"’ + )‘(t)fx:r:)fu + (J - 2f:c)(Ua:u +)\(t)fa:u) { > 0 for (1)
v Uuu + A(t) fuu <0 for (2)

Similarly )
_fu/\u + (Uu:c + A(t)f'u:r:):i:u
Uuu + A(t)fuu

hy =

We have £, = f, and then
/.\u = “'(U:l:u + /\(t)fxu) - fi(Uuu + /\(t)fuu)(‘s - fz)

Then
>0 for (1)

hu =‘5‘f‘”{ <0 for (2)
Finally

detg=| T Jol o ph <o
hy hy
i.e. the equilibrium is a saddle point.
Let us additionally notice that Feichtinger and Hartl [21] conclude that the Jacobian determi-
nants for both cases (state-costate and state-control) are equal.
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B.2 Two or Mofe-Dimensional State

Many results of the previous section extend to more than two differential equations, and some also
to the case when functions depend on ¢. Let z be a n-dimensional vector. Let us again assume
the twice continuous differentiability of the functions and consider the set of nonlinear differential
equations

(t) = F(=(t),?)

Let us assume that a steady state solution z*(¢) satisfying F(z*(t),t) = 0 exists. Denote z(t) =
z(t) — z*(t). Then we have

Ht) = F(*(t) + 2(2), 1) — F(2"(t),1) = Fo(z* ), )2(t) + F(2,2)

where f(z,t) = o(|z|). For the known z*(t) the derivative F(z*(t),?) is a function of £ only and
we can always write it in a form F(z*(t),¢) = A+ B(t), where A does not depend on {. This way
we reduce our original problem to the following equation

4(t) = Az(t) + B(t)2(t) + F(2,1) = Az(t) + 9(2, ) (B.27)

In the important autonomous problem case F(z(t),t) = F(z(t)) does not depend explicitly on
t. In this case also a steady state solution of the equation F(2*) = 0 does not depend on ¢ and
forms a critical point (or an equilibrium). Then from the Taylor expansion

#(t) = 3(t) = Fo(z")(2(t) — 2*) + O(r%) = Az(t) + 9(2)

where r = |z(t)—z*| (o] is an Euclidean norm) and we easily identify A = F;(z*) and g(z) = O(r?).
Although the definitions of A and B(t) in (B.27) are to some extend arbitrary, only some
of them may be significant in further analysis. Namely, we require now, that g be continuous,
9(0,2) = 0 and that for a given ¢ > 0 there exist § and #, that |g(z,t) — g(Z,?)|] < €|z — Z| for
|z| < 6,]2] < & and t > t. (observe that these conditions are obviously met for the autonomous
system considered above). Let all the characteristic roots of A have negative real parts. Then
any solution starting close enough to the origin converges to it, i.e. z*(f) = 0 as £ — oo (in the
autonomous case we can also say that the critical point z* is stable, of the node type).

Assume now, that k characteristic roots of A have negative real parts and n — k characteristic
roots have positive real parts. Then for any sufficiently large ¢ there exist in the z space a real k-
dimensional manifold S containing the origin such that any solution z*(t) starting at the manifold
S satisfies z*(t) — 0 as t — 0. Moreover any solution near the origin but not on S does not
converge to it (in the autonomous case the critical point z* is of the saddle type).

As before, for the autonomous system the solution of a linearized system 2(t) = Az(t) is of the
form

z(t) = ayWie + ...+ apWiet + ap g Wigre 1t . apWye'nt

where s;, i =1,2,...n are the eigenvalues and W;, i = 1,2, ...n are the eigenvectors of the matrix
A. So also in this case it is possible to find directions of the convergent manifolds.

However, analysis of the multidimensional equation is much more difficult. Let us consider the
case of two-dimensional equation of motion, that is z(£) in (B.2) is now a two dimensional vector
z(t) = [y(2) v(¢)]T and take for £(t) = F(y,v,u) also the following notation

(8} = 7(y(2), v(2), u(?))
() = g(y(2), v(2), u(?))
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The maximum principle equations now are

i
R 29

] [3]=-[o]-3] (% 2]
A A Uy A Jy 9y
Then considering the state-costate case we have the following set of four equations to be analyzed
(for simplicity dependence on time was dropped)
¥ = f(y,v,4(y,v))
v =g(y, v, i(y,v))
77 = 677 - Uy(y: v, ﬁ(y) ‘U)) - nfy(y) v, ﬁ(yi 'U)) - Agll.l(y’ v, ﬁ(y’ ’l)))
A=A~ U‘U (y: v, ﬁ(y’ ‘U)) - ﬂfv (yx v, ﬁ(y, ‘U)) - /\gv (y: v, ﬁ(y) ‘U))
where 4(y, v) is an implicit function of the equation (B.28).

Some special cases simplifying the task can be considered. For example, in [21] two such classes
of problems are identified. One is when one of the equations, for instance the second, is linear in v,
with a coefficient 4, i.e. g(y,v,u) = dv—h(y,u) and U and f do not depend on v. Then the second
equation becomes A(t) = §A(t) — §A(t) = 0 and therefore X is a constant. Moreover, the equation
for v can be solved as v(t) = fot e~""h(y,u)dr. This case can then be reduced to the analysis of
the one state variable model, see [21].

A second class considered in [21] consists of the models with separable states, in which all
second derivatives with respect to states, or states and control, are equal to zero. ie. Uy =
0, Uzw =0, Fpz = 0, Fpy = 0. This means that first order partial derivatives with respect to
states must be some constants independent on neither states nor control. In such a case the costate
equations are linear with constant parameters and can be solved. This argument is, of course, true
also for more dimensional cases.

The case of full two state variables is analyzed in [21]. It is shown that the eigenvalues &;,7 =
1,2,3,4 of the linearized system are given by a formula

€1,2,é,4 = IrJ + \/(%)2 - %:L— %\/Kz —4det J

4
where tr stays for the trace of the matrix

J=% %W U ™ (B.29)
Tv T T N
VD VD VS VY
and . .
K=|% g,,,+ R WY I T
Ty My Av Ax Tv M

Obviously, under the conditions

2
K <0 0<detJ§%

all eigenvalues are real and two of them (connected with y and v, see [21]) are negative, and two
other positive. Then under above conditions the problem has a saddle point. In [21] also formulae
to calculate the directions of the stable orbits on the plane (y,v) are given.

With full Jacobian matrix calculations for the two state variables are rather cumbersome. But
in special cases (as for matrices with many zero entries) calculations may be easier.
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