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Abstract 
 

The widespread presence of chemicals with the capacity to disrupt the 

endocrine system in both wildlife and humans in our natural environment has 

increasingly become of major concern in the last ten years.  Endocrine 

disrupting compounds (EDCs) are a group of compounds that pose a 

potentially dangerous and real threat to the health of both humans and wildlife.  

These substances can mimic or interfere with the biological pathways of 

natural endogenous signalling chemicals controlling the endocrine system (e.g. 

sex hormones).  Endocrine disrupters are ubiquitous in water.  The detection, 

monitoring and treatment of wastewaters and surface waters for EDCs would 

significantly help minimise the environmental burden imposed by these natural 

and synthetic compounds.  To optimise such processes, an economical, in-situ 

or field-based detection technique for EDCs is required. 

 

The research presented in this thesis describes the development of a portable 

surface plasmon resonance device for the detection of endocrine disrupters in 

wastewater and surface waters.  The first two result chapters describe the 

construction, development and optimisation of the portable analyser and 

immunoassay protocol using anti-estrogenic antibodies.  A novel approach for 

regenerating the SPR sensing surface was achieved by using Persil biological 

laundry liquid (1%).  The developed immunoassay showed a working range 

between 0.2 - 7µg/L for Estrone-3-Gulcuronide (E13G) in buffer.  The 

detection of 17β- Estradiol (E2) in buffer, synthetic wastewater and real 

wastewater samples was also carried out; the working range was 0.1 - 10µg/L; 

0.3-7µg/L and 0.1-10µg/L respectively. 

 

The second part of the thesis describes the synthesis and protocol development 

of a photo-chromic dye and its application to immuno-sensing systems en 

route to a reversible bio-affinity antibody for application to regenerating bio-

sensing surfaces.  This approach was to demonstrate the concept of remote 

regeneration of the active sensing surface for a portable optical sensor. 



 

ii 

 

 

 

 

Acknowledgements 
 

This research has been partly undertaken as a component of the SANDRINE 

project (ENV4-CT98-0801) funded by the DGXII Environment and Climate 

(1994-1998) work programme of the European Commission. 

 

I would like to express my thanks to my supervisor Dr Dave Cullen always the 

cynical optimist who was always available when I plucked up the courage to 

ask.  I would like to extend my gratitude to Drs. A. Badley and I. Jonrup 

(Unilever Research, Bedfordshire) for supply of antibodies and conjugates, and 

to Ms Minako Tamiya for her assistance in developing the ELISA in chapter 4. 

 

To all the staff, students and friends at IBST, it was a pleasure to know and 

work with.  I would also like to give a special mention to Drs. Judith Taylor 

and Kal Karim for their generosity of time and support, Rosie Burns who kept 

me laughing and entertained from day one of knowing her and Dr Sue Alcock 

for her support and advice. 

 

Last but not least my family who although had to ask many time what I was 

actually studying was always there with their love and support.  To my dearest 

Yenaba and Roger for going through so much with me that I often questioned 

myself whether it was right to put them through it. Thank you for travelling 

with me and carrying my load. 



 

iii 

 

 

 

 

 

 

 

 

IN MEMORY OF: 

Uncle David, Uncle Alimamy, Dave and Frank 

 

 

“Found internally, certain compounds are important biological signals; found 

in the environment, they become just so much noise” 

John A. Mclachan and Steven F .Arnold 

 

 

"Technology is only an issue for those that were born before it was invented” 

Anon 

 

 

 

 

 

 



 

iv 

 

 

 

 

Contents 
 

ABSTRACT ...................................................................................................I 

ACKNOWLEDGEMENTS......................................................................... II 

CONTENTS................................................................................................ IV 

FIGURES................................................................................................. VIII 

TABLES...................................................................................................... XI 

NOTATIONS.............................................................................................XII 

1 INTRODUCTION AND LITERATURE REVIEW............................ 1 

1.1 BACKGROUND.................................................................................. 2 

1.1.1 Thesis structure ....................................................................... 4 

1.2 LITERATURE REVIEW ....................................................................... 5 

1.2.1 The problem ............................................................................ 5 

1.2.2 Hormones and the endocrine system........................................ 6 

1.2.3 Endocrine/hormone disrupting compounds.............................. 7 

1.2.4 Evidence of Endocrine Disruption in the Environment........... 15 

1.2.5 Legislation and environmental monitoring of EDC ................ 19 

1.3 ANALYTICAL TECHNIQUES FOR THE DETERMINATION OF EDC......... 24 

1.3.1 Endocrine disrupting effects based methods........................... 25 

1.3.2 Quantitative analysis of EDC concentration .......................... 31 

1.3.3 Biochemical Based Analytical Techniques ............................. 33 

1.3.4 Biosensors ............................................................................. 34 

1.3.5 Immunosensors and bio-analyser systems for EDC................ 37 

1.4 SURFACE PLASMON RESONANCE ..................................................... 39 

1.4.1 Overview of surface plasmon resonance ................................ 39 

1.4.2 Surface Plasmon Resonance and EDC Detection................... 41 

1.4.3 Portable/Remote Bio-sensing................................................. 42 

1.4.4 Regenerating and Reversible affinity sensors ......................... 42 

1.5 CONCLUSION.................................................................................. 43 

1.6 AIMS AND OBJECTIVES ................................................................... 44 



 

v 

1.6.1 Construction and Characterisation of a SPR Analyser (Chapter 

2) ………………………………………………………………………...44 

1.6.2 Refinement, Development and Optimisation of an EDC Immuno 

Analyser (Chapter 3)............................................................................. 44 

1.6.3 Photo-modulation of Bio-active Proteins for sensor 

regeneration applications (chapter 4) ................................................... 45 

2 CONSTRUCTION AND CHARACTERISATION OF A SPR 
ANALYSER................................................................................................ 46 

2.1 INTRODUCTION .............................................................................. 47 

2.1.1 Development of the miniaturised sensor................................. 48 

2.1.2 Previous Work Using the TI-SPR and Spreeta 
TM

 sensor ........ 48 

2.2 AIMS AND OBJECTIVES ................................................................... 50 

2.3 EQUIPMENT.................................................................................... 51 

2.3.1 Surface Plasmon Resonance instruments ............................... 51 

2.3.2 Static contact-angle measurement.......................................... 51 

2.3.3 Atomic Force Microscopy...................................................... 53 

2.3.4 The Spreeta ™ sensor concept and design ............................. 55 

2.4 MATERIALS.................................................................................... 59 

2.4.1 Chemicals.............................................................................. 59 

2.4.2 Antibodies, conjugates and analytes ...................................... 59 

2.4.3 Buffers and reagents .............................................................. 60 

2.4.4 Other Materials ..................................................................... 60 

2.5 METHODS AND PROCEDURES .......................................................... 60 

2.5.1 Measuring refractive index using the Spreeta™ sensor.......... 60 

2.5.2 Analysis Method Parameters ................................................. 62 

2.5.3 Surface preparation and sensor surface modification methods65 

2.5.4 Regeneration Protocol........................................................... 69 

2.5.5 Assay procedure for the portable analyser ............................. 70 

2.5.6 SPR immunoassay detection and data analysis ...................... 71 

2.6 RESULTS AND DISCUSSION ............................................................. 73 

2.6.1 Construction and characterisation of the field analyser ......... 73 

2.6.2 Characterisation and validation of refractive index 

measurements ....................................................................................... 74 

2.6.3 Sensing surface preparation and modification ....................... 82 

2.6.4 Initial immunoassay for Estrone-3-Gulcuronide .................... 90 

2.6.5 Discussions and conclusions.................................................. 95 

3 REFINEMENT, DEVELOPMENT AND OPTIMISATION OF AN 
EDC IMMUNO-ANALYSER .................................................................... 99 

3.1 INTRODUCTION .............................................................................100 

3.1.1 Testing pollutants in environmental samples using ELISAs and 

immunoassay applications ...................................................................101 

3.1.2 Detection of EDC in waste water and surface waters............101 

3.2 AIMS ............................................................................................102 

3.3 EQUIPMENT, MATERIALS AND METHODS .......................................103 



 

vi 

3.3.1 Spreeta™ sensor Updates and incorporation into the field 

analyser ……………………………………………………………………….103 

3.3.2 Biacore System .....................................................................103 

3.4 MATERIALS...................................................................................104 

3.4.1 Biological reagents and buffers ............................................104 

3.4.2 Buffers and Reagents ............................................................104 

3.4.3 Preparation of Synthetic Waste Water ..................................104 

3.4.4 Collection of real waste water samples .................................106 

3.5 IMMUNOASSAYS METHODS, DEVELOPMENT, OPTIMISATION AND 

PROTOCOLS ..............................................................................................107 

3.5.1 ELISA Development..............................................................107 

3.5.2 Optimised ELISA Procedure .................................................107 

3.5.3 Commercial ELISA assay .....................................................108 

3.5.4 Optimised assay for the Spreeta™ analyser..........................108 

3.5.5 Immunoassay protocol for the Biacore® 3000 ......................109 

3.5.6 Data analysis used for the ELISA and SPR Immunoassay 

calibration curves ................................................................................110 

3.6 RESULTS AND DISCUSSION .............................................................111 

3.6.1 Development and optimisation of an EIA assay for waste water 

analysis ……………………………………………………………………….111 

3.6.2 Development and Optimisation of Immunoassay on the field 

analyser ……………………………………………………………………….116 

3.6.3 Immunoassay of 17β Estradiol on the Biacore® 3000...........122 

3.6.4 Determination and validation of EIA and Immunoassay Result 

using a commercial ELSIA Kit for immunoassay ..................................125 

3.6.5 Design of the Proposed automated liquid handling system....128 

3.7 FURTHER DISCUSSIONS AND CONCLUSIONS ...................................129 

4 PHOTO MODULATION OF BIOACTIVE PROTEINS FOR 
SENSOR REGENERATION APPLICATIONS ......................................130 

4.1 INTRODUCTION .............................................................................131 

4.1.1 Sensor regeneration applications approaches.......................132 

4.1.2 Photo-chromisium and Spiropyran Dyes...............................133 

4.1.3 Photo-modulated control of biological systems .....................135 

4.1.4 Bio-modulation using photosensitive Spiropyran dyes...........136 

4.2 AIMS ............................................................................................137 

4.3 MATERIALS AND METHODS ...........................................................138 

4.3.1 Chemicals, biological compounds and equipment .................138 

4.3.2 Spiropyran dye synthesis and characterisation .....................138 

4.3.3 Attachment of the spiropyran dye to bioactive protein 

modulation studies ...............................................................................142 

4.3.4 Photo modulation of antibody observed by SPR....................146 

4.4 RESULTS AND DISCUSSION ............................................................147 

4.4.1 Synthesis of the spiropyran dye.............................................147 

4.4.2 Spiropyran dye characterisation ...........................................150 

4.4.3 Photo modulation of bioactive proteins.................................154 



 

vii 

4.4.4 Photo -modulation of antibodies ...........................................160 

4.4.5 Development of the micro-titre plate-based immunoassay.....163 

4.4.6 SPR time course data............................................................168 

4.5 DISCUSSION AND CONCLUSIONS ....................................................171 

4.5.1 Synthesis and characterisation of the carboxylated spiropyran 

dye 171 

4.5.2 Spiropyran dye conjugation to soluble protein......................172 

4.5.3 Photo-modulation and Immunoassay applications ................173 

5 FINAL DISCUSSION, CONCLUSIONS AND FUTURE WORK ..174 

5.1 INTRODUCTION .............................................................................175 

5.2 FINAL DISCUSSION.........................................................................176 

5.2.1 Evaluation of the Spreeta ™ sensor for the incorporation into a 

portable analyser .................................................................................176 

5.2.2 Development and optimisation of an Micro-titre plate ELISA 

and SPR analyser immunoassay for the detection of EDCs in 

environmental samples.........................................................................179 

5.2.3 Remote sensing and regeneration of sensing surfaces using 

Photo-chromic dyes .............................................................................180 

5.3 FUTURE WORK..............................................................................183 

5.3.1 Spreeta™ Sensor ..................................................................183 

5.3.2 Photo-chromic dyes. .............................................................183 

5.4 CONCLUSIONS ...............................................................................184 

REFERENCES ..........................................................................................185 

APPENDICES ...........................................................................................206 

Presented posters, published paper and presentations…………………………….207 

 



 

viii 

 

 

 

 

Figures 
Figure 1.1: Endocrine disrupting processes 10 

Figure 1.2: Schematic representation of a reporter gene assay 30 

Figure 1.3: Schematic design of the basic components of a biosensor 36 

Figure 1.4:  Schematic diagram of SPR principle 40 

Figure 1.5:  Diagram showing a SPR dip curve 41 

Figure 2.1(a+b): An example and schematic representation of a contact angle 

measurement 

54 

Figure 2.2: Schematic representation of the atomic force microscope 55 

Figure 2.3: The Texas instrument miniaturised SPR sensors 57 

Figure 2.4:  Schematic of internal structures of the Spreeta ™ sensor 58 

Figure 2.5:  Photographic illustration of the original Spreeta™ G-clamp flow cell. 59 

Figure 2.6:  Spreeta ™ resolved SPR dip 63 

Figure 2.7: Software picture showing the First moment Analysis method. 64 

Figure 2.8: Software picture showing 4
th

 Order Specific reflectance/signal Analysis 

method. 

65 

Figure 2.9 Software picture showing the Polynomial fit of the Resonance Minimum 

Analysis method 

65 

Figure 2.10 Software picture showing the Zero Crossing Analysis method. 66 

Figure 2.11 (a+b): External and internal view of the portable field analyser 75 

Figure 2.12: Typical SPR minima dip progression with increasing refractive index 

standards 

76 

Figure 2.13: Validation of the Spreeta ™ sensor with refractive index standards. 77 

Figure 2.14: Signal comparison between Biacore® 3000 and Spreeta™ SPR 

devices. 

78 

Figure 2.15 Time trace sensorgram  of water showing the short-term noise 79 

Figure 2.16: (a+b): Flow rate comparison chart. A) Plain gold surface. B) OVA 

physical adsorbed on the surface 

83 

Figure 2.17: Gold surface cleaning of the Sensing surface after dry storage…. 85 

Figure 2.18: A typical regeneration sensorgrams profile of the regeneration 

protocol carried out on the Biacore ®3000. 

86 

Figure 2.19 (a+b): Regeneration buffer relevant response baseline after surface 87 



 

ix 

striping with regeneration buffers on JI gold Biacore Chip 

Figure 2.20:  Antibody affinity capture baseline after physical adsorption of analyte 

conjugate protein layer on gold sensing surface after surface regeneration using 

different buffers 

88 

Figure 2.21(a+b): AFM images of a gold surface with adsorbed Ovalbumin-E13G 

protein layer at 50µg/ml and the same surface cleaned with Persil (1%). 

89 

Figure 2.22: Relevant baseline of conjugate protein, antibody and PBS 91 

Figure 2.23: Response of specific antibody and non-specific antibody to the sensing 

surface. 

92 

Figure 2.24: Assay cycle timeline performed on the SPR analyser: 93 

Figure 2.25: Typical Spreeta ™ analyser assay cycle demonstrating both sensor 

regeneration with domestic laundry detergent and measurement of anti body binding 

94 

Figure 2.26 A Typical Real time SPR immunosensor response for several E13G 

concentrations over the range of 0-100µg/L. 

95 

Figure 2.27 Calibration curve for Estrone- 3- Gulcronide with the Spreeta™ 

analyser 

96 

Figure 3.1 a+b:  Photographic illustration of the new integrated flow cell and 

miniature peristaltic pump. 

106 

Figure 3.2: Map of Cranfield Sewage treatment Works (Bedfordshire, UK.) Samples 

were taken at point A and B as indicated on the map. 

109 

Figure 3.2: The developed ELISA calibration curve for Estradiol in PBS pH 7.4 

buffer. 

116 

Figure 3.3: ELISA calibration curve for Estradiol in synthetic waste water. 117 

Figure 3.4: Sensor system characterisation examined by reducing the concentration 

of anti 17β  Estradiol IgG antibody. 

119 

Figure 3.5: Response of specific antibody and non-specific antibody to the sensing 

surface. 

120 

Figure 3.6:  Typical real time SPR immunosensor response for several 17β 

Estradiol concentrations over the range of 0-300µg/L. 

121 

Figure 3.7:  Calibration curve for Estradiol using the Spreeta ™ analyser 122 

Figure 3.8: Calibration curve for β Estradiol in synthetic waste water using the 

Spreeta ™ analyser. 

123 

Figure 3.9:  Calibration curve for Estradiol using the Biacore® 3000 125 

Figure 3.10: Calibration curve for β Estradiol in synthetic waste water using the 

BIACORE® 3000 analyser 

126 

Figure 3.11:  Calibration curve for Estradiol using IBL Estradiol ELISA kit. 128 

Figure 3.12: Calibration curve for β Estradiol in synthetic wastewater using the IBL 

ELISA Kit. 

129 

Figure 3.13:  Schematic design of the proposed miniature liquid handling system for 

the Spreeta ™ field analyser. 

131 

Figure 4.1: Schematic of the photo-isomerisation of a generic spiropyran compound 138 

Figure 4.2: Schematic representation of the protein backbone modified by photo 141 



 

x 

chromic groups. 

Figure 4.3: A reaction schematic of the synthesis of 1-carboxyethy-2,3,3 

trimethylindolenium Iodide. 

143 

Figure 4.4:  Schematic reaction sequence to synthesis the spiropyran dye 144 

Figure: 4.5: Photographic picture of the silica oxide TLC plate spotted with each 

component reactants for synthesising the carboxylated spiropyran compound 

151 

Figure 4.6:  Mass Spectra of Spiropyran dye 153 

Figure 4.7 Absorption spectra of SP-COOH under Visible, UV illumination and 

dark adaptation. 

154 

Figure 4.8(a+b): Fade back profile of the synthesised dye. 156 

Figure4.9:  Fatigue assessment of spiropyran dye switching under different 

illuminations. 

157 

Figure 4.10: Elution profile of SP-HRP fractions from a PD10 column and protein 

content- 

159 

Figure: 4.11: Elution Profile of SPCOOH from a PD10 column 160 

Figure 4.12 a+b:  The Effect of UV and Visible illumination on native [A] and 

modified SP-HRP [B]. 

161 

Figure 4.13(a+b):  Photo-modulation of immobilised native HRP and modified SP-

HR, under UV and Visible illumination 

162 

Figure 4.14 (a + b): Bar chart showing the activity of immobilised native and 

modified SP-HRP under different wavelengths illumination. 

163 

Figure 4.15 Elution profiles of SP-anti-FITC fractions from a PD10 column and 

protein content 

164 

Figure 4.16 Absorption spectra of SP-αFITC in MES buffer under Visible, UV 

illumination and dark adaptation. 

165 

Figure 4.16 Fade back of spiropyran form of SP- αFITC to the merocyanine form 166 

Figure 4.18 (a+b): The effect of photo-modulation on native and SP modified 

antibody under UV and visible illumination. 

167 

Figure 4.19 (a+b) conjugation reaction time effect o n the photo-modulation of 

antibody affinity to FITC-HRP 

169 

Figure 4.20 (a+b):  Calibration curve for native [A] and modified SP-αFITC 

antibody [B] under UV and visible illumination. 

170 

Figure 4.21:  Calibration curve for native [A] and dye modified SP- anti Estradiol 

antibody [B] under UV and visible illumination. 

171 

Figure 4.22:  SPR time course data of affinity binding of anti-FITC and modified 

SP- Anti-FITC on a BSA-FITC prepared surface. 

173 

Figure 4.23(a+b): SPR time course sensorgram: showing affinity binding of native 

[A] and modified SP-αFITC [B] illuminated with UV or visible illumination before 

the binding event. 

173 



 

xi 

 

 

 

 

Tables 
Table 1.1: Categories and chemical examples of endocrine disrupting chemicals 

found in the natural environment 

11 

Table 1.2: Estrogen sensitive tissue and cells 13 

Table 1.3: Chemical structures of animal and plant based estrogens and xeno-

estrogens 

14 

Table 1.4: European Community priority list of chemicals and groups of chemical 

indicated to be endocrine disruptors 

22 

Table1.5: In vitro test systems for the detection of endocrine disrupters 28 

Table 1.6: Examples of Transducers used in Biosensor Construction 38 

Table1.7:  SPR used for EDC detection selected references  42 

Table 2.1:  The Biacore®3000 Programme for protein adsorption and Surface 

regeneration 

72 

Table 2.2:  Summarised collected data and temperature compensated data.  80 

Table 2.3: Software Analysis methods and comments 81 

Table 2.4:  The refractive index data for the five different Software Analysis 

methods. 

82 

Table 2.4: Demonstration of repeated regeneration of a gold SPR sensor surface 

after physical adsorption of protein using a commercial laundry detergent 
90 

Table 3.1: Solution A:  Protein solution 107 

Table 3.2: Solution B:  Mineral salt solution 108 

Table 3.3 Immunoassay programmed assay protocol 112 

Table 3.4: A Schematic representation of the checkerboard titration assay. 114 

Table 3.5: Analysis results of synthetic and real waste waster samples using the 

Developed ELSA assay 

118 

Table 3.6: Analysis results of synthetic and real waste waster samples using the 

Spreeta ™ analyser assay 
124 

Table 3.7 Analysis results of synthetic and real waste waster samples using the 

BIACORE assay 

127 

Table 3.8: Analysis results of synthetic and real waste waster samples using the IBL 

ELISA kit assay 

130 

Table 4.1: Mean Rf  value measurements of the reactant components for the 

synthesis of the carboxylated spiropyran dye 

152 



 

xii 

 

 

 

 

Notations 
  

ABTS 2,2'azino-bis-ethylbenzthiazoline-6-sulfonic acid 

AFM Atomic Force Microscope 

APTS 3-aminopropyltrimethoxysilane 

BPA Bis-Phenol A 

BSA Bovine Serum Albumin 

BSA-E2 Bovine Serum Albumin – Estradiol conjugate 

BSA-FITC Bovine serum albumin Fluorescein isothiocyanate 

CMD Carboxymethyl Dextran 

E1 Estrone 

E13G Estrone-3-Gulcuronide 

E2 Estradiol 

E3 Ethinylestradiol 

EDAC 1-ethyl-3(3-dimethyl amino propyl) carbodiimide 

EDC(s) Endocrine disrupting chemical(s) 

ELISA Enzyme linked immunosorbent assay 

FITC Fluorescein isothiocyanate 

HRP Horseradish Peroxidase 

IgG Immunoglobulin G 

LED Light emitting diode 

MC Mereocyanine form 

MES 2-[N-morpholino]ethanesulfonic acid 

MEth Mercaptoethanol 

MUA  Mercaptoundecanoic acid 

NHS N-Hydroxy Succinimide 



 

xiii 

OD Optical Density 

OVA Ovalbumin (chicken egg Protein) 

OVA-E13G Ovalbumin – Estrone-3-Gulcuronide conjugate 

PBS Phosphate Buffered Saline Solution 

PBST Phosphate Buffered Saline and Tween 20solution (0.5%) 

RIU Refractive Index Units  

RO water Reverse Osmosis 

RU Resonance Units 

SP Spiropyran dye 

SPCOOH Carboxylated spiropyran dye 

SP-HRP Spiropyran dye conjugated to HRP 

SPR Surface Plasmon Resonance 

SP-αE2 Spiropyran dye conjugated to anti-17β Estradiol 

SP-αFITC Spiropyran dye conjugated to anti-FITC Monoclonal 

Antibody 

STP Sewage treatment plants 

TIRF Total Internal Fluorescence  

TISPR-1 Texas Instruments surface plasmon resonance sensor 

TLC Thin Layer Chromatography 

TM Trans-magnetic radiation 

WWT Waste Water Treatment 

αE13G Anti-Estrone-3 Gulcuronide 

αE2 or α17βE2 Anti-Estradiol monoclonal antibody 

αFITC Anti-FITC monoclonal antibody 

αHGC Human chronic gonadotrophin 



1 

 

 

 

 

 

1 Introduction and Literature 

Review 



 

2 

 

 

 

 

 

 

 

 

 

 

Chapter 1 
 

Introduction and 

Literature Review 

 
1.1 Background 

 

The progression of industrialisation, new synthesis discoveries and processing 

of chemicals and drugs during the twentieth century, has shown the way for the 

introduction of many products and applications that have benefited the standard 

of living for humans globally (e.g. pesticides, contraception pills, plastics, food 

additives etc.).  The increased consumption and the commercial and domestic 

demands on these synthetic products have also inversely led to our 

environment becoming increasingly polluted.  According to R. Bhatt (Bhatt, 

2000) more than 80,000 synthetic chemicals and metals are in commercial use 

in Europe alone.  This is not taking into account those chemicals that have been 

banned and/or are no longer in production but are still being used or simply 

remain in the environment (e.g. DDT and PCBs).  The toxicity or adverse long-

term effects for many of these chemicals are often unknown and in many cases 

the data obtained is incomplete or insufficiently studied. 
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Over the last three decades there has been an increase in public and scientific 

concern on bio-hazardous chemical compounds present in the natural 

environment, especially those that have been observed to effect the 

reproductive and developmental cycle of wildlife and humans otherwise known 

as endocrine disrupting chemicals (EDCs).  A concerted effort by the European 

Union, the Environmental Agencies of Great Britain and the USA (EA and 

EPA respectively) have encouraged and endorsed research into developing 

environmental quality standards, tests and monitoring tools to be in place as 

soon as possible.  In the 1990s endocrine disrupters were one of the highest 

priority research topics for the EA and EPA and a detailed research strategy 

was developed to guide the placement of resources over several years (Chase, 

1998). 

 

Environmental pollutants have intensively been studied over the past thirty 

years.  The focus has mainly been on the potential toxicity of compounds 

causing direct DNA damage (McLachlan et al., 1996).  However, 

environmental estrogens do not alter genes but alter the way they express 

themselves therefore, current hazardous chemicals toxicity bioassays that rely 

on lethal dose toxicity exposure (e.g. LD50 studies) are unsuitable and 

inadequate to measure or detect the extent of EDCs adverse effects in the 

environment.  

 

Over twenty five years ago investigators were alerted and started expressing 

their concern of estrogenic effects of xenobiotic chemicals in the environment 

and their apparent effect on wildlife (Mason et al., 1986; Nelson et al., 1978; 

Bitman et al., 1970).  More recently a highly acclaimed book by Dr Theo 

Colborn (Colborn et al., 1997) outlined the potential hazards that some of these 

chemicals may have on human and ecological well-being in the natural world 

(e.g. breast cancer and reproductive tract cancers, reduced male fertility, 

abnormality in sexual development etc).  Many reports examining 

environmental disruption and their effects on human and wildlife have be 

documented in detail (EPA, 1997; Toppari, 1996; Harrison et al., 1995). 

 

In recent years, endocrine disruption has been observed in wild and caged fish 

in rivers that received large inputs of pre-treated water from wastewater 

treatment plants.  As a consequence increased concern has been raised about 

the presence and concentration of hormonal like compounds in wastewater 

effluent (Huang et al., 2001).  It was found that the high concentration of 

environmental hormone mimics causing these adverse effects on fish 

populations were from natural and synthetically derived estrogenic compounds 

(e.g. 17β Estradiol and ethinylestradiol) of which the main source was being 

produced by humans via excretion of urine and faeces.  
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With this in mind, an obvious need has been created for the development of 

analytical techniques that are suitable for screening and measuring the 

concentration of EDCs in the environment.  Endocrine disrupting compounds 

are a ubiquitous diverse group of chemicals compounds found in the 

environment.  They are characterised by having low molecular weights and can 

have a physiological affect on cultured cells at very low concentrations (ng/L).  

The diversity of the chemical structures of estrogenic pollutant means that any 

development of an analytical device and/or monitoring technique would 

require full flexibility that could by applied to a range of different compounds 

as well as it being robust, cheap and functionally suitable for field and at 

source use. 

 

Optical bio sensing is one of the oldest analytical techniques in immuno-

sensing of which surface plasmon resonance technique is the most established.  

Texas Instrument has developed a miniaturised surface plasmon resonance 

sensor that is very robust and suitable for integration into original custom-made 

instruments.  The sensor to date has been successfully used as an immuno-

sensor for bio-molecular interactions (Strong et al., 1999).  However, outside 

of the work presented in this thesis, the sensor has not yet been used as a 

portable analyser or for the detection of endocrine disrupting chemicals. 

 

 

1.1.1 Thesis structure 

 

The body of work presented in this thesis starts with a literature review of the 

current scientific knowledge of endocrine disrupting compounds as 

environmental pollutants, focussing on steroidal hormone mimics, in particular 

estrogenic mimicking compounds and their current methods of detection.  Each 

results chapter begins with an introduction and general materials and methods 

that describe all experimental conditions used within the work pertaining to 

that chapter.  The main body of results are divided into two parts.  The first two 

results sections of the first part of the thesis investigate the development of an 

immunoassay and immnuo-sensing applications for the detection of estrogenic 

compounds in buffered, synthetic and real wastewater samples and a novel 

approach for regenerating the biological sensing surface is described.  The 

emphasis of the research was to devise a surface plasmon resonance bio- 

affinity analyser where the biological sensing surface could be remotely 

prepared and regenerated in-situly plus be amenable for use in the field. 
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The second part of the thesis describes the synthesis and experimental 

investigation of a spiropyran photo-chromic dye for the purpose of developing 

a reversible biological sensing surface.  Using the dyes unique isomeric 

properties the development towards a reagentless bio-reversible antibody for 

regenerating bio-sensing surfaces was explored.  This line of inquiry was in 

addition to demonstrate another approach for remote regeneration of the active 

sensing surface for a portable optical sensor in the field. 

 

 

1.2  Literature Review 

 

This chapter will review the current scientific evidence of endocrine disrupting 

compounds and their role as an environmental pollutant.  The emphasis will be 

on endocrine disrupting chemicals that are estrogenic or anti-estrogenic in 

nature.  Their mode of action, pathway, and physiological affects will be 

discussed.  The chapter will present an overview of current analytical methods 

and strategies available for the detection of estrogenic effects and concentration 

of estrogens in environmental samples.  Bio- sensing platforms and the use of 

surface plasmon resonance (SPR) as an analytical tool for micro-pollutants will 

also be discussed.  Finally, photo-chromic dyes will be discussed in the context 

of applying them to the regeneration of bio sensing surfaces and true reversible 

immuno-sensing applications. 

 

 

1.2.1 The problem 

 

Scientific and public concern over the last ten years has focused on the 

hypothesis and realisation that certain chemicals present in the environment, 

both natural and anthropogenic, have the capability of causing a myriad of 

adverse effects through their modulation and interference of the endocrine 

systems in wildlife and humans.  This intensified concern is due to increased 

incidences of hormone dependent diseases such as breast cancer, testicular 

cancer, endometrioses and birth defects.  Environmental pollutants, with 

physiological effects similar to endogenous hormones, are generally known as 

hormone mimics and therefore raise concern due their ability to be recognised 

by the endocrine system’s receptors in humans and wildlife.  
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1.2.2 Hormones and the endocrine system 

 

Almost all living organisms has to a greater or lesser degree an intra and/or 

extra cellular homeostatic system that orchestrates and regulates the metabolic 

functions of the various organs and internal metabolic systems of an organism, 

be it mammals, non mammalian vertebrates, non vertebrates, insects or plants 

(Environmental Agency, 1998; Stryer, 1988; Roberts, 1986).  In vertebrates, 

one of the main extracellular homeostatic systems is the endocrine system.  

The endocrine system is composed of a group of organs that secrete biological 

chemical substances into the blood whose collective role is to regulate the 

internal biological function of an animal.  The definition of the word endocrine 

is “internal secretion” and the endocrine organs are internally secreting glands 

(i.e. ductless glands) that coordinate a chemical messenger pathway 

characterised by the production of biologically active substances.  The 

biologically active substances are carried through the blood stream to be 

delivered at target organs instigating a cellular response (Nishikawa et al., 

1999; EPA, 1997; Stryer, 1988; Roberts, 1986).  The endocrine organs do not 

exist in functional isolation, but influence one another through cascading 

feedback loops and chemical signal interactions that characterises the highly 

complex and coordinated endocrine system (Roberts, 1986) 

 

These biologically active substances are called hormones.  They are active at 

very low concentrations (ng/mL or pg/mL i.e. ppb or ppt) and bind specifically 

to target receptor sites on cell surfaces or nuclear protein receptors.  Once 

associated with their corresponding target site they exert important regulatory, 

growth or homeostatic effects.  In wildlife, hormones regulate migration, 

mating behaviour, fat deposition, insect metamorphoses, hibernation, shedding 

of skin in snakes and shells in molluscs and shrimps.  The endocrine system 

also controls the growth, metabolism and body functions (i.e. reproduction, 

fertility and mineral regeneration).  In vertebrates, some of the major endocrine 

glands include the hypothalamus, pituitary, thyroid, parathyroid, pancreas, 

adrenals, pineal body and pars distils (Roberts, 1986).  The secretion of 

hormones therefore aids both the regulation and metabolic reactions  the body.  

The endocrine system includes a number of target organ feedback pathways in 

the central nervous system (CNS) that are involved in regulating a multitude of 

functions in maintaining the body.  The complexity of the endocrine system 

with its cascading loops of hormone signals and responses lends itself to the 

possible interference of the system at many points (Sesay et al., 2001; Arnold 

et al., 1997; Roberts, 1986).  Hence, offer many sites and organs where 

exogenous agents could potentially disrupt hormone function of the endocrine 

system.  The complexity of the cellular processes involved with hormonal 

communication at any of these loci may inevitably lead to impaired hormonal 

control (i.e. the synthesis, storage/ release and transportation of hormones) 

(EPA, 1997). 
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Apart from the traditional hormones often referred to in higher vertebrate 

(including humans), hormones are present in invertebrates (e.g. ecdysone), 

plants (e.g. auxins) and fungi (e.g. gibberellins)(Roberts, 1986).  Therefore, 

when environmental exogenous endocrine disrupters mimic or interfere with 

the action of endogenous hormones, their potential to influence the health of 

humans and exert significant ecological effects globally is a great possibility 

(EPA, 1997). 

 

1.2.3 Endocrine/hormone disrupting compounds 

 

Endocrine disrupting chemicals are natural or anthropogenic exogenous agents 

that can affect not only the individual but also populations and communities; 

hence whole ecosystems can be affected.  The effect occurs by EDCs 

interfering with endogenous hormones in the body since these hormones are 

responsible for key regulatory processes in cell control and communication as 

well as reproduction and behaviour.  An environmental endocrine or hormone 

disrupter is an exogenous agent that interferes with the synthesis, secretion and 

transport of endogenous hormones. 

 

There has been much scientific deliberation about the exact meaning of an 

endocrine disrupting chemical.  This is mainly due to partial knowledge of the 

pathways in which they interact where correlated data is incomplete (EPA, 

1997).  An approved international definition agreed by the International 

Program for Chemical Safety (IPCS), World Health Organisation (WHO), 

United Nation Environmental Protection (UNEP) and International Labour 

organisation (ILO) with Japan, Canada and USA, Organisation for Economic 

Co-operation and Development (OECD) and European Union (EU) states: 

 

“A potential endocrine disrupter is an exogenous substance or mixture that 

posses’ properties that might be expected to lead to endocrine disruption in an 

intact organism, or its progeny or sub population.” 

In addition 

“An endocrine disrupter is an exogenous substance or mixture that alters 

function(s) of the endocrine system and consequently causes adverse health 

effects in an intact organism, or its progeny or sub populations.” 

(European Commission, 1996) 
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There are certain substances that are able to interact with hormone receptors 

and thereby interfere with the synthesis and action of hormones in the body, 

consequently disrupting the physiological process under control of the 

endocrine system.  This can occur in various ways, under certain conditions 

they may act as stimulatory agents and tumour promoters.  Therefore, the dose 

and duration of exposure and stage (i.e. infancy, adolescence, etc.) are critical 

in the determination of assigned adverse effects.  These effects may be 

reversible or irreversible, acute or chronic in expression. 

 

The mode of action of endocrine disrupters or hormone mimics can be one that 

(i.) acts as a mimic or false hormone by binding to a receptor and causing a 

response such as estrogenic or androgenic effect (Pöchlauer et al., 1998; 

Sonnenschein et al., 1998), (ii.) inhibits binding to a receptor and prevents the 

natural hormone from producing the required response (i.e. agonistic effect) 

e.g. dioxins, (iii.) alters or interferes with the process of synthesising natural 

hormones and receptors or the processes that removes them from circulation or 

(iv.) modifies the hormone receptor levels triggering an abnormal response or 

action in the cell (Environmental Agency, 1998; Sonnenschein et al., 1998) 

(Please refer to figure 1.1). 

 

It is also possible that EDCs could interfere with more than one hormonal 

system, simultaneously causing multiple responses.  The mechanism of the 

endocrine system as mentioned above is a very complex one.  Much of the 

research to date has focused on the disruption of the steroidal hormonal system 

where environmental polluting chemicals have been found to have an 

estrogenic, androgenic, and anti-estrogenic and/or anti-androgenic effect.  The 

scientific debate has widen and potential effects on the other endocrine 

hormonal systems, such as the pituitary and thyroid hormones that influence 

growth, development and behaviour are now being considered and 

investigated. 
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Figure 1.1: Endocrine Disrupting Processes. A) Normal hormonal and cellular response, B) 

Hormone mimic (EDC) eliciting an agonistic response, C) Receptor and EDC complex 

inhibiting a normal response i.e. antagonistic response. D) Hormone and hormone mimic 

displaying a synergistic response, E) EDC eliciting an abnormal cellular response independent 

from receptor binding mechanism. 

 

The ranges of chemicals that have been reported to have endocrine disrupting 

effects are diverse and continue to expand as the number of studies increases.  

The number of possible EDCs is potentially great with over 80,000 chemicals 

currently in use and another 1000 new ones added each year (Sumpter, 1998).  

However, only a few chemical compounds have been tested for endocrine 

disrupting effects (Nagel et al., 1999).  Some of these chemicals are likely to 

be distributed widely in the environment and in some cases are long lived and 

bio-accumulate in the tissues of plants and animals (please refer to Table 1.1). 
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Table 1.1: Categories and chemical examples of endocrine disrupting 

chemicals found in the natural environment 

Compound 
Category 

Examples Uses 
Environmental fate 
and -sinks 

Mode of action 

Naturally occurring chemical 

Phyto-estrogens 

Coumentrol, 
geinistien, equol, 
iosflavones, ligans 

Present in plant 
material, auxins are 
necessary for plant 
growth and 
propagation, and 
protection 

Are eaten and/or 
decomposed and 
enter soil and water 
systems 

Estrogenic and anti- 
estrogenic 

Steroids 

17β Estradiol, 
Estrone, oestriol, 
progesterone, 
testosterone 

Produced naturally by 
animals important for 
maturation, 
differentiation and 
reproduction 

Released into the 
environment via 
excretion mainly via 
STW and is then 
discharge into 
watercourses (i.e. 
rivers. lakes, sea etc.) 

Estrogenic, 
androgenic 

Man-Made chemicals 

Synthetic produced 
pharmaceuticals 

Ethinylestradiol, 
Methylestradiol, 
Diethylstilbestrol, 
Telengestrol acetate 
(MGA), Trenbolone, 
Zeranol 

Produced as a 
contraceptive or for 
use in livestock 
farming 

Mainly though 
mammal excretion 
and finds its way into 
watercourse 

Estrogenic 

Agriculturally and Industrially used chemicals 

Polyhalogenated 
organic compounds 

Dioxins, 
polychlorinated 
biphenyls (PCB), 
PBBs, TCDD 

Incineration by- 
products, and 
lubricants, (many are 
now banned or 
obsolete) 

Bio-accumulative 
compounds still 
reside in aquatic 
animals and 
sediments 

Anti estrogenic 

Organo chlorinated 
pesticides 

DDT, deildrin, 
lindane, HCB, 
Acteochlor, atrizine, 
endosulfan, 2,4,D, 
dicofol, prochloraz, 
malathion, simazine, 
kepone, chlordane 

Used as an 
insecticide (many are 
now obsolete, banned 
or under restriction. 
However, still exist in 
the environment as 
they are known to bio 
accumulate. 

Deliberately 
administered against 
insect infestation. As 
aerosols or powders.  
End up in soils and 
water course they bio 
accumulate in the 
food chain. 

Estrogenic, anti- 
estrogenic, and ant- 
androgenic 

Organo tin 
compounds 

Tributyltin compounds 
(TBT), tetrabutyltin, 
triphenyltin 

Anti-fouling agent, 
used on sailboat and 
ships to remove 
barnacles from the 
hull. 

Discharged 
deliberately into 
estuaries, seas or 
oceans due to boat 
cleaning processes. 

Anti estrogenic 

Phenolic compounds, 
Alklphonol and 
Alkylphenol 
ethoxylates 

Nonylphenol, 
nonylphenol 
etoxylate, bisphenol-
A, 

Used in the 
production for 
polymers, surfactants 
and anti viral 
preparations. Epoxy 
resins 

Industrial waste, 
landfills, soils and 
WWT eventually end 
up in watercourses. 

Estrogenic 

Phthalates 

Dibutyl phalates 
(DBP), butylbenzyl 
phalate (BBP), 
DEHP, Diisodecyl 
phalate, diisonoyl 
phalate (DINP) 

Plasticiser released  Industrial waste, 
landfills, soils, WWT 
and eventually in 
water courses 

Estrogenic 
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1.2.3.a Overview of Environmental Estrogens 

 

One of the major classes of endocrine chemical disrupters that have caused 

great concern are those compounds that mimic steroidal sex compounds and 

affect the reproductive system.  These compounds have been called many 

generic names: eco-estrogens, environmental estrogens and xeno-estrogens, 

they nevertheless all refer to the same group of compounds.  Natural estrogens 

are involved in the development and adult function of the female genital tract 

organs, neuron tissue, endocrine tissue and the mammary glands.  Males also 

have cells that are responsive to estrogen (Diel et al., 2002).  There are a 

plethora of compounds that have been implicated in having endocrine 

disruptive estrogenic action.  These compounds are either naturally derived 

chemicals found in plants (phyto-estrogens), fungi (myco-estrogens) or man 

made (xeno-estrogens) (McLachlan et al., 1996; Arnold et al., 1996b).  

 

Endogenous estrogens are steroidal hormones and are derived from the 

aromatisation of cholesterol via testosterone.  That are produced in the ovaries 

of females and the testes of males in response to feedback signals from the 

brain and other organs (Arnold et al., 1996a).  In mammals these hormones are 

transported in the blood by sex binding hormone globulins (SHBG) found in 

the plasma that have a high affinity for hormones and determines the 

circulation levels of free and bound estrogens in blood plasma where they are 

transported to the cells of target organs (e.g. uterus).  Steroidal compounds are 

highly hydrophobic compounds and can cross the cell membrane very easily 

and unaided.  They act by binding to an estrogen receptor protein.  The steroid 

/ receptor complex binds to a specific area on the DNA known as the estrogen 

response elements (ERE).  The complex can either activate or repress gene 

expression or alter the level at which the gene is expressed. The end result is a 

change in the cells program (Arnold et al., 1996b). 
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Table 1.2: Estrogen sensitive tissue and cells 
(Deil et al. 2002) 

 

Classic Targets 

 

Non-classic target 

Ovary Kidney 

Vagina Islets of langerhans 

Uterus Liver 

Mammary 

glands 
Bone 

Adrenal glands 
Cardiovascular 

system 

Prostate Macrophages 

Piturity Gland Thymocytes 

Hypothalamus Lymhodoidal cells 

 Endothelial cells 

 Ostoblastic cells 

 Gila cells 

 Schwann cells 

 Adipose tissue 

 

Estrogen hormones regulate the reproductive cycle by causing stimulation, cell 

proliferation and growth of reproductive organs to maintain pregnancy and by 

influencing secondary sexual characteristics (Kaplan, 1999).  The affinity of 

endogenous steroids is high and the dissociation is low therefore, the levels of 

hormone required in circulation to elicit a response are at low concentrations.  

Only some cells contain these hormone receptors and hence can respond to 

estrogen and their mimics (please refer to table 1.2).  It was quite an 

unexpected scientific breakthrough when many compounds with very different 

chemical structures from the steroidal chemical structure were able to elicit an 

antagonistic or agonistic estrogenic response (Soto et al., 1995).  Table 1.3 

illustrates the broad range of identified estrogenic compounds and their 

different chemical structure compared to natural steroids. 
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Table 1.3: Chemical structures of animal and plant based estrogens and 

 xeno-estrogens 

(Adapted from Hock, and Seifert, 1998) 

Endogenous Estrogens 

   

Estrone 17β Estradiol Estriol 

Synthetic Estrogens 

  

 

Ethinylestradiol Methylestradiol Diethylstilbestrol 

Phytestrogens 
(plant estrogens) 

   

Genstein Coumestrol Equol 

Xenoestrogen 
(hormone mimics) 

  

 

Bisphenol A DDT PCB (R= H or Cl) 

O
CH3

OH

CH3

OH

OH

OH

CH3

OH

OH

CH3

OH

OH
CH

CH3CH3

OH

OH

CH3

CH3

OH

OH

OH

O

O

O

OH

OH

OH O

O

OH OH

OH O

OH

OH

CH3

CH3

Cl

Cl

Cl

Cl

Cl

R

R

RR

R

R R R

R

R
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1.2.3.b Estrogenic pollutants an environmental problem 

 

To date most environmentally polluting chemicals of interest and of concern 

are low molecular weight compounds (<300kD) and some consequently mimic 

hormones, particularly steroidal hormones.  For most chemicals, whether 

natural or synthetic, independently of how they are used or disposed of (i.e. 

sprayed on agricultural land, in landfill from degrading rubbish, at water 

treatment works via drains) will eventually enter the aquatic system.  The 

common route of exposure for terrestrial and aquatic wildlife to environmental 

pollutants is by contact with contaminated surface water.  Therefore, the 

aquatic environment becomes the ultimate sink for environmentally polluting 

chemicals (Sumpter, 1998).  It is therefore, no coincidence that many well 

documented case studies of endocrine disruption caused by environmental 

pollution have been in animals whose habitats are in aquatic environments (e.g. 

alligators, otters and fish) (Guillette et al., 1994; Purdom et al., 1994; Mason et 

al., 1986) or connected via their food web or feeding habitats (e.g. fish-eating 

birds).  It is an ecological conjecture that these animals would be highly 

sensitive to these chemicals as they would receive the highest level of exposure 

and the bio-accumulative effect in their diets would warrant severe affliction. 

 

1.2.3.c Steroidal hormones as endocrine disruptors 

 

At the beginning of the 1970s Tabak et al described natural estrogens as 

potential environmental pollutants (Hohsaka et al., 1994; Tabak et al., 1970).  

This hypothetical proposition has been proved (Shore et al., 1993).  Mammals 

excrete estrogenic hormones as sulphates or gulcuronide conjugates in urine 

and in un-metabolised forms in faeces.  The conjugated hormones are inactive 

but are often converted back into their original active form by biological 

processes in waste water treatment (WWT) by oxidase or sulphatase enzymes 

(Huang et al., 2001).  EDCs can enter surface water by a variety of 

mechanisms including direct discharge from sewage treatment plant (STP) 

effluents, agricultural drains into streams and rivers and overland in rain run-

off.  Once in the waterway a series of processes such as dilution, photolysis, 

biodegradation and sorption into bed sediments takes place.  Generally EDCs 

have low polarity, which tend to make them accumulate in the sediment where 

their retention time is considerably long.  Therefore, alluvial sediment can act 

as a potential secondary source for EDCs within fluvial systems.  This is due to 

sediment being transported to other areas and eventually the absorbed pollutant 

being released by diffusion across the sediment water interface or through 

sediment re-suspension at high water velocity (Petrovic et al., 2001; Johnson et 

al., 1998). 
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1.2.4 Evidence of Endocrine Disruption in the Environment 

 

1.2.4.a Evidence in wildlife 

 

Observation of changes in the reproductive system of wildlife caused by 

certain environmentally polluting chemicals has been well documented over 

the past forty years (www.environment-agency.gov.uk).  One of the first 

observations was the declining population and unsuccessful egg nesting of the 

American bald eagle in 1947.  It was noted at the time that 80% of the bald 

eagles were sterile (Broley, 1958).  Rachel Carlson, who wrote “Silent Spring” 

in the 1950s, highlighted the effect of indiscriminate pesticide usage of DTT 

and other related chlorinated pesticides on the population of songbirds.  

Scientists later found that these birds were laying eggs with thin shells, hence 

making them prone to breaking, unsuccessful nesting and embryo mortality 

due to exposure to these chlorinated insecticides (e.g. DDT, Kapone) (Colborn 

et al., 1997; Plamiter et al., 1978).  In addition the feminising effect of the 

surviving chicks led to the observation of female-female pairing (Fry et al., 

2003; Hunt et al., 1977).  A comprehensive review on birds and pesticides can 

be found in (Fry, 1995). 

 

Endocrine disrupting effects have been studied and observed on aquatic 

wildlife species.  In the UK it was identified that female dog whelks around the 

coast were showing male characteristics (i.e. imposex) and this physical 

deformation prevented them from laying eggs.  It was then identified that 

organo-tin compounds (e.g. tributyl tin: TBT), used as anti fouling agent for 

boats were the cause.  By the late 1980s TBT-based paints were banned for use 

in smaller boats and by the end of 2003 were banned altogether (EPA, 1997).  

In the mid 1990s dog whelks were observed to have shown some signs of 

recovery. 

 

In the 1980s, British scientists were alerted to the feminisation of the male 

roach fish (Rutilus ritilus) on the river Lea in north London.  Work carried out 

by Purdom in 1994 and Harris in 1996 noted that fish caught in lagoons below 

sewage treatment works (STW) were showing hermaphroditic characteristics 

(Harries et al., 1996; Purdom et al., 1994).  A hypothesis was put forward that 

estrogenic chemical agents were being introduced into the watercourse and 

were causing this sex change phenomenon.  In addition, the likely source of 

estrogenic EDC pollutants was from the widespread use of the contraceptive 

pill, and the subsequent release of ethinylestradiol and alkylphenol-

polyethoxylates (APEs) originating from the biodegradation of surfactants and 
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detergents via the sewage treatment works and wool scouring mills.  Further 

studies have supported this theory and found that the most abundant 

compounds present were Estradiol and ethinylestradiol both derived from 

human waste (Harries et al., 1997; Harries et al., 1996; Nimrod et al., 1996; 

Purdom et al., 1994). 

 

Vitellogenin is a phospholipoprotein that is synthesised in the liver of female 

oviparous vertebrates and is naturally induced in females as a response to the 

presences of estrogens (e.g. 17β Estradiol) (Nimrod et al., 1996).  Vitellogenin 

is absorbed into the blood stream via the liver where it is utilized by the ovaries 

to be transformed into two major types of proteins: lipovitellins and phosvitins 

(EPA, 1997).  To determine the effect of estrogenic compounds in natural 

surface waters, vitellogenin levels in the serum of male fish species have been 

used as a biomarker (Andersen et al., 1999; Sherry et al., 1999; Hansen et al., 

1998) (See section 1.2.5.1).  

 

Since 1994 further studies on caged fish placed down stream from STW have 

further confirmed the above hypothesis. It has also been observed that male 

fish have displayed a reduction in the size of their testes and the vitellogenin 

levels in blood serum of male fish (Oncorhynchus mykiss) was found to be 

500-10,000 times higher than expected in sewage outflow exposed areas 

(Hansen et al., 1998; Jobling et al., 1996; Sumpter et al., 1995).  This effect 

decreased with distance from the receiving outlet of the sewage treated water 

out flow (Harries et al., 1996).  Desbrow et al (1998) showed that fish exposed 

to ethinylestradiol gave an estrogenic response at exposure levels less than 1ppt 

(Desbrow et al., 1998). 

 

The populations of frogs, toads and salamanders have declined dramatically 

worldwide (EPA, 1997).  The University of California, Berkeley conducted a 

research into the decline of wild leopard frogs (Rana pipiens) across the 

Midwest corn-growing belt of North America.  They concluded that Atrazine, a 

common herbicide used to control weeds in crop fields, was having a 

devastating effect on frogs at exposure levels <0.1ppb.  This level is 30 times 

lower than the current US EPA levels allowed (3ppb in drinking water and 

12ppb exposure limit for aquatic life (EPA, 1997).  In the wild, 80% of the 

male Leopold frogs were showing female characteristics i.e. reduced sized 

vocal chords and a 10-fold decrease in testosterone levels (lower than the 

normal level of female frogs).  In all of the sites monitored, it was observed 

that only 16% of the wild frogs displayed genital normality.  Further laboratory 

test showed that frogs raised in tanks and exposed to Atrazine (<0.1ppb) 

developed eggs in their testes, hence, showing hermaphroditic characteristics 

(Hayes et al., 2002). 
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A well-documented example of endocrine disruption in wildlife caused by 

environmental pollution was from a chemical spill in 1980 into Lake Apopka 

in the Florida everglades.  The chemical spill contained high levels of DDT, 

DDE, and related compounds, dichlorobenzophenone, dicofol, and 

chlorinezilate.  Consequently, many reports and observations followed 

detailing a variety of endocrine-related abnormalities.  Resident male alligators 

were emasculated, as juvenile males had phalluses one half to one forth of their 

normal size, they also showed decreased levels of testosterone (Guillette et al., 

1994).  It was also observed that 80-95% of eggs failed to hatch compared to 

normal failed hatch levels of 5-20%.  Of those that hatch there was a mortality 

rate of 50% in the first two weeks.  This is 10 times higher than those in nests 

of unaffected areas.  Of the remaining hatchlings, female alligators had twice 

the amount of estrogen in their blood than normal and males had almost no 

testosterone (Bhatt, 2000).  It was also noted that 90% of the population of 

juvenile alligators on lake Apopka had declined between 1980-1987 

(Woodward et al., 1993).  Red eared turtles were also observed to be 

emasculated (Tyler et al., 1998; EPA, 1997).  Tyler et al. (1998) and Vos et al. 

(2001) both give a comprehensive critical review of all aspects of endocrine 

disruption evidence in wild life (Tyler et al., 1998) and special reference to the 

European situation (Vos et al., 2000). 

 

In mammals, there have been several reports all indicating endocrine disruption 

in the wild.  High concentrations of lipophilic compounds (i.e. mercury, p,p’-

DDE and PCB) have been found in the tissue of panthers and raccoons and 

otters.  The male Florida panther has been observed to have lower testosterone 

to estrogen levels than normal, making males more feminine and females more 

masculine.  Male panthers were also observed having an increased incidence of 

undescended testes (crytorchidism).  This was attributed to the anti-androgenic 

effect of DDE (Facemire et al., 2003).  The decline of British otters is also 

linked to the presence of organo-chlorines and estrogenic endocrine disruption 

(Mason et al., 1986). 

 

It is very difficult to ascertain whether the long-term viability of wildlife 

populations is being affected by EDC pollution from the examples given in the 

literature.  As exposure to sub-lethal concentration of EDC may not cause 

sudden population decline or obvious phenotype altering characteristic and 

therefore, may not be detected and ultimately affecting population levels years 

later.  Predisposed susceptibility traits of sub progeny to certain illnesses and 

diseases due to EDC may also make it difficult to decipher the actual link to 

exposure.  It is therefore, difficult to separate the effects of endocrine 

disrupting compounds from other factors such as habitat loss and other 

pollutants (Kaplan, 1999).  The examples given above show the diversity of the 

problem and the potential of EDCs having widespread impact on habitats.  
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Endocrine disruption effects by EDCs on wildlife has been reviewed at length 

elsewhere (Ameral Mendes, 2002; Vos et al., 2000; Sumpter, 1998). 

 

1.2.4.b Evidence in Human health 

 

The first reported observation of human health effects due to exposure to 

endocrine disrupting chemicals was in the 1940s, when aviation crop-dusters 

handling DDT were found to have reduced sperm counts.  Since then, there 

have been many reports linking DDT to breast cancer, (EPA, 1997; Dewailly et 

al., 1994; Colborn et al., 1993).  In 1975, a chemical spill of Kapone an 

organo-chlorinated pesticide, resulted in low sperm counts in men that were 

exposed (McLachlan et al., 1996; Plamiter et al., 1978).  Workers at a plant 

producing Kapone were reported to have had low sperm counts and to have 

lost their libido that consequently lead to impotency (Sonnenschein et al., 

1998). 

 

A powerful synthetic estrogen called Diethylstilbestrol (DES) was given to 

women from 1947 to 1971 to prevent miscarriages.  It was observed in 1970 

that DES was associated with a rare form of vaginal cancer called clear-cell 

adenocarcinoma that caused cellular changes in the vagina and/or fallopian 

tubes and structural changes in the uterus of adolescent daughters of women 

who had taken DES during pregnancy.  Male children were also affected, 

displaying increased incidence of un-descended testes and genital tract 

abnormalities.  Although this exposure was through pharmaceutical 

prescription, it was the first documented example of a human “transplantal” 

carcinogen and scientific evidence that compounds that can mimic estrogens 

could have a devastating effect on the reproductive organs and morphology in 

humans.  It was observed that DES was a far more potent estrogen than the 

natural 17β-Estradiol as DES has little affinity to human serum proteins (i.e. 

SHBG).  Therefore, more is available for receptor activation (McLachlan et al., 

1996).  Since 1970 extensive research has been conducted on the effect of DES 

in mammals and human (Gill et al., 1979). 

 

Dioxins, which are by-products of incineration processes, are highly toxic 

environmental pollutants.  They are capable of lowering androgens levels and 

affecting the amount of thyroid hormones produced.  Although not an 

estrogenic mimic it is able to block estrogen receptors and affect insulin levels 

and glucocorticoid secretion via the adrenals (Petterson et al., 1993).  It was 

also observed that men exposed to agent orange which is a herbicide containing 

dioxin, had high incidence of fathering children with birth defects (Bhatt, 

2000). 
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Excluding the few examples given above, there is only a tentative link of 

evidence implicating adverse effects of environmental estrogen mimics (i.e. 

exogenous hormones and their mimics present at low concentrations in the 

natural environment) to human health, such as low sperm counts, increased 

testicular and prostrate cancer, increased incidents of male genital 

abnormalities; crytorchidism and hypospadias (Toppari, 1996) and breast 

cancer (Colborn et al., 1997).  Adverse health effect in humans operating via 

endocrine disruption has not yet been conclusively established (Baker, 2001; 

EPA, 1997).  Many comprehensive reviews on human health and endocrine 

disrupters has been covered (Ameral Mendes, 2002; Bhatt, 2000; Toppari, 

1996). 

 

Attempts to link possible human health risks to hormone mimics is 

complicated by the fact that the individual potency to endocrine receptors in 

the body is very low (Kortenkamp et al., 1999), plus the average dietary 

exposure to xeno-estrogen would have to be at lest 100,000 times higher to be 

able to elicit a receptor response, which is considered to be an insufficient 

amount to evoke an adverse effect in adults (Safe, 1995; Safe et al., 1991).  

Other studies suggest that endocrine disrupters may not significantly contribute 

to the development of hormone dependent disease or compromise reproductive 

fitness in humans (Zacharewski, 1998).  However, these studies do not take 

into account the affinity of these compounds to serum protein (bio-

availability), synergism of these compounds when present together at low 

concentrations (Kortenkamp et al., 1999) nor the ability of a developing foetus 

or the young to regulate sufficiently the burden of these exogenous endocrine 

disrupting chemicals when exposed.  Endocrine disrupting chemicals are often 

highly lipophilic and bio-accumulative.  High concentration can be found in 

breast milk and can pass the placental membrane to the unborn foetus very 

easily.  Children exposure risks to these lipophilic compounds could be 10-40 

times greater than the daily exposure of an adult (WHO, 1989).  In conclusion, 

there are still a lot of research questions and data gaps to be answered and 

filled (EPA, 1997). 

 

1.2.5 Legislation and environmental monitoring of EDC 

 

The chemical industry is the third largest manufacturing industry in Europe.  

There are at least 100,000 different substances registered in the EU market of 

which 10,000 are marketed in volumes of more that 10 tonnes [EC Com (2001) 

262].  The trade surplus is more than €41 billion per year.  Since 1998, over 

2,700 new substances have been made.  Our current dependences and use of 

chemicals in our everyday life has had a knock on effect on our environment.  

The concerns of these industrialised synthetic chemicals were manly due to 

their real or potential carcinogenic or teratogenic effects on wildlife and 
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humans.  As most of these contaminants will eventually find themselves or 

their derivatives in natural watercourses, public concern for the hazards they 

pose to human health through contamination of drinking water supplies and the 

presences of chemicals in foodstuffs has led to stringent legislation being 

introduced, to monitor and control the release of these potential environmental 

hazardous pollutants. 

 

1.2.5.a Past and Present Legislative Instruments 

 

The European Union has been concerned about environmental pollutants since 

the early 1970 and has a range of policy instruments available to the 

community in the form of directives.  In 1980 the European Union passed a 

drinking water directive [80/778/EEC] and its amendment [98/83/EC] setting 

the “Standards for the quality of water for human consumption, irrespective of 

the water source” (Gardiner et al., 1984).  It states that the maximum 

concentration of any individual group of synthetic compounds (e.g. pesticides) 

should not exceed 0.1µg/L and the total combined pesticides and related 

compounds should not exceed 0.5µg/L.  In the United Kingdom this directive 

is monitored and enforced by the environmental agency (European 

Community, 1980).  Under the European dangerous substance directive 

(76/464/EEC), and its daughter directives and amendments, the EC proposed a 

priority candidate list of substances listing 140 compounds.  The UK 

Government also identified 21 dangerous substances collectively classified as 

the “Red List”(Baskeyfield, 2004). 

 

In October 2000 the European parliament and council established a framework 

for community action in the field of water policy.  Altogether 11 council 

directives all pertaining to aquatic environment of the community including the 

council directive on pollution caused by certain dangerous substance 

discharged [76/464/EEC] and drinking water directive [80/778/EU] with their 

measures were to be either replaced, harmonised and/or further developed by 

directive [2000/60/EC].  The new community action water policy directive is 

aimed to prioritise the progressive reduction of priority hazardous substances 

by cessation of, or phasing out of, discharges, emissions, and loses within 20 

years after the adoption of the policy (Hellinga et al., 1998).  It represents a 

cohesive and transparent attempt to disentangled and demystify the legislative 

and monitoring instruments available to the community for adoption and 

enforcement.  It also brings into account a classification of substances that have 

been identified as endocrine disruptors; Table 1.4 gives a list of categories of 

the main pollutants. 
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Table 1.4: European Community priority list of chemicals and groups of 

chemical indicated to be endocrine disruptors 

 

INDICATIVE LIST OF THE MAIN POLLUTANTS 

(used for priority sub substance list in 2000/60/EC 

amendments and reclassification of 76/464/EEC list) 

Organo-halogens, Organo-phosphorus, Organo- tins 

Substances and preparations, or breakdown products of 

such which have been proved to have carcinogenic, 

mutagenic properties or properties which may affect 

steroidogenic, thyroid, reproduction or other endocrine-

related function in/or via aquatic environments. 

Persistent hydro carbon and bio accumulative agents and 

toxic substances 

Cyanide 

Metal compounds 

Arsenic compounds 

Biocides, plant protection products 

Materials in suspensions 

Substances that may cause eutrophication (i.e. nitrate, 

phosphates) 

Substance that may affect the oxygen balance in the 

aquatic environment (BOD, COD, TOD) 

 

The water policy included a list of priority substances selected amongst those 

that represent a significant risk to or via aquatic environments.  The first list 

drawn up consists of 33 priority substances or groups of substances that were 

selected on the basis of the combined monitoring-based and modelling-based 

priority setting scheme (COMMPS).  The list includes all of the chemicals 

identified in the directive [76/464/EEC] and it also amends and replaces those 

that appear in list 1 of Council directive [80/778/EU].  Altogether, this list 

included approximately 140 chemicals of which all of UK “red list” chemicals 

appear. 
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1.2.5.b EU Community strategy framework pertaining to endocrine 

disrupters 

 

In 1996 a European workshop in Weybridge, UK agreed on an integrated plan 

for future research and monitoring activities on the impact of endocrine 

disrupters on human health and wildlife (European Commission, 1996). It was 

supported by many international agencies and international and national 

governments i.e. European Commission (EC), European Environmental 

Agency, the World Health Organization's European Centre for Environment 

and Health (WHO-ECEH), the Organization for Economic Cooperation and 

Development (OECD), national environmental agencies from England, 

Germany, Sweden, and the Netherlands, European Chemical Industry Council 

(CEFI), European Centre for Ecotoxicology and Toxicology of Chemicals 

(ECTOC), and members from the USA and  Japan.  Here many definitions and 

agreements on what substances constitutes in being an endocrine disrupter and 

a proposal of a working priority strategy for exchanging and filling information 

gaps in chemical data was discussed and agreed upon. 

 

In 1998 the European parliament adopted a resolution calling upon the 

commission to take action in this area to improve the legislation framework 

and reinforce research effort and disseminating information to the public.  This 

fed through to the newly drawn up water quality policy [2000/60/EC].  The 

commission in 1999 adopted a community strategy on endocrine disruptors 

[Com (1999) 706] that was inline with the precautionary principle.  This set out 

the actions to be undertaken on the potential environmental and health impacts 

of endocrine disruption.  The European commission communication report 

[com (1999) 706] was updated in 2001 with the commission adopting a list of a 

range of priority substance suspected of interfering with the hormonal system 

of humans and wildlife [com (2001) 262].  The list adopted was produced in a 

report entitled “Towards the establishment of a priority list of substances for 

further evaluation of their role in endocrine disruption”.  The report identified 

553 man made substances and 9 synthetic/natural hormones.  The report set out 

a priority list of action; timeframes and grouping in order to further evaluate 

the role of these substances in endocrine disruptions. (Report and detailed 

information can be found on the European commission EDC website http: 

//europa.eu.int). 

 

The priority framework is set out in three phases: short term: 1-2 year, mid 

term 2-4 years and long-term >4 years.  Priority in the short term, is given to 

conducting an in depth study of 12 candidate substances which includes up to 

date EDC evidence, dose-potency, timing and synergy consideration and 

comparison with non endocrine disrupting toxic effect and quantitative 
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exposure assessment where appropriate.  Nine of these chemicals are industrial 

chemicals and the other three are synthetic or natural hormones. 

 

A concerted effort by international agencies and governments has lead to 

greater information transfer and agreements to research initiatives.  In 1999, 

the European Union and USA agreed to an EU-USA science and technology 

agreement.  This identified a common priority research program and 

subsequently liberated funding for research within Europe and US.  The global 

disruption research innovatory initiative is being supported by the European 

Union, WHO and IPCE. (Damstra et al., 2002). 

 

The EU continues to participate and collaborated with the OECD and USA in 

what is known as the endocrine disrupter testing and assessment task force 

(EDTA).  The EDTA was set up in 1998 with the goal of developing and 

validating agreed new and established test methods and test strategy for 

endocrine disrupters [Com (1999) 706].  These tests will harmonise any current 

research methods and tests that will be recognised and accepted by the different 

international and national organisation.  It was agreed and estimated that in 

2000, test methods for human health would be available in 2002, while test for 

environmental effect would be available in the timeframe from 2003 to 2005.  

Under the 5th community framework programme for R&D (1999-2002) 

research into endocrine disruption was prioritised.  A dedicated call for 

research proposals on health and environmental impact of endocrine disrupters 

was announced in May 2001 and was given a budgetary envelop of €20M. 

1.2.5.c Legislation action on endocrine disruption 

 

Many of the chemicals that have been listed in the priority candidate list of the 

[79/434/EEC] dangerous substances and amended [80/60/EEC] drinking water 

act have also proved to be estrogenic in nature.  This has meant that inclusion 

directly or indirectly into different existing legislative policies and directives 

would be coordinated.  Therefore, EDCs will be included into the newly drawn 

up water policy and also in the recent white paper on “A strategy for a future 

chemical policy” as well as in the proposed revision of the general product 

safety directive. 
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1.3 Analytical Techniques for the determination 

of EDC 

 

To date most of the techniques that are being developed are specifically for 

EDCs that affect the sexual reproductive system (i.e. xeno-estrogens).  The 

following section will concentrate on these test methods.  A concerted effort to 

identify, screen and rank endocrine disrupting compounds has started.  As 

mentioned above OECD, EU and other international institutes are currently 

evaluating and harmonising current methods and analytical techniques for 

endocrine disrupters (www.oecd.org/ehs/ENDOCRIN.htm).  The proposed 

strategy for identifying and screening EDC is to use a tiered approach where 

chemicals are prioritised, tiered, and screened (tier 1) and then tested (tier 2; 

i.e. test batteries).  The analysis of EDCs falls into two categories: 

 

1. Determination of chemicals as endocrine disrupters, these techniques 

often give information on effect and level of toxicity. 

2. Quantitative measurement of concentration of known endocrine 

disrupting compound (e.g. whether in environmental sample or in 

industrial samples). 

 

Many exogenous estrogens have been considered safe because they exhibit 

very low acute toxicity.  However, these same compounds can show estrogenic 

activity at concentrations many magnitudes lower than their level of lethal 

toxicity (Nagel et al., 1999). 

 

Endocrine disrupters can elicit effects through receptor-mediated mechanisms 

of action of sex steroid as well as receptor independent mechanisms that may 

involve steroidal transport, steroidal synthesis and interactions with target cell 

membranes.  It is for this reason why a comprehensive evaluation of an EDC 

requires a battery of complimentary in vitro and in vivo assays that represent 

these mechanism activity pathways. 
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1.3.1 Endocrine disrupting effects based methods 

 

These analysis methods can be divided into two sections:  in vivo and in vitro 

analysis techniques.  The advantages and disadvantages of in vitro and in vivo 

assays as well as emerging methodologies have recently been reviewed (Diel et 

al., 2002; Eisenbrand et al., 2002; Gray et al., 2002; Zacharewski, 1998).  A 

brief account of the well established techniques and variation of them are given 

in this section. 

 

1.3.1.a In vivo assays 

 

Many tests on mammals have been developed to specifically identify whether a 

chemical is an EDC or not and are able to give additional information.  Over 

the last 60 years there have been a diverse numbers of animal models and 

assays that have been used to measure reproductive effects of chemicals 

(Sonnenschein et al., 1998).  The rodent uterotrophic assays and the vaginal 

cell cornification assays are two classic and well established techniques for 

assessing estrogenic substances (Baker, 2001). 

 

The uterotrophic assay measures the increased weight of the uterus of 

immature or ovariectomised rodents post exposed to the compound of interest.  

This assay is sensitive and can measure additive effects of multiple estrogens. 

The assay can also produce false positives as a result of exposure to androgens 

or progestrogens (Folmer et al., 2002).  The vaginal cornification assay detects 

the histological changes in the vaginal epithelium in ovariectomized rodents.  It 

is believed to be a definitive in vivo test for identifying estrogenic substances 

or complex mixtures as only compounds considered to be estrogenic and can 

induce cell proliferation.  This assay has the advantage of being relatively 

simple and the same animal can be repeatedly used, providing that the test 

compound does not bio-accumulate. The disadvantage is that the assay is by 

large a qualitative technique and although optimisation has been introduced to 

address this issue a large number of animals are required to ensure repetitive 

accurate results (Zacharewski, 1998).  The most widely used assay for 

andgrogenicity is the Hershberger assay.  This assay detects the ability of a 

compound to elicit agonistic or antagonistic effects at the androgen receptor.  

Traditionally the assay is performed on castrated male rodents and measures 

the increased tissue weight of the ventral prostate and seminal vesicles of the 

testis (Gray et al., 2002). 
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General disadvantages of using rodent models is that rodents do not produce 

sex hormone binding globulin (SHGB) which as mentioned before in Section 

1.2.2.a is important in regulating the level of free estrogen present in the blood.  

Therefore, rodent models are often oversensitive to certain compounds that 

have high affinity to these proteins. 

 

The uterotrophic and Hershberger assay, both short term in-vivo screening tests 

are currently in the process of being validated by the OECD to develop two test 

guidelines for identification of hormonal disruption (Meyer, 2003; OECD, 

2001a; OECD, 2001b).  The evaluation of four variations of the uterotrophic 

assay protocol by the OECD has been completed and the initial first phase of 

the inter-laboratory study has been published (Kanno et al., 2001; OECD, 

2001a).  The Hershberger assay has been standardised by the OECD and is 

currently in the process of being evaluated in a multi-laboratory study.  The 

first phase has been completed and reported (OECD, 2001a; OECD, 2001b).  

These in vivo tests will be used in the first tier of screening chemicals for 

endocrine disruption (Gray et al., 2002). 

 

There are many different fish based assays displaying different endpoints, these 

include fish partial chronic toxicity test and the fish whole life toxicity test 

which determines the effects of chemicals at different stages of the life cycle 

(Ankley et al., 1998).  The most commonly measured in-vivo fish responses to 

estrogenic compounds are: 

 

• Developmental abnormalities of the gonads (Jobling et al., 1996) 

• Up-regulation and expression of vitellogenin (VTG) (Hansen et al., 

1998; Routledge et al., 1998; Sumpter et al., 1995; Purdom et al., 

1994). 

 

Chemicals that inhibit steriodogenesis can be detected by a variety of ex vivo 

methods, briefly reviewed by (Gray et al., 1997).  Generally, the ex vivo assay 

in fish measures the stimulation or inhibition of the laboratory test fish exposed 

to a chemical of interest.  The fish is then castrated and the relevant enzyme 

activity is assayed.  This is usually by radioimmunoassay.  The vitellogenin 

assay, as mentioned briefly in section 1.2.1.a is a biomarker assay that 

measures the increased levels of vitellogenin in male fish due to exposure to an 

estrogenic compound.  The level of vitellogenin is measured by 

radioimmunoassay.  However, ELISA has now been established.   The 

vitellogenin response is very specific for estrogens and the magnitude of the 

response is enormous and can be as much as 100,000 fold increase of 

vitellogenin in the blood.   The disadvantage of the assay is that the structure of 

vitellogenin differs from specie to specie and standardisation and validation is 
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difficult, as a new assay has to be developed for each species.  There is 

currently much work looking into finding the universal vitellogenin biomarker 

(Hock et al., 1998).  Although in vivo assay are well established, the 

expenditure of time, cost and energy and ethical considerations do not lend 

them selves to large scale screening of chemicals. 

 

1.3.1.b In vitro assays 

 

Over the last fifteen years a large amount of in vitro tests have been developed 

for the assessment of endocrine disrupting compounds (Eisenbrand et al., 

2002).  In vitro assays are generally highly specific and sensitive as well as 

being cost effective, rapid and generally suited for high throughput screening 

of chemicals nonetheless, they usually only assay a single mechanism of 

action.  Therefore, many different tests are needed to obtain a full picture of the 

problem.  The most widely used in vitro test for the determination of endocrine 

disrupting potential can be seen summarized in table 1.5.  These tests are 

mainly suitable for the classic receptor mediated effects. In vitro assays have 

been reviewed by (Eisenbrand et al., 2002; Baker, 2001; Diel et al., 1999; 

Ankley et al., 1998). 

 

Table1.5: In vitro test systems for the detection of endocrine disrupters 

Assay type Endpoint measured Selected references 

Cell proliferation assays Ability of a substance to 

stimulate growth of hormone 

responsive cells (e.g. MCF-7, E-

Screen) 

(Koltz et al., 1996; Soto 

et al., 1995; vom Saal et 

al., 1995) 

Reporter gene assays Ability of a substance to 

activate transcription of a 

reporter gene construct in cell 

culture  (mammalian/ yeast) 

(Arnold et al., 1999; 

Balaguer et al., 1999; 

Graumann et al., 1999; 

Koltz et al., 1996; Tran 

et al., 1996; Arnold et 

al., 1996b) 

Analysis of hormone sensitive 

gene expression  

Ability of a substance to induce 

the mRNA expression of 

hormone sensitive genes in cell 

culture (e.g. pS2, Muc1) 

(Islinger et al., 1999) 

Receptor binding Assays Binding affinity of a substance 

to a hormone receptor (e.g. ER, 

AR) 

(Vonier et al., 1996) 

(Hock et al., 1998), 

(Nishikawa et al., 1999; 

Gray et al., 1997) 

Other cell-based assays e.g. release of FSH in Piturity 

cells   

(Holmes et al., 1998) 
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Cell proliferation assays 

The E-SCREEN developed by Soto et al is one of the most widely used in vitro 

assays for the detection of estrogenic compounds (Soto et al., 1995).  In these 

test systems estrogen-dependent human breast cancer cell lines such as MCF-7 

(E-screen) or T47D are commonly used.  The ability of a chemical of interest 

to stimulate growth in these cell lines is measured.  This determines whether 

the chemical is estrogenic or not, alternatively the synthesis of new DNA or 

changes in the metabolic activity is determined by liquid scintillation counting 

or cellular enzyme immunoassay (Diel et al., 1999).  The assay is simple and 

robust and has the advantage of giving a biological response.  Although, widely 

used there have been concerns about the high inter laboratory variations in 

strains and culture conditions used (Andersen et al., 1999).  It has also been 

reported that proliferation has been shown in response to non-estrogenic 

substances (e.g. progesterone, ethanol) and even some clones being insensitive 

to Estradiol. 

 

Reporter Gene Expression assays 

There are a number of gene expression assays in mammalian cells and yeast 

cells that have been developed for a range of steroid hormone receptors (Baker, 

2001).  The gene expression assays analysis the capability of a substance to 

activate the transcription of an EDC sensitive promoter.  Eukaryotic cells (e.g. 

mammalian or yeast) are trans-infected with an expression vector that encodes 

the human estrogen receptor and a reporter gene vector.  The reporter gene 

vector is composed of an estrogen sensitive promoter linked to a reporter gene.  

The reporter gene encodes a protein that has a metabolic activity that can be 

easily quantified (e.g. β-galactosidase that can turn the surrounding substrate 

medium from yellow to red)(Diel et al., 1999).  The mechanism of this assay is 

shown in figure 1.2. 
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Figure 1.2: Schematic representation of a reporter gene assay. The hormone or hormone 

mimic has an affinity to bind to the hormone receptor synthesised by the hormone receptor 

gene.  The hormone and hormone receptor complex are able to bond to the estrogen 

responsive element (ERE), which in turn illicit a transcription protein product that is able to be 

colourimetrically detected 

 

The yeast cell estrogens screening assay initially established by (Routledge et 

al., 1996) and further developed by (Arnold et al., 1996b) offer many 

advantages for use in screening endocrine disrupting chemicals compared to 

mammalian cells.  Yeast can be cultured easily and cheaply therefore can be 

used to test a high number of substances in a short period of time.  Purified 

environmental samples can be incubated with the culture with little to no 

adverse affect.  The yeast assay is considered to be a powerful tool in 

identifying substances which act via the receptor mediated pathway therefore 

able to determine their estrogenic potency.  It can also characterise the 

agonistic and antagonistic properties of a substance.  The YES assay is one 

hundred times more sensitive than radio-immunoassay for the detection of 

Estradiol and two times more sensitive than the E-Screen.  As the assay has 

been developed to express a diversity of receptor (i.e. estrogen, androgen and 

progesterone receptors) it lends itself to being adaptable and ideal for large 

high though put screening of chemicals.  A few limitations of the test system 

that have been reported, which include insensitivity of yeast cell due to 

impermeability of yeast cells to some test substances (i.e. dextramethasone) 

generating false negative results (Gray et al., 1997). 
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Hormone sensitive gene expression analysis in cell lines 

This gene expression assay measures the induction of the gene transcription 

following the endogenous estrogen receptor activation.  It is one of the most 

valid procedures in characterising the estrogenicity of a substance in vitro (the 

YES system is in an artificial environment).  The endogenous estrogen 

sensitive genes are imbedded in their native environment.  The gene expression 

assay directly measures the production of the mRNA of an endogenous product 

stimulated by estrogens (Diel et al., 1999; Kaplan, 1999) theses methods give 

semi-quantitative results and are able to give tissue specific effect information 

in a non artificial environment.  However the analysis is time consuming and 

has tedious experimental protocols (Diel et al., 2002). 

 

Receptor Binding assays 

Steroidal hormones have a high affinity to receptors within target cell 

nucleuses.  Receptor binding assays have therefore been developed to assess 

the ability of substances that can bind directly to the hormone receptor (Baker, 

2001).  The classic format of receptor binding assay is to obtain a cytotolic or 

nuclear extract of estrogen receptor rich tissue (e.g. mouse uteruses).  This 

extract is mixed with a combination of the test substance and a radio labelled 

analyte ligand (e.g. 17β Estradiol). Free unbound radio-labelled ligands are 

removed and measurement is determined by the percentage displacement of the 

radio-labelled analyte by the competing chemical.  The advantage of this 

methodology is that tissue from a wide diversity of species can be used and the 

technique is widely used.  However, the diversity of the level of receptor in 

tissue makes it difficult to obtain a standardised operating procedure (Kaplan, 

1999). 

 

Receptor binding assays basically use the same approach as immunoassays 

(please refer to section 4.1).  However, they utilise the hormone receptor 

binding protein rather than an antibody.  In recent years many non radioactive 

receptor binding assays have been developed (Gray et al., 2002; Hock et al., 

1998; Vonier et al., 1996).   Pan Vera (now Invitrogen Corporation Carlsbad, 

USA) has produced a commercially available steroidal receptor screening 

assay (http://www.invitogen.com) based on fluorescence spectroscopy.  

Receptor binding assays are widely used because they are easy to perform, 

rapid and relatively cheap. Assays especially the ones based on the 96 well 

plates immunoassays (Hock et al., 1998), lend themselves to testing multiples 

of chemicals in fast succession and are suitable for large-scale screening of 

chemicals (Baker, 2001).  One major criticism of these tests is that they are 

only suitable for hormone receptor mediated effects and hence can give false 

results with substances that elicit a transcription response not involving the 

hormone receptor (i.e. dioxins).  Hormone binding receptors cannot distinguish 

between agonistic and antagonistic effects. 
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1.3.1.c Summary of effect based methods 

 

In vitro systems are used principally for screening purposes and for generating 

information to validate in vivo toxicological profiles. They have the potential 

to be used for studying tissue and target specific effects.  However, in vitro 

assays are generally unable to give metabolic dynamic data (i.e. 

pharmacokinetics: a study of what the body does to the chemical and 

pharmacodynamics: a study of what a chemical does to a body) that in-vivo 

assay can.  Therefore, there will still be a need for animal testing for 

toxicological monitoring for the foreseeable future. 

 

1.3.2 Quantitative analysis of EDC concentration  

 

Along with the need to investigate whether a chemical is an endocrine disrupter 

or not in terms of screening chemicals, there is also an equal need to identify 

and determine concentration of EDC in environmental samples (i.e. industrial, 

commercial or domestic effluent).  Although some of the above mentioned 

techniques can give qualitative measurement determination, accurate 

independent concentration determination is required to obtain viable 

monitoring data so that control measures can be implemented (Bolz et al., 

2000).  As mentioned in section 1.1 endocrine disrupting chemicals are often 

low molecular weight compounds that are present at very low concentration in 

the environment.  Ideally, these analytical techniques employed would have to 

have the capability of measuring samples at concentrations in the ppb-ppt 

(ng/L –pg/L) range and specifically identify and discriminate between different 

chemicals.  It is also desirable that these analytical techniques are cost 

effective, robust and display rapid analysis time to be able to be deployed in 

the field or at source. 

 

The number of analytical methodologies currently available for determination 

of endocrine disrupters in environmental aqueous samples are limited and 

generally are either biological techniques or chromatographic techniques 

(Giese, 2003).  A brief general discussion of these techniques will follow. 
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1.3.2.a Chromatographic and Spectrometric Analysis Techniques 

 

The most widely used chromatographic techniques used for the detection of 

endocrine disrupting compounds in environmental samples are gas 

chromatography – mass spectroscopy (GC-MS) and high-performance liquid 

chromatography (HPLC-MS). Of these two techniques gas chromatography is 

considered to be superior to HPLC as the resolution separation for compounds 

of similar structures is vastly better.  However, GC –MS analytical technique is 

time consuming and labour intensive as a derivitisation step is required 

(D'Ascenzo et al., 2003).  On the other hand, HPLC –MS requires no 

derivitisation and as a technique is quite simple to perform and can take up to 

ten minutes to complete a separation analysis.  The lower levels of detection 

(LOD) for both of these techniques vary between 0.05 and 1ng/L in surface 

water and between 0.1 and 1ng/L for wastewater (Lerch et al., 2003). 

 

In recent years additional chromatographic techniques have emerged these 

include liquid chromatography (LC-MS) that allows determination of steroids 

without derivitsation, LOD of (<0.1-5.0 ng/L) in tandem with electro-spray 

ionisation (ESI) and atmospheric pressure chemical ionisation detection 

(APCI), GC-MS-MS, LOD of (<1ng/L /ppt levels), LC-ESI-MS-MS (LOD at 

pg/L) and APCI-MS (LOD at µg/L or 1 ppb).  LC –diode array detection 

(LC/DAD) method has a detection limit of 10-20 ng/L (Jeannot et al., 2002). 

 

Steroidal estrogens, such as Estradiol and ethinylestradiol, have high estrogenic 

potencies these compounds require them to be determined at very low 

concentrations levels, for Estradiol and ethinylestradiol in the range of 1-10 

ng/L, 0.1-1ng/L and 10-1000ng/L respectively.  For xeno-estrogen like 

bisphenol A, which is much less potent, concentration levels required to be 

analysed are expected to lie in the range of 10-1000 µg/L.  For 

chromatographic and ionisation spectrographic techniques to detect EDC at 

these concentration they often require a sample extraction step for pre-

concentration and/or clean up step for environmental samples prior to detection 

as natural organic matter in concentrated extract can interfere with analysis and 

clog up columns.  The most common extraction techniques are liquid-liquid 

extraction, solid phase extraction, solid phase micro extraction, pressurisation 

liquid extraction, soxhlet extraction and super critical fluid extraction steam 

distillation (Jeannot et al., 2002) a full and comprehensive review has been 

published by (Hennion, 1999). 
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1.3.3 Biochemical Based Analytical Techniques 

 

1.3.3.a Immunoassay and immunosensor techniques 

 

Immunoassays are well-established techniques for trace analytes in clinical, 

environmental and food applications; they are simple and fairly rapid analysis 

schemes.  Combined with low cost equipment, immunoassay have developed 

into a strong alternative to more costly laboratory based analytical instruments 

such as chromatography and spectrometry (Piehler et al., 1997).  This is 

because, immunoassays do not require expensive equipment for extraction or a 

derivative compound step and have been shown to give an excellent degree of 

correlation with GC-MS for analysis of steroid compounds in complex matrix 

like urine (Klug et al., 1994).  Immunoassay capitalises on the high affinity 

binding of the antigen to the binding sites of a specific antibody.  The high 

affinity of the antibody to the antigen can be up to 10
-10

M that can lead to 

detection levels in the sub-ppb range.  The potential of raising antibodies to a 

plethora of analytes is becoming a reality and therefore the scope of analytes 

that can be detected is vast.  There have been many good review detailing the 

use and future applications for immunoassay by (Bilitewski, 1998; Kricka, 

1994; Hage, 1993).  The use of immunoassays for the detection of steroidal 

compounds is well established and has been in use in the clinical domain for 

over thirty years (Sherry et al., 1999; Hage, 1993).   Initially radio-

immunoassays were used and standard protocols were established. However, 

due to increase concerned over the use of radioisotopes labels alternative 

immunoassay schemes have been developed.  It can be said that although RIA 

assays are still in use, EIA are rapidly replacing the original radioisotope label 

protocols. 

 

Immunoassays are currently dominating the field of estrogen analysis for 

clinical application where estrogens levels in serum are routinely measured in 

patients (Giese, 2003; IBL, 2003). Enzymes linked immunoassays (ELISA) 

have been established and validated for the use of steroidal hormones in 

clinical laboratory.  Commercially available ELISA test kits have been used 

and assessed for Estradiol concentration in drinking water samples on waste 

water samples (Riedel-de Haën, 2003; Pan Vera, 1996).    Recently Huang and 

Sedlak, (2001) reported on using a commercial Estradiol ELISA kit for the 

determination of hormones in wastewater.  Their results showed good 

correlation to GC-MS results with the ELISA assay displaying a higher 

sensitivity to low concentration than GC-MS (Huang et al., 2001).  

Immunoassay methodology and formats have been well documented elsewhere 

(Baskeyfield, 2004).  These techniques (e.g. ELISA) are able to detect 

concentration as low as 0.01µg/L, with little to no sample pre-treatment (IBL, 

2003; Mouvet et al., 1996).  However, a typical test format takes between 1-3 
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hours including several incubation, separation and washing steps often 

requiring several complex reagents and buffers (e.g. enzyme or chromagen 

labelling biological components and substrates).  This make the immunoassay 

time and labour intensive, impracticable and difficult to automate for online 

monitoring and in-situ field testing (Coille et al., 2002).  Ideally for an 

immunoassay to be applied to sample screening and in-situ monitoring, it 

would be highly advantageous to simplify the immunoassay procedure into a 

sensing system that could respond rapidly and operate continuously or pseudo-

continuously.  These systems that can offer this type of platform are referred to 

as biosensors. 

 

1.3.4 Biosensors 

 

During the last three decades of the twentieth century the development of novel 

analytical and monitoring technique has focused on three levels (1) fast, 

sensitive and specific devices that can be used and exploited out side a 

laboratory environment (e.g. bio indicators or immunoassays); (2) Advance 

sophisticated reliable analytical technique that can provide exact identification 

and quantification with high accuracy at trace levels. (i.e. GC-MS/FID/NP, 

HPLC-MS/UV/FD/MS etc.) And (3) Devices intended to combine the 

sensitive, flexibility and reliability of the above-mentioned techniques (e.g. 

Biosensors). 

 

Due to the many different approaches achieved by different research groups the 

configurations and terms for a biosensor can vary greatly.  It was Professor 

L.C. Clark et al in 1956 that first introduced the concept of a biosensor.  The 

Clark oxygen electrode paved the way for many thousand of publication on 

biosensors and the successful multi-million commercial industry of the glucose 

biosensor (Newman et al., 2002).  A generalised schematic diagram of a 

biosensor is shown in Figure 1.3. 

 

The basic principle of a biosensor is to convert a biologically induced 

recognition event into a usable signal.  In order to achieve this, a transducer is 

used to convert the (bio) chemical signal into an electronic one, which can be 

processed in some way, usually by a microprocessor.  Recently IUPAC 

committee proposed a very stringent definition of a biosensor that reserves the 

term to be used in its modern context (Scheller et al., 2001; Turner, 1996) 

where the biological or biologically derived sensing element can be an anti-

body, enzyme, receptor, cell, etc., while an appropriate transducer can either be 

optical, electrochemical, piezoelectric, etc (Turner, 1996; Alvarez-Icaza et al., 

1993). 
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Figure 1.3: Schematic design of basic components of a biosensor.  The sensing surface is 

often converted to a bio-specific affinity-capturing site by the immobilisation of affinity ligands 

to the surface (B). Once a sample containing the appropriate analyte (A) is introduced to the 

surface an affinity interaction creates a signal (C) that can be monitored by the sensor module 

and converted into a quantifiable signal (E).  The amplification and read out is often a micro-

processing device that is able to translate the sensors data into a manageable format (F).  The 

separate elements can often be integrated. 

 

 

IUPAC Biosensor definition: 

"A biosensor is a self contained integrated device which is capable of 

providing specific quantitative or semi-quantitative analytical information 

using a biological recognition element (biochemical receptor) which is in 

direct spatial contact with a transducer element.  A biosensor should be clearly 

distinguished from a bio-analytical system that requires additional processing 

steps, such as reagent addition.  Further more, a biosensor should be 

distinguished from a bio-probe which is either disposable after one 

measurement, i.e. single use, or unable to continuously monitor the analyte 

concentration." 

(Scheller et al., 2001) 

 

 

Biological 
component 

Sensor 
Component 

Signal 

Transducer 

Converted quantifiable signal 

Amplification and control unit 

A 

B 

D 

C 

F 

E 



 

36 

Ideally a biosensor should respond directly, selectively and continuously in the 

presence of target analytes when in contact with untreated collected samples.  

The sensor should also be able to work continuously with be able to regenerate 

its sensing surface to provide on-site, real or near real time accurate 

measurements. 

 

In reality most biosensor only meets a proportion of the properties for example 

• They use a secondary signal property ether a dye or enzymatic label for 

detection of primary recognition 

• Sensing surface unable to be fully reversible and therefore limited to 

signal use (i.e. disposable). 

• Compactness of sensor or miniaturisation difficult to achieve due to 

components and configuration to be used on-site. 

 

Biosensors that exploit the bio-recognition of stoichiometric binding events of 

antibodies or biologically derived receptors are classified as affinity sensors.  

An appropriate transducer then detects the associated physiochemical changes.  

Affinity sensors are also but not inclusively known as immunosensors.  

Immunosensors are based on the fundamental transference of solid phase plate 

immunoassay onto transducer platforms (Hock et al., 1998).  The affinity 

binding events are subtle and discrete and often require a sensitive transducer 

to translate these effects (Mallat et al., 2001).  Contaminates found in the 

environment are often small in molecular size, therefore making the detection 

of direct binding events difficult.  Thus, many devices employ the use of a 

secondary antibody, enzymes or chemical label or an electrochemical active 

substance to amplify the signal..  The sensitivity and configuration of an 

immunosensor depends on the transducer.  There are many traducer platform in 

which immunoassay have been apply too (See table 1.6).  Transducer 

applications for biosensors have been reviewed by (Luppa et al., 2001; Sethi, 

1994). 
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Table 1.6: Examples of Transducers used in Biosensor Construction 

Transducer Examples 

Optical 
Photodiodes; Wave guide Systems; Integrated Optical 

Devices, Surface Plasmon Resonance, reflectrometery 

Mass Quartz Crystals; Surface Acoustic Wave (SAW) Devices 

Electrochemical 

Clark Electrode; Mediated Electrodes; Ion-Selective 

Electrodes (ISEs); Field-Effect Transistor based Devices; 

Light Addressable Potentiometer Sensors (LAPS) 

Thermal Thermistor; Thermopile 

 

As mentioned before with the advancement of antibody production and protein 

engineering techniques the scope of producing antibodies and receptors for 

pollutants of environmental concern is almost unlimited (Marco et al., 1996). 

 

1.3.5  Immunosensors and bio-analyser systems for EDC 

 

Immunosensors can be classified by their transducer mechanism.  With the 

exception of the thermal transducers, examples for detecting micro-pollutants 

(i.e. there molecular weight <300) EDC in environmental samples can be found 

for all transducers and has recently been reviewed by (Mallat et al., 2001).  

The commonly used biosensors for detection of environmental micro pollutants 

are the optical based sensors.  There are several optical transducer 

arrangements that have been utilised in biosensors.  Many of them are 

evanescent field devices relying either on label-free sensing or the use of labels 

for their detection method (Klotz et al., 1998).  

 

Coille and Reder et al (2002) describe two fluorescence optical immunoassay 

methods for the detection of estrogenic endocrine disrupting chemicals in 

water.  The first is a total internal reflection fluorescent device (TIRF) 

developed by the University of Tübingen.  The instrument, called the RIANA 

(River analyser) has only recently been released (i.e. 2003) as a prototype for 

commercial evaluation.  A description and set-up of this technique has been 

well-documented and described elsewhere (Coille et al., 2002; Mallat et al., 

2001; Brecht et al., 1997).  The working range of the device for steroidal EDCs 

was 70-760ng/L.  The second method described is a homogenous assay known 

as a energy transfer immunoassay (ETIA), again methodology and format has 

also been well described elsewhere (Coille et al., 2002).  The working range 

for this test method was 10-850ng/L.  These working ranges were achieved 
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without pre-concentration of the sample.  Synthetic wastewater samples were 

tested with no pre concentration step and only sample degassing preparation.  

Their recovery rate was between 70-112% for TIRF and 74-110% for ETIA.  

Both these test system accuracy range fell well into the acceptable range 

according to the Association of Official Analytical Chemistry (AOAC). 

 

Carter, Blake et al 2003 described a near real time fluorescence optical 

biosensor for the detection of 2.4 Dinitrophenol (24-DNP). The KinExA TM 

immunoassay instrument is by Sapidyne Instruments (Boise, USA).  The 

methodology is well explained in the publication (Carter et al., 2003).  The 

assay had a low detection level for 2, 4DNP at 5ng/L. 

 

Direct optical transducer methods that require no labelling are by far the more 

attractive platform for immuno-sensing.  They not only allow simple assay 

procedures to be performed but also can detect and quantify the binding 

reaction often in real time.  There are many configurations of direct optical 

sensors that have been used for detecting synthetic EDC in most cases for 

chlorinated pesticides such as surface plasmon resonance (Usami et al., 2002; 

Shimonmura et al., 2001), grating couplers (Mouvet et al., 1996), Mach-Zender 

interferometers (Drapp et al., 1997),  directional couplers , reflectance 

interferometer florescence spectroscopy (RIFS) (Piehler et al., 1997) and 

resonant mirror (Goodard et al., 1999) have all been reported in the literature.  

A review of many of the label free optical immunosensors have been reviewed 

by (Brecht et al., 1997). 

 

Judging by the number of papers published on the detection of endocrine 

hormones the preferred optical method is by far surface plasmon resonance 

based bio-sensing (Luppa et al., 2001).  Biacore produced the first and most 

successful commercial laboratory based SPR biosensor platform and is one of 

the most developed analytical instruments for bio-molecular interactions.  

There are several commercially available SPR instruments; the simplicity, 

rapidness and direct nature of SPR with these commercial instruments have led 

the way to the technology to mature beyond the realm of pure research into 

routine bio-molecular interaction analysis.  A good review of commercial SPR 

instruments has recently been reviewed by (Mullet et al., 2000) and 

informative web site detailing instrumentation, protocols and manufactures can 

be found at http://home.hccnet.nl/ja.marquart/index.html. 
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1.4 Surface plasmon resonance  

 

Optical detection methods are associated with being one of the oldest and well-

established techniques for sensing bio-molecular interactions.  Optical 

transducers based on surface plasmon resonance are extremely sensitive to 

minute changes in refractive index that occur within 100nm of the surface of 

the transducer.  Over the past ten years considerable advancement has been 

achieved in the research and development of direct optical detection methods 

using affinity or immunoassay based sensing.  Surface plasmon resonance 

based optical biosensor is the most versatile and widely used transducer based 

optical system.  As the technique is highly sensitive to the mass of the 

molecule associated on the sensing layer, no labelling is required which vastly 

simplifies the experimentation use of the instrument.  The ability to monitor 

and measure molecular interactions as they occur in real time, provide the 

opportunity to determine kinetic rate constants and binding affinities as they 

occur. 

 

1.4.1 Overview of surface plasmon resonance 

 

Surface plasmon resonance is a optical quantum phenomenon that occurs when 

an evanescent electromagnetic field is generated at the interface of the metallic 

sensor surface and a non conducting dielectric medium (i.e. aqueous sample) 

when excited by an incident beam of light at an appropriate wavelength and at 

an angle just beyond the critical angle (θc) of total internal reflection (see 

figure 1.4). 

 

 

 

 

 

 

Figure 1.4:  Schematic diagram of SPR principle.  Light is directed through a prism of high 

RI into a surface layer with low RI (sample). At a particular angle Total internal refection of 

the impinging light occurs.  Although the light does not enter into the sample medium the 

intensity at the interfacial boundary is not equal to zero.  The photon energy from the light is 

transferred to the metal electrons causing them to oscillate and produce surface bound 

plasmons.  This produces an exponential evanescent wave that penetrate a defined distance 

(approx. 100 nm) into the low index medium resulting in a characterise decrease in reflected 

light intensity. 
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The evanescent wave produced by the incident beam of light penetrates a short 

distance into the metallic sensing surface (i.e. usually gold or silver) where the 

electrons are in turn excited and transformed into what is known as surface 

bound plasmons.  The coupling of the light “photon” energy into the electrons 

only occurs at specific wavelengths, at this point the light energy is transferred 

to the “free” plasmon electrons which have a particular resonance that is 

different from that of the bulk of the metal film (Liedberg et al., 1995; Löfas et 

al., 1991).  This coupling leads to a decrease in the amount of reflected light.  

If the light intensity is plotted against the angle of incident, a characteristic 

SPR dip can be seen (see figure 1.5).  The angle of incidence that occurs at this 

point is known as the surface resonance angle (θSPR), which is dependent on the 

local refractive index (Chinowsky et al., 1999).  

 

The refractive index is directly proportional to any material (e.g. layer 

thickness) bound to the metal surface or roughness.  The absorption of energy 

by the surface plasmons (i.e. excited electrons) induces a decrease in energy of 

the reflected beam and thus creates a reflectance minimum.  This means that 

within the area of the evanescent field chemical or physical interaction leads to 

a direct effect on the SPR angle.  This causes an alteration in the position of the 

plasmon angle and therefore a change in the angle at which SPR occurs. 

 

 

 

 

Figure 1.5:  Diagram showing a SPR dip curve.  The angle that the minimum reflectance 

occurs is known as the SPR minimum.  The angle where the light energy is able to excite the 

surface bound electrons into excited plasmons is known as the surface plasmon coupling angle. 

Where this occurs no light energy is reflected back causing a reflectance minimum.  
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It is this angle change that is used as the basis of SPR detection devices such as 

Biacore® and TI Spreeta™ Systems.  Because SPR is adsorbed mass sensitive 

it can be used to detect bio-molecular interactions at the sensing surface 

interface without the use of labels and subsequent reagents.  Surface plasmon 

resonance applications has been reviewed extensively over the last ten years 

and more recently by (Baird et al., 2001; Mullet et al., 2000; Homola et al., 

1999; Kambhampati et al., 1999). 

 

 

1.4.2 Surface Plasmon Resonance and EDC Detection 

 

Surface plasmon resonance has been utilized not only for concentration 

measurements of EDC in aqueous samples but also for estrogenic effects 

screening assays (i.e. by utilizing appropriate receptors as the biological 

component).  Unlike traditional receptor-ligand assay systems, which rely on 

displacement of a radio labelled marker the SPR method allows real-time direct 

monitoring and additional information on kinetic affinity and dissociation 

between potential EDC and the responsive receptor.  Table 1.7 lists a selection 

of recent publication based on the detection of EDC using surface plasmon 

resonance. 

 

Table 1.7:  SPR technique used for EDC detection selected references. 

Biological component EDC References 

Monoclonal and Polyclonal 

antibodies 

 

Dioxin (2,3,7,8,TCDD), PCB, 

Atrazine Estrone-3- 

gulcuronide, PAH 

(Pearson et al., 2001; 

Sesay et al., 2001; 

Shimonmura et al., 

2001; Hock et al., 

1998; Tran et al., 

1996) 

Human Estrogens receptor 

 

Estradiol, DES, Methoxyclor 

Estrone, Estradiol, estriol, 

tamoxifen, dithylstilbestrol, 

bisphenol A, 4-Nonylphenol, 

progesterone and testosterone 

(Usami et al., 2002; 

Pearson et al., 2001) 

(Hock et al., 2002) 

 

 

 

 

 

 



 

42 

1.4.3 Portable/Remote Bio-sensing 

 

Biosensors are ideal analytical devices that are well suited for integrating into 

portable systems for use in the field or point of care.  There are many examples 

of miniaturisation and integrated SPR biosensors prototypes that have been 

designed to be compatible for use out side of the laboratory (Huang et al., 

2001; Mallat et al., 2001; Harris et al., 1999; Melendez et al., 1999; Hock et 

al., 1998; Brecht et al., 1997; Drapp et al., 1997; Melendez et al., 1997; Luff et 

al., 1996; Melendez et al., 1996; Mouvet et al., 1996; Tran et al., 1996).  Texas 

Instrument has developed a miniaturised sensor that lends itself to field 

application (Elkind et al., 1999; Melendez et al., 1997; Melendez et al., 1996).  

With the increased concern and legislation for monitoring environmental 

pollution the need for a rugged, simple biosensor that can be used remotely or 

in the field for the detection of environmental pollutants such as EDC is 

apparent.  To date there are no real examples of SPR devices completely 

adaptable for use in the field.  However, the University of Tübingen are 

currently developing an automated water analyser computer supported system 

(AWACSS) that will in all probability be the first automated online 

environmental water monitoring immunosensor.  Although the detection 

system does not use SPR optical technique but another optical evanescent wave 

based technique based on TIRF, it will nevertheless help to enhance other 

automated optical systems to reach its level of refinement. 

 

1.4.4 Regenerating and Reversible affinity sensors 

 

The issue of surface regeneration of the bioactive sensing layer of a biosensor 

is an important one especially if the sensor is to be used continuously and or in-

situ to its sample source.  Antibody-Antigen complexes are highly stable and 

often require stringent buffer conditions to disrupt the binding.  These reagents 

are often chaotropic agents, extremes ionic strength and pH, detergents, 

solvents and chelating agents (Andersson et al., 1999).  These are often very 

similar to the common reagents used in dissociation phase in affinity 

chromatography procedures.  The problem with these approaches is that the 

strong conditions can and often affects the receptor biological component 

reducing the binding affinity complex.  There has been a concerted effort to 

address regeneration techniques. In a survey of 96 publications, Andersson et 

al. (1999) details a range of regeneration buffers for biosensor renewal.  The 

author concluded that by addressing the nature of the sensing surface best 

solved the problem of surface regeneration, rather than the type or reagent 

used.  Therefore, an ideal scenario would be to develop a sensor that has a 

biological surface that was able to reversibly bind to its affinity partner via a 

non-evasive regeneration step.   
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Kagner, Pogreb et al. (1999) Published a paper demonstrating a buffer-less 

regenerating surface plasmon resonance biosensor for 2,4, DNP.  By 

immobilizing a photochromic dye (dinitospiropyran) as the antigen partner on 

the SPR gold surface they found that anti-DNP would bind to the surface.  

Dintrospiropyran is a photoisomerizable compound that exists in two very 

different forms when illuminated at different wavelength.  After the completion 

of a sensing event the surface was illuminated at an appropriate wavelength, 

the bound anti body had little to no affinity to the isomerised antigen from that 

the antibody was able to be washed away with the buffer flow to from a 

regenerated surface (Willner et al., 2001; Kagner et al., 1999).  This paper 

demonstrated true non-evasive regeneration of an immunoassay on a bio 

sensing system. 

 

1.5 Conclusion 

 

In conclusion, the increase in incidence of hormone dependent diseases (e.g. 

beast cancer, testicular cancer and prostrate cancer) has intensified public 

concern of possible exposure to endocrine disrupting chemicals in our 

environment especially in the aquatic environment.  It has been observed that 

EDCs in particularly estrogenic exogenous hormones and hormone mimics are 

present in minute quantities in waste waters and surface water and have seen to 

have feminising effects on aquatic wildlife. The possible environmental burden 

they pose to humans has created a need to develop new analytical devices and 

techniques that are able to monitor these pollutants in environmental samples 

and at source.  To date several techniques exist for measuring estrogenic 

compound for clinical and pharmacological purposes.  Monitoring and 

measuring estrogenic compounds in environmental samples is a relatively a 

new area and one that currently needs to be evaluated, validated and 

standardised.  The development of new analytical techniques especially for the 

detection EDC at waste water treatment works and sewage treatment works 

would be advantageous as it would enable them characterise, monitor and 

reduce the level of these compounds they release in their effluents. 
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1.6 Aims and Objectives 

 

The broad aim of this project was to develop a portable, field based surface 

plasmon resonance immunoassay device.  The device was to be used primarily 

to detect estrogenic endocrine disrupting chemicals in wastewater and surface 

water samples.  The requisite for the portable surface plasmon resonance 

sensor was so that the device can be implemented near to or at a wastewater 

treatment plant. 

 

The approach taken in this research work was therefore, to design a portable 

device around the miniaturised Texas Instrument surface plasmon resonance 

sensor (Spreeta ™).  The prevalent characteristics of this sensing system and 

assay methodology was to achieve a simple immobilisation protocol for the 

biological sensitive surface, employ an inhibition based immunoassay for the 

detection of endocrine disrupting chemicals and be able to regenerate the 

sensor for further use.  Sensor regeneration is an important area of this research 

and a study of sensor surface regeneration for remote immunoassay detection 

was investigated.  To this aim a number of key areas and objectives were to be 

examined: 

 

1.6.1 Construction and Characterisation of a SPR Analyser 

(Chapter 2) 

 

The main aim of the work reported in this chapter was to construct and 

characterise a portable SPR sensor device for the detection of a model steroidal 

estrogen (Estrone-3-Gulcuronide).  A range of immobilisation techniques and 

regeneration buffers was explored to develop an immunoassay protocol that 

would be used with the sensing platform. 

 

1.6.2 Refinement, Development and Optimisation of an 

EDC Immuno Analyser (Chapter 3) 

 

The aim of the work reported in this chapter was to refine and optimise the 

immunoassay protocol for the detection of estrogens.  Optimisation and 

validation of the potable analyser was to be determined by developing an 

ELISA plate assay for Estradiol.  The system was then to be tested using 

spiked samples in synthetic and real wastewater.  It was intended in this 

chapter to determine the sensitivity and working range of the portable device 
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compared to the developed ELISA plate assay, a commercial ELISA plate 

immunoassay and the Biacore ™ platform. 

 

1.6.3 Photo-modulation of Bio-active Proteins for sensor 

regeneration applications (chapter 4) 

 

Within this chapter the photo-modulation of bioactive proteins conjugated to a 

spiropyran dye was examined.  To this objective, the dye was synthesised and 

characterised before being conjugated on to the protein.  Two bioactive protein 

systems (i.e. enzyme and antibody) were investigated.  It was anticipated that 

photo-modulation of these proteins could be achieved by attaching the dye to 

the proteins and hence change their normal active function.  This being so, the 

dye modified proteins were then applied to immunoassay systems for the 

application of a remote regeneration format. 

. 
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2 Construction and characterisation 

of a SPR analyser 
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Chapter 2 
 

Construction and 

characterisation of a SPR 

analyser 

 
2.1 Introduction 

 

Environmental monitoring for the detection of pollutants is an increasingly 

important issue for regulatory and legislation agencies, regulated industries and 

the general public.  This also holds particularly true for compounds like EDCs 

that pose a potential health risk to humans and wildlife in the natural 

environment.  The current high cost and slow turnaround period associated 

with the measurement of regulated pollutants, clearly indicates the need for 

environmental screening and monitoring methods that are fast, portable and 

cost effective.  Biosensors, especially those based on optical sensing (e.g. SPR) 

are ideally suited for this specific application niche.  Increased legislation and 

quality assurance for environmental control has meant that in-situ analysis for 

medical, environmental, food safety, bioprocesses and for military use (i.e. 

detection of biological warfare agents and explosives) have increased the 

demand in this area for an adaptable, inexpensive, robust and field deployable 

analyser. 
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2.1.1 Development of the miniaturised sensor 

 

There are a number of commercially available SPR instruments designed for 

real-time affinity-binding studies (e.g. Biacore®, Biacore AB Uppsala, 

Sweden; Iasy®, Affinity Sensors, Cambridge, UK; IBIS iSPR, IBIS 

Technologies BV, BE Hengelo, Netherlands; Plamonic, Jandratek GmbH, 

Ellenfels, Gemany; etc).  These instruments vary in sensitivity, function and 

cost.  Recent reviews compare the key features of these commercial 

instruments and gives a general background on SPR sensing (Leonard et al., 

2003; Baird et al., 2001; Homola et al., 1999).  It would be true to say that bio-

sensing of bio-molecular interaction using SPR technique has now become an 

established routine procedure with a vast amount of publications detailing 

methodologies and procedures for analyte detection (Rogers, 2000).  However, 

many of these commercial instruments are bench top equipment not suited for 

field applications. 

 

Texas Instruments launched the first miniature SPR sensor in 1996.  In 

development since 1995, the sensor then called TISPR-1 was and still is the 

first integrated optical sensor that has reached commercialisation.  No bigger 

than a matchbox, it was initially hand made and was available as a single 

evaluation module sensor with the gold surface pre-evaporated on it.  In 1999, 

Texas Instrument introduced to the market a fully manufactured sensor in 

which they distributed in units of 50 and renamed to Spreeta ™ SPR sensor.  

This new sensor has made way for the real possibility of being adapted into a 

small portable analyser with considerable advantages, as it is robust with no 

moving parts and inexpensive.  Texas instruments will launch a new multi- 

channel Spreeta ™ sensor (i.e. 3 or 5 channels) in 2004 [John Wisehart, 

Normadic, Ohio, USA; personnel communication].  

 

2.1.2 Previous Work Using the TI-SPR and Spreeta 
TM

 

sensor 

 

The Texas miniature SPR sensor has been in development for over eight years.  

Over the course of this research project a total of 15 papers using the sensor as 

a biosensor have been published.  There are ten papers that describe 

experiments performed on the sensor and three papers that have reviewed the 

technology.  Kukanskis et al. used the sensor for the detection of DNA 

hybridisations and although they where unable to quantify their end product 

they presented useful data and information of the sensors limitation (Kukanskis 

et al., 1999).  This work was instrumental in the improvements of the system in 

terms of baseline noise stability. 
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Four recent papers have used the sensor and presented quantitative detection of 

analytes of environmental interest using an antibody-antigen immunoassay.  

The first, describes the sensor being used for food allergen detection and 

demonstrated that peanut allergen could be directly measured down to a 

detection limit of 0.7µg/ml (Mohammed et al., 2001).  The second paper 

reported on the detection of Staphylococcus aureus enterotoxin B (SEB), as a 

model system for the detection of biological warfare agents.  The results were 

performed on a duel channel sensor and was able to directly detect the toxin 

down to femtomolar (fM) levels in buffer, milk and urine samples (Naimushin 

et al., 2002).  In the third paper the Spreeta ™ sensor is compared to a 

miniature quartz crystals microbalance sensor for the detection of Escherichia 

coli heat-labile enterotoxin.  By using a direct immunoassay detection method 

they were able to measure E.coli enterotoxin with a lower detection limit of 

70pmol of the toxin.  The authors conclude that in their opinion the sensor was 

well suited to remote sensing for flow through systems provided that suitable 

enclosures were provided (Mohammed et al., 2001; Spangler et al., 2001).  The 

last paper described the detection of trinitrotoluene (TNT) in environmental 

soil samples.  Unlike the other publication it describes an inhibition 

immunoassay where the antibody is pre-incubated with the sample.  In a blind 

study using 180 spiked soil samples in three different soil matrixes it was 

reported that the assay sensitivity had a lower detection limit of 1ppm TNT 

with no false negatives(Strong et al., 1999). 

 

In all of these papers published, surface immobilisation of the bio-active 

sensing layer and sensor surface regeneration was an important issue as assay 

development and procedures are restricted by the unique design of the sensor. 
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2.2 Aims and Objectives 

 

The aim of the work presented in this chapter was to install and characterise the 

Texas Instrument miniature SPR sensor with the intention of converting the 

sensor into a portable field analyser.  The objective of the study was to be able 

to use the portable SPR analyser for the detection of endocrine disrupting 

chemicals in waste and surface waters.  A monoclonal antibody against 

Estrone-3-Glucuronide (E13G) was to be used as a model immunoassay 

antibody system for the detection of estrogenic compounds and hormone 

mimicking compounds.  To this end the development of an effective fluid 

handling system for applying samples to the sensor and the improvement of the 

systems signal and noise ratio to enhance the measurement sensitivity was 

paramount.  The initial development of an in-situ detection assay to be used on 

the analyser was sort after with a study of different methods for preparing the 

biological sensing surface and an appropriate regeneration protocol was also to 

be established.  The regeneration of the sensors sensing surface was considered 

an important feature in the study as the portable analyser was primarily aimed 

to be used in the field. 
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2.3 Equipment 

 

2.3.1 Surface Plasmon Resonance instruments 

 

The Texas Instrument Spreeta™ SPR sensor used in this research was 

purchased from Normadic Ltd. (Stillwater, Oklahoma, USA).  The Biacore 

system used was the Biacore® 3000, Biacore® installed all software. The 

sensing chips used in this study were the J1 plain gold chips. All consumable 

materials used were purchased directly from Biacore® (Stevenage, Herts., 

UK).   

 

2.3.2 Static contact-angle measurement 

 

Contact angle measurements (Sessile drop method) were used to characterise 

the hydropbobicity / hydrophilicity of the sensing surfaces produced under 

various experiment conditions.  Images of individual drops were captured 

using a CCD camera (Spectral Source, California, USA) with a F1.4 lens.  The 

CCD camera is powered and controlled via a PC interface board and the 

software allowed image acquisition and processing to occur.  To calculate the 

relevant drop dimensions in pixels the images were viewed in Adobe 

Photoshop  LE.  Contact angles were taken from 1µl drops of water. 

 

The measurements were performed in a transparent environmental chamber; 

this was in order to maintain a humid saturated atmosphere to prevent drop 

evaporation.  The 1µl drop of water was delivered on to the surface using a 

Hamilton syringe.  The needle was held in place by a laboratory stand and the 

drop was held on the needle.  The prepared surface was raised until the drop 

was transferred to the sample surface and then lowered; the resultant water 

drop image was taken.  A typical contact angle image is show in Figure 2.1.  

For each surface, six drops were prepared and measured to give a mean contact 

angle and standard deviations were calculated. 
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Figure 2.1(a+b): An example and schematic representation of a contact angle measurement: 

a) CCD image showing a typical drop of water (1µl) deposited on to a gold surface.  b) 

Schematic representation showing parameters used to calculate the contact angle. Drop 

dimensions were calculated using image analysis software.  Calculations were performed 

according to the mathematical method as described in the main text. 

 

 

 

 

 

 

 

 

 

 

 

The formula in equation (1) was used to obtain drop radius, R.  Equation (2) 

and (3) gives the calculations required for obtaining the contact angle θc and 

φ angle for the measured drop.  Where h is the drop height and w is width of 

drop at the contact area with the surface (Gillespie, 2001). 
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2.3.3 Atomic Force Microscopy 

 

2.3.3.a General Theory 

 

Unlike traditional microscopes, scanning-probe systems like the Atomic Force 

microscope, does not use lenses.  The AFM utilises a sharp probe that moves 

over the surface of a sample in a raster scan.  Therefore, the size of the probe 

rather than diffraction limits their resolution (Albrecht et al., 1991).  AFM 

operates by measuring attractive or repulsive forces between the tip and the 

sample (Binnig et al., 1986).  The probe is a tip on the end of a cantilever, 

which bends in response to the force between the tip and the sample.  The 

AFM utilizes an optical lever technique.  

 

 

Figure 2.2: Schematic representation of the atomic force microscope.  The AFM instrument 

consists of a cantilever tip, that depending on the method of scanning is either dragged 

(contact), tapped (tapping) or simply skimmed over the surface (non contact, depending on 

sample surface and tip attraction forces to each other.).  A laser beam illuminates the 

cantilever and is then reflected back onto a split photodiode that is able to discriminate the 

vertical flex position due to the sample surface roughness.  The feed back loop maintains a pre-

defined set point of the tip in relation to the scanned surface. 

 

The diagram in figure 2.2 illustrates how this works; as the cantilever flexes, 

the light from the laser is reflected onto a split photo-diode.  By measuring the 

difference in signal between the two different split sides of the diode, changes 

in the bending of the cantilever can be measured.  Since the cantilever obeys 

Hooke's Law for small displacements, the interaction force between the tip and 

the sample can be found.  The movement of the tip or sample is performed by 
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Feedback 
Loop 
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an extremely precise positioning device made from piezo-electric ceramics, 

most often in the form of a tube scanner.  The scanner is capable of sub-

angstrom resolution in x-, y- and z-directions. The z-axis is conventionally 

perpendicular to the tip-sample interaction (i.e. in a vertical plane to the sample 

substrate). 

 

The probe image contrast can be achieved in many ways. The three main 

classes of probe interaction are contact mode, tapping mode and non-contact 

mode.  Contact mode is the most common method of operation.  When 

scanning in contact mode the tip and sample remain in close contact.  One of 

the drawbacks of allowing the probe to remain in contact with the sample is 

that large lateral forces are placed on the sample as the tip is "dragged" over the 

sample.  In tapping mode the probe is periodically in contact with the surface. 

This method and non-contact mode is usually used when scanning more 

surface sensitive surfaces where applied lateral forces are kept to a minimum.  

In non-contact mode, the AFM derives topographic images from attractive 

force measurements between the tip and sample where the tip does not touch 

the sample at all. 

 

2.3.3.b AFM equipment and settings 

 

The AFM scans were performed using the PICOSPM� atomic force 

microscope (M-Scanner, Molecular Imaging, Phoenix, USA).  The microscope 

allows simultaneous imaging of the surface, topography, cantilever deflection, 

and friction (lateral force).  Surfaces were scanned using contact mode, silicon 

nitride probes (model CONT-16: Nanosesensor GMBH, Wetzlar-Blankenfeld, 

Germany), with a nominal spring constant C of 0.05N.M
-1

.  Scan rates of 1 Hz 

with a resolution of (10,000) scan lines per image at scan dimensions of 10 x 

10µm. 
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2.3.4 The Spreeta ™ sensor concept and design 

 

The Texas Instrument TSPR1XXX is a family of integrated optical analytical 

devices. They can operate in two modes (1) They can be used as a 

refractometer able to measure the refractive index (RI) of liquids in contact 

with its surface, or (2) as a biosensor: when the integral sensing surface is 

modified by a bioactive surface allowing biological / chemical binding events 

to occur at the sensing surface. 

 

The sensor incorporates all the electro- optical components required for an SPR 

instrument mounted and wired bonded onto a miniature  (400mm
2
) platform 

using normal semiconductor-based opto-electronic manufacturing techniques 

(Melendez et al., 1999).  These assembled components are encapsulated in a 

clear, optical epoxy resin (RI 1.52) using a cast moulding processes.  The 

epoxy encapsulation is moulded to form a Kretchmann geometry prism to 

facilitate the excitation and detection of surface plasmon resonance.  The resin 

moulding also provides all the necessary optical surfaces where no optical 

alignment is necessary and complete protection of internal electronic 

components.  The sidewall of the old hand made TSPR-1 sensor is coated with 

an opaque film to block out external light.  The Spreeta™ sensor is encased in 

black plastic (see figure 2.3). 

 

 

 

 

Figure 2.3: The Texas instrument miniaturised SPR sensors.  The sensor on the left shows 

the second-generation Spreeta ™ SPR sensor, it differs from the sensor on the right, which is 

the original hand made TISPR-1 sensor in that it is manufactured with a recessed gold sensing 

surface.  Each sensor weighs approx. 10g. 
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The sensor contains a near-infra red light-emitting diode (ALGaAa LED) with 

a wavelength of 840nm, the emitted light is collimated and polarised with a p-

polariser, and the LED is housed in a light absorbing material which includes 

silicon light to voltage chip that monitors the LED intensity variations.  The top 

of the housing has an aperture that allows light to enter the system.  A polariser 

is attached to the opening to allow only transverse magnetic radiation into the 

system as trans-magnetic radiation (TM) can excite surface plasmon.  The light 

emitted is incident on the gold sensing surface with a range of light incident 

angles (i.e. creating a fan of angles).  As the geometry of the prism is in a 

Kretchmann configuration the incident beam creates surface plasmons on the 

dielectric surface (see figure 2.4).  The emitted light beam is reflected off the 

gold surface onto the mirrored surface and is then directed onto the photodiode 

array.  Each pixel detects the light reflected for a particular angle of incidence.  

All these components including an internal thermistor are seated on a printed 

circuit board, which has 16 contact pins. The system electronics interface 

occurs through these contact pins laid out in two rows of 8 pins.  These contact 

pins provide an output from the array to a signal processor, which in turn 

quantifies the resonance conditions and sensor temperature to give the 

interrogated liquid sample's index of refraction.  The active sensing region is a 

strip approximately 1.5mm long by 0.1mm wide on the face of the sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4:  Schematic of internal structures of the Spreeta ™ sensor: The sensor 

incorporates an LED, p-Polariser, a thermistor and silicon photodiode array.  All of these 

components are mounted on a printed circuit board and are encapsulated in clear optical 

epoxy resin. The gold sensing surface has been thermally vacuum evaporate on the surface at a 

thickness of 50nm over a thin layer of chromium to aid adhesion to the surface.  The contact 

pin allows for connection to the control box for sensor operation. 

 

The Spreeta™ sensor unlike most SPR systems available has the gold sensing 

surface pre-evaporated on the sensor chip therefore, making it an integral part 
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of the system.  This means, when wanting to reuse the sensor it is vital that the 

gold sensing surface is clean and intact.  Alternatively, the gold surface could 

be removed and replaced by evaporating a new gold sensing surface.  With the 

TISPR-1 sensor a gold slide kit could be used by index matching pre-

evaporated gold glass cover slides to the sensor surface.  The second-

generation Spreeta™ sensor used in this report had a reset gold surface.  This 

meant that replacement of the gold surface was virtually impossible.  

Therefore, the issue of gold surface regeneration was paramount for the design, 

construction and application of an immuno-assay based field deployable 

analyser.  

 

The sensor is provided with dedicated software, a flow cell, connection leads 

and an 8-bit analogue to digital micro-control interface box.  The Spreeta ™ 

flow cell was secured on the sensor with a G clamp (please refer to figure 2.5) 

 

 

 

 

 

 

 

 

 

Figure 2.5:  Photographic illustration of the original Spreeta ™ G-clamp flow cell.  The flow 

cell is connected to the SPR sensor by using a G-Clamp.  The sensor is then connected to the 

control box via the connection lead. Fluid is introduced to the sensor surface via tubing of 

0.25mm diameter. 

 

2.3.4.a The constructed portable sensor analyser 

 

The experiments carried out in this chapter were using the Spreeta™ evaluation 

module kit manufactured by Texas Instruments Inc. (TI), distributed by 

Nomadics Inc (Stillwater, Oklahoma, U.S.A.).  The commercially available 

evaluation package consists of 50 miniature SPR sensors, and associated 

peripherals.  The Spreeta™ sensor was integrated into a self-contained analyser 

(please refer to results section 2.6.1).  The analyser comprised of a steal 

housing (RS Components, Corby, UK) containing the Spreeta™ SPR device, 

flow cell, control electronics, manual sample loop injection valve and liquid 

switching valve and Teflon tubing: 1/16” with an inner diameter of 0.25mm 

(Ominfit, Cambridge, UK) and reagents reservoir bottles (BDH, Poole, UK).  
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Reagents and buffers were initially pulled through the flow cell using an 

external peristaltic pump Miniplus 3, Gilson (Anachem Ltd, Luton, U.K.). 

 

2.3.4.b Spreeta™ Software Set up 

 

The Spreeta ™ SPR_MINI.EXE software is a window application written in 

Visual basic.  Several software parameters were set for the experiment 

presented to ensure compact data files and low system noise.  These setting 

were: 

 

• The number of automated measurements was set to 20 therefore the 

SPR data output over 20 recorded data events value (angle and pixel 

number) was averaged to make one point. 

• The minimal monitoring interval time required to drive the sensor and 

analyse the result was set to 0.25 (i.e.20 X 0.25 = 5 sec. per point). 

• Every other data point event was recorded (i.e. 10s between each saved 

data value). 

• The SPR curve was smoothed using the 13-point method option and 

temperature compensation was set. 

• Analysis methods were each assessed for their ability to monitor the 

SPR minimum shift and hence refractive index changes (See section 

2.7.1.1). 

 

2.3.4.c Spreeta™ sensor data collection and data analysis 

 

The automatically recorded data according to the parameters set above were 

viewed from the data table and transferred directly into Microsoft Excel 97 

spreadsheet.  The time verse refractive index or angle sensor-gram scans 

obtained were analysed manually to obtain changes in angle over time and 

relevant information on signal to noise data. 
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2.4 Materials  

 

All chemicals and bio-chemicals were of analytical grade and were obtained 

form Sigma-Aldrich (Pool, Dorset, UK) unless otherwise stated. 

 

2.4.1 Chemicals  

 

Albumin (chicken egg) [code: A5503] also known as Ovalbumin (OVA), 

Bovine serum albumin (BSA)[code: A7030], Phosphate buffered saline tablets 

(PBS) pH 7.4 [code: P4417], Phosphate buffered saline, pH 7.4, with Tween 20 

(PBST) [code: P3563], 2.[N-morpholino] ethanesulfonic acid (MES) Buffer pH 

6.7 [code: M0164], Triton X-100 [T9284], 1.Ethyl-3-(3-Dimethylaminopropyl) 

carbodiimide (EDAC) [code: E7750], N-hydroxysuccinimide (NHS) [code:H-

7377), Sucrose (ultra) [code: S-7903], Protein Assay kit [code: 690-A], and 3-

aminopropyltrimethoxysilane (APTS) [code: A3648, Glycine [code: G6761], 

hydrochloric acid [code: H1758], Triton X –100 [code: T 9284], Tween 20 

[code: P1379], Sodium dodecyl sulphate (SDS) [code: L 4509], and Sucrose 

[code: S7903], were obtained form Sigma-Aldrich (Pool, Dorset, UK).  Analar 

grade water [102927G], Sodium Hydroxide pearls (NaOH) [code: 307314P], 

Hydrogen chloride (HCL) [code: 101254 H, 99.5%] was obtained from BDH 

laboratory supplies (Poole, Dorset, UK), Persil biological liquid (Lever 

brothers, Port Sunlight,U.K). 

 

2.4.2 Antibodies, conjugates and analytes 

 

Monoclonal antibodies against Estrone-3-Gulcuronide (E13G: clone 4155), 

human gonadotrophin (HGC: clone 3299) and ovalbumin-E13G conjugate were 

a kind gift provided by Unilever Research Plc (Bedfordshire, U.K.).  

Antibodies were stored at concentrations of 100µg/ml and frozen in aliquots of 

200µl and 100µl.  Protein conjugate aliquots were stored in the fridge at 4°C.  

Calibration samples of Estrone 3 –(β-D-Gulcuronide) sodium salt [E1752] 

E13G (Sigma, Poole, UK) was prepared by dissolving 1 mg of E13G in 1ml of 

dimethlyformamide (DMF) and then making a stock solution at 1µg/ml with 

phosphate buffer saline pH 7.4 with 0.5% Tween 20 (PBST).  Calibration 

standards were prepared in 2 ml brown glass bottle at 4°C until used. 
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2.4.3 Buffers and reagents 

 

The following regeneration buffers were used to ascertain their effectiveness in 

the regeneration of the gold sensing surface of the sensor: 

Gycine (10 mM), SDS (1%) (wt/vol.) and HCl to give pH 2.7 

Sodium hydroxide (0.12N) and Triton X-100 (0.1%) (wt/vol.), pH 13 

Persil Biological (liquid form) (1%) (vol./vol.) 

Before use, the buffer was degassed by ultra sonicfication, equilibrated to room 

temperature and filtered with a 0.45 µm syringe filter (Fisher Scientific Ltd, 

Loughborough, Leicestershire, UK). 

 

2.4.4 Other Materials 

 

Microscope slides [code: 406/0180/02], Glass cover slips [code: 101254 H] 

obtained from Merck Chemicals Ltd. (Poole, Dorset, UK). 

 

2.5 Methods and Procedures 

 

2.5.1 Measuring refractive index using the Spreeta™ 

sensor 

 

The Spreeta ™ dedicated software package (version 4.2) was used during the 

course of the work described in this thesis.  The software enables the user to 

operate the sensor and make adjustments to the sensor settings.  The SPR dip 

required for determining the refractive index is resolved by the measurement of 

reflected light intensity on individual pixels on the photodiode array. 

 

Before a new sensor is used for measurements it needs to be first calibrated in 

air.  Commanding the air initialisation button carries this out.  Air initialisation 

takes the background reference values of the reflected light with and without 

the LED on.  Air initialisation varies the LED intensity and measures the light 

signal; this allows the photodiode integration times to be optimised by finding 

the maximum light signal without saturating the output (this can also be 

checked and set manually by looking at the raw data via the view button of the 

software).  



 

61 

 

The refractive index in air is very low and as the Spreeta ™ sensor has a 

dynamic refractive index range of 1.320 –1.368 (refractive index units: RIU at 

840nm), a SPR response in air is impossible and a flat baseline is seen (i.e. this 

should be approx.: 1.00 RIU as this corresponds to the value of the refractive 

index of air.  The refractive index of water is 1.33 RIU.  Therefore, by 

calibrating the sensor against the know refractive index of water, enables 

further refractive index values to be calculated.  This is performed by filling the 

flow cell with water and executing the “Calibrate with water” button which 

automatically sets the refractive index of 1.33 for water to the pixel number 

corresponding to the SPR dip obtained (See figure 2.6). 
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Figure 2.6:  Spreeta ™ resolved SPR dip: (A) shows the baseline SPR signal of the sensor in 

air and the ambient background light signal (this is taken with the LED turned off).  (B) Shows 

the baseline signal for the sample and again a background baseline is taken (i.e. LED is off). 

The water and air reference are subtracted from each other (C) and the SPR dip curve is 

realised (D).  (Measurements were performed on TI-SPR1 Sensor). 
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2.5.2 Analysis Method Parameters 

 

The Spreeta™ associated software has seven different analysis methods 

available in which the SPR dip sensor data analysis can be interpreted and 

monitored to give a typical SPR sensor-gram or refractive index co-ordinate 

information.  Once the SPR curve has been plotted, the position of the 

resonance must be determined in order to calculate the samples refractive 

index.  Under ideal circumstances the position of the SPR curve minimum 

determines the refractive index.  The software analysis methods allows 

flexibility in regards to data analysis as some of the methods determines the dip 

position and others extrapolate the position of the dip and follows the position 

of the SPR curve should it shift with time.  Five of these methods were 

investigated to determine the most appropriate method to be used for further 

work as each method has its strengths and weaknesses.   

 

Method 1: First moment of the SPR curve above or below a set baseline. 

This method requires the baseline to be set where the SPR curve gradient is at 

its greatest (i.e. 1
st 

derivative maximum); this is nominally around 80% of the 

measured reflectance.  The direction of the moment is calculated above or 

below the baseline (usually below).  A vertical line bisecting the horizontal 

baseline is determined to be the position of the first moment (see figure 2.7) 

 

Figure 2.7: Software picture showing the First moment Analysis method.  The blue 

horizontal line is set nominally where the SPR gradient is at its greatest.  A vertical line 

bisecting the SPR dip determines the lowest point of the SPR minimum. 

 

Method 2: The point of specific Reflectance /signal  

This method observes the pixel position where a particular reflectivity occurs 

nominally at 80% reflectance.  It doses this by searching for an approximate 
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point where the reflectance occurs.   Then it performs a 4
th

 order polynomial fit 

about the pixel point.  Using the fitting result the method interpolates the point 

where reflectivity occurs (please refer to figure 2.8). 

 

Figure 2.8: Software picture showing 4
th

 Order specific reflectance/signal analysis method.  
This method approximates the position of a specific reflectance (nominally at 80%) and then 

performs a 4
th

 order fit around the reflectance pint to find the position. 

 

This method follows the position of a specific reflectance point with time 

rather than the actual SPR dip minimum.  

 

Method 3; Polynomial fit of the resonance minimum 

This method finds the rough minimum point of the SPR dip and then performs 

a 4th order polynomial fit about the rough minimum.  It then uses the fitting 

results to find a fine minimum point to perform another 4th order polynomial 

fit about the fine minimum where the SPR minimum position is determined 

(see figure 2.9). 

 

 

Figure 2.9 Software picture showing the Polynomial fit of the Resonance Minimum Analysis 
method. A 4

th
 order fit is performed to find an approximate position of the SPR dip minimum.  

Another 4
th

 order polynomial fit is performed at this value to determine the minimum position. 
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This method like the First moment analysis method follows the SPR 

reflectance minimum with time. 

 

Method 4: Zero crossing of the derivative 

This method initially finds a rough minimum point of the SPR dip and 

performs a 4th order polynomial fit about the rough minimum.  A linear fit of 

the derivative about the rough minimum is performed and the zero crossing 

point from this fitted data is used as the fine minimum.  The method performs 

another linear fit of the derivative about this fine minimum.  The fitted data is 

then used to find a new zero crossing point in which it is taken to be the SPR 

minimum (see figure 2.10). 

 

 

Figure 2.10 Software picture showing the Zero Crossing Analysis method.  An approximate 

position of the SPR minimum is found by performing a 4
th

 order polynomial fit about the 

minimum.  A liner fit is preformed on this point and the zero-crossing point is used to find the 

fine minimum. 

 

This method like the first moment analysis and 4
th

 order polynomial fit about 

the SPR minimum follows the SPR dip minimum with time. 

 

Method 5: Dot product of data with derivative 

This method calculates the changes in Refractive index verses time.  Therefore 

a preset Refractive index value is required.  In this method the SPR curve is 

multiplied (in a dot product fashion) with the derivative of the SPR curve at 

time = zero.  The change in this product with time is directly related to changes 

in the refractive index. 
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2.5.2.a Refractive index measurements using sucrose standards 

 

To validate the use of the sensor as a refractometer and to compare the 

sensitivity of the sensor to the Biacore® 3000, different sucrose solutions in 

succession were applied to the sensor surface.  The flow rate and duration 

applied was 10µl/min for 5 minutes for both SPR equipments.  The sucrose 

refractive index standards used for refractive index calibration were 10, 20, 30 

and 40 % (wt/vol.).  For bulk refractive index comparison analysis between 

both the Spreeta™ and Biacore®3000 equipment, sucrose solution of 0.1, 0.25, 

0.5, 1, 2.5 and 15 (%wt/vol.) were used. 

 

2.5.2.b Flow rates and refractive index stability 

 

Flow velocity of a fluid in contact with the sensing surface can affect the bulk 

refractive index measured.  To determine the influence that flow rates has on 

the stability of the refractive index over a period of time and to find a suitable 

flow rate that gives low signal to noise levels, a refractive index verses time 

trace sensor-gram of PBS (at room temperature and degassed) was passed over 

the surface for 15 minuets at five different flow rates.  The short-term noise 

envelope and standard deviation was compared.  This was carried out with PBS 

passed over a clean sensor surface and then with PBS passed over a surface 

where BSA was physical adsorbed on the sensing surface.  The BSA surface 

was prepared by passing a solution of 50µg/ml of protein over a clean sensor 

surface for 10 min at 10µl/min and then rinsing for five minutes with PBS 

(please refer to section 2.7.2). 

 

2.5.3 Surface preparation and sensor surface modification 

methods 

 

For the Spreeta™ sensor to be converted into a biosensor the gold sensing 

surface needs to be modified by attaching a biological active surface on to it.  

This can be done by physical adsorption, chemisorption and covalent 

attachment (Hermanson et al., 1992).  The following sections describe methods 

and procedures carried out in preparation and modification of the gold sensing 

surface. 
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2.5.3.a Spreeta™ Sensor surface cleaning 

 

The gold sensing surface was washed and dried using an isopropyl alcohol 

(IPA) (90%) and an airbrush, this was used to dissolve and remove any 

unwanted protein and grease marks from the surface.  The sensors were then 

placed into a beaker of HCl (1M) and ultra sonicated for 10 minuets and rinsed 

with Analar or RO water.  Before use the sensor was thoroughly dried with 

nitrogen and fitted into the flow cell for subsequent analytical measurements or 

immobilisation of the biological active layer. 

 

2.5.3.b Glass Slide cleaning 

 

Glass slides were cut into 1cm
2
 squares and were ultra sonicated in detergent 

(Decon 90, Decon Laboratories Ltd, East Sussex, U.K.) for 10 minutes. They 

were then rinsed thoroughly and ultra sonicated in RO water for 10minutes, 

and then ultra soniacted in HCL (1M) this removes any remaining organic 

matter.  They were then rinsed again with RO water and ultra-sonicated in 

fresh isopropyl alcohol (IPA, 100%) for 10 minutes. for the last time they were 

then rinsed again in water and then blown dried with argon.  Cleaned slides 

were used immediately. 

 

2.5.3.c Deposition of Metal on Surfaces 

 

For metal deposition the Edwards 306A vacuum evaporator was used.  The 

cleaned glass slides were loaded into the evaporator supported on a stand above 

the evaporation boats where the gold was placed. (Gold 99.9% Pure, Aldrich 

[code: 26,579-9]).  Once loaded the evaporator was sealed, air was evacuated 

to create a vacuum with a pressure of 1-2
-6

 atm.  The first metal deposition 

layer was Chromium (chrome plated tungsten rods [code NR1] Megatech, 

Cannock, Staffordshire, UK).  The chromium was deposited to a thickness of 

0.4-0.6nm at a deposition rate of 0.05nm/s.  The chromium layer is important 

as it creates an adhesion layer for the gold layer.  The gold layer is then 

deposited onto the chrome to a thickness of 50nm at a deposition rate of 0.1- 

0.15 nm/s.  Once deposited the slides were left to cool under vacuum for 30 

minutes and then removed and stored in a closed polystyrene petri-dish until 

used. 
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2.5.3.d Physical adsorption of protein conjugate to create a bio-

active sensing surface 

 

The gold sensing surface was converted into bio-sensing surface by physically 

adsorbing a protein conjugate on the surface.  Prior to the physical adsorption 

of the protein conjugate, the flow cell with the O-ring gasket was assembled 

onto the sensor  The sensor was first air initiated and then water calibrated.   

The sensing surface was then washed with NaOH (12N) \ Triton 100X (0.1%) 

and then followed with water for five minutes.  The washing process was 

monitored to ascertain when the baseline had stabilised indicating a clean 

surface.  The sensor surface was dried with nitrogen while still assembled in 

the flow cell the sensor was then re-air initiated and water calibrated to 

establish a background reading were all following measurement would be 

referred to. 

 

The physical adsorption of ovalbumin conjugated to Estrone-3-Gulcuronide 

(i.e. OVA-E13G) was achieved by flowing past a solution of the protein across 

the sensing surface.  This allows the protein to form a monolayer on the surface 

with the conjugated analyte adjuncts (i.e. Estrone-3-Gulcuronide) to stick out 

of the surface to be available for binding to its affinity anti-body partner.  A 

comparison of flow rates and conjugate layer concentration was performed to 

analyse the optimum method for surface coverage (i.e. maximum. protein 

adsorption on the sensing surface with very little de-adsorption).  The OVA-

E13G was dissolved in phosphate buffer (PBS) pH 7.4; concentrations of 10, 

25, 50, 75, 100, 125,150, and 200µg/ml were used.  The sensorgram traces for 

each solution were compared for protein mass deposition after 10 minutes 

using the following procedure. 

 

• Sensor assembled and surface cleaned and calibrated  

• PBS allowed to flush over the surface for ten minutes before time scan 

is set (flow rate 10µl/min). 

• At 5 minutes after time scan started the conjugate is injected into the 

sample loop (100µl) and the buffer is switched over to the protein 

sample. 

• The adsorbed protein layer was passed over the sensing surface for 10 

minutes and then rinsed with PBS for a further ten minutes to remove 

any loosely bound protein from the surface. 

• The new baseline refractive index measurement was then recorded.  
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This procedure was performed in triplicate for each of the conjugate protein 

solution.  Analysis of these results determined that 50µg/ml of OVA-E13G was 

the optimal coating solution for the physical adsorption layer.  The procedure 

detailed above optimised the concentration of OVA-E13G physically adsorbed 

within the time parameter of 10 minutes deposition time.  The SPR traces were 

analysed for maximum refractive index change.  A desired surface coverage of 

the protein conjugate at 50µg/ml was achieved between three and five minutes  

 

2.5.3.e Chemisorption of self assembled molecules (SAM) on gold 

sensing layers 

 

Sulphur containing compounds can spontaneously chemo-adsorb on gold 

surfaces.  2- mercaptoethanol [sigma M6250] and 11-mercaptoundecanoic acid 

(MUA) [code: 0450561] were individually used to surface modified the 

Spreeta ™ gold sensing surface.  After washing and preparing the gold sensing 

surface as mentioned above (section 2.7.2.1) the sensor was completely taped 

up using scotch tape leaving only: the sensing surface exposed.  The gold 

sensing surface was then completely covered by pipetting 1ml of 0.1M solution 

in ethanol (99.9%) of either 3- mercaptoethanol or Mercaptoundecaonic acid.  

The immersed surface was left over night in a closed Fluroware container to 

avoid evaporation.  The surfaces were then rinsed with pure ethanol and then 

dried with argon.  The sensors were then kept within a dried desiccator until 

used. 

 

2.5.3.f Covalent attachment of carboxylic dextran to the sensor 

surface 

 

The mercaptoethanol modified gold sensing surface was further modified by 

chemo-adsorption of 3-aminopropyltrimethoxysilane (ATPS) to introduce 

amine-terminated groups to the gold sensing surface.  A glass desiccator was 

taken and 100g of self-indicating silica desiccant (Merck code: 30062) were 

placed in the bottom and a small beaker filled with 5ml of APTS (sigma code: 

A3648) was placed in to the middle of the silica desiccant.  The prepared clean 

sensors were supported on a steel mesh above the APTS beaker.  This allowed 

the entire sensing surface to be exposed to the APTS vapour. The glass 

desiccator was placed under a fume hood and left to evaporate at room 

temperature.  This was left over night and then flushed with nitrogen before the 

sensor was removed.   Carboxyl methyldextran 0.1% wt/vol (CMD, Avg. Mol 

Wgt: 600, 000, carboxyl: glucose ratio 1:3) [Obtained from Fluka code: 27560] 

was dissolved in water and pre-activated with the addition of 1-ethyl-3- (3-

dimethylaminopropyl) carbodiimide (EDAC) at 10mg/ml and 5 mg/ml of N-

hydroxysuccinimide (NHS).  Taking 20µl, the activated solution was 
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immediately pipetted onto the gold sensing surface and left for an hour in a 

fluroware container to avoid evaporation from the sample spot.  After 

incubation the sensing surface was rinsed with water (Weston et al., 1999a). 

 

2.5.4 Regeneration Protocol 

 

After physical absorption of the protein conjugate and/or subsequent antibody 

binding events the sensing surface was regenerated by flushing the surface for 

ten minutes with 1% Persil biological detergent in water (100µl/min).  The 

regeneration buffer was then switched to water to rinse the surface of any 

adsorbed detergent for a further 10 minutes.  The refractive index change was 

monitored at different stages to assess the cleaning process.  After cleaning, the 

surface was available for a new protein adsorption layer.  

 

The investigation and optimisation of different regeneration buffers was 

performed on the Biacore® 3000.  The physical adsorption and regeneration 

protocol was the same as above.  Three different regeneration buffers were 

investigated: Persil (1%); NaOH (12N) / Triton X-100 (1%) pH 13; Glycine 

(10mM)/ SDS (1%) and HCL at pH 2.7 were used.  PBS and water were used 

as control buffers.  Using J1 plain gold chips the regeneration protocol was 

followed as detailed, this was carried out first with a plain gold surface and 

then with 50µg/ml ovalbumin protein adsorbed on the surface.  The 

regeneration cycle was performed ten times.  The programmed protocol used 

for the Biacore® experiments are detailed in the table below (see table 2.1). 
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Table 2.1:  The Biacore®3000 Programme for protein adsorption and 

Surface regeneration 

Regeneration Programmed Protocol  

(Biacore ®3000) 

Running Buffer PBS 

Read point: 170 sec. 

Water baseline: Inject - 30 µl @180sec 

Read point: 350 sec. 

Running buffer: Pass for 300 sec. 

Read point: 530 sec. 

Protein: Inject -100µl @600sec 

Read point 1430 sec. 

Regeneration buffer: 
Big inject 150µl @ 

1500 sec 

Read point 2330 sec. 

Water wash & baseline: 
Big inject 150µl @2700 

sec. 

Read point 3130 sec. 

Running Buffer: PBS 

Read point: 3410 sec. 

 

Flow rate was set at 10µl/min and data analysis was performed using the BIA 

evaluation software. To determine weather the physically adsorbed bioactive 

surface was able to bind αE13G antibody.  The above protocol was repeated 

and slight modified by the injection of 100µl of αE13G at 1450 seconds, with a 

read point at 2050 seconds.  This would then delay the following procedures by 

600 seconds each. 

 

2.5.5 Assay procedure for the portable analyser 

 

The gold surface of the sensor was cleaned prior to performing an assay with 

the regeneration buffer for 10 min and then washed for a further 10 min.  This 

was important especially when using a new sensor after extended dry storage. 

Once washed the sensor was then dried with nitrogen gas stream prior to 

performing sensor initialisation.  A typical procedure for performing an assay 

cycle was as follows: 
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Before commencement of an experiment the sensor was initialised in air and 

then calibrated in water to establish a background reading where all following 

measurement would be referred to; 

• PBS running buffer was flown past the surface for 5-10 minutes to 

obtain a baseline (10µg/min) 

• Ovabumin-E13G conjugate (100µl) at appropriate concentration was 

injected into the sample loop and then allowed to pass over the sensor 

surface after a PBS baseline was established. 

• 900µl of sample was pre-incubated with 100µl of anti body 2.5µg/ml 

for.15-20 minutes. 

• The proceeding sample solution was then injected into the sample loop 

and allowed to flow past the sensor surface at a rate of 10-60µl/min for 

ten minutes. 

• PBS again was then allowed to pass over the surface to remove any 

unbound antibody from the surface for a further 5 minutes to obtain a 

baseline measurement. 

• The surface was then cleaned/ regenerated by flowing past regeneration 

buffer for 20 minutes followed by water for further 10 minutes. 

 

Once the assay procedure was completed the cycle was repeated for the next 

sample measurement.  Air initialisation and calibration in water was not 

required for subsequent measurements. 

 

2.5.6 SPR immunoassay detection and data analysis 

 

The amount of anti-body binding to the sensing surface was found by 

determining the RI change between the protein conjugate baseline (Bo) and the 

bound antibody baseline (B).  Non specific binding (NSB) was accounted for 

by subtracting from the immunoassay sensorgram the refractive index binding 

sensorgram of the antibody to a surface that had only ovalbumin physically 

adsorbed on to it.  The formula used for the calibration graph is given below: 

 

[ ]
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The SPR calibration curve was plotted as B/Bo vs. Log10 [E13G] and was fitted 

using a four parameter logistic concentration response equation: 
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This was used to fit the concentration response curves to the data sets (Sigma 

plot version 2.00, Jandel Corporation).  Where (a) is the maximum refractive 

index baseline value of antibody binding, (b) is the minimum refractive index 

value of antibody binding; (c) is the concentration midpoint producing 50% of 

the refractive index value of the maximum refractive index baseline and (d) is 

the slope at the inflection point of the sigmoidal curve.  The working range of 

the assay was defined by 10-90% of the B/Bo signal, the test midpoint is 50% 

of the B/Bo and the limit of detection was determined to be three times the 

standard deviation of the blank sample (Mallat et al., 2001). 
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2.6 Results and Discussion  

 

2.6.1 Construction and characterisation of the field analyser 

 

The main objective of the project was to develop an analyser that could be used 

in the field, near the sample source and operated manually or remotely.  The 

analyser was primarily to be used for the detection of endocrine disrupting 

compounds (EDC) in surface and wastewater environmental samples at 

wastewater treatment plants or near rivers or streams where effluent discharge 

from water treatment plants occurs.  The Spreeta ™ was used, as it is a small, 

miniature and robust sensor suitable for integrating into custom made 

equipment.  Figure 2.11 (a+b) shows the external and internal view of the 

constructed field analyser. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11(a+b): External and internal view of the potable SPR field analyser: a) External 

view; showing external peristaltic pump and control notebook computer. b) Internal view 

showing sensor flow-cell connected to sample valve and reagent bottles. (i) Manual sample 

port with sample loop (100µl), (ii) Spreeta ™ sensor and connections,  (iii) Micro-control box,  

(iv) Reagent bottles (water, PBS, regeneration buffer and waste). 

 

The manual injection loop had a total internal volume of 200µl, with a sample 

loop volume of 100µl.  The total volume within the length of tubing from 

sample loop to sensor was 100µl.  The flow cell volume is approx. 10µl and 

consisted of an O-ring fitted into the recessed cavity of the sensor. The 
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constructed self-contained system was easily portable and provided a 

controlled experimental environment for performing assays.  An external 

thermometer and humidity sensor was also incorporated.  The constructed 

analysers made fluid handling easier and analysed results more reproducible.  

The weight of the analyser with full reagent bottles was approximately 0.7Kg. 

 

2.6.2 Characterisation and validation of refractive index 

measurements  

 

The system was initially tested to determine and validate the device for 

measuring the refractive index of samples.  It was found that the Spreeta ™ 

was a very effective tool for measuring refractive index solution and was able 

to resolve RI changes of sucrose solution down to 0.1% (wt./vol).  Figure 2.12; 

shows the progressing shift towards the right of the SPR dip of the Spreeta™ 

sensor with increasing sucrose concentrations.  

 

 

Figure 2.12: Typical SPR minima dip progression with increasing refractive index 

standards. By increasing the concentration of sucrose solutions the SPR dip angle shows 

movement towards the right.  The reflectivity of the SPR dip remains relatively the same. 

 

The relationship between the refractive index and the concentration of sucrose 

solution applied to the sensor as seen in Figure 2.13 showed a very good linear 

correlation.  The measured refractive index of each sucrose solution by the 

sensor was also comparable to the standard refractive index standard chart 
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given by Cargille (http://www.cargille.com/hand_brix.html).  The equation of 

the fitted line on the graph is y=0.0016x + 1.3155 with R2 value of 0.98.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Validation of the Spreeta ™ sensor with refractive index standards. To validate 

the sensor as a refractometer known concentrations of sucrose solution were prepared and 

measured.  A very close and accurate correlation was found between the sucrose concentration 

and the refractive index measured.  The linear fitted equation line being y=0.00164x + 1.3319 

and R2 value of 0.99 .for refractive index units.  The SPR angle corresponding to its refractive 

index unit is shown on the right axis.  

 

The Spreeta ™ analyser showed very good linear correlation when plotted 

against measurements taken with the Biacore® 3000 SPR system using the 

same sucrose refractive index standards on a plain J1 gold chip (please refer to 

figure 2.14).  The concentration of sucrose solutions (i.e. 0.1-15% wt/vol) 

represents the typical bulk refractive index change of protein concentrations 

used in immunoassays. From this study it was found that the refractive index 

resolution of the Spreeta ™ sensor is very similar to that of the Biacore® 3000. 
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Figure 2.14: Signal comparison between Biacore® 3000 and Spreeta™ SPR devices. The 

two systems are compared using several different sucrose solutions of 0.1, 0.25, 0.5, 1, 2.5 and 

15 (%wt/vol.) in PBS.  The linear fitted equation line being y=1x10
6 

x 1x10
6
 with a R2 value of 

0.9859. Each data point represents the mean of samples taken in triplicate (error bars are too 

small to be visualised at this scale). 

 

2.6.2.a Short term noise, baseline drift and sensitivity to bulk index 

changes 

 

The figure given below (figure 2.15) shows an example of the type of time 

trace sensorgram that is displayed using an 8-bit resolution micro control unit.  

The short-term noise envelope was 1.91x10
-6

 with a noise level of 3.4x10
-6

 (1 

STD), using the temperature compensated dated.  This result was comparable 

to the noise level resolution given in the literature for the analogue digital box.   
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Figure 2.15 Time trace sensorgram of water showing the short-term noise.  The noise 

envelope is 1.91x10
-5

. The standard of deviation is 3.35044x10
-6

 (3.4x10
-6

) with the average 

temperature of 20.00891 stdev of 0.008346. The volume flow through the flow-cell was 

100µl/min, using the first moment analysis method. 

 

It was observed that the Spreeta™ sensor showed long-term temperature drift, 

which agreed with, published data of 1.72x10 
-4

 over a course of 12 hours.  

This long-term drift is due to the refractive index change with temperature.  

Fluctuation changes in temperature can cause significant changes in the 

refractive index measurements of aqueous solutions (dRI/dT≈1
-4

/°C).  The 

temperature not only affect the refractive index of solution but the intensity and 

wavelength distribution of the sensor’s LED, dark current (emission of a small 

signal even in the absence of light, mostly due to thermal activity in the 

photocathode and the dynodes) and quantum efficiency of the photo diode 

array.  Short-term drift was observed to mask long-term drift this was in 

agreement to findings in the literature (Kukanskis et al., 1999).  The 

temperature compensated data is calculated as -.0001 (R.I.U/Deg /°C).  The 

table given below (please refer to table 2.2) shows the short-term refractive 

index change due to temperature.  All buffers and sample used were brought to 

room temperature before use to minimise this temperature effect as well as 

using the temperature compensation data. 
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Table 2.2:  Summarised collected refractive index data and temperature 

compensated data. 
Data given for time trace of PBS flow pass the sensor surface for 10 min at 10µl/min (n=7) 

SPR Sensorgram of PBS Refractive Index 

Refractive Index 

(Temperature 

Compensated) 

 

Refractive index (mean) 

 

1.33466548 1.3346672 

 

STDEV 

 

1.87352
-6

 1.8255
-6

 

 

By using the temperature compensation data and equilibrating the fluids at 

room temperature before flowing pass the surface of the sensor, the sensitivity 

was found to be 3.1x10
-7

 Refractive index units.  The standard deviation is in 

the order of 0.00001 differences and as long as the samples and sensor is kept 

at a relative stable temperature, refractive index changes due to temperature 

could be minimised or avoided. 

 

2.6.2.b Quest in finding the appropriate analysis method 

 

The Spreeta™ evaluation software has seven analysis methods in which the 

SPR minima dip is found or monitored.  Five of these methods were analysed 

and compared to determine the most appropriate method to be used for further 

work.  Table 2.3 gives a brief description of the five methods used and the 

characteristic traits in terms of use and signal to noise. 
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Table 2.3: Software analysis methods and comments 

METHOD 

Detects 

SPR Dip 

Minimum 

Comments 

(A) First Moments NO 
Only requires a single variable; Fast 

analysis, Lowest noise 

(B) 4th Order 

Polynomial at specific 

Value 

NO 

Can extend the sensor's index range; 

relatively low noise 

(C) Polynomial Fit of 

resonance minimum 
YES 

Sensitive to points included in fit; 

Relatively low noise 

(D) Zero dot Product YES Relatively low noise 

(E) Dot Product of 

Data with derivative 
NO 

Measure index changes only; relatively 

low noise 

 

The evaluation for determining the appropriate method was conducted by 

measuring PBS buffer with a flow rate of 10µl/min, past the sensor.  The 

analysis was initially taken by using method (A): First moment method, the 

data obtained was saved and re-used to analyse the other four chosen methods.  

The summarised data given in table 2.4 showed that the first method is indeed 

the method that displays one o the lowest amount of noise while performing a 

timed sensorgram.  Method (E) dot product of data showed the least signal to 

noise standard deviation of the data as well as a smaller noise envelope.  

Information given in the literature for this method states that the method gives 

a low noise read out which is equal to but not better than the first moment 

analysis.  The Dot matrix method showed the least amount of noise in terms of 

its noise envelope and standard deviation. However, the method only measures 

refractive index changes and requires that a specific RI is given initially before 

a time scan can be performed.  Therefore, would not be suitable for a real time 

immunoassay monitoring. 
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Table 2.4: Five software analysis methods refractive index data  
for each method its corresponding measured refractive index, noise envelope and standard 

deviation is given 

 

 ANALYSIS METHODS 

 A B C D E 

Average 

(RI) 
1.336597 1.340793 1.336085 1.336066 1.335589 

Noise 

Envelope 
8.42x10

-6
 1.04x10

-5
 1.14x10

-5
 1.08x10

-5
 1.19x10

-7
 

STDEV 2.11x10
-6

 2.40x10
-6

 2.12x10
-6

 2.52x10
-6

 6.05x10
-8

 

 

 The first moment of reflectance analysis method was chosen to be used for 

subsequent assay development. Although it performed second to the dot matrix 

method it proved a fast analysis procedure and by manipulating the amount of 

data points to be averaged and choosing a 13 point smoothing tool the noise 

envelope was significantly reduced. 

 

2.6.2.c Flow rates and refractive index stability 

 

SPR is sensitive to fluid flow velocities as it affects the bulk refractive index of 

the fluid that is in contact with the sensing surface. This is due to the local 

temperature fluctuations of the passing fluid occurring at the sensing surface.  

It was therefore, felt necessary to determine an appropriate flow rate to be used 

in subsequent analysis.  To do this a time trace sensorgram of PBS was passed 

over a clean sensor surface and for comparison a sensor that had ovalbumin 

(OVA) physical adsorbed on the surface (prepared by passing 50µg/ml of BSA 

for 10 min for 15 minutes) at five different flow rates.  The short-term noise 

envelope and standard deviation results obtained were compared (please refer 

to figure 2.16a+b). 

 

The results indicate that the two different surfaces displayed completely 

different profiles.  The short-term noise is greatly reduced once there was a 

physically adsorbed layer on the sensing surface.  Flow rates between 10µl – 

60µl/min was used for subsequent analysis as the short-term noise level was 

sufficiently low and desirable for use when considering immunoassay sample 

consumption.  
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Figure 2.16: (a+b): Flow rate comparison chart. A) Plain gold surface. B) OVA physical 
adsorbed on the surface.  The chart is showing the short-term noise in relation of the flow rate 

of PBS buffer on a plane gold sensing surface. The line through the mean value links the 

highest value and the lowest value determined in the period of 15 minutes. 

 

2.6.2.d Summary  

 

The sensor is very sensitive to small changes in bulk refractive index and was 

found to have a system baseline noise of 1.8x10
-6

, under the chosen 

parameters.  The refractive index resolution of sucrose at different 

concentration showed a good linear correlation with data obtained with the 

Biacore® 3000 instrument.  The first moment analysis method was chosen as it 

displays low noise and fast analysis compared to the other methods.  The flow 

rate between 10 and 60µl/min was chosen for subsequent analysis as it showed 

a low signal to noise ratio.  Surface modification on the sensor surface reduces 

the noise level therefore increasing the signal to noise ratio. 
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2.6.3 Sensing surface preparation and modification 

 

One of the main goals of this research was to find a reproducible and practical 

method of immobilising a biological specific active layer on to the gold sensing 

surface and thereafter to find a regeneration protocol that would be appropriate 

for the performing a semi-continuous immunoassay in the field.  Several 

surface modification procedures were assessed: self assembled mono-layers 

(MEth, MUA and APTS), thin dextran layers (CMD) and protein adsorption.  

The main requirement of the surface preparation was that it would be stable, 

reproducible, low cost and fairly easy to perform in remote situations.  The 

choice of surface immobilisation technique were further limited by the sensors 

design, as the Spreeta™ sensor used in this study had a reset gold sensing 

surface which meant that the use of cover slips was virtually impossible hence 

the gold sensing surface was irreplaceable.  The two approaches taken were: 

(1) by physically adsorbing an active protein layer on the surface to provide a 

specific bio-layer and (2) by covalently attaching a dextran hydrogel layer on 

the surface which would then provide a modified surface similar to the sensing 

matrix used on Biacore chips. 

 

2.6.3.a Cleaning of the sensor surface 

 

It was observed that the pre evaporated gold sensing surface of the Spreeta ™ 

sensor after long periods of dry storage required cleaning.  Several cleaning 

protocols were investigated and the IPA/ HCl (1M) wash was determined to be 

suitable.  Monitoring the sensorgram baseline with water for a period of 20 

minutes and monitoring the baseline drift determined this.  Before using a new 

chip the sensor was washed with NaOH / Triton X100 this allowed the sensing 

surface to be clean and rendered hydrophilic. 
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Figure 2.17: Gold surface cleaning of the Sensing surface after dry storage. The sensorgram 

show the removal of surface adsorbed material from ambient contamination. 

 

The drop in refractive index and the establishment of a new baseline shown in 

the above figure (figure 2.17) demonstrates that the gold surface requires 

cleaning before use to safeguard against baseline drift issue due to the removal 

of unwanted material on the sensing surface. 

 

2.6.3.b Determination of appropriate concentration of protein for 

physical adsorption of the bio-active layer 

 

To determine the appropriate protein concentration for the physically adsorbed 

protein-EDC analyte conjugate layer, different concentrations of OVA-E13G 

was passed over a clean sensor surface and the adsorbed layer coverage was 

observed over a period 10 minutes.  By physically adsorbing different 

concentrations of protein over the surface the adsorbing layer maximum 

surface coverage could be determined.  It was determined that 50µg/ml of 

OVA-E13G showed the best monolayer surface coverage.  Initial antibody 

concentration determination for Estrone-3-Gulcuronide was determined by 

investigating the level of binding of the antibody to the prepared surface using 
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different antibody concentrations, and concentration of 0.25µg/ml of antibody 

was found to be the optimum concentration of antibody giving a high binding 

response but low enough for detection of analyte at sub pbb levels. 

 

2.6.3.c Physical adsorption, surface modification and regeneration 

protocols 

 

As it was necessary to establish a regeneration protocol that was able to 

effectively strip the gold sensing surface of the adsorbed conjugated protein 

after performing an immunoassay several buffers were examined.  By 

employing the use of the Biacore® 3000, different regeneration buffers could 

be screened for their effective surface cleaning.  The Biacore®3000 with its 

advance liquid handling system allowed for direct comparison of the results.  

The Biacore® 3000 protocol was set up to represent the Spreeta ™ analyser 

parameters as close as possible.  J1 Biacore chips were used with PBS buffer 

pH 7.4 (see figure 2.18). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: Shows a typical regeneration sensorgrams profile of the regeneration protocol 
carried out on the Biacore® 3000. (A) Water Baseline, (B) PBS baseline-before protein 

adsorption (C) protein adsorption and baseline, (D) PBS baseline after protein adsorption (E) 

Regeneration buffer stripping the surface, (F) Water baseline. 

 

The regeneration cycle was performed in such a way as the water baseline was 

used to monitor the efficiency of the regeneration/ stripping procedure.  It was 

also noted that the final surface rinsing with water removed any adsorbed 

material especially with Persil.  Without the additional water-rinsing step, 

Persil regeneration buffer was found to increasingly leave a layer of residue on 
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the sensing surface, this was seen as a rise in the refractive index of water and 

PBS baseline (please see figure 2.19a). 

 

 

Figure 2.19 a+b: Regeneration buffer relevant response baseline after surface striping with 
regeneration buffers on JI gold Biacore Chip. (A) On a bare gold sensing surface.  (B) Cycle 

as above but without protein adsorbing step.  Water and PBS were used as control buffer 

solution. The relevant response represents the PBS baseline after regeneration with different 

regeneration buffers. Graph (A) shows surface adsorption build up on the surface with PBS, 

glycine/SDS-HCl and water as indicated by the increase of Relevant RI response.  Persil and 

NaOH/Triton X100 regeneration buffer showed no surface residue build up on the surface 

after 10 cycles.  Graph B shows the protein stripping capability where PBS and glycine/SDS-

HCl does not remove any physically adsorbed protein and a build up occurs with each cycle 

progression. 

 

It was observed that 1% Persil buffer and NaOH/Trition-X100 (0.1%) 

performed well under these conditions.  The NaOH/Triton X100 (0.1%) was a 

buffer previously used in several publications on Spreeta ™ sensor (Elkind et 

al., 1999; Strong et al., 1999; Melendez et al., 1996).  The regeneration buffer 

was used to regenerate the surface but without removing the physical adsorbed 

protein layer which they considered to be permanently adsorbed.  The 

regeneration of the antibody for NaOH/Triton X100 was very good and the 

standard of deviation low.  However, the binding of the antibody was not as 

high as that obtained using the Persil buffer and a fresh layer of physically 

adsorbed protein for the biological sensing layer.  The stripping of protein off 

the surface using Persil regeneration buffer (see Figure 2.20b) showed a drop 

in the baseline refractive index.  This maybe caused by the removal of a layer 

of oxidised gold from the sensor surface, showing a negative relevant baseline 

value in relation to the original baseline value.  However, subsequent antibody 

and conjugate adsorption layer relevant response values showed no obvious 

deterioration in the signal level. 
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Figure 2.20:  Antibody affinity capture baseline after physical adsorption of analyte 

conjugate protein layer on gold sensing surface after surface regeneration using different 
buffers.  The graph shows the refractive index level of antibody (10µg/ml) capture by the 

newly prepared surface. The affinity capture of antibody for the Persil and NaOH/TritonX100 

regenerated surface gives a relatively stable reproducible level where antibody affinity is 

higher of the Persil regenerated surface than NaOH/TritonX100. For PBS and glycine/SDS-

HCl the antibody response increases with number of cycle.  This indicates that the surface is 

not being striped completely after each cycle and a build up of adsorbed protein on the sensing 

surface is observed. 

 

 

The standard deviation for antibody binding layer for both Persil and 

NaOH/Triton X100 were both low, with the antibody baseline for the Persil 

regenerating buffer being a little higher this suggests that a better ovalbumin-

E13G surface coverage was achieved (please refer to figure 2.20).  The glycine 

/SDS-HCl regeneration buffer performed the least well as no material from the 

surface was removed, indicated by the increased refractive index response, 

indicative of a build up of protein on the surface.  It was concluded that both 

NaOH/Triton X100 and Persil regeneration buffer were suitable regeneration 

buffers for consideration. 

 

The NaOH/ Triton X100 buffer could be used as a regeneration buffer for a 

single sensor that could be used continuously for one particular analyte with 

very little deterioration of the antibody binding after fifteen cycles.  Melendez 
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et al. (1999) (Melendez et al., 1996) used this method of regeneration and noted 

that the sensor surface was reusable after 3 months of the surface being 

prepared.   

 

Strong et al. (1999) (Strong et al., 1999) also suggested that the surface 

required a few assay to be performed on the surface as a conditioning step to 

prepare the surface.  This may be due to non-specific binding and week 

adsorption of the protein forming bi-layers.  Persil on the other hand provide 

another regeneration strategy that enabled the complete stripping of the surface 

of the appropriate protein.  This would allow an assay protocol of adsorbing 

differ protein conjugates onto the surface and hence the detection of different 

analytes sequentially with the same sensor. 

 

Figure 2.21 (a+b): AFM images of a gold surface with adsorbed Ovalbumin-E13G protein 
layer at 50µg/ml and the same surface cleaned with Persil (1%).  The slightly blurred image 

in (A) represents the physical adsorbed protein on the surface with slight dragging on scanned 

material due to AFM tip being in contact with the surface.  Picture (B) represents the same 

surface after cleaning with Persil (1%). The small granular pattern is typical of gold scanned 

by AFM. 

 

AFM and contact angle study of the surfaces cleaned and regenerated with the 

different buffer showed that NaOH/Triton 100X left the surface of the gold 

layer hydrophilic while Persil left the surface more hydrophobic as indicated 

by the contact angle measurements.  The scanned surface of a gold surface with 
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protein adsorbed on the surface and then washed with Persil did confirm that 

the surface had been completely cleaned of adsorbed protein (please refer to 

figure 2.21).  The scanned picture of the Persil cleaned gold slide to clean 

unused gold surface slide were comparable.  The protein adsorption-

regenerating assay was performed on the Spreeta ™ sensor using Persil to 

investigate the use of the regeneration procedure. The results obtained are 

summarised in Table 2.4. 

 

Table 2.4: Demonstration of repeated regeneration of a gold SPR sensor 

surface after physical adsorption of protein using a commercial laundry 

detergent 

(±1SD, n=15) 

Regeneration With Persil SPR Resonance 

ANGLE (º) 

Water Baseline 69.158 ± 0.0164 

PBS Baseline 69.340 ± 0.063 

Conjugate Baseline (in PBS) 69.356 ±0.0045 

 

The small average increase due to adsorption of the OVA-E13G conjugate is 

due to the de-naturalisation of the protein upon adsorption.  The variation of 

the SPR angle for the various steps in the 15 repeats demonstrates a significant 

level of variability in the absolute SPR angle.  However, this also coincides 

with the variability of the system baseline noise.  Therefore, relevant changes 

within cycles are not as significant and proportionally reproducible. 
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Figure 2.22: Relevant baseline of conjugate protein, antibody and PBS. Data points 

represents the baseline after 15 sequential repeats of adsorbing ovalbumin-E13G on the 

sensing surface, binding the antibody and then regeneration of the test format with Persil (1%) 

before a new cycle is performed.  

 

The above figure (Figure 2.22) shows the typical assay procedure undertaken 

with the Spreeta™ sensor analyser.  The baseline of PBS buffer, Ovalbumin-

E13G protein conjugate and antibody binding was monitored to determine the 

repeatability of an antibody binding assay and efficiency of the regeneration 

process of the surface using Persil.  This was performed by adsorbing the 

appropriate protein on the surface and removing all analysis samples from the 

surface, starting a fresh each time.  The results show after 15 sequential assays 

the repeatability of was very close.   

 

2.6.3.d Summary of surface modification and regeneration 

 

The immobilised active biological specific layer for the sensing surface can be 

achieved by an in-situ physical adsorption method.  Sequential adsorption and 

regeneration of the sensing surface using Persil (1%) was a suitable 

regeneration buffer for the assay format used.  
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2.6.4 Initial immunoassay for Estrone-3-Gulcuronide 

 

2.6.4.a Determination of specific and unspecific binding 

 

To determine the specific and non-specific binding of antibodies to the 

physically adsorbed OVA-E13G conjugate a sample of anti-E13G and anti-

human chronic gonadotrophin (HCG) antibody was applied to the sensing 

surface at a concentration of 0.25µg/ml.  Preparing the surface with pure 

ovalbumin and conducting the same procedure determined the level of non-

specific binding.  The determined level of non-specific binding of the antibody 

was subtracted from the specific binding sensorgram.  Figure 2.23 shows the 

normalised refractive index sensorgram of blank sample of anti-E13G and anti-

HCG that was each incubated at the sensor surface for 10 minute.  The relative 

refractive index measurement ratio has been normalised to the average of the 

baseline ratio (i.e. representing the baseline for PBS alone) over 150 sec. 

before sample injection at the beginning of each test cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23: Response of specific antibody and non-specific antibody to the sensing surface. 

A) Represents the baseline for PBS. B) Incubation of antibody to the sensing surface and C) is 

the new PBS baseline.  
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The result obtained by measuring specific anti-E13G antibody to the adsorbed 

layer and non-specific anti- HCG antibody shows the specific response for anti 

E13G antibody (0.25µg/ml) to have a refractive index baseline 40 times higher 

than the PBS baseline.  The response of the anti-HCG antibody to the surface 

shows little binding.  However, after PBS is passed over the surface the 

baseline immediately drops and the new PBS baseline measured is less than 

1% higher than the original PBS baseline (please refer to figure 2.23) 

Incubation of <1mg/ml of ovalbumin in PBS at the sensor surface also showed 

1% increase in the measurement.   This change is equal to the minimum change 

resolvable by the sensor and show that the sensor is highly specific to 

monoclonal E13G antibody.  At high concentration of ovalbumin (1mg/ml) 

adsorption on the sensing surface leads to a very minor amount of non-specific 

binding of protein at the sensor surface.  Therefore, the Ovalbumin-E13G 

conjugated protein surface is well coated. 

 

2.6.4.b Immunoassay calibration curve 

 

The devised assay protocol was designed and optimised for the detection of 

Estrone-3-Gulcuronide (E13G).  Figure 2.24 shows a representation of the 

assay time line.  Figure 2.25 shows a typical analysis sensor gram. 

 

 

Figure 2.24: Assay cycle timeline performed on the SPR analyser: The assay cycle for in-situ 

preparation of the biologically -active surface and surface striping for regenerating the 

surface is initially performed by: (1) calibrating the sensor in water to obtain a baseline. (2) 

The water is exchanged to PBS and this is passed over the sensor surface for four minutes to 

establish a PBS baseline. (3) The protein conjugate is injected into the sample stream and 

allowed to flow over the sensor surface. PBS buffer is passed over the physically adsorbed 

protein layer for three minutes to wash any unbound protein from the surface. (4)The antibody 

and sample is injected into the carrier flow and allowed to pass over the sensor surface. Buffer 

exchange and timings of assay cycle is given in hours: minutes. 

 

 

00:00 01:10

01:00

00:03

2) Buffer Exchange

01:10

10) Stop/Repeat Cycle

00:07

3) Conjugate injection

00:50

9)Water exchange

00:30

6) PBS buffer exchange

00:20

5) Sample and antibody injection

00:17

4) PBS buffer exchange

00:00

1) Water Calibration

00:35

8) Regeneration solution 
exchange

00:34

7) Refractive index read out

00:03 - 00:20

Sample and Antibody incubation



 

92 

Figure 2.25 Typical Spreeta ™ analyser assay cycle demonstrating both sensor regeneration 
with domestic laundry detergent and measurement of anti body binding.  Relative refractive 

index change is determined by the difference of the baseline of PBS over the physically 

adsorbed ovalbumin-E13G conjugate layer and the new PBS baseline after antibody binding. 

 

A set of sequential binding responses of the immunosensor to whole 

monoclonal anti Estrone-3-Gulcuronide antibody (0.25µg/ml) pre-incubated 

with known concentrations of E13G is shown in Figure 2.26. The relative 

refractive index measurement ratio has been normalised to the average of the 

baseline ratio (i.e. representing the baseline for PBS alone) over 150 sec. 

before sample injection at the beginning of each test cycle.  The assay was 

performed as developed in the assay schematic given in Figure 2.25  The full 

set of data for the assays calibration curve  took eighteen hours over a period of 

three days each concentration were made in triplicate (please refer to figure 

2.6). 
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Figure 2.26: A typical real time SPR immunosensor response for several E13G 
concentrations over the range of 0-100µg/L. The amount of antibody attached to the surface 

after incubation is inversely proportional to the analyte concentration of the sample.   

 

The amount of antibody after incubation that is bound to the sensing surface is 

inversely proportional to the analyte concentration of the sample.  Hence, the 

gradient of the steepest line represents the binding rate of the antibodies in the 

blank solution to the sensor surface.  The curve in the middle of the plot 

represents E13G concentrations below 1µg/ml and the smallest gradients 

represent the concentration of E13G at 100 and 1000µg/ml.   Figure 2.27 show 

the calibration curve of E13G concentration using monoclonal anti E13G with a 

4 points parameter sigmonal curve fitted to the averaged data set.  Data 

calibrations sets were performed in triplicate and the error bars on the data 

point represent one standard deviation of the mean of the averaged data points.   

The lower limit of detection of the sensor was found from the fitted curve, at 

the concentration where the measured concentration had fallen to three times 

the standard deviation below the mean measurement for the blank sample 

(Coille et al., 2002; Harris et al., 1999).  The mid point of the calibration curve 

was determined to be 3µg/L, whilst the upper limit of the operating range for 

this assay, represented by the measured value at 90% below that of the blank 

sample was at 100µg/L.   
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Figure 2.27: Calibration curve for Estrone-3-Gulcuronide with the Spreeta™ analyser.  The 

standard curve is derived from standard samples analysed in triplicate.  The error bars 

indicate the standard deviation (1STD and n=3). B is the refractive index baseline of the 

sample after binding to the surface and B0 is the PBS baseline before binding. 

 

The working range of the assay was found to be between 1-10µg/L with a limit 

of detection of 0.3µg/L and the maximum limit at 20µg/L.  The calibration 

curve shows that the devised immunoassay could be used to determine E13G 

concentrations in the sub ppb range. 
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2.6.5 Discussions and conclusions 

 

2.6.5.a Construction and characterisation of the analyser 

 

The commercial available surface plasmon resonance biosensor Biacore ® 

3000 is a fully automated system combining an auto sampler for precision 

liquid handing and integrated micro fluidics and detection.  This allows for the 

system to be precise, rapid and simple for samples to be analysed.  The system 

is however expensive and desktop bound; the Spreeta ™ system on the other 

hand is a very small and simplistic sensor system.  The sensitively of the sensor 

is comparable to the Biacore ® 3000 in terms of it signal to noise output this 

finding was also in accordance to published data (Leonard et al., 2003). 

 

Incorporation of the sensor into a self-contained analyser with a fluid handling 

system provided a platform system that could be used for sample bio-affinity 

analysis.  Initial experimentation and optimisation of the sensor with buffered 

sample using Estrone-3-Gulcuronide as a model estrogenic compound 

demonstrated that the sensing platform could be used as an immunosensor with 

good sensitivity.  

 

2.6.5.b Assay Protocol and Regeneration 

 

The constructed assay protocol design allowed for in-situ surface modification 

of the sensing surface that could be replaced remotely and automatically by a 

simple combination of fluidics, non-covalent immobilisation and regeneration 

/cleaning step.  To enable the sensor reusability a novel regeneration step using 

Persil liquid laundry detergent was used.  As the gold sensing layer was 

considered to be irreplaceable a surface stripping method was sort after.  

Typically, regeneration procedures for affinity sensors commonly involve 

exposure of the surface to single component detergents, variations of pH, 

variations of ionic strength etc. (Andersson et al., 1999)  The novel use of 

Persil detergent as an alternative was chosen as it contained a defined complex 

mixture of surfactants, proteases, cellulase, lipases and bleaching agents 

compared to other traditional recipe approaches.  

 

During the initial investigation for converting the sensor into an immunosensor 

several issues on optimisation were apparent.  Assay time with regeneration of 

the surface was over 1 hour.  The lengthy assay time was mainly due to the 
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regeneration step of the surface as the actual surface preparation and binding 

time was only 15 minutes.  This could be addressed by improving the fluid 

handling system and having automated control on varying the flow speed and 

reagent buffer exchange.  A more relevant antibody or receptor against a 

specific EDC would be desirable, as it could be directly compared to EDCs 

found in the environment. 

 

2.6.5.c Covalent antigen immobilization 

 

One of the main goals of this research was to find a reproducible and practical 

method of immobilising a biological specific active layer on the gold sensing 

surface and a regeneration protocol that would be appropriate for the analyser.  

Several surface modification procedures were investigated: self assembled 

mono-layers (i.e. using APTs and Mercaptoundecanoic acid [MUA]), Thin 

dextran layers (CMD) and protein adsorption.  The main requirement of the 

surface preparation was that it would be stable, reproducible, low cost and 

fairly easy to perform in remote situations.  The choice of surface 

immobilisation technique were further limited by the design of the sensor as 

the Spreeta ™ sensor used in this study had recessed gold sensing surface 

which meant that the use of cover slips was virtually impossible. 

 

Physical immobilisation of the antigen conjugated protein proved to be 

successful. However, the second approach of immobilising the desired 

estrogenic antigen onto the sensors surface was also investigated.  Surface 

modification by covalently attaching a hydro-gel to the sensing surface was of 

interest as it would create a sensing surface similar to that of the Biacore® 

3000 system where simple water based EDC/NHS chemistry could be used to 

covalently attach the antigen and also to provide a barrier for non specific 

binding.  The aim was to find a quick and practical way of preparing the 

surface and so the reverse deposition model (Weston et al., 1999a) was 

proposed.  This is where the antigen of interest in this case Estrone-3-

Gulcuronide would be covalently attached to the dextran backbone structure 

and purified before covalently attaching on to the pre animated modified gold 

surface.  Once achieved a chemical and/or biological regeneration protocol was 

to be sort after and optimised for use in remote conditions. 

 

Covalent attachment of the dextran hydrogel proved to be very difficult as the 

resolved SPR dip was too shallow to be of any use for refractive index probing.  

For a good signal, the resolved dip should ideally be below 0.6mV especially if 

measuring with first movement of momentum analysis technique were the 

baseline is set preferable at 0.8mV.  The resolved dip for the modified dextran 

surface was above 0.8mV and therefore unable to be used for monitoring. 
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Surface immobilisation of E13G by direct covalent attachment to the APTS and 

1% MUA modified surfaces were also investigated and were equally 

unsuccessful (data not shown).  In the literature there are given examples of 

covalently attached antigen immobilisation to the Spreeta™ sensor  that have 

been successful where they have used gold binding protein (GBP) (Naimushin 

et al., 2002; Woodbury et al., 1998) and also MUA (Simonian et al., 2002).  

The unsuccessfulness of the covalent attachment procedures carried out in this 

study may be due to the air initialisation data that was used.  Initialisation 

could also be performed in buffer that has a higher refractive index then the 

region that is being probed i.e. 15% sucrose or alcohol this approach may have 

resulted in a better response.  Due to the unsuccessfulness of the modification 

procedure this line of investigation was not pursued further. 

 

2.6.5.d Conclusion 

 

The Spreeta ™ sensor was successfully integrated into a portable self contained 

analyser.  The devised immunoassay and regeneration protocol that elicit the 

use of a propriety laundry detergent Persil biological (1%) was used to measure 

Estrone-3-Gulcuronide in buffered samples.   The modification of the sensing 

surface was obtained by in-situ physical adsorption of the conjugated E13G to 

ovalbumin.  It was observed that repeated absorption and stripping of the 

protein from the surface did not have a significant effect on the refractive index 

change measured for either the protein conjugate level or the antibody binding. 
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Chapter 3 
 

Refinement, development 

and optimisation of an 

EDC Immuno-analyser 

 
 

3.1 Introduction 

 

In the previous chapter the Spreeta ™ SPR sensor was investigated and 

characterised for immunoassaying application.  It also described the initial 

construction and immunoassay design for the SPR analyser to be used in the 

field, at source or as a remote sensor.  It was determined that the sensor was 

easily integrated into a portable system and a relatively simple surface 

modification and regeneration protocol could be performed for the detection of 

Estrone-3-Gulcuronide analyte in buffered samples.  Several issues on 

optimisation and use of a more relevant model antibody for detection in real 

environmental samples were highlighted. 
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3.1.1  Testing pollutants in environmental samples using 

ELISAs and immunoassay applications  

 

The European community and international agencies has set the limits on the 

concentrations of environmental pollutants such as pesticides and heavy metals 

that may exist in ground water, surface waters and waste waters.  There is 

currently no limit of concentration for endocrine disrupters as a group, 

especially for natural or synthetic estrogenic hormones.  However, as many of 

the xeno-estrogen mimics also have other toxic properties and many pesticides 

have also been shown to have EDC effects the current legislation limits for 

pesticides can be used.  The limits of concentration for pesticides are 0.1µg/ml 

for a single pesticide and 0.5µg/L for the combined total of pesticides.  

However, we know that EDCs, especially estrogenic hormones are present in 

the field at ppt levels.  Immunoassays offer a route for rapid in-situ analysis for 

water samples for EDC detection at low cost.  Immunoassay based methods are 

popular because of their low price and rapid in-situ analysis coupled with an 

immuno- affinity reaction, specific analytes can be detected with high 

specificity and low detection limits. 

 

ELISA test kits for the detection of steroidal hormones are well establish and 

were initially designed for clinical use and only recently has been evaluated for 

use in environmental samples.  Immunoassay performed on biosensor are often 

direct transfer of ELISA based assays with further optimisation for that 

particular transducer and analyte quantification.  ELISA can provide useful 

optimisation information when devising an immunoassay for a biosensor as 

many tests can be preformed on one plate.  The use of an ELISA for detection 

of environmental samples have also proved to be highly comparable with GC 

and HPLC detection (Huang et al., 2001). 

 

3.1.2 Detection of EDC in waste water and surface waters  

 

Publications of EDC detection in waste water and surface water are limited as 

much work on this specific area only started in the last six years and the first 

phase of investigation for European Union Research initiatives was completed 

in 2002 
1
.  Four recent papers on EDC detection in wastewater have detailed 

the use of commercial ELISA kits, GC-MS and a fluorescence based optical 

affinity sensor. (D'Ascenzo et al., 2003; Coille et al., 2002; Huang et al., 2001; 

                                                
1 This research was undertaken as a component of the SANDRINE project (ENV/ct98-0801) funded by 

DGXII Environment and Climate (1994-1998) work programme of the European commission. 
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Espadaler et al., 1997; Aherne et al., 1985).  Each author states that they were 

able to detect their EDC analyte down to sub ppb levels. 

 

3.2 Aims 

 

The aims and objectives of this chapter were several, firstly further refinement 

and integration of new hardware to the analyser and design development of an 

automated fluid handling system for the analyser was to be investigated.  

Monoclonal antibody against 17β Estradiol was to be used as a more relevant 

model antigen.  An ELISA assay using antibody against 17β Estradiol was to 

be developed and optimised to aid assay development for the Spreeta ™ 

analyser.  For further assay development and verification of results the assay 

was to be transferred onto the Biacore® 3000 platform.  The comparison of 

different sets of results was to give further information on the design of the 

immunoassay and protocol automation by using a well defined SPR system 

which has a sophisticated liquid handling system.  Lastly the optimised assays 

(i.e. the in house ELISA, Biacore® 3000 assay, and Spreeta ™ analyser assay) 

were to be used to assay spiked 17β Estradiol in buffered, synthetic wastewater 

samples and then in real wastewater samples.  The results obtained where then 

to be compared with results from a commercial ELSIA assay kit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

103 

3.3 Equipment, Materials and Methods 

 

3.3.1 Spreeta™ sensor Updates and incorporation into the 

field analyser 

 

The results represented in this chapter were all conducted using the new 

Spreeta ™ flow cell and 12-bit digital signal processor (DSP) purchased from 

Nomadics Inc (Stillwater, Oklahoma, USA), the external pump used with the 

analyser was replaced by a miniature peristaltic pump from Krajci Engineering 

(Warsaw, Czech Republic) (please refer to figure 3.1 a and b).  All other 

components of the developed analyser equipment were the same as detailed in 

(section 2.3.4a). 

 

 

 

 

 

 

 

 

 

Figure 3.1 a+b:  Photographic illustration of the new integrated flow cell and miniature 
peristaltic pump.  a) The new integrated flow cell, once the sensor is assembled into the flow 

cell the only other connection required is the control box, b) The miniature peristaltic pump 

was easily incorporated in to the analyser.  The pump was controlled by a separate control 

circuit and 6 volt battery.  

 

 

3.3.2 Biacore System 

 

The Biacore®3000 SPR analyser was used with a flow rate used was 10µl/min 

using filtered PBS pH 7.4 buffer (0.25µm syringe filter). 

 

 

b a 
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3.4 Materials 

 

3.4.1 Biological reagents and buffers 

 

Immuno-reagents anti 17β−Estradiol-6 (1.0
10

L/M) was purchased from 

Fitzgerald, MA USA (clone M94150).  Estradiol-6-CMO-BSA (E2-BSA) 

conjugate [Sigma code E5630] and   Estradiol (E2) [sigma Code E3346] 

purchased from (Sigma Poole UK).  

 

3.4.2 Buffers and Reagents 

 

Phosphate buffered saline (PBS) pH 7.4 was used as a running buffer to prime 

the sensing surface and. RO water was used for buffers and for refractive index 

calibrations.  1% Persil buffer in water and NaOH /Triton X100 was used as a 

regeneration buffer. 

 

3.4.3 Preparation of Synthetic Waste Water 

 

The described composition of compounds was given by (Dresden University) 

and is a modified method based on a standard recipe (Prescript: DIN 38 412 

Teil 26).  There are two components to the stock solution (A+B), recipe of the 

solutions are described below 

 

Table 3.1: Solution A:  Protein solution 

Compound Supplier Weight (g) 

Casein Sigma [C7078] 32 

Meat extract 
BD diagnostics systems 

[0115-17] 
22 

Urea Sigma [U5378] 6 

NaCl Sigma [S3014] 1.4 

CaCl·2H2O Sigma [C3306] 0.8 

MgSO4·7H2O Sigma [M1880] 0.4 
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All of the above compounds were dissolved in 100ml of tap water.  The 

suspended solution was autoclaved for 20min at 121°C.  The resultant solution 

was a clear yellow solution. Aliquots of 10 ml were deep-frozen and were 

stable in this condition for long extended periods.  Solutions once thawed were 

stored in the refrigerator at 4°C and were stable for 1 month. 

 

Table 3.2: Solution B:  Mineral salt solution 

Compound Supplier Weight (g) 

K2HPO4 Sigma[P9666] 47 

 

The potassium salt was dissolved in 100ml of RO water and then divided into 

10ml portions and deep-frozen.  Thawed solutions were able to be stored in the 

refrigerator at 4°C and were stable in this condition for six months.  Solution A 

and B are concentrated solution. 

 

3.4.3.a Preparation of working Solution of the Synthetic Waste 

water 

 

The wastewater was prepared by taking 3ml of Solution A and 0.5ml solution 

B in 1200 ml of tap water (see table 3.1 and 3.2).  The wastewater was 

prepared freshly when required as the organic components are easily degraded 

by biological process.  

 

3.4.3.b Calibration standards and test samples in synthetic and 

waste water sample 

 

Preparation of test samples in buffered, synthetic wastewater and real sample 

waster water was the same for all analytical assay applications and was as 

follows: 

 

Estradiol standards were prepared by dissolving 1 mg of Estradiol in ethanol 

and diluting down to 1µg/ml stock solution in PBST.  The concentrations used 

to construct the standard curves were between 0.001 and 1000ng/ml 

 

Buffered samples:  900µl of standard calibration in PBS was incubated with 

100µl of antibody 
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Synthetic wastewater samples:  900 µl of synthetic waster was spiked with 

100µl of Estradiol calibrate stock solution (10x required concentration).  800µl 

of the made up sample was taken and buffered with 100µl of PBS (5x normal 

concentration).  100µl of antibody was then added. 

Real samples: Samples were prepared as above mentioned above for synthetic 

waster water samples. 

For all procedure the samples were allowed to pre-incubate between 15 and 20 

minutes  

 

3.4.4 Collection of real waste water samples 

 

The real waste water samples were collected from Cranfield University 

Wastewater treatment works and sample at point 1 and 2 representing in 

influent and effluent of water going through the treatment works (please refer 

to figure 3.2).  All samples were filtered using a 0.45µm syringe filter and then 

with a 0.25µm syringe filter to sterilise and reduce matrix effect. Samples were 

immediately deep frozen and thawed over night prior to use.  Analyses of the 

samples were taken within one month of sampling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Map of Cranfield Sewage treatment Works (Bedfordshire, UK.) Samples were 

taken at point A and B as indicated on the map.  These sites were chosen to represent the 

influent and discharge of the raw waste water sample and discharge sample that enters into a 

8stream represent surface water. 

 

Denotes, 

direction 

of flow 

Final 

Discharge 

Influent 

Sample point 1 

Sample point 2 

1 

N 

A 

B 

C 

D E F 

KEY: A: Settlement Tank; B; Biodek Filter (BOD Removal; C: Plastic filter media 

(nitrifying); D: humus tank; E: Tertiary filter nitrifying), F; Final Settlement Tank 
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3.5 Immunoassays methods, development, 

optimisation and protocols 

 

3.5.1 ELISA Development 

 

A checkerboard titration was used to select the working proportions for coating 

Estradiol-BSA (E2-BSA) and primary antibody for use in the ELISA.  Two 

fold dilutions of E2BSA (1000ng/ml to 0.001ng/ml) were prepared in PBS pH 

7.4.  A row of wells on a 96-well micro-titration plate (Polysorb Nunc) was 

coated with each Estradiol solution (200µl per well).  The plate sealed was then 

allowed to incubate over night at 4°C.  After incubation the coating buffer was 

removed by flicking out, the plate was then filled (300µl per well) with 1% 

OVA in PBS and incubated for 1 hour at room temperature to block any non-

specific binding sites.  After incubation the OVA solution was flicked out and 

then washed 3 times with PBST (Phosphate buffered saline containing 

500µg/L Tween 20).  A doubling dilution series of anti-Estradiol was added to 

the plate (100µl) row wise to the plate.  The plate was sealed and incubated for 

1 hour at room temperature and then inverted and washed three times with 

PBST. 

 

Monoclonal anti mouse IgG labelled with horseradish peroxidase (1:15000) 

was diluted in 0.1% OVA and added to each well (200µl per well).  The plate 

was again covered and incubated for 1 hour after which it was washed three 

times with PBST.  The ABTS ready to use ELSIA substrate was added to each 

well (100µl), agitated and then left to incubated for 60 minute in the dark.  The 

optical density of the wells was read at 20, 45 and stopped at 60 min with 2M 

HCL.  Absorption reading was taken at 405nm.  Combinations of conjugate 

coating and anti- Estradiol concentrations that yield an optical density (OD) of 

0.8-1.2 within 60 minutes were noted.  A selection of those combinations was 

further evaluated through the preparation of ELISA.  

 

3.5.2 Optimised ELISA Procedure 

 

The wells of the 96 well micro titre plate were coated with Estradiol-BSA 

(50µg/ml), eight wells coated with BSA were left for correcting for non-

specific binding (NSB).  The coated plate was prepared the day before use and 

stored at 4°C.  Taking the standard stock solution of Estradiol (1000µg/ml) a 
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dilution series was made up in PBS pH 7.4.  Monoclonal anti- 17β Estradiol 

antibody was diluted to 2.5µg/ml. Sample test mixtures of analyte standards 

(900µl) and αE2 anti-body were incubated together in capped eppendorf tubes 

for twenty minutes (9:1).  A blank sample was prepared to represent zero 

analyte present.  The test mixture was then pipetted (100µl) on the pate 

(replicated 5 times) and left on the plate for 15–20 minutes.  They were then 

flicked out and washed with PBST three times before ABTS was added to the 

plate.  The procedure is identical as the checkerboard titration from this point. 

 

3.5.3 Commercial ELISA assay 

 

A commercial kit for the detection of 17β Estradiol [Cat no 520 41] from IBL 

Immuno-Biological laboratories (Hamburg, Germany), assay procedure 

instructions given by the manufacture were followed as stated.  Standard 

samples were prepared in PBS and synthetic wastewater.  Real wastewater 

samples were analysed to determine level of Estradiol in the samples and then 

spiked real samples were used to validate recovery data. 

 

3.5.4 Optimised assay for the Spreeta™ analyser 

 

The gold surface of the sensor was cleaned prior to performing an assay with 

the regeneration buffer for 10 min and then washed for a further 10 min.  This 

was important especially when using a new sensor after extended dry storage. 

Once washed the sensor was then dried with nitrogen gas stream prior to 

performing sensor initialisation.  A typical procedure for performing an assay 

cycle was as follows: 

 

• Before commencement of a experiment the sensor was initialised in air 

and the calibrated in water to establish a background reading were all 

following measurement would be referred to; 

• PBS running buffer was flown past the surface for 5-10 minutes to 

obtain a baseline (10µg/min) 

• 100µl of Estradiol BSA conjugate at an appropriate concentration was 

injected into the sample loop and then allowed to pass over the sensor 

surface after a PBS baseline was established. 

• 900µl of sample was pre-incubated with 100µl of anti body 2.5µg/ml 

for.15-20 minutes. 
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• The proceeding sample solution was the injected into the sample loop 

and allowed to flow past the sensor surface at a rate of 10-60µl/ml for 

ten minutes. 

• PBS again was the allowed to pass over the surface to remove any 

unbound antibody from the surface for a further 5 minutes to obtain a 

baseline measurement. 

• The surface was then cleaned/ regenerated by flowing past regeneration 

buffer for 20 minutes followed by water for further 10 minutes. 

 

Once the assay procedure was complete the cycle was repeated for the next 

sample measurement.  Air initialisation and calibration in water was not 

required for subsequent measurements. 

 

3.5.5 Immunoassay protocol for the Biacore® 3000 

 

The immunoassay performed on the Biacore® 3000 as detailed below (table 

3.3) is designed to resemble as close as possible to the assay performed on the 

Spreeta ™ analyser.  Therefore, J1 plain gold chips, filtered PBS buffer and 

Persil regeneration buffer were used. 

 

Table 3.3 Immunoassay programmed assay protocol 

Immunoassay Programmed Protocol  
(Biacore ®3000) 

Running Buffer PBS 

Read point: 170 sec. 

Water baseline: Inject - 30 µl @180sec 

Read point: 350 sec. 

Running buffer: Pass for 300 sec. 

Read point: 530 sec. 

E2-BSA Conjugate: Inject -100µl @600sec 

Read point 1430 sec. 

αE2antibody Inject 100µl@1450 sec 

Read point 2050 

Regeneration buffer: Big inject 150µl @ 2100 sec 

Read point 2930sec 

Water wash & baseline: Big inject 150µl @3300 sec. 

Read point 3730 sec. 

Running Buffer: PBS 

Read point: 4010 sec. 
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3.5.6 Data analysis used for the ELISA and SPR 

Immunoassay calibration curves 

 

The amount of antibody binding in relation to the concentration of analyte 

present in the incubated samples for the ELISA assay was determined by 

subtracting the mean OD of the replicated analyte free wells (Bo) from the 

sample wells (B).  Non specific binding (NSB) was accounted for by 

subtracting the mean OD of wells coated only with BSA (control wells).  The 

formula used for the calibration graph is given below: 

[ ]
[ ]NSBB

NSBB

Bo

B

o −

−
=  

The ELISA calibration curves were plotted as B/Bo vs. Log10 [E2] and was 

fitted using a four parameter logistic concentration response equation: 
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This was used to fit the concentration response curves to the data sets (Sigma 

plot version 2.00, Jandel Corporation).  Where (a) is the maximum absorbance 

value, (b) is the minimum absorbance, (c) is the midpoint concentration 

producing 50% of the maximal absorbance and (d) is the slope at the inflection 

point of the sigmodal curve.  The working range of the assay was defined by 

10-90% of the B/Bo signal, the test midpoint is 50% of the B/Bo and the limit of 

detection was determined to be three times the standard deviation of the blank 

sample (Mallat et al., 2001). The SPR immunoassay data were analysed as 

detailed in section 2.5.6. 
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3.6 Results and discussion 

The main objective of this chapter was to design and develop an immunoassay 

that could be easily transferred to a bio-sensing platform.  The inhibition 

affinity assay has often been used for detecting environmental samples with 

optical sensors as it uses the heavy molecular weight of the antibody to be 

detected rather than the smaller lower weight molecules.  This assay format has 

also been demonstrated to be very sensitive.  With this in mind an ELISA plate 

assay was designed and optimised as an inhibition assay. 

 

3.6.1 Development and optimisation of an EIA assay for 

waste water analysis 

 

3.6.1.a The Design and Development of the ELISA assay  

 

The combination of Estradiol-BSA coating and antibody dilution indicated in 

Table 3.4, which yielded an O.D of 0.8-1.0 at either 30 or 60 minutes after 

substrate addition in the checkerboard titration were considered likely to yield 

workable ELISA.  Calibration curves were used to evaluate the performance of 

the indicated combinations.  It was determined that the coating of conjugate at 

50µg/ml gave the best coating converge.  The decision criteria were whether 

the ELISA working range had an acceptable working performance at low 

Estradiol concentrations and minimum consumption of key reagents. 

 

Table 3.4: Checkerboard titration assay schematic representation 
Shaded combinations yielded an OD of 0.7 – 1.2 at ether 30 of 60 min. (*) combinations 

selected for further evaluation in the ELISA for Estradiol 

 17β Estradiol BSA coating concentration (x2) (µg/ml) 

 2 1 50 25 12.5 6.25 3.125 1.562 0.78125 

1          

0.5     * *    

0.25   *  * *    

0.125   *  *     

0.0625   *       
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The shaded area of the table represents combination where the OD 

measurement between 0.7-1.2 at 30 of 60 minutes was seen.  A time restriction 

of 60 minutes was used as to try to optimise the length of time of the assay.  

The stared (*) tested combination yielded suitable calibration curves.  

However, anti body concentration at 0.25µg/ml and coating at 50µg/ml was 

chosen due to the high constancy of results and low standard deviation of data 

points.  It was noted that at low conjugate concentrations OD response was 

high but the curves produced from them were very erratic and displayed a high 

standard deviation. 

 

3.6.1.b Optimised ELISA assay for buffered samples 

 

Optimisation of the above chosen combination was required to give reliable 

results.  Several parameters were investigated.  Pre-incubation of the antibody 

and sample between 12 and 30 minutes was observed to be sufficient for the 

antibody/antigen interaction to reach equilibrium. At low incubation times the 

equilibrium was not reached and low binding was observed, at longer time 

intervals high OD response in antibody binding was observed.  It was noted 

that if the pre incubated sample were left on the plate for more than 20 minutes 

a re-establishment of the test sample equilibrium (i.e. of the bound and 

unbound antibody in the solution) resulted in the antibody preferring the 

binding sites on the plate and therefore giving high OD levels across all the 

wells exhibiting a failed assay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 

3.6.1.c Analysis results for spiked buffered samples using the 

developed ELISA assay 

 

The figure below (figure 3.2) show a typical calibration curve given by the 

optimised developed ELISA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The developed ELISA calibration curve for Estradiol in PBS pH 7.4 buffer.  The 

above graph is a standard calibration curve obtained performing the developed inhibition 

immunoassay ELISA.  The working range for this assay was between 0.3 and 100 µg/L.  The 

curve has been fitted using a 4 parameter logfit.  The error bars represent 1 standard deviation 

(n=5).   

 

The calibration curve for the developed ELISA (please refer to figure 3.2) had 

a working range of the assay was 0.3-70 µg/L with a limit of detection of 

0.2µg/L.  The test mid point of the assay was determined to be 10µg/L the 

assay is able to detect Estradiol in the sub pbb range and therefore could 

possible be sensitive enough for direct detection of Estradiol in real samples 

such as surface and waster water sample.  

 

3.6.1.d Analysis of simulated wastewater samples 

 

To determine how the assay behaved with wastewater.  The calibration curve 

was performed this time with each calibrate made up in synthetic wastewater.  

One can immediately observer that the standard curve is much shallower but 

the working range would seam to have increased and the curve displays a more 
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linear shape.  This could partly be due to matrix effect, but it is more likely to 

be due to sample buffering and the effect the ionic strength of the buffer has on 

the antibody.  Although the sample was buffered using 5x PBS concentration 

increasing the concentration may suit the assay better.  Collier et al 2002 

mentioned the use of 1% ovalbumin introduced into the test sample.  The 

rational for this was that ovalbumin can act as an emolument and would protect 

the antibody and integrity of the protein structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: ELISA calibration curve for Estradiol in synthetic waste water.  The above graph 

is a standard calibration curve obtained performing the developed inhibition immunoassay 

ELISA.  The working rage for this assay was between 0.03 and 100 µg/L.  The curve has been 

fitted using a 4 parameter logfit.  The error bars represent 1 standard deviation (n=5).   

 

The assay performed in synthetic wastewater required further optimisation. It 

can be seen from the above figure (please refer to Figure 3.3) that the 

calibration curve is more linear than the curve with buffered samples and has 

an extended working range. . The calibration curve had a working range 

between 0.1-100 µg/L and the lowest level of detection of 0.02 µg/L.  Analyses 

of spiked synthetic wastewater were determined using the calibration curve for 

buffered samples.  The sample was buffered using PBS (10x) and was 

corrected by finding the percent ratio of the blank sample in wastewater and 

that of the blank sample in the buffered sample. 
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3.6.1.e Analysis of Synthetic waste water samples and Real 

samples with micro titre plate-based assay 

 

The developed ELISA was used to measure spiked samples of Estradiol in 

synthetic wastewater and real wastewater collected from Cranfield University 

sewage treatment works. Wastewater (A) was sampled from the influent and 

(B) was sampled at the effluent point.  

 

Table 3.5: Analysis results of synthetic and real waste waster samples using 

the developed ELISA assay 

Analyte 

True 

Concentration 

[µg/L] 

Measured 

Concentration 

(µg/L) 

Recovery 

Rate 

[%] 

0.3 0.35 117 

1 0.98 98 

17β � Estradiol 

Synthetic 

waste water 3 3.35 106 

0.1 0.084 84 

1 1.13 113 

17β � Estradiol 

Wastewater 

(A) 10 16.4 164 

0.1 0.083 83 

1 1.15 115 

17β �Estradiol 

Waste water 

(B) 10 11.8 118 

 

It can be seen from the above table (table 3.5) that the recovery rate was very 

good.  According to the Association of Official Analytical Chemistry for 

Accuracy the recovery rates have to be in the range between 70-120% 

therefore, all but one meets this standard.  The high value may have been due 

to a pipetting error.  It was expected that the recovery rate for the spiked waste 

water sample would have been greater as there may have been Estradiol 

already present in the sample.  The results indicate that this was not so or that it 

was present at such a low concentration it was unable to be detected using this 

method. 
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3.6.2 Development and Optimisation of Immunoassay on 

the field analyser 

 

3.6.2.a Characterisation and optimisation of Estradiol assay on the 

analyser 

 

Reducing the concentration of the antibody concentration decreased the change 

in sensor refractive index measurement during the incubation period.  As the 

concentration decreases, the resulting binding curve resembles a straight line.  

At this point when the concentration of the antibody is sufficiently low, linear 

binding is achieved as antibody binding to the sensor surface becomes 

diffusion, rather than affinity limited.  The curve for anti-Ε2 antibody 

(0.25µg/ml) shows near linear behaviour.  The sensorgrams has been 

normalised against the maximum value measured during each sample 

incubation period (please refer to figure 3.4). 

 

 

Figure 3.4 Sensor system characterisation examined by reducing the concentration of anti 

17ββββ        Estradiol IgG antibody.  A linear binding regime has been achieved with an antibody 

concentration of 0.25µg/ml. At this concentration the antibody binding to the sensor surface 

becomes diffusion limited, rather than affinity limited 
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3.6.2.b Sensor response to specific and non specific binding 

 

Incubation of anti HCG to the sensing surface displayed very low non-specific 

binding, which was less than 1% increase in refractive index measurement of 

the PBS baseline (please refer to figure 3.5). This is approximately 3 times 

over the standard deviation of the PBS surface.  Therefore very little non-

specific binding had occurred at the sensor surface with HCG antibody 

(0.25µg/ml).   Pre-incubation of the surface with 1% ovalbumin showed almost 

no refractive index change.  This confirmed that the surface was well cover 

with absorbed protein and protected sufficiently from non-specific binding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Response of specific antibody and non-specific antibody to the sensing surface. 

A) Represents the baseline for PBS. B) Incubation of antibody to the sensing surface and C) is 

the new PBS baseline. Where αE2 anti-body shows specific binding to the surface and α-HCG 

shows no binding to the physically absorbed biologically specific layer. 

 

With BSA physical adsorbed on the sensing surface the anti 17 β � Estradiol 

antibody was incubated on the surface to determine any non-specific binding of 

the antibody to a non specific surface.  The non-specific base line time trace 

was subsequently subtracted from subsequent time traces. It was determined 
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that non-specific bind of the antibody was 97% lower, than the specific binding 

level. 

 

3.6.2.c Analysis of buffered samples 

 

A calibration curve for 17β Estradiol in PBS was performed.  The assay took 

three days to complete a triplicate set of standards.  Figure 3.6 shows one 

complete set of sample concentration measurements.  Several issues 

concerning the procedure were addressed.  Injection of high concentrations of 

analytes in the sample loop required extra cleaning with ethanol (90%) and 

PBST.  This was done to make sure that there was no carry over of sample 

contaminating the next test sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6:  Typical real time SPR immunosensor response for several 17ββββ Estradiol 
concentrations over the range of 0-300µg/L. Antibody concentration of (0.25µg /ml) A) 

Represents the baseline for PBS. B) Incubation of antibody to the sensing surface and C) is the 

new PBS baseline 

 

The new 12 bit digital processor reduced the signal to noise ratio from 1.0x10
-6

 

to 0.4 x10
-7

.  This increased the sensitivity to refractive index change which 

was translated to the smoother sensorgrams.  
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Figure 3.7:  Calibration curve for Estradiol using the Spreeta ™ analyser.  The standard 

curve is derived from standard samples analysed in triplicate.  The error bars indicate the 

standard deviation (1STD and n=3) 

The calibration curve for Estradiol using the Spreeta™ analyser had a working 

range of 0.3- 7µg/ml with a lowest limit of detection of 0.2µg/l.  The test mid 

point of the assay was determined to be 0.6µg/ml.  The assay was able to detect 

Estradiol in sub pbb range and therefore could be sensitive enough for direct 

detection of Estradiol in real samples such as surface and waster water sample. 

 

This assay showed very high sensitivity, which was comparable to the 

developed ELISA assay.  It is often acknowledged that ELISAs are often one 

magnitude higher than that of a biosensor.  As this is not true for this case this 

result may be due to the ELISA assay methodology.  As the sample is 

continually being passed over the sensing surface the sample has no 

opportunity to preferentially bind to the sensing surface and therefore a true 

representation of the antibody and analyte inhibition equilibrium in the sample 

test pot can be monitored more accurately by the biosensor assay compared to 

the ELISA assay.  However, the developed ELISA assay has a larger working 

range. 
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3.6.2.d Analysis of simulated wastewater sample 

 

The assay for Estradiol on the analyser was conducted in synthetic waster 

water.  The calibration curve is given below. 
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Figure 3.8: Calibration curve for ββββ Estradiol in synthetic waste water using the Spreeta ™ 
analyser. One data point represents a single analysis. Two data points are given for each 

concentration. (n=2). 

 

The calibration curve for synthetic wastewater compared to the buffered 

sample curve shows a similar calibration curve to samples in buffered samples 

(please refer to figure 3.8).  From the calibration graph the working range is 

approximately 0.1 to 10µg/L with a mid test point at 1µg/L. More data points 

would be required to give a more accurate calibrated working range. However, 

it can be observed that the data points obtained are very close together for each 

concentration sample. 
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Table 3.6 Analysis results of synthetic and real waste waster samples using 

the Spreeta ™ analyser assay 

Analyte 

True 

Concentration 

[µg/L] 

Measured 

Concentration 

(µg/L) 

Recovery 

Rate 

[%] 

0.3 0.28 93 

1 0.97 97 

17β �Estradiol 

Synthetic 

waste water 3 3 100 

0.3 0.29 97 

1 0.9 90 

17β �Estradiol  

Wastewater 

(A) 3 2.25 75 

0.3 0.28 93 

1 1.2 120 

17β � Estradiol 

Waste water 

(B) 3 2.4 80 

 

All of the recovery rates obtained by the Spreeta ™ analyser was all within the 

acceptable range (see table 3.6).  It was observed that matrix effect of the 

wastewaters did not have a significant effect on the obtained data.  Buffered 

synthetic waster water and buffered real wastewater was used as the running 

buffer for the analysis.  This may have reduced the matrix effect by priming the 

surface prior to the sample being introduced to the surface.  Filtering the 

wastewater may also have been sufficient enough to reduce any possible matrix 

effect.  It was also noted during the course of investigation that matrix effect 

did occur, represented by increased refractive index when synthetic wastewater 

that was over a week old was used.  This was considered to be due to microbial 

growth in the buffer system. 
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3.6.3 Immunoassay of 17β Estradiol on the Biacore® 3000 

 

3.6.3.a Analysis of buffered samples 

 

The same assay that was designed for the analyser was transferred directly to 

the Biacore ® 3000 system.   The only difference being that the assay cycle 

was automated, which allowed for high throughput of replication for each 

sample calibrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Calibration curve for Estradiol using the Biacore® 3000.  The standard curve is 

derived from standard samples analysed in triplicate.  The error bars indicate the standard 

deviation (1STD and n=3) 

 

The calibration curve for Estradiol using the Biacore ® 3000 (please refer to 

figure 3.9) shows a working range of 0.1- 10µg/L with a limit of detection of 

0.1µg/L. The test mid point of the assay was determined to be 1.0 µg/L.  The 

assay was able to detect Estradiol in sub pbb range and had a working range 

similar to that of the Spreeta ™ analyser. Therefore, could be sensitive enough 

for direct detection of Estradiol in real samples such as surface and wastewater 

samples.  
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3.6.3.b Analysis of simulated wastewater samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Calibration curve for 17ββββ Estradiol in synthetic waste water using the 
Biacore® 3000 analyser. The standard curve is derived from mean of three samples of each 

concentration.  The error bars indicate the standard deviation (1STD and n=3) 

 

For the calibration given for synthetic wastewater using the Biacore ®3000 

(please refer to figure 3.10), the working range of the curve is more 

pronounced than the one for the buffered samples.  The working range of the 

assay was 0.1- 10µg/L with a limit of detection of 0.1µg/L. the test mid point 

of the assay was determined to be 2.0µg/L.  The working range of the two 

calibration curves for buffered and synthetic waste waster was very similar. 
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Table 3.7: Analysis results of synthetic and real waste waster samples using 

the Biacore®3000 assay 

Analyte 

True 

Concentration 

[µg/L] 

Measured 

Concentration 

(µg/L) 

Recovery 

Rate 

[%] 

0.3 0.34 113 

1 1.0 100 
17β �Estradiol 

Synthetic 

waste water 
3 2.9 97 

0.3 0.20 67 

1 0.90 89 

17β � Estradiol 

Wastewater 

(A) 3 2.7 90 

0.3 0.26 87 

1 0.95 95 

17β � Estradiol 

Wastewater 

(B) 3 2.8 93 

 

The Biacore® 3000 recovery rates as shown in the above table (please refer to 

table 3.7) were all within the acceptable range and were very close to the true 

concentration of the test samples when determining them from the given 

calibration curves. 
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3.6.4 Determination and validation of EIA and 

Immunoassay Result using a commercial ELSIA Kit 

for immunoassay  

 

A commercial ELSIA test kit was used to determine the level of 17β Estradiol 

in real water samples and to compare the performance of the other developed 

assays. 

 

3.6.4.a Analysis of buffered samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11:  Calibration curve for Estradiol using IBL Estradiol ELISA kit.  The standard 

curve is derived from standard samples analysed form the mean of five wells.  The error bars 

indicate the standard deviation (1STD and n=5) 

 

The working range of the assay was 0.1- 2 µg/L with a limit of detection of 

0.05µg/L. The test mid point of the assay was determined to be 0.3µg/L (please 

refer to figure 3.11).  The assay would be sensitive enough to detect Estradiol 

in the sub-ppb range and had a working range that was smaller, but marginally 

better due to being able to detect Estradiol at lower concentrations then the 

other assays. The IBL calibration assay is normally calibrated using serum 

medium.  It was noted that the standard curve for buffered samples was 

shallower than the serum calibration curve.  However, each buffered 

concentration sample showed much tighter standard deviation than that 
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obtained by the serum curve (data not shown).  The assay should be sensitive 

enough for measuring Estradiol in real environmental sample 

 

3.6.4.b Analysis result for spiked synthetic wastewater samples 

 

The calibration curve for synthetic wastewater samples shows a near linear line 

with a large working range.  The calibration working range is perceivably 

extended.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Calibration curve for ββββ Estradiol in synthetic wastewater using the IBL ELISA 
Kit. The standard curve is derived from mean of five samples of each concentration.  The error 

bars indicate the standard deviation (1STD and n=5) 

 

The calibration curve (figure 3.12) shows a linear concentration range from 

0.01-2µg/L could be used to calculate for concentrations.  To analysis the 

working range assay limits for this calibration curve more data points 

increasing the range would be required. 
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Table 3.8: Analysis results of synthetic and real waste waster samples using 

the IBL ELISA kit assay 

 

 

Analyte 

True 

Concentration 

[µg/L] 

Measured 

Concentration 

(µg/L) 

Recovery 

Rate 

[%] 

0.1 0.09 90 

0.3 0.26 78 

17β Estradiol 

Synthetic 

waste water 1 0.92 92 

0.1 0.1 100 

0.3 0.34 119 

17β � Estradiol  

Wastewater 

(A) 1 1.1 110 

0.1 0.09 83 

0.3 0.96 74 

17β � Estradiol 

Waste water 

(B) 1 0.88 88 

 

The measured spiked samples in synthetic wastewater and real wastewater all 

fell within the acceptable recovery range limit (please refer to table3.8).  Blank 

samples of just real wastewater from both sites were assayed to determine 

whether there was any residing Estradiol present in the collected sample prior 

to it being used for spiked test sample analysis.  The result obtained indicated 

that there was no to very low concentration of Estradiol that could be detected 

using the commercial ELISA test kit. 
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3.6.4.c 3Summary of analysis samples in pure buffer, synthetic 

waster water and real samples 

 

For all of the samples measured in synthetic wastewater and real wastewater 

samples only one of them fell out of the accuracy range.  The working range 

for the developed ELISA was (0.3-70µg/L), for the Spreeta ™ Analyser (0.3-

10µg/L) and for Biacore® 3000 (0.1-10µg/L).  All of them show similar 

working ranges and were able to detect spiked samples of Estradiol in synthetic 

and real wastewater samples with very little sample pre-treatment. 

 

3.6.5 Design of the Proposed automated liquid handling 

system 

 

During the course of the research into developing a SPR based analyser.  It was 

obvious that automation of the fluidics would be an ideal situation.  A design 

for the automated liquid handling system was proposed and is feature below.  

The proposed design incorporated valves and a piston pump from Lee 

Electronics (Bucks. UK).  These components were chose as they were 

miniaturised and the whole system would be less than an A4 sized page.  Due 

to time and monetary constraints the fluid handling system was unable to be 

realised.  It was hoped that automation of the assay protocol would aid further 

assay development, increase sample reproducibly and demonstrate real remote 

sensing and surface regeneration in the field. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13:  Schematic design of the proposed miniature liquid handling system for the 
Spreeta ™ field analyser.  All of the components were to be from Lee Electronics,( Bucks UK) 

 

  

  

Valve 
 

G   s 

Waste  

Variable Pump 
 

  Sensor 

2 ml Reservoir  100ml Reservoir  

10 port valve system 
   



 

129 

3.7 Further Discussions and Conclusions 

 

Surface plasmon resonance as a bio sensing technique is a very power tool, as 

it requires no labelling.  The Spreeta ™ sensor is very robust and over the years 

of development it has improved on sensitivity and reliability.  In this chapter it 

has been demonstrated that the sensor can be used quantitatively as a biosensor 

with detection limits as low as 0.1µg/L. 

 

The developed ELISA assay showed good sensitivity with a working range of 

0.1-10µg/L. However, it was observed that by leaving the pre-incubated test 

sample on the plate for more than 20 minuets had an affect on the sample in 

solution equilibrium where the antibodies bound more readily to the plate 

surface than the free antigen.  A competition assay format with the antibody 

and analyte incubated together on the plate did not work either.  In a paper by 

Sherry et al. (Sherry et al., 1999) the authors also noted this similar 

phenomenon.  They had vitellogenin coated on their plates and their poly-

clonal antibodies preferentially bound to the plate surface.  

 

According to the Association of Official Analytical Chemistry for Accuracy 

the recovery rates have to be within the range of 70-120%.  For all of the 

samples measured only one fell out of this range.  The real wastewater samples 

were taken from Cranfield University sewage treatment works.  It was 

expected that Estradiol would have been detected in the blank samples.  

However, results of the blanks using the commercial ELISA kit showed no 

detectable level.  The population of males to females on the campus is 

approximately 8:2.  Therefore, it is not surprising that the level of Estradiol 

was not high enough to be detected by the ELISA kit.  A sample extraction 

technique and HPLC analysis may have been able to confirm this. 
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Chapter 4 

 

Photo Modulation of 

bioactive proteins for 

sensor regeneration 

applications 
 

 

4.1 Introduction 

 

The major advantage of using immuno-sensing techniques for detecting low 

molecular weight analytes is the use of high affinity antibodies.  The high 

affinity binding of the antigen-antibody complex on one hand allow the sensor 

to be a very effective biosensor as it would be intrinsically highly selective and 

highly specific to its target analyte.  However, this strong association more 

often than not makes it very difficult to achieve complete dissociation and 

regeneration of the sensing surface after the sensing binding event (Willner et 

al., 2001) .  Hence, most developed biosensors that utilize immuno-affinity 

molecules are single use devices. 
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The development of an effective reversible and therefore reusable 

immunosensors would certainly be a major advance in this field, especially 

when applied to environmental pollution monitoring and remote sensing were 

sensors could be placed in environments that are ether difficult or to hazardous 

to interfere with, and true continuous monitoring could be achieved where 

continuous measurements of analytes is required (i.e. in underground oil tank 

and aquifers. and underground water treatment pumps). 

 

Photo-chromic molecules are compounds that are able to exist in different 

isomeric forms that are very different from each other in geometry and 

chemical properties; they can change their form by being exposed to different 

wavelength illumination ranges switching from of visible [700-400nm] to ultra 

violet [>390 –200 nm].  This unique conformational chemical property, these 

compounds have could therefore be utilised as molecular switches when 

applied to bioactive systems.  The incorporation of these photo-stimulated 

molecules to bioactive proteins could in theory interact selectively with the 

proteins bio-activity.  Therefore, realising the possibility of true reagent-less 

and reversible biological activity and therefore advancing the applications for 

biosensors. 

 

This chapter will explore and characterise the behaviour and mechanism of a 

particular photochemical dye belonging to the spiropyran group of compounds.  

The photo-chromic dyes via covalent attachment will be coupled to the 

backbone frame of selected bioactive proteins.  The photo-modulation of these 

bioactive proteins due to dye coupling will be assessed and its feasibility to 

integrate photo-modulation in an immunoassay system for regeneration 

applications is investigated. 

 

 

4.1.1 Sensor regeneration applications approaches 

 

For the most part, commercially developed biosensors utilises cheap “single-

cycled” sensor chips or electrode arrays with bioactive surfaces that can be 

decoupled from the sensor transducer electronics that is necessary to produce 

the detection signal.  In cases where these surfaces are regenerated for repeated 

use there is often a loss in sensitivity due to incomplete dissociation of the 

binding recognition molecule to its analyte and/or damage (e.g. irreversible 

denaturing) to the biological surface active layer caused by the regeneration 

buffer used to decouple the affinity complex.  These buffers are often 

unpleasant and very aggressive by nature as they are used to disrupt naturally 
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occurring binding events.  To date, different regeneration strategies have been 

used the most commonly used are extreme pH buffers (e.g. glycine-HCL- 

buffer, NaOH and Triton 100 X buffers at pH 2 or 13 respectively), high 

concentration of surfactants such a SDS, saturated salt solutions such as urea, 

concentrated solvents e.g. >85% ethanol and chaotrophic reagents such as 

proteases (e.g. pepsin and/or papain) (Andersson et al., 1999; Wijesuriya, 

1994).  For some of theses regeneration buffer examples given above can 

completely regenerate some antigen-antibody complexes depending on their 

affinities.  However, more often analysis allowances are giving to the drop in 

surface sensitivity and often in systems such as optical detection systems the 

sensor surface requires the first batch of result to be discarded until the sensor 

surface has been used several times (often referred to as surface conditioning) 

to get a relatively stable platform.  However, in all these cases regeneration 

requires the introduction of reagents that affects the binding complex therefore 

continuous measurements is not achieved. 

 

By integrating photo-responsive molecules to bio-affinity system, regeneration 

of the sensing surface after a binding event could be achieved by the 

illumination of the surface at an appropriate wavelength and then simply 

washing away the dissociated affinity partner protein with the running buffer.  

Rapid reversible modulation of bio-affinity would provide continuous, real-

time monitoring.  This would offer the convenience of a regent-free, rapid, 

ligand release system (Kirkham, 1996). 

 

4.1.2  Photo-chromisium and Spiropyran Dyes 

 

Substances that undergo reversible colour formation under light irradiation are 

called photo-chromic compounds (Karube et al., 1976).  Spiropyran molecules 

are bicyclical compounds with one and only one atom that is common to both 

rings.  The photo-chromic spiropyran molecules are composed of two π-

electron moieties that are orientated orthogonal to each other.  The 

configuration of the compound means that each part exhibits its own individual 

absorption spectra rather than that of a complete conjugated system.  However, 

when illuminated with an appropriated light sources (e.g. electromagnetic 

excitation) bond cleavage takes place and the molecule reconfigures its self 

into a near planar structure referred to as the merocyanine form.  The pi-

electron system is now extended throughout the molecule and a bathochomic 

shift from U.V. absorption region to the visible region occurs (also know as a 

red-shift in the absorption spectrum) in the open merocyanine (Martinek et al., 

1978) (see figure 4.1). 
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Figure 4.1: Schematic of the photo-isomerisation of a generic spiropyran compound.  The 

spiropyran photo-isomer has a neutrally charged and is colourless in non-polar solvents. 

Illumination under UV light converts the spiropyran photoisomer into the coloured 

merocyanine form.  The merocyanine photoisomer is a highly conjugated compound, giving a 

red coloured solution.  Upon visible light illumination of the merocyanine form converts 

spontaneously to the spiropyran form and with the removal of UV illumination a slow dark 

conversion to the spiropyran colourless form also occurs. 

 

In non polar solvents spiropyran compounds exhibit normal photochromism 

and are colourless to pale yellow solutions becoming highly coloured when 

irradiated with U.V light and then reverting back to the colourless spiropyran 

form upon irradiation with visible light or via dark adaptation when left in the 

dark.  The “closed” spiropyran is a neutral hydrophobic compound, when 

photo-isomerised the merocyanine compound is highly coloured (i.e. which 

gives it its dye classification) and a zwitterionic compound and therefore more 

hydrophilic.  Hence, the spiropyran dye not only has the ability to change the 

geometry of its configuration and absorption profile but also each form has a 

drastically different polarity.  It is for this reason why spiropyran dye have 

been of interest in the scientific world and why in this course of investigation 

was chosen as the preferred photochromic dye over others that have only a 

geometrical change in their isomeric forms (e.g. azo dyes and fulgidides). 
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4.1.3   Photo-modulated control of biological systems  

 

Photosensitive molecules occur naturally and have had a great impact in animal 

and plant evolution.  Naturally occurring photoreceptor usually contain low-

molecular weight photo chromic molecules that are bound to a macromolecular 

matrixes (e.g. membrane proteins).  On irradiation the photo-chromic moieties 

undergo reversible stoichiometric rearrangements, which in turn induces 

structural changes in the macromolecular matrix (Pieroni et al., 1992).  Photo-

chromic compounds are ubiquitous in nature, they exhibit themselves as 

physiological molecular triggers for highly important photo-regulated 

biological processes, and two great examples are: 

 

1. Vision in animals is controlled by a photosensitive molecule rhodopsin, 

which is attached via a lysine residue group on the retinal membrane.  

Upon exposure to light a conformational change occurs in the molecule 

from a “cis” isomer to an all “trans” isomer.  This change is then 

accompanied by a series of cascading dark events due to further 

conformational induced changes in the molecular matrix causing variations 

in the optical membrane permeability, which eventually leads to neural 

impulses and visual perception (Pieroni et al., 1992). 

 

2. Photosynthesis in plants is controlled by phytochromes, which in turn 

control several morphological and developmental responses.  Phyoto 

chrome is a chromo-protein that contains a linear tetrapyrrole chromophore 

as a prosthetic group.  Illumination leads to a conformational isomierisation 

reaction of one or more the conjugated bonds of the tetrapyrrol molecule.  

This initial event induces a reversible α-helical folding of the protein 

(Roberts, 1986).  This response is induced by red light (660nm) and 

inhibited by far-red light (730nm).  The photo-chromic behaviour of the 

molecule leads to the photo-reversibility of the signal.  Hence, 

photosynthesis in the day during daylight and respirations at night. 

 

Three observations can be extracted from the above examples that demonstrate 

the properties naturally occurring photo-sensitise biological systems have (1) 

their macro-molecular matrixes (protein membranes) have low molecular 

weight photo-chromic moieties covalently attached into their structure. (2) 

Upon external irradiation with appropriate wavelength reversible stereo-

chemical rearrangement between one or more isomeric forms occur, (3) initial 

photochemical reaction induces conformational changes in the macromolecular 

structure causing direct or indirect physiological photo-responsive effect 

(Pieroni, 1992). 
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Photo-modulation of bioactive proteins by the introduction of synthetic photo 

chromic molecules have been investigated and successfully accomplished.  

Willner et al. (Willner et al., 1994) demonstrated that by covalently attaching 

thiophenefulgide active ester onto the protein backbone of α-chymototrypsin 

they were able to reversibly control its bio-catalytic activity in organic solvent 

upon appropriate illumination.  Song et al (Song et al., 1995) showed that by 

introducing azobenzene moieties into phospholipids they were able to 

demonstrate photo-reactive super molecular assemblies.  That is photo induces 

bi-layers and aggregation.  This highlights that by combining azobenze or 

related compounds with natural phospholipids, the construction of synthetic 
photo-regulated membranes and related materials is a possibility.  Azo dyes 

have also been used to photo modulate the activity of the enzyme azoaldolase 

and papain (Willner et al., 1990) as well as a photo-reversible inhibitor of 

cysteine and serine proteases (Westmark et al., 1993). 

 

4.1.4 Bio-modulation using photosensitive Spiropyran 

dyes. 

 

Spiropyran derivatives are an important class of photo-and thermo chromic 

compound that can be easily converted to the zwitterionic merocyanine isomer.  

The isomerization is unique in terms of accompanying large changes in 

structural and electrical characteristics of the molecule (Inouye, 1996).  

Spiropyran dyes have been used to modulate biological proteins.  Most of the 

research has looked at the incorporation of spiropyran dyes attached to 

relativity small molecules.  With the conceptual idea that by covalently 

attaching reversible photo- isomerization compounds to bioactive molecules 

(e.g. Concanavalin A or HRP), in one photo-isomerizable state of the photo-

chemical unit, the protein attains its tertiary bioactive structure and is in the 

“on” state, while photo-isomerization to the complementary state results in a 

deactivation of its biological function effectively switching “off” the bioactive 

protein (please refer to figure 4.2) (Zahavy et al., 1994; Willner et al., 1993). 

 

This model has proved to be successful, Kaganer et al 1999 showed a 

reversible immunoassay for Dinitrophenol (DNP) using surface plasmon 

resonance, (Kagner et al., 1999).  However, in this example photo-modulation 

was demonstrated via the photo modulation of the antigen and it affinity to it 

antibody rather than the antibody affinity to its antigen.  
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Figure 4.2: Schematic representation of the protein backbone modified by photo chromic 
groups.  The different photo-isomerizable forms changed by appropriate illumination affect the 

activity of the protein. In the “on” state the protein structure is unaffected by the covalently 

attached photo-isomer and therefore normal bioactivity is allowed.  In the off state the 

introduced photo-isomer has switched to its other form by being exposed to an external 

illumination and this in turn affect the bio-activity of the protein, effectively turning the 

bioactive protein off. 

 

It is therefore possible that by modifying the protein structure of an antibody 

with photo-chromic moieties rather than the antigens, photo-isomerisation 

switching may also induce a change in the affinity of the antibody complex to 

its antigen.  This scheme would also prove to be an effective and flexible way 

of establishing a renewable biosensor platform for use in remote situations,   

especially for optical sensors and the detection of low molecular weight 

pollutants. 

 

4.2 Aims 

 

The aim of the work in the following chapter was to synthesise a well 

characterised form of a spiropyran dye (1-(b-carboxyethyl)-3,3-

dimethylnitrospiro [indoline-2,2'-22-H-benzopyran]).  The intention was to 

utilize the dyes unique features and attempt to attach the dye to bioactive 

proteins to evaluate the possible bio modulation of the bioactive proteins in 

solution and on solid supports.  The objective of the study was to develop a 

reagent-less bio-reversible sensing surface for immunoassay applications that 

could be utilised in a remote or portable field analyser.  To realise this 

horseradish peroxidase was used as a model bioactive enzyme and two 

monoclonal antibodies: anti-fluorescein and anti 17β Estradiol was used. 

 

hν'  
hν  
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4.3 Materials and Methods  

 

4.3.1  Chemicals, biological compounds and equipment 

 

3-iodopropionic acid (Sigma code: I-1, 045-7); 2,3,3-trimethylindolenine 

(Sigma code: T-7, 680-5), Ethanol (Sigma Code: BCR656 ), Toluene (Sigma 

code:590835), Methyl Ethyl Ketone (MEK) (Sigma code T-4428), piperidine 

(Sigma code P5881), 2-nitrosalicylaldehyde (Sigma code N-5280), Methanol 

(Sigma code.M1770), horseradish peroxidase (Sigma code P-6782), Anti-FITC 

monoclonal antibody (sigma code: F5636), FITC-HRP (sigma code:P-2649), 

ABTS (code: A-9941sigma), SiO2 TLC plates, IR cuvette, visible light source 

and UV lamp. Anti- 17 β Estradiol, 6 Estradiol –6-CMO-HRP [cat: 65-IE16] 

(Fitzgerald Industries International inc., MA, USA). UV light 245 nm, Ultra 

violet light source UVG-54, UV products ltd, San Gabriel, CA:  245nm, 0.12 

amps at 220 volts), daylight filament bulb, 50W (Philips). 

 
 

4.3.2 Spiropyran dye synthesis and characterisation 

 

4.3.2.a Chemical synthesis of 1- (β-carboxyethyl)-2,3,3-

trimethylindolenium iodide: Precursor for the production of 

a carboxylated spiropyran. 
 

 

For the synthesis of the carboxylated spiropyran, the compound β-

iodoproponic acid was required to derivatise 2,3,3-trimethylindolenine to form 

the carboxylated precursor compound 1-carboxymethyl-2,3,3-

trimethylindolenium iodine.  The dye was synthesised using a modified method 

(Kirkham, 1996) adaptation of Aizawa, Namba and Suzuki (Aizwa et al., 1977) 

method (see figure 4.3).  
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Figure 4.3: A reaction schematic of the synthesis of 1-carboxyethy-2,3,3 

trimethylindolenium Iodide.  Where (A) 2,3,3-trimethylindolenine, (B): 3-Iodoproponic acid 

and (C): 1-carboxyethyl-2,3,3-dimethylindolenium iodide.  In equimolar amounts both 

compounds are refluxed together at 80°C for three hours then a further 1 hour at 100°C 

devolved in 20% v/v ethanol in toluene.  The mixture is allowed to crystallise over night at 

room temperature 

. 

An equimolar mixture of 3-iodopropionic acid (7.55g) and 2,3,3-

trimethylindolenium iodide (6.00ml) was heated at 80°C under reflux for 3 

hours and then 93 ml of 20% v/v ethanol in toluene was added to the mixture.  

The resulting solution was heated at 100°C under reflux for 1 hour and left 

overnight at room temperature. The purple precipitate was collected by 

filtration, and the solution was retained for further crystallisation. The purple 

solid was crushed using a glass pestle and mortar then washed with 5% ethanol 

in toluene. The filtrate was retained for further crystallisation. 

 

In order to gain a pure substance, the solid obtained was refluxed at 100°C in 

fresh toluene, using sufficient ethanol solvent to dissolve all the material 

(approx. 5-7%). This was left overnight at 4°C to re-crystallise.  The crystals 

were filtered off and dried to give a yellow crystalline product.  This was 

further filtered and heated under reflux in toluene at 100°C.  Ethanol was 

added drop wise until the solid was fully dissolved.  The solution was then 

taken off the heat to cool at room temperature and then left over night at 4°C to 

re-crystallise.  The resultant white crystalline solid was filtered and was stored 

in the dark at room temperature. 
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4.3.2.b   Synthesis of Carboxylated Spiropyran 

 

The method used to synthesise the spiropyran was based on a modified method 

of Namba and Suzuki (Namba et al., 1975) (see figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Schematic reaction sequence to synthesis the spiropyran dye. A: 1-

carboxymethyl-2,3,3-trimethylindolenium iodide, B: 5-nitosalicylaldehyde and C:1-β-

carboxyethyl)-3,3-dimethylnitrospiro[indoline-2,2'-22-H-benzopyran 

 

The quaternary ammonium salt product of the first reaction: 1-carboxymethyl-

2,3,3-trimethylindolenium iodide (section 4.2.2,a) was suspended in methyl 

ethyl ketone (MEK)[sigma code: M2886] (500 mg of solid in 600µl of MEK) 

in a round, flask ,  The suspension was dissolved by the addition of piperidine 

(125 µl) and heated under reflux at 110 °C until all solid was in solution 

 

The reaction mixture was taken off the heat and 2-nitrosalicylaldehyde (250 

mg) in 2ml of MEK was added to the reaction mixture and reheated under 

reflux at 110 - 120°C for 5 minutes.  The reaction mixture was left overnight at 

room temperature to allow the carboxylated spiropyran dye to precipitate.  
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The precipitate was filtered and washed under a vacuum with 50 ml of water 

and left to dry. The resultant solid was stored in the dark at room temperature.  

 

4.3.2.c TLC analysis of spiropyran dye 

 

To ascertain the relative purity of the synthesised crystalline end compound, 

thin layer chromatography using Silica oxide plates and aluminium oxide plate 

(Aluminium oxide 60 F254, neutral type E, Merk code A5581) was performed 

using 99.9% ethanol as the mobile liquid phase.  A 1mg/ml solution of the 

crystalline end product was made in pure ethanol and 2.5 µl of the solution 

were spotted onto a TLC plate.  All of the reaction compounds used for the dye 

synthesis were also spotted at the same concentration (1mg/ml) and used to 

compare for reaction identification.  The resulting positions of compounds 

were viewed in ambient light (i.e. silica oxide plate) and under UV light 

[245nm] (for aluminium oxide plates) and the positions measured, The Rf 

values were determined as the distance of the spots mid-point divided by the 

solvent front in millimetres.  Therefore, all Rf values are equal or less than 1. 

 

4.3.2.d  Photo chromic activity of SP-COOH in different solvent 

buffers 

 

To determine and demonstrate the successful synthesis of the carboxylated 

spiropyran and the product’s photo-chromic activity, a series of experiments 

were performed.  A 1mg/ml solution of the spiropyran dye (SP) was made 

using ethanol (99.9%).  Of this solution 100µl was taken and made up to 100ml 

in the ethanol (99.9%), methanol (99%) and MES (10mM, pH 6.7) buffer.  

 

Taking 1.5ml aliquot of each of the SP solutions using appropriate solvents as 

blanks, was placed in individual quartz cuvettes (path length: 1cm) and assayed 

using a spectrophotometer (M350 UV visible spectrometer).  Each solution 

was scanned between 200 and 650nm and zeroed at 800nm after being stored 

of 24 hours in the dark at room temperature; this was used as the baseline 

profile of photo-chromic activity due to dark adaptation.  Then each cuvette 

solution was illuminated with UV light (UVG-54, UV products Ltd, San 

Gabriel, CA.  [Peak output: 245 nm, 0.12 amps at 220 volts]).  The solution 

was exposed to the light for 20 minutes scanned and then illuminated for a 

further 20 minutes in visible light (daylight filament bulb, 50W Phillips) and 

scanned.  The light source was placed 10 cm away from each cuvette. 
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To determine the natural fade back of the merocyanine form to the spiropyran 

form or vice verse a 1 ml aliquot of 1mg/ml solution was illuminated for 15 

minute with UV light the sample was then scanned every two minutes until the 

absorption profile stabilised. 

 

4.3.3 Attachment of the spiropyran dye to bioactive protein 

modulation studies 

 

4.3.3.a Conjugation of spiropyran dye to bioactive proteins 

 

To conjugate the spiropyran dye to the protein of interest (i.e. Horseradish 

Peroxidase and Anti-FITC monoclonal IgG), 1 mg of dye was dissolved in 0.25 

ml of 100% ethanol and then made up 4ml in 0.1 M MES, (pH 6,8).  A protein 

solution of 2 mg/ml was made up in 0.1 M MES (pH 6.8).  The protein 

solutions of interest and the dye solution were mixed together.  Then 30 mg of 

1-ethyl-3 (3-dimethylaminopropyl) carbodiimide (EDAC) and 15 mg NHS 

were added to the solution and stirred until dissolved.  The reaction mixture 

was allowed to incubate for up to 4 hours, with gentle mixing at room 

temperature (Weston et al., 1999a; Hermanson et al., 1992). 

 

4.3.3.b Spiropyran conjugated protein purification 

 

The resultant reaction mixture (section 4.3.3.a) was purified using a Sephadex 

PD10 column (Pharmacia, Uppsala, Sweden. Exclusions limit 5x103 MW, 

code: 17-0851-01) pre- equilibrated with 25 ml of 25% ethanol in 0.1 M MES, 

pH 6.8.  A 2.5ml aliquot of the dye-protein reaction mixture was pipetted into a 

PD 10 column.  Once the sample had entered into the column it was followed 

by 3.5ml of eluting buffer.  Eluted 1 ml sample fractions were collected and 

carefully numbered in order of elution.  The fractions that passed through the 

PD10 column were assayed for dye attachment by absorption at 548 nm, the 

absorption maximum of the spiropyran moiety.  An un-reacted mixture of 

protein and dye was also passed down a column to determine fraction 

separation elution profile. 
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4.3.3.c Protein Assay of dye protein conjugates 

 

As the spiropyran dye adsorbs strongly under UV the concentration of 

spiropyran conjugated proteins cannot be determined by measuring the 

adsorption at 280nm. Determination of the conjugated protein content was 

achieved by using the modified Lowery assay (sigma code: P5656) method.  

The Lowery procedure has been found to be the most reliable and fairly 

straightforward assay for quantification of soluble proteins. In brief, a portion 

of the protein solution is made up to 1 ml with RO water.  A 1 ml aliquot of 

RO water was used as a blank.  1ml of Lowery reagent solution is added to the 

standards and samples tube and is left to equilibrate at room temperature for 

twenty minutes.  With immediate and constant mixing, 0.5 ml of Folin & 

Ciocalteu’s Phenol Reagent was added to each solution and incubated at 20 °C 

for 30 minutes for a deeper colour to develop.  At the end of incubation the 

samples were read against the blank at Abs 740 nm.  

 

Measuring the absorption of a protein solution at 280nm is commonly 

performed as a non-destructive analysis method for protein concentrations.  

The aromatic rings present in the amino acid residues within the protein 

structure are responsible for the absorption at 280nm.  As the spiropyran dye 

also absorbs strongly under UV illumination this method for protein 

determination was not suitable, as the dye absorption would mask the protein 

absorption affect. 

 

4.3.3.d Photo-modulation of Horseradish peroxidase in solution 

 

Horseradish peroxides was modified with spiropyran dye (section 4.3.3a) 

resulting with a protein: dye ratio of (9:1).  The solution was kept in the dark 

for 24 hours to allow sufficient equilibrium time for dark adaptation.  Taking a 

quartz cuvette, 1ml of solution (1mg/ml) was placed in the spectrometer with 

MES buffer (pH 6.8) as blank and 1 ml of ABTS was then placed in the cuvette 

and scanned immediately every 5 second for 3 minutes.  This assay was 

performed again as above but with the same concentration of SP- HRP solution 

exposed to visible light (Phillips tungsten filament bulb 80W) or UV (UVG-54, 

UV products Ltd, San Gabriel, CA.  Peak output: 245 nm, 0.12 mps at 220 

volts), light source 10cm form each cuvette for 30 minutes prior to ABTS 

addition and scanning.  The same procedure was carried out for native un-

conjugated HRP for comparisons. All of the measurements were performed in 

triplicate.  Native HRP (1mg/ml) and SP dye(1mg/ml) was dissolved together 

but not reacted and assayed as above this was also done in triplicate. 
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4.3.3.e Immobilisation of protein to modified micro titre plate 

 

Pre-modified micro-titre plates were used to covalently attach bioactive 

proteins to the solid support to then be modified in-situ by covalent attaching 

the carboxylated spiropyran dye.  To improve the binding capacity and reduce 

non-specific binding a carboxylated dextran matrix was attached to the surface 

of the aminated micro-titre plates.  A 0.1% wt/vol solution of CMD (Fluka 

code 27560) made up in Analar water was activated by the addition of 

2.5mg/ml EDC and 1mg/ml NHS.  The activated solution was then pipetted in 

to each well (100µl) and left to incubate for 1 hour at room temperature. After 

incubation the plate was washed 3 times with Analar water. 

. 

A 200 µg/ml solution of protein of interest (HRP or monoclonal antibody) was 

made in 100mM MES buffer, pH 6.7 and 100µl of solution was pipetted into 

each well.  These wells were then activated by the addition of 100µl of EDAC 

(2mg/ml)/NHS (2mg/ml) in pH6.7 MES buffer and the plate was shaken for 30 

seconds and then was left to incubate at room temperature for 40 minutes.  

After incubation the plate was washed once in Analar and 0.05% Tween 20 

solution and then three times in Analar water.  Aliquots on 100µl of glycine 

(100mM) was pipetted into each well and incubated for a further 20 minutes to 

deactivate any un-reacted carboxyl groups of the dextran matrix left on the 

plate. 

 

4.3.3.f Conjugation of spiropyran dye to the immobilised protein 

A 1 mg/ml solution of the spiropyran dye was dissolved in MES buffer (25% 

ethanol in MES, 100mM, pH 6.7) and was activated by the addition of 1mg/ml 

EDAC and/or 1mg/ml NHS.  100µl of the activated spiropyran dye solution 

was pipetted into each well and allowed to incubate for 40 minutes at room 

temperature. At the end of the incubation the plate was washed four times in 

100mM MES buffer.  
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4.3.3.g Immobilised Horseradish Peroxidase Photo-modulation 

Assays 

 

Three strips of eight micro-titre wells coated with immobilised native HRP was 

placed in a micro titre plate holder with three strips of immobilised SP 

modified HRP wells (Immobilised protein attachment to micro titre wells was 

described in section 4.3.3e and section 4.43f).  For blanks and control three 

strips of eight wells with only activated spiropyran dye (EDC/NHS) in the 

wells and three sets of strips with only MES buffer pH 6.8 was placed in the 

same plate holder.  All the wells of the prepared plate was then flooded with 

PBS buffer and placed in a shallow water bath (1cm) and illuminated with UV 

or visible light.  The lamps were held approximately 10 cm from the plate 

surface.  The water bath was used as a thermal buffer to protect the enzyme 

against thermal heating from the light source.  After illuminating each plate 

with either UV or visible light for ten minutes, the plate was immediately 

emptied of PBS and ABTS was added at 100µl per well and read at 405nm, 

every two minutes using a Dynex micro-titre plate reader (Jencones Lab 

supplies, Bucks UK).  Control wells consisted of blank wells with no protein 

attachment and no dye and another with blank wells with dye but no protein. 

 

4.3.3.h   Immobilised Anti-body photo-modulation assay and 

ELISA assays 

 

Three strips of eight micro titre wells immobilized with native anti-body and 
three strips of SP modified antibody wells were placed in a holder and flooded 

with PBS buffer (Immobilised protein attachment to micro titre wells was 

described in section 4.3.3e and section 4.43f).   The micro titre plate, prepared 

as mentioned above and was placed in a 1cm water bath.  The plate was then 

illuminated under UV or visible light for 10 minutes (the light source is placed 

10 cm above the micro titre plate).  After illumination under an appropriate 

light the PBS buffer was removed from the plates and 100µl of antigen-HRP at 

100µg/ml was pipetted into each well.  The plates are allowed to incubate for 

25 minutes and then decanted immediately.  Each plate was washed in Analar 

water (0.1% Tween 20).  ABTS was then added to each well at 100µl per well 

and then read after 1-hour incubation at 405nm.  Control wells consisted of 

blank wells with no protein attachment and no dye and another with blank 

wells with dye but no protein. 
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4.3.4 Photo modulation of antibody observed by SPR 

 

50µg/ml of FITC-BSA was physically absorbed on the sensor surface.  A 

solution of 1µg/ml of modified and native antibody was illuminated with UV 

or visible light held approximately 5cm above the cuvette filled sample 

solution.   After 10 minutes exposure to the appropriate light source, 100µl of 

antibody was past over the surface of the sensor.  The level of binding was 

observed and on rate recorded over 10 minutes. 
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4.4 Results and Discussion 

4.4.1 Synthesis of the spiropyran dye  

 

4.4.1.a  The synthesis of the carboxylated spiropyran  

 

To determine the successful synthesis of the carboxylated spiropyran (SP-

COOH), the quaternary ammonium salt: 1-carboxymethyl-2,3,3-

trimethylindolenium iodide, the precursor for the synthesis of SP-COOH and 

reaction compounds, was synthesised as given in section 5.6.2. The reaction 

compounds and dye product was dissolved in ethanol at 1mg/ml and dotted on 

a Silica oxide TLC plate and the plates were run in 100% ethanol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Photographic picture of the silica oxide TLC plate spotted with each component 
reactants for synthesising the carboxylated spiropyran compound.  Where (A): 3.iodoprponic 

acid, (B) ,3,3-trimethylindolenium iodide, (C) 1-carboxymethyl-2,3,3-trimethylindolenium 

iodide, (D) 5-nitosalicylaldehyde and (E) the spiropyran dye end product: 1-(β-carboxyethyl)-

3,3-dimethylnitrospiro[indoline-2,2'-22-H-benzopyraan. 

 

 

Figure 4.5 and Table 4.1 shows that the 1-carboxymethyl-2,3,3-

trimethylindolenium iodide had considerably different (Rf 0.304 and 0.703) 

profile values than the ether 3-iodopropionic acid (Rf of 1) which migrated 

along with the solvent line and 2,3,3 Trimethylindolinine (Rf 0.94).  The 

ammonium salt also showed a more pronounced purple colouration that 
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became highly coloured when illuminated with UV light.  The band at Rf 0.304 

is believed to be 1-carboxymethyl-2,3,3-trimethylindolenium, with the band at 

Rf 0.703 being impurities in the product.  The spiropyran dye product produce 

a clear single band at Rf 0.92, which was highly coloured when, illuminated in 

UV and faded quickly when exposed to visible light. 

. 

Table 4.1: Mean Rf value measurements of the reactant components for the 

synthesis of the carboxylated spiropyran dye 

 

Plate Key Compound name Mean Rf Value 

A Iodopropoinc Acid 0.81 

B 2,3,4 Trimethyllindolnine 0.94 

C Ammonium Salt 0.304; 0.703 

D 5 Nitrobezaldhyde 0.94 

E Spiropyran dye (SP) 0.92 

 

 

The different colouration (i.e. deep purple) under illumination with UV light of 

the spiropyran dye to its precursor compound (dark pink) and different Rf 

profile values indicated the purity and effective synthesis of the dye was 

achieved.  This initial chromatography analysis illustrates the near purity of the 

end product and proof of effective synthesis of the carboxylated spiropyran 

dye.  From the TLC analysis it would show that the synthesized product was 

sufficiently pure. 

 

 

4.4.1.b  Mass spectrometric analysis and Melting Point analysis of 

synthesised spiropyran product 

 

The melting point of the synthesised spiropyran dye was taken and found to be 

199.2-199.3ºC; this was in accord with that given in the literature (Arai et al., 

1996; Kirkham, 1996).  The confirmation of the synthesized product was 

confirmed by mass spectra (see figure 4.6). 
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Figure 4.6:  Mass Spectra of Spiropyran dye: Instrument Resolution: 6,000, Theoretical Mass 

(C21H20N2O5): 381.14504 (M+H), measured Mass: 381.14472. Error: 0.84ppm. Results 

interpreted by John Hill, Kent Mass Spectrometry. 

 

 

4.4.1.c Summary of dye synthesis section 

 

The synthesis of the spiropyran dye from the data given by TLC analysis, Mass 

spectroscopy and the dyes melting point all indicate that the desired product 

was achieved and the purity was high.  The yield of the precursor and the final 

end product was 80% and 90% respectively of the starting weight.  The TLC 

analysis with silica oxide plates showed good separation with ethanol (100%).  

Analysis with the aluminium fluorescence plate allowed the plate to be 

inspected under UV to determine the position of the uncoloured compounds 

and photo switching confirmation of the dye. Due to limited time and 

laboratory restrictions an NMR analysis was unable to be performed.  NMR 

analysis would have given added confirmation on the compound functional 

groups. 
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4.4.2 Spiropyran dye characterisation 

 

4.4.2.a Photo chromic activity of SP-COOH in solvents of different 

polarity 

 

The syntheses spiropyran dye was assayed in different solvents.  Solutions of 

SPCOOH (100µg/ml) were made up in ethanol, methanol and MES buffer. 

 

Figure 4.7 Absorption spectra of SP-COOH under Visible, UV illumination and dark 
adaptation. A) Ethanol (100%), B) methanol (100%) and C) MES buffer (pH7.1).  The sample 

solution containing 100µg/ml SP-COOH was assayed after an initial 24 hours of dark 

adaptation and then illuminated with UV light or visible light for five minutes before being 

scanned (400-650nm). 
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Figure 4.7a shows the absorption of the SP-COOH in ethanol under different 

lighting regimes to have very different absorption profiles.  The dark adapted 

solution showed a higher baseline than the visible baseline and therefore 

suggests that under visible illumination of the solution after UV radiation was 

able to drive the equilibrium of the merocyanine form further down towards the 

spiropyran form than its initial baseline.  Illumination of UV showed intense 

coloration and absorption at 550nm of the solution indicating the change of the 

colourless spiropyran form to the merocyanine isomer form. 

Figure 4.8b shows the absorption profile of the spiropyran in methanol.  The 

peak absorption for the merocyanine isomer form in methanol has shift slightly 

to 530nm and the absorption peak is lower than for ethanol.  The dark 

adaptation baseline is higher.  By illuminated with visible light the 

merocyanine form is driven down however this is not as dramatic as the profile 

seen for ethanol.  It would suggest that the equilibrium of the merocyanine and 

spiropyran forms were at a particular equilibrium in a racemic solution 

proportions existing in both forms. 

 

Figure 4.7c shows the absorption spectra of SPCOOH in MES buffer.  The 

profile show reverse photo-chromism compared to SPCOOH in methanol and 

ethanol.  The dark adaptation of the solution absorption profile showed that the 

merocyanine form existed.  The illumination of visible light drove the 

merocyanine form to it spiropyran form.  The absorption peak in the dark form 

was at 510nm.  Further illumination of the solution by UV irradiation showed a 

slight increase in absorption. 

 

4.4.2.b Fade back Photo-chromic activity of the Spiropyran dye 

 

Making a solution of the dye in 100% ethanol and scanning the sample 

between 400 and 650nm with an UV/visible spectrophotometer assayed the 

photochromic activity of the synthesised spiropyran. To determine the natural 

fade back of the merocyanine form to the spiropyran form, a 1 ml aliquot of 1 

mg/ml SP-COOH in ethanol was illuminated for 15 minutes with UV light. 

The sample was then scanned every two minutes until the absorption profile 

stabilised.  Natural fade back of the spiropyran form to the merocyanine form 

in MES buffer was also investigated using the same procedure but instead of 

illuminating with UV the solution was illuminated with visible light. 
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Figure 4.8(a+b): Fade back profile of the synthesised dye.  A) Show the merocyanine form of 

SP-COOH converting to the spiropyran form. 1.0 ml of 1 mg/ml SP-COOH in ethanol was 

illuminated for 15 minutes with UV light and allowed to fade back to the spiropyran form. B) 

Shows reverse photo-chromism of the SP-COOH form converting to the merocyanine form. 1.0 

ml of 1mg/ml of dye in MES The absorption profile was illuminated for 15 minutes with visible 

light and allowed to fade back to the merocyanine form recorded at two-minute intervals. 

 

Figure 4.8 a+b shows normal and reverse photo-chromism fade back of the 

spiropyran form of SP-COOH to the merocyanine and visa versa.  1.0 ml of 1 

mg/ml SP-COOH in ethanol and MES was illuminated for 15 minutes with UV 

of visible light and allowed to fade back. The absorption profile was recorded 

at two-minute intervals.  Figure 4.8a show the natural fade back of the 

merocyanine form to the spiropyran form, it was observed that for the 

absorption profile to reach the initial baseline plateau level took 30 minutes in 

the dark.  Figure 4.8b shows the reverse photo-chromism behaviour of the dye 

in MES buffer that had been illuminated with visible light and then left to adapt 

in the dark switching from the spiropyran form to the merocyanine form.  

 

For the spiropyran dye to dark adapted in MES buffer after illumination with 

visible light took 30 minutes to reach 68% of the adsorption peak showed by 

the dye in ethanol.  This would suggest that the natural fade back is a slightly 

slower process and extra energy provide by illumination from UV light is able 

to increase the intensity of adsorption.  It was also noted that the absorption 

peak in the different buffer systems changed. In with ethanol the absorption 

peak was found to be at 550nm and in MES buffer at 510 nm.  The information 

provided from examination of the dye in different buffers was used to optimise 

conditions for further work on protein-dye conjugate systems. 
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4.4.2.c Fatigue assessment  

 

To assess whether the dye showed any fatigue when constantly being changed 

form one isomer to another the spiropyran dye was put though five cycles of 

UV and Visible illumination.  Results obtained showed that for five 

illumination cycles the dye displayed very little to no degree of fatigue.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9:  Fatigue assessment of spiropyran dye switching under different illuminations. 

1mg/ml of spiropyran dye in solution of appropriate buffer (ethanol, methanol and MES) was 

repeatedly illuminated with alternating wavelengths of UV and Visible light and scanned 

consecutively for five cycles. 

 

Adsorptions for the dye were read at 550nm for ethanol, 530nm for Methanol 

and 510nm for MES. 
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4.4.2.d Summary of initial dye performance  

 

From the results obtained in this section it was observed that the Spiropyran 

dye shows very different characteristic in different solvents.  In ethanol the 

spiropyran displays normal photochromism where the dye is colourless in 

visible light and becomes highly coloured when exposed of UV light. In 

methanol, which is a slightly more polarised solvent, there is a shift in the 

adsorption peak from 550nm to 530nm.  The spiropyran dye showed complete 

reversal of the photo-chromic dye in MES buffer this is due to the polarised 

nature of the aqueous solution being able to stabilise the merocyanine form.  

The dye was investigated for fatigue and from the results obtained no fatigue 

could be seen.  Total switching of the dye from one isomer to another could be 

achieved by exposure to an appropriate light source for 10-15 minutes. 

 

4.4.3 Photo modulation of bioactive proteins 

 

To determine whether spiropyran  (SP) dyes can be used for the photo 

modulation of bioactive proteins, a simple, non-aggressive procedure of 

conjugating the dye to a protein to avoid any disruption to the protein structure 

and keep protein activity integrity, water-soluble EDAC reactions have been 

used to covalently attach spiropyran dye to proteins via the carboxyl group of 

the carboxylated spiropyran (SP-COOH) and the amino groups present on 

lysine residues and N-terminal amines of the protein primary structure.  The 

spiropyran dye was covalently attached to horseradish peroxidase to determine 

whether covalent attachment was possible and to determine whether the 

conjugated spiropyran could affect the affinity of biological recognition 

molecules for their substrate, a comparison of the conjugated spiropyran 

protein specific activity and that of the native HRP under the influence of UV 

and visible light was conducted. 

 

 

 

 

 

 

 

 

 

 

 

 



 

155 

4.4.3.a  Synthesis of the Spiropyran dye to Horseradish Peroxidase 

(SP-HRP) 

 

SP-HRP was synthesised as given in section 4.3.3a and the elution profile of 

the conjugate is shown in figure 4.10, from this result, fractions 4, 5 and 6 are 

pooled and were used for subsequent experiments. 

 

Figure 4.10: Elution profile of SP-HRP fractions from a PD10 column and protein content- 

fraction volumes 1ml.  The absorption of the spiropyran dye was measured at 510nm and 

protein content at 750nm (Lowery and Folin).  The first three fractions are the initial void 

volume fraction that is usually discarded. 

 

The SP-HRP absorption profile shows the conjugated SP-HRP being eluted 

immediate after the void volume of the PD10 column.  It was observed that 

there was little evidence of a second peck for un-conjugated spiropyran at 

fraction (9). Therefore, all the available spiropyran dye was conjugated to the 

protein or remained retained on the column.  Figure 4.11 shows the elution 

profile of the spiropyran dye at the same concentration passed down a PD10 

column. 

It was noted that as the protein separation was done in ambient light it was 

possible that any dye left on the column could have been bleached by the 

visible ambient light. 
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Figure: 4.11: Elution Profile of SPCOOH from a PD10 column- fraction volume 1ml.  The 

absorption of the spiropyran dye was measured at 510 nm.  The desalting PD10 column 

retained the low molecular weight dye well past the 6
th

 fraction, which is usually, were higher 

molecular weight proteins are eluted first. 

 

 

The elution profile of the dye shows that the dye was retained on the column 

and eluted after the ninth fraction with a peak occurring at the eleventh 

fraction.  By comparing the results obtained from figure 4.10 it can be 

concluded that most of the spiropyran dye has been conjugated to the HRP as 

the elution profile for just the protein is similar to the conjugated SP-HRP. 

Fractions Four, five and six of the covalently attached SP-HRP conjugate were 

pooled and the solution were assayed for protein concentration and spiropyran 

concentration. 

 

 

 

 

 

 

 

 

 

 

0.024

0.034

0.044

0.054

0.064

0.074

0.084

0.094

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fraction Number 

A
b
so
rp
ti
o
n
 @
 5
30
n
m
 (
O
D
 U
n
it
s)



 

157 

4.4.3.b Photo-modulation of native HRP and SP-HRP in solution 

after exposure to Visible and UV illumination 

 

To determine the photo modulation of the spiropyran conjugated HRP (SP-

HRP), unmodified HRP was used for a control.  The concentration of native 

(i.e. non modified protein) and modified sp-HRP was at 1µg/ml. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 a+b:  The Effect of UV and Visible illumination on native [A] and modified SP-
HRP [B].  HRP at concentration of 1µg/ml in 100 mM MES, buffer 6.8 pH and ABTS 

substrate.  The data points are absorbance measurements at 405 nm and the line represents 

linear regressions used to calculate the specific enzyme activity of the native and modified 

HRP under the different illuminations. Each data point represents the mean of three scans. 

 

The native HRP (please refer to figure 4.12a) shows almost identical specify 

activity rates when illuminated with either UV or visible light (0.0212 and 

0.0213 respectively).  Therefore, no photo modulation of the natural native 

enzyme occurs when exposed to visible of UV light i.e. no discernable 

difference between the oxidation rates of ABTS substrate.  The results show 

that for the modified HRP-SPCOOH the enzyme specific activity increased by 

17% of that of the native HRP under visible illumination.  The data for the 

modified SP-HRP showed that under illumination with UV light there was an 

increase of in enzyme activity by 79 %.  This large variation in activity 

between the two illuminations compared to the native HRP indicates a large 

photo-modulation of the modified HRP occurring solely due to the introduction 

the spiropyran dye. 
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4.4.3.c Photo-modulation of immobilised native and SP-HRP on 

micro-titre plates after exposure to visible and UV 

illumination 

 

To ascertain whether biologically active proteins could be immobilised on solid 

phase supports and photo-modulated.  HRP was used again as a model protein.  

The activity of the immobilised protein was estimated again using ABTS 

substrate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13(a+b:) Immobilised native HRP and modified SP-HR photo-modulation of under 

UV and Visible illumination.  Visible illumination (100watt) tungsten light at 5cm from 

surface, using a 1 cm deep water bath as a thermal buffer.  The plate was read every 2 

minutes.  Each data point represent mean of 24 repeats with blanks subtracted. 

The results show that the enzyme activity for the immobilised Native HRP is 

still conserved.  Under exposure to visible and UV light a slight decreases in 

activity can be seen under UV light which is most probably due to the protein 

being adversely affected by the UV exposure.  The difference in the two slopes 

shows a 20% drop from visible to UV.  

 

The immobilised modified HRP has retained its activity and under visible 

illumination a 20% increase of activity can be seen compared to native 

immobilised HRP.  There is approximately a 72% increase in enzyme activity 

for the modified SP-HRP when illuminated with UV light compared to the 

plate exposed to visible light.  
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4.4.3.d Summary of Photo-modulation of HRP 

 

Photo modulation of bioactive protein of horseradish peroxidase by the 

attachment of spiropyran dye to its structure was proved to be possible when 

the SP-HRP was free in solution and also when covalently immobilised on 

micro-titre plates.  The enzyme-dye conjugate upon exposure to UV irradiation 

showed a marked increase in activity of SP-HRP in solution and immobilised 

showing 79% and 72% increase respectively.  To determine whether the 

presences of the dye was not acting as a substrate or enhancer, un-reacted 

native HRP mixed with SPCOOH dye and hydroperoxide was used as a control 

this confirmed that the dyes presence was not acting as an enhancer nor a 

substrate and that any increase in the enzyme activity was due to covalent 

attachment of the photosensitive dye modulating the protein activity.  

 

 

 

Figure 4.14 (a + b): Bar chart showing the activity of immobilised native and modified SP-

HRP under different wavelengths illumination. A) HRP and SP-HRP in solution. B) HRP and 

SP-HRP covalently attached onto micro titre plate. Error bars represent the 1 standard 

deviation of 3 repeats for measurements taken in solution and 24 repeats on micro-titre plates. 

 

The summary bar charts in figure 4.14 clearly show that there is a marked 

difference between the specific activities of the modified HRP compared to 

native HRP under UV illumination.   
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4.4.4 Photo -modulation of antibodies 

 

4.4.4.a Covalent attachment of spiropyran dye to antibodies 

 

The procedure to covalent attach carboxylated spiropyran dye to an enzymes 

was very successful using the water based EDC reaction.  Conjugation of the 

dye was then attempted on antibodies.  Spiropyran dye was covalently attached 

to monoclonal anti-rabbit IgG and anti-FITC IgG antibodies. 

 

 

Figure 4.15 Elution profiles of SP-anti-FITC fractions from a PD10 column and protein 
content- fraction volumes 15.ml.  The absorption of the spiropyran dye measured at 510nm 

and protein content at 750nm (Lowery and Foilin).  The first two fractions are the initial void 

volume fraction that is usually discarded  

 

The results show that the conjugation of the Spiropyran dye to the antibody 

was conjugated successfully.  Elution of the antibodies followed immediately 

after the void volume of the column and fraction 3 and 5 were pooled together 

and used for further analysis.  These fractions were chosen as the elution 

profile of the spiropyran dye also indicated that it had a high conjugation 

attachment.  As would be expected the protein peak decreased with further 

elution and a second peak of spiropyran dye is seen at fraction seven and eight.  

Indicating elution free unattached spiropyran dye. 
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Conjugation of anti rabbit IgG antibody was not successful as the elution 

profile was very erratic.  It was observed that sedimentation of the protein 

occurred.  This suggested that by covalently attaching the dye to the protein 

made the antibody more hydrophobic and or destroyed the integrity of the 

protein structure to such a degree that aggregation and sedimentation occurred 

and was precipitated out of solution.  Re-suspending the protein solution in 

25% ethanol and MES buffer did not improve the solubility.  The antibody was 

not used for further investigation. Due to small quantities of available 

monoclonal 17β Estradiol antibody, conjugation of free antibody in solution 

was not performed. 

 

4.4.4.b Characterisation of modified anti-FITC antibody covalently 

attached to the spiropyran dye. 

 

Spiropyran dye modified monoclonal anti-FITC (SP-αFITC) antibody in MES 

buffer was allowed to dark-adapt overnight after conjugation at 4°C.  The anti-

body was then taken and 1ml (100µg/ml) was placed in a cuvette and scanned 

between 400-600nm.  The antibody solution was then exposed to either UV of 

visible light for ten minutes and then scanned immediately after exposure. 

 

 

Figure 4.16 Absorption spectra of SP-αFITC in MES buffer under visible, UV illumination 
and dark adaptation. The sample containing anti FITC (100µg/ml) was assayed after an initial 

24 hours of dark adaptation and the illuminated with UV light or visible light for five minutes 

before being assayed for adsorption 
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The absorption spectra of the α-FITC modified antibody (please refer to figure 

4.16) showed that in MES buffer the merocyanine isomer exists when the 

protein solution was exposed to UV illumination and when dark-adapted.  The 

spiropyran form only exists when exposed to visible light (i.e. absence of 

adsorption peak at 530nm).  This shows a different absorption profile to the dye 

on its own in ethanol or MES buffer (please refer back to figure 4.7).  This 

feature would suggest that the merocyanine form exits when attached to the 

protein as the antibody is ionised enough to stabilise the merocyanine moiety.  

This phenomena although  not well described was reported by (Harada et al., 

1994). 

Figure 4.17 Fade back of the spiropyran form of SP-aFITC to the merocyanine form.  1ml 

of 100 µg/ml SP-αFITC in MES was illuminated for 15 minutes with visible light and allowed 

to fade back to the merocyanine form. The absorption profile was recorded at two minute 

intervals. The scan represents 2, 15 and 30 minutes. 

 

The natural fade back of the SP-αFITC took thirty minutes to reach 

approximately 30% of the absorption of the dark adaptation baseline.  It was 

estimated that it would take the protein solution over two hours to revert back 

down to the dark adaptation baseline equilibrium. 

 

4.4.4.c Summary of conjugation spiropyran dye to antibodies 

 

The conjugation of the spiropyran dye to monoclonal anti-FITC was performed 

successfully.  Photo-modulation of the modified antibody showed reverse 

photo-chromism and the presence of the merocyanine form existing under UV 
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exposure and dark adaptation.  The adsorption peak for the dye conjugated 

protein was found to be at 510nm. 

4.4.5   Development of the micro-titre plate-based 

immunoassay 

 

It has been demonstrated that HRP could be successfully immobilised on to 

aminated micro-titre plates and conjugated in situ with the dye.  For the 

development of a micro-titre immunoassay, antibodies were immobilised on to 

micro titre plates and then modified with the attachment of spiropyran dye.  

This was done to ascertain whether photo-modulation could be achieved and 

applied to an immunoassay format.  The end objective was to assess whether 

photo-modulation was possible for biosensor surface regeneration. 

 

4.4.5.a Photo-modulation of micro titre plate immobilised native 

and Spiropyran dye modified antibodies 

 

Initially the antibody was covalent attached directly on to the modified 

aminated micro-titre plate using EDC at 30mg/ml.  The use EDC was used so 

that covalent attachment could occur under mild conditions to avoid extensive 

cross-reaction of the protein.  The immobilised antibody was then covalently 

modified with the spiropyran dye (anti-FITC dye modified antibody [SP-

αFITC] and anti – 17β Estradiol antibody [SP-α17βE2]). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 (a+b): The effect of photo-modulation on native and SP modified antibody 

under UV and visible illumination. A) Anti-FITC, B) anti-17β estradiol.  ABST assay was 

allowed to incubate for 15 minutes at 20°C before being stopped by the addition 100µl of 2M 

HCl.  
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Figure 4.18a shows the variation in binding affinity for native anti-FITC 

antibody to the FITC-HRP is very small and that the binding in terms of the 

absorption intensity is not discernibly affected by the exposure with different 

wavelength illumination.  Conversely, there is a marked difference of antibody 

affinity to the FITC-HRP with the modified SP-αFITC antibody between the 

two different illuminations.  The variation of antigen binding has reduced by 

20% from the UV exposed plate to the visible.  This would suggest that the dye 

when switched to the spiropyran form by visible light has less affinity to the 

labelled antigen than when it is in the merocyanine form i.e. under UV 

illumination the antibody is in its “on” state and under visible light the 

antibody is in its “off” state. 

 

For the monoclonal anti-17β Estradiol (please refer to Figure 4.18b) the result 
show that under visible light there is very little absorption variation in affinity 

binding between the two different illumination for the native anti-17β Estradiol 

and that of the modified anti-17β Estradiol under UV light.   However, a large 
increase in binding has occurred in the modified antibody under visible 

illumination.  The increase in illumination is ~ 100% more than the UV 

illuminated modified anti 17β Estradiol IgG.   For this antibody system the 

results would suggest that the attached dye increases the affinity of the 

antibody to its antigen when the dye is in its spiropyran form.  This maybe due 

to the binding site being more attractive to the highly hydrophobic 17β 
Estradiol molecule as the dye is increasing the hydrophobicity of the antibody 

binding site.   Therefore, the 17β Estradiol antibody is in its “on” state when 

illuminated by visible light and in its “off” state when illuminated by UV or 

dark-adapted. 

 

 

4.4.5.b Variation of conjugation reaction time and conjugation 

regents 

 

To determine the optimum reaction time of the conjugation of the spiropyran 

dye to the immobilised antibody in terms of dye loading and subsequent photo 

modulation the contact time of the dye was varied at regular intervals.  The 

conjugation reagents were also varied to determine whether it would affect the 

extent of SPCOOH loading with time. 
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Figure 4.19 (a+b): Conjugation reaction time effect of on the photo-modulation of antibody 
affinity to FITC-HRP.  Conjugation was performed using A) EDC and B) EDC/NHS to 

activate the Spiropyran dye (SP) before the solution was pipetted into the micro titre wells for 

covalent attachment to the immobilised antibody.  Error bars represent the standard deviation 

of eight repeats with blanks subtracted. 

 

Conjugation of the dye with EDC showed a highly erratic time profile and it 

would suggest that most the dye attachment occurred in the first 10 minutes.  

From the data obtained it was deducted that the optimum reaction time and 

conjugation reagent used was using EDC/NHS and reacting between 30-

40minutes as it showed the most photo-modulation difference between each 

illumination with close standard deviation.  However, the results obtained from 

EDC/NHS show a decrease in relative antigen affinity with time this clearly 

indicates that EDC/NHS is a more stable intermediate and continues to 

covalently attach dye to the protein reducing the antibody binding integrity. 
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4.4.5.c Established Photo-modulated micro titre plate immunoassay 

 

Using the information gathered in section 4.4.5(a and b) an initial direct 

immunoassay of different concentrations of labelled antigen was applied to the 

native and modified covalently attached antibody and illuminated at different 

wavelengths. 

 

 

Figure 4.20 (a+b):  Calibration curve for native [A] and modified SP-αFITC antibody [B] 
under UV and visible illumination.  Anti FITC was covalent attached to a CMD modified 

aminated micro-titre plate. 100µl of FITC-HRP at varying concentrations was pipetted into 

individual wells.  The plated was assayed with ABTS and stopped with 2M HCL after 20 

minutes. Error bar represent 1 standard deviation of the mean of 3 repeats, with blanks 

subtracted. 

 

 

The result in (figure 4.20 [A] and [B]) show very different calibration curve for 

native and modified SP-αFITC.  It can be seen that for modified anti FITC the 

calibration profiled is very different from UV exposed plate and visible 

exposed plate.  This agrees with the finding in section 4.4.5 were visible 

illumination decreased covalent attachment to the antigen. The binding has 

reduced between 55% and 70%. 
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Figure 4.21:  Calibration curve for native [A] and dye modified SP- anti Estradiol antibody 
[B] under UV and visible illumination.  Anti-Estradiol antibody was covalent attached to a 

CMD modified aminated plate. 100ul of Estradiol -HRP at 100µg/ml was pipetted in to 

individual wells.  The plated was assayed with ABTS and stopped with 2M HCL after 20 

minutes. Error bar represent 1 standard deviation of the mean of 3 repeats with blanks 

subtracted. 

 

The results for anti-Estradiol antibodies were not as conclusive as anti-FITC 

antibody and the calibration curve was very erratic.  However, from the results 

obtained the calibration curve for native anti 17β Estradiol showed a saturation 

of the antibody at the surface at 0.01µg/ml.  This may be due to very little 

antibody bound to the surface or denaturising of the antibody affected by the 

different illuminations.  The result obtained from the modified anti-β Estradiol 

antibody shows a similar trend to that of previous data presented in section 

4.4.5a and shows that there is an increase in antibody activity when exposed to 

visible light.  There is also a marked difference in calibration curve between 

UV and Visible illumination, were at 1µg/ml there was a 200% difference in 

affinity binding. 
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4.4.5.d Summary of the development of a micro-titre plate-based 

immunoassay  

 

In summary the result obtained in this study demonstrated that photo-

modulation of covalently attached photo-chromic dye to antibodies could be 

achieved and applied to an immunoassay plate analysis.  The different 

antibodies used in this study showed different photo-modulation 

characteristics.  For modified anti-FITC antibody the photo-modulation 

displayed its “on” state when UV exposed or dark-adapted.  For anti-17β-

Estradiol the photo-modulation “on” state was when it was exposed to visible 

light. 

 

4.4.6 SPR time course data 

 

The ultimate goal into investigating photo-modulation of bioactive proteins 

was to develop a photo-modulated immunoassay for the sole purpose of it 

being transfer onto the SPR analyser platform. 

 

4.4.6.a Photo-modulation of spiropyran dye modified antibody 

probed by SPR analysis 

 

To determine the level of affinity binding between native anti FITC and 

modified anti FITC/SPCOOH, 1ml of modified anti FITC in phosphate buffer 

(pH7.4) at 10µg/ml was passed over a surface prepared with BSA-FITC.  This 

was compared with the binding of the native anti- FITC.  
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Figure 4.22: Affinity binding of anti-FITC and modified SP- Anti-FITC on a BSA-FITC 
prepared surface SPR time course data.  1ml (10µg/ml) was allowed to pass over the surface 

at 50ul/ml and then buffer was changed to PBS to wash any unbound protein off.  Affinity 

binding was then calculated. The curves are composite curves of the mean of three samples for 

both antibody samples. 

 

The results show that the affinity binding time course for a-FITC and modified 

anti-FITC/SPCOOH are very similar and very little variation in binding has 

occurred.   

 

 

 

 

 

 

 

 

 

 

Figure 4.23(a+b): SPR time course sensorgram: showing affinity binding of native[A] and 

modified SP-αFITC [B] illuminated with UV or visible illumination before the binding 

event.   1 ml (100µg/ml) antibody solution was passed over a prepared bioactive surface of 

BSA FITC. At 500 second the antibody solution was exchanged with PBS to remove any 

unbound antibody and establish as new baseline. 
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The result shown in figure 4.23a shows the binding event of native anti FITC 

that has been illuminated with UV light and visible light for 20 minutes prior to 

passing over the bioactive surface of the SPR sensor.  The binding curves are 

very irregular; this may be due the antibody being affected by the illumination.  

The time course for the modified SP-αFITC again displayed a marked 

difference in binding when illuminated by visible light, in accord with the 

findings in previous sections. There is a 33% decrease in binding under visible 

illumination compared to UV illumination. 
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4.5 Discussion and Conclusions 

 

4.5.1 Synthesis and characterisation of the carboxylated 

spiropyran dye 

 

The method used to synthesis the carboxylated SP-COOH was fairly simple to 

perform.  By modifying the method used by Kirkham (Kirkham, 1996) a 

relatively pure substance could be synthesised with a high yield.  To synthesis 

the dye in this project the washing step of the precursor was re-crystallised and 

filtered three times each time using a reduced amount of ethanol.  This allowed 

the precursor ammonium salt to be dissolved in very small quantities of ethanol 

and the solid able to precipitate out at a relatively high purity once cooled.  The 

slow re-crystallisation meant less washing and reduced contact and 

consumption of the solvents used to produce the precursor.  The yield of the 

final product was approx 90% which is in good comparison with published 

methods (Kirkham, 1996; Aizwa et al., 1977). 

 

TLC analysis of the reagent products and synthesised solid indicated at the 

purity of the synthesised product, further element analysis and melting point 

were all in agreement to the purity and complete synthesis of the desired end 

product.   Due to limited time and laboratory constraints NMR analysis was 

unable to be performed.  This would have confirmed the synthesised 

compounds structure and true identification. 

 

The reverse photo-modulation of the spiropyran dye in aqueous media, was 

published by Namba et al (Namba et al., 1975) and it was felt important to 

investigate this further as most bioactive protein used in detection analysis are 

often carried out in aqueous environments.  The spiropyran dye was completely 

soluble in ethanol and was then able to be made up in aqueous solutions very 

easily.   It was observed that the visible absorption peak for free spiropyran dye 

in ethanol, methanol and MES buffer decreased with the polarity of the solvent.  

The absorption peak decreased and the photo-chromism reversed in 99.9% 

aqueous buffer.  The isomerizable merocyanine form was stabilized in aqueous 

buffer as it is in a hydrolysed state.   
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4.5.2 Spiropyran dye conjugation to soluble protein 

 

The aim of this study was to be able to photo-modulated Estradiol antibodies in 

order in apply them to the portable remote Spreeta ™ analyser for the detection 

of endocrine disrupters in waste-water.  Because of the limited supply of anti-

body it was first decided to demonstrate covalent attachment of the spiropyran 

dye to bioactive protein by using readily available horseradish peroxidase and 

anti -FITC.  These two protein have also been studied by Weston [1999], with 

the rational to take his preliminary study a little further and be able apply 

photo-modulation of antibodies into an immunoassay format for SPR sensing 

(Weston et al., 1999b).   

 

Horseradish peroxidase is a robust protein that is extensively used in 

immunoassays and biosensors development.  It is useful as it produces a redox 

reaction to electrochemical sensors, as well as being used as a non-radioactive 

label for micro titre plate immunoassays.  Weston (Weston, 1999) saw a 

decreased in activity by 53% due to covalent attachment of the dye to HRP,  he 

suggested that due to dye attachment enzyme activity was inhibited.  However, 

the results obtained in this study showed an increase in the HRP specific 

activity due to covalent attachment of the dye, both in solution and 

immobilized.  To the extent of the publication research taken for this study it 

was found that this phenomenon had not been mentioned before.  In a recent 

review publication on the stability of peroxidases, Azverdo et al. (Azevdo et al., 

2001) noted that higher activities of HRP can be obtained when immobilised to 

a solid support, than when free in solution.  This suggests that covalent 

attachment of HRP onto a solid support was able to suppress to some extent the 

unfolding process of the protein, conserving the active site and stabilising the 

enzyme (Azevdo et al., 2001; Kirkham, 1996).  Therefore, the increase in 

enzyme activity seen in this study could be due to the dye having a similar 

effect.  Where the conjugated spiropyran dye is influencing the enzyme bone 

structure in such a way that it conserves the integrity of the enzyme structure 

and affecting the substrate turn over rate. 

 

However, when the spiropyran dye modified HRP enzyme was exposed to UV 

the activity is seen to be even greater, this must be due to an opening effect 

caused by the presence of the highly conjugated merocyanine form.  Being that 

the conjugated form may play a role in moving electrons in the enzyme 

substrate system and therefore increase the ability of the enzyme turnover 

activity.  A brief study performed eight months after preparing a solution of 

spiropyran dye conjugated HRP, showed that the enzyme retained 90% of its 

activity compared to freshly prepared solution of native HRP.  Conversely, a 

solution of eight months old native HRP showed no activity whatsoever (Data 

not presented).  This further supports the hypothesis that the spiropyran dye 
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was able to stabilise the enzyme structure increasing the activity and stability.  

This finding would be of high value to affinity based systems were 

amplification of the detection signal is required and/or enzyme stabilisation is 

required.  Horseradish peroxidase has nine amino groups in its structure that 

would be available for covalent bonding to the carboxylated spiropyran dye 

using EDC/NHS chemistry.  It was estimated that all of the nine available site 

where successfully bonded to a spiropyran dye molecule. 

 

4.5.3 Photo-modulation and Immunoassay applications 

 

Photo modulation of antibodies in solution and immobilised on solid surfaces 

was demonstrated to be possible.  The initial study towards an immunoassay 

using photosensitive antibodies could be used to regenerate bio-sensing 

surfaces in a reagent-less way.  Further investigation to this line enquiry is 

required to confirm this position.  However, previous studies on photo 

reversible immunoassay has been demonstrated by attaching photosensitive 

molecules to the antigen (Kagner et al., 1999; Blonder et al., 1997; Kirkham, 

1996; Harada et al., 1994). This approach worked very well for their 

application.  More recently two papers have been published detailing the 

incorporation of photoisomerisable non natural amino acids onto proteins.  The 

authors detailed the synthesis and characterisation of horseradish peroxidase 

mutants containing L.p-phenylazophylalanine (azoAla) at different positions on 

the enzyme backbone.  Synthesis was achieved by using an Escherichia coli in 

vitro translation (Simonian et al., 2002; Muranaka et al., 2002; Hohsaka et al., 

2002; Miyata et al., 1999; Hohsaka et al., 1994; Martinek et al., 1978).  

Modifying antibodies and receptors properties via genetic engineering has been 

demonstrated to be a powerful tool (Hock et al., 2002) and to be able to 

incorporate photo-sensitive moieties to the antibody structure may also be a 

great possibility.  Further research in this direction may well realise the full and 

real potential of production and use of photo-controllable important proteins. 
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Chapter 5 

 

Final discussion, 

conclusions and future 

work  
 

 

5.1 Introduction 

 

 

The research presented within this thesis has examined several areas towards 

the development of a portable sensing system that utilised the phenomena of 

SPR as a basis for the detection of endocrine disrupting chemicals present in 

waste-waters and surface waters.  In addition, a special study has been made on 

the photo-modulation of bioactive proteins to create sensor interfaces which 

can be regenerated remotely, without the use of reagents and harsh chemicals.  

The fundamental points of this research are presented in this chapter are set out 

as a summery of individual chapters, followed by suggestions for further 

studies and future prospects. 
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5.2 Final discussion 

 

5.2.1 Evaluation of the Spreeta ™ sensor for the 

incorporation into a portable analyser  

 

Over the course of the research presented in this thesis the Spreeta™ sensor 

was continuously being updated and improved.  The sensitivity of the sensor 

has greatly improved and from the results obtained in this study it was 

concluded that the Spreeta ™ sensor can be directly compared to the Biacore ® 

3000 system in terms of sensitivity.  This finding is in agreement with a recent 

review where it was reported that Biacore® 3000 had a refractive index range 

of 1.33-1.40 and a limit of detection (resolvable refractive index change) of 

3x10
-7

 and that of the Spreeta™ had a refractive index change of 1.33-1.48 

with a limit of detection of 0.3x10
-6

 (Leonard et al., 2003). 

 

The integration of the sensor into a customised instrument is attractive and the 

result presented in this report demonstrates that it is highly suitable for field 

applications provided that all the necessary shielding and peripherals are 

incorporated.  Commercially the sensor has been incorporated into a miniature 

hand held refractrometer (Apt Electronics, Litchfield,USA) and is currently 

being developed into a bench top SPR instrument based on a 96 well assay 

format (Prolinx Inc. Washington, USA).  These examples demonstrate the level 

of interest instrument developers have in the sensor.  One of the main 

drawbacks of the sensor is that it has only one channel.  Hence, assay 

development and sensor application was very difficult to perform as a lot of 

data compensation was required (i.e. subtracting non-specific binding time 

scan from measured data).  Had there been a reference channel, non-specific 

binding and assay artefact probing could be determined easily and 

simultaneously.  Naimushin et al. used a β prototype double channel Spreeta ™ 

sensor for the detection of Staphlococcus aureus enterotoxin B in which they 

were able to detect concentration down to femtomolar levels (Naimushin et al., 

2002).  This was possible due to the use of an amplification step and 

simultaneous reference channel reading and subtraction.  Texas instrument are 

currently in the process of releasing a multi channel Spreeta ™ sensor, which 

will be a 3 channel sensor said to be available in 2004.  Nomadics Inc are also 

considering producing a bench top instrument that will have similar 

specifications as the Biacore® 3000.  However, this will not be available until 

2007 (John Wisehart, personal communication). 
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5.2.1.a Immobilisation of the biologically active sensing surface 

 

Due to the unique design of the Spreeta ™ sensor used in this study it was 

deemed important to find an appropriate way of immobilizing a bio-specific 

surface to the sensor and a way of regenerating the surface.  The sensor had a 

recessed gold surface that made it very difficult to modify.  Therefore, within 

this study the sensing surface was considered irreplaceable.  As the sensor was 

also to be used as a field deployable analyser a simple surface modification 

step and regeneration protocol was developed.  By physically adsorbing 

Ovalbumin conjugated to Estrone-3-Glucronide ligand at 50µg/ml onto the 

sensing surface, an in situ bio-specific monolayer could be prepared.  This was 

found to be suitable for subsequent antibody binding assays.  Other researcher 

using the Spreeta™ sensor also found that physical adsorption of there hapten- 

protein conjugate was appropriate for their assays (Elkind et al., 1999; 

Kukanskis et al., 1999; Strong et al., 1999; Melendez et al., 1996).  Covalent 

attachment of target ligands to the surface was found to be very difficult in this 

study as the SPR dip resolution was unable to be fully resolved after surface 

modification.  This was probably due to the immobilization method used and 

the added modified layer on the sensing surface having a high interfacial 

refractive index value that was near to or at the sensors refractive index limit 

(1.48).  It has been reported that covalent attachment onto the sensor is possible 

(Naimushin et al., 2002; Woodbury et al., 1998).  Therefore, a possible way of 

solving this problem would have been to try and reduce the amount attached to 

the surface and/or using a different liquid with a higher refractive index than 

water (e.g. 15% sucrose solution) for initialising the sensor.  Niamusin et al., 

and Woodbury et al., were able to immobilize gold binding peptide.-alkaline 

phosphatses on to the gold surface as a foundation layer and then covalently 

attach recognition molecules (antibodies) to the protein (Naimushin et al., 

2002; Woodbury et al., 1998). 

  

5.2.1.b Sensor regeneration of the SPR sensor 

 

Successful immobilization technology in biosensor design should yield a stable 

product with a high retention in affinity binding activity.  Conventional 

homogenous and heterogeneous immunoassays, respectively work 

discontinuously.  However, it is highly desirable that immunosensor devices, 

especially for environmental diagnostics, are capable of quasi-continuous 

recording.  Immunoassay using high affinity antibodies allows for high 

sensitivity but not fast reversibility.  High affinity and reversibility are 

mutually exclusive of each other (Luppa et al., 2001).  The regeneration of the 

binding sites of the antibody bound to the immunosensor surface needs harsh 

procedures.  The use of strong acidic or alkaline solutions or other known 

regeneration buffers are potentially harmful to the sensing surface and may 
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cause subtle baseline drift problems.  There are many different approaches to 

solve the “anti-body regeneration problem e.g. displacement with high 

concentration of analyte or antibody (Elkind et al., 1999) or antibody /receptor 

attachment on the sensor surface with physically adsorbed protein A or protein 

G  that captures the antibody in an orientated manner which in turn can be 

regenerated with a glycine /acid buffer (Aoyagi et al., 2003; Suzuki et al., 

2001). 

 

Surface regeneration of the sensing surface was tackled in this report by taking 

a novel approach and completely striping the physically adsorbed biologically 

specific layer on the sensor surface, thereby enabling the sensor to be reused.  

The employment of Persil laundry detergent which contains a defined complex 

mixture of surfactants, proteases, cellulases, lipases and bleaching agents, 

proved to be an effective regeneration stripping buffer.  It was also concluded 

that NaOH/Triton X100 regeneration buffer was effective at disrupting the 

anti-body / antigen binding releasing the immobilised antigen for subsequent 

assay binding.  Several publications have used this method for regenerating 

their surface.  This regeneration approach was found to be appropriate if 

wanting to use the sensor for only one type of antigen-protein conjugate 

immobilized on the surface (Simonian et al., 2002; Elkind et al., 1999; 

Kukanskis et al., 1999; Strong et al., 1999; Melendez et al., 1996).  However, 

the complete striping of the surface with Persil allowed for the surface to be 

available for different antigen- protein conjugate to be physically adsorbed on 

the surface making the sensor surface modification step easy and flexible.  The 

physical adsorption of the biologically specific layer on the sensor surface also 

proved to be a very reproducible way of immobilising the antigen, where the 

protein layer formed a good surface coverage of the gold surface with little 

non-specific binding. 

 

5.2.1.c Initial Indirect immunoassay for Oestone-3-Gulcuroninde: a 

modal EDC 

 

An indirect immunoassay was developed to detect Estrone-3-Gulcuroninde 

(E13G) as a model endocrine disrupter.  This was achieved by physically 

absorbing E13G-ovalbumin conjugate on to the sensing surface and then pre-

incubating 0.25µg/ml of anti-E13G IgG antibody with the sample.  The pre-

incubated sample was then allowed to flow passed the sensing surface.  The 

amount of free antibody bound to the sensor surface (change in the refraction 

index baseline) is inversely proportional to the concentration of the analyte 

present in the sample.  The assay calibration curve for the model EDC: E13G 

showed good reproducibility and had a working range between 0.1-100µg/L.  

This result compares favourably with other published SPR based detection of 

steroidal antigens which had working ranges of 0.5-50µg/L for progesterone 
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using Biacore® 2000 (Gills et al., 2002) and 0.976-62.50 µg/L for Morphine-

3-Glucuronide (Dillon et al., 2003).   

 

5.2.2 Development and optimisation of an Micro-titre plate 

ELISA and SPR analyser immunoassay for the 

detection of EDCs in environmental samples 

 

The development of an indirect ELISA assay for the detection of 17 β Estradiol 

(E2) was deemed to be important, as assay development and optimisation was 

required for the assay to be successfully transferred to both SPR platforms.  

Immunoassay micro-titre plate development allows for the optimisation of 

several parameters such as concentration of the coating protein buffer and 

antibody could be assayed and optimised at the same time rather then on the 

single channel sensor of the analyser.  The developed ELISA assay, the 

Spreeta™ analyser immunoassay, the Biacore® 3000 immunoassay and a 

commercial Estradiol ELISA test kit were all used to obtain calibration curves 

in spiked buffered samples and spiked synthetic waste water samples.  These 

curves were then used to calculate the concentration of spiked real waste water 

samples. 

  

5.2.2.a ELISA Assay Development for 17 β Estradiol 

 

The developed ELISA assay was designed to be directly transferable to the 

Spreeta ™ analyser and Biacore ® 3000 instruments.  With this in mind the 

main requirements of the ELISA assay was the pre-incubation of the antibody 

and sample and physical adsorption of the analyte-protein conjugate to the 

micro-titre plate.  It was also felt necessary to optimise the timescale that the 

ELISA was to be performed.  It was observed that by leaving the pre-incubated 

sample and antibody within the wells for more than 20 minutes the sample 

equilibrium of the antibody preferred to be attached to the plate rather than to 

the free analyte.  This may be due to the antibody preferring the antigen-protein 

conjugate binding site due to the surface creating a hydrophobic environment 

that the antibody prefers.  The advidity of the anti-body may also be greater for 

the conjugate antigen than the antigen in the free solution.  Sherry et al. (Sherry 

et al., 1999) noted a similar phenomena when they had vitellogenin coated on 

their plate and the polyclonal antibodies used in the assay preferred to bind to 

the plate then remain in solution.  The working limits of the ELISA assay was 

0.3-70µg/L 
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5.2.2.b Surface plasmon Resonance detection of 17 β Estradiol 

The immunoassay performed on both SPR instruments showed good 

comparability with the Spreeta ™ analyser having a calibration curve working 

range between 0.1-10µg/L and The Biacore ® 3000 instrument having a 

working range of 0.1-10µg/L.  Both of these working range are comparable to 

results published using SPR to measure estrogen hormones/mimics in water 

samples.(Usami et al., 2002; Pearson et al., 2001; Nishikawa et al., 1999).  

The performance of the SPR based immunoassay compared to the developed 

ELISA was very close to each other.  It would have been expected that the 

ELISA assay with a labelled detection signal amplification would have been at 

least one magnitude more sensitive (Luppa et al., 2001).  The reason why this 

was not seen is most probably due to the assay format.  As the SPR based 

system required a constant but steady flow of sample over the sensing surface.  

Therefore, the re-establishment of the antibody equilibrium in contact with the 

surface as mentioned above (section 5.2.2.a) was not able to play a role. 

Therefore, greater surface sensitivity displayed in the SPR immunoassay 

format then the ELSIA based assay. 

 

5.2.2.c Detection of Spiked samples in buffer, synthetic waste 

water and real waste water. 

For all the samples measured on all of the immunoassay formats the recovery 

rates of the samples where within the acceptable range with the exception of 

one.  The Association of Official Analytical chemistry states that recovery rate 

should be between 70-120%.  It could therefore be concluded that the assay are 

able to be used sufficiently with good accuracy.  

 

5.2.3 Remote sensing and regeneration of sensing surfaces 

using Photo-chromic dyes 

 

5.2.3.a Spiropyran dye identification and characterisation 

 

The method used to synthesis the carboxylated SP-COOH was fairly simple to 

perform.  A modified method used by Kirkham (Kirkham, 1996) resulted in 

producing a relatively pure substance with a high yield.  To synthesis the dye 

in this project the washing step of the precursor was re-crystallised and filtered 

three times each time using a reduced amount of ethanol.  This allowed the 

precursor ammonium salt to be dissolved in very small quantities of ethanol 

and the solid able being to precipitate out at a relatively high purity once 

cooled.  The yield of the final product was approx 90% which is in good 
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comparison with published methods (Kirkham, 1996; Aizwa et al., 1977) where 

final product yields were between 80-90%. 

 

The synthesised spiropyran dye was identified by performing a TLC analysis 

of the reagent products and synthesised solid.  The results indicated at the 

purity of the synthesised product, further element analysis and melting point 

results were all in agreement to the purity and complete synthesis of the desired 

end product.  An NMR analysis was unable to be performed on the sample.  

This would have confirmed the synthesised compounds structure and true 

identification. 

 

The dye was characterised in ethanol, methanol and MES buffer (pH 6.8). It 

was seen that reverser photo-modulation occurred in aqueous solution or when 

attached to a protein. The reverse photo-modulation of the spiropyran dye in 

aqueous media, had also been published by Namba et al (Namba et al., 1975). 

 

5.2.3.b Photo-modulation of bioactive proteins 

 

The aim of this study was to be able to photo-modulated Estradiol antibodies in 

order in apply them to the portable remote Spreeta ™ analyser for the detection 

of endocrine disrupters in waste-water.  Because of the limited supply of anti-

body horseradish peroxidase and anti –FITC were used to demonstrate the 

principle of photo-modulation.  These two protein have also been studied by 

Weston (Weston, 1999).  Horseradish peroxidase is a robust protein that is 

extensively used in immunoassays and biosensors development.  Weston 

(Weston, 1999) saw a decreased in activity by 53% due to covalent attachment 

of the dye to HRP,  he suggested that due to dye attachment enzyme activity 

was inhibited.  However, the results obtained in this study showed an increase 

in the HRP specific activity due to covalent attachment of the dye, both in 

solution and immobilized.  The increase in HRP activity has not been reported 

before..  In a recent review publication on the stability of peroxidases, Azverdo 

et al. (Azevdo et al., 2001) noted that higher activities of HRP can be obtained 

when immobilised to a solid support, than when free in solution.  This suggests 

that covalent attachment of HRP onto a solid support was able to suppress to 

some extent the unfolding process of the protein, conserving the active site and 

stabilising the enzyme (Azevdo et al., 2001; Kirkham, 1996).  Therefore, the 

increase in enzyme activity seen in this study could be due to the dye having a 

similar effect.  Where the conjugated spiropyran dye is influencing the enzyme 

bone structure in such a way that it conserves the integrity of the enzyme 

structure and affecting the substrate turn over rate.  The activity rate of the 

modified HRP enzyme increased further when exposed to UV this must be due 

to an opening effect caused by the presence of the highly conjugated 
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merocyanine form.  Being that the conjugated form may play a role in moving 

electrons in the enzyme substrate system and therefore increase the ability of 

the enzyme turnover activity.  This finding would be of high value to affinity 

based systems where amplification of the detection signal is required and/or 

enzyme stabilisation is required. 

 

5.2.3.c Towards the development of a photo-modulated 

Immunoassay  

 

The initial study towards an immunoassay implementing photosensitive 

antibodies presented in this thesis indicated that regeneration of the bio-sensing 

surfaces by photomodulation is possible.  Further investigation in this line 

enquiry would be required to confirm this position.  Previous studies on photo 

reversible immunoassay by attaching photosensitive molecules to the antigen 

has been reported (Kagner et al., 1999; Blonder et al., 1997; Kirkham, 1996; 

Harada et al., 1994).  The photchromic dye in this report was covalent attached 

using the water soluble EDC/NHS reaction.  This reaction is not site specific 

and had a more site specific reaction would have been used (e.g. Sulfhydryl 

reaction) which targets sites on the antibody that was close to the active sites an 

increase the photomodulation affect of the antibody binding capability may 

have been seen. 

 

Photo chromic dyes have been demonstrated to photo-modulate a wide range 

of bioactive proteins.  Recent work by (Muranaka et al., 2002; Hohsaka et al., 

2002) have shown that transcription of non natural photo-chromic moieties into 

bioactive protein structures is possible.  This is a very interesting field as 

enzymes systems that could be modified and produced in such a way would 

open the field to a plethora of application.  Photo-chromic dye modulation of 

bioactive proteins has been in the scientific arena for over thirty years and there 

is still a vast amount of investigation to be covered to build up enough 

momentum to advance in this course of study for true applications.  It would be 

safe to speculate that incorporation of photo-chromic moieties in antibody 

systems is a complex phenomenon as there are many different interactions that 

may occur between antibodies and dyes.  The application and interaction 

mechanism of non-natural moieties on the antibody structure is a very 

interesting area and one that has not been fully explored.   Photosensitive 

enzyme system is also an interesting field were enzyme modulation on a 

biosensor system could help increase resolved signal output in electrochemical 

sensors and stabilise and preserve the enzyme for extended use plus, the added 

value of being able to change its rate of substrate turnover by a reagent-less 

photo control procedure.  This would of course be of great use in enzyme 

labelled system where increased signal is need for detection at low 

concentration. 
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5.3 Future Work 

 

5.3.1 Spreeta™ Sensor  

 

The Spreeta ™sensor has been successful demonstrated in detecting spiked 

water samples.  It would then naturally follow for the sensor to be used with 

real samples in the field.  For this to be realised a sample pre-concentration 

protocol step would need to be developed in order to clean and concentrate the 

environmental sample.  Applying the sensor for the detection of other potential 

EDC by employing an estrogen receptor or polyclonal antibodies would also be 

a natural progression of this study. Further work on addressing surface 

modification and liquid handling atomisation is also required.  

 

5.3.2 Photo-chromic dyes. 

 

Further development and investigation into using photo-modulated antibodies 

for immunoassay systems would increase the knowledge and application of 

surface regeneration for biosensor applications. A more site specific method of 

covalently attaching the dye to the antibody and other bioactive proteins would 

be an appropriate course of study as optimisation of covalent dye attachment 

may increase the level in which the protein is photo-modulated.  An extended 

investigation of photosensitised HRP in immunoassays and electrochemical 

detection to ascertain whether the introduction of the dye to the enzyme 

backbone structure really does stabilise the protein, as well as using the 

enzyme increased activity  for photo-modulating the sensing signal (i.e. 

colourimetrically of potentimetrically) would be an interesting line of study. 
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5.4 Conclusions 

 

The study of direct optical immuno-sensing and it application for measuring 

steroidal EDCs for remote and field analysis has been both interesting and 

challenging.  The investigation and application of this study has resulted in the 

following conclusions. 

• The Spreeta™ sensor by Texas Instruments is a very stable and robust 
SPR system that is well suited for original custom manufactured 

equipment.  Incorporation of the sensor into a field analyser provided a 

controlled and self contained environment for the sensor to be used in 

the field. 

• The gold sensing surface can be easily converted into an immunosensor 
by physical adsorption of an antigen- conjugated protein onto the 

surface.  This was demonstrated to have good reproducibility.  

• Three immunoassay for 17-β−Estradiol have been developed. An 
ELISA plate assay that has a working range of (0.3-7µg/L), the 

Spreeta™ analyser (0.3-7µg/L) and the Biacore ®3000 system at (0.1-

10µg/L).  An immunoassay for Estrone-3-Gulcuronide was also 

developed which has a working range of (1.0 – 10µg/L). To detect 

Estradiol in real samples a sample pre-concentration step is required as 

Estradiol is often found at ppt levels in the field, 

• The three immunoassays were able to detect spiked samples of 

Estradiol in synthetic and real wastewater sample at sub ppb levels.  

The level of accuracy was very high and fell within the acceptable 

accuracy range. 

• The photo-modulation of horseradish peroxidase in free solution and 
covalent attached on a solid support increased its activity level by 79% 

and 72% respectively.  The free conjugated enzyme was tested eight 

months later and 90% activity was retained plus photomodulation  was 

still possible  

• Introduction of the spiropyran dye on two different antibodies displayed 
different photo modulation effects.  Both antibodies demonstrated a 

level of photo-modulation however Estradiol showed an increased rate 

of binding to its antigen while anti-FITC showed no difference but its 

binding affinity to FITC was reduced upon illumination with different 

wavelength. 
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e Assessment of the Spreeta™ Miniaturised SPR Sensor for

Detection of Endocrine Disrupters in Water

Adama Sesay1, Tania Kaplan and David C. Cullen1

Cranfield Biotechnology Centre, Cranfield University, Bedfordshire MK43 0AL, UK

Introduction
Endocrine disrupting compounds (EDCs) are a group of compounds that pose a potential threat to human and wildlife health by mimicking the biological effect
of natural endogenous signalling chemicals, e.g. sex hormones.  Thus, there is a desire for on-line or at-line analytical systems such as immunosensors for the
monitoring of EDC levels.

We report the use of an “off-the-shelf” miniaturised integrated surface plasmon resonance (SPR) sensor to demonstrate its suitability for analysing estrogenic
compounds in aqueous samples.  A competition/inhibition assay has been developed involving a simple sensor immobilisation and regeneration scheme
comprising physical adsorption of reagents and their subsequent removal via the novel use of a domestic laundry detergent.  A re-useable sensor is demonstrated
using estrone-3-glucuronide (E3G) as a model EDC and an anti-E3G antibody and producing a current working range between < 250 and 1000 ng/ml.

1 For further details contact A. Sesay (a.sesay.1998@cranfield.ac.uk) or Dr D.C. Cullen
(d.cullen@cranfield.ac.uk) and http://www.cranfield.ac.uk/biotech/

Sensor Concept & Design

To sensitively detect low molecular weight EDC analytes in an SPR sensor assay,
amplification of the direct refractive index (RI) change is required.  Therefore, we
incubate samples with a soluble anti-EDC antibody prior to passing over the SPR
sensor with immobilised antigen – i.e. detecting inhibition of antibody binding
due to presence of appropriate EDC (~500 fold amplification compared to direct
sensing).

To enable sensor reusability, we immobilise by physical adsorption a protein-
EDC conjugate to the sensor surface for the inhibition assay format and then remove
the all the protein/molecular assay components from the sensor surface with a
novel washing step using domestic laundry detergents prior to a new sensor assay
cycle.

Spreeta™ SPR sensors plus associated control box
and software were used (Texas Instruments, USA).
The Spreeta™ flow-cell was connected to a
peristaltic pump (typical flow rate 10µl/min).
Software settings: every 10 SPR scans averaged,
data interval 2.5secs and SPR minima location by
First Moment analysis.

Buffers and Reagents

REGENERATION BUFFER used to clean and regenerate the gold sensing surface
– 1% domestic laundry detergent (Persil Biological Colour, Lever Brothers Ltd.)
in Analar Water.  REAGENTS: anti-E3G monoclonal IgG (clone 4155) and E3G-
ovalbumin conjugate all in phosphate-buffered saline (pH 7.4).

Figure 3:  Calibration curve for
the SPR sensor assay for E3G.

Conclusions

• Demonstrated a simple reusable EDC inhibition/competition sensor concept
using an “off-the-shelf” miniaturised SPR device and a model EDC analyte
(estrone-3-glucuronide) and complementary antibody for sub-ppm detection.

• Demonstrated a novel sensor regeneration protocol using a domestic laundry
detergent – allows simple regeneration of bare gold sensing surface involving
reagent immobilisation via physical adsorption.

• Future work: (i) optimisation of current protocol and reagents, (ii) introduc-
tion of alternative receptors and analytes and (iii) automation of fluidics with
online solid phase extraction/pre-concentration/sample clean-up.
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Experimental Conditions
Surface Plasmon Resonance Instrument

Figure 1:  Texas Instruments Spreeta™ SPR
sensor.

Typical Sensor Analysis Cycle – see Figure 2

• Sensor surface cleaned/regenerated with flow of REGENERATION BUFFER
for 10 mins then washed with water flow for 15 mins.

• 100µl of E3G-ovalbumin conjugate (150µg/ml) flowed passed cleaned bare
gold sensor surface resulting in immobilisation of E3G by physical adsorp-
tion of conjugate.

• Anti-E3G IgG (100µg/ml) pre-incubated with known/unknown concentra-
tions of E3G in water for 45 mins (un-optimised).

• 100µl of preceding assay mixture flowed passed immobilised E3G – amount of
refractive index change/anti-E3G IgG bound recorded.

• Cycle repeated for next measurement

Novel Sensor Regeneration

Sensor Assay Results
Figure 3 shows a calibration curve for the SPR sensor assay for E3G with the RI

difference before and after the flow
of the antibody-sample solution
over the immobilised E3G layer.
From this preliminary data, an
initial working range between
less than 250ppb and 1000ppb
E3G can be estimated.  A degree
of non-specific binding of
antibody can be seen.

Discussion
The current sensor assay is un-optimised.  The assay cycle time is excessive with
significant reductions possible by modification of (i) flow-cell fluidics and (ii)
length of sample-antibody pre-incubation.  Whilst a model EDC has been used,
the incorporation of endocrine receptors as affinity molecules should increase the
spectrum of EDCs detectable.  Detection limits need to be lowered via (i) optimised
pre-incubation conditions and (ii) online solid-phase extraction steps to pre-
concentrate the analytes.

Current “washing/regeneration” of affinity sensor surfaces commonly involves
single detergents, variation of pH, etc.  We have used domestic laundry detergent
as an alternative – these contain complex mixtures of surfactants, proteinases,
cellulases, lipases, etc. compared to simple traditional “recipes”.

Figure 2 shows a typcial assay and regeneration cycle with an initial baseline in
water.  After adsorption of E3G-ovalbumin conjugate and subsquent antibody,
the introduction of 1% Persil solution efficiently removed the adsorbed protein.
This proved more reproducible and efficient than other washes such as 1M NaOH
and 1% Triton X100 that required a longer washing step to achieve a comparable
baseline.
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Figure 2:  Typical sensor assay cycle demonstrating both sensor regeneration
with domestic laundry detergent and measurement of antibody binding.
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System for Detection of a Model Estrogenic Compound

Adama M. Sesay and David C. Cullen

Cranfield Biotechnology Centre, Cranfield University, Bedfordshire MK43 0AL, UK

Introduction

The widespread presence of chemicals in the environment with the capacity to disrupt the endocrine system in both wildlife and humans has in the last decade become
an increasingly major concern.  Endocrine disrupting compounds (EDCs) can mimic or interfere with the biological effect of natural endogenous signalling chemicals
controlling the endocrine system.  EDCs are prevalent in surface and waste-waters and thus there is a need for an at-source or at-line analytical systems such as biosensors
for the monitoring of EDC levels.

We have incorporated an �off-the-shelf� miniaturised Texas Instruments SpreetaTM surface plasmon resonance (SPR) sensor into a field analyser and developed an
competition/inhibition assay for a model estrogenic compound in aqueous samples that has the potential for in-situ, semi-continuous analysis of  EDCs.  A regeneration
scheme employing the use of a domestic laundry detergent was used to strip and clean the sensing surface from absorbed protein.  The re-useable sensor has been
demonstrated using estrone-3-glucuronide (E3G) as a model EDC and an anti-E3G antibody producing a current working range of 0.075µg/ml to 0.5µg/ml.

For further details contact Adama Sesay (a.sesay.1998@cranfield.ac.uk) or Dr David Cullen
(d.cullen@cranfield.ac.uk) and see http://www.cranfield.ac.uk/biotech/

Sensor Analyser

Surface Plasmon Resonance Instrument

SpreetaTM SPR sensors plus associated control box and software were used (Texas
Instruments, USA).  The SpreetaTM flow-cell was connected to a manual sample
loop injection valve. Reagent buffers were pulled through the flow cell using a
peristaltic pump (typical flow rate 10µl/min) (see Figures 1 and 2).  Software set-
tings: every 20 SPR scans averaged, data interval 5secs and SPR minima location
by First Moment analysis.

Figure 4:  Calibration curve for
the SPR sensor assay for E3G.

Conclusions

· Established the incorporation of an �off-the-shelf� miniaturised SPR device
into a field analyser that can be used with a simple inhibition binding assay
for a model EDC analyte (estrone-3-glucuronide) and complementary anti-
body for sub-ppm detection.

· Reusability of sensor was achieved by using a domestic laundry detergent �
allowing regeneration of bare gold sensing surface and reproducible protein
immobilisation via physical adsorption.

Acknowledgements
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No. ENV4-CT98-0801) funded by the DG XII Environment and Climate (1994-8) work
programme of The European Commission.
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Figure 1:  External view of field analyser

Sensor Assay Results
Figure 4 shows a calibration
curve for the SPR sensor assay for
E3G with the RI difference before
and after the flow of the antibody-
sample solution over the
immobilised E3G layer.  From this
preliminary data, an initial work-
ing range between less than
75ppb and 500ppb E3G can be
estimated.

Discussion and Future Work
The current sensor assay is un-optimised.  The current assay cycle time is excessive
with significant reductions possible by modification of (i) flow-cell fluidics and
(ii) length of sample-antibody pre-incubation.  Whilst a model EDC has been
used, the incorporation of endocrine receptors as affinity molecules should in-
crease the spectrum of EDCs detectable.  Detection limits need to be lowered via
(i) optimised pre-incubation conditions and (ii) on-line solid-phase extraction
steps to pre-concentrate analytes and reduce potential non-specific effects.

Figure 3:  Typical sensor assay cycle demonstrating both sensor regeneration
with domestic laundry detergent and measurement of antibody binding.

Copyright Cranfield University 2000

Figure 2:  Internal view showing
sensor and reagent reservoirs

Experimental Conditions and Assay Design

Reusability of the sensor was achieved by in-situ immobilisation by physical
adsorption of a protein-EDC conjugate to the sensor surface for a subsequent
inhibition assay with soluble antibody.  150µl of an ovalbumin-E3G conjugate
was flowed passed the sensing surface to physical absorb and immobilise the
competing analyte.

Total removal of all the protein/molecular assay components from the sensor sur-
face was reproducibly achieved by employing a surface regeneration step using a
domestic �biological� laundry detergent prior to a new sensor assay cycle.
Buffers and Reagents

REGENERATION BUFFER: used to clean and regenerate the gold sensing sur-
face � 1% domestic laundry detergent (Persil Biological, Lever Brothers Ltd., UK)
in Analar water and filtered using 0.2µm filter.  RUNNING BUFFER: phosphate
buffer saline (pH 7.4).  CALIBRATION WATER: Analar water.  REAGENTS: anti-
E3G monoclonal IgG (clone 4155) at 100µg/ml and ovalbumin-E3G conjugate at
150µg/ml all in phosphate-buffered saline (pH7.4).  All solutions were de-gassed.

Results

Surface Regeneration and Conjugate Baseline Results

Current �washing/regeneration� of affinity sensor surfaces commonly involves
single detergents, variation of pH, etc.  By using a domestic laundry detergent as
an alternative (containing complex mixtures of surfactants, bleaching agents, pro-
teases, cellulases, lipases, etc) we were able to achieve a reproducible baseline and
subsequent conjugate adsorption for repeated assays (see Table 1).

Non specific binding studies have be carried out by flowing passed unrelated
antibody across the immobilised conjugate layer with no significant change in
baseline observed.
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  Regeneration with �Persil�  SPR Resonance Angle (º)

     Water baseline           69.158 ± 0.164

     PBS baseline           69.340 ± 0.063

     Conjugate baseline           69.356 ± 0.045

Table 1:  Effectiveness of sensor regeneration using a commerical laundry
detergent - number of repeated cycles = 15.
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Abstract. The ubiquitous presence of chemicals, both natural and synthetic, in the environment
with the potential to mimic hormones that may in turn interfere with the endocrine system in both
wildlife and humans has in the last decade become a major international concern. Hormone mimics
or endocrine disrupting compounds (EDCs) are especially prevalent in surface and waste-waters
and therefore, there is a need for an at-source or at-line analytical device for the monitoring of
EDC levels. We have incorporated a miniature integrated surface plasmon resonance (SPR) liquid
sensor from Texas Instruments into a field analyser and developed a competition/inhibition assay
for a model estrogenic compound in aqueous samples. The analyser has the potential for in situ and
semi-continuous analysis of EDCs. A novel regeneration scheme employing the use of a domestic
laundry detergent has been used to remove immobilised assay components between each assay cycle.
The resultant re-usable sensor has been demonstrated using estrone-3-glucuronide (E3G) as a model
EDC and an anti-E3G antibody producing a current detection range of 10 to 150 ng mL−1.

Keywords: endocrine disrupting compounds, estrone-3-glucuronide, hormone mimics, miniturised
SPR sensor, surface plasmon resonance

1. Introduction

Hormones are biologically active substances that are secreted into the blood system
via ductless glands of the endocrine system. They are active at very low con-
centrations (ng mL−1 to pg mL−1, i.e. ppb or ppt) and bind specifically to target
receptor sites on cell surfaces or within the cell nucleus. Once associated with their
corresponding target site they exert important regulatory, growth, homeostatic or
reproductive effects. The complexity of the endocrine system with cascading loops
of hormone signals and responses lends it self to the interference of the system at
many points (Arnold and McLachlan, 1996; US EPA, 1997) and hence sensitiv-
ity to environmental natural and non-natural hormones and hormone-mimics, i.e.
endocrine disrupting compounds.

The purpose of the work reported here is to provide an initial demonstration
of the application of a portable biosensor or bioanalyser device that could be im-
plemented near or at source (i.e. wastewater sewage treatment works or surface
waters) to determine concentration levels of hormones and their mimics in aqueous
environments. It is the aim of this on-going study to achieve this via a simple,

Environmental Monitoring and Assessment 70: 83–92, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.
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sensitive and stable surface bio/chemistry for the biosensor that can be replaced
remotely and automatically by a simple combination of fluidics, non-covalent im-
mobilisation and cleaning steps. Therefore for immobilisation, we have adopted the
physical adsorption from aqueous solution to the gold sensor surface of a carrier
protein-EDC conjugate to immobilise the specific analyte/hapten for a subsequent
competition/inhibition assay. A competition/inhibition assay was chosen to enable
the sensitive detection of low molecular weight EDC analytes/haptens in a SPR
sensor assay. The assay comprises the pre-incubation of samples with a soluble
anti-EDC IgG antibody prior to passing over the SPR sensor with immobilised
analyte/hapten. By detecting inhibition of antibody binding due to the presence
in a sample of an unknown concentration of an appropriate EDC, a potential 500
fold amplification compared to direct sensing of the low molecular weight EDC
analyte/hapten can be expected.

To enable sensor reusability, a novel regeneration step using a domestic liquid
laundry detergent was used to achieve reproducible removal of all protein and other
molecular assay components from the sensor surface, i.e. regenerating a clean gold
surface layer prior to each sensor assay cycle.

2. Materials and Methods

2.1. INSTRUMENTATION – SENSOR ANALYSER

The experiments were carried out using the SpreetaTM evaluation Module Kit man-
ufactured by Texas Instruments Inc. (TI) (Texas, U.S.A.) (Woodbury et al., 1998;
Elkind et al., 1999; Kukanskis et al., 1999). The commercially available package
consists of 50 miniature SPR sensors, associated electronic control box, flow-cell
and software. The SpreetaTM sensor is a fully integrated device were all the com-
ponents required for SPR such as light source and detector are integrated on a
small chip and encapsulated in an optical clear epoxy element to enable a standard
‘wedge-beam’ Kretschmann prism SPR type arrangement that requires no further
optical alignment after manufacture (see Figure 1).

The SpreetaTM SPR sensor has been integrated into a self-contained analyser
(see Figure 2) and is comprised of a steel housing containing the SpreetaTM SPR
device, TI flow-cell, TI control electronics, manual sample loop injection valve and
liquid switching valve (Ominfit, Cambridge, U.K.) and reagent reservoir bottles.
Reagents and buffers are pulled through the flow-cell using a peristaltic pump (at
present using an external pump – Minipuls 3, Gilson, U.K.) at a typical flow rate
of 60 µL min−1.
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Figure 1a. The Texas Instrument SpreetaTM sensor showing gold sensing surface and encapsulation.

Figure 1b. Schematic of internal structure of an early Texas Instrument SPR sensor–sensing region
is labelled ‘gold sensor film’.
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2.2. SOFTWARE SETUP

The SpreetaTM SPR system is supplied with dedicated control and data handling
software and was run on a notebook personal computer associated with the bioana-
lyser (see Figure 2). Typical software parameters used for experimentation were as
follows:

• Number of automated measurements set to 20 (therefore SPR data output over
20 recorded data event values averaged to make 1 datapoint);

• Minimal monitoring interval (time required to drive the sensor and analyse the
result) set to 0.25 sec (i.e. 20 × 0.25 = 5 sec per recorded datapoint);

• Every other data point event recorded (i.e. 10 sec between each saved data
value);

• First Moment used as analysis method to determine SPR minimum position
and hence refractive index.

2.3. BUFFERS AND REAGENTS

Phosphate buffered saline, pH 7.4 (PBS) (Sigma, U.K.) used as a running buffer
to prime the sensor surface and for rinsing and Analar Water (BDH, Poole, U.K.)
used for buffers and for refractive index calibration. The domestic laundry deter-
gent used as a surface Regeneration Buffer was 1% (v/v) Persil Biological Liquid
(Unilever, U.K.) in water.

Anti-Estrone-3-Gulcronide antibody (monoclonal IgG clone 4155, a kind gift
provided by Unilever Research plc. U.K.) was made up to 200 µg mL−1 in PBS
and 0.05% Tween 20.

Calibration samples of E3G (Sigma, U.K.) were prepared by dissolving 1 mg
of E3G in 1 mL of dimethylformamide (DMF) and then making a stock solution of
E3G at 1 µg mL−1 with PBS. Ovalbumin-E3G conjugate was supplied by Unilever
Research plc (U.K.) at 150 µg mL−1 made up in PBS. All solutions prior to use
were degassed under vacuum at room temperature to minimise bubble formation
in the fluidic system.

2.4. PROCEDURES

The gold surface of the sensor was cleaned prior to performing an assay with the
Regeneration Buffer for 10 min and then washed with water for a further 10 min.

This was important especially when using a new sensor or after extended dry
storage. Once washed the sensor was then dried with a nitrogen gas stream prior to
performing sensor initialisation. A typical procedure for performing an assay cycle
follows:

• Before commencement of an experiment the sensor was initialised in air and
then calibrated in water to establish a background reading were all following
measurements would be referenced to;
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Figure 2a. External view of field-anaylser showing external peristaltic pump and control notebook
computer.

Figure 2b. Internal view showing sensor and flow-cell connected to sample valve and reagent bottles.
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• PBS running buffer was flown past the surface for 5 min to obtain a baseline;
• Ovalbumin-E3G conjugate (200 µL) was injected in to the sample loop and

then allowed to pass over the sensor surface after a PBS baseline was estab-
lished;

• PBS was allowed to wash the sensor for 10–15 min to remove any loosely
bound protein conjugate and obtain adsorbed conjugate only baseline meas-
urement;

• An equal volume of anti-E3G IgG (100 µg mL−1) was pre-incubated with
sample (known/unknown concentrations of E3G) for 30 min;

• 200 µL of preceding assay mixture was then injected and allowed to flow
passed the sensor surface with immobilised protein conjugate;

• PBS again washed over the sensor for 10–15 min to remove any loosely bound
antibody and obtain a baseline measurement;

• The sensor surface was then cleaned/regenerated by flowing past the regener-
ation buffer over the gold surface for 15 min and then rinsing the surface with
water for 10 min.

Once the assay procedure was completed the cycle was repeated for next sample
measurement. Air initialisation and calibrating in water was not a required step for
subsequent measurements.

2.5. SPR DETECTION AND DATA ANALYSIS

The automatically recorded data according to the parameters set, were viewed from
the data table and transferred directly in to a Microsoft Excel 97 spreadsheet. The
time verse refractive index or angle sensorgram scan obtained was then analysed
manually to obtain changes in angle over time and relevant information on signal
to noise data.

3. Results and Discussion

3.1. INTERFACE REGENERATION

One of the main aims of this on-going research is to provide a practical and re-
producible affinity assay to be used with the SpreetaTM liquid SPR sensor. As we
have considered the gold sensing surface to be practically irreplaceable, our main
objective was to use the SpreetaTM sensor as a biosensor and attach a biologically
specific layer on the sensing surface and in turn find a regeneration protocol that
would be able to strip the surface of adsorbed protein thereby enabling the sensor
to be reused. Typically ‘washing’ or ‘regeneration’ procedures for affinity sensor
surfaces commonly involves exposure to single component detergents, variations
of pH, variations of ionic strength, etc. We have employed a domestic laundry
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Figure 3. Demonstration of repeated regeneration of a gold SPR sensor surface after physical
adsorption of protein using a commercial laundry detergent (±1 SD, n = 15).

detergent as an alternative that contains a defined complex mixture of surfactants,
proteases, cellulases, lipases and bleaching agents compared to simple traditional
regeneration approaches.

Figure 3 summarises the effect on the optimum incident angle for SPR excit-
ation for repeated immobilisation of E3G-ovalbumin conjugate and regeneration
of the bare gold surface via the domestic laundry detergent. The average SPR
angle increases as expected from water to PBS to conjugate as the refractive index
experienced by the surface plasmons increases. The small average increase due
to the adsorption of the E3G-ovalbumin conjugate is due to the de-naturation of
the protein upon adsorption. Since the functionality of the conjugate is due to the
availability of the E3G, the loss of the native ovalbumin structure is of no direct
consequence. The variation of the SPR angle for the various steps in the 15 repeats
included in Figure 3, demonstrate a significant level of variability in the absolute
SPR angle value though the relative changes within cycles are not as significant.

3.2. SENSOR ASSAY RESULTS

The second aim of this current report was to demonstrate that the SpreetaTM sensor
could be used as a biosensor to determine low molecular weight analytes such
as EDC’s for the eventual purpose of using the instrument as an automated field-
analyser. Although the current competition/inhibition assay is not optimised, we
have demonstrated a calibration curve for the model EDC, E3G, with good repro-
ducibility for a current working range between 10 and 150 ppb (see Figure 4).
This situation compares with published microtitre-plate based receptor assays with
lower limits of detection of 0.1 ppb (0.1 µg L−1) for the related 17β-estradiol
(Seifert et al., 1999). For the current study, E3G was chosen as the model EDC due
to the ready availability of appropriate antibodies within our laboratories. The SPR
data for an example single assay cycle is also shown in Figure 5.
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Figure 4. Calibration curve for the SPR sensor assay for E3G with the RI difference before and after
the flow of the antibody-sample solution over the immobilised E3G layer. From this preliminary data,
an approximate working range between 10 and 150 ppb E3G can be estimated (error bars are ±1 SD;
n = 3).

Figure 5. A typical assay time trace where A is the baseline of water, B is the baseline of phosphate
buffer saline solution 7.4 pH, C is the addition and binding of anti-E3G, in the present of competing
E3G, to E3G-ovalbumin conjugate, D is the regeneration of the gold surface using 1% Persil solution
and E is the final rinsing with water. The amount of antibody binding is found by determining
the refractive index change between conjugate baseline and antibody baseline (difference between
immediately prior to point C and prior to point D).
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The procedure for each assay cycle is as described in the Materials and Methods
section. Figure 5 shows a typical SPR output trace of such an assay cycle and shows
the various phases of the cycle and including the immobilisation of the ovalbumin-
E3G conjugate, the binding of the anti-E3G antibody and the regeneration of gold
sensing surface.

3.3. FURTHER DEVELOPMENTS

Further refinement and optimisation of the current assay is required as time-per-
assay-cycle, reduction of reagent (i.e. antibody) consumption and detection levels
needs to be addressed. The time for a single assay cycle is currently excessive as it
takes approximately 70 min for a full cycle to be completed. Significant reductions
are expected by modification of the flow-cell fluidics and increased automation.
By reducing the flow-cell volume and increasing the flow rate we will be able
to improve the kinetics and mass transfer of solutes flowing passed the sensing
surface while reducing the amount of reagents used. Additionally, the length of
sample-antibody pre-incubation has not been optimised.

The current detection limits demonstrated needs to be lowered if the sensor is
to be used in the field as levels of natural oestrogen are usually in the parts-per-
trillion range. The use of a pre-concentration step, i.e. solid-phase extraction or
an affinity column, will help to address detection limits and to reduce potential
matrix effects present in real samples. Furthermore, to broaden the range of EDC’s
detectable and eventually have a true EDC sensor, the incorporation of recombinant
endocrine receptors as affinity molecules can be envisaged.

4. Conclusions

There is a growing need for the analysis of potential environmental contamin-
ates to be conducted at or near source and in real-time. Therefore, the need for
portable, simple, low cost devices is of great importance. As hormone mimics
are especially prevalent in surface and waste-water, our aim was to investigate
whether the SpreetaTM SPR sensor was an applicable device to be used as a portable
bioanalyser.

The current status of this on-going project provides evidence that the ‘off-the-
shelf’ miniaturised SPR SpreetaTM liquid sensor can be incorporated into a field
analyser and can be used with a simply assay protocol for a model EDC analyte
(estrone-3-glucuronide) using a complementary antibody for sub-ppm detection.
The desired reusability of the sensor was achieved by employing a novel approach
using a domestic laundry detergent allowing the regeneration of the bare gold
sensing surface and reproducible protein conjugate immobilisation via physical
adsorption.

Future developments of this approach will include, (i) optimisation of assay pro-
tocols, (ii) improved fluidics, (iii) integration into the analyser of pumps and auto-
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mated sampling/fluid switching and (iv) up-stream sample pre-treatment including
filtering and solid-phase extraction/pre-concentration.
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