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This paper addresses the Ground Crew Rostering Problem with Work Patterns, an important manpower
planning problem arising in the ground operations of airline companies. We present a cutting stock-
based integer programming formulation of the problem and describe a powerful heuristic decomposition
approach, which utilizes column generation and variable fixing, to construct efficient rosters for a six-
month time horizon. The time horizon is divided into smaller blocks, where overlaps between the blocks
ensure continuity. The proposed methodology is able to circumvent one step of the conventional roster
construction process by generating rosters directly based on the estimated workload. We demonstrate
that this approach has the additional advantage of being able to easily incorporate robustness in the
roster. Computational results on real-life instances confirm the efficiency of the approach.
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1. Introduction

In this paper, we consider the Ground Crew Rostering

Problem with Work Patterns (GCRPWP) for a major

European airline. Ground crew comprises all of the crew

that an airline employs at an airport to take care of passen-

gers and aircrafts in order to facilitate a smooth operation.

This could be, for instance, customer service representa-

tives or ramp service workers. The rostering of these

workers is a complex, multi-stage planning process, which

starts with the initial forecast of labour requirements and

concludes with the construction of a roster that covers the

anticipated workload as well as possible. The roster speci-

fies what days of a pre-specified time horizon each

employee will work as well as the type of work they will

do. At this airline, the roster is published before the start of

each season (summer and winter) and states what each

person will be doing for the next six months.

Rostering staff can be seen as the process of assigning

an employee to a sequence of shifts. A shift refers to a

block of work, typically around nine hours in duration

and is associated with a specific task. Here, it is assumed

that shifts have already been defined and the challenge is to

generate an efficient roster for the employees while respect-

ing the legislation and the staff agreements. The most

important requirement, in this particular problem, is that

all staff work the same work pattern. A work pattern

specifies the number of consecutive days of work as well as

the number of required days of rest in between. For

instance, this airline uses a 6&3 work pattern, which states

that an employee will be assigned six days of work and

then receive three days rest. Of course, the work pattern

must be staggered across the employees to ensure that they

are not all off on the same days. Hence, associated with

any work pattern is a set of day-off patterns, the cardinality

of which is equal to the number of days in the work

pattern. The obtained roster should typically cover the

workload, while ensuring a certain degree of robustness.

Uncovered work is allowed, but incurs a penalty. Robust-

ness is incorporated by providing over coverage on the

estimated workload.

In this paper, we propose a cutting stock-based mixed

integer programming (MIP) formulation of the problem.

Initially, it is assumed that the required staffing level is

specified for each shift. To solve the model, we decompose

the six-month time horizon into smaller, computationally

tractable blocks. A procedure that combines column

generation and variable fixing is developed to solve each

block. The blocks are solved sequentially and consistency

between the rosters of successive blocks is enforced by

fixing shifts in the overlaps of blocks. The initial model is

then extended to generate rosters directly on the forecast

workload, and shift demands are made dispensable. The

number of employees working any given shift is determined
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by the new model as a part of the solution and robustness

is built into the solution. Finally, we test and compare the

proposed methodology on several instances arising in

practice.

The outline of the paper is as follows. Section 2 presents

a review of the research in this area. Section 3 provides a

more formal definition of the problem and presents the

mathematical programming formulation. A discussion of

the proposed optimization-based heuristic is given in

Sections 4 and 5. In Section 6, the initial model is modified

to generate rosters directly from the workload, while

Section 7 explains how we incorporate robustness. Compu-

tational results on real-life instances are presented in

Section 8 and conclusions from this research are summa-

rized in Section 9.

2. Literature review

Crew rostering is a classical optimization problem. It is a

very important problem as people are often both a critical

and an expensive part of the operations. Utilizing the

available manpower as effectively as possible can lead to

significant potential savings. Furthermore, good crew

planning ensures a high job satisfaction, which in turn

results in higher productivity.

An improved productivity can be obtained by using

computerized decision-support tools based on advanced

optimization techniques. The development has been pio-

neered by the airline industry (see eg Barnhart et al, 2003).

Nowadays, the rostering of pilots and cabin crew without

such tools is unthinkable for all of the major airlines. In

Butchers et al (2001), the authors estimate the annual

savings of Air New Zealand to be around NZD 15 million,

more than 6% of the annual estimated crew costs. Similarly,

in Anbil et al (1991) annual savings in excess of USD 20

million are reported. This is roughly 1% of the annual

estimated crew costs. The underlying optimization techni-

ques have since penetrated into other areas of manpower

planning and rostering. For example, many train companies

now use optimization methods for rostering drivers and

conductors (see eg Abbink et al, 2005). Other prominent

areas of rostering are call centres, protection and emergency

services, venue management, retail, and civic services. A

review can be found in Ernst et al (2004).

While there has been a large and continued focus on

optimization within the rostering of pilots and cabin crew,

the successful results have not lead airlines to thoroughly

investigate the potential of applying similar methods to

the rostering of ground crew despite the fact they are, from

a modelling perspective, very similar problems. Ground

crew rostering does, however, not have the added restri-

ction that a crew member may end up in a different loca-

tion to that where his/her roster started nor the disparity in

qualification levels of its crew members. The rostering of

cabin crew and pilots is also heavily constrained by strict

union rules as well as civil aviation rules. One noticeable

aspect in which ground crew rostering is more difficult is in

the length of the rosters that must be generated (typically

6 months); this makes it difficult to apply standard mathe-

matical programming techniques.

One of the few papers that addresses ground crew

rostering is by Dowling et al (1997). The authors present a

solution approach for rostering around 500 staff at a large

international airport. The proposed algorithm is based on

simulated annealing and rosters airline ground staff over

a monthly planning period, where the objective is to mini-

mize idle time. Other contributions include Brusco et al

(1995) and Chu (2007). Brusco et al describe a manpower

planning tool for United Airlines (UA). This tool produces

tour schedules for which employees bid using a seniority-

based system and is used by UA at over 100 airports. It is

a two-phase approach; the first phase generates require-

ments for labour using a set cover formulation, while the

second phase is a simulated annealing-based metaheuristic

that attempts to improve the tours found in the first phase.

Chu proposes a goal programming approach to generate

daily schedules for baggage handling at Hong Kong

International Airport.

Despite not being a well-studied problem itself, the

GCRPWP does bare strong similarities to many other

rostering problems arising in various contexts. In parti-

cular, nurse rostering and physician scheduling, both of

which arise in the area of health care, are two problems

which possess the strongest similarities. In nurse rostering,

one must usually provide suitably qualified nurses to cover

the workload demand based on the number of patients

in the ward, while satisfying a wide range of local and

national working regulations. Similarly, in physician sche-

duling, one must construct rosters for doctors at hospi-

tals so each shift of every day is covered by exactly one

physician. Although these problems can be modelled

similarly, they are slightly more complicated than the

GCRPWP. Firstly, the lengths of the on and off periods

are typically not fixed, as is the case here, but should be

within certain bounds. Furthermore, both problems attempt

to satisfy as many individual staff requests as possible and

thus must generate sequences of shifts specific to each indi-

vidual nurse/physician. Given the fixed nature of a work

pattern, it is impossible in this context to take into account

individual preferences such as particular weekends on or

off. Furthermore, in the GCRPWP, all staff are assumed

to be equally qualified in that they can work any shift.

For these reasons, we attempt to construct anonymous

sequences of shifts for groups of staff members. Nurse

rostering and physician scheduling models can easily be

adapted for the ground crew rostering problem; however,

as is the case with the rostering of cabin crew and pilots,

the time horizon is much shorter. This makes it difficult to

apply their solution methodologies directly. The most
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recent surveys on the nurse rostering problem are Cheang

et al (2003) and Burke et al (2004), while a good overview

on physician scheduling can be found in Gendreau et al

(2006). In addition, some interesting questions on the lack

of transition from academia to industry are raised in

Kellogg and Walczak (2007).

The use of work patterns is, however, also not

uncommon in rostering problems. For example, Alfares

(2002) describes a particular rostering problem where a

14&7 work pattern is required. The author considers cyclic

weekly demand and, besides minimizing the size of the

labour force, attempts to use as few different day-off

patterns as possible. Both Vohra (1987) and Alfares (1997)

consider day off scheduling assuming a 5&2 work pattern.

Alfares (1997) presents a two-phase algorithm for finding

the optimal allocation of day-off patterns, while Vohra

(1987) provides results on the minimum workforce size

required. The three papers consider a somewhat simpler

problem than the GCRPWP in that they are only con-

cerned with determining an optimal allocation of days off.

In the GCRPWP we must also include the subsequent step

of shift allocation if an employee is assigned a particular

day on.

One major difficulty with the GCRPWP is the length of

the rostering horizon. Six months is far too large to solve in

one model. We develop a decomposition approach that

breaks the rostering horizon into blocks of manageable size

and then solve a sequence of integrated optimization

models to construct rosters that span the six-month period.

This approach can be seen as a form of the iterative

sweeping method described in Eveborn and Rönnqvist

(2004). Since excessive solution times are undesirable, to

accelerate the solution time for each of the optimization

models we implement a heuristic variable fixing routine

when forcing integrality. This is a well-known approach

(see eg Desaulniers et al, 2002; Danna and Pape, 2005).

Wäscher and Gau (1996) evaluate several integer fixing

heuristics for the cutting stock problem.

When solving practical optimization problems, it is also

essential that one includes some degree of robustness in

the solution. That is, one should incorporate flexibility in

the solution to guard against unexpected uncertainties

in the input data. This is becoming an increasingly popular

field of research as companies realize the potential savings

by not having to re-optimize their schedule when some-

thing unforeseen occurs. The majority of recent contribu-

tions have appeared in the airline industry (see eg Burke

et al, 2010; Clausen et al, 2010; Weide et al, 2010). Here,

robustness is incorporated by specifying a certain contin-

gency of over coverage. This is to account for any unexpec-

ted increases and/or delays in the forecast workload, and

can also compensate for absent employees.

The proposed solution approach has similarities with the

set partitioning formulations usually found in the literature

on scheduling. Possible solution methods include Mehrotra

et al (2000), where shift scheduling problems are solved by

a branch-and-cut approach, and Eveborn and Rönnqvist

(2004), where a branch-and-price approach forms the basis

of a practical scheduling system. Branch-and-price has also

been applied with success in many cabin crew rostering

problems and nurse rostering; see eg Day and Ryan (1997)

and Dohn et al (2010). However, for these problems, the

time horizon is short enough for it to be considered in one

model. This is not the case here. Hence, our research con-

tributes to the literature on crew rostering by providing

a powerful decomposition method to the GCRPWP, which

is also based on branch-and-price and which is capable

of finding robust solutions that are proven to be within

a few percent of optimality.

3. The GCRPWP

In this section, we consider the GCRPWP in more detail.

In particular, we provide a formal definition of the pro-

blem and present a cutting stock-based integer program-

ming formulation. To aid in the discussion, we begin by

introducing the required terminology and notation.

The GCRPWP entails assigning a set of employees e
(where |e|¼ n) to a set of shifts S (indexed from 1, . . . ,S).

The required employee demand on each shift sAS must be

satisfied as closely as possible. Having too few employees

on any given shift is termed under coverage, which is

undesirable.

In this context, a shift refers to a block of work that has

a given start time es, a given end time ls, and a day dAD on

which the shift starts. Within a shift there are breaks, where

no work can be carried out. It is important to account for

breaks when calculating the amount of work that can be

done within a shift. The set D (indexed from 1, . . . ,D)

denotes the set of all days in the time horizon, while we

denote the set of all shifts on day dAD as SdDS. The
number of employees required for shift sAS. is given as qs.

It is assumed that each staff member can perform at most

one shift on any given day. In constructing a sequence of

shifts for any employee, one must respect several practical

constraints. Typically, one must ensure that each employee

has a certain minimum rest time between any pair of con-

secutive shifts and that no employee is assigned more

than a certain number of consecutive night shifts. The

classification of a shift as being a night shift depends on the

shift start time. As stated earlier, it is also required that all

employees work the same work pattern. This specifies the

number of days an employee will work consecutively,

(on-stretch), and the number of days of consecutive break,

(off-stretch). During an off-stretch an employee cannot be

assigned any shifts. Here, we consider a 6&3 work pattern.

That is, each employee must be assigned six consecutive

days (ie six shifts) of work before being assigned a three-

day consecutive break. Hence, this is a work pattern of

R Lusby et al—Column generation-based heuristic for rostering 3



length nine days. The fixed nature of the work pattern

ensures that all employees work, on average, the same

number of days per week. A legal sequence of on and

off stretches spanning the time horizon gives a roster-line

for a particular employee or group of employees. The set

of roster-lines for all employees together constitutes

the roster.

The use of a work pattern limits the number of feasible

roster-lines; however, the on-stretch is staggered across

the employees to ensure an even distribution of off days.

One can hence identify a set of pattern groups G based on

a given work pattern. Associated with each pattern group

is a unique day-off pattern. All day-off patterns conform to

the work pattern and state which days of the time horizon

an employee will work. For example, an employee could

start the time horizon on the first day of the 6&3 work

pattern and thus work the first six days of the time horizon,

or the employee could start on the eighth day of the work

pattern and therefore have the first day of the time horizon

off. Naturally, all combinations in between are also possi-

ble and this yields nine different pattern groups. Associated

with each pattern group gAG is an upper bound mg on the

number of employees that can work the corresponding

day-off pattern. This can be used, for instance, to force

consistency with a previously generated set of roster-lines.

In addition to the hard constraints, which must be res-

pected, it is often desirable to satisfy several soft constraints

when constructing rosters. A soft constraint is a constraint

that one tries to satisfy if possible; however, it can be

violated if necessary. If it is violated, the violation is mini-

mized. An important soft constraint in the GCRPWP is

that employees should receive the maximum number of

hours off during their three-day break. That is, the first shift

of an on-stretch should be a shift starting late in the day,

while the last shift should be one finishing early in the day.

Inclusion of this soft constraint is described in Section 4.2.

As we stated in Section 2, a key difference between the

GCRPWP and many other rostering problems is that the

aim is not to find individual roster-lines directly, but rather

roster-lines that several employees may work. All staff

are assumed to be able to work any shift and due to the

6&3 work pattern, it is impossible to take into considera-

tion such individual preferences as particular weekends on

or off. One can hence formally define the GCRPWP as

follows: Given a set of employees, a set of shifts (each

demanding a certain number of employees), and a work

pattern, find an allocation of employees to legal roster-lines

such that the total cost of the roster is minimized.

The GCRPWP can be formulated as the following MIP.

In what follows, we denote the set of all legal roster-lines as

R. We introduce a general integer decision variable xr for

each roster-line rAR that counts the number of times

roster-line r is used in the solution. We also introduce the

binary indicator variables asr and agr. The former indicates

whether or not shift sAS is contained in roster-line rAR,

while the latter indicates whether or not roster-line rAR
belongs to pattern group gAG. Additionally, we define a

decision variable us for each shift sAS, which indicates the

level of under coverage on the shift. A unit of under cover

on shift sAS is assumed to cost čs. Finally, we denote the

cost of any legal roster-line rAR as cr. This cost reflects the

penalties incurred in not satisfying soft constraints.

min
X
r2R

crxr þ
X
s2S

�csus; ð1Þ

s.t.

X
r2R

asrxrþusXqs; 8s 2 S; ð2Þ

X
r2R

agrxrpmg; 8g 2 G; ð3Þ

X
r2R

xrpn; ð4Þ

usX0; 8s 2 S; ð5Þ

xr 2 Zþ; 8r 2 R ð6Þ

The objective function (1) minimizes the total cost of

the roster-lines as well as the sum of the penalties incurred

in not satisfying the demand of each shift. The first set

of constraints (2) ensures that the total demand for any

shift is satisfied, possibly through the use of the relevant

under cover variable. Constraints (3) restrict the number

of roster-lines of a particular pattern group to be no more

than the maximum number permitted, while (4) is a con-

straint on the total number of staff. It prevents one from

assigning more roster-lines than there are employees. Con-

straints (5) and (6) ensure that all decision variables are

non-negative. In addition, all xr variables are also required

to be integer. One can observe that the above formulation

possesses strong similarities to the well-known cutting

stock formulation (see Amor and de Carvalho, 2005).

While there are relatively few constraints (|G|þ |S|þ 1),

there can potentially be an exponential number of

variables. In the next section, we briefly introduce the

column generation approach for solving problems of this

nature, before describing, in detail, how it can be applied to

the GCRPWP.

4. Column generation

Column generation is a well-known technique for solving

large-scale linear programming problems in which it is

impossible to explicitly consider all of the variables in the

problem. The approach requires one to decompose the

original problem into two optimization problems, which

are termed the master and the pricing problem, respectively.
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4.1. The master problem

The master problem is a restricted version of the original

problem, containing only a subset of the variables, while

the pricing problem is an optimization problem that

attempts to identify potential entering variables (columns)

for the master problem. The fundamental idea of column

generation is that since the majority of the variables in the

original problem will be non-basic at an optimal solution,

one need only consider, and generate, those variables that

have the potential to improve the objective function. The

objective function of the pricing problem is hence the

reduced cost calculation for the non-basic variables given

the dual variable values for the optimal master solution.

Column generation is an iterative procedure between the

master and pricing problem. The master problem solves to

optimality a restricted version of the original problem and

the pricing problem, using the dual variables of the optimal

master solution, implicitly prices all non-basic variables

and finds the one with the most negative reduced cost. This

variable is then added to the master problem. This pro-

cedure continues until the pricing problem cannot identify

a master variable with negative reduced cost. In which case,

optimality of the original problem has been obtained. If

one is solving an MIP, integrality can be achieved by

embedding the LP column generation methodology in a

branch-and-bound framework, termed branch-and-price.

For an introduction to column generation, we refer to

Desrosiers and Lübbecke (2005).

To apply column generation to the GCRPWP, we first

relax the integrality requirements on the xr variables. That

is, constraints (6) are replaced with

xr 2 Rþ 8r 2 R: ð7Þ

The relaxed master problem can then be identified as

model (1)–(5) and (7). The relaxed master problem with

only a subset of the possible roster-lines from R is termed

the restricted master problem. Using the dual vector of the

optimal solution of the restricted master problem, the role

of the pricing problem is to identify the non-basic roster-

line with the most negative reduced cost. That is, one must

find:

min
r2R

cr �
X
s2S

asr�s �
X
g2G

agr�g� �
 !

; ð8Þ

where ps is the dual variable value on the constraint of type

(2) associated with shift sAS, mg, is the dual variable value
on the constraint of type (3) associated with pattern group

gAG, and g is the dual variable on Constraint (4). All

constraints which define the feasibility of a roster-line must

be included in the pricing problem. These include the

minimum time that must elapse between successive shifts,

the maximum number of consecutive night shifts, and the

relevant day-off pattern. How these are enforced is

described in Section 4.2. For the GCRPWP, identifying

the most negative reduced cost roster in the pricing pro-

blem entails solving a resource constrained shortest path

problem.

To solve the GCRPWP one must construct a roster that

spans a six-month period. Since it is computationally

intractable to consider such a long time horizon in one

MIP, we present a decomposition approach that divides

the six-month time horizon into several shorter blocks,

each of which has an associated master problem and a

pricing problem. The blocks are solved in sequence, where

the solution to any given block is used as input to the sub-

sequent block. In order to be able to easily concatenate the

solutions to successive blocks, an overlapping time period,

with a duration equal to the number of days in the on-

stretch is defined between successive blocks. The duration

of the overlap is the shortest that ensures each pattern

group has at least one day off in the overlap, or on the day

immediately following the overlap. Days off are important

since they provide a starting point for which all shift

transitions are feasible. For instance, one does not need to

remember the information on accumulated night shifts,

which would be the case if one was not starting from a day

off. Furthermore, proceeding from a day off allows one to

more easily enforce the continuation of a pattern group in

the pricing problem. At a day off all roster-lines for the

same pattern group are essentially in the same state, that is

not working. This would not be the case if proceeding from

a day on since all roster-lines for the pattern group could

potentially be doing different shifts.

Table 1 further illustrates this blocking concept in more

detail. Let us assume we are rostering a 6&3 work pattern,

that the first block runs from day 1 to day 18 and that the

second block begins on day 13. The overlap spans days 13

to 18. The days on for each pattern group are marked with

a one, while a zero indicates a day off. One can see that all

but pattern group 7 have a day off during the overlap. Day

19 for this group, however, is a day off.

For each pattern group, one would like the pricing

problem of the second block to start from the day after its

last day off in the overlap. For example, the pricing

problem for pattern group 4 should be defined from day

16, while that of pattern group 6 should be defined from

day 14. Since the solution to the first block produces a

roster for days 1 to 18, to achieve this one can keep the

solution as it is for all days up until the last day off in the

overlap for each pattern group and resolve all other days.

Enforcing part of the solution from the first block entails

fixing all shifts up until the last day off in the overlap for

each pattern group. In Table 1, the (pattern group, day)

combinations marked with grey give the shifts that will be

fixed in the second block. For example, the shifts in the

roster-lines assigned to pattern group 3 in block 1 are fixed

on day 13, but resolved for days 17 and 18 in the

R Lusby et al—Column generation-based heuristic for rostering 5



optimization of the second block. To fix a shift in a

particular block, one simply reduces the right-hand side of

the relevant constant (2) by the number of roster-lines

covering it. This resolving step also allows one to correct

for any bad choices made as a result of optimizing over a

time horizon that is too short.

In summary, to concatenate blocks efficiently, one

can roll back to the last day off in the overlap for each

pattern group, fix all shifts assigned up until this point,

and then resolve all later days in the optimization of the

subsequent block.

4.2. Pricing problem

As described previously, the pricing problem determines

whether any columns with negative reduced costs exist. If

such columns exist, then these must be generated. In this

paper, we will use a pricing problem for each pattern

group as it makes the identification of legal roster-lines

easier. To identify legal roster-lines for a given pattern

group, we construct a directed acyclic graph, where the

nodes represent possible activities and the arcs represent

transitions between activities. An activity can be to

work a shift on a certain day or to have the day off. With

some additional constraints described below, the identi-

fication of a legal roster-line amounts to solving a

resource constrained shortest path problem in an acyclic

graph. A feasible roster-line must satisfy the following

hard constraints:

1. no staff member can perform more than one shift on

any day;

2. an employee must have at least 10h of rest between

consecutive shifts;

3. given pattern group gAG, an employee has to work the

day-off pattern corresponding to that pattern group;

4. no more than three consecutive night shifts are allowed.

Constraints 1–3 can be handled in the construction of

the directed acyclic graph, whereas Constraint 4 must be

enforced using a resource. In addition to the hard

constraints, we also have the following soft constraints

5. the first shift on an on-stretch should be a late shift;

6. the last shift on an on-stretch should be an early shift.

The soft constraints are handled in the objective function

of the pricing problem and will be discussed later.

Before describing the pricing algorithm in detail, we first

expand the notation. We let S0 ¼S{Sþ 1, . . . , SþD} be

the index set of activities, where activity Sþ d corresponds

to having day d off. Hence, we let S0d¼Sd{Sþ d} be the

possible activities on day d. To be able to distinguish

between night shifts and the remaining shifts, we define

NDS as the index set of night shifts. We let v¼ (v0, . . . ,

vp) be a binary vector of length (pþ 1) corresponding to

the number of days in the work pattern. For example, v has

length 9 when applying a 6&3 work pattern. Each entry in

v indicates whether the day is a day on or a day off. For

instance v¼ (1, 1, 1, 1, 1, 1, 0, 0, 0) specifies a day-off pattern

and states that the six first days is the on-stretch and the

last three days is the off-stretch. Since we may need to use

the pricing problem in different settings, for example for

different day intervals and day-off patterns, we construct a

representation which is sufficiently general to accommo-

date the required settings.

The individual roster-lines are sequences of on-stretches

and off-stretches. Each activity has a time interval of exe-

cution and this gives a natural ordering of activities, where

some activities are successors of others. This ordering gives

rise to an acyclic directed graph, which we refer to as the

underlying graph. In the following, we denote o as the

origin and d as the destination. For a given day interval

[d1, d2] we denote

V 0ðd1; d2Þ ¼
[d2
d¼d1
S 0d

as the index set of shift nodes joined with the index set of

the day-off nodes for all days between d1 and d2. The set of

Table 1 Block overlap and shift fixing

Days

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Group 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1
Group 2 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1
Group 3 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
Group 4 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1
Group 5 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1
Group 6 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
Group 7 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0
Group 8 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0
Group 9 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0
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vertices of the graph will then be V(d1, d2)¼ {o, d}
S

V 0(d1, d2).
We will refer to A(d1, d2) as the set of arcs in the graph.

On each day, exactly one activity has to be carried out.

This constitutes layers in the graph, that is one layer for

each day d in the interval [d1, d2]. In the set of nodes

V0(d1, d2) it is only possible to progress from one day to

the next day, thus only arcs between nodes iAS0d and

jAS0dþ I for d¼ d1, . . . , d2�1 are included. The origin o
only has arcs leaving it. For shift fixing, we need to be able

to fix activities for days d1 to day h where hpd2. To make

this possible, we include an arc from the origin to all nodes

iAV0(d1, d2) Later, we will eliminate the arcs which are not

allowed from the origin. The destination node d only has

entering arcs. As we have to have exactly one activity each

day, it is only possible to enter the destination from the last

day in the interval. Hence, the only arcs (i, d) that are

allowed to enter the destination are those with i 2 S0d2 .

Note that we also eliminate any transition between two

shifts that does not satisfy the 10-h rule.

In Figure 1 we give an example of the underlying graph

for the day interval [20, 28]. Each of the days has a column

of nodes corresponding to the possible activities on that

day. The black nodes are day-off nodes, the grey nodes are

the night-shift nodes and the white nodes are the remaining

shifts. The nodes are therefore partitioned horizontally.

Each partition may have multiple nodes, of each kind, in

each column, but for simplicity we have only shown one

node. The transitions between activities are shown as arcs

between the layers. The black arcs are those which are

penalized due to soft constraint violations, whereas the

grey arcs have a cost of zero. The difference between

dashed arcs and filled arcs is explained later.

A path P¼ (w0, . . . ,wp) from the origin w0¼o to the

destination wp¼ d can be translated directly into a roster-

line (and vice versa) as the nodes in the path correspond to

individual activities. Furthermore, any path will have at

most one shift each day and will satisfy the 10-h rule. We

still need to satisfy the constraints for each pattern group

and the requirement that no employee can have more than

three consecutive night shifts.

One can easily apply a day-off pattern to the underlying

graph. With any arc (i, j )AA(d1, d2) we associate a binary

value u(i, j ), which is equal to 1, if and only if, we allow the

arc to be used in the solution. We put the value of

u(i, j )¼ 1 for all arcs (i, j )AA(d1, d2) unless it is stated

otherwise. This value allows us to use the same underlying

graph for several different setups of the pricing problem.

First, we use the u(i, j ) to apply the pattern groups.

Suppose that we are given v¼ (v0, . . . , vp) and wish to

apply this as a day-off pattern. We assume that the day-off

pattern is applied from the first day index of D, that is v0
states whether day 0 should be a work day or not. In

general, given a day dAD we have that v(d mod (pþ 1)) states

whether or not day d is a day on or a day off. Now, for

each day dA[d1, d2] we have the following two cases:

1. if v(d mod (pþ 1))¼ 1 then day d is a day on and it should

not be allowed to enter the day-off node mþ d for

day d. Hence, for all arcs (i,mþ d)AA(d1, d2) we set

u(i,mþ d)¼ 0;

2. if v(d mod (pþ 1))¼ 0 then day d is a day off and it should

not be allowed to enter any shift nodes jASd. Hence, for

all arcs (i, j )AA(d1, d2) with jASd we set u(i, j )¼ 0.

Hence, we can modify the underlying graph to satisfy any

day-off pattern vector. Given that d is the first day which is

not fixed, we put u(o, j )¼ 0 for all jeS0d. This ensures that
we can only visit nodes in S0d as the first node after the

origin.

In Figure 1, we have applied the day-off pattern

(v0, v1, . . . , v8)¼ (1, 1, 1, 0, 0, 0, 1, 1, 1). The dashed arcs

are those which have to be eliminated to accommodate

the day-off pattern. According to this, day 20 will be a day

on as v(20 mod 9)¼ v2¼ 1 and day 21 will be the first day

off in the off stretch. The frame around the nodes for days

21–23 indicates that these days are days off. Note that

we have not eliminated all unnecessary arcs, but only a

sufficient subset of arcs to enforce the day-off pattern.

A more substantial elimination is possible, but in practice it

does not have a significant impact on the running time of

the algorithm.

The direct cost of a roster is based on the penalties given

for violating the soft constraints. We assume that the

soft constraints are constraints on individual transitions

between shifts. Let cij be the penalty of using arc (i, j ). Let

lij be the dual price of using arc (i, j ). The reduced cost

accumulated along path Pr is

�cðPrÞ ¼
Xp�1
q¼0

cðwr
q;w

r
qþ1Þ � �ðwq;wqþ1Þ

� �
:

The objective of the pricing problem is given in problem

(8), in which we have lij¼ pj for all (i, j )AA(d1, d2) with
jASd and lij¼ 0 for all (i, j )AA(d1, d2) with jeS. Since all

pattern groups gAG are independent, for all roster-lines

rAR we have that agr¼ 1 for exactly one pattern group

gAG and agr¼ 0 for all other pattern groups. Furthermore,

as there are only a small number of pattern groups, for

example nine for the 6&3 work pattern, we may keep the

20

� �

21 22 23 24 25 26 27 28

Figure 1 Example of 6&3 pattern.
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pattern group fixed and solve one problem for each. For

each pattern group gAG we have the following decision

problem:

min
r2R:agr¼1

�cðPrÞ � �g � �o0; ð9Þ

which checks whether or not a negative reduced cost

roster-line exists for the pattern group.

Once we have the underlying graph, we can try to iden-

tify feasible (o, d)-paths. Such a path will correspond to

a roster satisfying the day-off pattern u. The GCRPWP

has, however, an additional restriction for a roster-line,

which cannot be handled directly by modifying the

underlying graph, and for which we use the notion of

resources and resource extension functions. We refer the

reader to Desaulniers et al (1998), Irnich and Desaulniers

(2005), and Irnich (2008) for an introduction to resource

extension functions. The requirement that no more than

three consecutive night shifts is modelled by a resource.

The intuition is that the resource is initialized at zero and is

incremented by one each time a night shift is undertaken.

When the accumulated resource is equal to three, then it

should not be possible to transition to another night shift.

As it is not the total number of night shifts which is

bounded but the number of consecutive night shifts, we

have to reinitialize the resource at zero whenever a non-

night-shift activity is undertaken. The resource extension

function has the property that given two paths P and P 0

both ending in node i with a resource consumption of Ti

and Ti
0, respectively, such that Ti pTi

0, then for any

extension of P 0, we can identify a similar extension of P

with at most the same consumption as the extension of P 0.
Thus, we will consider P to be a better path than P0 with
respect to the resource.

To identify a cost-minimizing and resource-feasible path

in the underlying graph, we turn to dynamic programming.

This type of problem is often referred to as a shortest path

problem with resource constraints. The fundamental idea

is to construct paths by extending partial paths to all

possible successor nodes and do this repeatedly until no

path can be extended. If this is done carefully, we will end

up with at least one cost-minimizing and resource feasible

path. We briefly describe the dynamic programming

procedure we use, but refer the reader to Irnich and

Desaulniers (2005) for a review of dynamic programming

algorithms for resource constrained shortest path pro-

blems. The structure of the pricing problem will allow us to

solve the problem efficiently.

To each path P we associate a state (or a label)

L(P)¼ (�c (P),T (P)) which is the vector of accumulated

reduced cost and the number of current consecutive night

shifts. Given two paths P and P 0, both ending in node i, we

would like to determine which one is the most promising.

If the two states L(P)aL(P 0) are distinct and, in addition,

we have �c (P)p�c (P 0) and T(P)pT(P 0), then the path P is

the most promising. We say that the path P dominates the

path P 0 and write L(P)!L(P 0). In this case, we call P the

dominant path and P0 the dominated path. When a

dominated path is extended, the resulting path will also be

dominated by an identical extension of the dominant path.

Hence, we can eliminate the dominated path. For any node

i, we let Fi be the set of all known states with paths ending

in node i. Furthermore, we let Ei¼ {L(P)AFi|)L(P 0):
L(P 0)!L(P)} be the set of efficient states. It is sufficient

to extend the paths having states in Ei as the paths with

states in Fi /Ei will be dominated by at least one path in

Ei. From the layers of the graph, the nodes have an

inherent topological order. Hence, we need only to extend

paths from each node once, when using the ordering

(n1, . . . , n|V|). Thus we have a natural iterative approach

for the dynamic programming, where we iterate through

the nodes given their topological ordering.

The acyclic resource constraint shortest path problem

can be solved in pseudo-polynomial time (Desrochers and

Soumis, 1988). The algorithm is pseudo-polynomial on the

resource width, that is on the number of feasible values of

the resources. As our pricing problem has only one resou-

rce and as that resource is bounded by the work pattern

length, the pricing problem can actually be solved in

polynomial time for a given day-off pattern.

5. Enforcing integrality of the solution

As mentioned earlier, column generation is used to solve

the relaxed master problem. However, to solve the

GCRPWP, we need a solution to the original master

problem and hence we reintroduce the integer require-

ment for variables xr, where it is violated. The traditional

approach to reintroduce integrality is by including the

column generation procedure in a branch-and-price

framework. In a standard MIP-model, variable branch-

ing is usually the branching method of choice. In

variable branching the solution space is partitioned into

two disjoint subspaces (branches), constructed by split-

ting the value set for a single variable with a current

fractional value xb¼ xb
� . In the left branch, the variable

is bounded downwards, that is xbpIxb�m, and in the

right branch it is bounded upwards, ie xbXJxb�n.
Unfortunately, it is hard to transfer this approach

directly to a column generation context. In column

generation, the property that keeps us from regene-

rating existing columns is the fact that any variable in an

optimal basic solution has a reduced cost of zero and all

existing non-basic variables have non-negative reduced

costs. This is not true for variables with an upper bound.

These may have negative reduced cost, even if they are in

the basis. The variable bound may instead be enforced

by an additional constraint in the master problem. The

dual of the new constraint would be reflected in the
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reduced cost of the variable, and the variable would

therefore be non-negative in an optimal solution. How-

ever, in the pricing problem, it is not trivial and usually

highly inefficient to deal with dual costs for specific

variables.

As variable branching is not well suited for column

generation, another approach is usually taken, namely the

use of constraint branching. For set partitioning, set pack-

ing, set covering, and bin packing problems, the approach

introduced by Ryan and Foster (1981) is widely used. This

approach requires the two constraints that define the

constraint branch to have unit right-hand sides. Unfortu-

nately, it does not carry over to the generalized set covering

problem, which we are considering here. Desaulniers

(2010) proposes a four-layered branching strategy to the

split delivery vehicle routing problem, where the master

problem is similar to that of the GCRPWP. An assumption

for the completeness of the branching strategy is that there

is only one, so called, split customer. In the split delivering

vehicle routing problem this assumption always holds,

but we do not have the corresponding property in the

GCRPWP. The branching strategy may be applied, but as

it is not complete, there may be fractional solutions where

no branching candidate exists. For a complete branching

strategy, we consider another related problem, namely

the cutting stock problem. Amor and de Carvalho (2005)

describe a branching strategy for a model similar to the

master problem presented here. Branching is applied to

aggregated arc flows. To get a complete branching scheme,

nodes of the pricing problem may need to be split into

several nodes.

Rostering problems contain a high level of degeneracy

and as a consequence, it is often possible to find many

different optimal solutions. Indeed, initial tests on the

GCRPWP showed that this was the case, and the frac-

tionality of solutions did usually only decrease after

introducing a very large number of branching con-

straints. As described above, it is theoretically possible

to find the optimal solution for any instance of the

GCRPWP by exploring the full branch-and-bound tree.

However, as small run times are desired here, instead we

introduce a greedy approach to achieve integrality.

From a fractional solution, the idea is to iteratively

apply variable fixing to the variables in the optimal LP-

solution. As described above, in column generation, it is

computationally hard to bound variables with an upper

bound. Therefore, we introduce solely lower bounds on the

variables. The bounding will in most cases have an

identical effect to that of true variable fixing.

In the following, we describe the variable bounding

scheme. Consider an optimal solution to the relaxed master

problem, x�. If xr
�AZþ ,8rAR then x� is also a solution to

the original formulation and the algorithm terminates.

Otherwise, we look at the fractional part of the variable

values, fr
� ¼xr

��Ixr�m. Given a pre-specified threshold, t

(with 0otp1), we impose the following bounds:

xr x�r
� �

; 8r 2 R : f �r �: ð10Þ

If fr
�ot for all rAR, we instead impose the bound on

the variable with the largest fractional part:

fr 2 R : f �r �g ¼ ; ) xr x�r
� �

; r ¼ argmax
r

f �r : ð11Þ

As we can introduce an additional bound for any

fractional solution and as the value of any variable in an

optimal solution of the GCRPWP is finite, this approach

eventually gives a feasible integer solution, assuming that

mg is integer. The approach may be seen as a special case of

variable branching, where the left branch is never explored.

6. Rostering directly on the forecast workload

In Section 3, the mathematical model of the GCRPWP was

introduced. The model assumes that the employee demand

has been defined for each shift, that is qs is defined for any

shift, sASd. Determining the value of qs is an optimization

problem in itself, but we have so far assumed that it is

predetermined, usually by an experienced manual planner.

Figure 2 shows a workload graph over one day. The

light grey area is the forecast workload discretized in 5-min

intervals. The dashed bold line shows the suggested shift

cover (denoted as Cover-B in Figure 2). Since shifts contain

breaks, the actual cover is sometimes lower than the shift

cover. The actual cover is depicted with the full bold line,

or the dark grey area in the figure. For each time interval,

the cover has been found by summing the demands of all

shifts that overlap with that time interval.

In the following, we introduce a model, where the roster

is constructed to directly cover the forecast workload. As a

consequence, we are going to disregard the values of qs and

the process of defining shift demands becomes superfluous.

Figure 3 shows how one step of the usual rostering work-

flow is circumvented with this approach.

We introduce a discretization of time and refer to an

individual time interval in the set of intervals as tAT . The
set StDS contains all shifts that overlap with time inter-

val t. The forecast workload of period t is denoted wt. čt
refers to the cost of under coverage in interval t. The

mathematical model becomes:

min
X
r2R

crxr þ
X
t2T

�ctut; ð12Þ

s.t. X
s2S

X
r2R

asrxr þ utXwt; 8t 2 T ; ð13Þ

X
r2R

agrxrpmg; 8g 2 G; ð14Þ
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X
r2R

xrpn; ð15Þ

usX0; 8t 2 T ; ð16Þ

xr 2 Zþ; 8r 2 R ð17Þ

The model is similar to that of Section 3. The objective

(12) sums the cost of under coverage for all intervals. For

each interval, the workload is either fully covered or the

corresponding under coverage is registered in ut (13).

Constraints (14)–(17) correspond directly to Constraints

(3)–(6).

An issue with this model is the number of constraints of

the form (13), as the set T may be very large. To alleviate

this problem, we aggregate the time intervals. In the

following, we describe how to do this without losing any

information in the model.

The idea is to aggregate all time intervals for which the

cover is always equal. The covers of two separate time

intervals are equal if they overlap with an identical set of

shifts. Let T 1, . . . ,T q refer to a partitioning of time

intervals in q partitions, where all time intervals in a set T v

have the same shift cover. The partitioning is made so that

T 1

S
, . . . ,

S
T q¼T and for any two sets T i and

T j:iaj)T i

T
T j¼ |. Any set can hold only consecutive

elements. As explained in Section 3, each shift contains

a break and the cover of a shift does therefore not contain

a set of consecutive time intervals. In this work, we assume

that each shift contains only one break, starting at time es
b

ending at ls
b. The model is easily extended to consider

multiple breaks.

The partitioning into these sets is straight forward. Let

the set T p¼ {t1
p, t2

p, . . . , tq
p, tqþ 1

p }¼
S

sAS {es, ls, es
b, ls

b} con-

tain all split times in sorted order. We define T i¼ t1
p, . . . ,

tqþ 1
p �1, i¼ 1, . . . , q. From the partitioning of T define

a new set of time intervals Y¼ y1, . . . , yq, where the start

times and the end times of the new time intervals are the

split times of T p. The definition of St easily transfers to Sy
for yAY. However, the workload in a time intervals yi is
not necessarily constant and hence the under cover is not as

easily defined as in the previous model.

Let w�i ¼ maxt2T i
wt and introduce the decision variables

u�ij , i¼ 1, . . . , q, j¼ 1, . . . , w�ij with 0p u�ij p1. �
w�i
j¼1u�ij

denotes the under coverage for time interval yi. By defining
the under coverage as a sum of variables, we are able to

introduce a piecewise linear cost function for under

coverage. The cost of each piece of the function is defined

by the number of original time intervals, for which the cover

is insufficient. The cost of u�ij is �c�ij and is calculated as:

�c�ij ¼
X

t2T i :wt4w�i�j
�ct: ð18Þ

�c�ij sums the cost of all original time periods, which will not

be fully covered if the interval yi has under coverage of j or
more.

Figure 4 shows a workload graph zoomed in on one

interval, y0, covering the time from 15:00 to 16:00. The grey

Workload
estimation

Shift
demands Roster

Shift generation Rostering

Rostering directly
on workload

Figure 3 The workflow in rostering, where the intermediate
step of creating shift demands is made superfluous by rostering
directly on the workload estimation.

Figure 2 A workload graph with a suggested shift cover.
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area is the workload. The curve above the workload area

with a shape similar to the workload represents robustness,

which is described in Section 7. We disregard this right

now. In the example, wy0 ¼ 25. As an under coverage of 1

(relative to wy0) only introduces under coverage in interval

5: čy01¼ č5. Following the same argument, čy02¼ č5. Under

coverage of 3 or 4 introduces under coverage in more inter-

vals and therefore: čy03¼ čy04¼ č1þ č2þ č3þ č4þ č5þ č6.

The cost coefficients for further under coverage are

calculated similarly. Hence, the aggregated model becomes:

min
X
r2R

crxr þ
X
�2�

Xw�
j¼1

�c�ju�j; ð19Þ

s.t.

X
s2S�

X
r2R

asrxr þ
Xw�
j¼1

u�jXw�; 8� 2 �; ð20Þ

X
r2R

agrxrpmg; 8g 2 G; ð21Þ

X
r2R

xrpn; ð22Þ

0pu�jp1; 8� 2 �; 8j ¼ 1; . . . ; w�; ð23Þ

xr 2 Zþ; 8r 2 R ð24Þ

The constraints of the model correspond directly to

Constraints (12)–(17) with the described aggregation, �c�ij is
increasing over j and therefore, in an optimal solution, we

have that uy1Xuy2X?X u�w� uywy, as intended. At most

one u�j is fractional. If wy is integer, all u�j are binary.

In practice, we want to limit the number of variables as

much as possible, �c�ij is often unchanged for a sequence of

values of j. In this case, we may remove all but one of the

associated variables by increasing the upper bound of the

remaining variable, accordingly.

7. Robustness

In the previous section, we assumed that there was no pre-

ference between rosters that cover the forecast workload

equally well. In practice, the actual workload on a given day

is not going to match the forecast workload exactly, and we

therefore introduce robustness measures to create a roster,

which deals well with small changes in workload.

To be able to handle a larger workload than anticipated,

we add a certain percentage to the original forecast work-

load. We refer to this contingency as rc, eg rc¼ 0.2 for

a 20% contingency. Furthermore, we expect some tasks to

be delayed. This will result in a delayed workload. We

define rd as the number of minutes of slippage that need to

be accounted for, for example rd¼ 15. We want to cover

both cases as well as possible.

Let čt
r be the cost per unit of not covering the workload

with the added contingency or of not covering the slipped

workload, whatever is more demanding. The objective of

the disaggregated model (12) is changed and two additional

constraints are added:

min
X
r2R

crxr þ
X
t2T
ð�ctut þ �crtu

r
tÞ; ð25Þ

X
s2St

X
r2R

asrxr þ ut þ urtX ð1þ rcÞwtd e; 8t 2 T ; ð26Þ

X
s2St

X
r2R

asrxr þ ut þ urtXwt�rd ; 8t 2 T : ð27Þ

A new set of variables, ut
r, has been introduced to

correctly penalize inadequate robustness. The right-hand

15
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22

23

24
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26

27

28

29

30

31

15:00
1

15:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00
2 3 4 5 6 7 8 9 10 11 12

Figure 4 Example of cost calculation for aggregated time intervals.
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side of Constraints (26) is converted to an integer for

simplicity. This means that under coverage is always

integer if the workload estimations are.

The changes to the model carry over to the aggregated

model easily. Each time interval may now contribute to the

cost of the aggregation with either čt or čt
r. The right-hand

sides of Constraints (20) hold the necessary coverage for

no penalty to apply, including penalties from robustness.

Hence, we define: wr
�i
¼ maxt2T i

max ð1þ rcÞwt; wt�rdf gð Þ .
We also introduce the subset T r

ij ¼ t 2 T i : ð1þ rcÞwtd e4f
wr
�i
� j _ wt�r d4wr

�i
� jg: The right-hand side of (20) is

replaced by wyi
r and the coefficients of the objective function

become (i¼ 1, . . . , q, j¼ 1, . . . , wr
�i
):

�c r�ij ¼
X

t2T i :wt4wr
�i
�j

�ct þ
X
t2T r

ij

�crt : ð28Þ

As a consequence, the right-hand sides of (20) are

increased, but the costs are decreased correspondingly. For

čt
!r¼ 0 the total cost is equal to the cost of the model

without robustness. Assuming that čt
!rpčt, in an optimal

solution we still have uy1Xuy2X?X, u�wr
�

with no

fractional u�j for integer wy
r.

As an example, refer again to Figure 4. Under coverage

is now relative to wy0
r . Again, an under coverage of 1 or 2

(relative to wy0
r ) only introduces under coverage in interval

5 and therefore: čy01¼ čy02¼ č5
r. The subsequent coefficients

are calculated as: čy03¼ čy04¼ č1
rþ č2

rþ č3
rþ č4

rþ č5
rþ č6

r,

čy05¼ č1
rþ č2

rþ č3
rþ č4

rþ č5
rþ č6

rþ č9
rþ č10

r þ č11
r . The coeffi-

cient of an under coverage of six includes the original costs

as well: čy06¼ č1
rþ?þ č11

r þ č5. The calculations for the

remaining coefficients are similar. The final model with

time interval aggregation and robustness becomes:

min
X
r2R

crxr þ
X
�2�

Xwr
�

j¼1
�cr�ju�j; ð29Þ

s.t.

X
s2S�

X
r2R

asrxr þ
Xwr

�

j¼1
u�jXwr

�; 8� 2 �; ð30Þ

X
r2R

agrxrpmg; 8g 2 G; ð31Þ

X
r2R

xrpn; ð32Þ

0pu�jp1; 8� 2 �; 8j ¼ 1; . . . ; wr
�; ð33Þ

xr 2 Zþ; 8r 2 R ð34Þ

8. Experimental results

In this section, we present the results obtained for the

proposed methodology on three real-life instances supplied

by the airline. Owing to its superiority from a robustness

modelling perspective, we only test Model (29)–(34). The

instances, denoted W07, S08, and S10 below, each have

a rostering horizon of 189 days and contain 65, 95, and 139

staff members, respectively. All instances have 11 different

shifts, three of which are night shifts. To incorporate

flexibility with respect to breaks, three copies of each shift

are created and differ only in the break time of the shift.

The workload demand is cyclic with a period of one week

and all staff are assumed to be working a 6&3 work

pattern.

Since this is a somewhat small test set, an additional

10 artificial instances have been constructed and used in the

analysis of the algorithm’s performance. All artificial

instances are based on the real-life instances and are, in

particular, an attempt to stress test the approach given

more dramatic workload demands. That is, the artificial

instances are identical in structure to the real-life instances

in terms of the number of shifts and rostering horizon;

however, each has a different workload demand and

number of staff. These instances are referred to as A01–A10

below. The entire algorithm has been written in the Cþþ
programming language and utilizes the commercial solver

Cplex 10.0 with default parameters to solve the master

problem. All computational experiments have been per-

formed on a 64-bit Linux operating system equipped with

a dual core AMD 2.2 GHz processor and 2GB of RAM.

We begin with an analysis of how the model and solu-

tion approach perform over a 63-day time horizon. Before

considering a longer time horizon, we want to ascertain the

effect on solution quality of decomposing the rostering

horizon into shorter, more tractable, overlapping blocks.

Also the heuristic shift fixing and branching routines

described in Sections 4 and 5 will compromise solution

quality. The question is, to what degree. In the 63-day time

horizon, we are able to calculate the optimal solution to the

LP relaxation of the non-decomposed problem and thus

provide a lower bound on the value of the decomposed

integer solution obtained. The non-decomposed model is

also of the form (29)–(34) and solved using the same

methodology; however, it is solved as one block as opposed

to multiple blocks in the decomposed case. Furthermore,

as 63 is the lowest common multiple of the work pattern

length and the period of the workload demand, if the

obtained rosters are wrappable, then one can simply copy

the rosters to any rostering horizon that is a multiple of 63

days. A wrappable roster is one in which it is possible for

all staff on a particular pattern group to transition from

their last shift (on day 63) to one of the shifts worked by

the pattern group on the first day. One cannot guarantee

this to always be the case, since such shift transitions are

not taken into consideration in our approach.

To test our decomposition approach the 63-day horizon

is divided into an initial block of 23 days and five

additional blocks with a length of 14 days. Each additional
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block contains eight new days and six days of the preceding

block (that will be resolved). For this discretization one

has many possibilities; we tried various values, and the

above parameters appeared to work well. In all experi-

ments the cost of 1 h of uncovered work is assumed to be

10 units, while an hour of uncovered robustness costs 1

unit. Given that we are dealing with a cyclic, weekly

workload demand and that staff are working a fixed

6&3 work pattern, a pre-allocation step that equalizes the

number of staff working each pattern group is performed.

That is, the algorithm does not determine how many staff

members will be in each pattern group. In all our

experiments t is set to 1.0, thus ensuring we fix only one

variable at each branching step. Namely, the variable with

the largest fractional component.

Table 2 provides the results of the initial experiments.

For each instance, the table gives the inflated LP and IP

objective values (LPI and IPI) as well as the deflated LP and

IP objective values (LPD and IPD). All four statistics are

calculated on one run of the decomposed model. The

inflated LP and IP values are simply the sum of the

respective LP and IP objective values found in each of the

blocks. This is an inaccurate indication of the total cost

since the cost contribution from each block overlap is

counted twice. IPD is the true cost of the 63-day roster.

This value is obtained by correctly adjusting the costs

incurred in the overlaps. LPD, on the other hand, is

obtained by reducing the LPI by the difference between

the IPI and IPD. Owing to the heuristic shift fixing in the

overlaps one cannot obtain an optimal decomposed LP

solution. The purpose of the LPD is to provide a lower

bound when the non-decomposed bound (LPN) cannot be

obtained (ie for longer time horizons). Table 2 also reports

the time taken to solve the decomposed model (tIP
D) as well

as the time taken to solve the LP for the non-decomposed

model (tLP
N ), both of which are in seconds. The percentage

gap between the deflated LP and IP objective values (GD)

and the optimality gap between the decomposed IP

objective value and the non-decomposed LP objective

values (GN) are also given.

One can observe that the algorithm performs very

efficiently with small optimality gaps between the best

found integer solution using the decomposition approach

and the optimal LP objective value for the non-decom-

posed model. Excluding instances A02, A03, and A09, all

optimality gaps are less than 0.20%. The fact that

LPDELPN indicates that the larger part of the gap is the

integrality gap, caused by the relaxation of the integrality

property for xr. Hence, we conclude that the block

structure does not reduce solution quality significantly. It

is very encouraging to see that the block decomposition

produces close to optimal integer solutions much faster

than it can find the optimal LP objective value of the non-

decomposed model. Furthermore, LPD appears to be a

slightly pessimistic approximation of LPN as it is smaller in

all but one instance (A02). However, both gaps, in general,

are small enough that one can be confident of the superior

performance of the algorithm. Finally, the results suggest

that the real-life instances can be solved extremely effi-

ciently, while it is just the artificial instances that create

some difficulties.

A much more dramatic comparison is given in Table 3,

where IP is compared with the best found integer solution

to the non-decomposed model IPN. For the latter, a maxi-

mum of 150 000 s of computing time is permitted. Table 3

shows that there is very little difference in solution quality

using the two approaches; however, the decomposition

approach requires orders of magnitude less computing

time. The fact that IPD is better than IPN on some instan-

ces is simply due to the heuristic nature of the branching

routine.

Table 4 gives the results of similar experiments in which

the rostering horizon is increased from 63 days to 189 days.

The results are very similar to those of Table 2, with a

Table 2 Results for a 63-day rostering horizon

Instance LPI IPI LPD IPD LPN GD (%) GN (%) tIP
D(s) tLP

N (s)

A01 59.18 59.18 39.90 39.90 39.90 0.00 0.00 110.67 614.94
A02 375.18 377.89 251.43 254.14 250.36 1.08 1.51 805.84 2516.20
A03 365.20 366.96 241.55 243.31 242.17 0.73 0.47 692.48 4783.25
A04 740.31 740.51 495.93 496.12 495.97 0.04 0.03 236.87 1316.60
A05 327.78 328.17 218.43 218.82 218.57 0.18 0.11 1122.08 3041.76
A06 7182.80 7183.84 4799.55 4800.59 4799.94 0.02 0.01 711.48 2933.60
A07 0.55 0.55 0.35 0.35 0.35 0.00 0.00 27.29 204.02
A08 1630.88 1631.00 1099.57 1099.69 1099.60 0.01 0.01 130.69 546.72
A09 232.15 237.60 150.41 155.86 152.07 3.62 2.49 2079.08 6378.47
A10 4595.07 4597.57 3171.40 3173.90 3172.17 0.08 0.05 713.56 2211.54

S08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 19.05 45.48
S10 306.68 306.83 217.46 217.61 217.48 0.07 0.06 147.92 965.84
W07 0.85 0.85 0.57 0.57 0.57 0.00 0.00 49.24 305.71
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small percentage gap between the IPD and the LPD as well

as acceptable running times, particularly for the real-life

instances. One can also observe that the best found

solutions are approximately a factor three more than those

found for the 63-day experiments (3IP63
D). As was

mentioned earlier, there is no guarantee that a solution

with the latter objective value is even feasible. In some

cases, that is A02, A05, A09, S10, and W07, the value IPD

is at least as good as (3IP63
D). This is due to the unpre-

dictable behaviour of the heuristic shift fixing and the

branching routines in the block decomposition.

A particularly interesting graph is given in Figure 5

which illustrates the cost incurred on each day of the

rostering horizon for S10. It is clear that the cost has a

cyclic behaviour. A closer inspection shows that the costs

are highly dependent on the weekday, which is not

surprising, as the workload estimation is by weekday, but

not over weeks. The workload graph for a day of the

horizon with highest cost, Day 12, is shown in Figure 6.

Day 12 is a Friday and all the larger costs of the horizon

are observed on Fridays. It is clear that even on the worst

days, the cover is fairly good and the major contribution to

the cost is from the robustness measure. S10 is the realistic

instance, where it is, by far, the most difficult to find a

satisfactory cover. As the figure illustrates, even the worst

day here has an acceptable cover. We conclude that the

proposed method is very well suited for solving the

problems at hand.

As can be seen from Table 4, the worst cover is obtained

in instance A06. To sketch the worst case scenario,

Figure 7 shows the workload graph of the most costly

day of A06. Indeed, the amount of uncovered work is

severe, but it is observed that this not due to a bad

distribution of available manpower. The assigned man-

power covers the estimated workload tightly, but there are

simply too few employees to cover all the work. Also, this

particular instance has a very jagged workload estimation,

which makes it difficult to cover the highest peeks. The

artificial instances were introduced to stress test the

algorithm and to show what happens, when very hard

instances are encountered. The figure illustrates that A06 is

well suited for this purpose.

Table 5 provides a breakdown of the total cost (IP) into

total roster-line costs (RC) and total coverage costs (CC).

The RC component indicates how many late to early

sequences are not satisfied in the chosen roster-lines, while

CC states the cost incurred from uncovered workload and

uncovered robustness. In Table 5, we also give both the

number of uncovered workload hour on average per week

(UWL) and the number of uncovered hours of robustness

on average per week (UR). Here one can see that

uncovered hours of robustness is the main component of

the coverage cost in most cases. It is not surprising to see

that the instances with the largest number of uncovered

workload hours (A06, A08, and A10) also have the largest

RC cost contribution. Here the model is simply attempting

Table 3 Decomposition versus no decomposition—63 days

Instance LPN IPD tIP
D(s) IPN tLP

N (s)

A01 39.90 39.90 110.67 39.90 13 545.69
A02 250.36 254.14 805.84 253.08 132 323.42
A03 242.17 243.31 692.48 243.56 139 643.58
A04 495.97 496.12 236.87 496.08 37 572.89
A05 218.57 218.82 1122.08 * 4150 000.00
A06 4799.94 4800.59 711.48 4800.73 89 770.27
A07 0.35 0.35 27.29 0.35 1273.07
A08 1099.60 1099.69 130.69 1099.72 13 325.80
A09 152.07 155.86 2079.08 * 4150 000.00
A10 3172.17 3173.90 713.56 3174.10 47 011.49

S08 0.00 0.00 15.68 0.13 124.17
S10 217.48 217.61 131.89 217.60 15 617.63
W07 0.57 0.57 39.45 0.57 3794.31

Table 4 Results for a 189-day rostering horizon

Instance LPI IPI LPD IPD 3IP63
D GD (%) tIP

D (s)

A01 198.76 198.76 120.19 120.19 119.70 0.00 249.19
A02 1265.19 1274.04 751.73 760.58 762.42 1.18 1581.17
A03 1213.80 1220.55 724.89 731.64 729.93 0.93 1040.34
A04 2485.13 2485.69 1488.10 1488.66 1488.36 0.04 555.58
A05 1096.74 1098.43 656.11 657.80 656.46 0.26 1920.91
A06 23936.35 23941.99 14 405.78 14 411.42 14 401.77 0.04 798.84
A07 1.78 1.78 1.05 1.05 1.05 0.00 65.30
A08 5470.04 5470.24 3310.39 3310.59 3299.07 0.01 251.30
A09 768.96 782.49 453.08 466.60 467.58 2.98 2753.54
A10 15686.69 15695.55 9520.05 9528.92 9521.70 0.09 945.74

S08 3.30 3.30 3.30 3.30 0.00 0.00 54.32
S10 1047.70 1047.26 648.05 648.61 652.83 0.09 322.95
W07 2.87 2.87 1.70 1.70 1.71 0.00 121.58
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to cover the workload as well as possible, often disregard-

ing the late to early sequence preference for the roster-line.

Finally, IE gives the Implied Efficiency of the obtained

roster. Implied efficiency is the percentage of time that

people at work are actually working.

To provide an indication of how the solutions to S08,

S10, and W07 in Table 4 compare to the airline’s solutions,

Table 6 makes a comparison of the average number of

uncovered workload hours per week, the average number

of uncovered hours of robustness, and the implied effici-

ency of each of the rosters. In Table 6, column headings

with an A superscript denote the airline’s value. For all

instances, we perform much better, significantly improving

the robustness of the roster. It is not possible to improve

implied efficiency without reducing the staffing level.

Instances S080, S100, and W070 are identical to S08, S10,

and W07 in which the staffing level has been reduced

by 10–12%. Here we see that we can provide a similar

coverage and more robustness than the airline, while at

the same time improving efficiency by around 7–11%.
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Figure 5 The cost incurred on each day of the rostering horizon for S10.
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Table 5 Solution statistics for 189-day rosters

Instance IP RC CC UWL UR IE (%)

A01 120.19 0.00 120.19 0.00 4.45 59.28
A02 760.58 17.00 743.58 0.53 22.24 65.12
A03 731.64 0.00 731.64 0.10 26.10 61.52
A04 1488.66 6.00 1482.66 1.23 42.61 62.11
A05 657.80 0.00 657.80 0.02 24.16 65.18
A06 14411.42 593.00 13 818.43 37.92 132.59 59.08
A07 1.05 0.00 1.05 0.00 0.04 50.53
A08 3310.59 373.00 2937.59 6.60 42.80 56.90
A09 466.60 0.00 466.60 0.00 17.28 67.77
A10 9528.92 916.00 8612.92 18.73 131.70 62.12

S08 3.30 2.00 1.30 0.00 0.05 45.98
S10 648.61 60.00 588.61 0.03 21.50 55.30
W07 1.70 0.00 1.70 0.00 0.06 57.07
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Although instance S10 has 0.33 uncovered workload hours

per week on average, this equates to around 20min per

week and can be considered negligible. It should also be

mentioned that in increasing the efficiency there is only

a very slight increase in the RC for instance S10.

9. Conclusion

In this paper, we have considered the GCRPWP arising at

a major European airline. We have proposed a cutting

stock-based integer programming formulation of the

problem, which is not only able to circumvent one step

of the roster construction process but which can also accu-

rately incorporate the necessary robustness measures. A

powerful decomposition approach utilizing column gene-

ration and variable fixing is developed to solve a sequence

of integrated optimization problems. This is combined with

a shift fixing routine to ensure the roster-lines obtained for

each of the smaller problems can be pieced together to

construct a roster for the entire six month planning hori-

zon. Computational results on three real-life instances and

10 artificial instances confirm the efficiency of the proposed

methodology. Not only do we find better solutions than

those implemented by the airline, particularly from a

robustness perspective, but we have also shown that more

robust solutions can be obtained even if staffing levels are

reduced by 10–12%.
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