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Transient Model Validation of Fixed-Speed Induction
Generator Using Wind Farm Measurements

Georgios Rogdakis, Rodrigo Garcia-Valle, Member, IEEE, and Ivin Arana, Member, IEEE

Abstract—In this paper, an electromagnetic transient model for
fixed-speed wind turbines equipped with induction generators is
developed and implemented in PSCAD/EMTDC. The model is
comprised by: an induction generator, aerodynamic rotor, and a
two-mass representation of the shaft system. Model validation is
conducted by measurement comparison using recordings obtained
from switching operations performed at the Nysted Offshore Wind
Farm in Denmark. A sensitivity analysis is performed to deter-
mine the impact of different model parameters on the simulated
response as compared with measurements. This validated model
will be used for assessing induced overvoltage conditions that may
arise under switching operations similar to those captured by the
measurements used for validation.

Index Terms—Current measurements, induction generators,
modeling, switching transient voltage measurements, wind tur-
bines.

1. INTRODUCTION

HE wind power capacity in Denmark is currently esti-
mated to be more than 3000 MW [1]; this figure accounts
for both onshore and offshore wind farms, with the latter ex-
periencing a large growth during the recent years. Denmark is
one of the largest developers of offshore wind farms and, by
2009, 660 MW of offshore wind turbines were connected to the
Danish grid [1]. The offshore wind energy capacity is expected
to grow even more in the coming years, particularly considering
the forthcoming commissioning of the 400 MW Anholt Off-
shore Wind Farm in 2013 [1]. By 2030, it is expected that the
wind power capacity in Denmark will reach about 5500 MW, of
which 4000 MW will be supplied by offshore wind farms [2].
The ongoing strenuous wind power integration requires large
offshore wind farms to become a significant part of the system’s
power supply; as a consequence, the system operation will be
heavily reliant on wind power generation. To ensure overall sta-
bility of the grid during and after network faults, system op-
erators have introduced severe rules for the operation of wind
turbines in the course of fault events. These operation prac-
tices are included in grid codes [3]-[5] where specifications de-
tail the conditions under which wind farms are required to re-
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main connected to the system. A wind turbine’s ability to main-
tain uninterrupted operation during and after faults is known as
“low voltage fault ride-through capability”. A voltage decrease
at the point of common coupling (PCC), which will take place
during faults, will lead to the acceleration of wind turbines. De-
pending on the severity of the fault, the impact on the stability of
the wind farm will vary. However, if reactive power compensa-
tion and blade-angle control is used, voltage stability and fault
ride-through capability may improve [6], [7].

In addition, the Danish grid code [3] specifies the allowed
levels of temporary overvoltage acceptable when wind farms
are isolated from the grid. Fixed-speed wind turbines in island
operation furnished with reactive power compensation tend to
increase the voltage at the PCC [8], [9]. In addition, when the
wind turbines are disconnected from the grid, due to the loss
of the load, their electrical speed will increase. As it will be
described and represented later in the paper, in the fixed-speed
wind turbines, there is a strong coupling between the electrical
and mechanical parameters. Therefore, an increase in the elec-
trical speed will lead in the increase of the mechanical speed.
While the wind turbines remain in island operation, their speed
will rise until it reaches the over-speed limit that will stop their
operation [10].

This paper proposes a model for fixed-speed wind turbines
which is capable of reproducing temporary transient overvolt-
ages as a product of the switching operation in wind farm ra-
dial feeders. The model developed is validated through the com-
parison of the model’s response with voltage and current mea-
surements taken from the Nysted Offshore Wind Farm (NOWF)
in Denmark. NOWF consists of 72 wind turbines, each with a
rated power of 2.3 MW, and was commissioned in December
2003 [11]. The wind turbines at NOWF are fixed-speed ac-
tive-stall and are equipped with squirrel-cage induction gener-
ators. The wind farm is divided into eight radial feeders, each
with nine wind turbines, which are connected to the grid through
a three-winding transformer (180/90/90MVA; 132/33/33 kV).

A GPS-synchronized measuring system was developed and
installed at NOWF [12], and field measurements were obtained
in 2007. This system captured high frequency transients from
the voltage and the current measurements simultaneously at
three different locations of the collection grid. This was pos-
sible given the high sampling rate of 2.5 MHz of the measuring
devices. The measuring points were located at [12]:

* the main transformer on the offshore platform, after the

circuit breaker of radial feeder A;

 the first wind turbine in radial feeder A, AO1;

 the last wind turbine in radial feeder A, A09.

0885-8950/$26.00 © 2011 IEEE
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Fig. 2. Measured three phase voltages at the transformer platform in radial
feeder A during the switching operation.

The measuring points and the layout of the wind farm are
shown in Fig. 1. Several switching transients were captured.

However, in this paper, only the disconnection of the radial
feeder A is investigated. Fig. 2 shows the three phase voltages
measured, while Fig. 3 shows the corresponding current mea-
surements during one of these switching operations. Note that
the wind turbines were in operation at the time of the mea-
surements used in this study. The switching operation of radial
feeder A occurs at 0.08 ms; the current to the transformer drops
to zero immediately. Nevertheless, there is a small amount of
current flowing between wind turbines AO1 and A(Q9, showing
that the wind turbines remain connected after disconnection of
the radial feeder. Even though it is not presented here, it should
be mentioned that after those 500 ms, the voltage decreases until
it reaches zero. The current at the transformer platform remains
zero, which reveals that the feeder does not reconnect during the
experiment, while the current at AO1 and A09 drops to zero.

II. MODELING

With the aim of reproducing the observed behavior during the
radial feeder switching, a fixed-speed wind turbine model was
developed. Here the collection grid of the wind farm is also con-
sidered because the switching operation opened the radial feeder
breaker. The collection grid consists of the high voltage (HV)
and submarine cables linked to the PCC, the wind farm main
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Fig. 3. Measured three-phase currents in radial feeder A during the switching
operation. Upper plot: current at the platform. Middle plot: current at AO1.
Lower plot: current at A09.

transformer, the medium voltage (MV) submarine cable of ra-
dial A, and the wind turbine transformers. Modeling of NOWF’s
collection grid has been discussed previously in [13]. For the
scope of this paper, the methodologies discussed in [13] were
adopted. Thus, all cables were modeled as 7-sections while the
transmission grid was modeled as a voltage source with series
impedance.

Each radial feeder is comprised by nine active-stall
fixed-speed wind turbines equipped with squirrel-cage in-
duction generators. This is the so-called “Danish concept”
because the Danish wind turbine manufacturers implemented
this configuration at many sites until the early 2000s [14].
Modeling of fixed-speed wind turbines for stability studies
has been addressed in the open literature [7], [14]-[16]. In
this study, the guidelines for modeling of fixed-speed wind
turbines in [7] were followed. Hence, the model developed for
the simulation of the switching event includes:

» aerodynamics of the wind turbine;

* shaft system of the wind turbine;

* squirrel-cage induction generator;

* blade-angle control;

* capacitor banks for reactive power compensation.

The model was implemented in PSCAD/EMTDC and simula-
tions were performed using the software tool.

A. Aerodynamics

The aerodynamic properties of the wind turbine’s rotor are
represented by the power coefficient C,, which determines the
power delivered from the drive train to the generator. This co-
efficient depends on the tip speed ratio A and the pitch angle 3.
The tip speed ratio is related to the wind speed V,,, the rotor
speed wyy, and the rotor radius R, as follows:

- R(U]w

A= T (1)

Having determined the tip speed ratio, the mechanical power of
the rotor can be determined from
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1
Py = 5(0 AC, (AN, B)Vir) @

where g, is the air density equal to 1.225 kg/m? and A is the
swept area of the rotor equal to A = 7R2.

B. Shaft System

Several models are used for representing the shaft system, the
most common being the lumped and the two-mass models. Due
to the strong coupling between the mechanical and the electrical
parameters of the generator, the wind turbine model requires the
two-mass model representation of the shaft system [7]. In addi-
tion, to obtain realistic results in stability studies, [14] and [16]
determine that the two-mass model and the fifth-order model
of the induction generator provide better results than lumped
models. The dynamics of the two-mass model are given by [7]

dw,
2Hy; d;\[ =Ty —Tg — Dywir 3)
d
2Hg— =T — T = Dowa @)
db
0 wolwm — wa) (%)

where Hjy; and Hg are the inertia constants of the rotor and
the generator, respectively; Ty, Tq, and Tr are the mechanical
torque of the rotor, the mechanical torque applied to the gener-
ator, and the electrical torque, respectively; wp; and wg are the
rotational speed of the rotor and the generator in that order; wy
is the base speed of the power system; and 6, is the twist of the
shaft. The mechanical torque applied to the generator is given

by [7]
TG = ngs - Ds(wG - w]\'f) (6)

where K, is the shaft stiffness. Djy;, Dg, and D, are the
damping coefficients of the rotor, the generator, and the shaft,
respectively.

C. Induction Generator

The induction generator is represented using a fifth-order flux
linkage model given by

ups = Raips + 225 o, ™
uQs = Rsigs + % — WeADs (8)
upr = Reip, + % - )\Qr% 9
ugr = Ryigo + 20 4, O (10)

The sub-indexes s and r stand for the generator’s stator and
rotor, respectively; while « and ¢ indicate voltages and currents.
The flux linkages of the stator and the rotor are represented by
the variable A. Note that this fifth-order model includes stator
transients [7], [16].

D. Blade-Angle Control

Using an active-stall fixed-speed wind turbine, blade-angle
control may be included. Blade-angle control is used for power
output regulation at high wind speed. In addition, active-stall
control may be activated when faults are detected in the system
to assist the fault ride-through capabilities of the wind turbines.
However, during faults, the wind turbine will operate as a con-
ventional (passive) stall wind turbine due to the relatively slow
response of the blade-angle control system [6], [17]. The simu-
lations performed in this study have a total duration of 500 ms,
while the most significant transient events occur in less than 250
ms. Therefore, it is possible to assume that the blade-angle con-
trol will not operate during the duration of the simulations, and
consequently, it does not need to be included in the wind turbine
model.

E. Capacitor Banks

Induction generator operation requires reactive power ab-
sorption. Increasing the turbine’s active power output increases
reactive power consumption. According to the Danish grid
code, wind farms should be equipped with reactive power
compensation to ensure that the reactive power stays within the
specified limits [3]. In NOWE, wind turbines are equipped with
capacitor banks to ensure reactive power compensation. Capac-
itor bank control is executed in two modes: power factor mode
and the voltage control mode. While in power factor mode, the
capacitor banks are controlled to ensure that the power factor
is kept within the limits specified in the grid codes. For power
factor mode operation, the voltage needs to be within limits.
When these limits are exceeded, the capacitor banks are in
voltage control mode. In this case, capacitor banks are discon-
nected or connected to ensure that the voltage remains within
thresholds. In case voltage drops go below a critical point, all
the available compensation should be connected immediately
to support the voltage.

III. VALIDATION

In this section, the model validation is presented. The main
events corresponding to the available measurements are the dis-
connection of radial feeder A and the high-transient overvoltage
observed at 275 ms. Here we assume that the transient over-
voltage is due to the connection of capacitor banks. Noting that
the recorded currents at wind turbines AO1 and A09 are dif-
ferent, it is also possible to assume that the connection of ca-
pacitor banks occurs only at wind turbine AO1. Under these as-
sumptions, an initial scenario was designed and simulated.

The switching events and results of the base case simulation
are those presented in [18]. Note that a significant discrepancy of
the frequency of the measured and simulated voltage and current
can be observed. This discrepancy was due to the lack of accu-
rate information regarding the inertia constant of the wind tur-
bine rotor Hj; and the shaft stiffness K;. Even though the sim-
ulation provided acceptable results for validating the assumed
scenario, further investigation was necessary. Values of the un-
specified parameters of the initial scenario were obtained from
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Fig. 5. Measured and simulated current at AQ. Upper plot: Phase A. Middle
plot: Phase B. Lower plot: Phase C.

[14]. Using these parameters, a new base case scenario was de-
veloped, for which results are presented in Figs. 4-6.

The voltage at wind turbine AO1 is shown in Fig. 4, while the
currents at AO1 and A09 are depicted in Figs. 5 and 6, respec-
tively. For the switching events, there was no difference between
the original base case and the improved base case scenarios;
moreover the transient overvoltages are similar. However, it can
be observed that the enhancements made improve the agreement
of the simulated voltage and current frequencies as compared to
the measurements. There is still a small discrepancy after 330
ms because the parameters cannot be matched; however, these
improvements provide a better model for fault ride-through ca-
pability studies.

The wind turbines of the radial feeder were in operation when
the measurements were performed. In these simulations, the
power output level was similar to the output of the wind turbines
at the time of the switching as shown in Figs. 7 and 8. Active and
reactive power computation was performed both from the mea-
surements, and by transforming the voltages and the currents in
the simulations to their sequence components [19]. The active
power obtained in the simulation is similar to the active power
captured by the measurements for the whole time frame. The re-
active power is presented only for the steady state operation of
the wind turbines and until the switching operation at 75 ms. The
reactive power is defined over a period; thus, calculation during
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Fig. 7. Measured and simulated active power at the three measuring locations.
Upper plot: Transformer platform. Middle plot: Wind turbine AOL. Lower plot:
Wind turbine A09.

transients does not have a physical meaning. A difference can
be seen between the measurements and the simulations due to
the instantaneous calculation; the measured reactive power fluc-
tuates while the simulated reactive power is steady. In addition,
at AO1 and AQ9, the simulated reactive power is close to the
measured but in the transformer platform is slightly different.
However, it is considered that the simulated results are repre-
sentative of the power production of the wind turbine.

IV. SENSITIVITY ANALYSIS

In the previous section, results for the improved base case sce-
nario were presented. The mechanical parameters of the wind
turbine model were not specified. Therefore, a sensitivity anal-
ysis was carried out to estimate their values and represent the
measurements as accurately as possible. A similar investigation
in [20] discusses the effect product of the error of the measured
value of the turbines. In addition, a sensitivity analysis on the
wind turbine parameters is used in [21] to determine their effect
on small signal stability.

In this study, sensitivity analysis is used to obtain unspeci-
fied parameters and produce a result closer to the reference mea-
surements. In addition, their effect on temporary overvoltages is
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TABLE I
TYPICAL VALUES FOR MECHANICAL PARAMETERS
OF MODERN WIND TURBINES

Hg.[s] Hul[s] K, [pu/rad]
0.4-1 2.5-12.5 0.15-1.2
TABLE 11
SCENARIOS BASED ON DIFFERENT VALUES FOR H 5y AND I ¢
Hy, [s] K, [pu/rad]
Scenario Al 3.5 0.15
Scenario A2 3.5 1.2
Scenario A3 4.5 0.15
Scenario A4 4.5 1.2

discussed. In the original scenario [18], switching operations of
capacitor banks were assumed. Here an additional investigation
is performed to determine the effect of different switching oper-
ations’ simulation results. The sensitivity analysis presented in
this section consisted of:
* sensitivity analysis of the values of the inertia constant of
wind turbine rotor and shaft stiffness;
 sensitivity analysis of different switching operations of ca-
pacitor banks.

A. Mechanical Parameter Investigation

In Table I. the typical values of inertia constants and the shaft
stiffness are shown [7].

The inertia constant of the induction generator was given, so
the sensitivity analysis is performed for the inertia constant of
the wind turbine rotor H,; and the shaft stiffness K. Due to
the broad range of the parameters, the values from a similar
wind turbine found in [14] were used as a starting point. Four
scenarios were formulated with different values for H; and K,
as shown in Table II.

Simulation results from the scenarios in Table II are presented
in Fig. 9, where the positive sequence component of the voltage
at wind turbine AQ1 is shown. The proposed sensitivity analysis
shows that the shaft stiffness impacts overvoltages to a higher

Positive sequence voltage at AD1
T T T T T 1 T
ol A N . -, S Seenario 1 ||
L - Scenario 2

Scenario 3
Scenario 4
Measurements

Voltage [kV]

0 0.05 01 0.15 02 025 03 0.35 0.4 0.45 05
Time [sec]

Fig. 9. Positive sequence voltage magnitude at AO1. Comparison between all
the scenarios of Table II and field measurements.

degree than the inertia of the rotor. For scenarios with the same
shaft stiffness (A1 and A3, and A2 and A4), the waveform of the
positive sequence voltage matches exactly. This finding can be
explained by looking into the normal operation of fixed-speed
wind turbines. During normal operation, the twisted shaft of the
wind turbine accumulates potential energy [7]. The total energy
is equal to

1 1
W, =-K.*=-K, =
27 T 2 <K>

1T 11

3K, (1)
where 6, is the twist of the shaft under normal operation. When
a fault occurs in the system, the twisted shafts start relaxing
and potential energy is transferred to the generator’s rotor. This
leads to acceleration of the generator’s rotation and more reac-
tive power being absorbed from the grid. In this investigation,
even though there is no fault in the grid, the islanding of the ra-
dial feeder leads to loss of power equilibrium. Hence, the wind
turbine’s mechanical system will act similarly to the case when
there is a fault in the grid. In the range of values examined for
the shaft stiffness, lower shaft stiffness will lead to higher po-
tential energy accumulation. This is reflected in the voltage of
wind turbine AO1, where lower shaft stiffness provokes higher
overvoltages.

B. Switching Operations

There are several uncertainties regarding the switching oper-
ations of the capacitor banks: First, it is uncertain what exactly
happens after disconnection of radial feeder A, and secondly, the
available measurements were made only at two wind turbines of
the radial. Thus, even though it is possible to assume and verify
the switching operations in the two measured wind turbines, for
the other seven wind turbines assumptions were made. To min-
imize the degree of uncertainty, four scenarios were formulated
by considering different switching operations at the capacitor
banks. The rationale behind this sensitivity analysis is to deter-
mine plausible operations of capacitor banks in the wind tur-
bines of the radial feeder as compared with the operations as-
sumed in the base case scenario. The different scenarios con-
sidered are outlined in Table III.
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TABLE III
SWITCHING OPERATIONS OF THE CAPACITOR BANKS

Scenario Switching operations

Capacitor banks (15x90kVAr) switching operations occur at
B1 A01 and A09.

Disconnection: 200ms/Connection: 275ms.

The capacitor banks (15x90kVAr) at all wind turbines are
B2 operated as in scenario B1. Disconnections/connections are
done at the same times. Steps of 90kVAr.

No capacitor bank switching until t = 275ms, when all are
disconnected (15x90kVAr).

Disconnection: 200ms/Connection: 275ms. Simultaneous steps
of 1x90kVAr, 1x180kVAr and 3x360kVAr.

B3

B4

Phase & of the current at AD9
01 . . . . ! . .
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Fig. 10. Current: Phase A at A09. Comparison between scenario B1 and mea-
surements at A09.

For the different scenarios in Table III, the voltages and cur-
rents are compared. The power output level is the same as in
the base case scenario, while the mechanical parameters are the
same in all scenarios. However, in this section, only the results
that show the most important discrepancies are presented. The
first simulated scenario is B1, where the main difference com-
pared with the base case is that switching operations occur only
at capacitor banks AO1 and A09. Capacitor banks in other wind
turbines, for which there are no available measurements, remain
connected throughout the simulation. Fig. 10 shows the cur-
rent magnitude for phase A at A09. The switching transients at
275 ms are higher in the simulation than in the measurements,
while the current seems to increase after the switching opera-
tion. However, it is important to note that the frequency of the
currents is very similar to the measurements.

In scenario B2, it is assumed that all the capacitor banks op-
erate in the same way: they are disconnected at 200 ms and con-
nected at 275 ms. After the connection, the capacitor banks are
disconnected again as in scenario B1. Fig. 11 depicts the voltage
magnitude for phase A of AO1. The resulting switching tran-
sients are more abrupt than those shown by the real measure-
ments. Consequently, the simultaneous connection of the capac-
itor banks at 275 ms does not accurately represent the events
captured by the measurements.

The previously simulated scenarios point to capacitor connec-
tion at 275 ms as the source of the switching transients at 275
ms. To confirm this assumption, in scenario B3, the capacitor
banks are disconnected at this instant. The rationale behind this

IEEE TRANSACTIONS ON POWER SYSTEMS
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Fig. 11. Voltage of phase A at AO1. Comparison between scenario B2 and mea-
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Phase B of the current at 401
01

Scenario B3

008 oo Measurements

Current [k A]

I i i i I i i
0 0.05 0.1 015 02 0.2% 03 035 04 045 05
Time [sec]

Fig. 12. Current for phase B at AO1. Comparison between scenario B3 and
field measurements at AOI.

scenario is to check that a disconnection does not occur, hence
all capacitor banks switch out simultaneously. In Fig. 12, the
current magnitude of phase B at AO1 is shown.

As it is depicted, the effect of the switching operation at 275
ms in the simulation is hardly noticeable. The disconnection of
the capacitor banks has no effect on the current at AO1. There-
fore, even the worst case of disconnecting all the capacitor banks
simultaneously does not represent the actual event.

Figs. 13 and 14 compare simulation results with measure-
ments. In Scenario B4, the capacitor banks connect/disconnect
at the same instant as in the improved base case scenario but
in different steps. In all scenarios except for Scenario B4, the
capacitor banks are considered as 15 steps of 90 kVAr; in Sce-
nario B4, it is considered to be in teams of 1 X 90 kVAr, 1 x 180
kVAr, and 3 x 360 kVAr as indicated in [22]. It is observed that
the results from Scenario B4 are similar to the measurements.
However, if they are also compared with the improved base case
results, it can be seen that the oscillations in the voltage and the
current have higher damping than in the improved base case.

Table IV shows RMS and instantaneous errors for the dif-
ferent scenarios at AO1. The RMS error is computed for every
phase over the entire simulation time. The values shown in
Table IV are the sum error of the three phases. The error is
substantial for the RMS voltage in all cases because of the
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Fig. 13. Voltage of phase A at AO1. Comparison between improved base case,
scenario B4, and field measurements. Upper plot: Voltage phase A from 0 to
500 ms. Lower plot: Voltage phase A from 250 ms to 300 ms.
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Fig. 14. Current magnitude for phase B at AO1. Comparison between improved
base case, scenario B4, and field measurements at AO1. Upper plot: Current
phase B from 0 to 500 ms. Lower plot: Current phase B from 250 ms to 300 ms.

phase shift after the switching operation at 275 ms. In Table IV,
the error of the instantaneous values of the voltage and the
current at 275 ms is also shown, the smallest error in the results
was obtained in the improved base case simulation. Thus,
it is possible to conclude that the assumptions made for the
improved base case are close to the events that occurred when
the measurements were obtained.

V. CONCLUSIONS

In this paper, a model for fixed-speed wind turbines equipped
with induction generators was introduced. These types of wind
turbines have been used broadly in the past and are still present
in several wind farms, including offshore farms. The model
developed for electro-magnetic transient studies can be used
for the assessment of temporary overvoltages induced after
switching operations in wind farms.

The model consists of an induction generator, shaft, and the
rotor’s aerodynamics. During the validation of the model, the as-
sumptions made on the wind turbine parameters and switching
operations that occurred during the event led to an adequate rep-
resentation of overvoltages. In addition, a sensitivity analysis

TABLE 1V
ERRORS BETWEEN THE SIMULATION RESULTS AND THE SIMULATED SCENARIOS
OF CAPACITOR SWITCHING AT AO1

RMS RMS Instantaneous  Instantaneous
Scenario current voltage current error,  voltage error,
error, % error, % % %
B1 104.2 169.7 142.8 51.7
B2 55.5 140.8 261.5 150.6
B3 55.3 137.8 347.7 72
B4 68.3 136.2 128.6 121.5
Base 70 129.5 108.6 28.1
case

has revealed the influence of different wind turbine parameters
on simulation results.

This study reveals that for the assessment of switching op-
erations, blade-angle control may be neglected, as its response
in this type of wind turbines is relatively slow. However, the
mechanical components of the wind turbines have a significant
impact on simulation results and must be included. Similarly,
reactive power compensation equipment should be included in
the model in conjunction with its control strategy.

However, it is also clear that the control of the reactive power
compensation for assisting in complying with the fault ride-
through requirements of the grid codes is in conflict with the is-
land operation of the wind turbines. When the fault ride-through
is activated, reactive power will be furnished into the system in
order to support the voltage. In island operation, because of the
loss of torque the wind turbines will be accelerated and this will
increase the voltage. Switching operations in the wind farms
may lead to island operation; therefore, control strategies for
reactive power compensation must assure that wind turbines re-
spond accordingly to the specific situation and not include a
generic control mode only for the fault ride-through.
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