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ABSTRACT 

Eight isolates (7 species) of white rot fungi were grown on soil extract agar amended 

with 0, 5 10 and 20 mg l- simazine, trifluralin and dieldrin, individually and as a 

mixture, under two different water regimes (-0.7 and -2.8 MPa water potential). The 

best isolates were T.versicolor (R26 and R101) and P.ostreatus, exhibiting good 

tolerance to the pesticides and water stress and the ability to degrade lignin and 

produce laccase in the presence of these pesticides. 

As a result, the activity of those three isolates plus Phanerochaete chrysosporium 

(well described for its bioremediation potential) was examined in soil extract broth in 

relation to differential degradation of the pesticide mixture at different concentrations 

(0-30 mg l-1) under different osmotic stress levels (-0.7 and -2.8 MPa). Enzyme 

production, relevant to P and N release (phosphomonoesterase, protease), carbon 

cycling (β-glucosidase, cellulase) and laccase, involved in lignin degradation was 

quantified. The results suggested that the test isolates have the ability to degrade 

different groups of pesticides, supported by the capacity for expression of a range of 

extracellular enzymes at both -0.7 and -2.8 MPa water potential. P.chrysosporium and 

T.versicolor R101, were able to degrade this mixture of pesticides independently of 

laccase activity, whereas P.ostreatus and T.versicolor R26 showed higher production 

of this enzyme. Complete degradation of dieldrin and trifluralin was observed, while 

about 80% of the simazine was degraded regardless of osmotic stress treatment in a 

nutritionally poor soil extract broth. The results with toxicity test (Toxalert®10), 

suggested the pesticides were metabolised. .Therefore the capacity for the degradation 

of high concentrations of mixtures of pesticides and the production of a range of 

enzymes, even under osmotic stress, suggested potential applications in soil. 

Subsequently, microcosm studies of soil artificially contaminated with a mixture of 

pesticides (simazine, trifluralin and dieldrin, 5 and 10 mg kg soil-1) inoculated with 

P.ostreatus, T.versicolor R26 and P.chrysosporium, grown on wood chips and spent 

mushroom compost (SMC) were examined for biodegradation capacity at 15ºC. The 

three test isolates successfully grew and produced extracellular enzymes in soil. 

Respiratory activity was enhanced in soil inoculated with the test isolates, and was 

generally higher in the presence of the pesticide mixture, which suggested increased 
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mineralization. Cellulase and dehydrogenase was also higher in inoculated soil than in 

the control especially after 12 weeks incubation. Laccase was produced at very high 

levels, only when T.versicolor R26 and P.ostreatus were present. Greatest 

degradation for the three pesticides was achieved by T.versicolor R26, after 6 weeks 

with degradation rates for simazine, trifluralin and dieldrin 46, 57, and 51% higher 

than in natural soil. And by P.chrysosporium, after 12 weeks, with degradation rates 

58, 74, and 70% higher than the control. The amendment of soil with SMC also 

improved pesticide degradation (17, 49 and 76% increase in degradation of simazine, 

trifluralin and dieldrin compared with the control).  
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1.1 Introduction 

Currently there are a number of possible mechanisms for the clean-up of pesticides in 

soil, such as chemical treatment, volatilization and incineration. Chemical treatment 

and volatilization, although feasible are problematic as large volumes of acids and 

alkalis are produced and subsequently must be disposed of. Incineration, which is a 

very reliable physical-chemical method for destruction of these compounds, has met 

serious public opposition, because of its potentially toxic emissions, and its elevated 

economic costs (Kearney, 1998; Zhang and Quiao, 2002). Overall most of these 

physical-chemical cleaning technologies are expensive and rather inefficient 

(Kearney, 1998; Nerud et al., 2003) because the contaminated soil has to be excavated 

at a site and moved to a storage area where it can be processed. Due to environmental 

concerns associated with the accumulation of pesticides in food products and water 

supplies there is a great need to develop safe, convenient and economically feasible 

methods for pesticide remediation (Zhang and Quiao, 2002). For this reason several 

biological techniques involving biodegradation of organic compounds by 

microorganisms have been developed (Schoefs et al., 2004). 

The use of microorganisms (fungi or bacteria), either naturally occurring or 

introduced, to degrade pollutants is called bioremediation (Pointing, 2001). Microbial 

metabolism is probably the most important pesticide degradative process in soils 

(Kearney, 1998) and is the basis for bioremediation, as the degrading microorganisms 

obtain C, N or energy from the pesticide molecules (Gan and Koskinen, 1998). 

The goal of bioremediation is to at least reduce pollutant levels to undetectable, non-

toxic or acceptable levels, i.e. within limits set by regulatory agencies (Pointing, 

2001) or ideally completely mineralize organopollutants to carbon dioxide. From an 

environmental point of view this total mineralization is desirable as it represents 

complete detoxification (Gan and Koskinen, 1998).  
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The use of bioremediation to remove pollutants is typically less expensive than the 

equivalent physical-chemical methods. This technology offers the potential to treat 

contaminated soil and groundwater on site without the need for excavation (Balba et 

al., 1998; Kearney, 1998), it requires little energy input and preserves the soil 

structure (Hohener et al., 1998). Perhaps the most attractive feature of bioremediation 

is the reduced impact on the natural ecosystems, which should be more acceptable to 

the public (Zhang and Quiao, 2002). 

The complexity of microbial mechanisms for degradation of organopollutants as well 

as the time period before microbial degradation starts, requiring weeks to months, has 

made the technology slow to emerge as a viable method of remediation (Nerud et al., 

2003). It becomes apparent that more detailed studies of the principles of 

biodegradation, and the development of efficient methods of decontamination are 

needed to solve the hazardous waste problem (Nerud et al., 2003). 

At present bioremediation conducted on a commercial scale utilises prokaryotes, with 

comparatively few recent attempts to use white rot fungi. These filamentous 

organisms however, offer advantages over bacteria in the diversity of compounds they 

are able to oxidise (Pointing, 2001). In addition, they are robust organisms and are 

generally more tolerant to high concentrations of polluting chemicals than bacteria 

(Evans and Hedger, 2001). Therefore, white rot fungi represent a powerful 

prospective tool in soil bioremediation and some species have already been patented 

(Sasek, 2003). Interestingly only a few companies have included the use of 

ligninolytic fungi for soil remediation into their program, for example “EarthFax 

Development Corp.” in USA or “Gebruder Huber Bodenrecycling” in Germany.  

1.2 Biodegrading capacities of white rot fungi 

Application of fungal technology for the cleanup of contaminants has shown promise 

since 1985 when the white rot species Phanerochaete chrysosporium was found to be 

able to metabolize a number of important environmental pollutants (Sasek, 2003). 

This ability is generally attributed to the lignin degrading enzymatic system of the 

fungus, and a similar degrading capacity was later described for other white rot fungal 

species (Sasek, 2003). 
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White rot fungi possess a number of advantages that can be exploited in 

bioremediation systems. Because key components of their lignin-degrading system 

are extracellular, these fungi can degrade insoluble chemicals such as lignin or an 

extremely diverse range of very persistent or toxic environmental pollutants (Barr and 

Aust, 1994). The mycelial growth habit is also advantageous as it allows rapid 

colonisation of substrates, and hyphal extension enables penetration of soil reaching 

pollutants in ways that other organisms cannot do (Reddy and Mathew, 2001). This 

can maximise physical, mechanical and enzymatic contact with the surrounding 

environment (Maloney, 2001). In addition, these fungi use inexpensive and abundant 

lignocellulosic materials as a nutrient source. They can tolerate a wide range of 

environmental conditions, such as temperature, pH and moisture levels (Maloney, 

2001) and do not require pre-conditioning to a particular pollutant, because their 

degradative system is induced by nutrient deprivation (Barr and Aust, 1994). 

1.2.1 White rot fungi 

To understand the ability to degrade contaminants it is important to analyse the 

ecological niches of white rot fungi. These fungi are a physiological rather than 

taxonomic grouping, comprising those fungi that are capable of extensively degrading 

lignin (a heterogeneous polyphenolic polymer) within lignocellulosic substrates 

(Pointing, 2001). The name white rot derives from the appearance of wood attacked 

by these fungi, in which lignin removal results in a bleached appearance of the 

substrate (Pointing, 2001). Most known white rot fungi are basidiomycetes, although 

a few ascomycete genera within the Xylariaceae are also capable of white rot decay 

(Eaton and Hale, 1993).  

In nature, white rot fungi live on woody tissues that are composed mainly of three 

biopolymers: cellulose, hemicellulose and lignin. Lignin, which provides strength and 

structure to the plant, is extremely recalcitrant. It is mineralised in an obligate aerobic 

oxidative process, and its degradation yields no net energy gain (Pointing, 2001), 

because it cannot be degraded as a sole source of carbon and energy (Field et al. 

1993). The physiological importance of lignin biodegradation is the destruction of the 

matrix it forms, so that the microorganism can gain better access to the real substrates: 

hemicellulose and cellulose (Field et al., 1993; Canet et al., 2001), from where it 

obtain energy. 
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The usual biological answer to breaking down biopolymers is to use highly specific 

enzymes. This approach is normally extremely effective as a minimum amount of 

protein (enzyme) is synthesised by the organism to cleave the polymer (Evans and 

Hedger, 2001). However, the way white rot fungi degrade wood is rather different, 

because lignin is hydrophobic and highly insoluble, which poses problems for 

catalysis by enzymes, that tend to be water soluble (Harvey and Thurston, 2001). 

Lignin is synthesized in plants by random peroxidase-catalysed polymerization of 

substituted p-hydroxy-cinnamyl alcohols (Field et al., 1993). This polymer is three-

dimensional, and its monomers are linked by various carbon-carbon and ether bonds 

and the stereo irregularity of lignin makes it resistant to attack by enzymes. The 

enzymatic degradation of lignin is further complicated by the chiral carbon in this 

polymer that exists in both L and D configurations. 

Due to its molecular size it is impossible for lignin to be absorbed and degraded by 

intracellular enzymes, therefore ligninolytic enzymes are extracellularly excreted by 

the degrading fungi, initiating the oxidation of substrates in the extracellular 

environment (Mester and Tien, 2000). Thus, the white rot fungi have developed very 

non-specific mechanisms to degrade lignin (Bar and Aust, 1994) extracellularly. 

The three major families of lignin modifying enzymes believed to be involved in 

lignin degradation are laccases, lignin peroxidases and manganese peroxidases 

(Reddy and Mathew, 2001). The key step in lignin degradation by laccase or the 

ligninolytic peroxidases (LiP and MnP) involves the formation of free radical 

intermediates, which are formed when one electron is removed or added to the ground 

state of a chemical (Reddy and Mathew, 2001). Such free radicals are highly reactive 

and rapidly give up or accept an electron from another chemical, which triggers 

oxidation or reduction of “neighbouring” compounds. These radicals can carry out a 

variety of reactions including benzylic alcohol oxidation, carbon-carbon bond 

cleavage, hydroxylation, phenol dimerisation/polymerisation and demethylation 

(Pointing, 2001).  

Different white rot fungi appear to be able to achieve the same effect with different 

combinations of enzymes (Harvey and Thurston, 2001) with respect to wood 

degradation. The common features are the random nature of the structure of lignin, 
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which requires its degradation to function in a non-specific manner. Consequently, 

other compounds that have an aromatic structure, such as many xenobiotic 

compounds, are also highly susceptible to degradation by ligninolytic enzymes (Field 

et al., 1993; Barr and Aust, 1994;). This characteristic is the greatest advantage of the 

use of white-rot fungi in bioremediation, since a mixture of different pollutants are 

usually found in most contaminated sites (Mester and Tien, 2000). 

Aside from the lack of specificity, the ligninolytic system of white rot fungi offers 

further advantages. It is not induced by either lignin or other related compounds 

(Cancel et al., 1993). Thus, it is possible to degrade pollutants at relatively low 

concentrations, that may be lower than that required to induce the synthesis of 

biodegrading enzymes in other microorganisms (Mester and Tien, 2000). 

Furthermore, repression of enzyme synthesis does not occur when the concentration 

of a chemical is reduced to a level that is ineffective for enzyme induction. This is 

because the induction of the degradative enzymes is not dependent on the presence of 

the chemical. The fungus can effectively degrade very low concentrations of a 

pollutant to non-detectable or nearly non-detectable levels (Bumpus and Aust, 1986). 

1.2.2 Evidence for enzyme mediated contaminant degradation by 
white rot fungi 

There are many studies on degradation of pollutants by ligninolytic fungi, and the 

range of xenobiotics degraded by these microorganisms is very wide. Table 1.1 shows 

some examples of compounds degraded by white rot fungi. 

Although the precise role of enzymes in pesticide degradation by white rot fungi is yet 

to be established, there is mounting evidence which suggests that the lignin 

degradation enzyme complex (lignin peroxidases, manganese peroxidases and 

laccases) is responsible at least in part for the degradative capabilities of these fungi. 

However, not all fungi produce all these enzymes simultaneously, and it has often 

been difficult to find a distinct correlation between the pollutant degradation and 

production of enzymes even if the enzymes have been detected (Nerud et al., 2003). 

Previous research has shown interesting associations between contaminant 

degradation and enzyme activity.  
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Table 1.1 Degradation of typical environmental pollutants by ligninolytic 

basidiomycetes 

Fungus Type of pollutant  Reference 

Lindane, DDT Bumpus et al., 1985 

BTEX (benzene, 

toluene, ethylbenzene 

and xylene) 

Yavad and Reddy, 1993 

P.chrysosporium 

Atrazine  Hickey et al., 1994 

P.chrysosporium, 

Phanerochaete eryngi, 

Pleurotus florida and Pleurotus 

sajor-caju 

Heptachlor and 

lindane 

Arisoy, 1998 

P.chrysosporium and Trametes 

versicolor 

Pentachlorophenol Alleman et al., 1992 

T.versicolor Pesticides  Khadrani et al., 1999 

Morgan et al., 1991 

Pesticides Khadrani et al., 1999 

Dyes  Sasek et al., 1998 

Pleurotus ostreatus  

Catechol, pyrene and 

phenanthrene 

Bezalel et al., 1996 

Pleurotus pulmonaris Atrazine Masaphy et al., 1996 

Bjerkandera adusta Pesticides Khadrani et al., 1999 
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Laccase activity in biodegradation of xenobiotic compounds with lignin-like 

structures has already attracted considerable interest (Trejo-Hernandez et al., 2001), 

and its biodegradative properties have been studied exhaustively for different 

contaminants. This enzyme is a copper-containing phenoloxidase involved in the 

degradation of lignin (Pointing, 2001) and it oxidises phenol and phenolic lignin sub-

structures (Tuor et al., 1995). The catabolic role of fungal laccase in lignin 

biodegradation is not well understood (Heggen and Sveum, 1999; Trejo-Hernandez et 

al., 2001), but some successful applications of this enzyme in decontamination have 

been reported. For example dye decolouration by Trametes hispida (Rodriguez et al. 

1999), degradation of azo-dyes by Pyricularia oryzae (Chivukula and Renganathan, 

1995) and textile effluent degradation by Trametes versicolor have been attributed to 

laccase activity. Duran and Esposito (2000) also reported that laccase from Cerrena 

unicolor produced a complete transformation of 2,4 DCP in soil colloids. 

In a more recent study by Demir (2004) biological degradation of benzene and 

toluene by T.versicolor was analyzed and the biomass determined. Within an 

incubation period of 48 hrs, it was observed that, removal was completed after 4 hours 

when initial toluene concentration was 50 mg l-1 and was completed in 36 hrs when 

this was 300 mg l-1. Biodegradation was completed by the end of the 4th hr at benzene 

concentrations of 50 mg l-1 while it continued for 42 hrs at 300 mg l-1. With the 

addition of veratryl alcohol, a laccase inducer, to the basic feed medium, the operation 

of the enzyme system was enhanced and biodegradation completed in a shorter time 

period (Demir, 2004). 

Han et al. (2004) studied the degradation of phenanthrene by T.versicolor and its 

laccase was purified. After 36 hrs incubation, about 46 and 65% of 100 mg l-1 of 

phenanthrene added in shaken and static fungal cultures were removed, respectively. 

Although the removal percentage was highest (76.7%) at 10 mg l-1 of phenanthrene, 

the transformation rate was maximal (0.82 mg h-1) at 100 mg l-1 of phenanthrene in 

the fungal culture. When the purified laccase of T.versicolor reacted with 

phenanthrene, the compound was not transformed.  

Another interesting example of contaminant degradation and enzyme activity was in 

the study described by Barr and Aust (1994). They described cyanide to be quite toxic 

to spores of P.chrysosporium (50% inhibition of glucose metabolism at 2.6 mg l-1). 
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This toxicity was due to the absence of lignin peroxidases which can rapidly 

metabolise cyanide, as ligninolytic 6 day old cultures could tolerate considerably 

higher cyanide concentrations (50% inhibition of glucose metabolism at 182 mg l-1). 

Valli et al. (1992) demonstrated the mineralization of the dioxin 2,7-dichlorobenzeno-

p-dioxin by P.chrysosporium. Their results showed that purified lignin peroxidases 

and manganese peroxidases were capable of mineralization in a multi-step pathway. 

Esposito et al. (1998) showed that different actinomycetes were able to degrade 

diuron in soil, using manganese peroxidases. 

Regardless of many suggestions that the degradation of xenobiotics by white rot fungi 

is mediated by enzymes involved in lignin degradation some authors have found 

contradictory evidence. For example, Jackson et al. (1999) reported degradation of 

TNT by non-ligninolytic strains of P.chrysosporium. Bending et al. (2002) showed 

>86% degradation of atrazine and terbuthylazine by white rot fungi in liquid culture 

and found no relationship between degradation rates and ligninolytic activity. Other 

studies with P.chrysosporium in liquid culture have reported biotransformation of the 

insecticide lindane independently of the production of ligninolytic enzymes (Mougin 

et al., 1996). These researchers ruled out the involvement of peroxidases in lindane 

biotransformation and mineralization, and they assessed the activity of the 

cytochrome P450 monooxygenase, an enzymatic system used by many organisms as a 

detoxification tool. They found that a P450 inactivator (1-aminobenzotriazole) 

drastically reduced pesticide metabolism, but phobarbital, a P450 inducer, did not 

increase lindane breakdown. 

Whether the degradation of pesticides is carried out by lignin degrading enzymes or 

by other enzymatic systems, or by both, the use of fungi in bioremediation is very 

promising and further studies are required to understand which enzymes are involved 

in the process. This information could be very useful in the establishment of the best 

conditions for enzyme production and consequent fungal bioremediation in situ. It is 

essential to assess the production of theses enzymes in soil, because that is where 

bioremediation will take place in field conditions, and because there are considerably 

more studies on enzyme production in liquid cultures than in soil. Additionally, there 

is little information on the degradation of mixtures of pesticides, which in 
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environmental conditions are more common than contamination with single 

pesticides. 

1.3 Feasibility of bioremediation by white rot fungi 

1.3.1 Terminology 

In practice bioremediation of organopollutants in situ generally applies to 

contaminated soils. Two approaches are recognised: biorestoration in which the 

physico-chemical nature of the soil (e.g. nutrients, aeration) is altered to encourage 

indigenous microorganisms to degrade the pollutant and bioaugmentation in which a 

known degrading microorganism is introduced in the contaminated soil (with or 

without physico-chemical alteration) (Pointing, 2001). 

1.3.2 Soil contamination 

Since the earliest times, societies have used soil as a quick and convenient disposal 

route for waste (Ashman and Puri, 2002), but only recently it was found that 

contaminants in the soil can find their way to other areas of the environment (Figure 

1.1). This escape of contaminants is very serious, since other environmental niches 

even more fragile than soil may become contaminated. Soils are contaminated when 

they have elevated concentrations of chemicals (usually as a result of human activity) 

compared with soil that are regarded as being in pristine condition. Contamination 

becomes “pollution” once these elevated concentrations begin to have an adverse 

effect on organisms (Ashman and Puri, 2002). 

Most soils are to some extent contaminated by naturally occurring harmful or toxic 

elements, but not all soils are polluted (Bridges, 1997). The most common soil 

pollutants include metallic elements and their compounds, asbestos, organic 

chemicals, oils and tars, pesticide residues, explosive and asphyxiant gases, and 

radioactive materials (Bridges, 1997). These substances often arrive in the soil as a 

result of intentional disposal, such as spillages and from atmospheric fallout (Bridges, 

1997). Among these contaminants, pesticides are of primary importance due to their 

continuous entry into the soil environment (Sannino and Gianfreda, 2001). 
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Figure 1.0.1 Contaminants in soil can find their way to other areas of the environment 

(Ashman and Puri, 2002). 

1.3.3 Pesticides 

The term “pesticides” embraces an enormous diversity of products that are used in a 

number of different activities (Mourato et al., 2000), especially agriculture, that 

currently accounts for 75% of the total use of pesticides (Buyuksonmez, 1999). 

Besides agricultural applications, large amounts of pesticides are used for maintaining 

urban plantings, hygienic handling and storage, control of vegetation beneath power 

lines and along railways and roadways, mosquito and fly control, preservation of 

wood and control of mould growth in paper mills. Moreover, pesticides have played a 

great role in reducing diseases such as malaria and typhus fever. It has been estimated 

that the use of DDT saved approximately 5 million lives and prevented a hundred 

million illnesses in the 1940’s (Buyuksonmez, 1999). 
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1.3.4 Environmental concerns regarding the contamination with 
pesticides 

Several hundred pesticides of different chemical nature are currently widely used for 

agricultural purposes throughout Europe and the USA (Barceló, 1991), which resulted 

in mixed impacts: on the one hand utilization of pesticides produces an enormous 

increase in agricultural productivity (Kuo and Regan, 1999). On the other hand, due to 

their widespread use, pesticides are currently detected in various environmental 

matrices such as soil, water and air (Barceló, 1991) and there is great concern about 

their potential environmental hazard (Sannino et al., 1999).  

Contamination with pesticides can lead to pollution of surface water and groundwater 

(Kuo and Regan, 1999; Juhler et al., 2001), reduced biodiversity and depression in 

soil heterotrophic bacteria (including denitrifying bacteria), and fungi (Ahmed et al., 

1998). Inadequate management practices specifically involving the on-farm handling 

of pesticides appear to be a major source of pesticide contamination (Kuo and Regan, 

1998). The wastes and rinsates from spray and storage equipment are sources of 

contamination (Kuo and Regan, 1999) and soil disposal is the most common method 

of handling these diluted pesticide wastes (Schoen and Winterlin, 1987). Also of great 

concern are pesticide spills or waste disposal sites, which are characterized by the 

presence of large quantities of pesticides often in mixtures in localized areas of soil 

(Gan and Koskinen, 1998). Contamination at these sites is described as point source 

contamination whereas contamination resulting from the application of pesticides for 

the purpose of pest management is called non-point source contamination (Gan and 

Koskinen, 1998). In the latter case pesticide presence is widespread, but at relatively 

low concentrations. 

When the concentration of a pesticide, its metabolites or by-products is significantly 

excessive, remediation is necessary to avoid migration to a more sensitive area of the 

environment (Kearney, 1998). The concentration at which soil remediation is required 

is referred to as the remediation trigger level, but for many xenobiotics no guidelines 

are currently established. There is also a need to define the target threshold 

concentrations when remediation is achieved. This target remediation concentration is 

generally in the range of 1 mg kg soil-1 or a concentration arrived at after a risk 

assessment analysis, usually on a site-by-site basis (Kearney, 1998). Curiously, when 
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pesticides are applied at normal agricultural rates, roughly <1-4.5 kg ha-1 residues in 

the surface soils range in concentration from <0.5 to 2.5 mg kg soil-1 (ppm) (Kearney, 

1998).  

Even when the level of contaminants is low and does not exceed a few µg kg soil-1 

(ppb), the ability of these chemicals to pass through the subsurface layers and to reach 

groundwater is a matter of concern, especially in areas where drinking water is 

supplied from an aquifer (Muszkat et al., 1993). The maximum permissible 

concentration of pesticides in waters intended for human consumption is 0.1 µg kg 

soil-1 and 0.5 µg kg soil-1 in total for all substances (European Directive 80/778/EEC 

and decree of 3rd January 1989). 

The chemical properties of pesticides determine their retention and transport in soils, 

(Kearney, 1998). A pesticide can reach groundwater if its water solubility is greater 

than about 30 mg l-1; its adsorptivity, Koc (Koc= partition coefficient between soil 

organic carbon and water), is less than 300-500 ml g-1; its soil half-life is longer than 

about 2-3 weeks; its hydrolysis half-life is longer than approximately 6 months and its 

photolysis is longer than 3 days (Barceló, 1991). 

1.3.5 Simazine, trifluralin and dieldrin 

The most common pesticides are herbicides, insecticides and fungicides, where 

herbicides account for nearly 50% of all pesticides used in developed countries and 

insecticides account for 75% of all pesticides used in developing countries (Maloney, 

2001). Figure 1.0.2 compares the persistence of different pesticides in soil. In the 

current study, we used three pesticides, two herbicides (simazine and trifluralin) and 

one insecticide (dieldrin). It shows that dieldrin is the most persistent of the pesticides 

employed in this study, followed by simazine and then trifluralin. They are included 

in the “UK Red List of Substances”, a list issued by the Department of the 

Environment for the purposes of controlling the input of dangerous substances into 

the aquatic environment. The chemical structure of these pesticides is shown in Figure 

1.0.3. 

Simazine is one of the most widely used herbicides in the world. It is the least water 

soluble of all triazine herbicides and is therefore very immobile in soil and very 
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ineffective as a foliar application to weeds (McEwen and Stephenson, 1979). It is 

used to control broad-leaved weeds and annual grasses in field, berry fruit, nuts, 

vegetable and ornamental crops, turf-grass, orchards and vineyards. At higher rates it 

is used for non-selective weed control in industrial areas (Extoxnet, 1996). The acute 

oral LD50 in rats is >3000 mg kg-1, it is non-toxic to birds and bees (Extoxnet, 1996) 

and is moderately persistent. Simazine residues have been detected in groundwater at 

concentrations in the range of 0.02-0.1 µg l-1(ppb) to 3.4 µg l-1.  

Trifluralin is a pre-emergence herbicide, which must be incorporated in soil within 24 

hours of application. It is used in crops such as maize, rapeseed, barley, cotton, 

carrots, orange, grapefruit, peach, peppermint (Extoxnet, 1996). Although pure 

trifluralin is not acutely toxic to test animals by oral, dermal or inhalation routes, 

certain formulated products may be more toxic than the technical material itself 

(Heged et al., 2000). Trifluralin volatilises easily, but once incorporated in the top 3-5 

cm of soil it is strongly absorbed by soil, being of moderate to high persistence 

(Heged et al., 2000). Trifluralin is of low toxicity to birds and mammals with an acute 

oral LD50 in rats >10000 mg kg-1 (Extonet, 1996). 

Dieldrin is a chlorinated hydrocarbon insecticide of high toxicity (LD50 in rats=37-87 

mg kg-1) and high persistence in soil. This insecticide is very immobile in soil and its 

95% disappearance rate is 5-25 years. Morrison et al. (2000) reported the presence of 

dieldrin in soil 15 years after the previous application. Volatilisation is responsible for 

much of the dieldrin lost from the soil surface. Persistence is also affected by soil 

type. Soils with high organic matter content showing higher dieldrin binding and 

persistence than sandy soils (Extoxnet, 1996). 
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Figure 1.0.2 The persistence in soil of some common pesticides (From Ashman and 

Puri, 2002) *show the pesticides used in this study. 
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Figure 1.0.3 Chemical structure of simazine (A), trifluralin (B) and dieldrin (C). 
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1.4 Enhancing growth of white rot fungal growth in soil 

Currently, there are many studies being carried out to optimise the biodegradation 

potential of white rot fungi in contaminated soil (Ryan and Bumpus, 1989; Morgan et 

al., 1993; McFarland et al., 1996; Meysami and Baheri, 2003). If it is accepted that 

the extracellular ligninolytic enzymes are at least in part responsible for the critical 

initial reactions of pollutant transformation, the production and activity of these 

enzymes in contaminated soil under field conditions are two prerequisites for 

successful application of white rot fungi in soil bioremediation (Lang et al., 1998).  

In natural soil a wide range of saprophytic microorganisms exist. Introduction of 

white rot fungi requires effective growth and competition with these native 

populations. Additionally the bioremedial fungi should be able to secrete the 

necessary enzymes into the soil matrix to enhance degradation of pesticide molecules 

that they would otherwise be unable to incorporate across cell walls (Canet et al., 

2001). 

Most of the protocols for delivering inoculum of wood rot fungi for soil 

bioremediation have been adopted from mushroom growers, who have perfected the 

art of producing fungal spawn on lignocellulosic waste. Species used in mushroom 

production have been formulated on inexpensive substrates such as corn cobs, 

sawdust, wood chips, peat or wheat straw. When used in bioremediation these 

substrates are impregnated with mycelium and mixed with contaminated soil 

(Paszczinksi and Crawford; 2000; Reddy and Mathew, 2001). There is little 

information available on survival of white rot fungi in soil, especially fungi that are 

not used for human consumption. Several groups are investigating ways to improve 

the survival of wood rot fungi in polluted soils (Ryan and Bumpus, 1989; Morgan et 

al., 1993; Bennet et al., 2001).  

Certainly, better fungal growth could help introduced fungi to overcome competition 

from indigenous microorganisms, and enhance bioremediation. This is critical as 

native soil microorganisms may occupy the lignocellulosic substrate and restrain 

growth and activity of the white-rot fungus, inhibiting fungal lignino-cellulose 

decomposition and reducing the enzymes released (Lang et al., 2000b). 



 Literature Review and Objectives 

 17   

Boyle (1995) reported an increase in growth and carbon dioxide production in natural 

soil supplemented with carbon amendments, and observed that mineralisation of [14C] 

penthachlorophenol (degradation to 14CO2) was much faster in soil that had been 

amended with alfalfa and benomyl and inoculated with T.versicolor. Another study 

showed that the addition of straw increased the hyphal length of white rot fungi in soil 

(Morgan et al., 1993).  

Besides strong growth capabilities, it is important that the inoculation conditions 

promote enzyme production. Moredo et al. (2003) investigated ligninolytic enzyme 

production by the white rot fungi P.chrysosporium and T.versicolor pre-cultivated on 

different insoluble lignocellulosic materials: grape seeds, barley bran and wood 

shavings. Cultures of P.chrysosporium pre-grown on grape seeds and barley bran 

showed maximum lignin peroxidase and manganese-dependent peroxidase activities 

(1000 and 1232 units l-1, respectively). T.versicolor pre-cultivated with the same 

lignocellulosic residues showed maximum laccase activity (around 250 units l-1). In 

vitro decolouration of the polymeric dye Poly R-478 by the extracellular liquid 

obtained in the above-mentioned cultures was monitored in order to determine the 

respective capabilities of laccase, LiP and MnP. It is noteworthy that the degrading 

capability of LiP when P.chrysosporium was pre-cultivated with barley bran gave a 

percentage of decolouration of about 80% in 100 seconds (Moredo et al., 2003). 

The utilisation of these solid substrates in soil may also be advantageous as a means 

to distribute fungal inoculum evenly in large volumes of soil (Harvey and Thurston, 

2001), and according to Singleton (2001) growth amendments could also exert 

beneficial effects by sorbing pollutants and hence decreasing the amount of toxic 

pollutant that is bioavailable. 

1.5 Evidence for pesticide degradation in soil by white rot 
fungi  

Although the majority of studies on bioremediation of pesticides using white rot fungi 

has not been conducted in soil, these organisms have already been demonstrated to be 

capable of transforming and/or mineralising several individual pesticides in soil. The 

diversity of known pesticide compounds degraded by several white rot fungi in soil is 

reviewed in this section, as well as some ecophysiological features of these fungi. 
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1.5.1 Phanerochaete chrysosporium 

P.chrysosporium was the first fungus to be associated with degradation of 

organopollutants, because it has been extensively studied as a model microorganism 

in research on the mechanism of lignin degradation (Sasek, 2003). This thermophilic 

basidiomycetes, was first considered a problem in the 1970s in self-heating wood chip 

piles, in its anamorphic state Sporotrichum pulverulentm (Burdsal, 1981). Although 

later this fungus was the subject of many investigations on cellulase and ligninase 

production; because of their potential in bioremediation, its natural niche remains 

unknown (Evans and Hedger, 2001). 

Most research on P.chrysosporium has been conducted in liquid and/or synthetic 

media, less is known regarding its bioremediative capabilities in soil. The work 

carried out by Lamar and co-workers is invaluable in this respect (Lamar and 

Dietrich, 1990; Davis et al., 1993; Lamar et al., 1993; Lamar et al., 1994). They 

concentrated on the use of P.chrysosporium, Phanerochaete sordida and Trametes 

hirsuta to detoxify pentachlorophenol and creosote contaminated soil on a field scale. 

Of the three fungi P.sordida proved to be the most effective inoculant as it showed the 

highest transformation ability, and was able to grow at lower temperatures. In one 

field study the temperature decreased to 80C, posing problems for growth of 

P.chrysosporium as this fungus grows slowly at such environmental temperatures. It 

has a temperature optimum of 39ºC. Tekere et al. (2001) and Hestbjerg et al. (2003) 

reported that field conditions did not always enable P.chrysosporium to achieve 

optimum activity and therefore it was not a good competitor in the soil environment 

(Sack and Fritsche, 1997; Hestbjerg et al., 2003). This last point was reinforced by 

Radtke et al. (1994) who reported bacteria that from polluted and agricultural soil 

antagonise the growth of P.chrysosporium on solid media. 

Nevertheless, some studies have described the successful application of 

P.chrysosporium as a bioremediation agent in soil. For example McFarland et al. 

(1996) described complete alachlor transformation by this fungus, within 56 days of 

treatment. Reddy and Mathew (2001) also showed that this species was able to 

degrade DDT, lindane and atrazine. 
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1.5.2 Pleurotus ostreatus 

P.ostreatus is an edible species, commonly known as the oyster mushroom (Hestbjerg 

et al., 2003). This species is a saprophytic basidiomycete and a natural decomposer 

because it secretes enzymes and acids that degrade organic polymers (Pletsch et al., 

1999). Its great advantage is that large scale production of fungal biomass grown on 

lignocellulosic substrates has already been developed for human consumption and it is 

economically feasible because the substrates do not need to be sterilised 

(pasteurization is sufficient) (Sasek, 2003). The fungal mycelium colonizes natural 

soil effectively (Lang et al., 2000a) and its temperature requirements are considerably 

lower than that of P.chrysosporium (Hestbjerg et al., 2003), as it is active at 80C 

(Heggen and Sveum, 1999). 

P.ostreatus has been tested for lindane degradation, and found to be effective 

decreasing concentrations from 345 to 30 mg l-1, within 45 days, in a bench-scale test 

(www.earthfax.com). Subsequent pilot-scale tests were conducted utilising macro-

scale plots with capacities of about 2 cubic yards: lindane concentrations decreased 

from 558 to 37 mg l-1 in 274 days. Following performance of the pilot-scale tests, 

approximately 750 tonnes of contaminated soil were excavated. The contaminated 

soil was mixed with 16% (w/w) fungal inoculum (i.e. sawdust and cottonseed hulls 

thoroughly colonised with P. ostreatus). Initial lindane concentrations ranged from 

7.1 to 37 mg l-1, averaging 21 mg l-1. After 24 months of treatment lindane 

concentrations had decreased by 97% to 0.57 mg l-1, achieving the industrial treatment 

goal of 4.4 mg l-1 and almost also reaching the residential risk-based concentration of 

0.49 mg l-1 (www.earthfax.com). 

Novotny et al. (1999) also described P.ostreatus as a suitable candidate to apply for 

the clean-up of soils contaminated with recalcitrant pollutants because of its capability 

of robust growth and efficient extracellular enzyme production in soil even in the 

presence of pollutants such as PAHs. They suggested that mycelial growth through 

contaminated soil and efficient enzyme expression were the key to removal of the 

pollutant molecules from the bulk soil. 

http://www.earthfax.com/
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1.5.3 Trametes versicolor 

The basidiomycete Trametes (syn. Coriolus, Polyporus, Polystictus) versicolor is a 

very efficient white rot species in nature (Staszak et al., 2000), that was first studied 

by Dodson et al. (1987). This fungus causes rapid white rot invasion of moribund or 

fallen trees of species such as birch, beech and oak, by a rapidly extending mycelium 

which utilises free sugars in the wood of the tree (Evans and Hedger, 2001). 

T.versicolor has been used in bioremediation research because of its effective 

extracellular laccase production and high tolerance to pentachlorophenol. However, 

little knowledge exists on its capacity in natural soil (Sasek, 2003). One example is 

described by Tuomela et al. (1999) that showed T.versicolor mineralised 29% of 

added PCP during 42 days of growth in soil. However, soil environmental conditions 

were not studied in detail, which could have a big importance on degradation rates. 

1.5.4 Other white rot fungi 

Lentinus edodes, the gourmet mushroom has been shown to possess the capacity for 

removing more than 60% of pentachlorophenol from soil (Pletsch et al., 1999) and 

appears to remain active at lower temperatures that are typical of temperate soils of 

central and Northern Europe (Okeke et al., 1996). 

Kodama et al. (2001) reported degradadation of simazine by Penicillium steckii, 

isolated from soil samples where the herbicide had been spread. Simazine was 

gradually degraded by this fungus in mineral media containing yeast extract at 25 mg 

l-1 and the pesticide at 50 mg l-1. It was observed that the rate of simazine degradation 

was improved when assimilable carbon sources were added to the medium. They 

reported a breakdown of 53% simazine after 5 days of cultivation at 30ºC, when 

glucose was added to the basal medium. 

1.6 Application of spent mushroom compost in soil 
remediation 

Composting matrices and composts are rich sources of xenobiotic-degrading 

microorganisms including bacteria, actinomycetes and ligninolytic fungi, which can 

degrade pollutants to innocuous compounds such as carbon dioxide and water. These 

microorganisms can also bio-transform pollutants into less toxic substances and/or 
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lock up pollutants within the organic matrix, thereby reducing pollutant 

bioavailability (Semple et al., 2001).  

Spent mushroom compost (SMC) is a by-product of the mushroom production, which 

is produced in large amounts. For every 200g of Pleurotus spp produced in Malaysia, 

about 600 g of spent compost is produced (Singh et al., 2003) or 5kg of SMC 

generated for every 1 kg of edible mushrooms according to Law et al. (2003). This 

resulted in 40 Mtonnes of SMC in 1999. The disposal of SMC is a major problem for 

mushroom farmers. They either discretely burn or discard it (Singh et al. 2003) and 

thus its exploitation as a potential bioremediation adjuvant has received significant 

attention (Chiu et al., 2000). 

Mushroom cultivation involves the pure culture of spawn, composting and 

pasteurization of the substrate and careful regulation of growing conditions (Ball and 

Jackson, 1995). The substrates are lignocellulosic residues, such as straw, horse 

manure, chicken manure and activators (Ball and Jackson, 1995). The purpose of 

composting the substrate is to exclude microorganisms that may interfere with 

mushroom growth. Following mushroom harvest, SMC is likely to contain not only a 

large and diverse group of microorganisms but also a wide range of extracellular 

enzymes active against wheat straw (Ball and Jackson, 1995). Singh et al. (2003) 

reported extraction of cellulase, hemicellulose, β-glucosidase, lignin peroxidases and 

laccase from SMC. It also contains a very high organic content (20%) including 

cellulose hemicellulose and lignin (Kuo and Regan, 1999), from the unutilised 

lignocellulosic substrate (Singh et al. 2003).  

Previous research showed some interesting findings using this type of compost as a 

bioremediation adjuvant: Law et al. (2003) reported that SMC of Pleurotus 

pulmonarius could remove 89.0 +/- 0.4% of 100 mg PCP l-1 within 2 days at room 

temperature predominantly by biodegradation. Kuo and Regan (1999) used sterilised 

SMC as an adsorption medium for removal of a mixture of pesticides (carbaryl, 

carbofuran and aldicarb) with a concentration range of 0-30 mg l-1 and found that 

SMC was able to adsorb carbamate pesticides from aqueous solutions successfully, 

which was possibly related to the increased organic matter content. 
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With mushroom production being the largest solid state fermentation industry in the 

world (Lau et al., 2003) and with so much waste being produced, it is extremely 

important to find a good use for SMC. Thus, the use of this residue as a soil 

amendment to improve pesticide bioremediation is an interesting area for research. 

Furthermore, there is no information on the effect of the addition of SMC on soil 

enzymes, soil respiration and soil populations, and how these metabolic parameters 

are affected by the presence of pesticides and water availability. 

1.7 Environmental factors affecting bioremediation by 
fungi 

1.7.1 Temperature, oxygen and nutrient availability 

Fungal bioremediation is subject to the prevailing temperature, moisture and soil 

conditions (Kearney, 1998). The soil pH, nutritional status and oxygen levels vary and 

may not always be optimal for fungal growth or extracellular enzyme production for 

pollutant transformation (Singleton, 2001). Thus, the kinetics of pesticide degradation 

in the field is commonly biphasic with a very rapid degradation rate in the beginning 

followed by a very slow prolonged dissipation. The remaining residues are often quite 

resistant to degradation (Alexander, 1994).  

There are many reasons for organic compounds being degraded very slowly or not at 

all in the soil environment, even though they are per se biodegradable (Romantschuk 

et al., 2000). One reason could be strong pesticide sorption to soil and therefore 

decreased bioavailability (Alexander, 1994). Another reason can be the low 

temperatures in soil, particularly in Northern parts of Europe and North America 

where soil temperatures during a large part of the year are too low for efficient 

microbial degradation of contaminants. The same may also be true for deeper soil 

layers (Romantschuk et al., 2000). 

Anaerobic conditions may also contribute because fungal degradation is very slow 

under oxygen restrictions resulting in partial degradation with resultant toxic 

intermediates being formed (Romantschuk et al., 2000). Other factors that can 

contribute to pesticide degradation in soils include the chemical nature of the 

pesticide, amount and type of soil organic matter, microbial community structure and 
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activity, soil type, pH, pesticide concentration, pesticide formulation and presence of 

other pesticides (Shoen and Winterlin, 1987). 

1.7.2 Water availability 

The concept of water activity and water potential 

Total water content of a substrate is not always a good indicator of water availability 

for microbial growth. For example, the water content of a solid substrate consists of 

strongly bound water and free weakly bound water. Free water is more readily 

available for microbial growth and how easily this can be removed depends on the 

water content and the type of the substrate. Water activity (aw) is defined by the ratio 

between the vapour pressure of water in a substrate (P) and the vapour pressure of 

pure water (P0) at the same temperature and pressure. Thus: 

                                                            
o

w P
Pa =                                                          

The aw of pure water is 1 and any substrate with no free water will subsequently have 

an aw less than 1.  

Water potential (Ψw) is an alternative measure to aw, and is defined as the amount of 

work that must be done per unit quantity of pure water in order to transport reversibly 

and isothermally an infinitesimal quantity of water from a pool of pure water at 

atmospheric pressure to a point in a system under consideration at the same point 

elevation (Griffin, 1981). Ψw is the sum of the pressure potential (Ψp), solute (or 

osmotic) potential (Ψs)and matric potential (Ψm): 

                                                      mspw Ψ+Ψ+Ψ=Ψ                                                          

Ψp = pressure potential and is the potential of water per unit volume as affected by 

external pressure. In filamentous fungi, it represents the turgor potential of the 

protoplasm created by plasma membranes and cell walls) 

Ψs = solute (or osmotic) potential and is the potential of water per unit volume as 

affected by the presence of solutes. It is compared with the chemical potential of pure 
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water at atmospheric pressure, at the same temperature and height, with the chemical 

potential of the reference water being set at zero (Salisbury, 1992; Magan, 1997).  

Ψm = matric potential and is the potential of water per unit volume as affected by the 

presence of a solid matrix. It is a measure of the tendency for a matrix to adsorb 

additional water molecules, for example a dry colloid or hydrophilic surface has an 

extremely negative matric potential (Salisbury, 1992). 

Ψw is related directly to aw by the following formula: 

                                                        
ww

w aV
RT
ln

=Ψ  

where R is the ideal gas content, T the absolute temperature and Vw is the volume of 1 

mole of water. The advantage of Ψw is that it is possible to partition osmotic and 

matric components and their influence on growth and physiological functioning of 

microbes. Soil microbiology studies use water potential, while for solid substrates, 

where solute potential is the major force, aw is commonly used. The relationship 

between aw and Ψw is shown in Table 1.2. 

Experimentally, variations of water potential can be created by addition of ionic 

solutes, such as KCl and NaCl, or non-ionically with glycerol addition to a solution or 

culture media. Matric potential can be manipulated by the addition of PEG8000 

(polyethylene glycol), which is a long inert, non-ionic chain polymer. 

Soil total water content is often expressed as percentage moisture content. This is the 

ratio between dry and wet weight. However, soil moisture content does not indicate 

the quantity of water that is readily available to microorganisms for metabolism.  

The availability of water in soil may be a very important factor affecting the success 

of bioremediation, since water availability affects fungal growth and enzyme 

production (Marin et al., 1998). Boyle (1995) studied the growth response of 

P.chrysosporium and T.versicolor to water stress imposed by polyethylene glycol. 

Water potential values down to about -0.5 MPa had little effect, but growth of both 

fungi was progressively inhibited at lower water potential values. In natural soil 

enzyme activities decreased sharply at higher and lower moisture contents (Boyle, 
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1995). The carbon dioxide production also decreased in dry soil and remained high 

when the soil was wet, even though MnP and laccase activities decreased. It is likely 

that organisms other than white rot fungi were responsible for the production of this 

carbon dioxide (Boyle, 1995), which suggests that in bioremediation both the 

inoculant organisms and the native soil microflora are affected by water potential 

fluctuations. 

Matric potential influences the physiological activity of soil microorganisms (Zak et 

al., 1999) and different fungi may have optimal biodegradation rates at different water 

availabilities, as reported by Okeke et al. (1996). They showed that L.edodes was 

more effective in transforming pentachlorophenol at lower moisture, while 

P.chrysosporium was more effective at higher moisture levels. 

Besides affecting microbial behaviour water availability affects pesticide binding and 

distribution in the soil. The behaviour of organic compounds in water plays a very 

significant role in their availability for microbial utilization in the environment 

(Atagana et al., 2003). Water content can have two contrary effects on 

biodegradation: high water content enhances contact between the contaminant and the 

bioremedial microorganisms, leading to increased contaminant bioavailability. 

However, it can also decrease the overall biodegradation rate, because it affects 

contaminant and oxygen transfer through the aqueous phase (Schoefs et al., 2004). 

Schoefs et al. (2004) also showed that hexadecane biodegradation rates decreased 

with increasing water content. They suggested that while high water content enhances 

microbial growth and contaminant desorption, the effect of a limitation of oxygen 

through the aqueous phase appears to dominate. 

Few detailed studies have been carried out on the impact of water stress on fungal 

growth and enzymatic activity in vitro in the presence of pesticides, and even fewer in 

the presence of mixtures of pesticides. 

Furthermore, little information is available on the activity and biodegradation 

capacities of white rot fungi in soil under different water regimes, which is very 

relevant to the successful application of a white rot fungus in soil where water 

availability fluctuates significantly, throughout the year. 
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Table 1.2 Equivalent water activity, equilibrium relative humidity and water 

potentials at 250C (Magan, 1997). 

Water activity E.R.H. (%) Water potential (-MPa) 

1.00 100 0 

0.99 99 1.38 

0.98 98 2.78 

0.97 97 4.19 

0.96 96 5.62 

0.95 95 7.06 

0.90 90 14.50 

0.85 85 22.40 

0.80 80 30.70 

0.75 75 39.60 

0.70 70 40.10 

0.65 65 59.30 

0.60 60 70.30 
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1.8 Toxicity of bioremediation products: parameters to 
assess soil activity 

Soil is a complex matrix undergoing constant change in its component parts: 

chemical, physical and biological. These components are significantly affected by 

environmental factors and anthropogenic management and influence (Harris and 

Steer, 2003). Pollutants introduced into the soil exert an influence on the microbiota, 

which manifests itself in changes in enzyme activity, soil respiration, biomass and 

microbial populations (Baran et al., 2004). Soil biological investigations can give 

information on the presence of viable microorganisms as well as on the effects of 

pollutants on the metabolic activity of soil (Margesin et al., 2000). 

In some cases, contaminants have a stimulatory effect on soil enzymes that results 

from the gradual adaptation of microorganisms to the pollutants and the utilisation of 

xenobiotics as a source of carbon and energy (Baran et al., 2004). After this period of 

stress there is an increase in respiratory intensity, an increase in enzyme activity, 

development of microorganisms and a gradual decomposition of pollutants 

(Boopathy, 2000). 

Since the fungal bioremediation process depends on the extent to which the fungal 

inoculant succeeds in colonising the contaminated soils, an interesting approach is to 

assess fungal growth in the soil. Although, this is difficult, because of the problems of 

quantification which occur when trying to measure the growth of filamentous fungi in 

such heterogeneous environments. For this reason, in studies with wood rot fungi, 

indirect methods are often used. These include the evolution of carbon dioxide, the 

detection of dehydrogenase and ligninolytic enzymes or the removal of the target 

compound (Bennet et al., 2001) Some of these methods are described bellow. 

1.8.1 Soil respiration 

The oxidation of organic matter by aerobic organisms results in the production of 

carbon dioxide (Harris and Steer, 2003). Respiration may increase in response to an 

increase in microbial biomass or as a result of the increased activity of a stable 

biomass (Harris and Steer, 2003). Mineralization studies involving measurements of 

total carbon dioxide production provide useful information on the biodegradability 
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potential of pesticides in soil. Hollender et al. (2003) showed that oxygen 

consumption and carbon dioxide production as well as the kinetics of these processes 

are all informative parameters characterizing the whole microbial respiration potential 

and their nutrient limitation in soil samples. 

Soil respiration is determined on the basis of either carbon dioxide evolution or the 

oxygen consumption rate. The measurement of CO2 appears to be preferable as it has 

the advantage of greater sensitivity due to low background concentration present in 

the atmosphere and enables measurements for any length of time (Dilly, 2001). 

1.8.2 Enzyme production 

Soil enzyme activities are major candidates as early indicators of ecosystem stress and 

may function as “sensors”, since they integrate information on the microbial status 

and on soil physico-chemical conditions (Aon et al., 2001). Their perturbations may 

sensitively predict soil degradation earlier than other slowly changing soil properties, 

such as organic matter (Dick, 1994). Quantification of the different pools of enzyme 

activity in soils (intra and extracellularly) is desirable to assess the contribution that 

microbial communities make to production of specific enzymes and their relationship 

to changes in soils (Klose and Tabatabai, 1999). 

Soil microorganisms (bacteria and fungi) are the main source of enzymes and despite 

their relatively low concentrations, they play a crucial role in nutrient cycling in soil 

(C, N, P and S) (Aon et al., 2001). Many soil microorganisms depend on the effective 

production of their extracellular enzymes to supply them with nutrients (Harris and 

Steer, 2003). Because of their extracellular nature, these enzymes are often trapped in 

soil organic and inorganic colloids, and some soils will therefore have a large 

background of extracellular enzymes not directly associated with the microbial 

biomass (Harris and Steer, 2003). The overall activity of a single enzyme may depend 

on enzymes in different locations including intracellular enzymes from viable 

proliferating cells and accumulated or extracellular enzymes stabilized in clay 

minerals and or complexed with humic colloids (Burns, 1982). 

Several studies have examined the effect of pesticides on the activity of enzymes in 

soils with different origins (Sannino and Gianfreda, 2001). Despite the numerous 
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reports on this topic and the efforts to find reliable relationships between measured 

effects and properties of soils, chemical characteristics of pesticides, and/or classes of 

enzymes, no general conclusions can be drawn (Sannino and Gianfreda, 2001). Little 

knowledge exists on the impact that inoculation with white rot fungi has on enzymes 

production especially under different water potential regimes. 

Dehydrogenase activity 

Biological oxidation of organic compounds is generally a dehydrogenation process, 

which is catalysed by dehydrogenase enzymes (Balba et al, 1998). Dehydrogenases 

are endogenous enzymes (within a cell) that catalyze the dehydrogenation of organic 

compounds (Harris and Steer, 2003). Their activity is linked to the respiratory and 

energy producing processes in the cell, and basically depends on the metabolic state 

of microorganisms (Guerra et al., 2002). These enzymes play an important role in the 

oxidation of organic matter by transferring the hydrogen from the organic substrates 

to the electron acceptor. Several specific enzyme systems are involved in the 

dehydrogenase activity of the soils and they reflect to a great extent the soil 

biochemical activities (Balba et al, 1998).  

Assessing the dehydrogenase activity in soil can give information on the possible 

inhibitory or stimulatory effect of contaminants on the microbial activities and/or on 

the fungal inoculant. Dehydrogenase activity is the most frequently used test for 

determining the influence of various pollutants (heavy metals, pesticide, crude oil) on 

the microbiological quality of soil (Frankenberger and Johansson, 1982; Brookes, 

1995; Dick, 1994; Margesin et al. 2000a, b). Guerra et al. (2002), demonstrated that 

measurement of dehydrogenase activity is a simple low cost-effective and sensitive 

test to assess the toxic effects of heavy metals on microbial activity in contaminated 

soils. 

Total ligninolytic activity 

The production and activity of the ligninolytic enzymes in soil (as opposed to a 

ligninolytic substrate) may be a prerequisite for transformation of pollutants by wood 

rot fungi (Lang et al., 2000a). Thus, quantification of the activity of these enzymes by 

white rot fungal inoculants is important. 
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Historically, various 14C-radiolabelled and unlabelled substrates have been used to 

screen for ligninolytic activity. However, these assays are relatively slow and 

difficult. More recently the development of assays utilizing polymeric dyes as 

substrates for the lignin degradative system has facilitated these screening procedures 

(Gold et al., 1988). The high-molecular weight dyes cannot be taken up by the 

microorganisms and thus provide a specific screen for extracellular activity (Gold et 

al., 1988; Field et al., 1993). The decolouration of polymeric dyes has been proposed 

as a useful screening method for ligninolytic activity (Lin et al., 1991; Weissenfels et 

al., 1992). Today the polymeric dyes used are inexpensive, stable, readily soluble, 

have high extinction coefficients and low toxicity towards P.chrysosporium and other 

white rot fungi and bacteria tested (Gold et al., 1988). 

Other enzymes 

Other enzyme activities which are involved in key reactions of metabolic processes of 

soils (i.e. organic matter decomposition, nutrient cycling) are useful in order to 

provide a better picture of the status of soil processes when affected by pollution. 

Some of these have been shown to be sensitive to soil quality (Acosta-Martinez et al., 

2003). 

For example β-glucosidase and phosphomonoesterases catalyse reactions involved in 

the biogeochemical transformations of C, N, P and S (Taylor et al., 2002) and are 

likely to be an essential component of any assessment of substrate mineralization 

(Taylor et al., 2002). β-glucosidase activity is involved in the final step of cellulose 

degradation, that provides simple sugars for microorganisms in soils (Costa-Martinez 

et al., 2003). β-glucosidase is the third enzyme in a chain of three enzymes that breaks 

down labile cellulose and other carbohydrate polymers (Boerner and Brinkman, 

2003). 

Alkaline and acid phosphatase activities catalyse the hydrolysis of both organic P 

esters and anhydrides of phosphoric acid into inorganic P (Acosta-Martinez et al., 

2003). These two enzymes are frequently regarded as ecto-enzymes, i.e. enzymes 

acting outside but still linked to their cells of origin. Phosphomonoesterases (or acid 

phosphatase) are associated with the phosphorous cycle: they form an important 

group of enzymes catalysing the hydrolysis of organic P esters to orthophosphates 
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(Vuorinen and Saharinen, 1996). The activity of phosphomonoesterase or acid 

phosphatase is strongly correlated with the rate of release of both inorganic N and P to 

the soil solution (Boerner and Brinkman., 2003). Monreal and Bergstrom. (2000) 

reported soil enzyme beta-glucosidase as a sensitive indicator for assessing the health 

of microbial mineralisation processes of the C and N cycles. 

As the major components of organic matter consist of cell wall polymers and reserve 

polysaccharides, enzymes such as cellulase are of crucial importance as primary 

agents for decomposition (Wirth and Wolf, 1992).  

The growth of wood decay fungi, especially under natural conditions requires control 

of their nitrogen economy, involving regulation of proteolytic activities for 

intracellular protein turnover, extracellular digestion of protein sources and 

modification of proteins through limited proteolysis (Staszczak et al., 2000). The 

protein turnover is involved in basic cellular functions such as the modulation of the 

levels of regulatory proteins and adjustment to stress. In recent years it has become 

clear that proteolysis plays an essential role in response to stress conditions such as 

high temperatures or nutrient deprivation (Hilt and Wolf, 1992). 

Recently Staszczak et al. (2000) suggested that proteases are involved in the 

regulation of ligninolytic activities in cultures of T.versicolor under nutrient 

limitation. Margesin et al. (2000a) showed a positive influence of naphthalene on 

protease activity and Baran et al. (2004) reported an increase in phosphatase, 

dehydrogenase, urease and protease activities in a site in which concentrations of 

PAHs were higher than 1000 µg kg-1. 

1.8.3 Total soil microbial populations 

Soil microbial communities are among the most complex, diverse, and important 

assemblages in the biosphere. Because of such a high level of diversity, soil microbial 

communities are among the most difficult to phenotypically and genetically 

characterize (Zhou et al., 2004). They are a keystone of the function and structure of 

soil (Harris and Steer, 2003). 

The soil microbial biomass has been defined as the part of the organic matter in soil 

that constitutes living organisms smaller than 5-10 µm3. These microorganisms 
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largely bacteria, fungi, algae, and nematodes are important to soil nutrition through 

their role in decay of plant and other organic matter in the soil and as nitrifiers 

(McEwen and Stephenson, 1979). Anything that disrupts their activity could be 

expected to affect the nutritional quality of soils and would thus have serious 

consequences (McEwen and Stephenson, 1979). Therefore changes to the metabolic 

profiles of soil microbial communities could have potential use as early indicators of 

the impact of management or other perturbations on soil functioning and soil quality. 

Soil analyses of the total microbial counts in the contaminated soil can provide useful 

information on soil biological activities and the extent to which the indigenous 

microbial population has acclimatised to the site conditions (Balba et al., 1998). In 

addition a comprehensive knowledge of the diversity of the autochthonous microbial 

communities of natural ecosystems and their degradative potential is very important 

when assessing the strategy and outcome of bioremediation (Stahl and Kane, 1993). It 

also gives information on whether the microbial populations will be capable of 

degrading pollutants quickly enough or whether supplementing starter cultures will be 

useful (Wunsche et al., 1995).  

1.8.4 Toxalert®10 

Toxicity tests are important tools to assess to what extent the bioremediation process 

was effective. Some of the tests available in the market use terrestrial organisms in 

their original medium and in this case the organisms are in direct contact with the 

contaminated soil. For example the ISO11267 standard test is used for assessing the 

effect of chemicals on the reproductive output of Folsomia candida (Collembola). 

Such direct tests, however are relatively time consuming (48 hrs to 30 or more days), 

expensive and often require extensive preparation (Perez et al., 2001). The use of 

bacteria as test organisms is advantageous and offers statistical advantage in using 

large number of bacteria instead of a small number of organisms used in other non-

bacterial bioassays (Querehi et al., 1984). 

Previous studies investigated to what extent aquatic tests like Toxalert can be used for 

assessing soil contamination (Bennet and Cubbage, 1992; Johnson and Long, 1998; 

Doherty 2001; Kovats, et al., 2003). The results obtained with the Vibrio fischeri test 

are often consistent with the results of other ecotoxicological tests and with analytical 

derived concentration of the contaminant (Doherty, 2001). 
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Theoretical considerations of this bioassay 

Toxalert®10 developed by Merck uses bioluminescence of the bacterium Vibrio 

fischeri as the endpoint. Bioluminescence is a natural phenomenon in which visible 

light is generated by an organism as a result of a chemical reaction (Kovats, et al., 

2003). 

There are diverse types of organisms that display bioluminescence including bacteria, 

protozoa, fungi, sponges, crustaceans, insects, fish, squid, jellyfish and lower plants. 

Bioluminescent organisms occur in a variety of habitats particularly in the deep sea 

where light is employed for functions including defence, reproduction and feeding. 

The enzymes involved in the luminescent system (lux) including luciferase, as well as 

the corresponding lux genes, have been most extensively studied from marine bacteria 

in the Vibrio and Photobacterium genera. It has been found that the light emitting 

reactions are very distinct for different organisms with one common component the 

molecular oxygen. The emission of light is a consequence of respiration and can be 

read by a luminometer. 

                                            luciferase 

FMNH2 + O2 + RCHO  →  FMN + RCOOH + H2O + LIGHT 

Chemicals or mixtures of chemicals which are toxic to bacteria can disturb some 

cellular functions such as the electron transport system and change some cellular 

structures such as cytoplasmic constituents or the cell membrane. These alterations 

lead to a reduction in light output, proportional to the strength of the toxic 

compounds. 

1.9 Aims and objectives of the project 

Expansion of agricultural and industrial activities in recent decades has led to 

pollution of soil and groundwater with pesticides and many treatment processes have 

been developed to reduce the environmental impacts of this contamination. Physical 

and chemical methods for soil clean up are very expensive, and for this reason it is of 

great interest to assess the potential use of white rot fungi in soil decontamination. 
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These organisms have been described as good bioremediation agents because of their 

robustness and tolerance to several xenobiotics.  

Most reported research on pesticide remediation in soil has been concerned only with 

single pesticides. However, in contaminated soils pesticides are more commonly 

found in mixtures (Schoen and Winterlin, 1987). Very few studies have examined the 

degradation of mixtures of pesticides in soils and/or the way the native microflora 

enzymatically responded to such mixtures. Moreover, there are hardly any studies on 

the use of white rot fungi to clean-up mixtures of pesticides. It is important to 

examine what enzymatic changes are triggered when these fungi are introduced into 

contaminated soils, and how the clean-up process is affected by environmental 

factors. An environmental factor that may well have a crucial effect on 

bioremediation is soil water availability, as it varies naturally throughout the year. 

Nevertheless, very few studies look at the effects of water availability on 

bioremediation.  

The initial work in this study (Part I) assessed the tolerance of eight white rot fungi to 

simazine, trifluralin and dieldrin, individually and in a mixture, in soil extract agar. 

From this screening four isolates were selected for the subsequent study: to assess the 

effect of matric and osmotic stress on growth and tolerance to individual and mixtures 

of pesticides, in media supplemented with pesticides. The potential of these four 

fungal isolates to produce laccase and degrade lignin in the presence of simazine, 

trifluralin and dieldrin, individually and in a mixture was also evaluated. 

The second part of the study (Part II) focused on the interactions and activity of four 

white rot fungi isolates: T.versicolor (R26), T.versicolor (R101), P.ostreatus, and 

P.chrysosporium in soil extract broth. Degradation of a mixture of different 

concentrations (0-30 mg l-1) of simazine, dieldrin and trifluralin and production of 

enzymes relevant to P and N release (phosphomonoesterase, protease) and carbon 

cycling (β-glucosidase, endocellulase) and laccase activity were quantified to study 

the degradative capacities of these fungi, under different water regimes. 

The final component of work examined the activity three white rot fungi: T.versicolor 

(R26), P.ostreatus and P.chrysosporium and an organic amendment SMC in soil 

microcosms, under two different water potentials. Soil respiration, dehydrogenase 
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activity, total ligninolytic activity, production of cellulase and laccase and degradation 

of pesticides were assessed in order to study the interaction between inoculant, 

pesticide concentration and water stress.  

The key objectives of this study were: 

 

� Compare growth of eight different fungal isolates under different water 

availabilities and pesticide concentrations (simazine, trifluralin and dieldrin, 

individually and in a mixture). 

� Investigate the production of laccase and ligninase in pesticide amended media 

� Determine hydrolytic enzyme production for P.ostreatus, T.versicolor and 

P.chrysosporium in soil extract liquid broth. 

� Determine pesticide degradation rates and toxicity in soil extract liquid broth 

after 25 day incubation with fungal inocula. 

� Establish soil microcosms and select the parameters that best describe soil 

activity. 

� Construct temporal profiles for enzyme activity, microbial respiration, total 

microbial populations and pesticide disappearance in soil microcosms 

inoculated with P.ostreatus, T.versicolor and P.chrysosporium, over a period of 

24 weeks. 

� Examine temporal profiles of enzyme activity, microbial respiration, total 

microbial populations and pesticide disappearance in soil microcosms amended 

with SMC, a by-product from the mushroom industry. 

� Investigate the interactions between pesticide disappearance, enzyme 

production and total soil respiration in soil of different water potentials.  

 

Figure 1.4 summaries the programme of this work. 
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Figure 1.0.4 Flow diagram of the experimental work carried out in this thesis.  
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2 Materials and Methods 
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2.1 Fungal inoculants 

All of the isolates used throughout this study were white rot fungi and their identification 

(name and collection reference) is listed in Table 2.1. Isolates were kept as slopes or plates 

on malt extract agar (MEA) for up to 3 months. Purity of storage cultures was verified by 

streak plating.  

 

Table 2.1 Isolates used in this study and their reference number. All isolates marked with 

an * were provided by Dr Mike Challen (HRI-Warwick, Wellesbourne, Warwick, United 

Kingdom and those marked with ** were supplied by Dr. A. Mswaka** University of 

Zimbabwe, Zimbabwe. 

Species Our reference Collection Reference 

Phanerochaete chrysosporium* R170 ATCC 35541; ME446 

Pleurotus ostreatus* R14 Sinden P11 

Trametes versicolor* R26 FPRL 28 A 

Polystictus sanguineus* R29 FPRL 150ª 

Pleurotus cystidiosus* R46 Cz. 

Pleurotus sajor-caju* R139 NCP 

Trametes versicolor** R101 TVE123 

Trametes socotrana** R100 TSO 131 

2.2 Media and Substrates 

2.2.1 Modification of media and substrates water potential  

A soil extract medium was used in this study. This medium was prepared with a sandy 

loam soil from Silsoe, Bedfordshire, containing 71.78% sand, 15.79% silt, 12.43% clay, 

5.01% organic matter, 81.7 ± 4.06 mg kg-1 soil extractable phosphorous, 4.7 ± 0.17 mg kg-1 

soil nitrate-N, 0.7 ± 0.035 mg kg-1 soil ammonium- N, organic matter: furnace 5.01%, 

titration 1.67% and pH of 6.07 (analysed by National Soil Resources Institute, Silsoe, 



Materials and Methods 

39 

Bedfordshire). Soil extract was prepared by using 200 g of untreated field-moist soil in 400 

ml of tap water. The soil/water mixture was autoclaved for 30 minutes, centrifuged at 2400 

g for 20 minutes and filtered through filter paper (Whatman No. 1), using a vacuum pump. 

The water potential of the basic medium was adjusted to -0.7 and -2.8 MPa by adding 1.15 

g and 3.73 g of the ionic solute potassium chloride to 100 ml of soil extract. Soil extract is a 

liquid broth. For solid medium experiments technical agar No. 1 (2%) was added to the 

liquid medium. 

2.3 Pesticides 

Analytical grades of each pesticide: simazine (6-chloro-N2,N4-diethyl-1,3,5-triazine-2,4-

diamine) MW: 201.66, trifluralin (a,a,a-trifluro-2,6-dinitro-N,N-dipropyl-p-toluidine) MW: 

335.32 and dieldrin (1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-

1,4,5,8-dimethanonaphthalene) MW: 380.9 were obtained from Greyhound, Birkenhead, 

UK. Stock standard solutions were prepared by dissolving analytical standards in methanol 

and storing in amber bottles at 4ºC. Working standard solutions were obtained by dilution 

with acetonitrile. 

In this study xenobiotic concentrations are expressed in soil mg l-1 (liquid and agar studies) 

or mg kg-1 soil (soil studies). Table 2.2. shows the equivalence between concentration in SI 

units and molarity, for the pesticides used in the study. 

 

Table 2.2 Pesticide concentrations expressed in mg l-1 and µM. 

Treatment Conc. 

(mg l-1) 

Simazine 
(µM) 

Trifluralin 
(µM) 

Dieldrin 
(µM) 

Single pesticide 5  24.79  14.91  13.13  

Single pesticide- 10  49.59  29.82  26.25  

Single pesticide 20  99.18  59.65  52.51  

Mixture 5  8.27  4.97  4.38  

Mixture 10  16.53  9.94  8.75  

Mixture 15 24.79  14.91  13.13  

Mixture 30 49.59  29.82  26.25  
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Part I Initial screening of fungi 

2.4 A comparison of tolerance of isolates to pesticides in 
vitro  

2.4.1 Evaluation of cellophane overlays on fungal growth at different 
temperatures and water availabilities  

For this purpose, 9 cm diameter Petri plates containing about 15.0 ml of soil extract agar 

were divided in two groups, half of which were overlayed with a sterile cellophane disc and 

half without cellophane discs. All plates were centrally inoculated with a 4-mm agar plug 

from the margin of a growing colony of each fungal isolate. Care was taken to avoid 

puncturing the cellophane layer to prevent any direct contact between the fungal colony and 

the soil extract agar. 

All test fungi were tested at 15ºC and 25ºC, and -0.7 and -2.8 MPa. Growth was measured 

regularly for up to 14 days taking two diametric measurements at right angles to each other. 

The temporal growth was used to obtain the growth rates from the regression lines of the 

linear radial mycelial extension. Experiments were carried out with three replicates per 

treatment. 

2.4.2 Growth of fungal test species in the presence of single and 
mixture of pesticides  

Soil extract agar was modified by the addition of trifluralin, simazine and dieldrin, 

individually or as a mixture of pesticides in the range 0-20 mg l-1 by addition to the molten 

agar, thoroughly mixing and pouring into 9-cm Petri plates. These were overlayed with 

sterile cellophane discs and centrally inoculated with a 4-mm agar plug taken from the 

margin of a growing colony of each fungal test-isolate. The treatments used in this 

experiment were: control (without addition of pesticide); simazine, trifluralin and dieldrin 

individually at 5, 10 and 20 mg l-1 and a mixture of these three pesticides at 5, 10 and 20 

mg l-1 (total concentrations). This experiment was carried out at 15ºC. Growth was 

measured regularly for up to 40 days. EC50 values, the pesticide concentration that caused 

a 50% growth reduction in relation to the control, without pesticide, were calculated for 

each fungus, as well as the % in growth inhibition in the 20 mg l-1 treatment. 
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2.4.3  Effect of matric and osmotic potential on fungal tolerance to 
pesticides 

For this experiment only four fungal isolates were used: T.versicolor (R26 and R101) P. 

ostreatus and P.chrysosporium. The latter was included in this study because it is the most 

commonly used species in practical field-based bioremediation systems employing white 

rot fungi. 

In order to evaluate the effect of different solute and matric stress the media were adjusted 

in two different ways: adding potassium chloride or polyethylene glycol (PEG 8000), 

respectively. In both assays the plates were incubated at 250C, growth was measured 

regularly for up to 40 days and radial growth rates were calculated. 

Solute stress media 

The effect of osmotic potential on radial growth was assessed by adding KCl to soil extract 

agar as described in section 2.2.1. For each water potential the medium was modified with 

the addition of trifluralin, simazine and dieldrin at 5 and 10 mg l-1 and a mixture of the 

three pesticides (total concentrations 5 and 10 mg l-1). 

Matric stress media 

The effect of matric potential on radial extension was assessed by adding 17.5, 35.0 and 

51.2 g of polyethylene glycol 8000 (Carbowax PEG8000, Fisher) to 100 ml of soil extract 

prior to autoclaving, to obtain the following water potentials: -0.05, -1.5 and -2.8 MPa 

(Steuter et al.,1980). The hot solutions were poured onto Petri dishes containing a solid 

growth support platform, which consisted of capillary matting, a black polyester fabric disc 

and a cellophane disc (Mswaka and Magan, 1999), because PEG 8000 does not solidify 

below –1.5 MPa. 

For each matric potential the medium was modified with the addition of trifluralin, 

simazine and dieldrin at 0, 5 and 10 mg l-1 and a mixture of the three pesticides (total 

concentrations of 0, 5 and 10 mg l-1). 
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2.5 Screening of lignin degradation and polyphenoloxidase 
production 

2.5.1 Plate assay to assess lignin degradation 

In order to assess which isolates could degrade lignin, the fungi were grown in a lignin 

medium described by Sundman and Nase (1971). The medium was prepared with 0.25 g 

alkaline lignin, 5 g of glucose, 5 g ammonium tartrate, 1 g malt extract, 0.5 g MgSO4.7H2O, 

0.01 g CaCl2.2H2O, 0.1 g NaCl, 0.01 g FeCl3, 1 mg of thiamine, 20 g of agar in a litre of 

distilled water, with pH adjusted to 4.5. To examine the enzyme production potential in the 

presence of the pesticides this medium was supplemented with simazine, trifluralin and 

dieldrin, individually and as a mixture at 0, 5 and 10 mg l-1 (total concentrations). 

The test isolates were centrally inoculated and incubated at 15oC for 15 days. After this 

period they were developed by flooding with a reagent containing equal parts of 1% 

aqueous solution of FeCl3 and K3[Fe(CN)6]. A positive result was indicated by clear zones 

under or around the growth area of the lignin degrading fungi. The activity halo was 

measured, taking two diametric measurements at right angles to each other, for 

quantification of lignin degradation. The greater the clearing area, the more intense the 

lignin degradation. 

2.5.2 Plate assay to assess polyphenol oxidase activity  

The formation of a brown halo produced by fungi on tannic acid agar reflects laccase 

(oxidise o- and p-phenols) and catechol oxidase (oxidise o-phenols). These activities were 

detected after inoculation of the isolates in culture media containing 1% tannic acid, 2% 

Czapek Dox modified media (containing sodium nitrate 2 g l-1; potassium chloride 0.5 g l-1; 

magnesium glycerophosphate 0.5 g l-1; ferrous sulphate 0.01 g l-1; potassium sulphate 0.35 

g l-1 and sucrose 30 g l-1) and 2% of bacto-agar. The tannic acid solution was adjusted to pH 

4.5. Medium and acid solutions were autoclaved separately and mixed after cooling down 

to around 50ºC. To examine the enzyme production potential in the presence of the 

pesticides this medium was supplemented with simazine, trifluralin and dieldrin, 

individually and as a mixture at 5 and 10 mg l-1 (total concentrations). 

The test fungi were centrally inoculated and incubated at 15oC for 15 days. A positive 

activity was indicated by a brown coloration of the culture media around the colony 
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(Rigling, 1995). The activity halo was measured, taking two diametric measurements at 

right angles to each other, for quantification of enzyme production. The greater the halo, the 

more intense the enzymatic activity. 

 

Part II Studies in soil extract broth 

2.6 Inoculation with white rot fungi 

2.6.1 Incubation conditions 

A soil extract liquid broth was used in this study at -0.7 and -2.8 MPa. Erlenmeyer flasks 

(250 ml) containing 100 ml of soil extract were supplemented with a mixture of simazine, 

dieldrin and trifluralin to give final concentrations of 0, 5, 10, 15 and 30 mg l-1. Four plugs 

of actively growing mycelium were inoculated in each flask, at 27 ± 1oC, for 25 days with 

constant agitation at 150 rpm. All treatments were carried out in triplicate.  

2.7 Parameters evaluated  

2.7.1 Sampling and dry weight determination 

After the incubation period the mycelium was filtered through Whatman No. 1 paper filters 

and biomass determined by drying the mycelium for 48 hours at 80oC. The fresh filtrate 

was frozen at –20oC and used later for pesticide quantification, protein determination and 

various enzymatic determinations. 

2.7.2  Enzyme production 

We chose to monitor the activity of several enzymes, which are specific for a range of 

substrates. These included laccase, phosphomonoesterase, β-glucosidase, protease and 

cellulase. In some cases, a miniaturization of the enzyme assays was established by an 

adaptation to microtitre plates involving semi-automated multi-channel pipettes and a 

microtitre plate reader. As a consequence, minimum reagent and sample volumes were 

required, saving time, materials and labour. Moreover, rapid screenings of a large number 
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of samples was facilitated (Wirth and Wolf, 1992). The optimisation stages are described in 

the results section (3.4.1). 

Laccase 

Laccase activity (EC 1.10.3.2) was determined with ABTS (2,2- azino-bis (3- 

ethylbenzthiazoline-6-sulfonic acid)) (A-1888, Sigma) at 405 nm, based on the protocol 

described by Buswell et al. (1995). The assay was carried out at ambient temperature, with 

the ABTS and buffer equilibrated at 37ºC. The reaction mixture, in a total volume of 300 µl 

(appropriate for 96 well microtitre plates), contained 150 µl sodium acetate buffer, pH 5.0, 

and 100 µl of enzyme extract. The reaction was initiated by adding 50 µl of 0.55 mM 

ABTS.  

Laccase activity was computed from the increase in A405, recorded in a microtitre plate 

reader (Dinex Technologies MRX Revelation) set in the kinetic mode (reaction time of 10 

minutes, 5 seconds agitation at the beginning).  

Boiled enzyme was used in the control sample. One activity unit was defined as the amount 

of enzyme producing a 0.001 increase in the optical density in 1 min at the conditions of the 

assay. This assay was first optimised using commercial laccase from Rhus vernificera, 

crude acetone powder, minimum 50 units mg-1 solid (L-2157, Sigma), giving a positive 

result for laccase concentrations as low as 0.03125 mg ml-1, i.e. 0.375 units per well. 

Protease 

The protease activity (EC 3.4.24) in the filtrate was quantified using sulphanilamide 

azocasein substrate (Germano et al., 2002), purchased from Sigma (A-2765), and the assay 

was optimised in 96 well microtitre plates instead of cuvettes. Azocasein is a chemically 

modified protein, prepared by adding sulphanamide groups to casein, which are orange and 

are covalently linked to the peptide bonds. When azocasein is subject to proteolytic action 

short peptides and amino acids are liberated from the chain and remain in solution, giving 

an orange colour to the solution. The greater the proteolytic activity the more intense the 

orange colour of the solution. 

The assay was carried out using 30 µl of azocasein (1% in 0.2 M Tris-HCl buffer, pH 7.5). 

The reaction was started by adding 20 µl of enzyme solution, after incubation for 1 hour at 
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37 º C, the enzyme was inactivated by the addition of 150 µl of trichloroacetic acid solution 

(10% W/V) and this solution was neutralised using 50 µl of NaOH 1M. 

Trichloroacetic acid (TCA) was added to stop the reaction and to precipitate 

macromolecules, including the enzymes and the undigested azocasein. These were then 

removed by centrifuging the microtitre plate at 958 g, for 10 minutes, in a centrifuge 

equipped with a rotor for microtitre plates. Subsequently, supernatants (150 µL) were 

transferred to a 96-well, half-size EIA plate (175 µl cavities, Costar, 1 cm path length). The 

absorbance was measured spectrophotometrically at 440 nm against a blank prepared 

similarly but with the enzyme solution inactivated (100ºC, 10 minutes). One unit of 

enzymatic activity was calculated as absorbance variance (sample absorbance – boiled 

sample absorbance) x 1000 x min–1. This assay was first optimised using commercial 

protease from Aspergillus oryzae, 500 units g-1 (P-6110, Sigma), giving a positive result for 

concentrations as low as 0.0005 units of protease in the well. 

Cellulase 

Carboxymethyl-substituted (CM-) and water soluble polysaccharide derivatives labelled 

covalently with remazol brilliant blue R (RBB), i.e., CM-cellulose-RBB was used as a 

substrate for cellulase (EC 3.2.1.4) (Wirth and Wolf, 1992). The assay was performed in 

microtitre plates. The experimental procedure was as outlined in the Remazol Brilliant Blue 

R (RBB) protocol, supplied by LOEWE Biochemica.  

CM-cellulose (50 µl; 4mg ml-1) and buffer (50 µl 0.2M sodium acetate buffer, pH 5) were 

equilibrated in an incubation chamber at 37ºC. After the addition of 100 µl of enzyme 

sample the microtitre-plates were sealed with low evaporation lid and incubated for 30 min. 

The reaction was terminated by the addition of 50 µl of HCl 2N, causing the precipitation 

of the non-degraded high polymeric substrate. Subsequently the plates were cooled on ice 

(10 min) and centrifuged at 1450 g in a centrifuge equipped with a rotor for microtitre-

plates. Supernatants (175 µl) containing soluble dye-labelled degradation products were 

transferred to a 96-well, half size EIA plate (175 µl, Costar, 1 cm path length) and 

measured spectrophotometrically at 600 nm. Blanks were prepared similarly (3 replicates 

per treatment) but without the addition of enzyme sample during incubation. 
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One unit of enzymatic activity was calculated as absorbance variance (sample absorbance – 

blank absorbance) x 1000 x min–1. This assay was initially optimised using commercial 

cellulase from Aspergillus niger, minimum 0.3 units mg-1 solid, (C-1184, Sigma), giving a 

positive result for concentrations as low as 0.002 units in the well. 

ββββ-glucosidase, phosphomonoesterase 

β-D-glucosidase (EC 3.2.1.21) and phosphomonoesterase (EC 3.1.3.2) activities were 

assayed using p-nitrophenyl substrates (Keshri and Magan, 2000): 4-nitrophenyl-β-D-

glucopyranoside and 4-nitrophenyl phosphate disodium salt, respectively, in 96 well 

microtitre plates. The reaction was started by adding 80 µl of enzyme extract, with 40 µl 

acetate buffer (0.05M pH 4.85) and 80 µl of substrate: 25 mM for 4-nitrophenyl-b-D-

glucopyranoside (Acros Organics, cat. 2492-87-7) and 15 mM for 4-nitrophenyl phosphate 

disodium salt (Acros Organics, cat. 4264-83-9), followed by incubation at 370C. The 

control included boiled enzyme extract and was treated in the same way as the samples. 

After 1h, 10 µl of 1M sodium carbonate solution (Sigma Chemical Co., UK) was added to 

stop the reaction and the plates were left for 3 min before reading absorbance at 405 nm. 

The increase in absorbance corresponded to the liberation of p-nitrophenol by enzymatic 

hydrolysis of the substrate. Total enzymatic activity in the enzyme extract samples was 

determined by extrapolation from a calibration curve made with the 4-nitrophenol standards 

Calibration curve of 4-nitrophenol: Standard 4-nitrophenol solutions (Spectrophotometric 

grade, N/3200/48, Fisher Chemicals) of known concentrations in a range between 3.28 and 

210 µg ml-1 were prepared using 0.05 M acetate buffer pH 4.85. The standard solutions 

were treated in the same way as the samples: by mixing 80 µl of p-nitrophenol solution 

with 120 µl of buffer, followed by incubation for 1h at 370C. Sodium carbonate solution 

(10 µl, 1M) was added and the microtitre plate was left for 3 min before absorbance was 

read at 405 nm. Specific enzyme activity was expressed in nmol p-nitrophenol released 

min-1 µg-1 protein.  

Soluble protein 

Soluble protein content of the enzyme extracts was determined by using the Bicinchoninic 

Acid Protein Assay Kit (Sigma). The kit contains bicinchoninic acid solution, copper (II) 
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sulphate pentahydrate 4 % solution and a protein standard BSA 1.0 mg ml-1 (A-3059, 

Sigma). The assay is colorimetric, utilizing the abilities of proteins to reduce alkaline Cu(II) 

to Cu(I), which forms a purple complex with bicinchoninic acid. Absorbance of the 

resulting solution at 550 nm is directly related to protein concentrations. 

The bicinchoninic acid and the Cu(II) solution are combined at a 50:1 ratio for the working 

reagent. This reagent is stable for one day at room temperature. A 10 µl aliquot of a sample 

was placed in the appropriate microtitre plate wells. In the blank wells 10 µl of potassium 

phosphate buffer (10mM pH 7.2) was used in place of the samples. 200 µl of working 

reagent was placed in all of the wells, and plates were covered, shaken and then incubated 

at 37 °C for 30 min. The plates were allowed to cool after being removed from the 

incubator; the absorbance at 550 nm was then determined using a plate reader. Protein 

concentration in the enzyme extract samples was determined by extrapolation from a 

calibration curve made with the BSA standards.  

2.7.3 Pesticide analysis 

Samples were filtered through 0.2 µm filter (Fisher, FDP-466-001C) and diluted with 

acetonitrile (75% sample: 25% acetonitrile) prior to injection in the HPLC system. HPLC 

quantification of all three pesticides was performed with a Gilson HPLC system equipped 

with a UV detector (117 UV detector, Gilson), Gilson 401C Dilutor, Gilson 231XL 

Sampling injector, Gilson 306 Pump and Gilson 811C Dynamic Mixer, equipped with a 

Altima C18 5µm column (4 mm x 250 mm x 4.6 mm). The column was operated at 

ambient temperature with a flow rate of 1.5 ml min-1 and an injection volume of 50 µL. 

An isocratic mobile phase system was established using acetonitrile:water at a ratio of 

70:30. The HPLC-UV detector was monitored at 215 nm. The HPLC method used in this 

study was adapted from a method to quantify dieldrin described by Elyassi (1997). The 

HPLC method used enabled the separation and quantification of simazine, dieldrin and 

trifluralin in a single HPLC run of 20 min with simazine eluting at 3, trifluralin at 11 and 

dieldrin at 13 min (Figure 2.1). The limit of detection for the three pesticides was 0.1 mg l-

1. Standard curves were made for each standard in soil extract broth and r-squared values 

for each curve found to be > 0.99 for all three pesticides (Figure 2.2).  
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Figure 2.1 Chromatogram of simazine, dieldrin and trifluralin obtained in single HPLC runs 

with simazine eluting at 3, trifluralin at 11 and dieldrin at 13 min (line a: 0.5 mg l-1; line b: 

1 mg l-1 and line c: 2.5 mg l-1). 

 

 

 

 

 

Figure 2.2 Standard curves for a mixture of simazine, trifluralin and dieldrin in soil extract 

broth and r-squared values for each curve (simazine �, dieldrin • and trifluralin �). 
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2.7.4 Toxicity test 

The toxicity measurements were performed with the TOXAlert® 100 (Merck) using the 

liquid dried luminescent bacteria Vibrio fischeri (NRRL B- 11177). 

Standard solutions of the pesticides were added to soil extract for the toxicity assays. 

Toxicity of soil extract spiked with 1, 2, 4, 6, 8 and 10 mg l-1 of simazine, trifluralin and 

dieldrin was determined and compared against the toxicity of these three pesticides in a 

mixture at total concentrations of 3, 6, 9, 12, 15, 18, 21, 24 and 27 mg l-1. 

Soil extract samples were prepared in the same way as for the HPLC analysis (described in 

section 2.7.3). 

The osmolatily of all standards and samples were adjusted to 2% NaCl to provide optimal 

living conditions for the marine test organism. 

1250 µl of reconstitution solution (provided in the kit) was added to each Toxalert® 10 

toxicity test measurement cuvette, and the suspension was left at room temperature for 20 

minutes to allow full reconstitution.  

After reconstitution the content of all cuvettes was transferred to a sterile test tube and 

mixed thoroughly to make a homogeneous pool of bacteria. 500 µl of bacterial suspension 

was transferred to each measuring cuvette and the luminescence was read immediately.  

The luminescence was recorded 15 minutes later and the percent of inhibition (%I) was 

determined as described in the following formula: 

 

% INHIBITION = { 1- (T15/ T0)/ (C15/C0)}  x 100 
 

T0 = Light in sample vial at 0 minutes T15 = Light in sample vial at 15 minutes 
C0 =Light in control vial at 0 minutes  C15=Light in control vial at 15 minutes 
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Figure 2.3 Schematic description of the protocol of ToxAlert® 10 toxicity test. 
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Part III Soil microcosm studies 

2.8 Soil moisture calibration curve 

Water availability determines the microbial activity in soil. Before the microcosm 

experiments were carried out, a moisture sorption isotherms was developed for soil by 

adding different volumes of water to 50 g of soil, in a range between 0.5 to 4.0 ml. Soil 

sub-samples were left to equilibrate overnight at 4oC, before measuring the water potential 

with Aqualab-Dewpoint Potentiometer WP4. This enabled accurate modifications of water 

potential to be made. The relationship between the amount of added water (ml) and 

resultant moisture content (%) of soil is shown in Figure 2.5, and the relationship between 

the amount of water added and resultant water potential is shown in Figure 2.5. 

2.9 Soil microcosms  

The pesticide degradation potential, respiratory activity, total microbial populations and the 

enzyme production of soil inoculated with the selected fungi were evaluated using these 

microcosms. Each microcosm comprised 100 g of non-sterile soil and 5 g of inoculated 

carrier, the same ratio described by Boyle (1995). Since white rot fungi are obligate aerobes 

(Pointing, 2001) aeration was ensured by using glass vessels for plant tissue culture (V-

8630, SIGMA) with vented caps, with a polypropylene membrane 0.22 µm pore size (B-

3031, SIGMA). The soil used in these experiments was the same sandy loam described in 

section 2.2. 

2.9.1 Pesticide incorporation into soil 

Pesticide working solutions were prepared by dissolving analytical standards in methanol 

and storing in amber bottles at 4ºC. These solutions were diluted in water and added to each 

soil microcosms, in order to obtain the desired water potential and a final concentration of 

0, 5 and 10 mg kg soil-1, depending on the treatment. These pesticide solutions were added 

to the soil with a pipette (dripping the solution very carefully) then homogenised by 

grinding with a mortar and pestle and were left to equilibrate overnight at 4ºC.  
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Figure 2.4 Moisture content (%) after addition of various volumes of water to 50 g of soil. 

Vertical bars represent the mean standard deviation (n=3). 
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Figure 2.5 Water potential (MPa) after addition of various volumes of water to 50 g of soil. 

Vertical bars represent the mean standard deviation (n=3). 
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2.9.2 Inoculation 

The water potential of each microcosm was adjusted to -0.7 and -2.8 MPa by adding 10 and 

5 ml of water to each jar (respectively). Glycerol:water solutions were used to maintain the 

steady-state ERH equivalent to the soil treatment water potential. 

The inoculum was prepared for each fungus by growing on wet (50% water content) sterile 

wood chips for 4 weeks at 25ºC prior to inoculation of soil. The different treatments are 

described in Table 2.2. The jars were inoculated and incubated at 15ºC. Three replicates of 

each treatment were destructively sampled after 0, 6 12 and 24 weeks. The initial soil 

moisture and fresh: dry weight ratio of each soil sample was determined by drying 8-10 g 

of fresh soil at 65oC to a constant weight. At the end of each incubation period, samples 

from each microcosm were cultured on malt extract agar and nutrient agar using the serial 

dilutions technique (section 2.11.5). 

Table 2.3 Different treatments used in soil microcosm experiments. Each treatment was 

carried out in triplicate and destructively sampled 0, 6, 12 and 24 weeks.  

Substrate Ψ (MPa) Mixture of pesticides 

(mg kg soil-1) 

-0.7 0 5 10 Soil 

-2.8  0 5 10 

-0.7  0 5 10 Soil + wood chips 

-2.8  0 5 10 

-0.7  0 5 10 Soil + Spent mushroom compost 

-2.8  0 5 10 

-0.7  0 5 10 Soil + wood chips inoculated with T.versicolor (R26) 

-2.8  0 5 10 

-0.7  0 5 10 Soil + wood chips inoculated with P.chrysosporium 

-2.8  0 5 10 

-0.7  0 5 10 *Soil + wood chips inoculated with P.ostreatus 

-2.8  0 5 10 

*There are no data for soil inoculated with P.ostreatus 24 weeks incubation, due to a 

contamination problem. 
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2.10 Quantification of pesticide concentrations in soil  

2.10.1 Extraction of pesticides from soil 

10 ml of solvent were added directly to 5 g of wet soil in a conical flask. Two different 

extraction methods and five different solvent conditions were tested: 

A- Methanol 100% 

B- Acetonitrile 100% 

C- Acetonitrile 75% water 25% 

D- Methanol 50% Acetonitrile 50% 

E- Acetonitrile 40% methanol 40% water 20% 

And two different approaches were tested: 

1- solvent-soil slurry was sonicated for 3 minutes 

2- solvent-soil slurry was shaken overnight in rotatory shaker in the dark. 

After extraction the solvent-soil slurry was poured through a 100 mm top diameter funnel 

lined with Whatman No.1 filter paper containing 1g of filtering agent Celite 545 (Aldrich, 

cat. 41993) and collected in a 250 ml beaker. The best extraction method was used for the 

samples extracted from soil microcosms. 

2.10.2 HPLC quantification of pesticides 

As described in section 2.7.3. 
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2.11 Assessment of fungal growth and metabolic activity in 
soil 

2.11.1 Soil respiration  

Soil respiration was measured by monitoring the concentration of carbon dioxide in the 

head-space of the microcosm jars, using a Gas Chromatographer (GC) equipped with a 

packed column (Porapak Q packed glass column) and a thermal conductivity detector 

(Carlo Erba Instruments, GC 8000 Series MFC800). The conditions of the analysis were 

the following: column temperature 1000C; injector temperature: 1000C; detector 

temperature 1800C; filament temperature 2300C; carrier gas (Helium) and flow rate 40 ml 

min-1. CO2 concentration was measured by injecting 3 ml headspace gas and was estimated 

by reference to a standard calibration gas mixture (10.3 % CO2 in N2). 

Optimisation of carbon dioxide measurements in soil microcosms 

As described in section 2.9 the microcosms jars had vented caps, to allow gas exchange. In 

order to obtain a detectable concentration of CO2 the vented caps were sealed and left at 

room temperature, prior to CO2 analysis. Jars were sealed for 0, 1 and 3 hours in order to 

optimise the procedure. Respiration rate was expressed as mg CO2 h-1 g soil-1. 

2.11.2 Dehydrogenase activity 

2 (p-iodophenyl)-3-(p nitrophenyl)-5-phenyl tetrazolium chloride INT (Acros Organics cat. 

146-68-9) was used as substrate for soil dehydrogenase activity (Von Mersi and Schinner, 

1991). The INT solution (9.88 mM) was prepared by dissolving 500 mg of INT into 2 ml of 

N,N-dimethylformamide, followed by the addition of 50 ml of distilled water. The solution 

was sonicated for 2 minutes and water was added to bring the volume up to 100 ml. The 

solution was stored in the dark and always used fresh. 

The method is based on the incubation of 0.5 g of moist soil with 375 µl of Tris-HCl buffer 

(1M, pH 7.0) and 500 µl of the substrate INT at 370C for 2h, in the dark followed by 

colorimetric estimation of the reaction product iodonitrotetrazolium chloride INF (I-7375, 

Sigma). After the incubation every sample was mixed with 2500 µl of extraction solution 

ethanol: N,N-dimethylformamide (50:50), and kept in the dark. The samples were shaken 
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vigorously at 20 minutes intervals for 1h to extract the INF, produced in the reaction. After 

filtration the developed INF was measured at 434 nm against the control. To eliminate the 

chemical (non-microbial) INT reduction controls were prepared with autoclaved soil 

(121oC for 20 min) and treated like the samples. 

For the calibration curve of INF: standard INF (Sigma I-7375) solutions of known 

concentrations in a range between 0.324 and 12.96 µg ml-1, were prepared in N,N-

dimethylformamide. 875 µl of standard solution was added to 2.5 ml of extracting solution 

and the absorbance was read at 434 nm. 

2.11.3 Total ligninolytic activity 

The poly R-478 (polyvinyl sulfonated backbone with anthrapyridone chromophore, violet 

colour) decolouration assay was used to study the overall ligninolytic activity in the soil, 

following the method described by Baheri and Meysami (2002). The assay consisted of 

mixing 1 g of wet soil with 5 ml of dye poly R-478 (P-1900, Sigma) in aqueous solution 

(0.02 g l-1). The reaction mixture was kept under light (desklamp, with a 40w bulb) for 24 h 

for the enzyme reaction to take place. After 24 h the mixture was centrifuged for 4 min at 

5000 rpm (eppendorf centrifuge: Beckman Microfuge ® Lite) in order to separate the soil 

particles. Total ligninolytic activity was given as decolouration degree of the Poly R-478, 

monitored by the percentage reduction in the absorbance ration at 520 nm and at 350 nm 

(Moredo et al., 2003) , calculated as follows: 

Colour intensity = absorbance at 530 nm/ absorbance at 350 nm 

% Colour of a sample = (absorbance at 530 nm/ absorbance at 350 nm) sample x 100 

/ (absorbance at 530 nm/ absorbance at 350 nm) poly R478 

% decolouration = 100 - [(absorbance at 530 nm/ absorbance at 350 nm) sample / 

(absorbance at 530 nm/ absorbance at 350 nm) poly R478] 

A lower absorbance ratio, means intense decolouration and higher enzymatic activity. 

2.11.4 Enzyme extraction in soil  

The extraction of enzymes from soil is an ideal way to measure various soil enzyme 

activities. This method is especially useful for determining activities in small volumes (i.e, 
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microtitre plates). Compared to incubation of bulk soil with buffer, an extract is more 

convenient to handle and more homogenous when working with small sample volume. The 

following enzyme assays were performed on an enzyme extract, obtained from each soil 

sample, as described subsequently.  

Enzymes in the soil were extracted by mixing 5 g of soil and 20 ml 10 mM phosphate 

buffer at pH 6.5, agitated in an incubator shaker at a speed of 250 rpm (KS501 Digital IKA 

Labortechnik) at 40C for 1 hour (Criquet et al. 1999). This was followed by centrifugation 

(Beckman Microfuge  Lite), at 3800 rpm for 6 min, at room temperature. The supernatant 

obtained contained the fungal enzymes and was stored in 1.5 ml microcentrifuge tubes at –

20oC. 

Laccase and cellulase activities 

Same procedure as described in section. 2.7.2. 

2.11.5 Total microbial populations 

Enumeration of culturable native bacteria 

Ten fold dilutions of the soil suspensions, from 10-1 (1 g of soil + 9 ml of sterile water) to 

10-7 were used to spread plate (0.2 ml) on nutrient agar supplemented with 0.5 g 

cyclohexamide, to prevent fungal growth. The Petri plates were incubated at 28oC and 

observed after 3 days for quantification of the number of colonies. By knowing the number 

of colonies obtained for a given dilution the population density per gram of soil can be 

calculated. Total culturable native bacteria was expressed as LOG10 (CFU) g soil -1. 

Enumeration and identification of culturable fungi 

Ten fold dilutions of the soil suspensions, from 10-1 (1 g of soil + 9 ml of sterile water) to 

10-3 were used to spread plate (0.2 ml) on malt extract agar supplemented with 0.5 g 

chloramphenical, to prevent bacterial growth. The Petri plates were incubated at 28oC and 

observed after 7-10 days for quantification of the number of colonies as well as 

identification of the isolated fungi. By knowing the number of colonies obtained for a given 

dilution the population density gram-1 of soil was calculated. Total culturable fungi was 

expressed as LOG10 (CFU) g soil -1. 
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2.12 Data handling and statistics 

Data input, data handling/manipulation, linear regression, and graph plotting was carried 

out using Microsoft Excel 2003 (Microsoft Co.). Other statistical tests (i.e. ANOVA and 

other statistical tests) were performed using XLSTAT© (Version 5.1). When required 

comparison between means was carried out using ANOVA followed by Tukey Multiple 

Comparisons test. ANOVA tables can be found in the appendix II.  
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3 Results 
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Part I Initial Screening of fungi 

3.1 Introduction  

The objectives of this study were to assess the tolerance of eight white rot fungal 

isolates to simazine, trifluralin and dieldrin, individually and as a mixture. For this 

purpose, soil extract agar was used as the culture medium. It is a nutritionally weak 

medium to mimic the nutrient availability in soil. Since white rot fungi predominantly 

interact with xenobiotics extracellularly (Bennet et al., 1995) a cellophane overlay 

was used to separate the mycelium from the culture medium. The first approach was 

to study if this cellophane overlay had major effects on fungal growth. Subsequently, 

soil extract agar was supplemented with simazine, trifluralin and dieldrin 

(individually and as a mixture) to assess fungal tolerance to these compounds under 

osmotic potential conditions optimal for fungal growth (-0.7 MPa) and also at -2.8 

MPa, below the wilting point of plants (-1.4 MPa) (Mswaka and Magan, 1999). From 

this study four isolates were selected for the subsequent studies: assessment of the 

effect of matric and osmotic forces on fungal growth, in media supplemented with 

pesticides. Finally, the potential of these fungal isolates to degrade lignin and produce 

laccase in the presence of simazine, trifluralin and dieldrin, individually and as a 

mixture, was examined. 

3.2 In vitro comparison of white rot isolates for tolerance 
to pesticides  

The purpose of this study was to optimise the conditions for a soil extract agar study 

(temperature, use of cellophane overlay) and assess the ability of the selected white 

rot isolates to grow in this nutritionally weak medium (soil extract agar) supplemented 

with simazine, trifluralin and dieldrin, individually and as a mixture. 

3.2.1 Calculation of fungal growth rates 

Colony diametric measurements were made frequently throughout the incubation 

period by taking two readings at right angles to each other. Data was then tabulated 

and the linear portion of the radial extension rates used to determine growth rate via 
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linear regression. Figure 3.1 shows an example: the growth rate is the slope of the 

equation (Y= ax + b), thus for this example the growth rate was 0.517 mm day-1. 

3.2.2 Evaluation of cellophane overlays on fungal growth at two 
different temperatures and two different water availabilities  

Table 3.1 and Table 3.2 describe the effect of cellophane overlay, incubation 

temperature and water potential on growth rates of eight white-rot fungi growing in 

soil extract agar. The use of a cellophane overlay between the medium and the test 

species did not impair fungal growth, and temperature had a strong impact on the 

relative growth rates as most isolates had higher growth rates at 25 than at 15ºC. 

All eight fungal species grew effectively in soil extract agar and at 15ºC, there was 

little difference between growth of species on the agar surface or on the cellophane 

overlay. However at 25ºC the growth rates of more test isolates was affected by the 

cellophane overlay. Although the growth rates were significantly higher at 25 

(P<0.05) than at 15ºC for all fungal species tested, in subsequent experiments with 

soil extract agar and soil microcosms 15ºC was chosen, because it was less affected 

by the overlay of cellophane and more realistic to in situ environmental temperatures. 
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Figure 3.1 Linear regression of mycelial radial extension plotted against time in order 

to obtain the growth rate (mm day-1). 
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Table 3.1 Growth rate (average of 3 replicates ± mean standard deviation) expressed 

in mm day-1 for eight fungal species subjected to two different water potentials (-0.7 

and -2.8 MPa) and in the presence and absence of cellophane overlay at 15ºC.  

  Growth rate (mm day –1)  

Fungi Ψ (MPa) Cellophane No cellophane Significance

-0.7 2.5±0.03 2.6±0.02 * P=0.015 P. sajor-caju 

-2.8 1.1±0.12 1.2±0.04 NS 

-0.7 2.8±0.01 2.9±0.04 NS T.versicolor (R26) 

-2.8 1.3±0.06 0.6±0.01 * P<0.001 

-0.7 0.9±0.06 1.1±0.04 * P=0.005 P. cystidiosus 

-2.8 0.2±0.07 0.2±0.02 NS 

-0.7 1.1±0.14 1.0±0.03 NS T.versicolor (R101) 

-2.8 1.5±0.44 0.9±0.05 NS 

-0.7 1.5±0.53 0.7±0.01 NS T. socotrana 

-2.8 1.7±0.30 0.7±0.02 NS 

-0.7 1.5±0.27 1.7±0.52 NS P. sanguineus 

-2.8 0.8±0.17 0.90±0.09 NS 

-0.7 3.0±0.16 3.2±0.04 NS P.chrysosporium 

-2.8 0.3±0.03 0.3±0.03 NS 

-0.7 2.9±0.10 2.9 ± 0.03 NS P.ostreatus 

-2.8 1.2±0.05 1.4±0.06 * P=0.029 

Asterisk (*) means that there was a significant difference between the two groups: 

with and without cellophane, for that fungus and water potential condition, according 

to the statistical test performed (One-way ANOVA); NS: not significantly different. 
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Table 3.2 Growth rate (average of 3 replicates ± mean standard deviation) expressed 

in mm day-1 for eight fungal species subjected to two different water potentials (-0.7 

and -2.8 MPa) and in the presence and absence of cellophane overlay at 25ºC. 

  Growth rate (mm day –1)  

Fungi Ψ (MPa) Cellophane No cellophane Significance 

-0.7 4.7 ± 0.14* 5.3 ± 0.06 * P=0.003 P. sajor-caju 

-2.8 2.9 ± 0.09 * 3.2 ± 0.01 * P=0.007 

-0.7 4.8 ± 0.23 * 3.3 ± 0.01 * P<0.001 T.versicolor (R26) 

-2.8 1.6 ± 0.04 * 0.8 ± 0.10 * P<0.001 

-0.7 2.2 ± 0.11 2.2 ± 0.04 NS P. cystidiosus 

-2.8 0.6 ± 0.03 * 1.2 ± 0.04 * P<0.001 

-0.7 2.0 ± 0.49 1.5 ± 0.09 NS T.versicolor (R101) 

-2.8 1.7 ± 0.18 1.6 ± 0.24 NS 

-0.7 2.3±0.09 * 1.4 ± 0.01 * P<0.001 T. socotrana 

-2.8 3.2 ± 1.75 1.7 ± 0.01 NS 

-0.7 2.7 ± 0.21 2.7 ± 0.0 NS P. sanguineus 

-2.8 2.3 ± 0.26 2.4 ± 0.01 NS 

-0.7 5.71 ± 0.0259 5.5 ± 0.2 NS P.chrysosporium 

-2.8 2.86 ± 0.0342 2.9 ± 0.01 NS 

-0.7 3.43 ± 0.0692 * 2.3 ± 0.02 * P<0.001 P.ostreatus 

-2.8 2.22 ± 0.0660 * 2.5 ± 0.05 * P=0.005 

Asterisk (*) means that there was a significant difference between the two groups: 

with and without cellophane, for that fungus and water potential condition, according 

to the statistical test performed (One-way ANOVA); NS: not significantly different. 
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3.2.3 In vitro tolerance to individual and mixtures of pesticides at 
two different water potentials 

The fungi used in bioremediation must have good growth rates, in order to potentially 

colonise soil and overcome the competition of the native microorganisms. In this 

study 8 isolates were grown on soil extract agar amended with 5, 10 and 20 mg l-1 

simazine, trifluralin and dieldrin individually and as a mixture. Overall most test 

isolates were tolerant to the pesticide treatments. However, their growth rates were 

highly influenced by water availability, and pesticide concentration. A comparison of 

the effect of these two factors on the growth rates of the eight test isolates is shown in 

Table 3.3 and Table 3.4. Table 3.3 shows the EC50 values (pesticide concentration 

causing 50% growth reduction compared to the control). Table 3.4 shows the 

percentage growth inhibition observed in the 20 mg l-1 treatment. The best isolates 

were T.versicolor (R26 and R101), and P.ostreatus. 
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Table 3.3 Concentration (mg l-1) of simazine, trifluralin and dieldrin individually and 

as a mixture, that causes a 50% reduction in fungal growth (EC50) in eight test isolates 

growing on soil extract agar. N.G:= no growth; N.I. = no inhibition. 

  Simazine Trifluralin Dieldrin Mixture 

Isolates Ψ (MPa) EC50 

(mg l-1) 

EC50 

(mg l-1) 

EC50 

(mg l-1)) 

EC50 

(mg l-1) 

-0.7 46 33.9 21.2 28.3 P.cystidious 

-2.8 27.4 8.6 13.3 70.5 

-0.7 70.7 20 15 17.6 P.sajor-caju 

-2.8 11.2 23.3 N.G. 10.8 

-0.7 N.I 38.3 44.4 33.1 T.socotrana 

-2.8 25.5 15.3 31.2 38 

-0.7 N.I 47.1 17.4 22.4 P.sanguineaus 

-2.8 14.7 17.6 10.8 11.9 

-0.7 314 213 22.6 55.8 T.versicolor 

 (R26) -2.8 N.I 30.9 1207 13.6 

-0.7 N.I 24.6 115 32.3 T.versicolor  

(R101) -2.8 26.2 50.6 24.6 25 

-0.7 N.G. 14.7 14.4 2.8 P.chrysosporium 

-2.8 N.G. N.G. N.G. N.G. 

-0.7 45 33.6 19.9 14.1 P.ostreatus 

-2.8 19.9 27.5 12.2 19.8 
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Table 3.4 Growth inhibition (% I) observed for eight test isolates growing in soil 

extract agar supplemented with 20 mg l-1 treatments (simazine, trifluralin and dieldrin, 

individually and as a mixture). N.G:= no growth; N.I. = no inhibition. 

  Simazine Trifluralin Dieldrin Mixture 

Isolates Ψ 

(MPa) 

% I % I % I % I 

-0.7 22 15 47 35 P.cystidious 

-2.8 36 29 75 14 

-0.7 14 50 67 57 P.sajor-caju 

-2.8 89 43 N.G. 92 

-0.7 N.I 26 23 30 T.socotrana 

-2.8 39 16 32 26 

-0.7 N.I. 21 57 45 P.sanguineaus 

-2.8 68 57 93 84 

-0.7 3 5 44 26 T.versicolor (R26) 

-2.8 N.I 32 1 74 

-0.7 N.I 20 9 31 T.versicolor (R101) 

-2.8 38 20 41 40 

-0.7 N.G. 34 69 94 P.chrysosporium 

-2.8 N.G. N.G. N.G. N.G. 

-0.7 22 30 50  71 P.ostreatus 

-2.8 50 36 82 51 
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3.2.4 Effect of osmotic and matric potential on fungal tolerance to 
pesticides 

After studying the responses of these eight test isolates to the three pesticides 

individually and as a mixture, further studies were restricted to those which had the 

best tolerance to the pesticides. These were T.versicolor R101 and R26 and P. 

ostreatus. P.chrysosporium was also included because is a very well studied species, 

used previously in many bioremediation studies. 

The purpose of this study was to assess the tolerance of the four test isolates to the 

same pesticides individually and as a mixture, under different water regimes, achieved 

by changing the osmotic potential of soil extract to -0.7 and -2.8 MPa and the matric 

potential to -0.5, -1.5 and -2.8 MPa. 

Osmotic potential effects 

In this first approach different water regimes were obtained with the addition of KCl 

to soil extract agar. Overall, these 4 test isolates showed better growth at -0.7 MPa 

and the addition of pesticides to the culture medium influenced growth rates. Plate 3.1 

shows an example of a test isolate growing on a mixture of simazine, trifluralin and 

dieldrin at 0, 5 and 10 mg l-1, at –0.7 and -2.8 MPa osmotic potential, after 30 days 

incubation.  

Overall P.chrysosporium showed the lowest tolerance to the pesticides used in this 

study and showed very high sensitivity to water stress. While T.versicolor (R26) and 

P.ostreatus had good tolerance to water stress and pesticides. T.versicolor (R101) had 

lower growth rates than the other two test isolates, but it was less affected by changes 

in water potential and pesticide treatment. 

The effect of osmotic potential and pesticide treatment as growth rates for 

T.versicolor (R26) in soil extract agar are shown in Figure 3.2. Water availability had 

a strong impact on T.versicolor (R26) growth rates, as the fungus showed markedly 

higher growth at -0.7 MPa water potential. Interestingly, at both water regimes the 

growth rates were not noticeably affected by the concentration of the pesticide (or 
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mixture of pesticides), which suggested that this isolate can easily grow in medium 

supplemented with pesticides, without suffering any toxicity effects.  

T.versicolor (R101) was very tolerant to water stress, as the fungus had high growth 

rates under imposed water stress, at -2.8 MPa (Table 3.5). The highest growth rates 

were observed at -0.7 MPa for soil extract agar supplemented with simazine, which 

once again suggest the test isolates are very tolerant to this pesticide. Additionally the 

fungus showed good tolerance to dieldrin, at both water potentials. 

P.ostreatus showed higher growth rates under freely water available, but under water 

stress conditions the fungus still showed good tolerance to the pesticides (Table 3.5). 

Interestingly, P.ostreatus had very high growth rates in the mixture treatment. Its 

growth was noticeably higher than the growth showed by the other test isolates. For 

example, in the treatment mixture 5 mg l-1, the growth rate was 10 times higher than 

that in the simazine 5 mg l-1 mixture treatment, at both water potentials. Even though 

its growth in the presence of the mixture of pesticides was much higher than in single 

pesticide treatments, the fungus also showed good tolerance to all single pesticides, 

including dieldrin, which was highly toxic to some of the other test isolates. 

P.chrysosporium was highly influenced by water potential and pesticide treatments as 

the fungus showed growth inhibition or extremely low growth rates at -2.8 MPa (see 

Table 3.5). Unlike the other test species that seemed to be very tolerant to simazine, 

P.chrysosporium was extremely sensitive to this pesticide. The highest growth rates 

were observed for the mixture treatment, at -0.7 MPa, and at this water potential the 

fungus also showed good tolerance to trifluralin. 
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Plate 3.1 P. ostreatus growing on soil extract agar supplemented with a mixture of 

pesticides at 0, 5 and 10 mg l-1, at 15ºC, at –0.7 MPa water potential (A, B, C) and – 

2.8 MPa water potential (D, E, F), during the course of the experiment. 

 

 

 

 

 

 

 

 

 

Figure 3.2 T.versicolor (R26) growth rates (mm day-1) in soil extract agar 

supplemented with simazine, trifluralin and dieldrin at 0, 5 and 10, individually and as 

a mixture, at -0.7 and -2.8 MPa osmotic potential, incubated at 15ºC. Bars indicate 

standard deviation of the mean (n=3). 
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Table 3.5 Mean fungal growth rates (± standard deviation) for T.versicolor (R101), 

P.ostreatus and P.chrysosporium in soil extract agar supplemented with three 

pesticides individually and as a mixture, under different osmotic water potentials, at 

15ºC. 

  T.versicolor (R101) P.ostreatus  P.chrysosporium 

Ψ(MPa)  -0.7 -2.8 -0.7 -2.8 -0.7 -2.8 

Simazine 0 1.4±0.01 0.9±0.22 0.5±0.03 0.5±0.10 0 0 

(mg l-1) 5 1.4±0.05 0.8±0.17 1.0±0.03 0.5±0.02 0 0 

 10 1.4±0.10 0.7±0.09 0.7±0.05 0.5±0.02 0 0 

        

Trifluralin 5 0.9±0.51 0.4±0.03 0.9±0.04 0.4±0.06 0.7±0.34 0 

(mg l-1) 10 0.6±0.01 0.6±0.05 1.0±0.02 0.5±0.04 0.3±0.05 0 

        

Dieldrin 5 0.8±0.13 0.7±0.06 1.0±0.02 0.6±0.09 0.1±0.01 0.2±0.01

(mg l-1) 10 0.8±0.15 0.6±0.18 0.5±0.03 0.4±0.07 0.4±0.58 0 

       0 

Mixture 5 0.7±0.01 0.7±0.15 11.8±0.16 4.6±1.22 0.5±0.50 0 

(mg l-1) 10 0.7±0.22 0.5±0.00 6.1±1.13 5.5±0.10 0.2±0.12 0 
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Matric potential effects 

The different water regimes were attained with the addition of polyethylene glycol 

(PEG 8000) to the culture media. Plate 3.2 shows three of the test isolates growing on 

matrically modified medium. Overall, fungal growth was much lower in matric than 

osmotically modified media. Additionally, in matric potential treatments, the effect of 

the pesticides on growth was more significant. Indeed, one of the test isolates, 

P.chrysosporium, did not grow under any of the treatment conditions examined. 

T.versicolor (R101) showed the best growth rates in this study. Figure 3.3 shows the 

growth rates obtained for T.versicolor (R26) in soil extract adjusted to -0.5, -1.5 and -

2.8 MPa matric potential. At the highest water availability (-0.5 MPa) T.versicolor 

(R26) was tolerant of all pesticide treatments, with the highest growth rates in the 

mixture of pesticides. In the mixture treatment there was a decrease in growth at 10 

mg l-1. In the simazine and dieldrin treatments there was no difference in growth 

between 5 and 10 mg l-1. At the intermediate matric potential (-1.5 MPa) the fungus 

was not tolerant to any of the pesticides, even though it grew in the control. At -2.8 

MPa growth of this species was completely inhibited. 

Table 3.6 shows the effect of matric potential and pesticide on growth rates of 

T.versicolor (R101). At the -0.5 and -1.5 MPa matric potential T.versicolor (R101) 

was tolerant to all pesticide treatments. At -0.5 MPa matric potential there was no 

significant difference in growth in different concentrations for the simazine and the 

mixture treatments, which suggests T.versicolor (R101) was very tolerant to simazine 

and the mixture. At -1.5 MPa this isolate had good tolerance to all treatments. At -2.8 

MPa there was complete inhibition of growth for all treatments with simazine and 

mixture, while some growth was observed at 10 mg l-1 of trifluralin and dieldrin.  

Table 3.6 shows the growth rates obtained by P.ostreatus in soil extract adjusted to -

0.5, -1.5 and -2.8 MPa matric potential. This fungus was highly influenced by the 

matric potential and the presence of pesticides. At -0.5 MPa matric potential the 

fungus showed some growth, but some reduction was observed in the pesticide 

treatments, comparing with the control, which suggests P.ostreatus was very sensitive 

to the pesticides under matric imposed water. Complete growth inhibition was 

observed at -1.5 and -2.8 MPa. 
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Plate 3.2 P.ostreatus, T.versicolor (R26) and P.chrysosporium, growing on matrically 

modified soil extract media at –0.5 MPa, at 150C. 
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Figure 3.3 Comparison of growth of T.versicolor (R26) in soil extract supplemented 

with simazine, trifluralin and dieldrin at 0, 5 and 10, individually and as a mixture, at -

0.5, -1.5 and -2.8 MPa matric potential, incubated at 15ºC (Bars are the standard 

deviation of the mean, n=3). 
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Table 3.6 Mean fungal growth rates (± standard deviation) for T.versicolor (R101), 

P.ostreatus and P.chrysosporium in soil extract supplemented with three pesticides 

individually and as a mixture, under different matric potentials, at 15ºC. 

  T.versicolor R101 P.ostreatus 

Ψ (MPa)  -0.5  -1.5  -2.8 -0.5  -1.5  -2.8 

Simazine 0 0.6±0.07 0.5±0.04 0 1.7±0.03 0 

(mg l-1) 5 0.7±0.07 0.4±0.03 0 0.6±0.09 0 0 

 10 0.6±0.18 0.5±0.01 0 0.2±0.36 0 0 

        

Trifluralin 5 0.6±0.03 0.4±0.02 0 1.0±0.09 0 0 

(mg l-1) 10 0.4±0.01 0.5±0.06 0.1±0.01 0.4±0.07 0 0 

        

Dieldrin 5 0.7±0.03 0.3±0.01 0 0.2±0.10 0 0 

(mg l-1) 10 0.7±0.10 0.5±0.03 0.1±0.01 1.0±0.00 0 0 

        

Mixture 5 0.7±0.02 0.4±0.01 0 1.5±0.00 0 0 

(mg l-1) 10 0.8±0.05 0.4±0.04 0 0.1±0.00 0 0 
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3.2.5 Production of ligninolytic enzymes in Petri plate assays 

The applicability of fungi in bioremediation of soil contaminated with pesticides 

depends on their capacity to grow in the presence of such compounds and their ability 

to produce degradative enzymes. This study was carried out to investigate the 

production of enzymes by the candidate species and the effect that water potential and 

pesticide treatment may have on this. 

Potential ligninolytic activity 

Overall T.versicolor (R26 and R101) and P.ostreatus showed strong ligninolytic 

activity expressed as the radius of clearing zone (Plate 3.3). P.chrysosporium did not 

produce decolouration under the conditions of the assay, although this isolate grew 

well in the medium used in this assay.  

Figure 3.4 shows lignin degradation by T.versicolor (R26) in culture medium adjusted 

to -0.7 and -2.8 MPa. Higher ligninolytic activity was found at -0.7 MPa. Under this 

water regime in the mixture and simazine treatments T.versicolor (R26) degraded 

lignin regardless of the concentration of pesticides. Similarly T.versicolor (R101) 

(Table 3.7) showed higher decolouration at -0.7 MPa but was able to degrade lignin in 

all pesticide treatments AT -2.8 MPa. 

Ligninolytic activity by P.ostreatus (Table 3.7) was also higher at -0.7 than at -2.8 

MPa, except in the mixture where it was not as affected by water potential as in the 

other treatments. At -0.7 MPa in the mixture, trifluralin and dieldrin, ligninolytic 

activity was higher at 0 mg l-1 and decreased in the 5 and 10 mg l-1 treatments. At -2.8 

MPa in the mixture, simazine and trifluralin the same trend was observed as 

ligninolytic activity degradation decreased, with the increase in pesticide 

concentration. However, in dieldrin treatment the fungus there were no differences 

between 5 and 10 mg l-1.  
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Plate 3.3 Positive result for plate assay to assess potential ligninolytic activity 

(T.versicolor). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Effect of simazine, trifluralin and dieldrin (0, 5 and 10 mg l-1) individually 

and as a mixture on potential ligninolytic activity by T.versicolor (R26), at 15ºC 

(expressed as radius of enzymatic clearing zone ± standard deviation of the mean, 

n=3). 
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Table 3.7 Effect of simazine, trifluralin and dieldrin (0, 5 and 10 mg l-1) individually 

and as a mixture on ligninolytic activity by T.versicolor (R101) and P.ostreatus. at 

15ºC (expressed as radius of enzymatic clearing zone ± standard deviation of the 

mean, n=3). 

  T.versicolor (R101) P.ostreatus  

 Ψ (MPa). -0.7 -2.8 -0.7 -2.8 

Simazine 0 21±0.6 11±1.0 40±0.0  27±0.7 

(mg l-1) 5 21±0.6 10±1.0 21±0.4 13±0.4 

 10 16±0.6 13±1.0 21±1.2 10±0.1 

      

Trifluralin 5 14±0.6 12±0.5 35±0.6 25±0.6 

(mg l-1) 10 11±0.6 8±0.6 28±0.6 19±0.5 

      

Dieldrin 5 15±1 10±1.5 36±1.5 13±1.9 

(mg l-1) 10 11±1 6±1.0 25±0.2 15±0.6 

      

Mixture 5 15±0.6 8±0.6 25±0.6 22±1.5 

(mg l-1) 10 21±0.6 9±0.6 17±0.6 18±1.0 
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Polyphenol oxidase production  

All test isolates, except P.chrysosporium, produced activity halos (see Plate 3.4) and 

showed different activities under different pesticide conditions. P.chrysosporium was 

unable to grow or produce activity halos under the conditions of this assay. Figure 3.5 

shows polyphenol oxidase production by T.versicolor (R26) in medium adjusted to -

0.7 and -2.8 MPa. This fungus produced a halo in all the treatment conditions but 

showed less enzyme activity under water stress than with freely water available. At -

0.7 MPa T.versicolor (R26) also showed enzyme activity in the presence of the 

mixture, simazine and trifluralin treatments regardless of the pesticide concentration. 

Under water stress, T.versicolor (R26) was also capable of forming the activity halo, 

and interestingly, this was stimulated with increasing pesticide concentration. For 

example in the mixture there was an increase in 5 mg l-1 when compared with the 

control. 

Table 3.8 shows polyphenol oxidase by T.versicolor (R101). Interestingly this was 

highly influenced by pesticides and water availability. The highest enzymatic activity 

was found for simazine treatment. At -0.7 MPa T.versicolor (R101) did not produce 

an activity halo in the control (0 mg l-1), whereas in the treatments with a mixture, 

simazine and dieldrin treatments there was a stimulation at 5 mg l-1. However, in the 

treatment with trifluralin polyphenol oxidase was only produced at 10 mg l-1. Under 

water stress this fungus produced the activity halo in all treatments except dieldrin, 

suggesting high sensitivity to this insecticide. In the other treatments, there was 

enzyme activity at 5 and 10 mg l-1. Table 3.8 shows polyphenol oxidase production by 

P.ostreatus that showed significantly less activity under water stress, at -2.8 MPa 

(P<0.001). The highest enzyme production was observed in the treatments with 

mixture and simazine. Interestingly in the trifluralin and dieldrin treatments there was 

a sharp increase in enzymatic production at 10 mg l-1 (at -0.7 MPa). At -2.8 MPa 

P.ostreatus produced polyphenol oxidases all pesticide treatments, except dieldrin, 

which has already been observed for T.versicolor (R101). These two test species seem 

to be very sensitive to this insecticide. In the mixture the production of polyphenol 

oxidase was not affected by the concentration of pesticides.  
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                                      (a)                                                       (b)                  

Plate 3.4 Laccase activity plate assay: (a) positive result for the isolate T.versicolor 

R26, and (b) negative result for the isolate P.chrysosporium. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Effect of simazine, trifluralin and dieldrin (0, 5 and 10 mg l-1) individually 

and as a mixture on laccase activity by T.versicolor (R26), at 15ºC (expressed as 

radius of enzymatic activity halo ± standard deviation of the mean, n=3). 
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Table 3.8 Effect of simazine, trifluralin and dieldrin (0, 5 and 10 mg l-1) individually 

and as a mixture on laccase activity by T.versicolor (R101) and P.ostreatus. at 15ºC 

  T.versicolor (R101) P.ostreatus 

 Ψ (MPa) -0.7 -2.8 -0.7 -2.8 

Simazine 0 0 3±0 14±1.5 6±0.5 

(mg l-1) 5 17±0.3 6±1.0 13±0.5 5±0.5 

 10 7±0.6 4±1.3 5±0 3±0 

      

Trifluralin 5 0 4±1.5 2±0.2 2±0 

(mg l-1) 10 6±0.5 10±0 8±0 1±0.6 

      

Dieldrin 5 3±0.2 0 3±0.2 0  

(mg l-1) 10 4±0.8 0 7±1.3 0 

      

Mixture 5 5±0.3 4±0.5 10±0 5±0 

(mg l-1) 10 6±0.2 4±0.3 7±1.5 7±0.2 
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Part II Soil Extract Studies 

3.3 Introduction 

The objectives of these studies were to examine the interactions and activity of four 

white rot fungi: T.versicolor (R26 and R101), P.ostreatus, P.chrysosporium in soil 

extract broth, in relation to (a) degradation of a mixture of different concentrations (0-

30 mg l-1) of simazine, dieldrin and trifluralin, (b) interactions with osmotic stress (-

0.7 and -2.8 MPa) and (c) production of enzymes relevant to P and N release 

(phosphomonoesterase, protease) and carbon cycling (β-glucosidase, endocellulase) 

and laccase activity. 

3.4 Hydrolytic enzymes 

3.4.1 Optimisation of enzyme assays in 96 wells microtitre plates 

The miniaturization of the enzyme assays was established by an adaptation to 

microtitre-plates involving semi-automated multi-channel pipettes and a microtitre 

plate reader. The optimisation stages are described below. 

Laccase 

For the assay to quantify laccase activity the protocol of Buswell et al. (1995) was 

followed. After reducing the volumes of reagents, it was necessary to choose the best 

incubation period for the assay. Several incubation times and two different reading 

modes of the microtitre plate reader (Dinex Technologies MRX Revelation): kinetic 

and endpoint, were tested. 

Kinetic mode is a predefined analysis of the absorbance values recorded by the 

microtitre-plate reader, the output values are given as (final absorbance- initial 

absorbance)/ reaction time (min). In the endpoint mode the output values are 

expressed as absorbance units, at the different moments the microtitre-plate is read, 

and the calculations are made subsequently by subtracting the initial absorbance to the 

final absorbance, divided by the period of time between readings. 
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Figure 3.6 to Figure 3.8 show calibration curves of purified commercial laccase in 

concentrations ranging from 0.03 to 0.8 mg ml-1. Using the kinetic mode two 

approaches were tested: a) the reagents were incubated at 37ºC, mixed with the 

enzyme solution (that had been defrost and kept in ice) and then the microtrite-plate 

was incubated inside the microtitre plate reader (Figure 3.6) with readings every 30 

seconds. The second approach was: b) the reagents were incubated at 37ºC, then 

mixed with the enzyme solution (cold) followed by incubation of the reaction mixture 

(in the microtitre plate) at 37ºC prior to incubation in the microtitre plate reader 

(Figure 3.7). Endpoint mode was also tested (Figure 3.8): the microtitre plate was read 

at the start of the reaction and then at the end, and in the meantime it was incubated at 

37ºC. 

For the subsequent assays, leading to the analysis of laccase activity in the samples 

we chose to set the microtitre plate reader in the kinetic mode, the reaction time was 

10 minutes, 5 seconds agitation at the beginning, without previous incubation. This 

assay was sensitive for laccase concentrations as low as 0.03125 mg ml-1, using 

commercial laccase from Rhus vernificera. 

10 min kinetic without incubation
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Figure 3.6 Linear regression of laccase activity against concentration of purified 

commercial laccase from Rhus vernificera. The microtitre plate reader was set in the 

kinetic mode (10 min) without previous incubation of the microtitre plate. 
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10 min kinetic after 11 min incubation

y = 53.09x - 0.4581
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Figure 3.7 Linear regression of laccase activity against concentration of purified 

commercial laccase from Rhus vernificera. The microtitre plate reader was set in the 

kinetic mode (10 min) with previous incubation of the microtitre plate at 37ºC for 11 

mins. 
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Figure 3.8 Linear regression of laccase activity against concentration of purified 

commercial laccase from Rhus vernificera. The microtitre plate reader was set in 

endpoint mode and the microtitre plate was incubated for 60 mins at 37ºC. 
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Protease 

To assess protease activity we followed the assay described by Germano et al. (2002). 

This assay had to be miniaturised for a microtitre plate, by reducing the reagent 

volumes, keeping exactly the same concentrations referred in the literature. The 

optimisation consisted in trying the assay with increasing concentrations of 

commercial protease, from Aspergillus oryzae, to assess the assay’s sensitivity (Figure 

3.9). The assay was sensitive to concentrations as low as 0.0063 units ml-1 protease 

(Figure 3.10). 
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Figure 3.9 Optimisation for protease activity assay, with purified protease from 

Aspergillus oryzae in concentrations in the range 0-10 units ml-1. The microtitre plate 

reader was set in endpoint mode and the microtitre plate was incubated for 60 mins at 

37ºC. 
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Figure 3.10 Optimisation for protease activity assay, with purified protease from 

Aspergillus oryzae in concentrations in the range 0-0.2 units ml-1. The microtitre plate 

reader was set in endpoint mode and the microtitre plate was incubated for 60 mins at 

37ºC. 

Cellulase 

To assess cellulase activity we followed the microtitre plate assay described by Wirth 

and Wolf (1992) and tested it using commercial cellulase from Aspergillus niger. 

Different incubation times (from 30 mins to 4 hrs) were examined in order to choose 

the most suitable incubation time for this assay. The assay was sensitive to 

concentrations of purified commercial cellulase as low as 0.01 units ml-1 (Figure 

3.11).  
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Figure 3.11 Cellulase activity of increasing concentrations of purified cellulase from 

Aspergillus niger, in concentrations ranging from 0-0.5 units ml-1, with different 

incubation times (30 min- 4 hrs). 

3.4.2 Enzyme production in soil extract samples 

Having optimised the conditions for the enzymatic assays, the enzymatic activity of 

the four test isolates in the soil extract broth was examined. Enzyme production, 

relevant to P and N release (phosphomonoesterase, protease), carbon cycling (β-

glucosidase, cellulase) and laccase activity were examined. 

The impacts of the pesticide mixture concentration and water stress treatments on the 

production of five enzymes by T.versicolor R26 (Table 3.9) and R101 (Table 3.10), 

P.ostreatus (Table 3.11) and P.chrysosporium (Table 3.12) were examined.  

P.chrysosporium and T.versicolor (R101) produced no laccase in any of the 

treatments. In contrast, P.ostreatus produced very high levels of laccase. Higher 

production of this enzyme was observed under osmotic stress (P=0.001), and all the 

treatments showed increased levels of laccase compared to the control (P<0.05). At 

this water regime laccase production was unaffected by the different concentrations of 

the pesticide mixture (P<0.05). At -0.7 MPa this fungus showed the highest laccase 

production at 10 and 30 mg l-1 (P<0.05). 
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T.versicolor (R26) also produced very high amounts of laccase, especially with freely 

available water. At -0.7 MPa there was a significant increase in laccase production 

between the control and the treatments (P=0.036). Under osmotic stress laccase 

production was significantly reduced, although up to 20 units were still detected. At -

2.8 MPa osmotic stress there was no significant difference between laccase activity in 

the different pesticide treatments. 

Cellulase production by P.chrysosporium and P.ostreatus occurred at very low levels. 

P.chrysosporium production of cellulase was low regardless of treatment (P=0.596), 

while P.ostreatus showed higher cellulase production under osmotic stress (P<0.001), 

but the production of this enzyme was unaffected by the pesticide treatment. 

T.versicolor R26 and R101 exhibited significantly higher activities of cellulase at –0.7 

MPa than at –2.8 MPa (P=0.006 and P=0.036, respectively) in the pesticide 

treatments.  

With regard to other hydrolytic enzymes, T.versicolor (R101) produced higher 

concentrations of protease than the other isolates. This production was higher under 

water stress (P<0.001) and was unaffected by the mixture concentration (P=0.139). 

Protease production by P.chrysosporium occurred at low levels regardless of 

treatment. T.versicolor (R26) produced higher protease levels at the lowest water 

availability (P<0.001) and showed a significant increase in protease levels at 5 mg l-1, 

under water stress (P<0.001). Production of protease by P.ostreatus was not 

influenced by water availability (P=0.760), nor pesticide concentration at -2.8 MPa.  

β-glucosidase production by T.versicolor (R26) and P.ostreatus was higher than 

P.chrysosporium or T.versicolor (R101). P.ostreatus showed high production of this 

enzyme regardless of water potential or pesticide treatment (P=0.076 and P=0.077, 

respectively). T.versicolor (R101) produced higher β-glucosidase under water stress 

(P<0.001), showing the highest β-glucosidase activity in the control under this water 

regime. T.versicolor (R26) produced higher β-glucosidase levels at 5 mg l-1 under 

water stress (P<0.05). P.chrysosporium showed the highest production of this enzyme 

in the control at -0.7 MPa (P<0.05). 

Contrarily to β-glucosidase, phosphomonoesterase production by P.ostreatus was 

very low. Phosphomonoesterase activity by P.ostreatus was higher under water stress, 
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showing a significant reduction in the 15 and 30 mg l-1 treatments (P<0.05), under this 

water regime. T.versicolor (R101) also showed higher phosphomonoesterase activity 

at -2.8 MPa (P=0.011), but the activity of this enzyme was not influenced by mixture 

concentration. The production of phosphomonoesterase by P.chrysosporium was 

much higher than by T.versicolor (R26) and the activity of this enzyme by these two 

isolates was not affected by water potential or pesticide concentration. 

 

Table 3.9 Extracellular enzyme activities of T.versicolor (R26) growing in soil extract 

supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1 total 

concentrations), for 25 days, at 27oC, under two different water potential regimes. 

Least significant differences (P=0.05) are for Pesticide x water potential interactions. 

  Mixture of pesticides (mg l-1) 

Enzyme (U) Ψ (MPa) 0 5 10 15 30 

-0.7  2.1 3.6 1.8 4.5 4.2 Cellulase 

L.S.D. = 1.86 -2.8  1.6 1.9 1.9 1.8 2.4 

-0.7  9.2 5.9 6.0 2.2 2.8 Phosphomonoesterase* 

L.S.D. = 12.67 -2.8  8.9 8.1 13.7 4.5 5.0 

-0.7  14.8 14.2 23.2 16.4 45.1 β-glucosidase* 

L.S.D. = 21.18 -2.8  10.2 51.2 11.0 25.7 3.5 

-0.7  0 4.1 6.1 2.1 2.3 Protease 

L.S.D. = 39.23 -2.8  0.3 58.6 28.3 1.0 0 

-0.7  91.9 230.1 206.2 214.4 205.7 Laccase 

L.S.D. = 126.34 -2.8  9.3 3.2 11.8 6.5 20.2 

*nmol PNP min –1mg-1 protein 
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Table 3.10 Extracellular enzyme activities of T.versicolor (R101) growing in soil 

extract supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1 total 

concentrations), for 25 days, at 27oC, under two different water potential regimes. 

Least significant differences (P=0.05) are for Pesticide x water potential interactions. 

  Mixture of pesticides (mg l-1) 

Enzyme (U) Ψ (MPa) 0 5 10 15 30 

-0.7  1.6 1.3 2.5 1.1 0.4 Cellulase 

L.S.D. = 2.40 -2.8  1.8 0.9 0.0 0.0 0.0 

-0.7  4.7 1.0 1.5 4.0 3.1 Phosphomonoesterase* 

L.S.D. = 2.45 -2.8  8.3 9.0 3.3 4.9 4.0 

-0.7  2.8 1.0 1.9 0.4 0.0 β-glucosidase* 

L.S.D. = 4.75 -2.8  11.4 4.3 1.7 2.8 5.3 

-0.7  12.7 43.4 33.9 12.9 16.3 Protease 

L.S.D. = 27.57 -2.8  45.4 44.1 47.4 49.0 64.2 

-0.7  0.0 0.0 0.0 0.0 0.0 Laccase 

 -2.8  0.0 0.0 0.0 0.0 0.0 

*nmol PNP min –1mg-1 protein 
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Table 3.11 Extracellular enzyme activities of P.ostreatus growing in soil extract 

supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1 total 

concentrations), for 25 days, at 27oC, under two different water potential regimes. 

Least significant differences (P=0.05) are for Pesticide x water potential interactions. 

  Mixture of pesticides (mg l-1) 

Enzyme (U) Ψ (MPa) 0 5 10 15 30 

-0.7  1.4 0.5 1.1 0.8 0.9 Cellulase 

L.S.D.= 1.05 -2.8  0.4 0.0 0.2 0.2 0.1 

-0.7  0.2 0.0 0.0 0.0 1.3 Phosphomonoesterase* 

L.S.D.= 2.74 -2.8  7.9 6.6 4.5 0.0 0.0 

-0.7  20.1 14.2 5.4 9.0 14.7 β-glucosidase* 

L.S.D.= 29.81 -2.8  41.0 18.1 22.6 13.0 10.6 

-0.7  2.3 1.7 44.5 0.0 12.0 Protease 

L.S.D.= 31.24 -2.8  7.2 10.8 28.1 2.3 2.6 

-0.7  14.5 17.6 126.6 92.5 146.4 Laccase 

L.S.D.= 109.34 -2.8  28.2 206.2 146.5 192.1 138.4 

*nmol PNP min –1mg-1 protein 
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Table 3.12 Extracellular enzyme activities of P.chrysosporium growing in soil extract 

supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1 total 

concentrations), for 25 days, at 27oC, under two different water potential regimes. 

Least significant differences (P=0.05) are for Pesticide x water potential interactions. 

  Mixture of pesticides (mg l-1) 

Enzyme (U) Ψ (MPa) 0 5 10 15 30 

-0.7  3.4 4.4 0 1.2 1.5 Cellulase 

L.S.D. = 2.21 -2.8  4.2 1.1 0.1 0.9 0.3 

-0.7  13.0 26.1 13.9 11.5 16.0 Phosphomonoesterase* 

L.S.D. = 12.72 -2.8  22.1 35.4 26.0 22.9 17.8 

-0.7  29.0 9.7 1.4 0.9 3.9 β-glucosidase* 

L.S.D. = 13.78 -2.8  9.3 3.0 1.1 1.0 0.3 

-0.7  0.1 4.5 23.8 22.4 8.9 Protease 

L.S.D. = 20.28 -2.8  6.9 1.7 1.7 0 0.1 

-0.7  0 0 0 0 0 Laccase 

 -2.8  0 0 0 0 0 

*nmol PNP min –1mg-1 protein 
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3.5 Soluble protein 

The quantification of soluble protein content was essential to estimate the specific 

enzymatic activity; moreover, this parameter can also be used as additional 

information on fungal activity. The effect of mixtures of pesticides, on soluble protein 

content in liquid media inoculated with the test isolates, after 25 days incubation, 

under two different water regimes is shown in Figures 3.12 and 3.13. 

P.chrysosporium produced the highest levels of extracellular protein. All isolates 

except T.versicolor (R101) showed significantly higher soluble protein content at -2.8 

MPa than at -0.7 MPa (P<0.05). T.versicolor (R101) filtrates contained comparable 

levels of soluble protein at both water potentials (P=0.077). T.versicolor (R26) 

soluble protein content was not significantly affected by pesticide treatments at –0.7 

MPa. However, at –2.8 MPa, there was a statistically significant decrease in protein 

content at 15 mg l-1. At -0.7 MPa T.versicolor (R101) protein content was unaffected 

by pesticide concentration (P<0.05). At -2.8 MPa, in the 30 mg l-1 there was an 

increase in protein content (P<0.05). At the two osmotic conditions tested P.ostreatus 

and P.chrysosporium soluble protein production was unaffected by pesticide 

concentration (P<0.05).  
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Figure 3.12 Protein concentration of T.versicolor (R26) and T.versicolor (R101) 

growing in soil extract supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 

mg l-1), for 25 days, at 270C, under two different water potential regimes. Bars 

represent the standard deviation of the mean (n=3). 
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Figure 3.13 Protein concentration of P.ostreatus and P.chrysosporium growing in soil 

extract supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1), for 25 

days, at 270C, under two different water potential regimes. Bars represent the standard 

deviation of the mean (n=3). 
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3.6 Biomass 

The effect of mixtures of pesticides, at two different water potential, on biomass of 

the four test isolates, after 25 days incubation, is shown in Figures 3.15 and 3.16. 

All four isolates were tolerant of and grew effectively in the presence of up to 30 mg 

l-1 of the mixture of pesticides in the soil extract broth. All species showed 

significantly higher biomass production at -2.8 than at -0.7 MPa (P<0.05). 

T.versicolor (R26) total biomass was not significantly affected by pesticide treatments 

at –0.7 MPa. However, at –2.8 MPa, there was a statistically significant increase in 

biomass when comparing the untreated control with 10 mg l-1 treatment (P=0.031), 

suggesting stimulation of growth. At the two osmotic conditions tested T.versicolor 

(R101) biomass production was affected by water potential (P=0.025) and pesticide 

concentration. At -0.7 MPa the treatment 10 mg l-1 produced the highest biomass 

levels (P<0.05). Under water stress in there was a reduction in biomass the 30 mg l-1 

treatment (P=0.041). At the two osmotic conditions tested P.ostreatus and 

P.chrysosporium biomass production was unaffected by pesticide concentration 

(P<0.05), which again suggests good tolerance to the mixture of pesticides.  
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Figure 3.14 Dry weight of mycelium of T.versicolor (R26 and R101) growing in soil 

extract supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1), for 25 

days, at 27oC, under two different water potential regimes. Bars represent the standard 

deviation of the mean (n=3). 
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Figure 3.15 Dry weight of mycelium of P.ostreatus and P.chrysosporium growing in 

soil extract supplemented with a mixture of pesticides (0, 5, 10, 15 and 30 mg l-1), for 

25 days, at 27oC, under two different water potential regimes. Bars represent the 

standard deviation of the mean (n=3). 
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3.7 Pesticide analysis 

Tables 3.13 and 3.14 show the impact of the two fungal inoculants on degradation of 

the mixture of pesticides. In the treatments with P.chrysosporium and T.versicolor 

(R26) practically no dieldrin and trifluralin were detected after 25 days incubation, 

regardless of initial concentration of the mixture used or the osmotic stress tested. For 

simazine, only 20% of the initial concentration was present even in the 30 mg l-1 

concentration treatment. For both fungal species there was no significant effect of 

osmotic stress on simazine disappearance rates (P.chrysosporium P=0.285 and 

T.versicolor P=0.720). For P.chrysosporium simazine disappearance was significantly 

higher in the 30 mg l-1 treatment (P<0.050). T.versicolor also showed the highest 

disappearance rate in the 30 mg l-1 treatment, regardless of the osmotic potential used 

(P<0.050). The degradation rates by the T.versicolor (R101) and P.ostreatus were not 

as good, since the concentration of dieldrin remaining and trifluralin were much 

higher than in the treatments inoculated with the other two fungal isolates. For both 

fungal species there was no significant effect of osmotic stress on simazine 

degradation rates (for T.versicolor-R101 P= 0.064 and for P.ostreatus P=0.076). For 

P.ostreatus, simazine disappearance rates were not affected by initial concentration of 

the mixture, either. In contrast, T.versicolor showed significantly higher degradation 

in the 30 mg l-1 treatment, at -2.8 MPa (P<0.05). 

The degradation rates of trifluralin and dieldrin by T.versicolor (R101) and 

P.ostreatus were significantly affected by water potential and initial concentration of 

the pesticide mixture. P.ostreatus showed significantly less trifluralin degradation in 

the 15 mg l-1 treatment, at both water potentials (P<0.001). T.versicolor (R101) 

showed higher degradation in the 10 and 30 pm, at -0.7 MPa (P<0.001), and in the 10 

mg l-1 treatment, at -2.8 MPa. Regarding dieldrin, P.ostreatus showed the highest 

degradation rates in the 30 mg l-1 treatment (P<0.05), at -0.7 MPa and in the 15 mg l-1 

treatment (P<0.001) at -2.8 MPa. T.versicolor (R101) also showed the best 

degradation in the 30 mg l-1 treatment (P<0.05), at -2.8 MPa. 

 



Results 

 99

Table 3.13 Concentration of pesticides remaining in soil extract that was initially 

supplemented with a mixture of pesticides at 5, 10, 15 and 30 mg l-1, after 25 days of 

incubation at 27oC, under two different water regimes. 

   Remaining pesticide (%) 

 Ψ 

(MPa) 

Initial conc. 

mixture  

(mg l-1) 

Simazine Trifluralin Dieldrin  

5 27.5±0.27 0 0 

10 20.2±7.21 0 0 

15 10.5±7.09 0 0.1±0.08 

-0.7 

30 13.9±0.52 0 0 

5 15.0±2.18 0 0 

10 22.7±5.65 0 0 

15 19.7±5.28 0 0 

 

T.versicolor 

(R26) 

-2.8 

30 11.6±1.40 0 0 

 

5 23.2±1.51 8.5±3.09 10.0±0.26 

10 17.3±0.57 2.5±0.57 1.7±0.36 

15 18.7±3.09 8.9±0.98 8.0±0.93 

-0.7 

30 12.2±2.38 1.8±0.04 1.7±0.13 

5 22.8±1.64 19.6±1.27 18.0±0.41 

10 21.8±2.15 3.7±1.59 10.8±1.04 

15 22.7±4.23 8.0±0.25 9.0±0.19 

 

T.versicolor 

(R101) 

 

 

 
-2.8 

30 13.5±4.85 16.5±0.11 3.2±0.13 
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Table 3.14 Concentration of pesticides remaining in soil extract that was initially 

supplemented with a mixture of pesticides at 5, 10, 15 and 30 mg l-1, after 25 days of 

incubation at 27oC, under two different water regimes. 

   Remaining pesticide (%) 

 Ψ 

(MPa) 

Initial 

concentration of 

mixture (mg l-1) 

Simazine Trifluralin Dieldrin 

5 10.9±3.01 1.1±0.26 8.3±3.09 

10 16.5±6.92 1.9±0.36 8.8±0.57 

15 6.9±5.61 5.0±0.93 8.8±0.98 

-0.7 

30 23.51±1.83 1.7±0.13 3.9±0.04 

5 17.6±2.14 9.0±0.41 19.3±1.27 

10 16.9±3.32 4.6±0.14 10.1±1.59 

15 13.0±0.59 6.1±0.19 7.9±0.25 

P.ostreatus 

-2.8 

30 26.2±14.39 3.3±0.13 18.6±0.11 

 

5 31.7±7.11 0 0.3±0.13 

10 23.9±0.99 0 0.1±0.02 

15 18.9±1.46 0 0.1±0.12 

-0.7 

30 13.0±2.19 0 0 

5 22.8±5.22 0 0 

10 19.3±0.66 0 0 

15 25.2±9.03 0 0 

 

P.chrysosporium 

 

 

 

-2.8 

30 11.7±3.25 0 0 
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3.8 Toxicity test 

In this study the goal was to assess the toxicity of the soil extract broth inoculated 

with the test isolates after the incubation period of 25 days. Initially we tested the 

response of this toxicity test to soil extract broth, spiked with different concentrations 

of pesticides (individually and as a mixture).  

Figure 3.16 shows the response in luminescence emitted by V .fischeri to soil extract 

broth spiked with different concentrations of simazine, trifluralin and dieldrin, 

individually and as a mixture. V.fischeri showed high sensitivity to the mixture of 

pesticides with 97% luminescence inhibition in the treatments spiked with 5 mg l-1. 

Trifluralin was less toxic than dieldrin, in the treatments over 6 mg l-1. Simazine 

caused the lowest luminescence inhibition, showing a maximum inhibition of 20% in 

the 10 mg l-1 treatment. 

Table 3.15 shows the inhibition of luminescence for soil extract liquid broth (at -0.7 

and -2.8 MPa) inoculated for 25 days with P.chrysosporium, T.versicolor (R26 and 

R101) and P.ostreatus. Overall the extracts did not show toxicity, which was in 

accordance with the HPLC pesticide quantification, as the level of pesticides after 25 

days incubation were lower than those that caused V.fischeri inhibition (Figure 3.16). 

The exceptions were the treatments 15 mg l-1, -0.7 MPa and 30 mg l-1, -2.8 MPa that 

showed 7 and 19% luminescence inhibition, even though low concentrations of 

pesticides were detected by HPLC. 
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Figure 3.16 Inhibition curve of the luminescence for V.fischeri in soil extract broth 

spiked with simazine, trifluralin and dieldrin individually, and spiked with a mixture 

of the 3 pesticides, achieved with Toxalert®10. 

 

Table 3.15 ToxAlert®10 toxicity test: Inhibition values for soil extract liquid broth (at 

-0.7 and -2.8 MPa) containing a mixture of pesticides inoculated with 

P.chrysosporium, T.versicolor (R26 and R101) and P.ostreatus, for 25 days. 

Fungal inoculant Ψ (MPa) Mixture of pesticides (mg l-1) 

  0 5 10 15 30 

-0.7 0 0 0 7 0 T.versicolor (R26) 

-2.8 0 0 0 0 19 

-0.7 0 0 0 0 0 T.versicolor (R101) 

-2.8 0 0 0 0 0 

-0.7 0 0 0 0 0 P.ostreatus 

-2.8 0 0 0 0 0 

-0.7 0 0 0 0 0 P.chrysosporium 

-2.8 0 0 0 0 0 

 

(mg l-1)
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Part III Soil Microcosms Studies 

3.9 Introduction 

In this section, the ability of three white rot fungal isolates to grow in soil microcosms 

and degrade pesticides was evaluated in order to assess their potential use as 

bioremediation agents. The main objectives of this study were to examine the 

interactions and activity of these three white rot fungi in soil microcosms in relation 

to: (a) degradation of mixtures of simazine, dieldrin and trifluralin (b) soil respiration, 

(c) dehydrogenase activity, (d) total ligninolytic activity, (e) production of cellulase 

and laccase (f) microbial populations structure and interactions with water availability 

(-0.7 and -2.8 MPa). 

Three test isolates were used: T.versicolor (R26), P.ostreatus and P.chrysosporium, 

because the fourth isolate, T.versicolor (R101), which successfully grew, produced 

extracellular enzymes and degraded the mixture of pesticides, in soil extract broth, did 

not grow on the carrier (wood chips). It was therefore not possible to use the isolate as 

a fungal inoculant. The other three isolates showed good growth in soil, under both 

water regimes examined, as shown in Plate 3.5 and Plate 3.6. The level of 

colonisation was affected by the pesticide treatment and water availability. 

T.versicolor and P.ostreatus showed very extensive growth in soil, whereas 

P.chrysosporium showed relative less growth. Both P.ostreatus and T.versicolor R26 

seem to grow less under lower water availability, and macroscopically appeared that 

in the pesticide treatments the colonisation was not as successful as in the control. For 

the microcosms inoculated with P.chrysosporium, such differences were not 

observed. Because it is very difficult to measure fungal growth in soil, and 

macroscopic observation is not a quantitative approach, indirect methods (respiration 

and enzyme activities) were used to study the success of fungal colonisation. The 

effect of pesticide concentration and water availability on these parameters was also 

assessed. 
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Plate 3.5 P.ostreatus, growing in soil microcosm, under two different water regimes 

(at -0.7 and -2.8 MPa) after 12 weeks incubation. 
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Plate 3.6 P.chrysosporium, growing in soil microcosm, under two different water 

regimes (at -0.7 and -2.8 MPa) after 12 weeks incubation. 
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3.10 Quantification of pesticide concentrations in soil 

In order to assess the success of bioremediation it was important to evaluate to what 

extent the fungal inoculant was able to degrade the pesticide from the contaminated 

soil. For this purpose soil sub-samples were taken, from each soil microcosms, for 

subsequent pesticide extraction and HPLC analysis, to estimate the concentration of 

each pesticide remaining in the soil. Uninoculated control soil samples were also used 

to compare degradation rates by natural soil microflora.  

3.10.1 Optimisation of the extraction of pesticides from soil 

Figure 3.17 shows the percentage recovery of pesticides from soil spiked with a 

mixture of simazine, trifluralin and dieldrin, using two extraction methods: sonication 

and agitation as well as different solvent conditions. Best recovery rates were 

obtained with overnight agitation in methanol (100%). Anomalous recovery rates 

were observed for the samples that were sonicated, which can be explained with the 

temperature increase caused by sonication that may have led to evaporation of the 

extraction solvent, which cause an increase in pesticide concentration. In subsequent 

analysis pesticides were extracted from soil samples with overnight agitation, using 

100% methanol.  

3.10.2 Pesticide concentration remaining in soil after 
incubation 

Pesticide analysis for simazine, trifluralin and dieldrin was carried out on all soil 

microcosm treatments up to 24 weeks incubation. Figure 3.18 shows as an example a 

comparisons of the effect of different treatments on the pesticide percentage 

remaining in soil in the different treatments under two different water regimes.  

The results showed the treatments with fungal inoculants had higher pesticide 

degradation rates than the control, and the best inoculants were P.chrysosporium and 

T.versicolor R26.  

In natural soil the percentage of pesticide degradation was low after 6-12 weeks, and 

after 24 weeks about 38% of simazine, 18% trifluralin and 37% dieldrin remained in 
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soil. In soil amended with wood chips (Table 3.16) improved degradation rates, 

comparing with the control were found for some treatments. 

Soil inoculated with T.versicolor R26 (Table 3.17) showed good degradation rates for 

the three pesticides, at -2.8 MPa after 6 weeks (10 mg kg soil-1 initial mixture 

concentration). The increase in pesticide degradation was 46% for simazine, 57% for 

trifluralin and 51% for dieldrin compared to the control. 

Soil inoculated with P.ostreatus (Table 3.18) also showed significant improvement in 

degradation of simazine and trifluralin. After 6 weeks incubation degradation of of 

these two were 100 and 60% higher, respectively, compared to the control soil, at -2.8 

MPa (5 mg kg soil-1 treatment). In soil inoculated with this isolate the remaining 

concentrations of dieldrin were never significantly different of the control soil.  

Soil inoculated with P.chrysosporium (Table 3.19) showed good degradation rates of 

the three pesticides at -2.8 MPa after 12 weeks incubation (5 mg kg soil-1 treatment ). 

The simazine, trifluralin and dieldrin degradation rates were 58, 74, and 70% higher 

than in the control soil. 

Soil amended with SMC (Table 3.20) also showed a significant increase in 

degradation at -2.8 MPa (10 mg kg soil-1 initial concentration). The degradation rates 

in soil with this amendment for simazine, trifluralin and dieldrin were 17, 49 and 76% 

higher than in the uninoculated control soil. 
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Figure 3.17 Percentage recovery of simazine, trifluralin and dieldrin from soil spiked 

with a mixture of the three pesticides. Extraction with sonication (A) overnight 

agitation (B) Different solvents: Methanol 100% (A), Acetonitrile 100% (B), 

Acetonitrile 75% water 25% (C), Methanol 50% Acetonitrile 50% (D), Acetonitrile 

40% methanol 40% water 20% (E). 
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Figure 3.18 Pesticide (%) remaining in soil microcosms. (a) -0.7 MPa- and 6 weeks 

incubation at 15ºC and (b) at -2.8 MPa after 12 weeks incubation. The different 

treatments were: soil; WC, wood chips; P.c., P.chrysosporium; P.o., P.ostreatus; T.v.,  

T.versicolor and SMC, spent mushroom compost. 
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Table 3.16 Comparison of percentage pesticide concentration remaining in soil 

supplemented with wood chips and a pesticide mixture 5 and 10 mg kg soil-1, after 6, 

12 and 24 weeks incubation at 15oC, under two different water regimes. The values in 

red correspond to the concentrations remaining in natural soil (control). * means there 

was a significant difference between the control and the treatment. 

Incub. 

(weeks) 

Initial conc. 

(mg kg soil-1) 

Ψ 

(MPa

) 

                         (% Remaining ) 

Simazine                Trifluralin                Dieldrin 

5 86.2 98.3 34.9 41.5 47.0* 76.3 

10 

-0.7 

58.6*  97.5 44.0  24.6 28.8 20.9 

5 99.3 97.8 48.9 51.8 41.7 40.8 

6 

 

10 

-2.8 

86.2 78.8 24.8  42.9 38.2  60.0 

   L.S.D = 14.96 L.S.D = 25.63 L.S.D = 28.09 

5 43.1* 95.6 16.4 29.2 34.4 33.5 

10 

-0.7 

53.4* 72.5 32.5 37.6 21.6 46.5 

5 92.3 99.4 28.9* 56.3 51.6 46.6 

12 

10 

-2.8 

24.3* 70.1 7.9* 35.8 38.4 59.8 

   L.S.D.= 18.46 L.S.D.= 16.78 L.S.D.= 25.99 

5 60.6 49.4 6.8 10.0 48.7 50.2 

10 

-0.7 

26.8 29.5 4.7 7.2 13.8 24.6 

5 76.5* 29.3 45.5* 30.1 48.9* 28.7 

24 

10 

-2.8 

60.1* 45.3 41.3* 22.1 57.7 44.3 

   L.S.D.= 14.29 L.S.D.=8.67 L.S.D.=16.92 
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Table 3.17 Comparison of percentage pesticide concentration remaining in soil 

inoculated with T.versicolor and supplemented with a pesticide mixture 5 and 10 mg 

kg soil-1, after 6, 12 and 24 weeks incubation at 15oC, under two different water 

regimes. The values in red correspond to the concentrations remaining in natural soil 

(control). * means there was a significant difference between the control and the 

treatment. 

Incub. 

(weeks) 

Initial conc. 

(mg kg soil-1) 

Ψ 

(MPa

) 

                         (% Remaining ) 

Simazine                Trifluralin                Dieldrin 

5 21.9* 98.3 19.9* 41.5 26.5* 76.3 

10 

-0.7 

0.1*  97.5 22.3 24.6 51.8* 20.9 

5 78.1* 97.8 24.5* 51.8 20.0* 40.8 

6 

10 

-2.8 

42.9*  78.8 18.3* 42.9 29.3* 60.0 

   L.S.D.= 16.68 L.S.D.= 17.64 L.S.D.= 26.58 

5 53.7* 95.6 7.7* 29.2 0.0 33.5 

10 

-0.7 

26.5* 72.5 23.2 37.6 47.3 46.5 

5 59.9* 99.4 27.2* 56.3 43.8 46.6 

12 

10 

-2.8 

42.7 70.1 19.1* 35.8 49.0 59.8 

   L.S.D.=28.45 L.S.D.= 16.20 L.S.D.=44.0 

5 70.4* 49.4 27.1 10.0 20.8* 50.2 

10 

-0.7 

40.3* 29.5 6.5 7.2 18.3 24.6 

5 44.8* 29.3 20.0 30.1 25.1 28.7 

24 

10 

-2.8 

38.9 45.3 33.0 22.1 35.2 44.3 

   L.S.D.= 12.48 L.S.D.= 17.36 L.S.D.= 26.9 
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Table 3.18 Comparison of percentage pesticide concentration remaining in soil 

inoculated with P.ostreatus and supplemented with a pesticide mixture 5 and 10 mg 

kg soil-1, after 6, and 12 weeks incubation at 15oC, under two different water regimes. 

The values in red correspond to the concentrations remaining in natural soil (control). 

* means there was a significant difference between the control and the treatment. 

Incub. 

(weeks) 

Initial conc. 

(mg kg soil-1) 

Ψ (MPa)                          (% Remaining ) 

Simazine                Trifluralin                Dieldrin 

5 78.6* 98.3 26.6* 41.5 18.6 76.3 

10 

-0.7 

0.0* 97.5 26.7 24.6 27.2 20.9 

5 0.0* 97.8 20.7* 51.8 27.8 40.8 

6 

10 

-2.8 

58.2* 78.8 18.0* 42.9 24.7 60.0 

   L.S.D.=18.12 L.S.D.=17.86 L.S.D.=70.91 

5 28.6* 95.6 16.8 29.2 18.3 33.5 

10 

-0.7 

29.9* 72.5 12.7* 37.6 35.4 46.5 

5 61.6* 99.4 24.9* 56.3 34.0 46.6 

12 

10 

-2.8 

35.9* 70.1 9.0* 35.8 25.2 59.8 

   L.S.D= 26.09 L.S.D= 16.27 L.S.D= 42.44 
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Table 3.19 Comparison of percentage pesticide concentration remaining in soil 

inoculated with P.chrysosporium and supplemented with a pesticide mixture 5 and 10 

mg kg soil-1, after 6, 12 and 24 weeks incubation at 15oC, under two different water 

regimes. The values in red correspond to the concentrations remaining in natural soil 

(control). * means there was a significant difference between the control and the 

treatment. 

Incub. 

(weeks) 

Initial conc. 

(mg kg soil-1) 

Ψ (MPa)                          (% Remaining ) 

Simazine           Trifluralin                Dieldrin 

5 36.7*  98.3 22.1*  41.5 26.9*  76.3 

10 

-0.7 

36.2* 97.5 25.3 24.6 12.7 20.9 

5 77.2 97.8 33.8 * 51.8 32.5 40.8 

6 

10 

-2.8 

35.6*  78.8 14.5 *  42.9 30.1*  60.0 

   L.S.D:= 20.83 L.S.D:= 18.90 L.S.D:= 17.96 

5 74.1* 95.6 12.1* 29.2 16.5 33.5 

10 

-0.7 

24.4* 72.5 42.7 37.6 0.0* 46.5 

5 42.0* 99.4 14.7* 56.3 14.1* 46.6 

12 

10 

-2.8 

35.7* 70.1 6.3* 35.8 20.3* 59.8 

   L.S.D.= 14.81 L.S.D.= 16.66 L.S.D.= 20.10 

5 46.6 49.4 16.5* 10.0 39.2* 50.2 

10 

-0.7 

34.4 29.5 11.1 7.2 19.2 24.6 

5 61.6* 29.3 11.5* 30.1 25.8 28.7 

24 

10 

-2.8 

23.5* 45.3 13.9* 22.1 19.3* 44.3 

   L.S.D= 15.73 L.S.D= 5.09 L.S.D= 13.25 
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Table 3.20 Comparison of percentage pesticide concentration remaining in soil 

amended with SMC and supplemented with a pesticide mixture 5 and 10 mg kg soil-1, 

after 6, 12 and 24 weeks incubation at 15oC, under two different water regimes. The 

values in red correspond to the concentrations remaining in natural soil (control). * 

means there was a significant difference between the control and the treatment. 

Incub. 

(weeks) 

Initial conc. 

(mg kg soil-1) 

Ψ 

(MPa) 

                         (% Remaining ) 

Simazine          Trifluralin                Dieldrin 

5 100.0 98.3 49.5 41.5 80.6 76.3 

10 

-0.7 

13.2* 97.5 40.0 24.6 39.5 20.9 

5 89.9 97.8 53.1 51.8 46.8 40.8 

6 

10 

-2.8 

37.5*  78.8 27.4 42.9 25.4* 60.0 

   L.S.D.=15.20  L.S.D.= 42.28 L.S.D.= 22.10 

5 56.8* 95.6 14.5 29.2 3.9* 33.5 

10 

-0.7 

18.2* 72.5 21.8 37.6 19.9* 46.5 

5 83.6* 99.4 23.4* 56.3 25.2 46.6 

12 

10 

-2.8 

58.1* 70.1 18.4* 35.8 14.5* 59.8 

   L.S.D.=14.17 L.S.D.=16.28 L.S.D.= 21.76 

5 71.4* 49.4 14.1 10.0 7.3* 50.2 

10 

-0.7 

16.5* 29.5 22.8* 7.2 45.3* 24.6 

5 59.8* 29.3 14.5* 30.1 17.3 28.7 

24 

10 

-2.8 

22.6* 45.3 48.2* 22.1 40.0 44.3 

   L.S.D.= 7.53  L.S.D.= 8.90 L.S.D.= 

17.46 
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3.11 Soil respiration  

In this experiment, the evolution in CO2 concentrations in soil was used as an index of 

microbial activity. Soil respiration is a very relevant parameter in the assessment of 

the success of bioremediation processes, as it gives information on microbial activity 

as well as mineralization intensity. An increase in carbon dioxide concentrations 

could indicate an increase in microbial numbers and/or a boost in microbial activity.  

The purpose of this study was to compare the respiratory activity in the different 

treatments, to assess the differences between fungal inoculant, and its interaction with 

water availability and pesticide concentration. Prior to the analysis of the microcosms 

a preliminary study was conducted to optimise the measurement of carbon dioxide 

concentrations, and is described below.  

3.11.1 Optimisation of carbon dioxide measurements in soil 
microcosms 

Since the microcosm jars had vented caps, to maintain an aerobic system, carbon 

dioxide concentrations were very low in the headspace, because there was gas 

exchange with the surrounding atmosphere. In order to obtain a detectable 

concentration of CO2 the jars were sealed and left at room temperature, prior to the 

analysis for 0, 1 and 3 hrs. Detectable carbon dioxide levels were achieved by sealing 

the jars for 3 hours. Figure 3.19 shows an example of carbon dioxide levels in 12 

different jars immediately after sealing the jar, 1 and 3 hrs later. 

From each jar a single measurement was taken because it was found that there was a 

decrease in CO2 concentration when multiple measurements were made. In 

subsequent analysis the microcosm jars were sealed for 3 hrs and left at room 

temperature, prior to CO2 analysis. 
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Figure 3.19 Different carbon dioxide measured in twelve different jars (a- l), at 

different incubation times: 0 h (CO2 measured without sealing the jar); 1 h (CO2 

measured after jar had been sealed for one hour); 3 h (CO2 measured after jar had 

been sealed for three hours). 
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3.11.2 Soil respiration in different treatments 

Higher carbon dioxide levels indicate higher respiration rates. In this study maximum 

respiration occurred after 6 weeks in the treatments inoculated with the test isolates, 

and decreased by the end of the experiment. Interestingly in soil inoculated with the 

test isolates, higher increases in respiration rates (compared to natural soil) were 

found in the presence of the mixture of pesticides. 

In natural soil the respiratory activity was low, throughout the experiment (Figure 

3.20). In soil amended with wood chips improved respiratory activity was found for 

all the treatments, but not as marked as in soil inoculated with the fungal isolates 

(Figure 3.21). 

Soil inoculated with T.versicolor R26 (Figure 3.22) showed improved respiration 

rates in all the treatments. The highest increase was observed after 6 weeks, at -0.7 

MPa with CO2 concentrations 1.2, 54 and 11 times higher than in natural soil, for the 

treatments 0, 5 and 10 mg kg soil-1, respectively. Soil inoculated with P.ostreatus 

(Figure 3.23) also showed an increase in respiration rates in all the treatments. After 6 

weeks incubation, at -2.8 MPa, the concentration of CO2 was 30, 6 and 5 times higher 

than in natural soil (for the treatment 0, 5 and 10 mg kg soil-1 respectively). Soil 

inoculated with P.chrysosporium (Figure 3.24) showed the highest increase in 

respiration rates (compare to the other isolates). After 6 weeks incubation CO2 

production in the treatments 0, 5 and 10 mg kg soil-1 was 29, 19 and 14 times higher 

than in natural soil (at -2.8 MPa). 

Soil amended with SMC also showed a significant increase in respiratory rates 

(Figure 3.25), but not as intense as in the treatments with the fungal inoculants. At -

2.8 MPa after 6 weeks incubation the respiratory activity in soil with this amendment 

was 4, 3 and 1.2 times higher than in natural soil (for 0, 5 and 10 mg kg soil-1 

treatments). However in the10 mg kg soil-1, -0.7MPa after 0, 6 and 12 weeks, the 

production of CO2 was lower 50, 50 and 10% lower than in natural soil. 
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Figure 3.20 Changes in carbon dioxide concentrations in soil treated with a mixture of 

pesticides (0, 5 and 10 mg kg soil-1), incubated at 15ºC for 0-12 weeks, under two 

different water regimes (a) -0.7 and (b) -2.8 MPa. Results are presented as means 

(±standard deviations) of three replicates, per treatment. 
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Figure 3.21 Changes in carbon dioxide concentrations in soil amended with wood 

chips and containing a mixture of pesticides (0, 5 and 10 mg kg soil-1), incubated at 

15ºC for 0-12 weeks, under two different water regimes: (a) -0.7 and (b) -2.8 MPa. 

Results are presented as means (±standard deviations) of three replicates, per 

treatment. 
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Figure 3.22 Changes in carbon dioxide concentrations in soil amended with wood 

chips inoculated with T.versicolor and containing a mixture of pesticides (0, 5 and 10 

mg kg soil-1), incubated at 15ºC for 0-12 weeks, under two different water regimes (a) 

-0.7 and (b) -2.8 MPa. Results are presented as means (±standard deviations) of three 

replicates, per treatment. 
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Figure 3.23 Changes in carbon dioxide concentrations in soil amended with wood 

chips inoculated with P.ostreatus and containing a mixture of pesticides (0, 5 and 10 

mg kg soil-1), incubated at 15ºC for 0-12 weeks, under two different water regimes (a) 

-0.7 and (b) -2.8 MPa. Results are presented as means (±standard deviations) of three 

replicates, per treatment. 
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Figure 3.24 Changes in carbon dioxide concentrations in soil amended with wood 

chips inoculated with P.chrysosporium containing a mixture of pesticides (0, 5 and 10 

mg kg soil-1), incubated at 15ºC for 0-12 weeks, under two different water regimes (a) 

-0.7 and (b) -2.8 MPa. Results are presented as means (±standard deviations) of three 

replicates, per treatment. 
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Figure 3.25 Changes in carbon dioxide concentrations in soil amended with SMC and 

amended with a mixture of pesticides (0, 5 and 10 mg kg soil-1), incubated at 15ºC for 

0-12 weeks, under two different water regimes (a) -0.7 and (b) -2.8 MPa. Results are 

presented as means (±standard deviations) of three replicates. 
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3.12 Dehydrogenase activity 

For this parameter the differences between the treatments with the fungal inoculant 

were not as marked as for the respiratory activity. Overall the activity of this enzyme 

was higher in soil inoculated with the test isolates. For example T.versicolor 

dehydrogenase activity in the treatments 5 and 10 mg kg soil-1 mixture, was 80 and 

100 % higher than in natural soil, after 6 weeks, at -2.8 MPa.  

In natural soil, without inoculant or amendment (Figure 3.26) the addition of 

pesticides enhanced dehydrogenase activity (P<0.001) with higher levels being 

produced at -0.7 MPa (P<0.001). Soil amended with wood chips (Figure 3.27) 

produced the highest dehydrogenase levels at the beginning and after 6 weeks 

incubation, with increased enzyme production in the presence of the pesticide 

mixture. 

In soil inoculated with T.versicolor (Figure 3.28) the presence of pesticides enhanced 

dehydrogenase activity, after 6 and 12 weeks incubation under both water regimes 

(P<0.05). Water availability influenced on dehydrogenase activity, with higher 

production of this enzyme in the -0.7 MPa treatment (P<0.001). 

In soil inoculated with P.ostreatus (Figure 3.29) significantly higher production of 

dehydrogenase at -0.7 MPa was observed at the beginning of the experiment 

(P<0.001). However, after 6 weeks incubation the highest activities were detected 

under water stress, in the presence of the pesticide mixture. 

When P.chrysosporium (Figure 3.30) was used as a fungal inoculant the levels of 

dehydrogenase decreased with the incubation period, as the treatments showed higher 

activities at the beginning of the incubation (P<0.001). Similarly to T.versicolor, in 

this treatment dehydrogenase activity was increased in the presence of the pesticide 

mixture, which suggests higher microbial activity in the presence of the pesticides. 

Interestingly soil amended with SMC (Figure 3.31) also showed a marked increase in 

dehydrogenase, regardless of water regime (P=0.068). Dehydrogenase levels were 

particularly high after 6 weeks incubation in the presence of the pesticide mixture (at -

0.7 and -2.8 MPa) and after 12 weeks incubation but only at -2.8 MPa.  
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Figure 3.26 Dehydrogenase activity (expressed as µg INF produced in 2h g-1 dw) in 

natural soil supplemented with a mixture of pesticides at 5 and 10 mg kg soil-1 

incubated for up to 24 weeks, at 15oC, under two different water potential regimes (a) 

-0.7 MPa and (b) -2.8 MPa. Bars represent the standard deviation of the mean (n=3), 

per treatment. 
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Figure 3.27 Dehydrogenase activity (expressed as µg INF produced in 2h g-1 dw) in 

non-inoculated soil microcosms supplemented with wood chips for up to 24 weeks, at 

15oC, under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars 

represent the standard deviation of the mean (n=3), per treatment. 
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Figure 3.28 Dehydrogenase activity (expressed as µg INF produced in in 2h g-1 dw) in 

soil microcosms, inoculated with T.versicolor (R26) for up to 24 weeks, at 15oC, 

under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent 

the standard deviation of the mean (n=3), per treatment. 
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Figure 3.29 Dehydrogenase activity (expressed as µg INF produced in 2h g-1 dw) in 

soil microcosms, inoculated with, P.ostreatus for up to 24 weeks, at 15oC, under two 

different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent the 

standard deviation of the mean (n=3), per treatment. 
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Figure 3.30 Dehydrogenase activity (expressed as µg INF produced in 2h g-1 dw) in 

soil microcosms, inoculated with P.chrysosporium for up to 24 weeks, at 15oC, under 

two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent the 

standard deviation of the mean (n=3), per treatment. 
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Figure 3.31 Dehydrogenase activity (expressed as µg INF produced in 2h g-1 dw) in 

soil microcosms, inoculated with SMC for up to 24 weeks, at 15oC, under two 

different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent the 

standard deviation of the mean (n=3), per treatment. 
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3.13 Total ligninolytic activity 

The ability of white rot fungi to degrade contaminants has been linked to its wood 

degrading capabilities, therefore a strong ligninolytic activity could be advantageous 

in pesticide degradation. The three test isolates used in this study are known to be 

good lignin degraders. However, there is little information on their ligninolytic 

activity in soil. In this study, the three test isolates were tested for their ability to 

decolorize Poly-R478 in soil under different pesticide and water treatments, as a 

measure of total ligninolytic activity. Prior to total ligninolytic activity assessment in 

the soil microcosms a preliminary study was conducted and it is described below. 

The total ligninolytic activity in different soil microcosms, under two water regimes 

was examined. The assay used in this study assay is based on the quantification of the 

extent of decolouration of a polymeric dye (Poly R-478). The lower the ratio 

absorbance at 530 nm/absorbance at 350 nm*1000 the more intense is the 

decolouration, i.e. the higher was the total ligninolytic activity. 

The decolouration obtained in the soil treatments was compared with the natural 

decolouration of the dye. Figure 3.32 shows the results of a preliminary assay, where 

the natural decolouration of Poly-R478, and the extent of decolouration in the 

presence of commercial horseradish peroxidase (HRP) alone and with hydrogen 

peroxide (H2O2) were assessed. HRP is known to decolorize Poly-R478, and its 

activity is enhanced by hydrogen peroxide. Figure 3.33 shows the results of this test 

expressed as colour intensity (%), and Figure 3.34 in % decolouration. 

Overall, all soil treatments caused decolouration of the polymeric dye. In natural soil 

(Figure 3.35) the total ligninolytic activity was not affected by water availability or 

pesticide treatment (P= 0.681 and P= 0.454, respectively). Interestingly water 

potential had an impact on decolouration % in soil amended with wood chips (Figure 

3.36), with higher decolouration at -2.8 MPa (P<0.001), and under this water regime 

the decolorization rates were significantly higher in the pesticide treatments compared 

with the control (0 mg kg soil-1) (P<0.05).  

In soil inoculated with T.versicolor (Figure 3.37) the total ligninolytic activity was 

significantly higher at -0.7MPa (P=0.013). There were no significant differences 



Results 

 132

between pesticide treatment (P= 0.226), which suggest the fungal inoculant is tolerant 

to this mixture of pesticides, producing equivalents level of decolouration in the 

presence and absence of the xenobiotics. 

When the inoculant used in the microcosms was P.ostreatus (Figure 3.38) 

significantly higher decolouration was observed at the highest water availability 

(P=0.002). As it was described for soil inoculated with T.versicolor, the total 

ligninolytic activity was unaffected by pesticide treatment (P=0.373). The same trend 

was found in soil inoculated with P.chrysosporium (P> 0.001, for water availability 

and P=0.801 for pesticide mixture) (Figure 3.39). 

In soil microcosm amended with SMC (Figure 3.40) the treatment that showed the 

highest decolouration rates, and this was not affected by water availability (P= 0.532) 

or pesticide concentration (P=0.093).  
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Figure 3.32 Ratio between absorbance at 530 nm and absorbance at 350 nm x 1000, 

for: Poly-R178=polymeric dye, HRP=commercial horseradish peroxidase and H2O2= 

Hydrogen Peroxide. 
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Figure 3.33 Colour intensity (%)= (absorbance at 530 nm/ absorbance at 350 nm) 

sample x 100 / (absorbance at 530 nm/ absorbance at 350 nm) poly R478 for: Poly-

R178=polymeric dye, HRP=commercial horseradish peroxidase and H2O2= Hydrogen 

Peroxide. 
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Figure 3.34 Percentage decolouration = 100 - [(absorbance at 530 nm/ absorbance at 

350 nm) sample / (absorbance at 530 nm/ absorbance at 350 nm) poly R478] for: Poly-

R178=polymeric dye, HRP=commercial horseradish peroxidase and H2O2= 

Hydrogen Peroxide. 
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Figure 3.35 Total ligninolytic activity (expressed as % decolouration of Poly R478) in 

non-inoculated soil microcosms, supplemented with a mixture of pesticides at 5 and 

10 mg kg soil-1, incubated for 0-24 weeks, at 15oC, under two different water potential 

regimes (a) -0.7 and (b) -2.8 MPa. Bars represent the standard deviation of the mean 

(n=3), per treatment. 
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Figure 3.36 Total ligninolytic activity (expressed as % decolouration of Poly R478) in 

soil microcosms non-inoculated and amended with wood chips incubated for up to 24 

weeks, at 15oC, under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. 

Bars represent the standard deviation of the mean (n=3), per treatment. 
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Figure 3.37 Total ligninolytic activity (expressed as % decolouration of Poly R478) in 

soil microcosms inoculated with T.versicolor (R26), incubated for up to 24 weeks, at 

15oC, under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars 

represent the standard deviation of the mean (n=3), per treatment. 
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Figure 3.38 Total ligninolytic activity (expressed as % decolouration of Poly R478) in 

soil microcosms inoculated with P.ostreatus, incubated for up to 24 weeks, at 15oC, 

under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent 

the standard deviation of the mean (n=3), per treatment. 
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Figure 3.39 Total ligninolytic activity (expressed as % decolouration of Poly R478)  

in soil microcosms inoculated with P.chrysosporium, incubated for up to 24 weeks, at 

15oC, under two different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars 

represent the standard deviation of the mean (n=3), per treatment. 
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Figure 3.40 Total ligninolytic activity (expressed as % decolouration of Poly R478) in 

soil microcosms, inoculated with SMC for up to 24 weeks, at 15oC, under two 

different water potential regimes (a) -0.7 and (b) -2.8 MPa. Bars represent the 

standard deviation of the mean (n=3), per treatment. 
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3.14 Temporal laccase activity in soil microcosms 

Laccase is one of the enzymes involved in lignin degradation, and in contrast to 

respiratory and dehydrogenase activities, laccase was exclusively produced by the 

inoculated fungi and gave a good estimate of the ability of each isolate to colonise soil 

microcosms. As fungal laccase has shown to be involved in biodegradation of a broad 

range of pollutants, the production of this enzyme in soil is very pertinent for 

evaluation of the capacity for bioremediation.  

In natural soil the production of laccase was very low in all treatments (data not 

shown). In soil amended with wood chips alone there was some laccase production in 

some of the treatments especially after >=12 weeks. The enzyme may have been 

produced by native soil wood degrading fungi that in the meantime might have 

colonised the wood chips. Surprisingly, the highest level of activity for soil amended 

with wood chips was observed in the 10 mg kg soil-1 treatment, under water stress (22 

U g soil -1).  

Soil inoculated with T.versicolor (Table 3.21) showed the highest laccase activity 

after 6 weeks incubation, in the 5 and 10 mg kg soil-1 treatments, under both water 

regimes. After 24 weeks incubation laccase levels decreased in all treatments. Water 

availability did not have a significant impact on laccase production in the soil 

inoculated with the test isolate (P=0.154). 

In soil inoculated with P.ostreatus (Table 3.22) lower levels of laccase were produced 

(comparing with soil inoculated with T.versicolor) and in contrast to the latter 

treatment, laccase production was higher in the control (0 mg kg soil-1) than in the 

treatments containing pesticide.  

Laccase production in soil inoculated with P.chrysosporium (Table 3.23) was very 

low and only occurred in some of the pesticide treatments.  

In natural soil amended with SMC the production of laccase was very low in all 

treatments (data not shown). 
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Table 3.21 Laccase activity (U g soil-1) in soil inoculated with T.versicolor (R26) and 

amended with a mixture of pesticides (5 and 10 mg kg soil-1 total concentrations), for 

up to 24 weeks, at 15oC, under two different water potential regimes.  

  - 0.7 MPa -2.8 MPa 

 Incubation (weeks) 0 6 12 24 0 6 12 24 

0 0 26.7 368.5 4.4 0 93.3 61.8 0.5 

5 0 300.0 61.8 0 0 797.8 41.2 0 

Mixture  

(mg kg soil-1)  

L.S.D.= 165.1 10 0 74.4 21.3 8.9 0 562.2 22.5 0.6 

 

Table 3.22 Laccase activity (U g soil-1) in soil inoculated with P.ostreatus and 

amended with a mixture of pesticides (5 and 10 mg kg soil-1 total concentrations), for 

up to 24 weeks, at 15oC, under two different water potential regimes.  

  - 0.7 MPa -2.8 MPa 

 Incubation (weeks) 0 6 12 0 6 12 

0 0 96.3 133.3 0 272.4 77.0 

5 0 0 13.3 0 29.6 34.0 

Mixture  

(mg kg soil-1)  

L.S.D.= 93.1 10 0 3.0 0 0 13.3 10.5 

 

Table 3.23 Laccase activity (U g soil-1) in soil inoculated with P.chrysosporium and 

amended with a mixture of pesticides (5 and 10 mg kg soil-1 total concentrations), for 

up to 24 weeks, at 15oC, under two different water potential regimes.  

  - 0.7 MPa -2.8 MPa 

 Incubation (weeks) 0 6 12 24 0 6 12 24 

0 0 0 0 0 0 0 0 0 

5 0 0 1.4 1.0 0 0 0 0.5 

Mixture  

(mg kg soil-1)  

L.S.D.= 3.1 10 0 5.9 0 1.8 0 13.3 1.1 2.1 
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3.15 Temporal cellulase activity in soil microcosms 
studies 

Production of cellulase varied with water availability and with the fungal inoculant 

used. The lowest production was found in natural soil (Table 3.24). Soil amended 

with wood chips showed high levels of cellulase in some of the treatments (5 mg kg 

soil-1, 6 weeks and 10 mg kg soil-1, 12 weeks).  

Cellulase production in soil inoculated with T.versicolor (Table 3.26) was unaffected 

by water potential or pesticide treatment (P=0.924 and P=0.101, respectively). Soil 

inoculated with this test isolate produced less cellulase than soil inoculated with the 

other two isolates.  

Soil inoculated with P.ostreatus (Table 3.27 )produced significantly higher levels of 

cellulase at -2.8 (P=0.002), than at -0.7 MPa, with maximum activities of this enzyme 

in the 5 mg kg soil-1 treatment. Similarly, in soil inoculated with P.chrysosporium 

(Table 3.28) higher levels of cellulase were produced at -2.8 MPa (P<0.001). 

However, there were no differences between the pesticide treatments. With this 

inoculant cellulase activity was higher after 6 and 12 weeks incubation, decreasing 

after 24 weeks (P<0.05).  

Soil amended with SMC showed very low levels of cellulase (Table 3.29). 
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Table 3.24 Cellulase activity in soil supplemented with a mixture of pesticides (5 and 

10 mg kg soil-1 total concentrations), for up to 24 weeks, at 15oC, under two different 

water potential regimes. Least significant differences (P=0.05) are for Pesticide x 

water potential interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation 

(weeks) 

0 6 12 24 0 6 12 24 

0 64.68 3.89 1.33 1.33 55.41 10.89 18.67 26.96

5 81.45 3.11 2.67 4.00 95.53 11.67 8.00 7.26 

 

Mixture 

(mg kg 

soil-1) 
10 73.96 4.00 1.33 5.48 92.73 34.11 105.19 40.89

L.S.D.= 51.8         

 

 

Table 3.25 Cellulase activity in soil amended with wood chips supplemented with a 

mixture of pesticides (5 and 10 mg kg soil-1 total concentrations), for up to 24 weeks, 

at 15oC, under two different water potential regimes. Least significant differences 

(P=0.05) are for Pesticide x water potential interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation 

(weeks) 

0 6 12 24 0 6 12 24 

0 88.0 50.7 50.4 43.4 94.8 30.0 45.2 33.6 

5 78.6 8.9 65.0 16.7 94.3 151.1 77.5 56.4 

 

Mixture 

(mg kg 

soil-1) 
10 102.1 1.2 5.3 31.4 62.3 10.0 107.6 70.4 

L.S.D.= 74.1         
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Table 3.26 Cellulase activity (U g soil-1) in soil inoculated with T.versicolor and 

supplemented with a mixture of pesticides (5 and 10 mg kg soil-1 total 

concentrations), for up to 24 weeks, at 15oC, under two different water potential 

regimes. Least significant differences (P=0.05) are for Pesticide x water potential 

interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation 

(weeks) 

0 6 12 24 0 6 12 24 

0 88.0 33.1 93.8 61.5 94.8 28.0 42.7 42.7 

5 78.6 12.6 25.3 51.0 94.3 32.1 25.3 43.1 

 

Mixture 

(mg kg 

soil-1) 
10 102.1 13.9 28.9 34.1 62.3 98.7 31.7 33.6 

L.S.D.= 80.9         

 

Table 3.27 Cellulase activity (U g soil-1) in soil inoculated with P.ostreatus and 

supplemented with a mixture of pesticides (5 and 10 mg kg soil-1 total 

concentrations), for up to 24 weeks, at 15oC, under two different water potential 

regimes. Least significant differences (P=0.05) are for Pesticide x water potential 

interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation (weeks) 0 6 12 0 6 12 

0 88.0 64.9 76.0 94.8 168.1 167.4 

5 78.6 103.7 81.6 94.3 143.7 18.4 

Mixture  

(mg kg soil-1) 

10 102.1 81.6 78.7 62.3 119.6 95.6 

 L.S.D.= 81.8       
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Table 3.28 Cellulase activity (U g soil-1) in soil inoculated with P.chrysosporium and 

supplemented with a mixture of pesticides (5 and 10 mg kg soil-1 total 

concentrations), for up to 24 weeks, at 15oC, under two different water potential 

regimes. Least significant differences (P=0.05) are for Pesticide x water potential 

interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation 

(weeks) 

0 6 12 24 0 6 12 24 

0 88.0 36.1 52.9 33.9 94.8 97.5 61.2 36.9

5 78.6 80.7 61.3 33.5 94.3 128.7 92.4 13.5

 

Mixture 

(mg kg 

soil-1) 
10 102.1 75.9 54.5 22.2 62.3 128.7 122.7 33.6

L.S.D.= 75.9         

 

Table 3.29 Cellulase activity (U g soil-1) in soil amended with SMC and supplemented 

with a mixture of pesticides (5 and 10 mg kg soil-1 total concentrations), for up to 24 

weeks, at 15oC, under two different water potential regimes. Least significant 

differences (P=0.05) are for Pesticide x water potential interactions. 

  -0.7 MPa -2.8 MPa 

 Incubation 

(weeks) 

0 6 12 24 0 6 12 24 

0 69.8 0.1 1.3 30.5 85.4 2.1 1.3 41.9 

5 67.0 0 1.3 20.6 33.7 3.2 4.0 59.6 

 

Mixture 

(mg kg 

soil-1) 
10 96.8 9.2 2.7 25.3 5.6 17.4 1.3 81.3 

L.S.D.= 51.7         
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3.16 Total microbial populations 

3.16.1 Total viable bacterial populations 

Overall there were few significant differences in total viable bacterial populations 

between treatments. Statistical analysis (three-way ANOVA for each inoculant time) 

showed several differences between treatments that are described below.  

In natural soil and soil inoculated with T.versicolor (Figure 3.41 and 3.43) at 24 

weeks there was a significant decrease in bacterial viable populations in the 10 mg kg 

soil-1 treatment (P<0.05), at -0.7 MPa. In soil amended with wood chips there were no 

differences between treatments. In soil inoculated with P.ostreatus (Figure 3.44) the 

total number of viable bacteria was unaffected by the water availability (P= 0.044) or 

incubation times (P<0.05). However at -0.7 MPa there was a decrease in bacterial 

populations at 5 mg kg soil-1 (P=0.012). In soil inoculated with P.chrysosporium 

(Figure 3.44) at 6 weeks incubation the number of bacterial populations was 

stimulated in the presence of pesticides (P<0.05). At 24 weeks bacterial populations 

were higher at -0.7 MPa in the control. In soil amended with SMC there were no 

differences between treatments (Figure 3.46). 
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Figure 3.41 Total viable bacterial populations (log CFU g soil-1) in natural soil, 

microcosms amended with wood chips, under two different water regimes and 

pesticide concentration. Bars represent the standard deviation of the mean (n=3), per 

treatment. 
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Figure 3.42 Total viable bacterial populations (log CFU g soil-1) in natural soil 

amended with wood chips, microcosms amended with wood chips, under two 

different water regimes and pesticide concentration. Bars represent the standard 

deviation of the mean (n=3), per treatment. 
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Figure 3.43 Total viable bacterial populations (log CFU g soil-1) in soil inoculated 

with T.versicolor (R26), microcosms amended with wood chips, under two different 

water regimes and pesticide concentration. Bars represent the standard deviation of 

the mean (n=3), per treatment. 
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Figure 3.44 Total viable bacterial populations (log CFU g soil-1) in soil inoculated 

with P.ostreatus, microcosms amended with wood chips, under two different water 

regimes and pesticide concentration. Bars represent the standard deviation of the 

mean (n=3), per treatment. 
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Figure 3.45 Total viable bacterial populations (log CFU g soil-1) in soil inoculated 

with P.chrysosporium, microcosms amended with wood chips, under two different 

water regimes and pesticide concentration. Bars represent the standard deviation of 

the mean (n=3), per treatment. 
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Figure 3.46 Total viable bacterial populations (log CFU g soil-1) in soil microcosms 

amended with SMC, under two different water regimes and pesticide concentration. 

Bars represent the standard deviation of the mean (n=3), per treatment. 
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3.16.2 Total viable fungal populations in soil microcosms 

Overall, there were few significant differences in total viable fungal populations 

between treatments. Statistical analysis (three-way ANOVA for each inoculant time) 

showed several differences between treatments that are described below. In natural 

soil (Figure 3.47) the number of fungal populations was significantly lower at the start 

of the experiment in the -0.7MPa water potential (P<0.001). In soil amended with 

wood chips (Figure 3.48) the number of fungal populations was higher at 24 weeks 

incubations (P<0.05). In soil inoculated with T.versicolor (Figure 3.49) there was an 

increase in fungal populations at 24 weeks in the 10 mg kg soil-1 pesticide treatment 

(P<0.05). In soil inoculated with P.ostreatus at 6 weeks incubation there was a 

decrease in fungal populations at 10 mg kg soil-1 (P<0.005), at 12 weeks the same 

decreased was observed for 5 and 10 mg kg soil-1 treatments (P<0.05). In soil 

inoculated with P.chrysosporium the number of fungal populations was significantly 

higher at 12 weeks incubation (P<0.001).  
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Figure 3.47 Total viable fungal populations (log CFU g soil-1) in natural soil 

microcosms, at 0.7 and -2.8 MPa supplemented with a mixture of pesticides. Bars 

represent the standard deviation of the mean (n=3), per treatment. 
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Figure 3.48 Total viable fungal populations (log CFU g soil-1) in natural soil 

microcosms amended with wood chips, at 0.7 and -2.8 MPa supplemented with a 

mixture of pesticides. Bars represent the standard deviation of the mean (n=3), per 

treatment. 
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Figure 3.49 Total viable fungal populations (log CFU g soil-1) in soil inoculated 

T.versicolor (R26), microcosms amended with wood chips, at 0.7 and -2.8 MPa 

supplemented with a mixture of pesticides. Bars represent the standard deviation of 

the mean (n=3), per treatment.  
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Figure 3.50 Total viable fungal populations (log CFU g soil-1) in soil inoculated 

P.ostreatus, microcosms amended with wood chips, at 0.7 and -2.8 MPa 

supplemented with a mixture of pesticides. Bars represent the standard deviation of 

the mean (n=3), per treatment. 
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Figure 3.51 Total viable fungal populations (log CFU g soil-1) in soil inoculated 

P.chrysosporium, microcosms amended with wood chips, at 0.7 and -2.8 MPa 

supplemented with a mixture of pesticides. Bars represent the standard deviation of 

the mean (n=3), per treatment. 
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Figure 3.52 Total fungal counts (log CFU g soil-1) in soil microcosms amended with 

SMC, under two different water regimes and pesticide concentration. Bars represent 

the standard deviation of the mean (n=3), per treatment. 
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3.16.3 Impact of treatments on fungal population structure in 
soil microcosms 

The results showed the fungal diversity in soil microcosms varied in the different 

treatments. In natural soil (Figure 3.54). Aureobasidium, Penicillium and 

Cladosporium were the predominant genera, although in the presence of the mixture 

of pesticides, under higher availability Doratomyces was the most abundant. 

Interestingly yeast pink is very common in the absence of the pesticides.  

In soil amended with wood chips alone Doratomyces was very abundant in all the 

treatments, independently of the water potential. In all the treatments where wood 

chips were used (alone and as the substrate where the fungal inoculant was pre-

grown) Aureobasidium and Acremonium were very abundant. 

In soil inoculated with T.versicolor (Figure 3.55) Acremonium, Doratomyces and 

Aureobasidium were very common. Whereas in soil inoculated with P.ostreatus and 

P.chrysosporium a great density of white yeast was observed (Figures 3.55 and 3.56). 

In soil amendment with SMC the diversity profile was very similar to the one 

described for T.versicolor (Figure 3.56). 
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Figure 3.53 Fungal diversity in soil microcosms with natural soil and soil amended 

with wood chips, and supplemented with a mixture of pesticides, under two different 

water regimes. 
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Figure 3.54 Fungal diversity in soil microcosms inoculated with T.versicolor and 

P.ostreatus and SMC, and supplemented with a mixture of pesticides, under two 

different water regimes. 
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Figure 3.55 Fungal diversity in soil microcosms inoculated with P.chrysosporium and 

SMC, and supplemented with a mixture of pesticides, under two different water 

regimes.  
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3.17 Correlation between different parameters 

In addition to single analytical values of the individual biological and biochemical 

parameters some correlations were also calculated from the results, at 6 weeks 

incubation, when the different biochemical, enzymological parameters suggested 

higher metabolic activity. 

When carbon dioxide production was compared with dehydrogenase activity in soil 

microcosms amended with an increasing concentration of a mixture of pesticides (as 

shown in Figure 3.57) a correlation was found. Table 3.30 shows the correlation 

coefficients (r2) between these two parameters.  

When comparing soluble protein content in soil and microbial populations (Figures 

3.58 and 3.59) a correlation was found in some of the treatments (Table 3.31).  
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Figure 3.56 Examples of comparison between dehydrogenase production (as µg INF 

2h-1 g soil-1) and CO2 (mg CO2 h-1 g soil-1) released in soil microcosms after 6 weeks 

incubation. 
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Table 3.30 Correlation (expressed as r2) between carbon dioxide concentration and 

dehydrogenase activity, for increasing concentration of pesticides. 

Treatments Water potential r2 

-0.7 MPa 0.871 Soil + P.chrysosporium 

-2.8 MPa 0.883 

-0.7 MPa 0.417 Soil + P.ostreatus 

-2.8 MPa 0.975 

-0.7 MPa 0.999 Soil + T.versicolor 

-2.8 MPa 0.443 

-0.7 MPa 0.038 Soil + SMC 

-2.8 MPa 0.852 

-0.7 MPa 0.732 Soil  

-2.8 MPa 0.694 

-0.7 MPa 0.999 Soil + WC 

-2.8 MPa 0.939 
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Figure 3.57 Example of comparison between soluble protein (µg g soil-1) and total 

bacterial counts (CFUs) in soil microcosms after 6 weeks incubation (the values 

represent the mean n=3). 
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Figure 3.58 Example of comparison between soluble protein (µg g soil-1) and total 

fungal counts (CFUs) in soil microcosms after 6 weeks incubation (the values 

represent the mean n=3). 
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Table 3.31 Correlation (expressed as r2) between total microbial counts (CFUs 

bacteria and CFUs fungi) and soluble protein content (µg protein g soil-1), for 

increasing concentration of pesticides. 

 Ψ 

(MPa) 

r2 CFU bacteria r2 CFU fungi  

-0.7  0.997 0.536 Figure 3.57 P.chrysosporium 

 -2.8  0.939 0.376  

-0.7  0.839 0.982  P.ostreatus 

 -2.8  0.045 0.805  

-0.7  0.249 0.011  T.versicolor 

 -2.8  0.480 0.303  

-0.7  0.365 0.145  SMC 

 -2.8  0.925 0.347 Fig.3.58 

-0.7  0.980 0.042  Soil 

 -2.8  0.930 0.011  

-0.7  0.999 0.970 Figs 3.58 and 3.59 WC 

 -2.8  0.406 0.980 Fig.3.58 
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4 Discussion 
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4.1 General overview 

As currently soil contamination is a major environmental problem, the need to 

remediate contaminated sites has led to the development of new technologies that 

emphasize the destruction of the contaminants rather than the conventional approach 

of disposal (Boopathy, 2000). Bioremediation involves the use of microorganisms or 

microbial processes to degrade environmental contaminants, and is among these new 

technologies. The application of fungal technology for the clean up of polluted soils 

holds significant promise since 1985 when the white rot fungus Phanerochaete 

chrysosporium was found to be able to metabolise a number of important 

environmental pollutants (Sasek, 2003). This capacity was later described for other 

white rot fungal species. 

4.2 Fungal tolerance to pesticides  

The initial studies were carried out using eight fungal isolates. Using this range of 

basidiomycetes, initial experiments showed that at 15ºC the use of cellophane discs to 

separate soil extract agar had no effect on relative mycelial extension rates. However, 

at 25ºC in 44% of treatments growth was different. Previous studies in relation to 

growth rates and water potential in media with cellophane have shown some 

differences in mycelial extension in presence and absence of cellophane (Ramos et 

al., 1999). This separation was important to make sure all interactions between 

mycelium and culture medium were extracellular. 

Regarding of the effect of temperature on growth rates the isolates showed better 

growth at 25ºC, as the highest growth rate obtained at 15ºC was 2.9 mm day-1. In fact, 

some of the species used in this study have optimal growth at 30ºC, with growth rates 

at optimum conditions of 7.0 ± 0.5 mm day-1 (Tekere et al., 2001; Mswaka and 

Magan, 1999). But, because 15ºC is environmentally more relevant to U.K. and other 

European countries, where low temperature in soil can be a limiting factor to 

microbial degradation of soil contaminants (Romanstschck et al., 2000) the 

subsequent screening test, to evaluate fungal tolerance to pesticides, was carried out at 

15ºC. Lower growth rates do not necessarily imply lower enzyme production, 
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important in the context of degradation of xenobiotics, but the fungi has to grow well 

for colonisation establishment. 

The screening experiment, at 15ºC, showed that in the range of pesticide 

concentrations used P.ostreatus, T.versicolor R26 and R101 were the most tolerant 

isolates. These conclusions were based on the analysis of EC50 values. 

P.chrysosporium showed high sensitivity to the pesticides, however, it was included 

in subsequent studies because it is well known for its enzymatic capacities and has 

been thoroughly studied for bioremediation purposes (Reddy and Mathew, 2001).  

The response of the test isolates to the pesticides was influenced by pesticide 

concentration, and whether the pesticides were in a mixture or present individually. In 

relation to simazine, T.versicolor (R26 and R101) were tolerant to this pesticide, with 

the isolate R26 having higher growth rates than R101 at –0.7 MPa, in the soil extract 

agar. At –2.8 MPa their growth rates were equivalent, suggesting T.versicolor R101 

tolerated well interacting factors of pesticide concentration and water potential. 

Besides, in matric potential media T.versicolor R101 performed better than 

T.versicolor R26. P.ostreatus showed a good tolerance to simazine at both water 

potential regimes (-0.7 and –2.8 MPa), exhibiting high growth rates in the presence of 

this pesticide up to 10 mg l-1. When matric potential was used, this microorganism 

was not as tolerant. Overall, the results showed that T.versicolor R101 was more 

tolerant to simazine on a wider range of conditions, than the other isolates tested in 

this study.  

The response to trifluralin and dieldrin was rather similar to the response to simazine. 

Again, T.versicolor R101 showed a good tolerance to the pesticide at different water 

regimes. In contrast T.versicolor R26 and P.ostreatus, which grew well with fully 

availability of water, did not perform as well as T.versicolor R101, under conditions 

of water stress. 

In the presence of the pesticide mixture P.ostreatus showed the best tolerance. 

Generally, the response of the isolates to the mixture showed a similar trend to the 

response to dieldrin and trifluralin individually, however, P.ostreatus showed a 

remarkable growth increase in the presence of this mixture of pesticides, especially at 

-0.7 MPa. 
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The study of fungal growth rates is very important for extrapolation of the potential 

colonisation capacity in the field as it provides a good indication of the speed at which 

a fungus is able to colonise and transverse a substrate. Growth rates may also indicate 

which species may be dominant over a particular substrate; fast growing species have 

an advantage over slower species as they can reach and utilise resources before their 

competitors (Magan and Lacey, 1984; Marin et al., 1998a; Marin et al., 1998b). 

Therefore, better growth could help the introduced fungi to overcome competition 

from indigenous soil microrganisms (Singleton, 2001). 

Water availability was considered in this study, because it plays a key role in fungal 

development. It was important to evaluate fungal response to pesticides at different 

levels of water availability, which may occur naturally in soil. This parameter was 

modified by changing the osmotic and matric potential of the culture media. 

Generally, fungal germination and growth has been demonstrated to be more sensitive 

to matric than osmotic potential (Ramos et al., 1999). McQuilken et al. (1992) 

reported that mycelial extension decreased below –0.5 MPa and ceased between –2.5 

and 3.0 MPa osmotic potential. However, in media where the matric potential was 

adjusted with PEG6000, both growth and germination ceased at –2.0MPa (McQuilken 

et al., 1992). Matric potential effects on growth may be of particular importance for 

growth and survival in soil, since it influences the physiological activity of soil 

microrganisms (Zak et al., 1999). 

The results for lignin degradation and laccase production, in the Petri plate assays, 

were interesting, as both isolates of T.versicolor (R101 and R26) and P.ostreatus were 

able to degrade lignin under both water regimes and in all the pesticide treatment 

conditions. Laccase production also occurred, but it was more affected by water 

availability and pesticide concentration. Since laccase is one of the enzymes involved 

in lignin degradation, the results suggest that in some of the treatments (e.g. dieldrin) 

where there was no laccase production, but lignin degradation was detected other 

ligninolytic enzymes might have been produced. The ability to produce a wide array 

of enzymes in the presence of contaminants may be advantageous in bioremediation. 

Moreover, the capacity of growing and producing extracellular enzymes under 

different water availabilities is essential when attempting to use fungal inoculants for 

remediation of contaminated soil. 
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4.3 Soil extract broth as an approach to soil studies 

This study showed that T.versicolor (R26 and R101), P.ostreatus and 

P.chrysosporium, were able to grow effectively in low nutrient status media over a 

range of concentrations of a mixture of pesticides. Two osmotic potential conditions 

were examined: -0.7 MPa which is optimal for growth of such white rot fungi, and -

2.8 MPa, which is well as below the wilting point of plants (Mswaka and Magan, 

1999). All species produced significantly higher biomass under water stress 

conditions. This ability may be particularly beneficial in the soil environment where 

water availability fluctuates significantly. The studies in soil extract agar media 

showed that P.chrysosporium was more sensitive to this mixture of pesticides than the 

other test isolates; however, in the present study in soil extract broth this was not 

observed. 

The present study on the degradation of the mixture of pesticides showed good 

capacity by T.versicolor (R101) and P.chrysosporium at both osmotic potential 

treatments, regardless of the initial concentrations of pesticides between 0 and 30 mg 

l-1. P.ostreatus and T.versicolor (R101) also showed good pesticide degradation, 

which was affected by water availability and initial concentration of the pesticide 

mixture. It was not possible to establish a trend explaining the way these factors 

affected pesticide degradation. The duration of the experiment was clearly sufficient 

for the bioremediation to be completed, as the concentration of pesticides by the end 

of the experiment was close to zero. 

Interestingly, greater degradation was obtained in the treatments with higher initial 

concentration of pesticides. We have concentrated on the direct impact of 

kosmotropic solutes such as NaCl, PEG 600 (Brown, 1990). It is not known whether 

increasing concentrations of mixtures of pesticides can act as anthropogenic 

chaotropic solutes (e.g. phenols, urea, ethanol, benzyl alcohols) which may further 

interact with osmotic stress and influence the effects observed. However, few studies 

have considered these interactions. 

Previously Tekere et al. (2002) reported degradation rates of about 82% for the 

pesticide lindane (an organochlorine, like dieldrin) by P.chrysosporium but the 

highest degradation rates were achieved when the initial concentrations were as low 
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as 5 and 10 mg l-1. Lower degradation was obtained at initial concentrations of 20 and 

40 mg l-1. Surprisingly, few studies on the degradation of mixtures of pesticides have 

been carried out (Yavad and Reddy, 1993; Bending et al., 2002). Yavad and Reddy 

(1993) described co-mineralisation of a mixture of the pesticides 2,4-D and 2,4,5-T by 

P.chrysosporium wild type and a putative peroxidase mutant in nutrient rich broth, 

with a small amount remaining in the mycelial fractions (5%). Bending et al. (2002) 

showed degradation rates of metalaxyl, atrazine, terbuthylazine and diuron by white 

rot fungi in nutrient solution of >86% for atrazine and terbuthylazine. However, 

nutritionally rich media were used and water stress interactions were not considered.  

A common procedure to assess the outcome of bioremediation is to measure the 

disappearance of the lethal effects of toxic substances (Tang et al., 1998), in the 

current study a toxicity test was run on the soil extract after inoculation and 

incubation with the test isolates. The results suggested that the extracts were no longer 

toxic, which is in accordance with the HPLC results that showed very low 

concentrations of pesticides remaining in the soil extract. This is an interesting 

finding, because in some cases after bioremediation, some metabolites are produced 

and they may be as toxic or more toxic than the initial contaminants. In this case, 

according to the results of the toxicity test this did not occur, the final product of 

bioremediation was in fact harmless. 

The results suggest that the hydrolytic and ligninolytic enzymes are not only secreted 

in nutrient-rich substrates but are produced by mycelia growing in weak nutritional 

matrices. Of particular interest is the capacity for production of these enzymes in the 

presence of up to a 30 mg l-1 mixture of the pesticides. In this study, T.versicolor R26 

exhibited very high laccase activity, for example in the 30 mg l-1 treatment at –

0.7MPa laccase activity of 680 units ml-1 was measured, although growing in a weak 

soil extract medium. P.ostreatus also produced very high levels of laccase, especially 

under osmotic stress and in the presence of pesticides. Previous studies suggest that a 

fungus showing laccase activity of 120 to 1000 units ml-1 in compost is a potential 

commercial source for laccase (Trejo-Hernandez et al., 2001). Thus, the levels of 

laccase produced by these test isolates may have some applications.  

Under the treatment conditions used in this study P.chrysosporium and T.versicolor 

R101 (the tropical isolate) did not produce laccase, although previous studies with 
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other isolates of these species (Shim and Kawamoto, 2002) reported high activities of 

laccase by these fungi. The conditions of their assay were different as the fungus was 

grown in a bioreactor and the culture medium was enriched with veratryl alcohol, an 

inducer of laccase activity. Laccase is a copper-containing phenoloxidase involved in 

the degradation of lignin (Pointing, 2001), and its catabolic role in lignin 

biodegradation is not well understood (Eggen, 1999; Trejo-Hernandez et al., 2001) 

but this enzyme has already attracted considerable interest for biodegradation of 

xenobiotic compounds with lignin-like structures (Trejo-Hernandez et al., 2001). 

Previously, it was assumed that degradation of xenobiotics by white rot fungi is 

mediated by enzymes involved in lignin degradation but Jackson et al. (1999) 

reported degradation of TNT by non-ligninolytic strains of P.chrysosporium. Other 

studies with P.chrysosporium in liquid culture have reported biotransformation of the 

insecticide lindane independently of the production of ligninolytic enzymes (Mougin 

et al., 1996), and Bending et al. (2002) showed >86% degradation of atrazine and 

terbuthylazine by white rot fungi in liquid culture. However, no relationship between 

the degradation rates and ligninolytic activity was found.  

β-glucosidase and phosphomonoesterase are enzymes that carry out specific 

hydrolyses and were selected in these experiments because they catalyse reactions 

involved in the biogeochemical transformations of C and P and are likely to be an 

essential component of to assess substrate mineralization (Taylor et al., 2002). β -

glucosidase hydrolise β-glucosides in soil or in decomposing plant residues (Hayano 

et al., 1985). The formation of orthophosphoric ions by decomposition and 

mineralization of the organic matter is accomplished by phosphoesterases, these 

enzymes can be intra or extracellular and can be effective even after cell death 

(Brohon et al., 1999).  

The results show higher production of phosphomonoesterase by the T.versicolor R26 

and P.chrysosporium, independently of pesticide concentration. P.ostreatus and 

T.versicolor R26 produced higher levels of this enzyme under osmotic stress. None of 

the pesticides used in this study contain phosphorous, thus this enzyme may not act 

directly on the pesticide mixture but might be involved in degradation metabolism. 

Phosphomonoesterases are associated with phosphorous cycle: they form an 
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important group of enzymes catalysing the hydrolysis of organic P esters to 

orthophosphates (Vuorinen and Saharinen, 1996). 

Production of β-glucosidase by P.chrysosporium was strongly inhibited in the 

presence of the mixture of pesticides, whereas T.versicolor R26 showed stimulation in 

activity of this enzyme. P.ostreatus produced high levels of β-glucosidase regardless 

of water potential and pesticide treatment. As β-glucosidase is associated with the 

carbon cycle this result may suggest that T.versicolor R26 may have a better capacity 

for utilizing this mixture of pesticides as a source of carbon. β –glucosidase has been 

observed to be the most consistent parameter indicating the effects of different 

treatments among the several C cycle enzymes tested (Bandick and Dick, 1999). 

Leiros et al. (1999) studied the effect of addition of Cu to soil on the activities of 

several enzymes, including β –glucosidase and phophomonoesterase. They described 

a sharp decrease in phosphomonoesterase activity with addition of Cu. While β –

glucosidase activity showed a tendency to increase with increasing Cu concentrations. 

Proteases are rate-limiting enzymes in nitrogen mineralisation processes (Horra et al., 

2003). In this study proteases were produced at both osmotic stress levels and the 

range of pesticide concentrations used. These have been monitored previously in 

relation to soil quality status but not in relation to bioremediation aspects. They could 

play an important role in enhancing degradation of mixtures of xenobiotic compounds 

in soil systems. Staszczak et al. (2000) suggested that both intracellular and 

extracellular proteases are involved in the regulation of ligninolytic activities in 

cultures of T.versicolor under nutrient limitation. It is not clear if there is a 

relationship between ligninolytic activity and protease secretion in white rot fungi 

(Staszczak et al. 2000). Baran et al., (2004) found high protease activity in soil 

contaminated with PAH, however in the present study it was not possible to find a 

correlation between pesticide concentration and protease activity. 

In summary, the results on soil extract broth suggested that T.versicolor R26 and 

R101, P.ostreatus and P.chrysosporium have the capacity to degrade different groups 

of pesticides, supported by the ability for expression of a range of extracellular 

enzymes regardless of imposed osmotic stress at -2.8 MPa. P.chrysosporium and 
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T.versicolor R101 were also able to degrade this mixture of pesticides independently 

of laccase activity.  

This study in liquid medium described the potential microbial utilisation of these 

pesticides in the environment. However, the adsorption of the pesticide molecules to 

soil particles might be an important factor in reducing the availability of the 

compounds for microbial attack. Bioavailability, defined as the ability of a compound 

to be freely transported across the cell membrane for intracellular metabolism or 

available for extracellular metabolism, is perhaps the most important factor limiting 

bioremediation (Atagana et al., 2003). For these reasons, subsequent studies were 

conducted using soil microcosms, with the same pesticides to examine the impact on 

degradation by fungal inoculants pre-grown on a ligninocellulosic substrate. 

4.4 Soil microcosms: an approach to bioremediation 
studies 

Studies in liquid culture are a good approach to assess an organism’s ability to utilise 

a target compound where the compound is added to the medium either as a sole 

carbon source or in the presence of a growth supporting substrate (Juhasz and Naidu, 

2000). However, the conditions in soil differ greatly from those in liquid culture, 

because soil is a multi-phasic, heterogeneous environment, in which the contaminant 

is present in association with the soil particles, dissolved in soil liquids and in the soil 

atmosphere (Boopathy, 2000). Additionally in sterile liquid culture factors such as 

competition with indigenous microflora, colonisation of the soil matrix or even 

survival are not considered. A study involving soil microcosms is a more complex 

approach, which requires some background information (usually from liquid culture 

studies) about the ideal conditions of growth for the microorganisms and their 

behaviour towards the pesticide. Microcosm studies are very useful to understand the 

detoxifying factors associated with a soil-pesticide matrix (Shoen and Winterlin, 

1987), including enzyme activities, respiratory metabolism and native microbial 

populations activity, as the mechanisms by which the white rot fungi degrade 

pollutants are still not well understood (Nerud et al., 2003). This type of studies can 

provide valuable information to properly develop decontamination procedures to 

apply in situ.  
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In the current study, the physiological response of three fungal inoculants and soil 

microorganisms to a mixture of pesticides and water potential was evaluated through 

the analysis of various parameters as respiration, pesticide degradation and enzyme 

activities. Interestingly, most reported research on pesticide degradation in soil has 

been concerned only with single pesticides, however in soil-containing disposal 

systems, pesticides are more commonly found in complex mixtures (Shoen and 

Winterlin, 1987). 

4.4.1 Fungal growth in soil microcosms 

White rot fungi naturally grow into wood fibres secreting ligninolytic enzymes, which 

depolymerises the lignin (Meysami and Baheri, 2003) but they do not show any 

growth on contaminated soil, unless they had been pre-grown on woody materials or 

bulking agents for at least 10 days to establish complete growth and enzyme activity 

(Meysami and Baheri, 2003). These woody materials can be straw, woodchips or 

sawdust (Harvey and Thurston, 2001). 

Soil environmental conditions such as pH, nutrient and oxygen levels may not be 

optimal for fungal growth or for activity of the fungal extracellular enzymes involved 

in pollutant transformation (Singleton, 2001). Furthermore, optimal performance of 

white rot fungal mycelium into soil depends especially on its survival, colonisation of 

the soil matrix and relation to the autochthonous soil microflora (Sasek, 2003). Once 

favourable conditions are established the potential for colonisation by fungi are 

impressive, since the domain of mycelial cords is enormous: with the ability to 

penetrate soils forming a network that can occupy many square meters (Pletsch et al., 

1999).  

In the present study the test isolates were grown on wood chips for 30 days prior to 

inoculation in soil. Very extensive colonisation of the wood chips was observed, as 

this woody substrate represents a source of nutrients for the fungal inoculant, but also 

for the indigenous soil microflora. Under the conditions used in the present study all 

three test isolates were viable in natural soil, overcoming the competition with the 

native soil microflora, under both water regimes (-0.7 and -2.8 MPa). T.versicolor and 

P.ostreatus showed very good colonisation in the soil microcosms, whereas 

P.chrysosporium showed relatively less growth. 
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In the present study a ratio 5 g inoculant: 100 g soil was used. Other authors used 

different ratios. For example Novotny et al. (2003), described dye degradation in soil, 

using microcosms comprised of 8 g soil mixed with 8 g of straw grown Irpex lacteus 

(a white rot fungus). Canet, et al. (2001) used 10 g inoculated straw in 25 g soil. Ryan 

and Bumpus (1989) used a ratio 1 g straw to 4 g soil; Elyassi (1997) used 1 g straw: 

10 g soil and Morgan et al. (1993) used ground corn cobs to soil at 4 g ground corn 

cobs: 1 g soil. 

An important point when optimising the conditions for bioremediation in soil 

microcosms is to predict the transfer of the technology to the field. The inoculation of 

fungi in soil must be a robust and cheap method, to be effective on a large-scale 

(Singleton, 2001). Clearly, consideration must be given to amendment cost and the 

space available for remediation on site (Singleton, 2001). Avoiding the use of very 

large amounts of ligninocellulosic substrates is important, because that would have 

adverse effects on the treatments economics (Boyle, 1995). 

Novotny et al. (1999) in a study on removal of PAHs from sterile soil using the same 

species as those used in the present study, found the colonisation rates and mycelium 

density values decreased in the following order: P.ostreatus> 

P.chrysosporium>T.versicolor. However, studies like this, on sterile soil may not give 

a give a good estimate of the activity of the fungi in soil. Because natural soil contains 

a rich natural microflora, in a bioremediation system fungal inoculants face a strong 

competition. Supporting this, Lang et al. (1998) observed very pronounced 

differences in Dichomitus squalens enzyme activity between sterile and non-sterile 

soil. Previous studies reported isolation of microbes antagonistic to P.chrysosporium 

from soil (Ali and Wainwright, 1994; Radtke et al., 1994). Interestingly P.ostreatus 

(one of the species used in the current study) showed only a slight reduction in 

enzyme activity between sterile and natural soil (Lang et al., 1998). These findings 

suggest that this species has great potential to colonize soil, and is a strong competitor 

against the soil natural microflora. 

Probably, in soil, microorganisms with a life strategy of fast growth will be favoured; 

however, the fast growers are not necessarily the organisms capable of degrading 

xenobiotics (Hestbjerg et al., 2003). Moreover, an increase in white rot fungal 

biomass will not necessarily mean that this biomass is in an appropriate physiological 
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state (Boyle, 1995) to promote degradation of contaminants. The direct objective 

measurement of fungal growth in soil is difficult since the hyphae stick to the solid 

substrate (Novotny et al., 1999), therefore the quantification of fungal colonisation 

must examine different parameters on metabolic activity and enzyme activity.  

4.4.2 Pesticide degradation in soil microcosms 

Pesticide degradation was estimated by quantifying the pesticide concentration 

remaining in soil after incubation, at 15 ºC, under two different water regimes -0.7 

and -2.8 MPa (which corresponded to 5 and 10 % moisture content, respectively).  

The results showed the treatments with fungal inoculants had higher pesticide 

degradation rates than the control, and the best inoculants were P.chrysosporium and 

T.versicolor R26. In soil amended with wood chips improved degradation rates, 

comparing with the control were found for some treatments. Soil inoculated with 

T.versicolor R26 showed good degradation rates for the three pesticides. The 

maximum increase in pesticide degradation was 46% for simazine, 57% for trifluralin 

and 51% for dieldrin compared to the control. Soil inoculated with P.ostreatus also 

showed significant improvement in degradation of simazine and trifluralin (100 and 

60% higher than the control) however in soil inoculated with this isolate the 

remaining concentrations of dieldrin were not significantly different of those in the 

control soil. Interestingly this isolate showed low tolerance to dieldrin in the laccase 

Petri plate assay. In soil inoculated with P.chrysosporium simazine, trifluralin and 

dieldrin degradation rates were 58, 74, and 70% higher than in the control soil. In soil 

amended with SMC the degradation rates were also higher than in the control (17, 49 

and 76% for simazine, trifluralin and dieldrin), however not as high as in soil 

inoculated with T.versicolor and P.chrysosporium. 

In summary higher degradation was observed in the treatments inoculated with the 

test isolates, however the results after 24 weeks incubation showed some 

discrepancies, with some of the treatments having higher concentrations of pesticide 

than those measured after 12 weeks incubation. Because, soil is a heterogeneous 

environment and a destructive sampling system was used variation between replicates 

can occur. Boyle (1995) found bioremediation results to be variable, which may be 

due to the fungi not always growing well or not always expressing their degradative 
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system in the soil. Furthermore, the sorption of pesticide molecules to soil particles 

may reduce the availability of the compound for microbial attack (Atagana et al., 

2003). 

Perhaps the most intuitively direct means of determining the potential of fungal 

inoculants to degrade a pesticide is to measure its levels before and after treatment, in 

the microcosm. However, due to the heterogeneous (physical, chemical and 

biological) nature of soil it is likely that a variety of microbial (aerobic and anaerobic) 

and chemical transformations will occur during bioremediation leading to the possible 

formation of many breakdown products (McGrath and Singleton, 2000). Chemical 

analysis of such mixtures is time consuming and also gives no indication of the 

possible synergetic toxic effects that may occur (McGrath and Singleton, 2000). 

Therefore, it appears that methods which give an indication of residual soil toxicity 

after bioremediation will supplement more traditional chemical analysis, and give a 

good estimate of the success of the reclamation process (McGrath and Singleton, 

2000).  

4.4.3 Respiratory activity  

Higher carbon dioxide levels indicate higher respiration rates, suggesting high 

mineralization rates, supporting the biodegradation of pesticides by native or 

introduced microorganisms. In this study, maximum respiration occurred by week 6, 

and decreased by the end of the experiment. Soil inoculated with T.versicolor R26 

showed the highest respiratory activity. Overall, higher respiratory activity was 

observed in the presence of the mixture of pesticides.  

Soil inoculated with T.versicolor R26 showed improved respiration rates in all the 

treatments with CO2 concentrations up to 1.2, 54 and 11 times higher than in natural 

soil, for the treatments 0, 5 and 10 mg kg soil-1, respectively. In soil inoculated with 

P.ostreatus this increase was up to 30, 6 and 5 times compared to natural soil (for the 

treatment 0, 5 and 10 mg kg soil-1 respectively). But the highest augment was 

observed in soil inoculated with P.chrysosporium with CO2 production up to 29, 19 

and 14 times higher than in natural soil to in the treatments 0, 5 and 10 mg kg soil-1. 
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In this study soil amended with wood chips had a higher respiratory activity than 

natural soil (with CO2 concentrations up to 17 times higher than in the control soil), 

even though no microbial inoculant was present. This increase was probably due to 

the colonisation of the wood chips by native soil microrganisms. Another reason for 

this increase could be the improved aeration caused by the wood chips, which may 

have increased the metabolic activity of the aerobic microrganisms native in soil. 

Similar increases in CO2 production were found with other organic amendments such 

as alfalfa and bran (Boyle, 1995). 

The decrease in carbon dioxide production towards the end of the treatment was 

possibly caused by the exhaustion of the readily degradable organic fraction. (Balba et 

al., 1998). 

In the current study, water availability did have an effect on respiration rates, but this 

effect varied with different inoculants. Soil moisture can limit soil respiration by 

limiting microbial contact with available substrate or by causing dormancy and/or 

death to soil microorganisms at low soil water potentials (Orchard and Cook, 1983). 

On the other hand, if soil is too wet the activity of aerobic soil microrganisms can be 

compromised, because of aneorobiosis. In fact, none of the water regimes used in the 

current study was too dry or too wet to impair soil microbial activity. Some studies 

have looked at the effect of water potential on respiratory activity. For example: 

Conant et al. (2004) determined the effect of temperature and water potential on 

respiration rates and reported higher rates in wetter soils (-0.03 and -0.05 MPa) than 

the drier (-1.0 and -1.5 MPa). They also found that the optimum moisture content for 

growth and enzyme activity was between 30-50% (w/w of dry soil), although the 

effect of the freely water available was not determined (Meysami and Baheri, 2003). 

Balba et al. (1998) reported higher levels of CO2 when the dry weight was around 910 

g kg-1 which was equivalent to about 9% moisture content. 

The analysis of the response of respiratory activity showed a marked difference 

between natural soil and soil supplemented with a mixture of pesticides: respiratory 

activity was higher in the contaminated soil under both water regimes. In previous 

studies, the addition of contaminants did have an effect on the respiratory activity. 

Bundy et al. (2002) reported that the addition of diesel caused a sharp increase in 

respiration (against respiration rates of 100 nmol CO2 g-1h-1 in control soils).  
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Soil respiration measurements are used frequently as a sensitive and easily analysable 

microbial parameter for the characterization of soil samples (Hollender et al., 2003). 

The respiration activity is closely related to other microbial parameters such as 

microbial biomass (Dilly, 2001). It gives an evaluation of the global microbial activity 

(Brohon et al., 1999). It is one of the most frequent parameters used to measure the 

organic decomposition rates in soil (Brohon et al., 1999), and its dependence on 

numerous biotic and abiotic factors makes it a specific tool for measuring the activity 

level of the soil microflora with time (Brohon et al., 1999).  

The standard method to estimate soil respiration and mineralization of substrates is by 

measuring continuously or semi-continuously the production of CO2 from small soil 

samples (≤100 g) treated with the test chemical, for a minimum of 30 days. The main 

disadvantage of soil respiration tests is that the activity of the total soil microflora is 

determined. When certain species are affected by the test chemical, this will often not 

be noticed, as other (less sensitive) species may take over the activity of the sensitive 

ones (Somerville and Greaves, 1987). For example Boyle (1985) reported that 

enzyme activities decreased sharply at higher and lower moisture contents. CO2 

production also decreased in dry soil but remained high when soil was wet even 

though enzyme activities decreased. This suggests that it is likely that organisms other 

than white rot fungi were responsible for the production of CO2 

4.4.4 Enzyme activities in soil microcosms 

Enzyme activities are involved in processes important to soil function, such as organic 

matter decomposition and synthesis, nutrient cycling and decomposition of 

xenobiotics (Acosta-Martinez et al., 2003). In the current study dehydrogenase, total 

ligninolytic activity, cellulase and laccase activities were assessed, in order to study 

the response of fungal inoculants to a mixture of pesticides in soil. This group of 

enzymes should represent the responses of a diverse microbial assemblage (fungal 

inoculants and native soil flora) to a wide range of substrate types and more 

importantly to the contaminating pesticides. For biodegradation to take place the 

fungal inoculants introduced in the soil and/or the native soil microflora must be able 

to produce degradative enzymes, that remain active in the contaminated soil.  
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Dehydrogenase 

Overall, the addition of pesticide increased dehydrogenase activity in most treatments. 

For example in soil inoculated with T.versicolor the dehydrogenase activity in the 

treatments 5 and 10 mg kg soil-1 mixture, was 80 and 100 % higher than in natural 

soil, after 6 weeks, at -2.8 MPa. 

In the control soil the addition of pesticides enhanced dehydrogenase activity with 

higher levels being produced at -0.7 MPa. Soil amended with wood chips produced 

the highest dehydrogenase levels at the beginning and after 6 weeks incubation, with 

increased enzyme production in the presence of the pesticide mixture. 

The results showed that in soil inoculated with T.versicolor the presence of pesticides 

enhanced dehydrogenase activity, after 6 and 12 weeks incubation under both water 

regimes. Higher production of dehydrogenase was observed at -0.7 MPa. In soil 

inoculated with P.ostreatus after 6 weeks incubation the highest dehydrogenase 

activities were detected under water stress, in the presence of the pesticide mixture. 

When P.chrysoporium was used as a fungal inoculant, the levels of dehydrogenase 

decreased with the incubation period. Similarly, to what was described for soil 

inoculated with T.versicolor, in this treatment dehydrogenase activity was increased 

in the presence of the pesticide mixture, which suggests higher metabolic activity in 

the presence of the pesticides. 

Regarding the effect of water potential on dehydrogenase activity, it was difficult to 

establish a pattern on the effect of this parameter on the enzyme activity. Previous 

studies described an increase in soil dehydrogenase activity with increasing water 

content (Quilchano and Maranon, 2002) 

Previous studies have also correlated pesticide degradation with dehydrogenase 

activity. For example Min et al. (2001) reported that increasing concentrations of 

butachlor in soil enhanced the activity of dehydrogenase with the highest activity on 

the 16th day after application of 22 mg kg soil-1 of butachlor. Baran et al. (2004) 

reported high dehydrogenase activity in soil contaminated with PAH. Previously, 

Felsot and Dzantor (1995) described the effect of alachlor and organic amendment on 

soil dehydrogenase activity and on pesticide degradation rates. Alachlor initially 

inhibited soil dehydrogenase in soil. Amendment of soil with corn-meal caused faster 
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degradation of alachlor. At very high concentrations of alachlor (750 mg kg soil-1) 

dehydrogenase activities in amended soils surpassed levels in corresponding no-

pesticide controls after 21d, with coincident alachlor degradation >50% during the 

same period. They suggested that stimulation of microbial activity by addition of 

organic amendments may enhance co-metabolism of high concentrations of pesticides 

in soil. 

Interestingly McGrath and Singleton (2000) reported a completely different effect of 

pollutants on dehydrogenase activity. They assessed PCP transformation in soil, and 

observed that after 6 weeks remediation, soil PCP levels had decreased from an initial 

250 to 2 mg kg-1. However, soil dehydrogenase activity remained very low in all soils 

containing PCP and did not recover throughout the experiment (6 weeks) despite the 

decrease in PCP levels. They suggested either toxic PCP transformation products 

were formed or that soil microbes had not fully recovered from initial toxic responses 

towards PCP. They also reported that soil inoculation with P.chrysosporium did not 

improve PCP remediation over uninoculated soil. 

In the current study soil amended with wood chips had higher dehydrogenase activity 

than the control soil. Previous studies by Moorman et al. (2001) reported that the 

addition of 0.5% sawdust stimulated dehydrogenase activity. Incorporation of corn-

meal and sewage sludge into designated plots of soils contaminated with herbicides 

(alachlor, atrazine, metochlor and atrazine) during 100 days showed that 

dehydrogenase activities were highest in organic-material amended plots (Dzantor et 

al. 1993). Interestingly the levels of trifluralin had declined by 70-80% in corn-meal 

amended plots and by 60-75% in unamended plots. 

Dehydrogenation is considered to be caused by a large group of endocellular enzymes 

which transfer H+ and electrons from a substrate to an appropriate acceptor during the 

initial stage of organic compound oxidation. The electrons are transferred via a 

transporter chain to the final acceptor, oxygen, to form water. The principle of the 

method to quantify dehydrogenase activity is the electron acceptor is replaced by an 

oxido-reduction indicator (INT), that in the reduced state is transformed into formazan 

(INF) a red compound, insoluble in water but soluble in organic solvents (Brohon et 

al., 1999). The activity of dehydrogenase is considered an indicator of the oxidative 

metabolism in soils and thus of the microbiological activity because being exclusively 
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intracellular it is linked to viable cells (Quilchano and Maranon, 2002). Even though 

dehydrogenase reflects a broad range of microbial oxidative activities, and it does not 

always consistently correlate to microbial numbers, CO2 evolution or O2-

consumption. Additionally, dehydrogenase activity may depend upon the nature and 

concentration of amended C-substrates and alternative electron acceptors (Somerville 

and Greaves, 1987). Since the activity of this enzyme depends on the total metabolic 

activities of soil microorganisms the concentrations in different soils do not always 

reflect the number of viable microorganisms isolated on a particular medium (Page et 

al., 1982). Rossell and Tarradellas (1991) concluded that short-term (substrate-

induced) dehydrogenase activity may reflect the impact of chemicals on the 

physiologically active biomass of the soil microflora. 

Enzymes involved in wood degradation 

The degradative capacity of white rot fungi is assumed to result from the activity of 

non-specific free-radical based mechanisms of ligninolytic enzymes, lignin 

peroxidases, manganese peroxidases and laccases (Nerud et al., 2003). The lignin 

degradation system is suitable for the elimination of not only lignin from wood but 

also various so-called lignin related pollutants (Mester and Tien, 2000). When white 

rot fungi colonise contaminated soil, lignin degrading enzymes are released into the 

extracellular medium, degrading large molecules that would otherwise be unable to 

cross cell walls (Canet et al, 2001). Such metabolism has the great advantage that the 

fungi avoid the uptake of potentially toxic substances. Furthermore, because of the 

non-specific action of the enzymes involved, preconditioning of the fungi to 

individual pesticides is not necessary. And, as the induction of the extracellular 

enzymes system is independent of the presence of contaminants, the fungi can 

degrade contaminants at extremely low concentrations (Canet et al., 2001). 

In this study the total ligninolytic activity in soil was assessed as well as laccase and 

cellulase activities.  
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Total ligninolytic activity 

Total ligninolytic activity was expressed as the capacity to decolourise Poly-R478. 

The decolouration assay of poly-R478, with similar structure to lignin, gives 

information on the activity of the whole set of enzymes because the degradation of 

lignin in soil is carried out by several enzymes. 

The results showed that decolouration of this dye, occurred in all treatments with the 

highest levels of decolouration after 6 weeks incubation, in soil inoculated with 

T.versicolor and in soil amended with SMC. After 12 weeks incubation the highest 

decolouration rates were observed in soil amended with SMC. In both cases the 

decolouration rates were unaffected by pesticide treatment. The results suggest the 

fungal inoculants were tolerant to this mixture of pesticides, producing equivalent 

levels of decolouration in the presence and absence of the xenobiotics. Interestingly, 

water potential had an impact on the decolouration percentage in soil amended with 

wood chips, with higher decolouration at -2.8 MPa. In this water regime the 

decolouration rates were significantly higher in the pesticide treatments compared 

with the control (0 mg kg soil-1). 

There was no correlation between degradation of the dye and degradation of the 

pesticide mixture in this study. A similar result was described for degradation of 

diuron, metalaxyl atrazine and terbuthylazine, by several fungi in liquid culture 

(Bending et al., 2002). In contrast, Alcalde et al. (2002) observed that decolouration 

of Poly R-478 was correlated to the oxidation of PAHs mediated by laccases.  

Laccase 

In the current study the presence of pesticides did not impair laccase production. In 

natural soil the production of laccase was insignificant, whereas soil amended with 

wood chips showed some laccase production in some of the treatments especially 

after an incubation period ≥ 12 weeks. The enzyme may have been produced by 

native soil wood degrading fungi that in the meantime might have colonised the wood 

chips. The highest level of activity for soil amended with wood chips was observed in 

the 10 mg kg soil-1 treatment, under water stress (22 U g soil -1).  
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Soil inoculated with T.versicolor had the highest laccase activity, after 6 weeks 

incubation, in the 5 and 10 mg kg soil-1 treatments, under both water regimes, 

although after 24 weeks incubation laccase levels decreased in all treatments. Water 

availability did not affect laccase production in the soil by this isolate. 

In soil inoculated with P.ostreatus lower levels of laccase were produced and this was 

reduced in the pesticide treatments. P.chrysosporium produced very low 

concentrations of laccase and only occurred in the pesticide treatments. The enzyme 

may have been produced by the native soil microflora since P.chrysosporium did not 

produce laccase under sterile conditions in soil extract broth or in the Petri plate 

assay. 

A previous study also showed that P.chrysosporium did not produce laccase in soil 

(Novotny et al., 1999), and that high laccase production by T.versicolor in soil occurs 

after 30 days incubation (Leonowicz and Bollga, 1987). In contrast, Novotny et al. 

(1999) reported this species produced very low concentrations of laccase in soil. 

Like in the current study, Boyle (1995) found that laccase was only detected when 

white rot fungi were known to be present. This author suggested that the laccase assay 

could be used to measure white rot fungi colonisation of non-sterile soil, in contrast 

with CO2 production which reflected the activity of the total soil microbial 

populations (Boyle, 1995).  

Interestingly, previous studies showed a different pattern regarding the effect of 

pesticide on laccase activity. For example Sannino et al. (1999) showed that Cerrena 

unicolor did not produce laccase in the presence of simazine 0.5-7 mgl-1. These 

authors showed that 2,4-DCP transformation by laccase is repressed when simazine is 

present in the reaction mixture. This was not observed in the current study, in fact 

T.versicolor R26 produced the highest levels of laccase in the presence of the 

pesticide mixture. 

Few studies have considered the implications of water stress on the enzymatic 

activity. Boyle (1995) found that T.versicolor did not produce laccase in soil at -

3.4MPa but high activities were detected in soils at -0.9MPa and -0.4MPa water 

potential. 
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Cellulase 

The highest production of cellulase was found in soil inoculated with P.ostreatus and 

P.chrysosporium at -2.8 MPa, whereas the lowest production was found in natural 

soil, and soil amended with SMC. Soil amended with wood chips showed high levels 

of cellulase in some of the treatments (only in 5 mg kg soil-1-6 weeks; 10 mg kg soil-1-

12 weeks). This enzyme could have been produced by native cellulolytic soil 

microorganisms attacking the wood chips. T.versicolor produced less cellulase than 

the other two isolates tested.  

4.4.5 Microbial communities 

Overall the results showed few significant differences in total viable microbial 

populations between treatments. This has also been reported in a previous study 

(Katayama et al., 2001). They examined the effect of 5 pesticides, individually, on the 

structure of microbial communities and found that simazine did not significantly 

affect the microbial biomass in soil.  

However, other studies showed significant alterations in microbial populations in 

contaminated soil. For example: Min et al. (2001) reported that the number of 

actinomycetes declined significantly after the application of butachlor at different 

concentrations from 5.5 to 22 mg kg soil-1, while that of true bacteria and fungi 

increased. Interestingly Ahmed et al. (1998) reported that very low concentrations of 

chlorinated hydrocarbon pesticides detected in top soil (0.5 µg kg soil-1) caused a 

sharp decrease in nitrifying bacteria and a significant depression in soil heterotrophic 

bacteria and fungi. 

The microbial population of a site contaminated with pesticides may be eliminated, 

significantly reduced or altered; but alternatively, microbes may adapt to the presence 

of toxic compounds and can survive by degrading them (Jonhston and Camper, 1991) 

as some microrganisms can utilise pesticides as a nutrient source.  

As soil microrganisms are not equal resistant to xenobiotics, some of them are very 

sensitive and do not grow when toxic compounds are present in high concentrations 

or constitute a low carbon and energy source, while other are able to adapt (Guirard et 

al., 2003) and grow well. For this reason the microbial communities within 
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contaminated ecosystems tend to be dominated by those organisms capable of 

utilising and/or surviving toxic contamination. As a result, these communities are 

typically less diverse than those in non-stressed systems. This diversity may be 

influenced by the complexity of chemical mixtures present and the length of time the 

populations have been exposed (Macnaughton et al., 1999). Since the quantification 

of the colony-forming units on agar plates does not give information on the bacterial 

diversity, similar bacterial densities do not necessarily mean the microbial 

communities are similar.  

Furthermore, the quantification of the colony-forming units on agar plates has been 

criticized (Harris and Steer, 2003) because only 0.1 to 1% of the cells present in an 

environmental sample can actually be cultivated on nutrient media. Little is known 

about the remaining non-culturable portion of the microbial community. For example, 

fastidious microorganisms do not form colonies. On the other hand, germination of 

resting stages (i.e. spores) and fragmentation of fungal hyphae with each fragment 

producing a separate colony can lead to overestimations of the numbers of some 

microbial groups. 

For these reasons, there is a growing interest in the development of biological and 

biochemical methods for the assessment of microbial structure in soil (Vepsalainen et 

al., 2001) as changes in the profiles of soil microbial communities could have 

potential use as early indicators of the impact of management or other perturbations 

on soil functioning and soil quality. Methods such as polar lipid fatty acid analyses 

(PLFA), based on the analysis of polar lipids present in the biological membranes 

yield a direct quantitative method of the biomass as well as a profile of the microbial 

community structure (Vestal and White, 1989), would be interesting to use in study of 

microbial populations during and after bioremediation. 

4.4.6 Effect of spent mushroom compost in the microcosms  

Overall soil microbial activity and pesticide degradation was enhanced in soil 

amended with SMC. For example, the degradation of pesticides after 12 weeks was 

17, 49 and 76% (for simazine, trifluralin and dieldrin) higher in soil amended with 

SMC than in the control. An increase in CO2 levels was found at 24 weeks in the 10 

mg kg soil-1 treatment, and at 6 weeks in the treatment without pesticide (-2.8 MPa). 
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The high concentration of CO2 towards the end of the experiment at 10 mg kg soil-1 

(3x control soil), and after 6 weeks in the control treatment (20x control soil) could be 

related to the development of fungal mycelium from the SMC. 

Interestingly this treatment showed higher dehydrogenase activity in the presence of 

the pesticide mixture (at -0.7 and -2.8 MPa) and after 12 weeks incubation (at -2.8 

MPa), which suggested an increased metabolic activity in the presence of the 

pesticides. The total ligninolytic activity was very high in soil amended with spent 

mushroom compost. At -0.7 MPa after 12 weeks in the 10 mg kg soil-1 treatment the 

decolouration was close to 100%. Cellulase production varied throughout the 

experiment, with higher activities after 0 and 24 weeks incubation. Possibly, initially 

the cellulase detected was from the SMC, which is naturally rich in enzymes whereas 

at a later stage this activity could be linked with fungi that meanwhile may have 

developed, possibly from the SMC. 

The increase in soil activity observed when SMC was used as a soil amendment can 

be linked to the microorganism and extracellular enzymes abundant in this substrate 

(Singh et al., 2003). Furthermore, the addition of SMC increased the organic matter 

content in the soil microcosms and this may have been the reason for the improved 

soil activity observed. High organic matter content is typically associated with higher 

microbial numbers and a great diversity of microbial populations, as it serves as a 

storehouse of carbon and energy as well as a source of other macronutrients such as 

nitrogen, phosphorous and sulphur (Boopathy, 2000). It has been shown in previous 

investigations that the increase in soil organic matter enhances enzyme activities 

(Dick et al., 1988; Martens et al., 1992; Kandeler and Eder, 1993; Klose et al., 1999; 

Pascual et al., 1999). Liang et al. (2003) reported a significant increase in soil alkaline 

phosphatase and soil respiration rates in soils that were supplemented with organic 

manure. Other example of enhanced soil activity with the addition of organic matter 

was described by Moorman et al. (2001), showed that the addition of manure to soil 

contaminated with a mixture of trifluralin, atrazine and metolachlor significantly 

increased bacterial populations, dehydrogenase activity and respiration rates. 

Besides the positive effect that SMC showed when used as a soil amendment Buswell 

(1994) proposed the use of this agro-waste as a source of fungal inoculum, when 
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using fungi for bioremediation, in cases where the availability of fungal inoculum is 

of practical concern (Buswell, 1994). 

4.4.7 Correlation between different parameters  

Some correlations were also calculated from the results, at 6 weeks incubation, when 

the different biochemical, enzymological parameters suggested higher metabolic 

activity, and a correlation between CO2 content and dehydrogenase activity was 

confirmed in this study for some of the treatments. High CO2 content was obtained in 

treatments with high dehydrogenase activity. The same correlation was reported in a 

recent stud by Garcia et al., (2004). Since dehydrogenase is present in all 

microorganisms, dehydrogenase assays are considered to be an accurate measure of 

microbial oxidative activity in the soil (Taylor et al., 2002). As the enzymes involved 

in the dehydrogenase assay are mainly intracellular and related to the phosphorylation 

processes (Garcia et al., 2004), an increase in these processes leads to an increase in 

CO2 production, a by-product of the phosphorilative process, which was confirmed in 

the current study. A correlation was also found between soluble protein content and 

total microbial populations for some treatments. 

4.5 Differences between studies: soil extract broth and 
soil microcosms 

Although the white rot fungi used in the soil extract broth study were exceptionally 

efficient degrading the mixture of pesticides in soil extract broth, in the soil 

microcosms the biodegradation rates were not has high. Several factors might have 

contributed to these differences. For example, the temperature was higher than in the 

soil extract broth assays. The rate of pesticide transformation can be doubled or even 

tripled when temperature increases by 10oC (Gan and Koskinen, 1998). Other factors 

could have been competition from native bacterial and fungal populations in soil 

microcosms, as the soil extract broth was sterile which allowed the test isolates to 

grow without the limitations encountered in soil. Additionally, because white rot 

fungi are not native to soil some autochthonous bacteria and fungi may become 

predominant over the growth of fungal inoculants. The chemical sorption of the 

pesticide to soil particles, could have been another factor influencing the degradation 

rates in soil, by reducing the proportion of pesticide bioavailable for degradation. 
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Only occasionally have direct comparisons been made between liquid medium and 

soil experiments. Lamar et al. (1990) compared P.chrysosporium and P.sordida with 

respect to removing pentachlorophenol from liquid medium and from soil, and found 

that P.chrysosporium was more effective in soil whereas P.sordida was more efficient 

in liquid culture. Ryan and Bumpus (1989) reported higher 2,4,5-

trichlorophenoxyacteic acid mineralisation rates by P.chrysosporium (62%) in liquid 

culture after 30 days, compared to that in soil (30%).  

Regarding enzyme production there were also some differences between soil extract 

broth and soil microcosms that are summarized in Table 4.1. Interestingly, the main 

differences concern the effect of water availability on laccase and cellulase activities. 

Generally, enzyme activities were higher at -2.8 MPa in soil, whereas in soil extract 

these were higher at -0.7 MPa. The comparison between biomass production, 

expressed as dry weight in the soil extract experiment and dehydrogenase activity in 

soil microcosms, the results were fairly consistent in regard of water availability, 

however whereas in soil the biomass increased with the concentration of the pesticide 

mixture, in soil extract this was only observed for the T.versicolor inoculant. 
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Table 4.1 Comparison between soil extract broth and soil microcosms for laccase, 

cellulase and biomass production (dry weight for soil extract broth and dehydrogenase 

activity for soil microcosms). T.v.= T.versicolor (R26), P.o.= P.ostreatus and P.c.= 

P.chrysosporium. 

Parameter  Fungi Soil extract broth  Soil microcosms 

T.v. Higher production in presence of 

pesticide mixture, higher 

production at -0.7MPa 

Higher production in 

presence of pesticide 

mixture, higher 

production at -2.8MPa 

P.o. Higher production in presence of 

pesticide mixture, higher 

production at -2.8MPa 

Decrease in presence of 

pesticide mixture, higher 

production at -2.8MPa 

 

Laccase 

P.c. Not detected Detected at very low 

levels at 10 mg kg soil-1 

under both water regimes 

T.v. Higher at -0.7 MPa Higher at -2.8 MPa 

P.o. Higher in control, higher at -0.7 

MPa 

Higher at -2.8 MPa 

 

Cellulase 

P.c. Higher at lower mixture 

concentration, higher at -0.7 MPa 

Higher at -2.8 MPa 

T.v. Higher at -2.8 MPa, increase in 

presence of mixture 

Higher at -2.8 MPa, 

increase in presence of 

mixture 

P.o. Higher at -2.8 MPa (higher in 

presence of mixture at this Ψ) 

Higher at -2.8 MPa, 

increase in presence of 

mixture 

Biomass  

P.c. Higher at -2.8 MPa (higher in 

control for this Ψ) 

Higher at -2.8 MPa, 

increase in presence of 

mixture 
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4.6 Microbiological and biochemical parameters sensitive 
to pesticide contamination 

Successful bioremediation is dependent on an interdisciplinary approach involving 

such disciplines as microbiology, engineering, ecology, geology and chemistry 

(Boopathy, 2000). To evaluate the outcome of bioremediation it is critical to assess 

some microbiological and biochemical parameters all giving information on soil 

quality. It is difficult to choose which parameters are more reliable, as the relationship 

between an individual biochemical property and the total microbial activity is not 

always clear, in complex systems like soils where the microorganisms and processes 

involved in the degradation of organic compounds are highly diverse (Nannipieri et 

al., 1990). 

In the current study the comparison of some of the microbiological parameters 

between soil artificially contaminated with a pesticide mixture and control soil 

showed some interesting findings: dehydrogenase, cellulase activities and total 

number of bacteria were higher in contaminated soil (at 5 and 10 mg kg soil-1), 

respiratory activity was also increased in the presence of 10 mg kg soil-1 of a pesticide 

mixture. These results suggested an increase in metabolic activity in contaminated 

soil. This was also described by Ayoama and Itaya (1995) in slightly polluted soil, 

where conditions gradually deteriorated due to the presence of contaminants with the 

microorganisms increasing their metabolic rate to the detriment of biosynthesis. 

The results are also confirmed by a more recent study by Filip (2002) examining the 

relative sensitivity of selected microbiological and biochemical parameters for the 

assessment of soil quality based on long–term soil analyses from 49 differently 

anthropogenically-affected European soil. This project involved scientists from the 

Czech Republic, Hungary, Russia, Slovakia and Germany that looked at samples from 

different sites in Europe. After evaluation of more than 20 individual parameters they 

concluded that N2-fixing bacteria, total microbial biomass, soil respiration and 

dehydrogenase activity could serve as sensitive indicators of soil quality (a summary 

table of the results is shown in Table 4.2).  

Similarly Visser and Parkinsson (1992 ) suggested that the biological and biochemical 

properties that are the most useful for detecting the deterioration of soil quality are 
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those that are more closely related to nutrient cycles, including soil respiration, 

microbial biomass, nitrogen mineralization capacity and the activity of soil enzymes. 

Despite many studies on the use of enzymes as sensors to monitor the effects of 

pesticides on soil microflora, some authors are rather sceptical in relation to this 

approach. For example Somerville and Greaves (1987) stated that soil enzyme 

activities would be of little value to monitor side effects of pesticides on microflora. 

These authors claim that there is no universally agreed methodology, and almost any 

result can be achieved by varying assay conditions (temperature, pH, substrate). And 

even though tests on enzyme activity have been described by many authors, little data 

is available to judge the reproducibility of these methods. Also soil animals, such as 

collembola and isopods, significantly influence the activity of several enzymes, such 

as urease (Verhoef and Brussard, 1990), dehydrogenase, and cellulase (Teuben and 

Roelofsma, 1990). Therefore, discriminating between direct and indirect effects of the 

tested chemicals on microorganisms is difficult. 

 

Table 4.2 Relative sensitivity of the selected microbiological and biochemical 

parameters for the assessment of soil quality based on long –term soil analyses from 

49 differently anthropogenically-affected European soil (From Zilip, 2002). 

Parameter Relative sensitivity* 

Microbial biomass + /++ 

Respiration (CO2) release  +++ 

Dehydrogenase activity +++/ ++++ 

*Sensitivity (relative to a control soil): (+) low; (++++) maximum 
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5 Conclusions and Further Work 



Conclusions and further work 

 193

5.1 Conclusions 

The results obtained in this study provide valuable knowledge on the abilities of 

T.versicolor, P.ostreatus and P.chrysosporium to colonise soil and might serve as a 

sound basis for the further exploitation of these species as fungal inoculants in 

biological remediation processes.  

The main findings are summarised below: 

1. Screening in soil extract agar (a nutritionally poor medium), on the tolerance 

of eight white rot fungi to simazine, trifluralin and dieldrin (listed in the “UK 

Red List of Toxic Substances), individually and in a mixture, under two 

different water regimes suggested best tolerance by T.versicolor R26 and 

R101 and P.ostreatus. 

2. When the effect of water stress was examined changing the water availability 

by modifying osmotic and matric potential all test isolates showed better 

tolerance to osmotic imposed stress. 

3. In agar-based studies T.versicolor R26 and R101 and P.ostreatus were able to 

degrade lignin and produce laccase, in the presence of the pesticides, 

individually and as a mixture, under two different water regimes. In contrast 

P.chrysosporium did not produce laccase or degraded lignin under the 

conditions of the assay.  

4. Because of the technical limitations in examining enzyme production and 

pesticide degradation in soil extract agar, a liquid culture study was conducted 

with soil extract liquid broth.  

5.  All four test isolates were able to grow in soil extract broth and degraded 

mixture of pesticides: complete degradation of dieldrin and trifluralin was 

observed, while about 80% of the simazine was degraded regardless of 

osmotic stress treatment, after 25 days.  

6. The assessment of the toxicity (Toxalert®10) in the soil extract after 25 days 

incubation with the test isolates, suggested the final product was innocuous 
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7. Expression of a range of extracellular enzymes in soil extract broth at both -

0.7 and -2.8 MPa was observed: P.ostreatus and T.versicolor R26 showed 

high production of laccase whereas P.chrysosporium and T.versicolor R101 

did not produce this enzyme.  

8.  The capacity of tolerance and degradation of mixtures of pesticides and 

production of a range of enzymes in soil extract even under osmotic stress, 

suggested potential bioremediation applications of theses isolates in soil, 

which was tested subsequently in soil microcosms 

9. T.versicolor (R26), P.ostreatus and P.chrysosporium were able to colonise 

soil contaminated with a mixture of pesticides  

10. Inoculation with the test isolates increased soil activity, expressed as an 

increase in respiratory, enzymatic activities  and biodegradation rates when 

compared with the control: 

11. Very high levels of laccase were produced in soil inoculated with T.versicolor 

R26, especially in the presence of the pesticide mixture 

12. Soil inoculated with T.versicolor R26 showed improvement in degradation 

rates: 46, 57, and 51% for simazine, trifluralin and dieldrin, higher than in the 

control soil. 

13. Soil inoculated with P.chrysosporium showed pesticide degradation rates: 58, 

74, and 70% (for simazine, trifluralin and dieldrin) higher than in the control 

soil. 

14. Soil amended with SMC also showed improved pesticide degradation: 17, 49 

and 76% for simazine, trifluralin and dieldrin higher than in unamended soil 

15.  Soil inoculated with T.versicolor R26 showed improved respiration rates in 

all the treatments with concentrations of CO2 up to 1.2, 54 and 11 times higher 

than in natural soil (for the treatments 0, 5 and 10 mg kg soil-1, respectively) 

16. In soil inoculated with P.ostreatus the respiration rates were up to 30, 6 and 5 

times higher than in natural soil for the treatment 0, 5 and 10 mg kg soil-1 

respectively 
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17. The highest respiratory activity was observed in soil inoculated with 

P.chrysosporium up to 29, 19 and 14 times higher than in natural soil (for the 

treatments 0, 5 and 10 mg kg soil-1). 

5.2 Further Work 

Possible further studies based on the findings of this study are: 

 

� Study of the microbial populations structure 

The current study has shown few differences on microbial populations, therefore a 

more detailed approach on the effect of this mixture of pesticides, before and after 

bioremediation, on soil microbial structure, would be very interesting. I would suggest 

the analysis of polar fatty acids, a method based on the analysis of polar lipids in the 

biological membranes, which yields a direct quantitative method of the biomass as 

well as a profile of the microbial community structure. Molecular techniques, that rely 

on the capture and amplification of sequences of interest could also be a good method 

to characterise the soil microbial communities in microcosm experiments. 

 

 

� Analysis of metabolites by GC-MS 

The current study has shown significant decreases in detectable pesticides in soil 

after incubation with fungal inoculants. However, these pesticides may have been 

completely degraded or mineralised; some of it may have been transformed in 

unknown metabolites. Additional studies on the toxicity of soil after remediation as 

well as a thorough analysis by GC-MS of the final products would be pertinent, as 

chemical degradation and microbial cometabolism may produce toxic intermediates. 

 

� Field studies in a contaminated site 

The reliability of microcosm studies in the laboratory to interpret field conditions is 

much debated. Microcosms differ from the field situation concerning the influence 

of temperature and moisture dynamics, the influence of root presence, and the 

composition of the soil biota community. The studies described in this thesis 

provide an estimate of the possible hazard imposed by this mixture of pesticides on 
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the soil microflora and the efficiency of the test isolates in the bioremediation of 

these chemicals. Although the results are very promising, under field conditions the 

outcome may be different. First, the exposure to the contaminants may be different 

since the chemicals are not distributed uniformly, and bioavailability will often vary 

due to various sorption processes. Second, by contrast, in the laboratory the test 

fungus is under controlled conditions, without secondary stresses, such as cold, 

drought or excessive rain, which possibly gave a better performance than in the 

field. 

The uncertainties attached to the laboratory-to-field extrapolation can be avoided by 

conducting experiments under semi-field or field conditions. Therefore, I would 

suggest further studies to examine the feasibility of using these white-rot fungi at a 

larger scale, first in boxes (containing around 10 kg of soil) and later in a 

contaminated site. 
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