Technical University of Denmark

Environmental radioactivity in the North Atlantic Region including the Faroe Islands and Greenland. 1988 and 1989

Aarkrog, Asker; Buch, E.; Chen, Q.J.; Christensen, G.C.; Dahlgaard, H.; Hansen, H.; Holm, E.; Nielsen, Sven Poul

Publication date: 1992

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Aarkrog, A., Buch, E., Chen, Q. J., Christensen, G. C., Dahlgaard, H., Hansen, H., ... Nielsen, S. P. (1992). Environmental radioactivity in the North Atlantic Region including the Faroe Islands and Greenland. 1988 and 1989. (Denmark. Forskningscenter Risoe. Risoe-R; No. 571(EN)).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DK 9200051

Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1988 and 1989

A. Aarkrog, E. Buch, Q.J. Chen, G.C. Christensen, H. Dahlgaard, H. Hansen, E. Holm, and S.P. Nielsen

Risø National Laboratory, Roskilde, Denmark January 1992

Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1988 and 1989

A. Aarkrog, E. Bucli^o, Q.J. Chen, G.C. Christensen^{*}, H. Dahlgaard, H. Hansen, E. Holm^{**}, and S.P. Nielsen

° The Greenland Fisheries and Environmental Research Institute, Denmark

* Institute for Energy Technology, Kjeller, Norway

** University of Lund, Sweden

Risø National Laboratory, Roskilde, Denmark January 1992 Abstract Measurements of fallout radioactivity in the North Atlantic region including Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of ⁹⁰Sr and ¹³⁷Cs in human diet in the Faroes and Greenland in 1988 and 1989. ⁹⁹Tc data on marine samples, in particular sea water from the Greenland Sea, are reported.

ISBN 87-550-1791-6 ISSN 0106-2840 ISSN 0900-8098

Grafisk Service, Risø, 1992

Contents

Abbreviations and Units 5

1 General Introduction 7

- 2 Environmental Radioactivity in the Faroe Islands in 1988 and 1989-7
- 2.1 Introduction 7
- 2.2 Results and Discussion 8
- 2.2.1 Strontium-90 and Radiocesium in Faroese Precipitation 8
- 2.2.2 Strontium-90 and Radiocesium in Faroese Grass 8
- 2.2.3 Strontium-90 and Radiocesium in Faroese Milk 8
- 2.2.4 Strontium-90 and Radiocesium in Faroese Terrestrial Animals 8
- 2.2.5 Strontium-90 and Radiocesium in Faroese Sea Animals 9
- 2.2.6 Strontium-90, Radiocesium and Tritium in Faroese Drinking Water and Other Fresh Waters 9
- 2.2.7 Strontium-90 and Radiocesium in Miscellaneous Faroese Samples 10
- 2.2.8 Humans from the Faroes (No samples in 1988 and 1989) 11
- 2.2.9 Fodder and other Vegetations from the Faroes 11
- 2.2.10 Moss from the Faroes 11
- 2.3 Estimate of the Mean Contents of Strontium-90 and Cesium-137 in the Faroese Human Diet in 1988 and 1989 43
- 2.3.1 Annual Quantities 43
- 2.3.2 Milk and Cream 43
- 2.3.3 Cheese 43
- 2.3.4 Grain Products 43
- 2.3.5 Potatoes 43
- 2.3.6 Other Vegetables and Fruit 43
- 2.3.7 Meat and Eggs 42
- 2.3.8 Fish 44
- 2.3.9 Coffee and Tea 44
- 2.3.10 Drinking Water 44
- 2.4 Conclusion 48
- 2.5 Predictions and Observations of Strontium-90 and Cesium-137 in Faroese Samples in 1988 and 1989 48
- 2.6 Texture and Soil Analysis 50

3 Environmental Radioactivity in Greenland in 1988 and 1989 52

- 3.1 Introduction 52
- 3.2 Results and Discussion 52
- 3.2.1 Strontium-90 in Greenland Precipitation 52
- 3.2.2 Radionuclides in Greenland Sea Water 52
- 3.2.3 Strontium-90 and Radiocesium in Green!and Terrestrial Mammals 53
- 3.2.4 Strontium-90 and Radiocesium in Greenland Aquatic Animals 53
- 3.2.5 Radionuclides in Greenland Vegetation 53
- 3.2.6 Strontium-90 and Tritium in Greenland Drinking Water 53
- 3.3 Estimate of the Mean Contents of Strontium-90 and Cesium-137 in the Human Diet in Greenland in 1988 and 1989 64
- 3.3.1 The Annual Quantities 64
- 3.3.2 Milk Products 64
- 3.3.3 Grain Products 64
- 3.3.4 Potatoes, Other Vegetables, and Fruit 64
- 3.3.5 Meat 65

Risø-R-571(EN)

3.3.6 Fish 65 3.3.7 Coffee and Tea 65 3.3.8 Drinking Water 65 3.3.9 Discussion 65

3.4 Conclusion 69

4 Environmental Radioactivity in the North Atlantic Region 70

- 4.1 Monthly Surface Sea Water Samples from Utsira, Norway 70
- 4.2 Surface Sea Water Samples Collected in West Greenland Waters in 1988 by The Greenland Fisheries and Environmental Research Institute 73
- 4.3 »Bjarni Sæmundson« Cruise to the Denmark Strait and the Southern Greenland Sea in September 1988 (GSP Project) 74
- 4.4 Radionuclides in Lichen Collected at a Norwegian Location 1985-1991 90
- 4.5 Radionuclides in Fucus Vesiculos'is and Fucus Serratus Collected at a Norwegian Location 1984-1990 93
- 4.6 Environmental Samples from Iceland 95

Acknowledgements 97

References 97

Abbreviations and Units

joule: the unit of energy; I J = I Nm (= 0.239 cal)**]**: Gy: gray: the unit of absorbed dose = 1 J kg^{-1} (= 100 rad) Sv: sievert: the unit of dose equivalent = 1 J kg^{-1} (= 100 rem) Bq: becquerel: the unit of radioactivity = 1 s^{-1} (= 27 pCi) cal: calorie = 4.186 J rad: 0.01 Gy rem: 0.01 Sv Ci: curie: 3.7×10^{60} Bq (= 2.22×10^{12} dpm) E: exa: 1018 P: peta: 1015 T: tera: 1012 G: giga: 10⁹ M: mega: 106 k: kilo: 10³ m: milli: 10-3 μ: micro: 10-6 n: nano: 10-9 pico: 10-12 **p**: f: femto: 10-15 **a**: atto: 10-18 pro capite: per individual TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent to 109 kg TNT. yr⁻¹: per year (a^{-1}) cpm: counts per minute dpm: disintegrations per minute OR: observed ratio CF: concentration factor FP: fission products μ R: micro-roentgen, 10⁻⁶ roentgen S.U.: pCi ⁹⁰Sr (g Ca)⁻¹ O.R.: observed ratio M.U.: pCi ¹³⁷Cs (g K)⁻¹ **V**: vertebrae **m**: male female f: nSr: natural (stable) Sr eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl $(\sim 0.96 \text{ dpm} = 0.016 \text{ Bq}; 1 \text{ g K} = 30.65 \text{ Bq})$

S.D.: standard deviation:
$$\sqrt{\frac{\sum(\bar{x} - x_i)^2}{(n-1)}}$$

S.E.: standard error $\sqrt{\frac{\sum(\bar{x} - x_i)^2}{n(n-1)}}$

Risø-R-571(EN)

- U.C.L.: upper control level
- L.C.L.: lower control level
- S.S.D.: sum of squares of deviation: $\Sigma(\bar{x} \cdot x_i)^2$
- f: degrees of freedom
- s²: variance
- v²: ratio of the variance in question to the residual variance
- P: probability fractile of the distribution in question
- η : coefficient of variation, relative standard deviation
- anova: analysis of variance
- A: relative standard deviation 20-33%
- B: relative standard devition >33%, such results are not considered significantly different from zero activity
- B.D.L.: below detection limit

In the significance test the following symbols were used:

- : probably significant (P > 95%)
- ** : significant (P > 99%)
- ***: highly significant (P > 99.9%)

1 General Introduction

From 1962 to 1982 we have published separate annual reports on Environmental Radioactivity in the Faroes (Riso Reports (Faroese: 1962-1982) and Greenland (Riso Reports (Greenland) 1962-1982) The reports for 1983 and after are con-tined in the new series: "Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included" (Riso Reports (North Atlantic Region (1983-1987) of which the present report is the sixth. It includes 1988 and 1989. In the tables and figures, which are placed at the end of each chapter, 1988 is marked by A and 1989 by B.

Chapter 2 in this report corresponds to the sarlier report for the Faroes and Chapter 3 to the Greenland report.

In Chapter 4 we report on environmental radioactivity studies from other parts of the North Atlantic region including some sea water data from the Faroe Islands and Greenland. Chapter 4 also includes results from sam⁻ ings carried out in earlier years.

2 Environmental Radioactivity in the Faroe Islands in 1988 and 1989

2.1 Introduction

2.1.1.

The fallout programme for the Faroes, which was initiated in 1962 (Riso Reports (Faroese) 1962-1982) in close co-operation with the National Health Service and the chief physician of the Faroes, was continued with some adjustments due to the Chernobyl accident. A special sampling was carried out by Riso in July 1989 in order to compare the environmental behaviour of Chernobyl debris with that from old global fallout and with a similar sampling in 1987.

2.1.2.

The present report will not repeat information concerning sample collection and an lysis already given in Riso Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346, 361, 387, 404, 422, 448, 470, 488, 510, 528, 541, 550 and 564 (Riso Reports (Faroese) 1962-1982), (Riso Reports (North Atlantic Region) 1983-1987).

2.1.3.

The mean diet of the Faroese used in this report is still based on the 1962 estimate given by the late Professor E. Hoff-Jørgensen.

2.1.4.

The present investigation was carried out together with corresponding examinations of fallout levels in Denmark and Greenland, described in Riso Report No. 570 and in Chapter 3 of this report, respectively.

Riso-R-57I(EN)

2.2 Results and Discussion

2.2.1 Strontium-90 and Radiocesium in Faroese Precipitation

Tables 2.2.1.1 and 2.2.1.3 show the ⁹⁰S: and radiocesium content, respectively, in precipitation collected at Højvig (near Thorshavn) and Klaksvig in 1988 and 1989.

The ³⁰Sr fallout in 1989 was close to the limit of detection.

The mean depositions of ¹³⁷Cs in 1988 and 1989 were 22 and 9 Bq m⁻², respectively. This corresponds to an effective halflife of about 0.5 years, shorter in Klaksvig and longer it. Højvig. Compared with Denmark the decrease is more rapid in the Faroes, corresponding to less resuspension here, probably due to the higher rain fall.

2.2.2 Strontium-90 and Radiocesium in Faroese Grass

As previously grass were collected in June and August from Thorshavn (cf. Tables 2.2.2.1.A and B).

Furthermore, Riso performed a countrywide sampling in July 1989 (Table 2.2.2.2). Compared with the corresponding sampling in 1987 the radiocesium levels were in general significantly lower in 1989 except at Sydero, where we observed a minor increase.

2.2.3 Strontium-90 and Radiocesium in Faroese Milk

Tables 2.2.3.1.A & B show the ⁹⁰Sr and Tables 2.2.3.2.A & B the radiocesium levels in Faroese milk in 1988 and 1989 (cf. also Figures 2.2.3.1 and 2.2.3.2). Tables 2.2.3.3-2.2.3.5 show the analysis of variances of the milk data.

Figure 2.2.3.3 shows how the relative contribution from Chernobyl Cs-137 has been decreasing in the Faroese milk. In 1987 about 80% of the ¹³⁷Cs in the milk was from Chernobyl; in 1990 ir had decreased to about 60% (see also Figure 2.2.3.4). The decrease was more rapid in the milk from Thorshavn than in the milk from Klaksvig and particularly from Tværå. These two locations received more Chernobyl fallout than Thorshavn. Figure 2.2.3.5 shows that ⁹⁰Sr in Faroese milk has decreased more rapidly than ⁹⁰Sr in Danish milk.

Table 2.2.3.6 shows the results from the Risø whole-milk sampling in July 1989 at four Faroese locations.

2.2.4 Strontium-90 and Radiocesium in Faroese Terrestrial Animals

Tables 2.2.4.A & B show the data in lamb from 1988 and 1989, respectively, and Figure 2.2.4.1 shows the ⁹⁰Sr levels in lamb bone since measurements began in 1962 and Figure 2.2.4.2 shows in a similar way the ¹³⁷Cs concentrations in lamb meat.

In Figures 2.2.4.3 and 2.2.4.4 we have shown the decrease of Chernobyl 137 Cs and global fallout 137 Cs in Faroese lambs. The regression was highly significant for Chernobyl (> 99.9%), but not for global fallout (90-95%).

The estimated effective halflives were 1.2 years for Chernobyl ¹³⁷Cs and 2.8 years for global fallout ¹³⁷Cs. This is comparable with the more solid estimates for milk (Figure 2.2.3.4). The calculated infinite time integral of ¹³⁷Cs in Faroese lamb from Chernobyl was 132 e^{-0.595}/0.595 = 123 Bq ¹³⁷Cs kg⁻¹ yr. This comes from a mean deposition of 2.1 kBq ¹³⁷Cs m⁻². Hence the transfer factor to lambs meat became 58 Bq ¹³⁷Cs kg⁻¹ yr per kBq ¹³⁷Cs m⁻². This may,

however, be an underestimate. We expect the effective halflife of Chernobyl ¹³⁷Cs to increase with time and approach that of global fallout ¹³⁷Cs. Hence if that is assumed, we will from 1990 use the effective halflife of global fallout for Chernobyl ¹³⁷Cs and the transfer factor increases from 58 to 66. This is 1.3 of the earlier estimate (Aarkrog 1979) for global fallout, which was 200 Bq ¹³⁷Cs kg⁻¹ yr per kBq ¹³⁷Cs m⁻².

2.2.5. Strontium-90 and Radiocesium in Faroese Sea Animals

The data on cod and haddock which since the early sixties have been collected quarterly from Faroese fishing waters are shown in Tables 2.2.5.1.A & B, in Figures 2.2.5.1-2.2.5.3.

As observed earlier the ¹³⁷Cs content of cod is significantly higher than that of haddock. It also appears that haddock contains relatively more Chernobyl ¹³⁷Cs than cod and that this difference between the two species has been increasing from 1987 to 1989.

The effective halflife of total ¹³⁷Cs in cod and haddock is a little more than two years.

The global fallout ¹³⁷Cs mean level (Bq kg⁻¹) in whales was 1987-1989: 0.29 \pm 0.03 (\pm 1 S.D.; N \pm 4) and in puffin we found 0.145 \pm 0.020 Bq ¹³⁷Cs kg⁻¹(\pm 1 S.D.; N = 3) (cf. Tables 2.2.5.2.A & B). Chernobyl ¹³⁷Cs was detectable in two of the four whales.

Fish samples outside our routine programme were received in .988 (Tables 2.2.5.3 and 2.2.5.4). Salmon contained 1.23 ± 0.26 Bq 137 Cs kg⁻¹ (± 1 S.D.; N = 10) and 66% of the 137 Cs came from Chernobyl. Cod and redfish contained significantly less 137 Cs than salmon; but the Chernobyl per cent was similar to that of salmon. This indicates a higher observed ratio between 137 Cs in fish and sea water for salmon than for the other species.

2.2.6 Strontium-90, Radiocesium and Tritium in Faroese Drinking Water and Other Fresh Waters

The ⁹⁰Sr and ¹³⁷Cs of Faroese drinking water (Tables 2.2.6.1.A & B and Figure 2.2.6.1) have been measured since 1987. The ¹³⁷Cs levels have shown a decreasing tendency in water from Thorshavn while the water from Klaksvig and Tværå has shown no clear trend.

The relative contribution of Chernobyl ¹³⁷Cs has been decreasing in Thorshavn drinking water, but has shown an increasing trend in the water from Klaksvig and Tværå.

The mean concentrations of global fallout ¹³⁷Cs in the period 1987-1990 were 1.0 Bq m⁻³ at Thorshavn, 0.2 at Klaksvig and 0.5 at Tværå. If these levels are compared with the similar ⁹⁰Sr mean levels, we can estimate the ¹³⁷Cs/⁹⁰Sr ratio from global fallout in Faroese drinking water to 0.23 ± 0.05 (± 1 S.D.; N = 3). This ratio is in agreement with what was found in New York tap water in 1964 (HASL-161 (1965)). In earlier reports (Risø Reports (Faroese) 1962-1982); (Risø Reports (Greenland) 1962-1982), (Risø Report No. 570) it has been assumed that the ¹³⁷Cs/⁹⁰Sr was 0.25, the present measurements support this assumption.

A special sampling was carried out in July 1989 (Table 2.2.6.2). Compared with the corresponding sampling in July 1987 (Riso Report No. 564) the 1989 levels were 0.34 ± 0.02 (± 1 S.D.; N = 4) times those in 1987, i.e. the ¹³⁷Cs has decayed with an effective halflife of 1.3 years.

Tables 2.2.6.3 and 2.2.6.4 show the radiocesium levels in stream and lake water, respectively, from the July 1989 sampling. The percentages of Cherno-

by 1^{37} Cs in these samples were 79 ± 15 (± 1 S.D. N = 7). The mean content of 1^{37} Cs in these fresh waters was 5.2 ± 2.5 By $-n^{-3}$ (± 1 S.D.; N = 9). The corresponding 1987 sampling showed a mean of 7.2 ± 3.0 By 1^{17} Cs m⁻⁴ (± 1 S.D.; N = 5).

The drinking water ¹³⁷Cs concentrations in July 1989 were half of those found in stream and lake waters.

The overall mean concentration of tritium in Faroese drinking water from 1988 and 1989 was 1.30 ± 0.13 kBq m⁻³ (± 1 S.D.; N = 6) (Table 2.2.6.5).

2.2.7 Strontium-90 and Radiocesium in Miscellaneous Faroese Samples

2.2.7.1 Faroese Soil

The mean deposit of ¹³⁷Cs in the Faroes were 8.0 ± 4.9 kBq m⁻ (± 1 S.D.; N = 4) in July 1989 (Table 2.2.7.1.1) compared with 6.4 \pm 2.2 in July 1987. The difference reflects inhomogeneities in the depositions at the four locations.

The Chernobyl mean deposit at the four locations was 1.48 ± 0.95 kBq 137 Cs m⁻² in July 1989 and 1.90 ± 0.64 in July 1987 (Table 2.2.7.1.2).

In Section 2.6 the results of the soil analysis is given. The organic matter mean content in Faroese soils was $18.1 \pm 11.5\%$ (± 1 S.D.; N = 21). The mean clay content was $6.8 \pm 2.7\%$ (± 1 S.D.; N = 21), silt was $11.9 \pm 4.8\%$ and sand was $63 \pm 9.7\%$.

The Chernobyl contributions in Table 2.2.7.1.3 were calculated from the ratio: ¹³⁴Cs/¹³⁷Cs in the samples assuming that this ratio in pure Chernobyl debris was 0.38 in July 1987 and 0.201 in July 1989. The contributions were given as a percentage of the total ¹³⁷Cs in the samples.

In soil and fresh water : amples the Chernobyl percentage increased from 1987 to 1989 (1983 %/1987 % = 1.65 ± 0.32 (± 1 S.E.; N = 10)).

This may be explained by a delay in the transfer of the Chernobyl ¹³⁷Cs from the crops and the animals to the soil and further on to the water.

In biota (grass, fodder, milk and lamb) the percentage of Chernobyl ¹³⁷Cs decreased from 1987 to 1989 (1989 %/1987 % = 0.93 ± 0.05 (± 1 S.E.; N = 11)) if lamb meat from Strømø in 1987 is omitted as an outlier, the ratio became 0.89 ± 0.02 and is then highly significantly lower than one.

The decrease in biota is explained by the decreasing contribution from direct contamination of ¹³⁷Cs (resuspension included) and the consequently increasing contribution from root uptake from 1987 to 1989. While the direct contamination preferentially consisted of Chernobyl ¹³⁷Cs, the root uptake had a significant contribution from global fallout ¹³⁷Cs. Hence a decrease was to be expected.

2.2.7.2 Faroese Sea Water

The mean concentrations in surface sea water collected at Thorshavn (Tables 2.2.7.2.1.A & B) were 1.88 ± 0.12 Bq 90 Sr m⁻³ and 2.9 ± 0.4 Bq 137 Cs m⁻³ in 1988 and 1.73 ± 0.08 Bq 90 Sr m⁻³ and 2.6 ± 0.25 Bq 137 Cs m⁻³ in 1989. No 134 Cs was detected in the sea water samples (cf. also Figure 2.2.7.2).

2.2.7.3 Faroese Sea Plants

The mean concentrations of ¹³⁷Cs and ⁹⁰Sr in Faroese seaweed were 0.6 Bq kg⁻¹ dry matter and 0.2 Bq kg⁻¹ dry matter, respectively, for 1988 and for 1989 the levels were 0.8 and 0.4, respectively, (Tables 2.2.7.3.1.A & B, Table 2.2.7.3.2 and Figure 2.2.7.3). Pu and Am were determined in Faroese Fucus vesiculosus collected by Riso in July 1989 (Table 2.2.7.3.2). The mean of ²³⁸Pu/^{239,240}Pu was 0.027 \pm 0.004 (N = 5; \pm 1 S.E.) and the mean of ²⁴¹Am/ ^{239,240}Pu was 0.150 \pm 0.015 (N = 4; \pm 1 S.E., an outlier was excluded). This

suggests that all transuranics found in Faroese waters came from global failout in July 1989.

2.2.7.4 Faroese Potatoes

The mean concentrations in Faroes, potatoes were 0.065 By ⁵³Sr kg⁻¹ and 8.4 Bq ¹³⁷Cs kg⁻¹ in 1988 and 0.130 Bq ⁵⁶Sr kg⁻¹ and 6.9 Bq ¹³⁷Cs kg⁻¹ in 1989 (Tables 2.2.7.4.1.A & B and Figures 2.2.7.4.1 and 2.2.7.4.2).

2.2.7.5 Faroese Bread

The ⁴⁰Sr lev: Is in Faroese white bread was about 0.1 Bq kg⁻¹ and rye bread contained 0.15 Bq kg⁻¹. The ¹³⁷Cs concentrations were 0.09 Bq kg⁻¹ in rye and white bread. There was no significant difference between 1988 and 1989 (Tables 2.2.7.5.A & B).

2.2.7.6 Faroese Eggs

The ¹³⁷Cs levels of eggs have been decreasing since 1987 and so have the ⁹⁰Sr concentrations although less pronounced (Tables 2.2.7.6.A & B).

2.2.8 Humans from the Faroes

No samples in 1988 and 1989.

2.2.9 Fodder and Other Vegetation from the Faroes

Silage contained 56 \pm 24 Bq ¹³⁷Cs kg⁻¹ dry matter (\pm 1 S.D.; N = 3) in July 1989 (Table 2.2.9).

2.2.10 Moss from the Faroes

Apparently all radiocesium in the moss sample shown in Table 2.2.10 came from Chernobyl. The ⁹⁰Sr and ¹³⁷Cs levels in moss in 1989 were nearly unchanged from those observed in 1987.

Figure 2.1. The Faroe Islands.

Table 2.2.1.1. Strontium-90 in precipitation in the Faroes in 1988 and 1989. (Sampling area: 0.02 m^2)

Year	Bq m⁻³	Højvig Bq m ⁻²	mm	K Bq m ⁻³	laksvig Bq m~2	mm
1988	0.71	0.74	1046	0.0114	0.30	2663
1989	0.21	0.29	1398	~ 0	~ 0	2260

Figure 2.2.1. Accumulated ⁹⁰Sr at Klaksvig and Hojvig calculated from preripitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish fallout data (Riso Report No. 570, Appendix D) and from the ratio of the ⁹⁰Sr fallout at the Faroese stations to the fallout in Denmark in the period 1962-1989 (cf. Table 2.2.1.2).

	H	Höjvig	Klak	svig
	d,	A ₍₂₉₎	d,	A ₁₍₂₉₎
1950	1.08	1.06	2.15	2.10
1951	5.21	6.12	10.34	12.14
1952	10.21	15.94	20.27	31.64
1953	25.78	40.74	51.18	80.87
1 9 54	98.02	135.48	194.58	268.94
1955	128.96	258.20	256.00	512.54
1956	159.90	408.22	317.41	810.34
1957	159.90	554.70	317.41	1101.12
1958	221.82	758.18	440.34	1505.05
1959	314.64	1047.48	624.58	2079.33
1960	58.78	1080.14	116.69	2144.16
1961	76.36	1129.19	151.59	2241.52
1962	383.01	1476	760.31	2931
1963	913.00	2333	1503.00	4329
1964	544.00	2809	1363.00	5558
1 96 5	181.00	2919	436.0 0	5852
1966	112.00	2960	289.00	5996
1967	94.70	2982	182.00	6032
1968	44.00	2955	55.50	5944
1969	41.10	2925	65.10	5867
1970	53.60	2909	141.00	586 6
1971	101.00	2938	156.00	5880
1972	34.40	2903	55.10	5795
1973	24.20	2858	26.50	5684
1974	33.80	2823	58.80	5607
1975	34.40	27 9 0	47.80	5521
1976	8.88	2733	21.60	5412
1977	27.40	2695	34.40	5318
1978	37.30	2668	4 7.60	5239
1979	13.90	2618	22.20	5137
1980	9.55	2566	10.29	5025
1981	18.37	2523	21.80	4928
1982	6.33	2470	3.91	4815
1 9 83	2.75	2414	2.24	4704
1984	5.53	2363	0.87	4594
1985	0.98	2308	0.59	4486
1986	12.80	2266	28.00	4407
1 9 87	1.40	2214	0.81	4304
1988	0.74	2162	0.30	4202
1989	0.29	2111	0	4103

Table 2.2.1.2. Fallout rates and accumulated fallout(Unit: Bq 90Sr m⁻²) in the Faroes '950-1989

1950-1961: are estimated values based upon HASL data (HASL Appendix 291, 1975) considering that the mean ratio of 90 Sr fallout in Denmark to New York was 0.7 in the period 1962-1974 and that the mean ratios of 90 Sr fallout in Höjvig to Denmark and Klaksvig to Denmark are 1.39 and 2.76, respectively (Aarkrog, 1979).

		Höjv	rig			Klaksvig		
Month	¹³⁷ Cs Bq m ⁻³	¹³⁷ Cs Bq m ⁻²	¹³⁴ Cs ¹³⁷ Cs	mm precipi- tation	¹³⁷ Cs Bq m ⁻³	¹³⁷ Cs Bq m ⁻²	¹³⁴ Cs ¹³⁷ Cs	mm precipi- tation
Jan-March	71	14.6	0.28	206				
April-June	36	4.3	-	121				
July-Sep	36	10.5	0.31	292				
Oct-Dec	1.2	5.2	0.30	428				
1988	x 33	Σ 35		Σ 1046	3.0	8.0	0.23 A	2663

Table 2.2.1.3.A. Radiocesium in precipitation in the Faroes in 1988. (Sampling area: 0.02 m^2)

Table 2.2.1.3.B. Radiocesium in precipitation in the Faroes in 1989. (Sampling area: 0.02 m^2)

		Höjvig		Klaks	svig
Year	¹³⁷ Cs Bq m ⁻³	¹³⁷ Cs Bq m ⁻²	¹³⁴ Cs ¹³⁷ Cs	¹³⁷ Cs Bq m ⁻³	¹³⁷ Cs Bq m ⁻²
1989	15	16	0.22	0.67	1.51
(Amounts	of precipitatio	n are sho	wn in Tat	ole 2.2.1.1).	

	Fare	oese	Thor	shavn	Kla	ksvig	iv:	Eig
	ď	A ₄₃₀₎	ď	A ₄₃₀ ,	ď,	A ₍₁₃₀₎	ď,	۵. ₃₀ .
1 9 50	2 59	2 53	1 73	1 69	3 44	3 36	2 15	2 10
19 51	12.44	14 62	8.33	9 80	16 54	1 9 45	10 32	12-14
1952	24 38	38.11	16 34	25 53	32 43	50 6 9	20 21	31.63
195 3	61 57	97.40	41.25	65 26	81.89	129 55	51 10	3 08
1954	234 08	323 9 1	156.83	217.02	311.33	430.81	194 29	268.85
1955	307. 9 6	617.44	206.34	413 69	409.59	821 20	255.61	512 48
1953	381.84	976.47	255.84	654.23	507.85	1298 70	316.93	810 47
195 7	381.84	1 327 . 29	255.84	889.28	507.85	1765 29	316.93	1101.65
1 95 8	529.73	1814. E 0	354 92	1215.78	704.54	2413 42	439.68	1506 12
195 9	751.38	2507.37	503 42	1679 94	999 33	3334.81	623 64	2081.12
1960	140 38	2587.27	94 05	1733 47	186 70	3441.07	116.51	2147 44
1961	182.36	2706.38	122 18	1813 27	242.54	3599 48	151.36	2246.29
1962	914.65	3538.33	612.82	2370.68	1216.49	4705.98	759.16	2936.81
1963	1932-80	5346 17	1460 80	3743 97	2404.80	6948 37	1604.22	4437.32
1964	1525.60	6714.82	870.40	4508 98	2180 60	8920.66	1266.25	5573 30
1965	493.60	7043 78	289.60	4688 98	697.60	9398.58	409.69	5846.33
1966	320.80	7196.37	179.20	4756 99	462.40	9635.75	266 26	5972 99
1967	221.36	7248.31	151.52	4796 40	291.20	9700.22	183.73	6016 10
1968	79.60	7160.54	70.40	4755.64	S8 80	9565.44	66.07	5943.25
1969	84 .96	7080.01	65.76	4711.28	104.16	9448 74	70.52	5876 41
19 70	155.68	7070.43	85.76	4687.48	225.60	9453.38	1 29 .21	5868.46
1971	205.60	7109.84	161.60	4738.32	249.60	9481.37	170.65	5901.17
1972	71.60	7017.42	55.04	4683.88	88.16	9350.96	59.43	5824.46
1973	40.56	6896.78	38.72	4614 74	42.40	9178.81	33.66	5724.32
1974	74.08	6811.64	54.08	4562 18	94.08	9061.10	61.49	5653.66
1975	6 5 76	6720.32	55.04	4511.76	76 48	8928.88	54.58	5577.87
1976	24.38	6590.66	14.21	4422 60	34.56	8758.71	20.24	5470.24
1977	49 44	6488.44	43.84	4364.43	55.04	8612.45	41.04	5385.40
1978	67.92	6406.61	59.68	4323.06	76.16	8490 16	56.37	5317,49
1979	28.88	6288.50	22.24	4246.05	35.52	8330.95	23.97	5219.46
1980	15.87	6160.38	15.28	4164 01	16.46	8156.76	13.17	5113 12
19 81	32 13	6051.07	29.39	4097.62	34 87	8004 53	26.67	5022.39
1982	8.19	5920.87	10.12	4013.92	6.26	7827.82	6.80	4914.32
1 9 83	4.00	5789.54	4.40	3926.54	3 59	7652.54	3.32	4805.32
1 9 84	5.13	5662.32	8.86	3845.51	1 40	747913	4.26	4699 72
1985	1.26	5534.22	1.57	3 759 2 1	0.94	7309.23	1.04	4593 40
1986	1300.00	6678.13	660.00	4318.28	1960.00	9057 5 2	700.00	5172.50
19 87	105.00	6628.20	121.00	4337.88	88 00	8936 63	44.00	5097.36
1988	22 00	6498.31	35 00	4273.01	8.00	8740.34	8 00	4988 75
1989	9 .00	6358 68	16.00	4191.05	1 50	8542.17	4.00	4878.71

Table 2.2.1.4. Fallout rates and accumulated fallout in the Faroes 1950-1989. (Unit: Bq $^{137}Cs m^{-2}$)

Since 1986 the d, data are actual measurements. Before this year the data were calculated from ⁹⁰Sr by multiplying by 1.6.

.

Month	Bq ⁹⁰ Sr kg⁻¹ fresh	Bq ⁹⁰ Sr (kg Ca) ^{- 1}	Bq ¹³⁷ Cs kg ¹ fresh	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs
June	2.7	5300	8.8	1720	0.105
+August	3.5	5600	15.4	3100	0.087

Table 2.2.2.1.A. Strontium-90 and radiocesium in grass from Thorshavn 1988

+Fresh weight calculated from ash weight.

Table 2.2.2.1.B. Strontium-90 and radiocesium in grass from Thorshavn 1989

Month	Bq ⁹⁰ Sr	Bq ⁹⁰ Sr	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	¹³⁴ Cs
	.g⁻¹ fresh	(kg Ca) ⁻¹	kg⁻¹ fresh	(kg K)⁻1	¹³⁷ Cs
June	1.52	2100	16	3600	0.106
August	1.88	2400	25	4800	0.082

Location (cf. Fig. 2.1)	Bq ⁹⁰ Sr kg⁻' dry	Bq ⁹⁰ Sr (kg Ca)-1	Bq ¹³⁷ Cs m ⁻²	Bq ¹³⁷ Cs kg ⁻¹ dry	Bq ¹³⁷ Cs (kg K)- ¹	134Cs 137Cs	% dry matter	kg m ⁻² dry grass
Thorshavn	4.8	1010	4.7	36	1510	0 152	9	0.131
Klaksvig	6.2	2040	11.0	24	650	0.157	14	C.47
Klaksvig								
(fodder grass)	3.5	1570	11.0	27	860	0.104	28	0.41
Bour, Vågo	2.5	810	2.3	9.8	250	0.22	11	0.24
Øravik, Syderø	7.7	2400	54	326	13800	0.144	17	0.166

Table 2.2.2.2. Strontium-90 and radiocesium in Faroese grass samples collected by Riso in July 1989

	Thorshavn	Klaksvig	Tværð	Mean
Jan	49±3.7	52 ± 3.8	61	54
Feb	47 ± 0.9	52 ± 3.0	59	53
March	49 ± 2.4	43 ± 0.5	53	48
April	61	53	60	58
May	50	57	53 ± 2.5	54
June	57	51	72	60
July	60	55	80	65
Aug	73	65	66	68
Sept	51	52	54	52
Oct	45	49	42	45
Nov	40	66	42	50
Dec	43	56	49	49
Mean	52	54	58	55

Table 2.2.3.1.A. Strontium-90 in milk from the Faroes in 1988 (Unit: Bq 90 Sr (kg Ca)⁻¹)

Table 2.2.3.1.B. Strontium-90 in milk from the Faroes in 1989 (Unit: Bq 90 Sr (kg Ca)⁻¹)

	Thorshavn	Klaksvig	Tværå	Mean
*Jan	(52)	(56)	50	53
Feb	51	70	59	60
March	54	59	46	53
April	42	45	40	43
May	46	38	45	43
June	45	39	48	44
July	48	41	46	45
Aug	49	40	50	47
Sept	46	41	37	42
Oct	39	59	44	47
Nov	40	66	38	48
Dec	41	50	34	42
Mean	46	50	45	47
Figures in	brackets were o	alculated by VA	R3 (Aarkrog 19	79).

*A bulked sample of milk from January was analysed: 52 Bq (kg Ca)⁻¹.

Table 2.2.	3.2.A. Radi	iocesium in 1	milk from t	he Faroes in 15	88								
		Thorshavi	£		Klaksvig			Tværå			Ae	ean	
Month	Bq ¹³⁷ Cs m⁻ ³	Bq ¹³⁷ Cs (kg K)- ¹	¹³⁴ Cs ¹³⁷ Cs	Bq ¹³⁷ Cs m ⁻³	Bq ^{137C} s (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs m ⁻³	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs m ⁻³	Bq ¹³⁷ Cs (kg K) ¹	134Cs	Theoretical 134Cs 137Cs
Jan	3100	1870	0.28	3200	1810	0.23	7700	5100	0.28	4700	2900	0.26	0.32
Feb	3100	1830	0.26	2900	1580	0.30	8400	5600	0.28	4800	3000	0.28	0.31
March	3200	1920	0.28	3700	2200	0.21	2900	1800	0.22	3200	1980	0.24	0.30
April	2500	1530	0.22	3200	1980	0.26	4800	3600	0.25	3500	2400	0.24	0.30
Мау	2700	1620	0.23	1730	1050	0.171	5400	3400	0.23	3300	2000	0.21	0.29
June	3000	1760	0.23	2300	1470	0.27	6200	4000	0.25	3800	2400	0.25	0.28
July	3000	1760	0.145	2700	1620	0.21	7500	4600	0.183	4400	2700	0.178	0.27
Aug	3600	2200	0.162	2200	1270	0.22	5600	3500	0.183	3800	2300	0.189	0.27
Sept	2200	1320	0.184	2800	1630	0.21	5100	3200	0.20	3300	2000	0.198	0.26
Oct	2300	1430	0.179	2500	1410	0.23	3700	2300	0.20	2900	1720	0.20	0.25
Nov	1940	1120	0.22	2700	1580	0.153	3200	1940	0.188	2600	1550	0.186	0.25
Dec	2100	1200	0.188	2200	1190	0.156	4500	2900	0.163	2900	1760	0.169	0.24
Mean	2700	1630	,	2700	1570	P	5400	3500	•	3600	2200	·	Ŧ

Risø-R-571(EN)

		Thorshavr	ו		Klaksvig			Tværå			M	ean	
Month	Bq ¹³⁷ Cs m ⁻³	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs m ⁻³	Bq ¹³⁷ Cs (kg K) ¹	¹³⁴ Cs ¹³⁷ Cs	Bq ¹³⁷ Cs m ³	Bq ¹³⁷ Cs (kg K) ¹	134Cs 137Cs	Bq ¹³⁷ Cs m ³	Bq ¹³⁷ Cs (kg K) ¹	134Cs 137Cs	Theoretical <u>134Cs</u> 137Cs
Jan	1890	1080	0.186	2400	1390	0.158	4500	2800	0.162	2900	1750	0.169	0.23
Feb	1870	1080	0.132	2900	1860	0.23	5300	3500	0.195	3400	2100	0.185	0.23
March	1340	750	-	2600	1500	0.144	4200	2400	0.185	2700	1560	0.165	0.22
April	1780	1010	0.168	2000	1140	0.141	3300	1950	0.150	2300	1370	0.153	0.22
May	1460	850	0.153	780	470	•	2700	1630	0.127	1660	980	0 140	0.21
June	1510	970	0.141	1160	730	0.156	2600	1840	0.153	1770	1180	0.150	0.21
July	1780	1150	0.115	1170	740	0.149	5000	3100	0.147	2700	1650	0.137	0.20
Aug	2600	1720	0.123	1600	1050	0.149	5100	3400	0.126	3100	2000	0.133	0.196
Sept	1620	1040	0.110	1620	1070	0.108	3500	2400	0.127	2300	1510	0.115	0.190
Oct	1570	1060	0.109	2800	1880	0.126	3700	2300	0.106	2700	1760	0.114	0.186
Nov	1420	910	0.110	1780	1130	0.116	3000	1990	0.132	2100	1340	0.120	0 181
Dec	1160	740	0.103	1550	950	0.129	3100	1970	0.127	1950	1220	0.120	0.176
Mean	1667	1030	-	1870	1160	•	3800	2400	•	2500	1540	•	-

Table 2.2.3.2.B. Radiocesium in milk from the Faroes in 1989

Table 2.2.3.3.A. Analysis of variance of ln Bq ⁹⁰Sr (kg Ca)⁻¹ in Faroese milk in 1988 (from Table 2.2.3.1.A)

Variation	SSD	f	s²	v²	Р
Between months	0.538	11	0.049	8.874	> 99.5%
Between locations	0.060	2	0.030	5.466	> 95%
Month × location	0.396	22	0.018	3 270	•
Remainder	0.089	7	0.006		

Table 2.2.3.3.B. Analysis of variance of In Bq ⁹⁰Sr (kg Ca)⁻¹ in Faroese milk in 1989 (from Table 2.2.3.1.B)

Variation	SSD	f	s ²	v ²	Р
Between months	0.394	11	0.036	1.445	•
Between locations	0.067	2	0.034	1.357	-
Remainder	0.496	20	0.025		

Table 2.2.3.4. Analysis of variance of ln Bq ¹³⁷Cs (kg K)⁻¹ in Faroese milk in 1988 (from Table 2.2.3.2.A)

Variation	SSD	f	\$ ²	v ²	Р
Between months	1.055	11	0.096	1.593	-
Between locations	4.518	2	2.259	37.514	> 99.95%
Remainder	1.325	22	0.060		

Table 2.2.3.4.B. Analysis of variance of ln Bq ¹³⁷Cs (kg K)⁻¹ in Faroese milk in 1989 (from Table 2.2.3.2.B)

Variation	SSD	f	s²	v ²	Р
Between months Between locations	1.702 5.510	11 2	0.155 2.755	2.642 47.035	>95% >99.95%
Remainder	1.289	22	0.059		

Table 2.2.3.5.A. Analysis of variance of $\ln Bq^{137}Cs m^{-3}$ in Furvese milk in 1988 (from Table 2.2.3.2.A)

Variation	SSD	f	s ²	v ²	Р
Between months	0.936	11	J.085	1.497	-
Between locations	3.587	2	1.794	31.555	> 99.95%
Remainder	1.251	22	0.057		

Table 2.2.3.5.B. Analysis of variance of $\ln Bq \ ^{137}Cs \ m^{-3}$ in Faroese milk in 1989 (from Table 2.2.3.2.B)

Variation	SSD	f	s ²	v ²	Р
Between months	1.668	11	0.152	2.621	>95%
Between locations	5.179	2	2.589	44,744	> 99 .95%
Remainder	1.273	22	0.058		

Table 2.2.3.6	. Radiocesium	and Strontium	1-90 in who	le milk coll	ected by Riso at
Faroese farms	in July 1989				-

Location (cf. Fig. 2.1)	Bq ¹³⁷ Cs m ⁻³	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs	Bq ⁹⁰ Sr (kg Ca)-1
Vågø	1510	970	0.147	51
Strømø	2300	1650	0.153	38
Bordø	870	590	0.128	39
Syderø	4500	2900	0.147	85

Figure 2.2.3.1. Strontium-90 in Faroese milk, 1962-1989. (Unit: Bq (kg Ca)-1).

Figure 2.2.3.2. Cesium-137 in Faroese milk, 1962-1989. (Unit: Ba m-3).

Risø-R-571(EN)

Figure 2.2.3.3. % Chernobyl 137Cs in Faroese milk 1987-1990.

Figure 2.2.3.4. Cesium-137 in Faroese milk collected 1982-1991. (Unit: Bq m-3).

Figure 2.2.3.5. Strontium-90 in milk from Denmark and the Faroes 1982-1990. (Unit: Bq $(kg Ca)^{-1}$).

			Lamb	meat		Bone	Theoretical
Location D	Date	Bq ⁹⁰ Sr	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	134Cs	Bq ⁹⁰ Sr	134Cs
		ka-1	kg 1	(kg K)-1	(kg K)-1 137Cs		137Cs
							in Chernobyl debris
Syderø	Aug 27	0.040	22	7000	0.217	900	0 26
Sandø	Aug 2	0.048	28	9700	0 191	740	0.27
Kollefjord	Aug 29	0 048	90	28000	0.121	1140	0 26
Syderø	Oct	0.102	52	18400	0.172	1770	0 25
Klaksvig	Oct	0.050	74	23000	0.162	1180	0.25
Kollefjord	Oct	0.068	19.9	7100	0.128	1290	0 25

Table 2.2.4.A. Radionuclides in lamb collected in the Faroes in 1988

			Lamb	meat	Bone	Theoretical	
Location	Date	Bq ⁹⁰ Sr kg ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs	Bq ⁹⁰ Sr (kg Ca)⁻¹	¹³⁴ Cs ¹³⁷ Cs in Chernobyl debris
Sendo	July		19.0	5800	0.138	_	0.20
Kollefjord	July	•	32	11300	0.107	-	0.20
Kirkeby	Oct		1.3	450	0.116	-	0.186
Thorshavn	Oct	0.040	11.3	4400	0.155	640	0.186
Klaksvig	Oct	0.021	25	7700	0.120	570	0.186
Tværå	Oct	0.126	17 9	59000	0.111	1110	0.186

Table 2.2.4.B. Radionuclides in lamb collected in the Faroes in 1989

Figure 2.2.4.1. Strontium-90 in lamb bone collected in the Faroes, 1962-1990. (Unit: Bq (kg Ca)⁻¹).

Figure 2.2.4.2. Cesium-137 in lamb meat collected in the Faroes, 1962-1990. (Unit: Bq $(kg K)^{-1}$)

Figure 2.2.4.3. Chernobyl ¹³⁷Cs in Faroese lamb 1986-1990. (Unit: Bq kg⁻¹).

Risø-R-571(EN)

Figure 2.2.4.4. Global fallout ¹³⁷Cs in Faroese lamb 1983-1990. (Unit: Bq kg⁻¹).

Sampling month	Species	Sample type	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)−1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs
March	Gadus callarias	Cod			0.48	146	0.175
June	**				0.58	162	0.151
Sept	"				0.75	159	0.135
Dec	"				0.34	95	-
1988			0.0003 B	3.6 B	U.54	140	
March	Gadus aeglefinus	Haddock			0.36	113	0.26
June					0.36	111	0.23
Sept	"				0.32	95	0.134
Dec					0.31	85	0.130
1988		_	0.0002 B	2.1 B	0.34	101	

Table 2.2.5.1.A. Strontium-90 and radiocesium in fish flesh from the Faroes in 1988

Sampling month	Species	Sample type	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs
 March	Gadus callarias	Cod			0.31	87	
June	**				0.72	220	0.038 A
Sept	**				0.33	107	0.043 B
Dec	**	_			0.23	71	•
1989			0.0011	7.2	0.40	121	
March	Gadus aeglefinus	Haddock			0.35	105	0.137
June					0. 29	103	0.092 B
Sept	••				0.41	131	0.088
Dec					0.21	62	0.071
1989			0.0007 B	6.3 B	0.32	100	

Table 2.2.5.1.B. Strontium-90 and radiocesium in fish flesh from the Faroes in 1989

Figure 2.2.5.1. Cesium-137 levels in meat of cod (Gadus callarias) and haddock (Gadus aeglefinus) collected in the Faroes, 1962-1990.

Figure 2.2.5.2. % Chernobyl ¹³⁷Cs in cod and haddock collected in the Faroes, 1987-1989.

Figure 2.2.5.3. Cesium-137 in cod and haddock after Chernobyl, 1987-1990. (Unit: $Bq kg^{-1}$).

Risø-R-57I(EN)

Species	Sample	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr kg⁻¹
Puffin (June)	flesh bone	0.124 2.9	42	-	0.9 B	0.005 B

Table 2.2.5.2.A. Strontium-90 and radiocesium in various marine animals collectedin July 1988

 Table 2.2.5.2.B. Strontium-90 and radiocesium in various marine animals collected in July 1989

Species	Sample	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs	Bq ⁹⁰ Sr (kg Ca) ⁻¹
Whale (Jan)	flesh	0.29	84	0.09 B	B.D.L.
Whale (May)	flesh	0.57	131	-	B.D.L.
Whale (Nov)	flesh	0.26	83	-	B.D.L.
Puffin (June)	flesh	0.164	43	-	B.D.L.

No.	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁴ Cs kg ⁻¹	% Chernobyl ¹³⁷ Cs	Bq ¹³⁷ Cs (kg K) ⁻¹
1	1.34	0.29	75	386
2	1.42	0.25	61	415
3	0.95	0.19	69	274
4	0.75	0.12	55	213
5	1.51	0.30	69	410
6	1.38	0.28	70	341
7	1.40	0.26	64	432
8	1.45	0.27	64	382
9	1.08	0.19	61	328
10	1.00	0.20	69	339
Mean	1.23	0.24	66	
1 S.D.	0.26	0.06	6	

Table 2.2.5.3. Radi cesium in Faroese Salmon Caught in April 1988

	Bq ¹³⁴ Cs	Bq ¹³⁷ Cs	134Cs
	kg -1	kg-1	¹³⁷ Cs
Cod I	0.13	0.55	0.236
Cod II	0.13	0.59	0.220
Cod III	0.23	0.63	0.365
Cod IV	0.20	0 74	0.270
Cod V	0.22	0.64	0.344
Mean	0.18	0.63	0.29
±1 S.D.	0.05	0.07	0.06
Redfish I	0.089 A	0.49	0.181
Redfish II	0.080 A	0.42	0.190
Rrdfish III	0.24 A	0.64	0.375
Redfish IV	0.13 A	0.53	0.245
RedfishV	0.13 A	0.59	0.220
Mean	0.13	0.53	0.24
±1 S.D.	0.06	0.09	0.08

Table 2.2.5.4. Rad esium in Faroese Cod and Redfish Caught in February 1988

Theoretical Chernobyl $^{134}Cs/^{137}Cs$ in February 1988 was 0.43.

Table 2.2.6.1.A. Strontium-90 and radiocesium in drinking water from the Faroes in 1988. (Unit: Bq m⁻³)

	Т	Thorshavn		Klaksvig			Tværå		
Month	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs	90Sr 134(Cs ¹³⁷ Cs	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs	
Jan-June July-Aug	2.9 2.9		3.2 2.6 A	0.25 1.25	1.42 B 2.7 A	2.2 2.3		3.5 5.1	
1988	2.9	0.60	2.9	0.75 0.54	IA 2.1	2.2	0.97	4.3	

Table 2.2.6.1.B. Strontium-90 and radiocesium in drinking water from the Faroes in 1989. (Unit: $Bq m^{-3}$)

* ,	Thorshavn		Klaksvig			Tværå			
Month 	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs
Jan-June	5.3			0.61			2.6		
July-Aug	4.0			1.04			6.2		
1989	4.6	0.39	3.0	0.82	0.32	1.51	4.4	0.43	2.4

Risø-R-57I(EN)

Figure 2.2.6.1. Strontium-90 in drinking water from the Faroes, 1962-1990. (Unit: Bq m^{-3}).

Location	¹³⁴ Cs Bq m ⁻³	¹³⁷ Cs Bq m ⁻³	¹³⁴ Cs ¹³⁷ Cs
Sørvaag/Vaagø	0.60 A	2. 9	0.20 A
Thorshavn/Strømø	B.D.L.	2.0	-
Klaksvig/Bordø	B.D.L.	1.0 A	-
Tværå/Syderø	1.0 B	3.5	0.29 B
Våg/Syderø	0.66 A	3.7	0.18 A

Table 2.2.6.2. Radiocesium in drinking water from the Faroes collected by Riso in July 1989
Location	¹³⁴ Cs Bq m ⁻³	¹³⁷ Cs Bq m ³	134Cs 137Cs	
Sanda, south of Thorshavn/Stromo	0.69 A	4.2	0.16	
Højdalså, north of Thorshavn/Strømo	0.98	6.1	0.16	
Toftå near Højvik/Stromo	B.D.L.	3.1	-	
Valdaskarå/Sydero	1.10	8.6	0.13	
North of Vathsograr/Vågo	0.75 A	3.4	0.22	
Outlet in Arnefjord/Bordo	0 56 A	3.3	0.17	

Table 2.2.6.3. Radiocesium in stream water from the Faroes collected by Riso July 13-18, 1989

Table 2.2.6.4. Radiocesium in lake water from the Faroes collected by Riso July 14-18, 1989

Location	¹³⁴ Cs Bq m ⁻³	¹³⁷ C s Bq m ⁻³	134Cs 137Cs
Leynavatn/Stromo	B.D.L.	1.84	•
Between Thorshavn and Kirkjuböur/Stromo	1.77	10.3	0.17
Søvagsvatn/Vågø	0.63 A	6.2	0.10

Table 2.2.6.5. Tritium in Faroese drinking water 1988 and 1989

Location	Year	kBq m⁻³			
Thorshavn	1988	1.35 ± 0.20			
	1989	1.05 ± 0.23			
Klaksvig	1988	1.30 ± 0.43			
	1989	1.42 ± 0.36			
Tværå	1988	1.27 ± 0.20			
	1989	1.38±0.09			
The error term is 1 S.E. of triplicates.					

Table 2.2.7.1.1. Cesium-137 in Faroese soil in July 1989. (Unit: Bq m=2)

Layer	Thorshavn Strømø	Klaksvig Bordø	Øra⊻ik Sydero	Böur Vaago
0-5 cm	1100	3700	1780	2060
5-10 cm	1690	3100	800	1810
10-20 cm	3900	5500	360	700
20-30 cm	2200	2020	260	230
30-40 cm	280	-	156	113
40-50 cm	58	-	73	-
Total layer	9300	14400	3400	4900

Table 2.2.7.1.2. Radiocesium and potassium (dry weight) in Faroese soils in July 1989

		0-5 cm	5-10 cm	10-20 cm	20-30 cm	30-40 cm	40-50cm
Thorshavn	Bq ¹³⁷ Cs kg ⁻¹ ¹³⁴ Cs/137Cs g K kg ⁻¹	144 0.124 2.8	78 0.014 1.97	59 1.97	40 - 2.3	5.7 - 2.3	0.55 - 3.0
Klaksvig	Bq ¹³⁷ Cs kg ⁻¹ ¹³⁴ Cs/ ¹³⁷ Cs g K kg ⁻¹	240 0.118 २.9	119 0.022 3.1	160 0.006 2.9	51 0.015 3.0	- - -	- - -
Øravik	Bq ¹³⁷ Cs kg ⁻¹ ¹³⁴ Cs/ ¹³⁷ Cs g K kg ⁻¹	300 0.143 3.4	97 0.042 1.36	32 1.05	3.9 - 2.3	2.1 - 2.2	1.4 - 2.0
Bøur	Bq ¹³⁷ Cs kg ⁻¹ ¹³⁴ Cs/ ¹³⁷ Cs g K kg ⁻¹	185 0.066 2.1	122 0.019 3.1	18.5 - 1.95	6.0 - 1.94	2.5 - 1.81	

		Stromo	Bordo	Sydero
Soil	1987	34	53	54
0-5 cm	1 989	62	5 9	71
Soil	1987	2	16	6
5-10 cm	1989	7	11	21
Stream water	1987	67 ± 1		74
	198 9	80 ± 1	85	64
Lake water	1987	63		
	1989	85		
Drinking water	1987	63	76	76
-	1989			90
Grass	1987	84±5	89	74
	1989	76	52	72
Fodder	1987	103	84	
	1989	78	78	82
Whole milk	1987	76±0	82±5	76
	1989	66±10	69±5	73±0
Lamb*	1987	46	74	69
	1989	64 ± 7	65	60

Table 2.2.7.1.3. Percentage of Chernobyl ¹³⁷Cs in samples collected at Stromo, Bordo and Syderv 1987 and 1989

Figures with error terms are mean values of double determinations ± 1 S.E. The lamb figure is the mean of triplicates. *Lamb was from October and July.

Table 2.2.7.2.1.A. Strontium-90 and cesium-137 in Farvese surface sea water collected at Thorshavn (62°02'N 06°47'W) in 1988. (Unit: Bq m⁻³)

Sampling date	90Sr	137Cs	Salinity in ‰
April	1.84	2.8	35.1
August	2.01	2.5	35.1
December	1.78	3.3	35 0

Table 2.2.7.2.1.B. Strontium-90 and cesium-137 in Faroese surface sea water collected at Thorshavn (62°02'N 06°47'W) in 1989. (Unit: By m⁻³)

Sampling date	90Sr	¹³⁷ Cs	Salinity in ‰
April	1.67	2.6	35.1
September	1.70	2.4	35.0
December	1.82	2.9	35.1

Figure 2.2.7.2. Strontium-90 and cesium-137 in Faroese sea water 1962-1990. (Unit: Bq m⁻³).

Risø-R-571(EN)

Species	Date	¹³⁷ Cs Baikg ¹ d w .	¹³⁷ Cs Bq (kg K) ¹	90Sr Baikg ¹ d.w	sosr Bq (kg Ca) 1	99Tc Bailg ' d.w
Fucus vesiculosus	April	0.45	121	0.10	98	
Fucus vesiculosus	Aug	0 44 B	11.2	0.35	25	1.51
Laminoria	April	0.56 A	88A	0.26	21	
Laminaria	Aug	0.78 B	43	0.18	197	0.93

Table 2.2.7.3.1.4. Radionnelides in seatured collected at Thorshaven in 1958.

Table 2.2.7.3.1.B. Radionuclides in seaweed collected at Thorshavn in 1989.

Species	Date	137Cs Baikg ¹ d w .	¹³⁷ Cs Bq (kg K) ⁻¹	134Cs 137Cs	90Sr Ba kg ⁻¹ d.w.	905r Bq (kg (.a) 1	99Tc Bakg ' d.w.
Ascophyllum	April	0.39 B	98	-	0.11	8	3.4
Laminaria	April	0.84 A	48	0.058 B	0.078	6 B	0.91
Ascophyllum	Aug	0.60	24	-	B.D.L.	-	3.8
Fucus vesiculosus	Aug	0.65	24	-	0.34	20	1.03
Laminaria	Aug	0.69	15.8	-	0.34	24	0.42 A

Figure 2.2.7.3. Strontium-90 in sea plants collected at Thorshavn, 1962-1989. (Unit: Bq (kg Ca)⁻¹)

Riso-R-571(EN)

Lot on	137Cs Bq kg-1 d.w.	134Cs 137Cs	⁹⁰ Sr Ba kg ⁻¹ d.w.	% dry matter	Bq ¹³⁷ Cs (kg K)-1	Bq ⁹⁰ Sr (kg Ca)-1	23SPu Ba kg-1 đ.w.	239.240p _u Bq kg ⁻¹ d.w.	²⁴¹ Am Bq kg⁼` đ.w.
Thorshavn	0.50		0.57	17.6	16.8	44	0 0014 B	0.106	0.045 A
Klaksvig	2.14°	0.18 A	0.160	21.2	94	7.9	0.0046 A	0.159	0.024
Tværå	0.41		0.43	18.7	15.3	29	0.0048	0.131	0.0142
Vagur	1.23		1.34	17.8	51	61	0.0036	0.178	0.0303
Scruag	0.65		0.25	22.7	2 3	15.9	0.0056	0.165	0.028
Global fallout mean	0.61		0.55	19.6	15.9	32	0.0040	0.148	0.028
S.D	0.37		0.47	2.3	9.1	21	0.0016	0.029	0.011

Table 2.2.7.3.2. Radionuclides in Fucus vesiculosus collected by Riso in the Faroes in July 1989.

[•]Global fallout 0.26 Bq kg⁻¹ and 6 Bq ¹³⁷Cs (kg K)⁻¹, (88% Chernobyl ¹³⁷Cs).

Table 2.2.7.4.1.A. Radionuclides in Faroese potatoes collected in November 1988

Location	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	<u>134Cs</u> 137Cs
Thorshavn	0.113	1540	3.2	1060	0.093
Klaksvig	0.037	1240	16.0	4800	0.136
Tværå	0.046	1660	6.1	1900	0.190

Table 2.2.7.4.1.B. Radionuclides in Faroese potatoes collected in November 1989

Location	Bq ⁹⁰ Sr	Bq ⁹⁰ Sr	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	134Cs
	kg ⁻¹	(kg Ca)⁻¹	kg ⁻¹	(kg K)-1	137Cs
Thorshavn	0.115	1290	2.11	650	0.089
Klaksvig	0.23	5200	7.2	2070	C.074
Tværå	0.058	1180	11.5	3200	0.119

Figure 2.2.7.4.1. Cesium-137 in Faroese potatoes, 1962-1990. (Unit: Bq kg⁻¹).

Figure 2.2.7.4.2. Strontium-90 in Faroese potatoes, 1962-1990. (Unit: Bq kg-1).

Risø-R-571(EN)

Sort	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs
White bread	i 0.121	290	0.083	61	0.29
Rye bread	0.159	230	0.099	49	

Table 2.2.7.5.A. Strontium-90 and radiocesium in Faroese bread in June 1988

Table 2.2.7.5.B.	Strontium	-90 and	radioce	sium in	Faroese	bread	in Tune	1989
	Q							

Sort	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	¹³⁴ Cs ¹³⁷ Cs
White bread	0.089	71	0.099	76	0.114 B
Hye bread	0.143	620	0.076	34	-

Table 2.2.7.6.A. Strontium-90 and radiocesium in Faroese eggs collected in 1988

Date	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)- ¹	¹³⁴ Cs ¹³⁷ Cs
June	0.028	47	0.21	178	0.18 A

I able 2.2.7.6.B. Strontium-90 and radiocesium in Faroese eggs collected in 1989								
Date	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs			
June	0.021	306	0.149	115	-			

~ - 1: **F**. ~~ .

Table 2.2.9. Radiocesium in fodder collected in the Faroes by Risø in July 1989

Species	Location	Date	Bq ¹³⁷ Cs kg ⁻¹ (d.w.)	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs
Silage	Højvik	July 12	43	3500	0.158
Silage	Böur	July 15	41	1990	0.117
Silage	Øravik	July 13	86	7700	0.164

Table 2.2.10. Radionuclides in moss collected at Thorshavn (Kirkeby) in the Faroes by Risø in July 1989

Species	Unit	⁹⁰ Sr	¹³⁴ Cs	¹³⁷ Cs	40K*	¹³⁴ Cs ¹³⁷ Cs
Moss	Bq kg ⁻¹ dry Bq m ⁻²	9.6 34	122 440	620 2200	2.05	0.20
*Unit: g kg	⁻¹ dry.		· · · · · · · · · · · · · · · · · · ·			

2.3 Estimate of the Mean Contents of ⁹⁰Sr and ¹³⁷Cs in the Faroese Human Diet in 1988 and 1989

2.3.1 Annual Quantities

The annual quantities are still based on the estimate made by the late Professor E. Hoff-Jørgensen in 1962 (Risø Reports (Faroese) 1962-1982) assuming a daily pro capite intake of approximately 3000 calories (12.6 MJ).

2.3.2 Milk and Cream

75% of the milk consumed in the Faroes is of local origin, and the remainder comes from Denmark. Hence the 90 Sr content in milk consumed in the Faroes in 1988 was 1.2 × (0.75 × 0.054 + 0.25 × 0.054) = 0.065 Bq 90 Sr kg⁻¹, and the 137 Cs content was 0.75 × 3.6 + 0.25 × 0.28 = 2.77 Bq 137 Cs kg⁻¹ (cf. 2.2.3 and Risø-R-570). 1 kg milk contains 1.2 g Ca.

For 1989 we get: $1.2 \times (0.75 \times 0.047 + 0.25 \times 0.048) = 0.054$ Bq ⁹⁰Sr kg⁻¹ and $0.75 \times 2.46 + 0.25 \times 0.178 = 1.89$ Bq ¹³⁷Cs kg⁻¹.

2.3.3 Cheese

Nearly all cheese consumed in the Faroes is of Danish origin, and the Danish figures from ref. 3 were used: 0.41 Bq ⁹⁰Sr kg⁻¹ and 0.135 Bq ¹³⁷Cs kg⁻¹ in 1988 and 0.44 and 0.153, respectively, in 1989.

2.3.4 Grain Products

As most grain products are imported from Denmark, the Danish figures (Riso Report No. 570) were used in the calculation of the Faroese levels. The mean daily consumption of grain products in the Faroes is, as in Denmark, 80 g rye flour, 120 g wheat flour, and 20 g grits. Hence the mean concentrations in grain products consumed in the Faroes in 1988 were 0.232 Bq 90 Sr kg⁻¹ and 0.106 Bq 137 Cs kg⁻¹, and in 1989 they became 0.181 and 0.110, respectively.

2.3.5 Potatoes

All potatoes consumed in the Faroes are assumed to be of local origin. The values from 2.2.7.4 were used, i.e. 0.065 Bq ⁹⁰Sr kg⁻¹ and 8.4 Bq ¹³⁷Cs kg⁻¹ in 1988, and 0.130 and 6.9, respectively, in 1989.

2.3.6 Other Vegetables and Fruit

As the amount of vegetables and fruit grown in the Faroes is limited, the Danish figures (Risø Report No. 570) were used. In 1988 the mean content in vegetables other than potatoes was $0.22 \text{ Bq } {}^{90}\text{Sr kg}^{-1}$ and $0.095 \text{ Bq } {}^{137}\text{Cs kg}^{-1}$ and the mean content in fruit was $0.034 \text{ Bq } {}^{90}\text{Sr kg}^{-1}$ and $0.049 \text{ Bq } {}^{137}\text{Cs kg}^{-1}$. In 1989 the levels became 0.185, 0.089, 0.020 and 0.054, respectively.

2.3.7 Meat and Eggs

Meat and egg consumption in the Faroes is estimated to consist of 50% locally produced mutton (or lamb), 25% local whale meat, and 25% sea birds and eggs.

Risø-R-571(EN)

For lamb we use the mean of the samples obtained in 1988, i.e. 0.059 Bq 90 Sr kg⁻¹ (in 1989: 0.062) and 48 Bq 137 Cs kg⁻¹ (in 1989: 45). Whale meat contained 0 Bq 90 Sr kg⁻¹ and 0.37 Bq 137 Cs kg⁻¹, sea birds contained 0 Bq 90 Sr kg⁻¹ and 0.14 Bq 137 Cs kg⁻¹, and eggs (cf. 2.2.5.2 and 2.2.7.6): 0.025 Bq 90 Sr kg⁻¹ and 0.18 Bq 137 Cs kg⁻¹, The means of 1988 and 1989 data were used for whale, sea birds and eggs. Hence we estimate the mean content of 90 Sr in meat and eggs consumed in 1988 to be 0.50 \times 0.059 + 0.25 \times 0 + 0.25 \times (0 + 0.025)/2 = 0.033 Bq 90 Sr kg⁻¹ and the 137 Cs content to be 0.50 \times 48 + 0.25 \times 0.37 + 0.25 \times (0.14 + 0.18)/2 = 24.1 Bq 137 Cs kg⁻¹. For 1989 the concentrations became 0.034 Bq 90 Sr kg⁻¹ and 22.6 Bq 137 Cs kg⁻¹.

2.3.8 Fish

All fish consumed in the Faroes is of local origin, and the mean content in fish, obtained from Table 2.2.5.1, was 0.00025 Bq ⁹⁰Sr kg⁻¹ and 0.44 Bq ¹³⁷Cs kg⁻¹ in 1988 and 0.0009 and 0.36, respectively, in 1989.

2.3.9 Coffee and Tea

The Danish figures (Risø Report No. 570) were used for both 1988 and 1989, i.e. 0.25 Bq 90 Sr kg⁻¹ and 0.82 Bq 137 Cs kg⁻¹.

2.3.10 Drinking Water

The mean values found in Table 2.2.6.1 were used, i.e. $0.00195 \text{ Bq } {}^{90}\text{Sr kg}^{-1}$ and $0.0031 \text{ Bq } {}^{137}\text{Cs kg}^{-1}$ in 1988, and 0.0033 and 0.0023, respectively, in 1989.

Tables 2.3.1 and 2.3.2 show the diet estimates of ⁹⁰Sr and ¹³⁷Cs, respectively.

Type of food	Annual quantity in kg	⊡g ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food			
Milk and cream	146	0.065	9.49	20.7			
Cheese	7.3	0.41	2.99	6.5			
Grain products	80	0.23	18.40	40.0			
Potatoes	91	0.065	5.92	12.9			
Vegetables	20	0.22	4.40	9 .6			
Fruit	18	0.034	0.61	1.3			
Meat and eggs	37	0.033	1.22	2.7			
Fish	91	0.00025	0.02	0			
Coffee and tea	7.3	0.25	1.83	4.0			
Drinking water	548	0.00195	1.07	2.3			
Total			45.95				
The mean annual calcium intake is estimated to be 0.6 kg (ap-							

Table 2.3.1.A. Estimate of the mean content of ⁹⁰Sr in the human diet in the Faroe Islands in 1988

The mean annual calcium intake is estimated to be 0.6 kg (approx. 200-250 g of creta praeparata). Hence the ratio: Bq 90 Sr (kg Ca)-1 in total Faroese diet was 77 (2.1 pCi 90 Sr (g Ca)-1).

 Table 2.3.1.B. Estimate of the mean content of 90Sr in the human diet in the Faroe

 Islands in 1989

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food
Milk and cream	146	0.054	7.88	17.0
Cheese	7.3	0.44	3.21	6 .9
Grain products	80	0.181	14.48	31.1
Potatoes	91	0.130	11.83	25.5
Vegetables	20	0.185	3.70	8.0
Fruit	18	0.020	0.36	0.8
Meat and eggs	37	0.034	1.26	2.7
Fish	91	0.0009	0.08	0.2
Coffee and tea	7.3	0.25	1.83	3.9
Drinking water	548	0.0033	1.81	3.9
Total			46.44	

The mean annual calcium intake is estimated to be 0.6 kg (approx. 200-250 g of creta praeparata). Hence the ratio: Bq 90 Sr (kg Ca)-1 in total Faroese diet was 77 (2.1 pCi 90 Sr (g Ca)-1).

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food
Milk and cream	146	2.77	404.4	19.1
Cheese	7.3	0.135	1.0	0.0
Grain products	80	0.106	8.5	0.4
Potatoes	91	8.4	764.4	36.0
Vegetables	20	0.095	1. 9	0.1
Fruit	18	0.049	0.9	0.0
Meat and eggs	37	24.1	891.7	42.1
Fish	91	0.44	40.0	1.9
Coffee and tea	7.3	0.82	6.0	0.3
Drinking water	548	0.0031	1.7	0.1
Total			2120.5	

Table 2.3.2.A. Estimate of the mean content of ¹³⁷Cs in the human diet in the Faroe Islands in 1988

The mean annual intake of potassium is estimated to be approx. 1.2 kg. Hence the ratio: Bq 137 Cs (kg K)⁻¹ becomes 1770 (48 pCi 137 Cs (g K)⁻¹).

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food
Milk and cream	146	1.89	275.9	15.4
Cheese	7.3	0.153	1.1	0.1
Grain products	80	0.110	8.8	0.5
Potatoes	91	6.9	627.9	35.0
Vegetables	20	0.089	1.8	0.1
Fruit	18	0.054	1.0	0.1
Meat and eggs	37	22.6	836.2	46.6
Fish	91	0.36	32.8	1.8
Coffee and tea	7.3	0.82	6.0	0.3
Drinking water	548	0.0023	1.3	0.1
Total			1792.8	

Table 2.3.2.B. Estimate of the mean content of ¹³⁷Cs in the human diet in the Faroe Islands in 1989

The mean annual intake of potassium is estimated to be approx. 1.2 kg. Hence the ratio: Bq 137 Cs (kg K)⁻¹ becomes 1490 (40 pCi 137 Cs (g K)⁻¹).

Figure 2.3.1. Strontium-90 in Farzese diet, 1962-1989. (Unit: Bq day-1).

Figure 2.3.2. Cesium-137 in Faroese diet, 1962-1989. (Unit: Bq day-1).

Risø-R-571(EN)

2.4 Conclusion

2.4.1.

The ⁹⁰Sr fallout rate in the Faroes in 1988 was approximately 0.5 Bq ⁹⁰Sr m⁻² and in 1989 it was 0.2. The accumulated fallout by the end of 1989 was estimated to be approximately 3100 Bq ⁹⁰Sr m⁻² (84 mCi km⁻²) (the mean at Thorshavn and Klaksvig).

The 137Cs mean deposit was 14 Bq m⁻² in 1988 and 9 in 1989.

2.4.2.

The mean level of 90 Sr in Faroese milk was 54 Bq (kg Ca)⁻¹ in 1988 and 47 in 1989. The 137 Cs concentration was 3600 Bq 137 Cs m⁻³ in 1988 and 1780 in 1989.

Lamb contained 48 Bq ¹³⁷Cs kg⁻¹ in 1988 and 45 in 1989. Fish showed mean levels of 0.44 and 0.36 Bq ¹³⁷Cs kg⁻¹, respectively.

The mean content of ⁹⁰Sr in drinking water was 1.95 Bq m⁻³ in 1988 and 3.3 in 1989.

The mean daily pro capite intakes resulting from the Faroese diet in 1988 were estimated to be 0.13 Bq ⁹⁰Sr and 5.8 Bq ¹³⁷Cs in 1988 and 0.13 and 4.9, respectively, in 1989.

2.4.3.

In terrestrial samples (grass, milk, lamb, drinking water, and fodder) collected in the Faroes in 1989 about 70% of the ¹³⁷Cs came from Chernobyl. In marine fish 40% of the ¹³⁷Cs was from the Chernobyl accident in 1989 (in 1988: 60%).

The relative contribution of Chernobyl ¹³⁷Cs to total ¹³⁷Cs in biota has been decreasing from 1987 to 1989.

2.5 Predictions and Observations of ⁹⁰Sr and ¹³⁷Cs in Faroese Samples in 1988 and 1989

The models used for the predictions shown in Table 2A were based on data collected 1962-1976 (Aarkrog 1979). We observe that nearly all models overestimated the levels in 1988 and 1989, except those for ¹³⁷Cs in cod fish and in lamb. The mean levels for these two sample types were, however, encumbered with large standard errors.

Sample	Unit	Observed ±1 S.E	Number of samples	Predicted	Obsipre =1SE	Model in Riso-R-437 (Aarkrog 1979)
Drinking water, Thorshavn	Bg 90Sr m 3	29 = 0.0	2	9.2	032 = 000	C 1.4.1 No. 9
Drinking water, Klaksvig	Ba 90Sr m-3	0.75 = 0.50	2	1 61	0.47 = 0.31	C 1 4 1 No 10
Drinking water, Tværå	Ba 90Sr m 3	2.1 ± 0.6	2	2.1	1.00 = 0.29	C141No 11
Sea water	Ba 90Sr m 3	1.68 ±0.07	3	1 75	107 = 004	C 1.5.1 No. 3
Sea water	Bg 137Cs m 3	2.9 ±0.2	3	-		C 1.5.1 No. 3 (-1.6)
Grass	Ba 90Sr (ka Ca)	5400 ±150	2	4700	115 ±003	C 2 4 1 No 4
Grass	Bq 137Cs (kg K)-1	2400 = 690	2	12800	019 = 005	C.2.4.2 No 3
Potatoes	Bg 90Sr kg-1	0.065 ± 0.024	3	0 194	0.34 ±0.13	C.2.5.1 No. 11
Potatoes	Ba 137Cs kg 1	84 = 3.9	3	117	0.72 = 0.33	C 2 5 3 No 8
●Milk	Bg 90Sr (kg Ca)-1	53 ±2	12	265	0.20 ±0.01	C.3.3.1 No.1
*Milk Thorshavn	Ba 137Cs (kg K)	1300 ±121	12	4100	0.32 ±0.03	C.3.3.2 No. 1
*Milk Klaksvik	Ba 137Cs (kg K)-1	1380 ± 101	12	4900	0.28 = 0.02	C.3.3.2 No. 3
•Milk Tværå	Ba 137Cs (kg K)-1	2900 = 260	12	7500	0.39 ±0.03	C.3.3.2 No. 5
Cod fish	Bg 90Sr (kg Ca)-1	2.8 ± 0.7	2	18.9	0148 ± 0.037	C.3.5.1 No. 3
Codfish	Bg 137Cs kg-1	0.44 ±0.06	8	0.32	1.38 ±0.19	C.3.5.2 No. 2
Lamb meat	Bg 90Sr (kg Ca)-T	890 <u>=</u> 163	6	880	1.01 ±0.18	C.3.4.1 No. 5
Lamb meat	Bg 137Cs (kg K)-1	15500 ± 3600	6	11900	1.30 ±0.30	C.3.4.2 No. 5
Lamb bone	Bq ⁹⁰ Sr (kg Ca)⁻⊺	1170 ±145	6	1860	0.63 ±0.08	C 3.4.3 No. 1
*"Milk year": June 198	88 - May 1989.					

 Table 2.5.A. Comparison between observed and predicted ⁹⁰Sr and ¹³⁷Cs concentrations in Faroese samples collected in 1988

Table 2.5.B. Comparison between observed and predicted ⁹⁰Sr and ¹³⁷Cs concentrations in Faroese samples collected in 1989

Sample	Unit	Obser ±1 S.	ved E.	Number of samples	Predicted	Obs./pre. ±1SE.	Model in Riso-R-437 (Aarkrog 1979)
Drinking water, Thorshavn	Bg 90Sr m [.] 3	4.6	±0.6	2	8.8	0.52 ±0.07	C.1.4.1 No. 9
Drinking water, Klaksvig	Bg 90Sr m-3	0.82	± 0.22	2	1.43	0.57 ±0.15	C.1.4.1 No. 10
Drinking water, Tværå	8g 90Sr m-3	4.4	±1.8	2	1.91	2.30 ±0.94	C.1.4.1 No. 11
Sea water	Bg 90Sr m 3	1.73	± 0.05	3	1.67	1.04 = 0.03	C.1.5.1 No. 3
Sea water	Bg ¹³⁷ Cs m ⁻³	2.6	±0.2	3	-	-	C.1.5.1 No. 3 (×1.6)
Grass	Bg 90Sr (kg Ca) ¹	1760	± 250	7	4400	0.40 ±0.06	C.2.4.1 No. 4
Grass	Bq 137Cs (kg K)-1	3600	±1810	7	6700	0.54 ±0.27	C.2.4.2 No. 3
Potatoes	Bg 90Sr kg-1	0.134	= 2.050	3	0.187	0.72 ±0.27	C.2.5 1 No. 11
Potatoes	Bq 137Cs kg-1	6.9	=2.7	3	10.6	0.65 ±0.25	C.2.5.3 No. 8
*M ilk	Bg 90Sr (kg Ca)-1	44	±1	12	251	0.175 ± 0.004	C.3.3.1 No. 1
 Milk Thorshavn 	Bq 137Cs (kg K)-1	940	z 98	11	2900	0.32 ±0.03	C.3.3.2 No. 1
Milk Klaksvik	8q 137Cs (kg K)-1	1020	±113	11	3800	0.27 ±0.03	C.3.3.2 No. 3
Milk Tværå	8g 137Cs (kg K)-1	2300	±198	11	6500	0.35 ±0.03	C.3.3.2 No. 5
Cod fish	Bg 90Sr (kg Ca)-1	7.7	±1.4	2	17.4	0.44 ±0.08	C 3.5.1 No. 3
Cod fish	Bg 137Cs kg-1	0.36	±0.06	8	0.30	1.20 ±0.20	C.3.5.2 No. 2
Lamb meat	Bg 90Sr (kg Ca)-1	800	± 320	3	780	1.03 ±0.41	C.3.4.1 No. 5
Lamb meat	Ba 137Cs (kg K)-1	14800	± 9000	6	10100	1.46 ±0.89	C.3.4.2 No. 5
Lamb bone	Bq 90Sr (kg Ca)-1	780	±170	3	1770	0.44 ±0.10	C.3.4 3 No. 1

*"Milk year": June 1989 - May 1990.

2.6 Texture and Soil Analysis

	Percentage					Rt	Pt	Kr		
Depth In cm	Humus (Organic matter)	Ciay < 0 002 mm	Silt 0.002- 0.02 mm	Fine sand 0 02- 0 2 mm	Sand 0 2-2 mm	pH - 05	Extractable phosphate mg P/100 g soil	Exchangeable potassium mg K/100 g soil	Specific weight kgidm ² soit	
0-5	21	7.0	100	35 8	26 2	5 ^	39	24 4	0 35	
5-10	17	66	96	40.2	26 6	49	10	86	0 60	
10-20	16	4 1	9.3	426	29 0	48	0.9	79	C 50	
20-30	13	3.9	96	44 1	29.4	48	13	14 2	0 75	
30-40	83	54	13.2	44 8	28 3	50	0.5	152	0 75	
40-50	20	62	21.2	39.4	31 2	5.2	07	26 9		

Table 2.6.1. Texture and soil analysis on soil collected at Thorshavn July 12, 1989

Table 2.6.2. Texture and soil analysis on soil collected at Klakswig July 17, 1989

	Percentage					Rt	Pt	Kt	
Depth in cm	Humus (Organic matter)	Clay < 0.002 mm	Siit 0 002- 0.02 mm	Fine sand 0.02- 0.2 mm	Sand 0 2-2 mm	pH - 0.5	Extractable phosphate mg P/100 g soil	Exchangeable potassium mg K/100 g soil	Specific weight kg/dm ³ soil
0-5	25	5.1	7.6	46. 9	15 4	4.7	135	86 5	0 45
5-10	19	3.8	8.9	41.6	26 7	4.6	9.8	836	0 65
10-20	14	51	105	42.7	277	51	7.1	70.8	0 75
20-30	59	66	18 2	33.3	36 0	50	36	73 f	-

Table 2.6.3. Texture and soil analysis on soil collected at Bour July 15, 1989

Percentage						At	Pt	Kı		
Depth In cm	Humus (Organic matter)	Claγ < 0.002 mm	Silt 0.002- 0.02 mm	Fine sand 0.02- 0.2 mm	Sand 0 2-2 mm	pH + 05	Extractable phosphate mg P/100 g soil	Exchangeable potassium mg K/100 g soil	Specific weight kgʻdm ³ soil	
0.5	25	4.5	8.1	53.8	86	59	7.5	77.2	0 50	
5-10	21	5.6	8.6	52.4	124	49	5.9	50 5	0 6 0	
10-20	18	7.5	11.1	45.6	178	49	30	26 8	0 65	
20-30	17	64	121	51.5	130	49	2.4	116	0 55	
30-40	18	6.1	137	47.8	144	5.0	2.6	43	0 50	

	Percentage					8:	P:	K:		
Depth in cm	Humus (Organic matter)	Ciay - 0 002 mm	Silt 0.002- 0.02 mm	Fine sand -0.02- -0.2 mm	Sand 0 2-2 mm	рн - 05	Extractable phosphate mg.P.100.g.so.	Exchangeuble potassium mg Ki 100 g soli	Specific Arright Agrithmis (c	
0-5	51	116	74	28.3	17	56	14	50 j	6 20	
5-10	35	75	60	44 1	64	47	11	95	C 34	
10-20	30	104	8 5	476	35	46	0.6	42	64E	
20-30	42	148	19.1	57.7	42	47	0 2	19	0 -5	
30-40	30	90	23 0	61 8	32	5;	03	19	େ ଳେ	
40-50	15	59	135	62 5	28	47	0.0	1-1	0 € 0	

Table 2.6.4. Texture and soil analysis on soil collected at Oravik July 14, 1989

3 Environmental Radioactivity in Greenland in 1988 and 1989

3.1 Introduction

3.1.1.

The sampling programme was similar to that used previously to Chernobyl.

3.1.2.

As hitherto, samples were collected through the local district physicians and the head of the telestations. However, we have also obtained samples collected by the Greenland Fisheries and Environmental Research Institute. A number of the Greenland food samples were obtained from K.N.I. (Kalaallit Niuerfiat) (Greenland Trade).

3.1.3.

The estimated mean diet in Grenland was the same as that in 1962, i.e., it agreed with the estimate given by the late Professor E. Hoff-Jørgensen.

3.1.4.

The environmental studies in Greenland were carried out together with corresponding investigations in Denmark (cf. Riso Report No. 570) and in the Faroes (cf. Chapter 2 in this report).

3.1.5.

The present report does not repeat information concerning sample collection and analysis already given in Riso Reports (Greenland) 1962-1982.

3.2 Results and Discussion

3.2.1 Strontium-90 in Greenland Precipitation.

Tables 3.2.1.1.A & B show the results of the measurements.

The ⁹⁰Sr fallout in 1988 and 1989 at the Greenland stations were generally lower as compared with 1987.

Figure 3.2.1 shows the accumulated ⁹⁰Sr at the various stations in Greenland since measurements began in 1962 (cf. also Table 3.2.1.2).

3.2.2 Radionuclides in Greenland Sea Water

Tables 3.2.2.A & B show the samplings carried out in 1988 and 1989.

The Chernobyl contribution to total ¹³⁷Cs in sea water from East Greenland in 1988 was about 20% (Table 3.2.2.A).

3.2.3 Strontium-90 and Radiocesium in Greenland Terrestrial Mammals

Reindeer collected in 1988 and 1989 contained 15% and 11% (compared to total ¹³⁷Cs), respectively, of Chernobyl ¹³⁷Cs (Tables 3.2.3.1.A & B) (cf. also Figures 3.2.3.1-3.2.3.3).

3.2.4 Strontium-90 and Radiocesium in Greenland Aquatic Animals

It appears from Tables 3.2.4.1.A & B that the ¹³⁷Cs levels in marine biota were generally lower in 1988 and 1989 than the concentrations measured in 1987, and the Chernobyl signal had almost disappeared (see also Tables 3.2.4.2.A & B and Figure 3.2.4).

3.2.5 Radionuclides in Greenland Vegetation

Tables 3.2.5.1.A & B show that Chernobyl ¹³⁷Cs was detectable in seaweed in 1988. The percentage (to total ¹³⁷Cs) was nearly 60% and in 1989 it was about 50%. Technetium-99 was measured in 1988 and the levels were similar to those seen 1987. The ⁹⁰Sr concentrations in Fucus in 1968 and 1989 were twice those observed in 1987.

A turf with moss and lichen was collected at Scoresbysund in 1988 (cf. Table 3.2.5.2.A). The total deposition of ¹³⁷Cs measured to a depth of 5 cm was 1.43 kBg m⁻², the contribution from Chernobyl was 0.12 kBg m⁻².

Chernobyl ¹³⁷Cs was also detected in grass and lichen from Godthåb, the Chernobyl contribution to the total ¹³⁷Cs amounted to 10% for grass; in case of lichen we found only 4%.

3.2.6 Strontium-90 and Tritium in Greenland Drinking Water

The levels in drinking water (Tables 3.2.6.1.A & B and Figure 3.2.6) are still surprisingly high compared with present rain concentrations (cf. Tables 3.2.1.1.A & B). We have suggested that evaporation from the drinking water reservoirs was responsible for the higher ⁹⁰Sr levels. Tritium measurements show (Tables 3.2.6.2.A & B) that Greenland drinking water shows similar tritium levels as rain from Denmark (Riso Report No. 570); hence evaporation seems to be a possible explanation. The high ⁹⁰Sr levels may, however, also be due to the extraction of old deposited ⁹⁰Sr activity from the soil by the water collected for drinking or to a migration of Sr-90 in the ice which might enrich certain layers (and deplete others). This would also be compatible with "normal" tritium concentrations. If old ice (e.g. from the early sixties) had been the source, we would have expected high tritium concentrations.

Figure 3.1. Greenland (Bq ¹³⁷Cs m⁻² from Chernobyl is indicated).

Location m precipitation	Unit	Jan-March	April-June	July-Sept	Oct-Dec	1988
Godthåb	Bq m ⁻³	1.72	1.87	0.9 B	0.89 A	1. 26
Σ 0.737	Bq m ⁻²	0.31	0.23	0.2 B	0.15 A	0.93
Scoresbysund	Bq m ⁻³	0.6 B	0.8 B	0.1 B	0.5 B	0.48
S 0.420	Bq m ⁻²	0.08 B	0.07 B	0.01 B	0.05 B	0.20
Danmarkshavn	Bq m-3	6 B	12.6	7 B	12 A	10
∑ 0.067	Bq m-2	0.1 B	0.33	0.05 B	0.20 A	0.68
Prins Chr.Sund	Bq m ⁻³	0.64 A	0.08 B	2.7	9.0	2.8
Σ (1.209)	Bq m ⁻²	0.18 A	0.03 B	0.78	2.5	3.4

Table 3.2.1.1.A. Strontium-90 in precipitation in Greenland in 1988. (Sampling area: 0.02 m²)

Table 3.2.1.1.B. Strontium-90 in precipitation in Greenland in 1989. (Sampling area: 0.02 m²)

Location m precipitation	Unit	Jan-March	April-June	July-Sept	Oct-Dec	1989
Godthåb	Bq m ⁻³	1.3 A	1.68	0.2 B	0.7 B	0.71
∑ 0.653	Bq m ⁻²	0.12 A	0.20	0.08 B	0.06 B	0.46
Scoresbysund	Bq m ⁻³	0.2 B	0.7 B	0.06 B	0.8 B	0.4
S 0.594	Bq m ⁻²	0.04 B	0.08 B	0.005B	0.1 B	0.2
Danmarkshavn	Bq m ⁻³	1 B	1 B		1 B	1
Σ (0.145)	Bq r. ²⁻²	0.1 B	0.04 B		0.04 B	0.2

	Score (Kap	sbysund Tobin)	Pr.Ch	ir.Sund	Go	dthåb	Upe	rnavik
	d;	Al.29	dı	Ai,29,	di	Ai,29	dı	At 291
1950	0 37	0 36	2.04	1.99	0 57	0 56	0.20	0 20
1951	176	2 06	9.7 9	11.50	2 77	3.25	0.97	1 14
1952	3 44	5.38	19 19	29 .97	5.42	8.46	1 90	2.97
1 9 53	8 70	13.74	48 47	76.5 9	13.69	21.63	4.81	7 60
1 9 54	33 06	45.69	184.28	254 71	52.05	71.94	18.29	25.28
1955	43.49	87.08	242 45	485.41	68.48	13710	24.06	48.17
1956	53 93	137 67	300.61	767.46	84.91	216.76	29.83	76.16
1957	53 93	187 08	300 61	1042.85	84.91	294.54	29.83	103.49
1958	74 81	255.70	417.04	1425.40	117.79	402.59	41.39	141.45
195 9	106 11	353.27	591 53	1969.29	167.07	556.21	58.70	195.43
1 96 0	19.82	364.28	110 51	2030.68	31.21	573.55	10.97	201.52
1961	25.75	380.83	143.57	2122.90	40.55	599.60	14.25	210.67
1962	129 17	497.95	720 .07	2775.83	203.38	784.01	71.46	275.46
1 9 63	290 45	769.78	1545.12	4218.89	475.45	1229.72	160.58	425.75
1964	180.93	928.26	92 9 07	5026.38	258.63	1453.19	100.27	513.59
1 96 5	68.82	973.53	383.32	5281.93	166.50	1581.44	38.11	538.67
1966	37.37	987.02	207.94	5360.21	43.2 9	1586.36	20.72	546.18
1967	18 13	981.41	73.63	5305.51	32.56	1580.68	12.21	545.20
1968	24.42	982.08	136 16	5313.15	37.00	1579.48	13.32	545.33
1969	18.13	976.59	72.89	5258.83	22.20	1563.85	6.73	539.03
1970	33.30	986.03	59.20	5192.43	34.41	1560.51	12.58	538.58
1971	15.17	977.56	122.84	5189.73	32.56	1555 44	8.14	533.91
1972	12.58	966.75	55.50	5121.35	15.17	1533.52	4.07	525.17
1973	3.40	947.24	17.91	5017.88	6.92	1504.06	2.78	515.48
1974	12.21	936.79	45.88	4944.16	18.83	1486.92	13.14	516.13
1975	4.48	919.04	86.21	4911.57	19.57	1470 91	8.44	512 18
1 9 76	3.00	900.26	11.17	4806.47	4.85	1440.91	2.44	502.46
1 9 77	5.18	884.06	34 78	4726.91	14.06	1420.60	7.03	497.46
1978	10.36	873.29	54.39	4668.38	14.43	1401.14	7.77	493.30
197 9	2.81	855 41	10.36	4568.24	9.99	1377.80	3.70	485.26
1980	2.57	837.72	5.74	4465.95	3.87	1349.04	3.02	476.75
1981	4 50	822.33	27.79	4387.60	10.57	1327.50	4.53	469.91
1982	1.97	804.83	5.19	4289.05	2.15	1298.24	1.27	460.05
1983	1.18	786.97	(10.1)	4197.63	2.98	1270.49	1.53	450.68
1984	0.87	769.23	(1.65)	4100.10	1.62	1242.06	1.79	441.78
1985	1.36	752.39	(1.6)	4004.82	(1.7)	1214 38	(~0.3)	431.64
1986	1.14	735 76	~1.5	3911.73	1.64	1187.34	~0.3	421.75
1987	0.23	718.61	~1	3820.32	1.19	1160.46	(~0.2)	411.98
1 9 88	~0.2	702	3.4	3733.4	0.93	1134	-	~402
1 9 89	~0.2	685	-	~ 3645	0.46	1108		~ 393

Table 3.2.1.2. Fallout rates and accumulated fallout (Bq m⁻²) in Greenland 1950-1989

Figure 3.2.1. Accumulated ⁹⁰Sr at Prins Chr. Sund, Godthåb, Scoresbysund (Kap Tobin) and Upernavik calculated from precipitation measurements since 1962. The accumulated fallout by 1962 was estimated from the Danish data (Riso Report No. 509, Appendix D) and from the ratio of the ⁹⁰Sr fallout at the Greenland stations to that in Denmark in the period 1962-1974.

Location	Bq ¹³⁷ Cs m⁻ ³	Bq ⁹⁰ Sr m⁻³	Salinity ‰	¹³⁴ Cs ¹³⁷ Cs
Danmarkshavn	8.1	4.4	28.7	0.044 A
Prins Chr. Sund	6.5	3.7	30.5	0.072

Table 3.2.2.A. Radionuclides in surface sea water collected in Greenland in the autumn of 1988

Table 3.2.2.B. Radionuclides in surface sea water collected in Greenland in the autumn of 1989

Location	Bq ¹³⁷ Cs m ⁻³	Bq ⁹⁰ Sr m⁻³	Salinity ‰	
Danmarkshavn	8.7	4.5	31.7	
Upernavik	2.5	1.79	30.5	

Location	Sample	Bq ¹³⁷ Cs kg ¹ meat	<u>134Cs</u> 137Cs	Bq ⁹⁰ Sr kg 1 meat	Bq ⁹⁰ Sr (kg Ca) ⁻¹ in bone	g K kg-1 meat	g Ca kg ⁻¹ meat
KNI		40	0.041	0.042	1560	3.8	0.061

Table 3.2.3.1.4. Radiocesium and strontium-90 in Greenland reindeer collected in 1988

Table 3.2.3.1.B. Radiocesium and strontium-90 in Greenland reindeer collected in 1989

Location	Bq ¹³⁷ Cs kg ⁻¹ meat	¹³⁴ Cs ¹³⁷ Cs	Bq ⁹⁰ Sr kg ⁻¹ meat	Bq ⁹⁰ Sr (kg Ca) ^{,1} in bone	g K kg-1 meat	g Ca kg-1 meat
KNI	108	0.021	0.20	4200	3.5	0.091

Figure 3.2.3.1. Cesium-137 in reindeer meat from Greenland, 1962-1990. (Unit: Bq kg⁻¹).

Figure 3.2.3.2. Strontium-90 in reindeer bone from Greenland, 1962-1989. (Unit: Bq $(kg \ Ca)^{-1}$).

Figure 3.2.3.3. Cesium-137 in Greenland mutton, 1962-1989. (Unit: Bq kg⁻¹). (No samples in 1987, 1988 and 1989).

Risø-R-571(EN)

10010 3.2.7.1.11	. Mautorestam in t	aynam ann	as from One	entana in 17	00
Species	Location	Month	¹³⁷ Cs Bq kg ⁻¹	<u>134Cs</u> 137Cs	g K kg⊡
Halibut	KNI	July	0.3.1	-	4.5
Shrimps	KNI		0.082	-	1.25

Table 3.2.4.1.A. Radiocesium in aquatic animals from Greenland in 1988

Table 3.2.4.1.B. Radiocesium in aquatic animals from Greenland in 1989

Species	Location	¹³⁷ Cs Bq kg ⁻¹	¹³⁴ Cs ¹³⁷ Cs	g K kg⁻¹
Seal	KNI	0.24	-	2.15
Salmon	KNI	0.32	0.10 A	3.8
Shrimps	KNI	0.072	-	1.40
Razor Bill	KNI	0.31	-	3.3

Figure 3.2.4. Cesium-137 in seal and whale meat from Greenland 1962-1990. (Unit: Bq kg⁻¹).

Risø-R-571(EN)

Species	Location	Month	⁹⁰ Sr Bq kg ⁻¹ flesh	⁹⁰ Sr Bq (kg Ca) 1 bone	g Ca kg 1 flesh
Halibut Shrimps	KNI KNI	July	0.001 B 0.011	0.4	0.47 0.45

Table 3.2.4.2.A. Strontium-90 in aquatic animals from Greenland in 1988

Table 3.2.4.2.B. Strontium-90 in aquatic animals from Greenland in 1989

Species	Location	⁹⁰ Sr Bq kg ⁻¹ flesh	⁹⁰ Sr Bq (kg Ca) ⁻¹ bone	g Ca kg ⁻¹ flesh
Seal	KNI	0.004 B	1.7 A	0.132
Salmon II	KNI	0.0034	20	0.12
Shrimps	KNI	0.005 B		0.52
Razor Bill	KNI	0.001 B	0.3 B	0.1

Table 3.2.5.1.A. Radionuclides in seaweed collected at Godthåb in 1988

Species	Date	⁹⁰ Sr Bq kg ⁻¹ dry	⁹⁰ Sr Bq (kg Ca)-1	⁹⁹ Tc Bq kg ⁻¹ dry	¹³⁷ Cs Bq kg ⁻¹ dry	g K kg-1 dry	g Ca kg ⁻¹ dry	¹³⁴ Cs ¹³⁷ Cs
Fucus vesiculosus	31/8	0.64	48	4.4	0.70	24	13.2	
Ascophyllum nodosum	31/8	0.3 B	20 B	11.1	1.25	21	16.9	0.15 A

Table 3.2.5.1.B. Radionuclides in seaweed collected at Scoresbysund in 1989

Species	Date	⁹⁰ Sr Bq kg ⁻¹ dry	⁹⁰ Sr Bq (kg Ca)-1	¹³⁷ Cs Bq kg ⁻¹ dry	g K kg- ¹ dry	g Ca kg⁻¹ dry	134Cs 137Cs
Fucus vesiculosus	27/9	0.52	43	3.1	53	12.1	0.089 A

Table 3.2.5.2.A. Radionuclides in lichen, moss, and grass collected in Greenland in 1988

				90	Sr	137	'Cs	134Cs
Species		Location	Month	Bq kg ⁻¹ dry	Bq m-2	Bq kg ⁻¹ dry	Bq m⁻²	¹³⁷ Cs
Lichen		Godthåb	August	27 ± 1	25.6±0.3	410±50	440 ± 20	0.0115±0
Grass		Godthåb	August	1.80		135	-	0.026
Moss, lic	chen							
Peat	∫0-3 cm]	Scoresbysund	September	-	-	153	6 50	0.046
redi.]3-5 cm∫	Scoresbysund	September	-	-	86	780	-

Location	Jan-Mar	April-June	July-Sept	Oct-Dec
Scoresbysund	7.4	10.4	3.8	3.0
Prins Chr. Sund	42	40	5.1	17.6
Godthåb		7.3		
Upernavik	6.9	6.4	6.1	

Table 3.2.6.1.A. Strontium-90 in drinking water collected in Greenland in 1988 (Unit: $Bq m^{-3}$)

Table 3.2.6.1.B. Strontium-90 in drinking water collected in Greenland in 1989 (Unit: Bq m⁻³)

an-Mar Apr	il-June July	-Sept Oct-D	Dec
27 2.8	4.4 4 5.8 3 9.7 4	1.6 3.5 4.8	3
	an-Mar Apr 27 2.8 9.1	an-Mar April-June July 27 4.4 4 2.8 5.8 3 9.1 9.7 4	an-Mar April-June July-Sept Oct-E 27 4.4 4.6 2.8 5.8 3.5 4.8 9.1 9.7 4.4 5.5

Figure 3.2.6. Strontium-90 in Greenland drinking water (geometric mean), 1962-1989. (Unit: Bq m⁻³).

Risø-R-571(EN)

Table 3.2.6.2.A. Tritium in drinking water collected in Greenland in 1988 (Unit: kBq m⁻³)

Location	Jan-March
Scoresbysund	1.93 ± 0.29
Godthåb (April-June)	1.74 ± 0.28 1.74 ± 0.10
Upernavik	2.41 ± 0.38

The error term is 1 S.E. of the mean of double determinations.

 Table 3.2.6.2.B. Tritium in drinking water collected in Greenland in 1989

 (Unit: hBq m⁻³)

Location	Jan-March		
Danmarkshavn	1.88 ± 0.25		
Scoresbysund	1.65 ± 0.30		
Upernavik	2.36 ± 0.40		

The error term is 1 S.E. of the mean of triple determinations.

3.3 Estimate of the Mean Contents of ⁹⁰Sr and ¹³⁷Cs in the Human Diet in Greenland in 1988 and 1989

3.3.1 The Annual Quantities

The estimate of the daily pro capite intake of the different foods in Greenland is still based on the figures given in 1962 by the late Professor E. Hoff-Jorgensen, in Riso Report No. 65 (Riso Reports (Greenland) 1962-1982).

3.3.2 Milk Products

All milk consumed in Greenland was imported as milk powder from Denmark. The mean radioactivity content in milk prepared from Danish dried milk produced in 1988 was 0.062 Bq ⁹⁰Sr kg⁻¹ and 0.28 Bq ¹³⁷Cs kg⁻¹ (Riso Report No. 570) and in 1989: 0.058 and 0.178, respectively.

Cheese was also imported from Denmark and contained 0.41 Bq ⁹⁰Sr kg⁻¹ and 0.135 Bq ¹³⁷Cs kg⁻¹ in 1988 and 0.44 and 0.153, respectively, in 1989.

3.3.3 Grain Products

All grain was imported from Denmark. It is assumed that only grain from the harvest of the previous year was consumed in Greenland during a given year. The daily pro capite consumption was: rye flour (100% extraction): 80 g; wheat flour (75% extraction): 110 g; rye flour (70% extraction): 20 g; biscuits (rye, 100% extraction): 27 g, and grits: 25 g. The content of ⁹⁰Sr in these five products was 0.43, 0.08, 0.09, 0.32, and 0.23 Bq kg⁻¹, respectively. Hence the mean content of ⁹⁰Sr in grain products was 0.23 Bq kg⁻¹. The content of ¹³⁷Cs in the five products was 11.1, 0.29, 2.22, 8.22, and 0.37 Bq kg⁻¹. Hence the mean content of ¹³⁷Cs in grain products was 4.56 Bg kg⁻¹.

The activity levels in rye flour (100% extraction), wheat flour (75% extraction), and grits were all taken from Tables 5.9.1.A & B and 5.9.2.A & B in Risø Report No. 570. The calculations of the 90Sr level in rye flour (70% extraction) was made similarly to that of the level in wheat flour (75% extraction), i.e. as one-fifth of the whole- grain activity. The ¹³⁷Cs content in rye flour (70% extraction) was calculated as one-half of the whole-grain level in rye in analogy with the ratio of ¹³⁷Cs in whole wheat grain to wheat flour (75% extraction) (Risø Report No. 570). The ⁹⁰Sr and ¹³⁷Cs contents in biscuits were calculated by dividing the levels of the rye flour (100% extraction) by 1.35, since 1 kg flour yields 1.35 kg bread (Risø Report No. 570).

3.3.4 Potatoes, Other Vegetables, and Fruit

The Danish mean levels for 1988 and 1989 were used (Risø Report No. 570), since the local production is insignificant compared with imports from Denmark.

The Danish mean levels in 1988 were: in potatoes 0.037 Bq 90 Sr kg⁻¹ and 0.094 Bq 137 Cs kg⁻¹ (in 1989: 0.036 and 0.114, respectively), in other vegetables 0.22 Bq 90 Sr kg⁻¹ and 0.095 Bq 137 Cs kg⁻¹ (in 1989: 0.185 and 0.089, respectively), and in fruit 0.034 Bq 90 Si 12 i and 0.049 Bq 137 Cs kg⁻¹ (in 1989: 0.020 and 0.054, respectively).

3.3.5 Meat

Nearly all meat consumed in Greenland is assumed to be of local origin. Approximately 10^e^a comes from sheep, 5^a^a from reindeer, 60^a^a from seals, 5^a^a from whales, and 20^a^a from sea birds and eggs.

The activities in reindeer were estimated from 3.2.3. Seal and whale were estimated from 3.2.4. The levels of lamb and sea birds (and eggs) were taken from last year's measurements (Riso Reports (North Atlantic Region) 1983-1987). Hence the mean levels in Greenland meat from 1988 were 0.013 Bq ⁴⁰Sr kg⁻¹ and 5.1 Bq ¹³⁷Cs kg⁻¹ (1989; 0.022 and 8.5, respectively).

8.5 Bq kg⁻¹)

3.3.6 Fish

All fish consumed was of local origin, and the mean levels from 1988 were used, i.e. 0.001 Bq 90Sr kg⁻¹ and 0.34 Bq ¹³⁷Cs kg⁻¹ (1989: 0.0034 and 0.32, respectively).

3.3.7 Coffee and Tea

The Danish figures for 1988 and 1989 (Riso Report No. 570) were used for coffee and tea, i.e. 0.25 Bq ⁹⁰Sr kg⁻¹ and 0.82 Bq ¹³⁷Cs kg⁻¹.

3.3.8 Drinking Water

The geometric mean calculated in 3.2.6 was used as the mean level of 90 Sr in drinking water, i.e. 8.9 Bq 90 Sr m⁻³ (in 1989: 6.1 Bq 90 Sr m⁻³. The 137 Cs content was approximately 3 Bq 137 Cs m⁻³).

Tables 3.3.1 and 3.3.2 show the diet estimates of ⁹⁰Sr and ¹³⁷Cs, respectively.

3.3.9 Discussion

The most important ⁹⁰Sr source in the Greenland diet is still grain products, which contribute nearly 60% of the total ⁹⁰Sr content in the diet. Approximately 85% of the ⁹⁰Sr in the food consumed in Greenland in 1988-1989 originated from imported (Danish) food.

Meat is still an important ¹³⁷Cs source in the Greenland diet, contributing 70-80% of the total content in 1988-1989. About 85-90% of the ¹³⁷Cs in the Greenland diet in 1988-1989 came from local products.

The ¹³⁷Cs levels were about half that found in 1987. As discussed earlier (Risø Reports (Greenland) 1962-1982), the great variations from year to year are primarily due to the variations in the ¹³⁷Cs levels in the lamb and reindeer samples obtained.

Type of food	Annuai quantity in kg	Bq ^{eg} Sr perkg	Tötai Bq ≥ 0Sr	Percentage of total Bq ⁵⁰ Sr in food
Milk and cream	78	0 062	4 84	12 1
Cheese	25	0 41	Ŧ 02	2.6
Grain products	9 5 6	0 25	23 90	59.7
Potatoes	32 8	0 037	1.21	30
Vegetables	55	0.22	1 21	30
Fruit	13.5	0 034	0 46	11
Meat and eggs	45 6	0 013	0.59	1.5
Fish	127.6	0 001	0.13	03
Coffee and tea	73	0 25	182	4 5
Drinking water	548	C.089	4.89	12.2
Totai			40.06	

Table 3.3.1.4. Estimate of the mean content of ³⁰Sr in the human diet in Greenland in 1988

The mran annual calcium intake is estimated to be 0.56 kg (approx. 0.2-0.25 kg creta praeparata). Hence the ⁹⁰Sr/Ca ratio in Greenland total diet in 1988 was 72 Bg ⁹⁰Sr (kg Ca).¹ and the daily intake was 0.110 Bg ⁹⁰Sr.

Type of food	Annual qeantity in kg	Bq ⁹⁰ Sr per kg	Total Bg ⁹ -Sr	Percentage of total Bq ⁹⁰ Sr in food
Milk and cream	78	0.058	4.52	13.8
Cheese	2.5	0.44	1.10	34
Grain products	95.6	0.19	18.16	55.3
Potatoes	32.8	0.036	1.18	3.6
Vegetables	5.5	0 185	1.02	3.1
Fruit	13.5	0.020	0.27	0.8
Meat and eggs	45.6	0.022	1.00	3.0
Fish	127.6	0.0034	0.43	1.3
Coffee and tea	7.3	0.25	1.82	5.5
Drinking water	548	0.0061	3.34	10.2
Total			32.84	

Table 3.3.1.B. Estimate of the mean content of ⁹⁰Sr in the human diet in Greenland in 1989

The mean annual calcium intake is estimated to be 0.56 kg (approx. 0.2-0.25 kg creta pracparata). Hence the 90 Sr/Ca ratio in Greenland total diet in 1989 was 59 Bg 90 Sr (kg Ca) 1 and the daily intake was 0.090 Bg 90 Sr.

Type of food	Annual quantity in kg	Bq 127Cs per kg	Totai Ba™Cs	Percentage of total Bg 13 Cs in food
Milk and cream	78	0 23	21 84	6 8
Cheese	25	0 135	0 34	01
Grain products	9 5 6	011	10 52	33
Potatoes	32 8	0 094	3 OS	10
Vegetables	55	0 095	0 52	02
Fruit	135	0.049	0.66	02
Meat and eggs	45 6	51	232 56	72 6
Fish	127 6	0 34	43 38	13.5
Coffee and tea	73	0 82	5 99	19
Drinking water	549	0 0022	1.21	0.4
Total			320 10	
9.				

Table 3.3.2.4. Estimate of the mean content of 11 Cs in the human dict in Greenland in 1988

The mean annual potassium intake is estimated to be approx 1.2 kg. Hence the 137 Cs/K ratio becomes 267 Bg 137 Cs (kg K).⁻ The daily intake in 1988 from food was 0.88 Bg 137 Cs.

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Totai Bq ¹³⁷ Cs	Percentage of tota: Bq ¹³⁷ Cs in food
Milk and cream	78	0 178	13.88	3.0
Cheese	2.5	0 153	0.38	01
Grain products	95 6	C 11	10.52	2.2
Potatoes	32.8	0114	3.74	CS
Vegetables	5.5	0 089	0.49	Q 1
Fruit	13.5	0 054	0.73	0.2
Meat and eggs	45.6	85	387.60	83 3
Fish	127.6	0.32	40.83	88
Coffee and tea	7.3	0 82	5 99	13
Drinking water	548	C 0015	0.82	0 2
Total			464 98	

Table 3.3.2.B. Estimate of the mean content of $i^{3*}Cs$ in the human dict in Greenland in 1989

The mean annual potassium intake is estimated to be approx 1.2 kg. Hence the $^{137}Cs/K$ ratio becomes 387 Bg ^{137}Cs (kg K) ¹. The daily intake in 1989 from food 1 vas 1.27 Bg ^{137}Cs

Figure 3.3.1. Strontium-90 in Greenland diet, 1962-1989. (Unit: Bq day-1).

Figure 3.3.2. Cesium-137 in Greenland diet, 1962-1989. (Unit: Bq day-1).

Rist-R-571(EN)

3.4 Conclusion

3.4.1.

The ⁹⁰Sr fallout rates in 1988 and 1989 were less than 1 Bq m⁻² per year.

3.4.2.

The food consumed in Greenland in 1988 and 1989 contained on the average 66 Bq ⁹⁰Sr (kg Ca)⁻¹, and the daily mean intake of ¹³⁷Cs was estimated as 1.1 Bq. The most important ⁹⁰Sr contributor to the diet was grain products. Cesium-137 originated mainly from meat (reindeer and lamb). Chernobyl radiocesium was detectable in Greenland food, but did not influence the ¹³⁷Cs level significantly.

3.4.3.

No 90Sr analyses of human bone samples have hitherto been carried out on the population of Greenland. Considering the estimated 90Sr levels in the diet, it seems probable (Risø Reports (North Atlantic Region) 1983-1987), however, that the 1988-1989 90Sr levels of humans in Greenland were on the average rather similar to those found in Denmark, i.e. the mean levels in human bone in Greenland were approximately 18 Bq 90Sr (kg Ca)⁻¹ (vertebrae). From diet measurements, the ¹³⁷Cs content in Greenlanders was estimated as 1000 Bq 137 Cs (kg K)⁻¹.

4 Environmental Radioactivity in the North Atlantic Region

4.1 Monthly Surface Sea Water Samples from Utsira, Norway

Institute of Energy Technology, Kjeller, Norway, collects monthly sea water samples at Utsira 59°19'N, 4°54'E in SW-Norway. From this station it is possible to monitor the radioactivity in the Norwegian Coastal Current, which carries the activity from the North Sea to the Arctic waters in the north.

Tables 4.1.1.A & B show the results from 1988 and 1989, respectively. 68% of the ¹³⁷Cs in the sea water from Utsira in 1988 was from Chernobyl, in 1989 the contribution had decreased to 48% (see also Figures 4.1.1 and 4.1.2).

The annual mean concentrations of 99 Tc in sea water at Utsira may be correlated to the discharges of 99 Tc from Cap de la Hague (in TBq y⁻¹).

The following relation was found for a year (i) in the period 1986-1991:

Bq $m^{-3}(i) = 0.08 \text{ TBq } y^{-1}(i-2) + (i-1)$
Date	⁹⁹ Тс	¹³⁷ Cs	134Cs 137Cs	Salinity in ‰
February 2	1.14	42	0.114 A	31.8
June 16	0.94	37	0.143 A	31.4
July	1.39	22	0.180	29 .1
August 26	lost	29	0.114	31.2
September 14	1.12	31	0.155	30.4
October 10	1.21	23	0.156	26.3
November 14	1.19	27	0.113 A	30.7
December 15	0.73	26	0.092 A	33.6
Mean	1.10	30		30.6
1 S.D.	0.21	6.9		2.1
Relative S.D.	19%	23%		7%

Table 4.1.1.A. Radiocesium and Technetium in surface sea water collected in 1988 from Utsira, Norway. 59°19'N, 4°54'E. (Unit: Bq m^{-3})

Table 4.1.1.B. Radiocesium and Technetium in surface sea water collected in 1989 from Utsira, Norway. 59°19'N, 4°54'E. (Unit: $Bq m^{-3}$)

Date	⁹⁹ Тс	¹³⁷ Cs	¹³⁴ Cs ¹³⁷ Cs	Salinity in ‰
Januuary 16 February 14 March 14 April 18 May 18 June 15 July 13 August 14 September 15	0.55 1.11 1.39 1.02 0.72 0.72 0.72 0.54 0.58	19.4 19.1 29 26 23 20 25 19.8 24	0.116 B 0.086 B 0.128 A 0.118 0.052 B 0.100 A	33.3 33.5 33.2 31.8 31.5 31.5 31.3 32.2 31.9
October 14 November 15	0.50 0.39	17.3 14.7		32.7 35.5
Mean 1 S.D.	0.75 0.32	22 4.2		32.6 1.2
Relative S.D.	42%	19%		4%

Figure 4.1.1. Cesium-137 in surface sea water collected at Utsira (59°19'N, 4°54'E), 1986-1990. (Unit: Bq m^{-3}).

Figure 4.1.2. Technetium-99 in surface sea water collected at Utsira (59°19'N, $4^{\circ}54'E$), 1986-1990. (Unit: Bq m⁻³).

Risø-R-57l(EN)

4.2 Surface Sea Water Samples Collected in West Greenland Waters in 1988 by The Greenland Fisheries and Environmental Research Institute

The sampling in 1988 was the seventh since this programme began in July 1983. The ¹³⁷Cs data were treated by two-sided anovas (cf. Table 4.2.2).

The variation between locations was significant; the southern locations at 64°N contained 1.4 times higher concentrations than the northern at about 71°N. The levels have been decreasing throughout the years (cf. the discussion in Riso-R-564).

Latitude N	e Longitude W	Name of Location	¹³⁷ Cs Bq m ⁻³	Salinity in ‰
63°57'	52°22'	Fylla Banke (Nuuk)	4.4	33.5
63*48′	53°56'	Fylla Banke (Nuuk)	4.6	33.2
65°06'	52°55′	Sukkertoppen (Maniitsog)	4.5	33.2
65°06'	53°59'	Sukkertoppen (Maniitsog)	4.8	33.5
65°06′	54°58'	Sukkertoppen (Maniitsog)	4.3	33.4
66 ⁻ 53'	54°10′	Holsteinsborg (Sisimiut)	4.0	33.6
66°46′	55 °36'	Holsteinsborg (Sisimiut)	4.5	33.6
66°41'	56°38′	Holsteinsborg (Sisimiut)	3.8	33.6
68°00'	55°00'	Egedesminde (Aasiaat)	4.5	33.4
68°04″	56°00'	Egedesminde (Aasiaat)	3.9	33.4
68°08'	57°17′	Egedesminde (Aasiaat)	4.2	33.2
68°14′	58°40′	Egedesminde (Aasiaat)	3.4	31.6
69°30'	54°54′	Disko fjord	3.8	33.1
69 ⁻ 30'	56 °00'	Disko fjord	4.1	33.3
69°30′	58°20′	Disko fjord	3.6	31.4
70°45′	55°00'	Nugssuaq	3.0	33.3
70°45′	57°00'	Nugssuaq	3.6	33.0
69°42′	51°38′	Arveprinsen	3.4	32.4
69°20'	51°41′	Jacobshavn	3.4	33.0
68°56′	53°12'	Godhavn-Egedesminde	5.2	33.4
68°55′	52°24′	Skansen-Akunag	3.6	33.0

Table 4.2.1. Cesium-137 in su face sea water off West Greenland in June-July 1988

Table 4.2.2. Anova of In Bq ¹³⁷Cs m⁻³ surface water collected off West Greenland July 1983 - July 1988 (cf. Table 4.2.1 and Riso-R-510, 528, 541 and 564)

Variation	SSD	f	s²	v ²	Ρ
Between samplings	1.023	6	0.171	15.05	> 99.95
Between locations	1.594	33	0.048	4.26	> 99.95
Interaction	1.065	94	0.011	0.55	-
Remainder	0.021	1	0.021		

4.3 "Bjarni Sæmundson" Cruise to the Denmark Strait and the Southern Greenland Sea in September 1988 (GSP Project)

Table 4.3 show the results of the ⁹⁰Sr, ⁹⁹Tc and radiocesium analyses from samples collected by "Bjarni Sæmundson" in September 1988 (Dahlgaard et al., 1991) (see also Figures 4.3.2-4.3.13).

Below is given a procedure for estimation of Sellafield derived ¹³⁷Cs in East Greenland waters in 1988:

The measured 90 Sr concentration: S_m is corrected for 90 Sr from Sellafield: S_s by subtraction of 4.26 \times T_m, where T_m is the measured 99 Tc in Bq m⁻³ in the sample, and ...26 is the ratio between 90 Sr and 99 Tc in the Sellafield releases 1978-1988. We then get 90 Sr due to fallout S_f

$$S_{f} = S_{m} - 4.26 \times T_{m} \tag{1}$$

A possible contribution of ⁹⁹Tc from global fallout is neglected in this calculation.

The contribution of Atlantic water fallout (x) and Arctic water fallout (l-x) is calculated from the equation:

$$1.65x + (1-x) \ 3.15 = S_f,$$

$$x = \frac{3.15 - S_f}{1.50} = 2.1 - \frac{S_f}{1.5}$$
(2)

If $S_f \le 1.65$ we assume the sample to consist of Atlantic water only and if $S_f \ge 3.15$ we assume the sample to consist of 100% Arctic water. 1.65 is the calculated fallout level: Bq 90Sr m⁻³ in Atlantic water in 1988 and 3.15 is the corresponding figure for Arctic water. The equations used for these calculations were based upon observations at the Faroe Islands and in the East Greenland Current since 1974 (t=0):

```
Atlantic <sup>90</sup>Sr Bq m<sup>-3</sup> in year t: 3.52 e^{-0.054 t}
```

```
Arctic 90Sr Bq m-3 in year t: 7.1 e-0.058 t
```

The measured ¹³⁷Cs: C_m is corrected for Chernobyl derived ¹³⁷Cs: C_c by subtraction of the measured ¹³⁴Cs divided by 0.2603 (in September 1988). $C_c = {}^{134}$ Cs/0.2603. The remaining ¹³⁷Cs after this subtraction consists of fallout ¹³⁷Cs: C_f and Sellafield ¹³⁷Cs: C_s .

The fallout ¹³⁷Cs: C_f is estimated from the equation: C_f = $x \cdot 2.32 + (1-x) \cdot 3.64$, where x was determined above for ⁹⁰Sr: $x = 2.1 - S_{f}/1.5$ and 2.32 is Bq ¹³⁷Cs n.⁻³ in Atlantic water in 1988 and 3.64 is the corresponding figure for Arctic water. These concentrations were determined from observations since 1974 (t = 0) as for ⁹⁰Sr above:

Atlantic ¹³⁷Cs Bq m⁻³ in year t. 6 $\odot e^{-0.068 t}$ Arctic ¹³⁷Cs Bq m⁻³ in year t: 10.4 $e^{-9.075 t}$ C₁ = 3.64 - 1.32x = 3.64 - 1.32 (2.1 - S₁/1.5) = 0.87 + 0.88 × S_f (3)

$$C_{s} = C_{m} - C_{c} - C_{f} = C_{m} - (^{134}Cs/0.2603) - 0.87 - 0.88 \times S_{f}$$

= C_m - (¹³⁴Cs/0.2603) - 0.87 - 0.88 S_m + 3.75 T_m (4)

Using the above calculation procedure we came to Figure 4.3.1 showing how the calculated contributions of ¹³⁷Cs from Sellafield correlate with the measured ⁹⁹Tc concentrations in the surface waters between Iceland and Greenland.

The correlation implies that the ¹³⁷Cs concentrations from Sellafield effluents present in East Greenland surface waters in 1988 were 23 ± 6 times higher than the ⁹⁹Tc concentrations. If we assume that the Sellafield effluents seen in the surface waters between Iceland and Greenland in 1988 were due to discharges from Sellafield in 1978-1981 (corresponding to a transit time of 7-10 years) the ratio between ¹³⁷Cs (decay corrected) and ⁹⁹Tc in these discharges was 35. This is in reasonable agreement with the above figure of 23 ± 6 taking into account that some ¹³⁷Cs has gone to the sediments on its long way to Greenland.

									Ca	culated ¹³	`Cs	
Position	Date in	Decth	Temp	Satinity	*'Sr	** Τα	HCs	12105	5 3 10	Secu	<u>ر</u> م	••
N W	Sept	:0 m	ın C	111 *** *	8q m 3	mBam 3	Bq m 3	Bar 🤞	<u>aut</u>	tera		
65 41 24 23	7	5		34 6	1 59	1104	BDL	28	23	05		245
66°29° 23'03'	7	5		345	165	20.7	0 14 A	29	24		0 ÷	249
70:59 14 20	11	5	49	34 Z	25	45	0.52	61	32	12	20	21.0
70 59 14 20	11	86	04	34 6	2 4	40	0548	7:	31	19	21	25*
70 59 14 20	11	327	06	34 9	1.96	42	3 Di	56	26	3.0		252
70:59: 14 20	11	535	00	34 9	1 89	24	0165	43	26	T T	06	253
70.59 14.20	11	1017	05	34 9	1 30	34	BDL	25	19	0 6		254
71*00* 17-17	12	5	19	32 8	34	79	0 40	87	4:	31	15	255
71-00-17-17	12	86	0 Z	34.6	27	74	0 63	74	33	15	26	255
71.00 17 17	12	327	С 9	34 9	2 2	45	0 70	64	29	0 9	27	2 57
71-00-17-17	12	803	04	34 9	1 60	36	0 43	3 3	2:		1.5	253
71'00: 17:17	12	1660	08	349	0 54	30	0.14	23	13	05	€5	259
70 ⁻ 59' 18'48'	13	5	16	32 6	34	78	C 40	83	39	34	15	260
70-59-18-48	13	80	00	34 5	26	67	0 66	75	34	16	25	261
70 59 18 48	13	300	10	34 9	21	48	0 64	€∋	28	15	25	262
70 59 18 48	13	500	0 2	34 9	20	41	0 39	47	26	04	15	263
70'59' 18'48'	13	750	03	34 9	185	32	0 70	45	3 7		27	264
70 59 18 48	13	1350	0 8	34 9	20	56	1 61	65	26		39	265
71-00 20 25	15	5	05	31.5	41	110	0 33 A	94	49	32	13	2 6 6
71 00 20 25	15	80	T 6	33.1	5.0	96	BDL	101	60	41		267
71°00 20°25	15	300	06	34 8	20	42	G 78 A	65	28	07	30	265
70°59' 19'26'	15	5	06	32 2	37	106	0 38	9;	44	32	15	269
70'59' 19'26'	15	80	15	34 2	31	86	0 41	S 1	37	28	16	270
70'59' 19'26'	15	300	13			42	0 90	70				271
70*59 19`26'	15	500	1.0	34 9	20	40	BDL	65	28			272
70°59° 19°26°	15	750	03	34 9	1 37	28	BDL	47	20	27		273
71'00' 09'30'	18	5		34 5	23	45	0 5 9	81	30	28	23	274
70'00' 17'56'	19	5				59						275
70'00' 21'47'	20	5		26 8	40	78	0 35	92	49	30	13	276
68:30" 18:55"	21	5				33						277
68 39 26 20	24	5		30 2	36	68	0 14	78	44	29	05	279
68.08 25.13	25	5	0.2	31.3	39	6 5	0 27	84	17	27	10	280
68:08: 25:13:	25	80	04	32 0	35	78	0 24	82	- 3	30	09	281
68 08° 25°13'	25	150	16	34 1	33	29	0 42 B	1 8	<u>9</u>	26	1.6	282
68 08 25 13	25	500	08	34 9	21	30	BDL	58	28	30		283
67 08 22 54	25	5	17	33 3	30	92	96.0	74	36	23	15	284
67'08' 22'54'	25	100	37	34.1	30	46	0 26 B	65	28	27	10	285
67 08 22 54	25	200	18	34 8	1 96	66	BDL	43	27	1.6		285

Table 4.3. Radionuclides in sea water collected from »Bjarni Sæmundsen« (Greenland Sea Project) in the Greenland Sea and Denmark Strait in September 1988

Figure 4.3.1. Technetium-99 in surface sea water 65°N-71°N collected between Iceland and Greenland September 1988 related to Cesium-137 from Sellafield.

Figure 4.3.2. Cesium-137 in surface sea water from Greenland Sea Project September 1988. •: sampling location, :: profile. (Unit: Bq m⁻³).

Figure 4.3.3. Chernobyl ¹³⁷Cs in surface sea water from Greenland Sea Project September 1988. •: sampling location, : profile. (Unit: Bq m⁻³).

Figure 4.3.4. Strontium-90 in surface sea water from Greenland Sea Project September 1988. C: sampling location, .: profile. (Unit: Bq m⁻³).

Figure 4.3.5. Technetium-99 in surface sea water from Greenland Sea Project September 1988. ©: sampling location, : profile. (Unit: mBq m⁻³).

Figure 4.3.6. Cesium-137 in the 71°N section of the Greenland Sea Project September 1988. (Unit: Bq m⁻³).

Figure 4.3.7. Chernobyl ¹³⁷Cs in the 71°N section of the Greenland Sea Project September 1988. (Unit: Bq m⁻³).

Figure 4.3.8. Strontium-90 in the 71°N section of the Greenland Sea Project September 1988. (Unit: Bq m⁻³).

Figure 4.3.9. Technetium-99 in the 71°N section of the Greenland Sea Project September 1988. (Unit: mBq m⁻³).

Figure 4.3.10. Cesium-137 in the Denmark Strait section of the Greenland Sca Project September 1988. (Unit: Bq m⁻³).

Figure 4.3.11. Chernobyl ¹³⁷Cs in the Denmark Strait section of the Greenland Sea Project September 1988. (Unit: Bq m⁻³).

Figure 4.3.12. Strontium-90 in the Denmark Strait section of the Greenland Sea Project September 1988. (Unit: $Bq m^{-3}$).

Figure 4.3.13. Technetium-99 in the Denmark Strait section of the Greenland Sea Project September 1988. (Unit: $mBq m^{-3}$).

4.4 Radionuclides in Lichen Collected at a Norwegian Location 1985-1991

Every summer since 1985 lichen samples (Cladonia stellaris) have been collected 30 km southeast of Alvdal at Belling (62'02'N, 10'48'E) in Norway. The sampling site is an open plateau covered with a thick carpet of lichen. Table 4.4 shows the results. The ratios of other radionuclides relative to ¹³⁷Cs were all decay corrected to April 26, 1986, when the Chernobyl accident began. Figures 4.4.1-4.4.5 show that the effective half-life of 137Cs is longer in Norwegian lichen than in the Danish.

Year &	Bq ™Cs kg:1	Bq*3 ⁻ Cs m ⁻²	aK kgʻ	Ba ¹⁹⁷ Cs Ikg Kh ^a	[•] ³² Cs	<u>€°Co</u> ∵∕°Cs	<u>⇒52</u> . -3°Cs		- <u>142</u> 		- <u>++:0+</u> -7/05
20 Aug 1995	80	160	-	75	-		•			-	-
20 July 1986	5500	5200		•	0 57	0 00C2 B	0 073	0 28	0.077	0 0172	0.260
21 Aug 1987	1810	4400	0.60	3600	C 59	0 00152			0.069	0 010 3	0.05 4
24 Aug 1988	4000	2500	1 34	3000	0 59	0 00046	-		0.055	0 00 94	-
24 Aug 1989	5600	3200	1 31	4400	0 59	0.00035		•	0 045 A	0.0091	
25 Aug 1989	4500	4400	161	2800	0 59		-				
25 Aug 1989	4100	4400	0 31	5100	0 52					-	
21 Aug 1990	5200	7400	1 05	5000	0 59		•	-	•	•	
21 Aug 1990	4500	6800	0.96	4500	0 59			•	-	٠	
28 Aug 1991	4300	8 600	118	3700	0.59	•	•			-	
28 Aug 1991	4600	9500	1 27	3500	0.58	-				-	
23 Aug 1989**	6800	7100	3 25	2100	0 59	•	-	-			
8 July 1986*	3600	3900	2 63	1370	0 58	0 0002 B	0 03 B	0 39	0 100	00101	

Table 4.4. Radionuclides in Norwegian lichen collected 1985-1991 at 62°02'N 10°48'E

**Cetraria nivalis collected at Bertostolen, Valdres

Figure 4.4.1. Cesium-137 in Norwegian lichen collected 1985-1991 at 62°02'N 10°48'E. (Unit: Bq kg⁻¹ dry).

Figure 4.4.2. Cesium-137 in Norwegian lichen collected 1985 1991 at 62°02'N 10°48'E. (Unit: Bq m⁻²).

Risø-R-571(EN)

Figure 4.4.3. Cesium-137 in lichen from Skagen, Denmark, 1983-1991. (Unit: Bq kg⁻¹ dry).

Figure 4.4.4. Cesium-137 in lichen from Skager., Denmark, 1983-1991. (Unit: Bq m⁻²).

Riso-R-571(EN)

Figure 4.4.5. Chernobyl and fallout Cesium-137 in lichen from Skagen, Denmark, 1983-1991. (Unit: Bq kg⁻¹ dry).

4.5 Radionuclides in Fucus Vesiculosus and Fucus Serratus Collected at a Norwegian Location 1984-1990

Table 4.5 shows that the relative contribution of Chernobyl ¹³⁷Cs decreased from 100% in 1986 to 75% in 1990 in Fucus collected at Trondheim Fjord in Norway.

Species	Date	⁹⁹ 7c Bq kg ⁻¹ dry	137Cs Bq kg ⁻¹ dry	4⁰K g kg 1 dry	134Cs 137Cs	<u>54Mn</u> 137Cs	60Co 137Cs	65 <u>Zn</u> 137Cs at 26 April 1	986	103Ru 137Cs	106Ru 137Cs	110mAg	%• dry matter
Fu.ve. Fu.se.	13 Aug 1984 13 Aug 1984	81 65	4.5 5.6	22.0 20.8				₩~~33 ₩₩2 ₩1 ₩1 ₩1 ₩1		Q, (- Q Q) - Q (- Q) - Q (9 9
Fulve. Fulse.	19 Aug 1985 19 Aug 1985	47 47	4.1 3.4	19.7 23.8									30 1 24 1
Fu.ve.* Fu.se.	20 July 1986 20 July 1986		77 47	28.9 27.2	0.55 0.59	0.034 0.065	0.020 0.053	0.062 A 0.087 A	0.188 A	2 59 4 20	0.87 0.80 A	1.47 2.17	25 4 23 8
Fu.ve. Fu.se.	21 Aug 1987 21 Aug 1987		22 14.5	25.9 29.4	0.45 0.39		0.054					1 43 2 17	24 () 22 ()
Fu.ve. Fu.se.	22 Aug 1988 22 Aug 1988		10.5 7.2	25.3 22.5	0.34 0.46								19-7 23-2
Fu.ve. Fu.se.	25 Sept 1989 25 Sept 1989		5.2 4.3	18.9 23.3	0.45 0.34								28 2 17 1
Fu.ve. Fu.se.	19 Aug 1990 19 Aug 1990		3.2 2.9	23.5 23.0	0.41								40 0 25 1
• 144Ce	0.084 B												

Table 4.5. Radionuclides in Norwegian Fucus vesiculosus and Fucus servatus collected 1984-1990 at 63°35'N 9°16'

4.6 Environmental Samples from Iceland

Tables 4.6.1-4.6.5 show radiocesium levels in soil, meat and vegetation collected in Iceland in 1985, 1988 and 1989.

A few samples contained ¹³⁴Cs suggesting the presence of Chernobyl debris. The soil sample from Gljufurholt showed a Chernobyl deposition of about 56 Bq ¹³⁷Cs m⁻². The reindeer sample contained 32% ¹³⁷Cs from Chernobyl. The Blåfjäll moss showed a Chernobyl deposition of 105 Bq ¹³⁷Cs m⁻² and the grass from Gullfoss contained 26 Bq ¹³⁷Cs m⁻².

Position	Location	¹³⁷ Cs Ba ka-1	¹³⁷ Cs Ba m ⁻²	¹³⁴ Cs Ba ka-1	¹³⁴ Cs Ba m ⁻²	40K a ka-1
<u>N</u> VV		fresh		fresh		fresh
63°54.7' 17°49.4'	Seljaland	92	6400	B.D.L.	B.D.L.	3.54
63°28.4′ 19°16.6′	Pètursey	100	9200	.,	"	6.00
63°43.4' 20°14.4'	Puerà	31	3700	**	**	9.14
63°58.8′ 21°08.8′	Gljufurholt	26	2200	0.2 B	14 B	2.42
65°26.5′ 19°11.0′	Silfrastadir	34	2200	< 0.5		5.09
64°48.1′ 21°28.1′	Dalsmynni	73	5000	B.D.L.	B.D.L.	3.60
64°16' 15°11'	Höfn Mornafjordur	33	4000	< 0.12		3.11

Table 4.6.1. Soil samples (0-10 cm layer) collected in Iceland, October 31, 1988 (Pall Theodorsson, University of Iceland)

Table 4.6.2. Meat samples collected in Iceland November 9, 1988 (Pall Theodorsson, University of Iceland)

Species	Bq ¹³⁷ Cs	Bq ¹³⁴ Cs	g ⁴⁰ K	Bq ¹³⁷ Cs
	g ⁻¹ ash	g ⁻¹ ash	(g ash)-1	(kg K) ⁻¹
Lamb	0.62	B.D.L.	0.104	5900
Reindeer	0.44	0.035	0.084	5300

Positio	n	Location	Species	Date	¹³⁷ Cs	' ³⁷ Cs	'34Cs	^{.34} Cs	₩Tc	÷.•
N	w				Ba kg ' dry	6g m-2	Bq kg 1 dry	Bq m -	Bq kg 1 dry	gikg (dru
63 [.] 50 [.]	22°27°	Grindavik	As no	10 Oct 1 9 85	0 22 A					19 46
66133	18.00.	Grimsey	Fulve.	14 Dec 1989	< 0.9				23 = 9 03	34 42
63'26'	20:16	Vestmannaeyjar	· Fulve	14 Dec 1959	< 0.8				1.12 ± 0.05	36 04
64'10'	22:01	Reykjavik	Fulve *	6 Sep 1988	1.05 A				1 27	34 48
64:03	21:30	Biafjall	Mass	6 Sep 1985	440	5100	2.4	27		141
6 4°19'	20°08	Gullfoss	Grass with soil	6 Sep 1988	169	1740	0.67	69		6 05
	2000									

Table 4.6.3. Radionuclides in seawced, moss and soil (grass) collected in Iceland 1985-1989. (Sample obtained from Pall Theodorsson, University of Iceland and Kári Indridason, SIS, Iceland)

As.no. Ascophyllum nodosum.

Fu-Ve. Fucus vesículosus.

*63% dry matter.

Acknowledgements

The authors wish to thank the staff of the former Health Physics Department for their conscientious performance of the work reported here.

Our thanks are due also to the Institute of Hygiene in Thorshavn, to the district physicians in Greenland and the telestations, GTO and all other persons and institutions in the Faroe Islands, Greenland and Denmark who have contributed by collecting samples. In particular we convey our gratitude to R.V. Bjarni Szmundson from the Marine Research Institute in Iceland.

The present study was partly sponsored by the C.E.C. Radiation Protection Research Programme and by the Danish National Research Council, Danish Council for Scientific and Industrial Research and Nordic Council of Ministers (The Greenland Sea Project).

Finally we acknowledge the help of the Commission for Scientific Research in Greenland for granting permission to collect samples in Greenland.

References

- Aarkrog, A., Bøtter-Jensen, L., Chen, Q.J., Dahlgaard, H., Hansen, Heinz, Holm, Elis, Lauridsen, Bente. Nielsen, S.P. and Sogaard-Hansen, J. (1991). Environmental Ra 'ioactivity in Denmark in 1988 and 1989. Risø Report No. 570 (1991).
- Aarkrog, A. (1979). Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides ⁹⁰Sr and ¹³⁷Cs. Risø-R-437.
- Dahlgaard, H., Chen, Q.J. and Nielsen, S.P. (1991). Radioactive Tracers in the Greenland Sea. Radionuclides in the Study of Marine Processes. P.J. Kershaw & D.S. Woodhead (Eds.), Elsevier Applied Science, London 1991, pp. 12-22.
- Environmental Radioactivity in the Faroes 1962-1982. Risø Reports Nos. 64, 86, 108, 131, 155, 181, 202, 221, 246, 266, 292, 306, 324, 346 362, 387, 404, 422, 448, 470 and 488 (1963-1983).
- Environmental Radioactivity in Greenland 1962-1982. Risø Reports Nos. 65, 87, 109, 132, 155, 182, 203, 222, 247, 267, 293, 307, 325, 347, 363, 388, 405, 423, 448, 471 and 489 (1963-1983).
- Environmental Radioactivity in the North Atlantic Region. The Faroe Islands and Greenland included. 1983-1987. Risø Reports Nos. 510, 528, 541, 550 and 564 (1984-1989).
- HASL (1958-1978). General reference to: Fovironmental quarterly. Quarterly reports from Health and Safety Laboratory, U.S. Atomic Energy Commission, later U.S. Energy Research and Development Administration and latest Environmental Measurements Laboratory, Department of Energy (New York).

Bibliographic Data Sheet Riso-R-571(EN)

Title and authors Environmental Radioactivity in the North Atlantic Region Including the Faroe Islands and Greenland. 1988 and 1989

Edited by A. Aarkrog, E. Buch, Q.J. Chen, G.C. Christensen, H. Dahlgaard, H. Hansen, E. Holm, and S.P. Nielsen

ISBN			ISSN		
87-550	-1791-6		0106-2840		
			0900-8098		
Dept. or g	roup	Date			
Ecolog	y Section	January 1992			
Groups on	sa reg. number	Project contract no.			
Pages	Tables	illustrations	References		

51

7

Abstract (Max. 2000 characters)

91

98

Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands and Greenland are reported. Strontium-90, cesium-137 and cesium-134 were determined in samples of precipitation, sea water, vegetation, various foodstuffs (including milk in the Faroes), and drinking water. Estimates are given of the mean contents of ⁹⁰Sr and ¹³⁷Cs in human diet in the Faroes and Greenland in 1988 and 1989. ⁹⁹Tc data on marine samples, in particular sea water from the Greenland Sea, are reported.

Descriptors INIS/EDB

ACCIDENTS; ANIMALS; ATMOSPHERIC PRECIPITATIONS; CESIUM 134; CESIUM 137; CHERNOBYLSK-4 REACTOR; COASTAL WATERS; DIET; DRINKING WATER; ENVIRONMENT; FALLOUT DEPOSITS; FAEROE ISLANDS; FOOD; FOOD CHAINS; GLOBAL FALLOUT; GREENLAND; ICELAND; MAN'; NORWAY; PLANTS; RADIOACTIVITY; SEAWATER; SOILS; STATISTICAL DATA; STRONTIUM 90; TECHNETIUM 99

Available on request from Risø Library, Risø National Laboratory, (Risø Bibliotek, Forskningscenter Risø), P.O.Box 49, DK-4000 Roskilde, Denmark. Velephone 42 37 12 12, ext. 2268/2269 Telex 43 116. Telefax 46 75 56 27.

Available on request from: Risø Library Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark Phone + 45 42 37 12 12, ext. 2268/2269 Telex 43116, Telefax + 45 46 75 56 27

ISBN 87-550-1791-6 ISSN 0106-2840 ISSN 0900-8098