Technical University of Denmark

Environmental radioactivity in Denmark in 1990 and 1991

Aarkrog, Asker; Bøtter-Jensen, Lars; Chen, Qing Jiang; Dahlgaard, Henning; Hansen, Heinz Johs. Max; Holm, Elis; Lauridsen, Bente; Nielsen, Sven Poul; Strandberg, Morten; Søgaard-Hansen, Jens

Publication date: 1992

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Aarkrog, A., Bøtter-Jensen, L., Chen, Q. J., Dahlgaard, H., Hansen, H. J. M., Holm, E., ... Søgaard-Hansen, J. (1992). Environmental radioactivity in Denmark in 1990 and 1991. (Denmark. Forskningscenter Risoe. Risoe-R; No. 621(EN)).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DH 9300019

Environmental Radioactivity in Denmark in 1990 and 1991

A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen, Morten Strandberg and J. Søgaard-Hansen

+University of Lund, Sweden

Risø National Laboratory, Roskilde, Denmark December 1992

Riso-R-621(EN)

Environmental Radioactivity in Denmark in 1990 and 1991

A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen, Morten Strandberg and J. Søgaard-Hansen

⁺University of Lund, Sweden

-2

Risø National Laboratory, Roskilde, Denmark December 1992 Abstract. Strontium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, sea water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, bread, potatoes, vegetables, fruit, grass, moss, lichen, sea plants, total diet, and humans. Estimates are given of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1990 and 1991. Tritium was determined in precipitation, fresh waters, and sea water. The γ -background was measured regularly by TLD's and a Nal detector. Tc-99 determinations were carried out on various marine samples, first of all sea water.

ISBN 87-550-1802-5 ISSN 0106-2840 ISSN 0106-407X

Grafisk Service, Risø, 1992

Contents

Abbreviations and Units 5

1. Introduction 7

2. Facilities82.1. Detectors82.2. Data Treatment8

3. Environmental Monitoring at Risø93.1. Environmental Monitoring at Risø9

4. Fallout Nuclides in Abiotic Samples 10

4.1. Air 10
4.2. Precipitation 10
4.3. Fresh Water 11
4.4. Sea Water 11
4.5. Soil 11
4.6. Marine Sediments 11

5. Danish Food and Various Vegetation 52

5.1. Cows Milk 52
5.2. Other Milk Products 52
5.3. Cereal Grain 52
5.4. Bread 52
5.5. Potatoes 53
5.6. Vegetables and Fruits 53
5.7. Meat, Fish, Eggs, and Various Vegetable Foodstuffs 53
5.8. Total Diet (Consumption Data) 54
5.9. Total Diet (Production Data) 54
5.10. Grass 54
5.11. Sea Plants 54
5.12. Lichen and Moss 55

6. Strontium-90 and Radiocesium in Humans 111

6.1. Strontium-90 in Human Bone 111
6.2. Radiocesium in the Human Body 111
6.3. Radionuclides in Human Milk 111
6.4. Human Urine 111

7. Tritium in the Environment 121

7.1. Introduction 1217.2. Assay of Tritium in Low-Level Amounts 1217.3. Summary of Results 121

8. Measurements of Background Radiation in 1990 and 1991 122

.

8.1. Instrumentation 122

8.2. State Experimental Farms 122

8.3. Risø Environment 122

8.4. Gylling Næs Environment 122

8.5. Great Belt and Langeland Belt Areas 122

8.6. The Baltic Island of Bornholm 122

Risø-R-621(EN)

9. Conclusion 133

÷.,

9.1. Environmental Monitoring at Risø 133

9.2. Fallout in the Abiotic Environment
9.3. Fallout Nuclides in the Human Diet
133

9.4. Strontium-90 and Cesium-137 in Humans 133

9.5. Tritium in Environmental Samples 133

9.6. Background Radiation 134

Acknowledgements 135

Appendices

Appendix A. Revised Models for ¹³⁷Cs in Danish Grain 136 Appendix B. Statistical Information 137 Appendix C. A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1990 and 1991 138 Appendix D.Fallout Rates and Accumulated Fallout in Denmark 1950-1991 143 Appendix E. Transfer of Radiocesium in the Soil-Grass-Lamb Food Chain 150 Appendix F. Radiocesium in a Danish Forest Ecosystem 153

References 172

è

Abbreviations and Units

- J: joule: the unit of energy; 1 J = 1 Nm (= 0.239 cal)
- Gy: gray: the unit of absorbed dose = 1 J kg⁻¹ (= 100 rad)
- Sv: sievert: the unit of dose equivalent = 1 J kg⁻¹ (= 100 rem)
- Bq: becquerel: the unit of radioactivity = 1 s^{-1} (= 27 pCi)
- cal: calorie = 4.186 J
- rad: 0.01 Gy
- rem: 0.01 Sv
- Ci: curie: 3.7×10¹⁰ Bq (= 2.22×10¹² dpm)
- E: exa⁻16¹⁸
- P: peta: 1015
- T: tera: 1012
- G: giga: 10⁹
- M: mega: 106
- k: kilo: 10³
- m: milli: 10-3
- μ: micro: 10-6
- n: nano: 10-9
- p: pico: 10-12
- t: femto: 10-15
- a: atto: 10-18

pro capite: per individual TNT: trinitrotoluol; 1 Mt TNT: nuclear explosives equivalent to 10⁹ kg TNT.

- yr-1: per year (a-1)
- cpm: counts per minute
- dpm: disintegrations per minute
- OR: observed ratio
- CF: concentration factor
- FP: fission products
- μR: micro-roentgen, 10⁻⁶ roentgen
- S.U.: pCi 90Sr (g Ca)-1
- O.R.: observed ratio
- M.U.: pCi 137Cs (g K)-1
- V: vertebrae
- m: male
- f: female
- nSr: natural (stable) Sr
- TOR = total observed ratio of Chernobyl and fallout
- COR = Chernobyl observed ratio
- FOR = Fallout observed ratio

eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl (~0.96 dpm = 0.016 Bq; 1 g K = 30.65 Bq)

Risø-R-621(EN)

i.

S.D.: standard deviation:

$$\sqrt{\frac{\sum(\bar{x}-\bar{x}_i)^2}{(n-1)}}$$

S.E.: standard error

- For $\sqrt{\frac{\Sigma(\bar{x}-x_i)^2}{n(n-1)}}$
- U.C.L.: upper control level
- L.C.L.: lower control level
- S.S.D.: sum of squares of deviation: $\Sigma(\bar{x}-x_i)^2$
- f: degrees of freedom
- s²: variance
- v²: ratio of the variance in question to the residual variance
- P: probability fractile of the distribution in question
- η : coefficient of variation, relative standard deviation

anova: analysis of variance

- A: relative standard deviation 20-33%
- B: relative standard devition >33%, such results are not considered significantly different from zero activity

1 1

B.D.L.: below detection limit

In the significance test the following symbols were used:

- * : probably significant (P > 95%)
- ** : significant (P > 99%)
- ***: highly significan: (P > 99.9%)

1

1. Introduction

1.1.

The present report is the thirty-third of a series of periodic reports (Risø Reports 1957-1991) dealing with measurements of radioactivity in Denmark. The organization of the material in the present report corresponds to the report of last year, i.e. this report covers two years: 1990 and 1991. The tables (and figures) representing 1990 are marked with an A and those from 1991 with a B. Tables and Figures are placed after the text in each chapter, and the text has been reduced compared to previously. After the introduction and a chapter on organization and facilities, there follows a chapter on environmental monitoring around Risø. Chapter four deals with fallout nuclides in the abiotic environment, i.e. air, water, and soil. Chapters five and six comprise fallout nuclides in the human diet, various vegetation and human tissues. Chapter seven is devoted to a general discussion of environmental tritium studies. External radiation is treated in chapter eight. The names of the authors of each chapter appear at its head.

1.2.

The methods of radiochemical analysis (Osmond et al. 1959, Bryant et al. 1959, Harley 1972) and the statistical treatment of the results (Hald 1958, Vestergaard 1964) are still based on the principles established in previous reports (Risø Reports 1957-1991).

1.3.

The detailed tables of the environmental monitoring programme for Risø National Laboratory appear in semiannual reports: Radioactivity in the Risø district January-June 1990, July-December 1990, January-June 1991 and July-December 1991 which are available from the Ecology Section, Risø.

1.4.

The report contains no information on sample collection and analysis except in cases where these procedures have been altered.

1.5.

In 1990 and 1991 the personnel of the Ecology Section of the Department for Environmental Science and Technology consisted of three chemists (incl. one guest scientist), two biologist, one physicist, ten laboratory technicians, one sample collector, and two laboratory assistants.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D.

1.7.

1

1

The Environmental samplings around the Swedish nuclear power plants Barsebäck and Ringhals were discontinued by Risø from 1990.

Risø-R-621(EN)

2. Facilities

By S.P. Nielsen

2.1. Detectors

The samples are measured as follows:

Alpha (²³⁹Pu, ²⁴¹Am and ²¹⁰Po): 22 semiconductor detectors connected to multichannel analyzers (512 channels per detector).

Beta (90Y and 99Tc): Six "multidetector"-systems each containing 5 sample counters and a common anticoincidence shield are used.

Gamma (natural and fallout isotopes): A total of 11 germanium detectors in 10 cm lead shields are used for gamma spectrometric measurements. Four detectors are connected to a hard-wired multichannel analyzer and 7 to MCA-cards in personal computers. The efficiencies of the detectors are in the range 4-40% relative to a $3'' \times 3''$ Nal(Tl) detector. An $8'' \times 4''$ Nal(Tl) detector and a detector unit with three $4'' \times 4'' \times 16''$ Nal(Tl) crystals are used in an underground shielded room for gammaspectrometric whole-body measurements.

2.2. Data Treatment

Measured spectra are transferred to a Unisys A6 computer for evaluation.

A program system STATDATA (*Lippert* 1975) is developed for registration and treatment of environmental measurements including multichannel analyzer spectra. To date, approximately 115 000 sets of results have been registered covering the period from 1957.

3. Environmental Monitoring at Risø

by A. Aarkrog

3.1. Environmental Monitoring at Risø

From the four semiannual reports: Radioactivity in the Risø district January-June 1990, July-December 1990, January-June 1991 and July-December 1991, the results of the environmental monitoring at Risø are presented. The reports are available from the Ecology Section, Risø.

The various anthropogenic radionuclides measured outside the Risø area came from non-Risø sources.

Figure 3.1.1. Sampling locations at Risø National Laboratory.

Risø-R-621(EN)

4. Fallout Nuclides in Abiotic Samples

by A. Aarkrog, H. Dahlgaard and Heinz Hansen

4.1. Air

Air samples are collected at Risø and at Rønne, Bornholm. Weekly samples are measured by Ge- γ -spectroscopy and ⁹⁰Sr is determined in annual aliquots. The sampling equipment is described in Risø Report No. 421 (Risø Reports 1957-1991).

Figure 4.1.1 shows how the ⁹⁰Sr concentrations have varied in Risø air since sampling began in 1957.

Table 4.1.2.2 summarizes the 137 Cs air concentrations throughout the years. Since Chernobyl the decrease in concentrations has become slower with time. Tables 4.1.2.1 (A & B) suggest a spring peak around April. From Figures 4.1.2.1 and 4.1.2.2 it appears, however, that the peak is not very prominent. It is thus an open question whether there actually is a stratospheric component of the Chernobyl fallout or whether all measured Chernobyl 137 Cs in air and precipitation now is due to resuspension.

Figure 4.1.2.4 shows how the resuspension factor for Chernobyl ¹³⁷Cs in Denmark has decreased with time. A power function seems to give the best fit to the observations (see also Figure 4.1.2.5).

The ¹³⁷Cs concentrations in air at Risø are about ³/₄ of those measured at Bornholm. We believe this is due to a higher local and perhaps regional (from Eastern Europe) resuspension at Bornholm. The resuspension factor at Bornholm is twice that at Risø

4.2. Precipitation

Precipitation is collected monthly from the ten »State experimental farms« (Figure 4.2) and from Risø (Figure 3.1.1). The samples are combined before analysis for ⁹⁰Sr and radiocesium (see Tables 4.2.1.1 and 4.2.2.2).

From 1987 to 1989 the ⁹⁰Sr deposition in Denmark decayed with a halflife of about 1.4 year. Since then there has been no significant decay. ¹³⁷Cs also showed a fast decay from 1987 to 1989 (halflife ~ 0.4 year). From 1989 to 1991 the halflife of ¹³⁷Cs deposition in Denmark increased to nearly 2 years. Local resuspension plays an important role as a source for the ¹³⁷Cs deposit. We still notice a relationship between the original Chernobyl fallout and the depositions at the various State experimental farms (*Aarkrog* 1988, *Aarkrog* 1989).

The washout ratio (Bq m⁻³ rain/ μ Bq m⁻³ air) calculated from monthly ¹³⁷Cs values at Risø (Tables 4.1.2.1.A & B and Tables 4.2.2.5.A & B) was 2.3±1.6 (1 S.D.; n = 12) in 1990 and 2.9±1.5 in 1991. This was lower ratios than observed previously, when we found 1987: 6.5, 1988: 3.4 and 1989: 5.0.

4.3. Fresh Water

4.3.1. Ground Water

No collection of ground water took place in 1990 and 1991.

4.3.2. Lakes and Streams

The sampling locations for lake and stream water are shown in Figure 4.3.2.1

Since 1986 Chernobyl ¹³⁷Cs have been measured along with ⁹⁰Sr. In the period 1989-1992 the ¹³⁷Cs concentrations in lake water have shown an effective halflife of 3.8 years and those in streams have decreased with 2.7 years halflife (cf. Figures 4.3.2.2 and 4.3.2.3). The corresponding halflives of ⁹⁰Sr were 9 and 4.5 years, respectively (Figure 4.3.2.2).

Strontium-90 concentrations in stream (and lake) water are significantly higher then the current ⁹⁰Sr concentrations in precipitation, whereas the opposite is the case for ¹³⁷Cs. Hence soil and sediments presently release ⁹⁰Sr while ¹³⁷Cs is absorbed.

4.3.3. Drinking Water

No samples in 1990 and 1991.

4.4. Sea Water

Since 1962 samples of surface and bottom sea water have routinely been collected around Zealand summer and winter (Figure 4.4.3). (One summer sampling was missing in 1991).

The ⁹⁰Sr and the ¹³⁷Cs concentrations throughout the years are shown in Figures 4.4.1 and 4.4.2, respectively.

Since Chernobyl the Baltic Sea has been the main source to the ¹³⁷Cs contamination of Danish waters.

The ⁹⁹Tc measurements (Figures 4.4.5-4.4.9) illustrate that ⁹⁹Tc enters the Danish inner waters from the North Sea by the Jutland Current.

4.5. Soil

A special soil sampling was carried out at Tornbygård at Bornholm in May 1990 (Table 4.5.1). The purpose was to see if the location used for rain collectors favoured high fallout rates as has been observed for ⁹⁰Sr in recent years. Five locations were selected out to a distance of 1300 metres west of the rain collectors. The sampling points were located on a downward sloping hill, ending in a forest.

The measurements showed the highest deposit (in the 0-5 cm soil layer) in the forest except for Chernobyl ¹³⁷Cs, which showed the highest level at the rain collectors.

4.6. Marine Sediments

Samples were collected at Risø in 1990 and 1991 (Table 4.6).

Sample type and unit	Stronti	um-90	Cesium-137	
	1990	1991	1990	1991
Air at Risø, μBq m ^{−3}	0.27 B	0.35	0.96	0.91
Air at Bornholm, µBq m⁻³	0.24 B	0.54 A	1.33	1.32
Countrywide deposition with rain, Bq m ⁻²	0.51*	0.56*	2.6*	1.631
Countrywide rain samples, Bq m ⁻³	0.67*	0.94*	3.5*	2.8*
Countrywide stream water, Bq m-3		6.7	0.70	< 0.74
Countrywide lake water, Bq m ⁻³	-	9.9	4.8	4.1
Count ywide ground water, Bq m ⁻³	-	-	-	
Countrywide drinking water, Bq m ⁻³		-	-	•
Surface sea water around Zealand, Bq m-3	18.0°	14.2*	79 •	72*
Bottom sea water around Zealand, Bq m ⁻³	16.1°	11.8"	45*	62*
Baltic Sea water (Bornholm), Bq m ⁻³	19.8 [†]	17.6	103*	103*
North Sea water 50°-60°N, Bq m ⁻³	-	4.4*	-	14*

Table 4. Geometric means of Strontium-90 and Cesium-137 levels in Danish environmental abiotic samples collected in 1990 and 1991

†Single values.

Table 4.1.1.1. Strontium-90 in air collected at Risø in 1990 and 1991. (Unit: μ Bq m⁻³)

Year	Big air sampler				
1990	0.27 B				
1991	0.35 A				

Table 4.1 1.2. Strontium-90 in air collected at Bornholm in 1990 and 1991. (Unit: μ Bq m⁻³)

Year	Big sampler, glass fibre filter, shunt			
1990	0.24 B			
1991	0.54 B			

1

T T

- 16- 4

Month	Risø		Bornholm	
		(N)		(N)
January	1.02±0.62	(5)	1.36±0.62	(5)
February	0.83±0.37	(4)	0.88±0.28	(4)
March	1.00±0.52	(4)	1.39±0.55	(4)
April	2.29±1.71	(5)	3.40±2.98	(5)
May	0.75±0.44	(4)	1.58±0.50	(4)
June	0.76±0.27	(4)	1.21±0.52	(4)
July	1.03±0.70	(5)	1.29±0.66	(5)
August	0.86±0.40	(4)	1.12±0.73	(4)
September	0.75±0.39	(4)	1.27±0.78	(4)
October	1.01±0.66	(5)	1.40±0.86	(5)
November	0.99±0.21	(4)	1.05±0.08	(4)
December	0.84±0.47	(5)	1.01±0.46	(5)
1990: Geometric mean	0.96		1.33	
1990: Arithmetic mean	1.01		1.41	

Table 4.1.2.1.A. Cesium-137 in air collected in glass-fibre filters by the large air sampler at Rise and Bornholm in 1990. (Unit: $\mu Bq m^{-3}$) (The error term is 1 S.D.)

Table 4.1.2.1.B. Cesium-137 in air collected in glass-fibre filters by the large air sampler at Risø and Bornholm in 1991. (Unit: μ Bq m⁻³) (The error term is 1 S.D.)

Month	Risø		Bornholm	
		(N)		(N)
January	1.02±0.41	(4)	1.17±0.44	(4)
February	2.23±0.96	(5)	2.06±0.59	(4)
March	1.24±0.59	(4)	1.93±0.66	(4)
April	1.55±0.90	(5)	2.68±1.55	(5)
May	0.95±0.34	(4)	1.38±0.67	(4)
June	0.65±0.47	(4)	0.79±0.20	(4)
July	0.66±0.47	(5)	1.12±0.75	(5)
August	0.55±0.15	(5)	1.07±0.35	(4)
September	0.55±0.22	(5)	1.15±0.62	(5)
October	1.17±1.08	(4)	1.71±1.40	(4)
November	0.69±0.45	(4)	1.01±0.64	(4)
December	0.70±0.33	(5)	0.88±0.29	(4)
1991: Geometric mean	0.91		1.32	
1991: Arithmetic mean	1.00		1.44	

Figure 4.1.2.1.A. Cesium-137 in air collected at Risø, Denmark in 1990. (Unit: μ Bq m⁻³).

Figure 4.1.2.1.B. Cesium-137 in air collected at Risø, Denmark in 1989. (Unit: μ Bq m⁻³).

Risø-R-621(EN)

Year Arithmetic mean		Geometric mean	
1958	155	127	
1959	490	270	
1960	73	60	
1961	84	75	
1962	850	810	
1963	2400	1910	
1964	1160	860	
1965	390	340	
1966	210	162	
1967	79	63	
1968	88	72	
1969	91	77	
1970	127	100	
1971	98	75	
1972	51	43	
1973	17.3	14.4	
1974	72	52	
1975	48	35	
1976	15.5	14.8	
1977	60	45	
1978	116	88	
1979	31	23	
1980	9.0	7.7	
1981	30	18.4	
1982	5.7	4.7	
1983	2.1	1.81	
1984	1.41	1.00	
1985	0.68	0.63	
1986	1340	35	
1987	6.1	4.7	
1988	2.6	2.1	
1989	1.58	1.41	
1990	1.01	0.96	
1991	1.00	0.91	

Table 4.1.2.2 Cesium-137 in air collected at Risø 1958-1991. (Unit: μBg m⁻³)

}~: 7

,

Figure 4.1.2.2.A. Cesium-137 in air collected at Bornholm, Denmark in 1990. (Unit: μ Bq m⁻³).

Figure 4.1.2.2.B. Cesium-137 in air collected at Bornholm, Denmark in 1991. (Unit: μ Bq m⁻³).

Risø-R-621(EN)

Figure 4.1.2.3. Annual Cesium-137 in air collected at Risø, Denmark. 1958-1991. (Geometric mean). (Unit: μ Bq m⁻³).

Figure 4.1.2.4. Cesium-137 resuspension factors after Chernobyl, July 1986 - December 1991 (quarterly values). $RF = 9.3 \times 10^{-6} D^{-1.17}$. (D = days).

Risø-R-621(EN)

Figure 4.1.2.5. Cesium-137 resuspension factors after Chernobyl. July 1986 - December 1987: $RF = 5.5 \times 10^{-8} e^{-0.0044} D$ Jan 1988 - December 1991: $RF = 6.7 \times 10^{-9} e^{-0.00083} D$

Figure 4.1.2.6. Wet deposition of Cs-137 relative to Chernobyl deposit. (1 is Kannikegård at Bornholm, 5 are he five stations in Jutland and 4 are the four stations from the Islands).

Figure 4.2. State experimental farms in Denmark.

	mm	Jan-April	May-June	July-Aug	Sept-Dec	Weighted mean
Tylstrup	880	0.27	1.33	0.47	0.32	0.45
Kalø	664	0.191	1.43	1.76	0.28	0.65
Borris	916	0.22	1.21	0.74	0.21	0.37
Askov	1008	0.43	0.45	1.03	0.29	0.46
St. Jyndevad	984	0.24	1.74	0.99	0.064	0.46
Aarslev	780	0.31	0.57	0.69	0.53	0.49
Tystofte	568	0.37	0.56	1.32 A	0.26	0.48
Ledreborg	552	0.25	0.156 B	0.73	0.42	0.37
Abed	692	0.24	1.64	2.9	2.2	1.83
Kannikegaard Tornbygaard	456	2.6	8.2	1.45	0.98	} 1,83
Weighted mean		0.40	1.20	1.24	0.50	0.67
x:mm	750	208	97	112	332	
Neksø	564	1.11	1.44	0.39	0.83	0.89
Neksø mm	564	146	47	81	290	

Table 4.2.1.1.A. Strontium-90 fallout in Denmark in 1990. (Unit: Bq m⁻³)

÷

Table 4.2.1.1.B. Strontium-90 fallout in Denmark in 1991. (Unit: Bq m⁻³)

Location	mm	Jan-April	May-June	e July-Aug	Sept-Dec	Weighted mean
Tylstrup	541	0.32	1.95	0. 9 7	0.41	0.77
Kalø	438	0.47	0.57	3.26	0.60	0.88
Borris	690	1.04	1.12	0.98	0.43	0.75
Askov	800	0.48	1.28	0.91	0.174	0.52
St. Jyndevad	800	0.74	0.69	0.50	0.132	0.43
Aarslev	512	0.46	0.71	1.93	0.89	0.86
Tystofte	484	0.54	0.32	0.99	0.21	0.40
Ledreborg	592	0.39	0.63	0.21 A	0.22	0.34
Abed	569	0.75	0.29	13.9	3.75	3.57
Kannikegaard	510	1.47	1.11	1.51	1.30	1.30
Weighted mean		0.66	0.86	2.67	0.69	0.94
x: mm	594	151	122	85	236	
Neksø	664	0.97	0.68	0.64	0.66	0.75
Neksø mm	664	182	174	60	248	

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	1990
Tylstrup	880	0.078	0.145	0.063	0.111	0. 40
Kalø	664	0.036	0.109	0.21	0.077	0.43
Borris	916	0.063	0.103	0.084	0.091	0.34
Askov	1008	0.125	0.066	0.149	0.124	0.46
St. Jyndevad	9 84	0.060	0.24	0.125	0.030	0.45
Aarslev	780	0.072	0.071	0.078	0.162	0.38
Tystofte	568	0.056	0.042	0.111 A	0.066	0.28
Ledreborg	552	0.036	0.014 B	0.050	0.105	0.20
Abed	692	0.036	0.170	0.39	0.67	1.27
Kannikegaard Tornbygaard	456	0.27	0.21	0.127	0.23	0.84
Geometric mean		0.067	0.091	16 י 0	0.118	
Arithmetic mean	750	0.083	0.117	0.138	0.167	0.51
Neksø	564	0.162	0.069	0.032	0.24	0.50

Table 4.2.1.2 A. Strontium-90 fallout in Denmark in 1990. (Unit: Bq m⁻²)

Table 4.2.1.2.B. Strontium-90 fallout in Denmark in 1991. (Unit: Bq m^{-2})

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	1991
Tylstrup	541	0.045	0.23	0.035	0.101	0.42
Kalø	438	0.074	0.049	0.176	0.085	0.38
Borris	6 9 0	0.182	0.097	0.093	0.142	0.52
Askov	800	0.101	0.143	0.107	0.063	0.41
St. Jyndevad	800	0.138	0.088	0.072	0.045	0.34
Aarslev	512	0.062	0.077	0.117	0.184	0.44
Tystofte	484	0.063	0.043	0.049	0.039	0.194
Ledreborg	5 9 2	0.050	0.073	0.028 A	0.048	0.198
Abed	569	0.114	0.040	1,13	0.75	2.03
Kannikegaard	510	0.160	0.208	0.122	0.173	0.66
Geometric mean		0.088	0.088	0.100	0.105	
Arithmetic mean	594	0.099	0.105	0.193	0.163	0.56
Neksø	664	0.176	0.119	0.039	0.165	0.50

1

Table 4.2.1.3.A. Analysis of variance of In Bq ⁹⁰Sr m⁻³ precipitation, January-December 1990 (from Table 4.2.1.1.A)

Variation	SSD	f	S ²	V ²	Р
Between months	9.645	3	3.215	6.137	> 99 .5%
Between locations	13.323	11	1.211	2.312	> 9 5 %
Remainder	15.192	29	0.524		

Table 4.2.1.4.A. Analysis of variance of In Bq ⁹⁰Sr m⁻² precipitation, January-December 1990 (from Table 4.2.1.2.A)

Variation	SSD	f	S²	V ²	Р
Between months Between locations Remainder	1.805 8.291 13.786	3 11 29	0.602 0.754 0.475	1.266 1.586	-

Table 4.2.1.3.B. Analysis of variance of ln Bq ⁹⁰Sr m⁻³ precipitation, January-December 1991 (from Table 4.2.1.1.B)

Variation	SSD	f	S ²	V ²	Р
Between months Between locations Remainder	5.067 10.287 16.939	3 10 30	1.689 1.029 0.565	2.991 1.822	> 95% -

Table 4.2.1.4.B. Analysis of variance of ln Bq ⁹⁰Sr m⁻² precipitation, January-December 1991 (from Table 4.2.1.2.B)

Variation	SSD	f	S ²	V ²	Р
Between months	0.273	3	0.091	0.185	-
Between locations	9.734	10	0.973	1.977	-
Remainder	14.769	30	0.492		

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	Weighted mean
Tylstrup	880	1.00	3.0 B	1.08 B	0.60 B	1.10
Kalø	664	2.3 A	2.2 A	1.38 A	1.06 A	1.61
Borris	916	1.68	3.9 A	1.66 B	0.75 A	1.44
Askov	1008	14.8	13.5	10.4	6.6	10.6
St. Jyndevad	9 84	7.4	8.9	5.7	3.0	5.3
Aarslev	780	1.27	1.25 B	0.60 B	0.89	1.02
Tystofte	568	1.27 B	3.1 B	2.3 A	1.08	1.58
Ledreborg	552	4.4	5.0	4.8	2.4	3.7
Abed	692	1.00 B	4.0 B	0.86 B	0.76 A	1.32
Kannikegaard	456	6.5	21.5	6.7	2.6	5.3
Weighted mean	-	4.47	6.01	3.57	2.13	3.5
x:mm	750	208	97	112	332	
Neksø	564	14.5	18.6	7.7	5.0	9.0
Neksø mm	564	146	47	81	290	

Table 4.2.2.1.A. Cesium-137 in precipitation in Denmark in 1990. (Unit: Bq m⁻³)

Table 4.2.2.1.B. Cesium-137 in precipitation in Denmark in 1991. (Unit: Bq m⁻³)

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	Weighted mean
Jutland	654	3.9	4.5	4.9	1.14	2.93
The Islands	539	1.45	1.55	1.90	1.62	1.61
Kannikegaard	510	3.3 A	5.3	3.3 A	12.7	6.47
Weighted mean	-	2.97	3.45	3.60	1.95	2.75
x:mm	594	151	122	85	236	
Neksø	664	4.4	2.7	5.8 A	1.96	3.2
Neksø mm	664	182	174	60	248	

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	1990
Tylstrup	880	0.29	0.32 B	0.144 B	0.21 B	0.97
Kalø	664	0.44 A	0.169 A	0.164 B	0.30 A	1.07
Borris	916	0.48	0.33 A	0.1 87 B	0.32 A	1.32
Askov	1008	4.34	2.01	1.50	2.8	10.7
St. Jyndevad	984	1.82	1.21	0.72	1.44	5.1 9
Aarslev	780	0.29	0.157 B	0.068 B	0.28	0.79
Tystofte	568	0.191 B	0.23 B	0.196 A	0.28	0.90
Ledreborg	552	0.64	0.45	0.33	0.60	2.02
Abed	692	0.148 B	0.42 B	0.116 B	0.23 A	0.91
Kannikegaard	456	0.67	0.56	0.58	0.61	2.42
Geometric mean		0.53	0.42	0.26	0.47	
Arithmetic mean	750	0.93	0.59	0.40	0.71	2.63
Neksø	564	2.1	0.90	0.62	1.46	5.1

Table 4.2.2.2.A. Cesium-137 deposition with precipitation in Denmark in 1990. (Unit: $Bq m^{-2}$)

•••

Table 4.2.2.2.B. Cesium-137 deposition with precipitation in Denmark in 1991. (Unit: Bq m^{-2})

Location	mm	Jan-April	May-June	July-Aug	Sept-Dec	1991
Jutland	654	0.67	0.49	0.44	0.32	1.92
The Islands	548	0.192	0.193	0.154	0.33	0.87
Kannikegaard	510	0.36 A	1.00	0.26 A	1.69	3.30
Geometric mean		0.38	0.36	0.27	0.38	
Arithmetic mean	597	0.45	0.42	0.31	0.46	1.63
Neksø	664	0.81	0.47	0. 35 A	0.49	2.11

Table 4.2.2.3.A. Analysis of variance of In Bq ¹³⁷Cs m⁻³ precipitation, January-December 1990 (from Table 4.2.2.1.A)

Variation	SSD	f	S ²	V ²	Р
Between months	6.729	3	2.243	23.842	> <u>99.95%</u>
Between locations	34.335	11	3.121	33.182	> 99. 95 %
Remainder	2.728	29	0.094		

Table 4 2.2.4.A. Analysis of variance of ln Bq ¹³⁷Cs m⁻² precipitation, January-December 1990 (from Table 4.2.2.2.A)

Variation	SSD	f	S ²	V ²	Р
Between months Between locations Remainder	3.653 32.050 2.603	3 11 29	1.218 2.914 0.090	13.564 32.455	> 99.95% > 99.95%

Month	Bq ¹³⁷ Cs m ⁻²	Bq ¹³⁷ Cs m ⁻³	134Cs 137Cs	mm precipitation	Theoretical 134Cs/137Cs ratio
	0 120	35	0 142 4	34	0 172
Feb	0.120	1 92	0.157	32	0.167
March	0.048	1.31	0.157	37	0.163
April	0.09?	3.3	0.154	28	0.159
May	0.086	4.8	0.145	17. 9	0.155
June	0.130	2.5	0.111	53	0.151
July	0.094	2.8	0.149	34	0.147
Aug	0.077	2.3	0.149	33	0.143
Sept	0.071	0.72	0.129	98	0.139
Oct	0.049	1.02	0.124	48	0.136
Nov	0.038	0.80	0.102	47	0.132
Dec	0.043	1.33	-	32	0.129
1990	Σ 0.91	x: 1.84		Σ 494	
	(v	veighted mea	n)		
134/137 Obs	_ 0.01+0.1		SE (n - 1	1)	
134/137 Pred	- = 0.91±0.1	0.03.0. 0.03	J.E. (II = I	')	

Table 4.2.2.5.A. Radiocesium in precipitation collected in the 10 m² ion exchanger at Risø in 1990

Table 4.2.2.5.B. Radiocesium in precipitation collected in the 10 m^2 ion exchanger at Riss in 1991

Month	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	134Cs	mm	Theoretical
			15/05	precipitation	
Jan	0.047	1.24	-	38	0.126
Feb	0.138	4.9	0.102	28	0.122
March	0.057	5.4	-	10.6	0.119
April	0.120	3.1	0.130	38	0.116
May	0.156	4.6	0.118	34	0.113
June	0.22	2.2	-	103	0.110
July	0.119	3.2		38	0.107
Aug	0.056	1.13		49	0.105
Sept	0.048	0.75	-	64	0.102
Oct	0.041	1.25	•	33	0.099
Nov	0.086	1.50	-	57	0.097
Dec	0.156	3.4	-	46	0.094
1991	Σ 1.25	x: 2.3		Σ 539	
	(v	veighted mea	n)		
134/137 O	bs tooto	1500 00	085 /0		
134/137 T	heor = 1.00±0	.155.0. 0.0	9 3.E. (N.	= 3)	

		1 m² rain	collector	10 m ² rain collector		
Month	precipitation	kBq m−3	kBq m−²	kBq m−3	kBq m−2	
Jan	34	2.2±0.2	0.076	1.8±0.2	0.063	
Feb	32	2.2±0.0	0.068	2.7±0.0	0.084	
March	37	6.8±0.3	0.25	2.7±0.2	0.098	
April	28	4.2±0.4	0.118	2.7±0.3	0.077	
May	17. 9	4.6±0.2	0.082	3.1±0.4	0.056	
June	53	3.9±0.2	0. 20	11.7±1.4	0.62	
Juiy	34	15.4±0.4	0.52	7.9±0.1	0.27	
Aug	33	2.9±0.1	0. 095	7.2±0.1	0.24	
Sept	98	6.3±0.2	0.62	11.6±0.2	1.13	
Oct	48	2.6±0.5	0.127	2.2±0.3	0.106	
Nov	47	3.8±0.3	0.180	14.9±0.1	0.6 9	
Dec	32	2.2±0.4	0.071	2.1±0.2	0.066	
1990	Σ 494	x: 4.9	Σ2.4	x: 7.1	Σ 3.5	
	(we	eighted mea	an)	(weighted mean	l)	
The e	rror term is 1 S	.E. of the m	ean of trip	le determinations		

Table 4.2.3.A. Tritium is precipitation collected at Risø in 1990

ř

Table 4.2.3.B. Trit.. m in precipitation collected at Risø in 1991

N A 4L		1 m² rain	collector	10 m ² rain collector		
Month P	mm recipitation	kBq m−3	kBq m−2	kBq m ⁻³	kBq m−2	
Jan	38	2.3±0.3	0.087	2.7±0.2	0.102	
Feb	28	4.0±0.2	0.111	2.6±0.1	0.072	
March	10.6	2.8±0.1	0.030	3.1±0.3	0.033	
April	38	4.2±0.2	0.160	6.0±0.5	0.229	
May	34	6.0±0.4	0.205	14.7±0.4	0.503	
June	103	5.3±0.3	0.547	6.4±0.6	0.661	
July	38	3.6±0.0	0.135	12.4±0.3	0.47	
Aug	49	4.1±0.2	0.201	17.3±1.3	0.85	
Sept	64	1.9±0.0	0.122	3.9±0.3	0.25	
Oct	33	2.2±0.1	0.073	2.7±0.2	0.090	
Nov	57	3.2±0.4	0.182	10.2±0.2	0.58	
Dec	46	2.2±0.3	0.100	3.9±0.1	0.181	
1991	Σ 539	x: 3.6	Σ 1.95	x: 7.4	Σ4.0	
	(we	eighted me	an)	(weighted mean)	
The error term is 1 S.E. of the mean of triple determinations.						

Date	Tylstrup	Jyndevad	Tornbygaard
January	1.8±0.2	1.9±0.1	2.2±0.2
February	1.3±0.2	1.7±0.1	2.5±0.3
March	1.7±0.1	2.1±0.2	2.7±0.3
April	2.4±0.1	2.1±0.2	4.0±0.1
May	4.5±0.7	3.5±0.4	3.3±0.2*
June	2.9±0.1	3.0±0.0	3.2±0.3
July	2.7±0.5	2.3±0.2	3.1±0.2
August	2.8±0.2	2.0±0.1	2.5±0.2
September	2.4±0.3	1.7±0.1	2.4±0.4∆
October	1.8±0.2	1.7±0.1	2.5±0.1∆
November	1.4±0.1	1.9±0.2	2.6±0.14
December	1.6±0.1	1.7±0.2	1.9±0.24**
1990: Geometric			
mean	2.1	2.1	2.7
1990: Arithmetic			
mean	2.3	2.1	2.7

Table 4.2.4.A. Tritium in precipitation collected in Denmark in 1990. (Unit: $kBq m^{-3}$)

³Collected at Kannikegård. *Double determinations.

**Quadruple determinations.

The error term is 1 S.E. of the mean of triple determinations.

Table 4.2.4.B. Tritium in precipitation collected in Denmark in 1991 (L'nit: kBq m ⁻³)

Date	Tylstrup	Jyndevad	Kannikegaard
January	1.4±0.3	1.7±0.3	2.1±0.2
February	1.8±0.2	1.9±0.1	2.8±0.4
March	1.6±0.1	1.9±0.2	2.3±0.4
April	2.5±0.1*	2.6±0.1	3.1±0.3
May	-	2.7±0.2	3.3±0.2
June	2.4±0.2	2.5±0.2	2.5±J.1
July	2.9±0.3	3.6±0.5	3.1±0.2
August	2.2±0.2	2.6±0.3	2.5±0.3
September	1.9±0.3	2.0±0.2	2.1±0.1
October	1.8±0.1	1.7±0.3	3.0±0.2
November	1.3±0.1	1.6±0.2	2.3±0.∠
December	1.0±0.1*	1.3±0.2	1.8±0.1
1991: Geometric			
mean	1.8	2.1	2.8
1991: Arithmetic			
mean	1.9	2.2	2.6

The error term is 1 S.E. of the mean of triple determinations. *Quadruple determinations.

Figure 4.3.1.1. Ground water sampling locations in Denmark.

Figure 4.3.1.2. Median ⁹⁰Sr levels in Danish ground water, 1961-1989. (Unit: Bq m⁻³).

Figure 4.3.1.3. Strontium-90 in ground water at Feldbak 1961-1989. (Unit: Bq m⁻³).

Risø-R-621(EN)

4

ŧ

Figure 4.3.2.1. Sample locations for fresh water from Danish streams (d) and lakes (sø).

Stream	Bq ¹³⁷ Cs m ⁻³	kBq ³H m ⁻³	
Bangsbo à	0.41 B	2.5±0.4	
Gudena	1.05 A	2.2±0.2	
Skjern å	1.59	1.8±0.1	
Ribe å	0.81 A	2.4±0.3	
Odense à	0.91	2.1±0.1	
Susà	0.96 A	2.2±0.2	
Halsted å	0.32 B	2.4±0.4	
Læs å (May)	0.37 B	2.6±0.2	
1990: Geometric mean	0.70	2.3	
S.E. (factor)	1.23	1.04	
1990: Arithmetic mean	0.80	2.3	
S.E.	19%	9%	

Table 4.3.2.1.A. Cesium-137 and Tritium in Danish stream water collected in March 1990

The error term is 1 S.E. of the mean of triple determinations.

Stream	Bq ⁹⁰ Sr m~ ³	kgCam- ³	Bq ¹³⁷ Cs m ⁻³	kBq ³ H m− ³
Bangsbo å	5.9	0.059	< 0.5	2.2±0.2
Guden à	4.9	0.062	1.28	2.2±0.0
Skjern å	8.6	0.024	0.67 A	2.4±0.1
Ribe å	7.1	0.073	0.64 B	2.5±0.0
Odense å	6.1	0.104	0.61 B	2.3±0.2
Suså	5.1	0.110	< 1.0	2.5±0.2
Halsted å	5.8	0.154	< 0.6	2.4±0.1
Læs å (May)	12.4	0.048	0.86 B	2.7±0.1
1991: Geometric mean	6.7	0.069	< 0.74	2.4
S.E. (factor)	1.11	1.23	1.12	1.03
1991: Arithmetic mean	7.0	0.079	< 0.77	2.4
S.E.	13%	18%	12%	3%

 Table 4.3.2.1.B. Strontium-90, Cesium-137 and Tritium in Danish stream water

 collected in March 1991

The error term is 1 S.E. of the mean of triple determinations.

Lake	Bq ¹³⁷ Cs m ⁻³ ¹³⁴ Cs/ ¹³⁷ Cs		kBq ³H m−3	
Norssø	4.0	0.146 A	1.6±0.2	
Mossø	1. 49 A	-	1.8±0.1	
Flyndersø	6.6	0.156 A	2.0±0.2	
Hostrupsø	9.5	0.1 50	2.0±0.1	
Arreskovsø	6.2	0.171 A	2.4±0.3	
Arresø	9.5	0.137	2.6±0.1	
Søndersø	8.8	0.140 A	2.5±0.4	
Almindingen sø	1. 43 A	-	2.8±0.3	
1990: Geometric mean	4.8		2.2	
S.E. (factor)	1.32	1.32 1.07		
1990: Arithmetic mean	5.9		2.2	
S.E.	20%		6.8%	

Table 4.3.2.2.A. Radiocesium and Tritium in Danish lake water collected in March 1990

The error term is 1 S.E. of the mean of triple determinations.

Lake	Bq ⁹⁰ Sr m− ³	kg Ca m ⁻³	Bq ¹³⁷ Cs m ⁻³	¹³⁴ Cs/ ¹³⁷ Cs	kBq ³ H m ^{−3}
Norssø	18	0.038	3.8		1.8±0.2
Mossø	6.0	0.066	2.1		1.8±0.1
Flyndersø	3.8	0.027	5.6		1.7±0.2
Hostrupsø	18.3	0.029	6.4		1.8±0.4
Arreskovsø	10.2	0.067	5.2		2.2±0.2
Arresø	7.6	0.066	8.9	0.139	2.3±0.2
Søndersø	9.6	0.076	4.9		2.3±0.2
Almindingen sø (May)	17.0	0.024	1.29		2.3±0.1
1991: Geometric mean	9.9	0.045	4.1		2.0
S.E. (factor)	1.22	1.18	1.25		1.05
1991: Arithmetic mean	11.3	0.049	4.8		2.0
S.E.	18%	16%	18%		4.8%

 Table 4.3.2.2.B. Strontium-90, Radiocesium and Tritium in Danish lake water

 collected in March 1991

The error term is 1 S.E. of the mean of triple determinations.

r 1. 7

Figure 4.3.2.2. Strontium-90 concentrations (± 1 S.E.) in 8 Danish streams and 8 Danish lakes, collected since 1971. (Unit: Bq m⁻³).

Figure 4.3.2.3. Cesium-137 in 8 Danish streams and 8 Danish lakes, collected since May 1986. (Unit: $Bq m^{-3}$). (Geometric mean ± 1 S.E.)

Location	Date in May	Posi N	tion E	Depth in m	90Sr Bq.m-3	¹³⁷ Cs Bqm-3	134Cs 137Cs	'H k8q.m−3	Salinity	Chernobyl Bq ¹³⁷ Cs m ⁻³
Kullen	31	56*15	12*15	2		69	0.133		15.8	59
-				23		16.1	-		33.9	•
Hesselø	31	56*10 [.]	11*47'	2	19.8	66	0.169	4.6±0.3	16.4	(72)
				24		17.2	0.109	-	-	12.1
Kattegat SW	31	56*07	11*10	2		72	0.138		15.4	64
•	-			32		25	0.082 A		31.1	13.2
Asnæs 160	29	55+39	10*46		15.6	72	0.141		16.4	
* *	LJ	55 55		33	16.4	25	0.142		30.6	23
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					74	0.147	24+0.2		
Halskov rev	29	55-23	11-03	2		36	0.147	3.4±0.2 2.9±0.2	15.6 28.1	67 24
		<u> </u>	<u> </u>							
Langeland basit	29	54*52	10*50	2		71	0.128		16.3 24 4	59 38
- <u></u> -	<u> </u>					JI	0.110			
Femern bælt	29	54*36'	11*04'	2		77	0.146		13.7	73
				22		66	0.144		18.3	61
Gedser odde	29	54°28'	11*59'	2		90	0.145		9.3	84
» •				12		74	0.136		16.9	65
Møen	30	54*57	12*41'	2	18.5	98	0.158	4.4±0.4	8.4	(100)
•				23	15.8	90	0.128	4.6±0.4	14.6	74
The Sound - South	30	55*25	12*36'	2		101	0.141		88	92
n n n				11		85	0.146		11.0	80
The Sound - North A	31	55.49	12445	 2	· · · · · ·	£1	0 142		12.7	75
	51	55 40	12 43	18		29	0.142		30.5	75 19.5
The Oa and March 7										
The Sound - North B	31	55°59'	12*42'	2 27		// 20	0.04 B		15.0 33.5	74 5.2
			·~.							
Mean				Surface	<b>18</b> .0	79	0.145	4.1	13.7	74
5.D.					2.2	12	0.011	0.6	3.0	13
S.E.					1.2	3	0.003	0.4	0.9	4
Mean				Bottom	16.1	45	0.114	3.8	24.8	38
S.D.					0.4	27	0.032	1.2	8.2	27
SF					03	R	0.010	0.8	25	R

## Table 4.4.1 A. Radionuclides in sea water collected around Zealand in May 1990

The error term is 1 S.E. of the mean of triple determinations.

. .

Table 4.4.1.B.	Radionuclides	in sea water	collected	around	Zealand	in Feb	ruary
1991							-

.

Location	Date in February	Posi N	ition E	Depth in m	⁹⁰ Sr Bqm-3	137Cs Bqm-3	134Cs 137Cs	Satinity ‰	Chemolryl Bq ¹³⁷ Cs m ⁻³
Kullen	12	56*14	12•20	2	12.4	72	0.113	18.0	67
-				21	9.2	36	0.086 A	27.1	25 A
Hesselø	11	<b>56*</b> 10 [°]	11•47	2	13.8	77	0.123	14.9	(78)
-				24	9.7	42	0.103	26.1	36
Katteoat SW	11	56*07	11•10'	2		89	0.117	12.4	85
g = ···				35		71	0.110	16.5	64
·							0.101		(00)
Asriaes rev	/	22,38	10*46	2 23		85 73	0.124	11.3	(86)
Halskov rev	7	55*23	11*03	2		92	0.109	10.9	83
				23		88	0.120	11.5	86
Langeland bælt	25	54*52	10 <b>*</b> 50'	0		71	0.116	17.4	67
				Bottom		-		-	-
		E 4800				80	0.124		(84)
remem pael	25	34~30	11*04	∠ Bottom		-	-	12.1	(81)
		<b>.</b>						<u> </u>	
Gedser odde	5	54*28	11 <b>*59</b> '	2	18.6	111	0.125	9.8	(113)
				18	17.3	100	0.122	9.5	100
Møen	25	54*57	12*41	0	18.1	88	0.113	7.8	81
•				Bottom		•	-	•	-
The Sound - South	4	55*25	12*36	3		109	0.109	98	97
~ ~ ~		•• ••		16		101	0.114	10.2	95
The Sound - North A	12	55°48'	12•44	2		90 22	0.115	12.4	84
							0.002	23.4	
The Sound - North B	12	55*59	12•39	2		80	0.116	15.1	77
· · ·				27	<u> </u>	41	0.116	26.1	40
Mean				Surface	15.7	87	0.117	12.7	83
S.D.					<b>3</b> .1	13	0.006	3.1	12
S.E.					1.5	4	0.002	0.9	4
Mean				Bottom	12.1	65	0.107	19.2	59
S.D.					4.5	28	0.014	8.0	30
S.E.					2.6	9	0.005	2.7	10
		······································					···· · · · · · · · · · · · · · · · · ·	<u> </u>	

Kullen         14         56*13'         12*22'         2         45         0.087           Hesselø         13         56*10'         11*47'         2         12.3         46         0.099           Hesselø         13         56*10'         11*47'         2         12.3         46         0.099           Kattegat SW         13         56*07'         11*10'         2         52         0.099           Asnæs rev         13         55*39'         10*46'         2         51         0.094           -         27         49         0.079         49         0.079           Halskov rev         12         55*23'         11*03'         2         10.0         52         0.086           -         22         9.4         57         0.993         22         9.4         57         0.993           Langeland bælt         12         54*52'         10*50'         2         50         0.096         109         109         109         109         109         109         109         104         2         60         0.090         109         101         101         101         101         101         101         101	242 30.0 23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.6 22.5 22.6	40 22 (47) 39 (53) 48 49 40 47 55 50 (60)
Kullen       14       56*13'       12*22'       2       45       0.087         -       24       28       0.076         Hesselø       13       56*10'       11*47'       2       12.3       46       0.099         -       24       8.9       48       0.079         Kattegat SW       13       56*07'       11*10'       2       52       0.099         -       37       51       0.090         Asnæs rev       13       55*39'       10*46'       2       51       0.094         -       -       27       49       0.079         Halskov rev       12       55*23'       11*03'       2       10.0       52       0.096         -       -       22       9.4       57       0.093         Langeland bælt       12       54*52'       10*50'       2       50       0.096         -       -       30       53       0.109         Femern bælt       12       54*52'       10*50'       2       50       0.096         -       -       30       58       0.107       -       -       10.107         -       - <th>242 30.0 23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.6 22.5 22.6</th> <th>40 22 (47) 39 (53) 48 49 40 47 55 50 (60)</th>	242 30.0 23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.6 22.5 22.6	40 22 (47) 39 (53) 48 49 40 47 55 50 (60)
-       24       28       0.076         Hessele       13       56*10:       11*47       2       12.3       46       0.099         -       24       8.9       48       0.079         Kattegat SW       13       56*07       11*10'       2       52       0.099         -       -       13       55*39'       10*46'       2       51       0.094         -       -       13       55*39'       10*46'       2       51       0.094         -       -       13       55*39'       10*46'       2       51       0.094         -       -       12       55*23'       11*03'       2       10.0       52       0.086         -       -       2       54*52'       10*50'       2       50       0.096         -       -       2       54*52'       10*50'       2       50       0.090         -       -       -       30       53       0.109         Fernem bælt       12       54*36'       11*04'       2       60       0.090         -       -       30       58       0.107       10       12       54*57	30.0 23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.6 22.5 22.6	22 (47) 39 (53) 48 49 40 47 55 50 (60)
Hesselo       13       56*10*       11*47'       2       12.3       46       0.099         Kattegat SW       13       56*07*       11*10'       2       52       0.099         Kattegat SW       13       56*07*       11*10'       2       52       0.099         Asnæs rev       13       55*39'       10*46'       2       51       0.094         -       -       27       49       0.079         Halskov rev       12       55*23'       11*03'       2       10.0       52       0.086         -       -       22       9.4       57       0.093         Langeland bælt       12       54*52'       10*50'       2       50       0.096         -       -       20       54*36'       11*04'       2       60       0.090         -       -       12       54*36'       11*04'       2       60       0.090         -       -       12       54*28'       11*58'       2       74       0.107         -       -       11       54*57'       12*40'       2       16.0       85       0.107         -       -       11 <td< td=""><td>23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.5 22.6</td><td>(47) 39 (53) 48 49 40 47 55 50 (60)</td></td<>	23.8 23.9 22.3 22.4 23.7 24.0 22.6 22.5 22.6	(47) 39 (53) 48 49 40 47 55 50 (60)
-       24       8.9       48       0.079         Kattegat SW       13       56*07       11*10'       2       52       0.099         -       -       37       51       0.090         Asnæs rev       13       55*39'       10*46'       2       51       0.094         -       -       27       49       0.079         Halskov rev       12       55*23'       11*03'       2       10.0       52       0.086         -       -       22       9.4       57       0.093         Langeland bælt       12       54*52'       10*50'       2       50       0.096         -       -       12       54*36'       11*04'       2       60       0.090         -       -       30       58       0.104         Gedser odde       12       54*28'       11*58'       2       74       0.107         -       -       11       54*57'       12*40'       2       16.0       85       0.107         -       -       11       55*25'       12*36'       2       87       0.127         -       -       15       83       0	23.9 22.3 22.4 23.7 24.0 22.6 22.6 22.5 22.6	39 (53) 48 49 40 47 55 50 (60)
Kattegat SW       13       56*07       11*10'       2       52       0.099         -       37       51       0.090         Asnæs rev       13       55*39'       10*46'       2       51       0.094         -       -       27       49       0.079         Halskov rev       12       55*23'       11*03'       2       10.0       52       0.086         -       -       22       9.4       57       0.093         Langeland bæft       12       54*52'       10*50'       2       50       0.096         -       -       30       53       0.109       53       0.109         Femern bæft       12       54*36'       11*04'       2       60       0.090         -       -       30       58       0.104         Gedser odde       12       54*28'       11*58'       2       74       0.107         -       -       11       54*57'       12*40'       2       16.0       85       0.107         -       -       11       55*25'       12*36'       2       87       0.127         -       -       15       83 <td>22.3 22.4 23.7 24.0 22.6 22.5 22.5 22.6</td> <td>(53) 48 49 40 47 55 50 (60)</td>	22.3 22.4 23.7 24.0 22.6 22.5 22.5 22.6	(53) 48 49 40 47 55 50 (60)
-       37       51       0.090         Asnæs rev       13       55*39'       10*46'       2       51       0.094         -       27       49       0.079         Halskov rev       12       55*23'       11*03'       2       10.0       52       0.086         -       -       22       9.4       57       0.093         Langeland bælt       12       54*52'       10*50'       2       50       0.096         -       -       2       9.4       57       0.093         Langeland bælt       12       54*52'       10*50'       2       50       0.096         -       -       30       53       0.109       58       0.109         Femem bælt       12       54*36'       11*04'       2       60       0.090         -       -       30       58       0.107       19       71       0.125         Møen       11       54*57'       12*40'       2       16.0       85       0.107         -       -       11       55*25'       12*36'       2       87       0.085         The Sound - South       11       55*25'	22.4 23.7 24.0 22.6 22.6 22.5 22.6	48 49 40 47 55 50 (60)
Asnæs rev       13 $55^{\circ}39^{\circ}$ $10^{\circ}46^{\circ}$ 2 $51$ $0.094$ -       -       27       49 $0.079$ Halskov rev       12 $55^{\circ}23^{\circ}$ $11^{\circ}03^{\circ}$ 2 $10.0$ 52 $0.096$ -       -       12 $55^{\circ}23^{\circ}$ $11^{\circ}03^{\circ}$ 2 $10.0$ 52 $0.096$ -       -       22 $9.4$ 57 $0.093$ Langeland bælt       12 $54^{\circ}52^{\circ}$ $10^{\circ}50^{\circ}$ 2 $50$ $0.096$ -       -       -       30       53 $0.109$ Femern bælt       12 $54^{\circ}36^{\circ}$ $11^{\circ}04^{\circ}$ 2 $60$ $0.090$ -       -       -       30       58 $0.104$ Gedser odde       12 $54^{\circ}26^{\circ}$ $11^{\circ}58^{\circ}$ 2       74 $0.107$ -       -       11 $54^{\circ}57^{\circ}$ $12^{\circ}40^{\circ}$ 2 $16.0$ $85$ $0.107$ -       -       11 $55^{\circ}25^{\circ}$ $12^{\circ}36^{\circ}$ 2 $87$ <td< td=""><td>23.7 24.0 22.6 22.6 22.5 22.5 22.6</td><td>49 40 47 55 50 (60)</td></td<>	23.7 24.0 22.6 22.6 22.5 22.5 22.6	49 40 47 55 50 (60)
27       49       0.079         Halskov rev       12       55*23' 11*03' 2       10.0       52       0.086         -       22       9.4       57       0.093         Langeland bælt       12       54*52' 10*50' 2       50       0.096         -       -       30       53       0.109         Femern bælt       12       54*36' 11*04' 2       60       0.090         -       -       30       58       0.104         Gedser odde       12       54*28' 11*58' 2       74       0.107         -       -       19       71       0.125         Møen       11       54*57' 12*40' 2       16.0       85       0.107         -       -       11       55*25' 12*36' 2       87       0.085         The Sound - South       11       55*25' 12*36' 2       87       0.127         15       83       0.114	24.0 22.6 22.5 22.5 22.5	40 47 55 50 (60)
Halskov rev       12 $55^{\circ}23^{\circ}$ $11^{\circ}03^{\circ}$ 2 $10.0$ 52 $0.096$ -       -       22       9.4       57 $0.093$ Langeland bælt       12 $54^{\circ}52^{\circ}$ $10^{\circ}50^{\circ}$ 2       50 $0.096$ -       -       -       30       53 $0.109$ Femerr bælt       12 $54^{\circ}36^{\circ}$ $11^{\circ}04^{\circ}$ 2 $60$ $0.090$ -       -       30       58 $0.104$ Gedser odde       12 $54^{\circ}28^{\circ}$ $11^{\circ}58^{\circ}$ 2       74 $0.107$ -       -       19       71 $0.125$ Møen       11 $54^{\circ}57^{\circ}$ 12^{\circ}40^{\circ}       2       16.0       85 $0.107$ -       -       2       16.0       85 $0.107$ 24       15.8       87 $0.085$ The Sound - South       11 $55^{\circ}25^{\circ}$ $12^{\circ}36^{\circ}$ 2       87 $0.127$ -       -       15       83 $0.114$	22.6 22.5 22.5 22.5	47 55 50 (60)
Industry intervention       Industry interven	22.5 22.5 22.5	55 50 (60)
Langeland bælt       12 $54*52'$ $10*50'$ 2       50 $0.096$ -       -       30       53 $0.109$ Femem bælt       12 $54*36'$ $11*04'$ 2 $60$ $0.090$ -       -       30       58 $0.104$ Gedser odde       12 $54*28'$ $11*58'$ 2 $74$ $0.107$ -       -       19       71 $0.125$ Møen       11 $54*57'$ $12*40'$ 2 $16.0$ $85$ $0.107$ -       -       24 $15.8$ $87$ $0.085$ The Sound - South       11 $55*25'$ $12*36'$ 2 $87$ $0.127$ -       -       15 $83$ $0.114$ $0.114$	22.5 22.6	50 (60)
Langeland ober       12       54*52       10*50       2       50       0.036         -       -       30       53       0.109         Femem baelt       12       54*36'       11*04'       2       60       0.090         -       -       30       58       0.104         Gedser odde       12       54*26'       11*58'       2       74       0.107         -       -       19       71       0.125         Møen       11       54*57'       12*40'       2       16.0       85       0.107         -       24       15.8       87       0.085         The Sound - South       11       55*25'       12*36'       2       87       0.127         -       15       83       0.114	22.5	(60)
Ferrerr bætt         12         54*36'         11*04'         2         60         0.090           -         -         30         58         0.104           Gedser odde         12         54*28'         11*58'         2         74         0.107           -         -         19         71         0.125           Møen         11         54*57'         12*40'         2         16.0         85         0.107           -         24         15.8         87         0.085         0.1085           The Sound - South         11         55*25'         12*36'         2         87         0.127           -         -         15         83         0.114         14		
Ferrem baelt       12       54*36' 11*04' 2       60       0.090         -       -       30       58       0.104         Gedser odde       12       54*26' 11*58' 2       74       0.107         -       -       19       71       0.125         Møen       11       54*57' 12*40' 2       16.0       85       0.107         -       -       24       15.8       87       0.085         The Sound - South       11       55*25' 12*36' 2       87       0.127         -       15       83       0.114		
Gedser odde         12         54*28'         11*58'         2         74         0.107           -         -         19         71         0.125           Møen         11         54*57'         12*40'         2         16.0         85         0.107           -         24         15.8         87         0.085           The Sound - South         11         55*25'         12*36'         2         87         0.127           -         15         83         0.114         14         14         15         15         14	20.1	56
Gedser odde         12         54*28'         11*58'         2         74         0.107           -         -         19         71         0.125           Møen         11         54*57'         12*40'         2         16.0         85         0.107           -         24         15.8         87         0.085           The Sound - South         11         55*25'         12*36'         2         87         0.127           -         15         83         0.114         14         14         15         15         14	20.2	(62)
19         71         0.125           Møen         11         54*57         12*40'         2         16.0         85         0.107           24         15.8         87         0.085           The Sound - South         11         55*25'         12*36'         2         87         0.127           15         83         0.114	17.2	(82)
Møen         11         54°57'         12°40'         2         16.0         85         0.107           -         24         15.8         87         0.085           The Sound - South         11         55°25'         12°36'         2         87         0.127           -         -         15         83         0.114	18.2	(92)
24         15.8         87         0.085           The Sound - South         11         55°25'         12°36'         2         87         0.127           1         15         83         0.114	12.1	(95)
The Sound - South         11         55*25'         12*36'         2         87         0.127           •         •         15         83         0.114	12.1	77
15 83 0.114	12.3	(117)
	12.5	(98)
The Sound - North A 17 55*48' 12*44' 2 46 0.082	23.8	39
20 47 0.098	24.4	(48)
The Sound - North B 15 55*59' 12*39' 2 47 0.089	23.3 23.8	43 76
Mean Surface 12.8 58 0.097	20.7	60
S.D. 3.0 15 0.012	4,4	25
S.E. 1.7 4 0.004	1.3	7
Mean Bottom 11.4 60 D.095	21.4	60
S.D. 3.8 18 0.015	5.1	23
S.E. 22 5 0.004	15	7

Table 4.4.2.B. Radionuclides in sea water collected around Zealand in November 1991

•-



Figure 4.4.1. Strontium-90 in surface sea water from inner Danish waters, 1962-1991. (1 S.D. indicated) (from Tables 4.4.1. A and B and 4.4.2. A and B). (Unit: Bq m⁻³).

Figure 4.4.2. Cesium-137 in surface and bottom water collected in inner Danish waters 1972-1991. (Unit: Bq m⁻³).





Fig. 4.4.3. Sea water locations around Zealand.

Location/ cruise	Year	Date	Pos N	ition E	Depth in m	⁹⁰ Sr Bqm- ³	⁹⁹ Tc Bqm ⁻³	¹³⁷ Cs Bqm ⁻³	134Cs 137Cs	Chernobyi ¹³⁷ Cs Bq.m- ³	Salinity ‰	'_
Klintholm	1990	Feb 16	54°57'	12°28'	0			87	0.156	81	9.8	
•	٠	March 23	-	-	0			78	0.143	68	10.4	
*	-	April 18	•	•	0			80	0.147	74	9.0	
•	-	May 16	-	-	0			92	0.156	(93)	8.7	
•	•	June 13	-	-	0			9 <b>8</b>	0.152	(99)	8.5	
•	•	July 19	-	-	0			94	0.137	88	8.7	
	•	Aug 15	-	-	0			93	0.148	(96)	8.4	
-	*	Sep 18	-	-	0			101	0.127	92	8.3	
	*	Oct 16	-	-	0			67	0.118	58	18.7	
-	-	Nov 13	•	•	0			100	0.128	<del>9</del> 7	8.3	
		Dec 12	*	•	0			89	0.126	87	8.9	_
% Chernoby	/l: 95±6; r	1= 11 (±1 S	i.D.)									_
Halskov	1990	Jan 15	55°21'	11°07'	0			68	0.149	59	16.8	
-	-	Feb 15	•	-	0			62	0.135	50	18.6	
-	-	March 22	-	-	0			77	0.158	75	14.6	
-	•	Apr 17	-	*	0			81	0.141	72	11.5	
*	*	May 15		-	0			82	0.132	70	10.5	
-	"	June 13	-	-	0			82	0.142	77	12. <del>9</del>	
+	-	July 19	-	-	0			56	0.125	48	22.0	
-		Aug 15	-	-	0			78	0.138	75	13.4	
-	-	Sep 18	*	-	0			74	0.145	(77)	14.7	
•	-	Oct 16		-	0			94	0.126	87	9.3	
•	-	Nov 12	-		C			79	0.102	61	13.6	
-	-	Dec 12	-	-	0			64	0.111	55	16.1	
% Chernoby	vl: 90±8; r	1 = 12 (± 1 \$	S.D.)									_
Klint	1990	Jan 15	55°58'	11°35'	0		0.36	59	0.123	42	20.3	
•	-	Feb 15			0		0.40	41	0.124	30	25.8	
•	-	March 22	-	-	0		0.50	46	0.120	34	23.0	
	-	Apr 17		•	0		0.40	73	0.152	70	13.9	
-	-	May 15		-	0		0.26	77	0.157	(78)	13.6	
-	-	June 14		-	0		0.22	76	0.150	76	13.5	
-	-	July 20	-	-	0		0.35	64	0.135	59	18.1	
	-	Aug 15	-	•	0		0.31	69	0.130	59	16.6	
-	-	Sep 17	-	-	0		0.35	68	0.112	55	17.2	
-	-	Oct 15	-	-	0		0.53	49	0.137	49	22.1	
-	-	Nov 12	-	-	0		0.52	56	0.118	50	19.2	
	-	Dec 13		•	0		0.57	52	0.129	52	21.9	

Table 4.4.3. Radionuclides in sea water collected in the Danish Straits, North Sea, and Baltic Sea in 1990 and 1991

Location/ cruise	Year	Date	Pos N	iition E	Depth in m	⁹⁰ Sr Bqm~ ³	⁹⁹ ⊺c Bqrm− ³	¹³⁷ Cs Bq.m− ³	134Cs 137Cs	Chernobyl ¹³⁷ Cs Bam ⁻³	Salinit <u>)</u> %
Klint	1991	Jan 16	55°58'	11°35'	0		0.59	42	0.119	40	24.8
-		March 14		-	0		0.31	81	0.118	80	13.2
-	•	Apr 16		-	0		0.56	65	0.106	59	18.0
-	•	May 15	-	•	0		0.48	66	0.113	66	17.2
-	•	June 14	•	-	0		0.32	64	0.108	61	19.7
•	•	July 15	-	•	0		0.26	73	0.096	65	17.0
•	•	Aug 14	•	•	0		0.22	76	0.102	74	15.7
-	-	Sep 16	•	•	0		0.24	70	0.105	72	17.8
-	•	Oct 15	-	-	0		0.24	62	0.096	60	1 <del>9</del> .8
-	-	Nov 14	•	•	0		0.33	55	0.086	49	21.4
•	•	Dec 16		<b>*</b>	0		0.28	60	0.072	46	19.9
% Chernobyl:	94±7; r	n = 11 (± 1 S	S.D.)								
Lund	1990	Jan 16	55°15'	12°18'	0			80	0.159	74	10.2
ishing	-	Feb 16	-	•	0			88	0.160	84	10.5
ort	•	March 23	-	-	0			73	0.134	60	11.6
•	-	Apr 18	•	-	0			79	0.157	78	9.7
•	-	May 16	•	-	0			82	0.145	77	8.6
-	•	June 13	-	-	0			95	0.159	(100)	88
•	•	July 19	-		0			98	0.130	87	9.2
	-	Aug 15	-	-	0			95	0 133	88	8.8
•		Sen 18		-	Ő			89	0 133	85	8.2
-		Oct 16	-	-	Ő			89	0.136	89	9.5
-	-	Nov 12	-	-	ő			97	0.100	02	9.0
-	-	Dec 12	•	-	0			97	0.128	96	9.0
% Chernoby!:	95±6; r	n = 12 (± 1 §	S.D.)								
Svenskehavn	1990	Jan 2	55°05'	15°09'	0			91	0.167	87	8.1
Bornholm)		Feb 4		,	- 0			93	0.163	90	8.2
"	-	March 4	-	-	0			100	0.163	99	80
,		Sor 1	-	-	ñ			95	0.162	(96)	7 R
-	-	May 1	•	-	ñ			98	0 154	96	0.7 8 0
	-	June 1	-	-	ñ	19 A		102	0 160	(107)	7 A
		July 1	-	-	ň	10.0		111	0.100	105	7.0
	-	July 21	-	-	0			116	0.141	112	7.0
	-	Son?	-	-	0			102	0,141	(106)	כ.ז דד
	-	Sep 30	-	-	U A			114	0.147	(100)	7.1
		Sep 30	-	-	0			111	0.138	111	7.1
	-	NOV 3	-	-	U			112	0.120	100	7.1
		Dec 2		-	0	16.0		101	0.142	(110)	7.0

Table 4.4.3. (continued)

Table 4.4.3. (continued)

Location/ cruise	Year	Date	Pos N	iition E	Depth in m	90Sr Bqm ⁻³	⁹⁹ Tc Bqm ⁻³	¹³⁷ Cs Bqm ⁻³	134Cs 137Cs	Chernobyi ¹³⁷ Cs Bq.m ⁻³	Salinity ‰
Svenskehavn	1991	Jan 1	55°05'	15°09'	0			113	0.126	112	7.2
(Bornholm)	-	Feb 3	•	•	0			100	0.126	(102)	8.1
-	-	March 2	-		0			106	0.123	(108)	7.7
-	-	Apr 1	•	•	0			95	0.119	(96)	7.2
	-	May 1	•	-	0			105	0.115	105	7.4
-	-	June 2	•	-	0	17.4		106	0.114	(108)	7.2
-	-	July 1	•	-	0			105	0.099	95	7.2
-	-	Aug 1	•	-	0			104	0.104	102	7.3
-	-	Sep 1	•	-	0			105	0.101	103	7.2
•	-	Oct 1	•	•	0			106	0.099	104	7.3
-	-	Nov 3		-	0			101	0.093	96	7.6
-	-	Nov 30	-	•	0			99	0.095	98	7.4
•		Dec 31	•	-	0	17.9		94	0.105	(106)	7.8
% Chernobyl:	1 <b>00±</b> 5	; n = 13 (±1	S.D.)								
Gauss no.1	1991	Feb	54°30'	08°00'	0	5.7	1.24	7.6			
Gauss no.2	-	-	55°00'	08°00'	0	5.9	1.08	8.3			
Gauss no.3	-	-	55°30'	07°30'	0	5.8	1.08	8.9			
Gauss no.4		•	56°00'	07°45'	0	5.2	0.69	10.1			
Gauss no.5	-		56°30'	07°45'	0	4.2	0.73	11.8			
Gauss no.6	-	•	57°00'	08°00'	0	3.3	0.23	13.1			
Gauss no.7A	-	*	57°20'	09°00'	0	3.6	0.44	14.7			
Gauss no.7			57°20'	09°00'	19		0.51				
Gauss no.8	•	•	57°45'	10°00'	0	3.3	0.39	15.4			
Gauss no.8A	-	•	57°45'	10°00′	84	3.1	0.2.1	13.5			
Gauss no.9	-	•	57°51'	10°44'	0	10.0	0.44	48	0.157	(62)	
Gauss no.9A	-	•	57°51'	10°44'	106	3.4	0.38	13.6		•	
Gauss no.10	•	•	56°08'	11°10'	0	11.9	0.32	70	0.121	69	
Gauss no.10A	-	-	56°08'	11°10'	23	7.3	0.63	29	0.076 A	18	
Gauss no.11		*	56°40'	12°07'	0	10.3	0.39	59	0.106	51	
Gauss no.11A	-	-	56°40'	12°07'	42	4.3	0.56	18.1	0.092 B	14	
Gauss no.12	-	•	57°22'	11°31′	0	10.3	0.28	52	0.102	43	
Gauss no.12A	-	•	57°22'	11°31'	61	2.2	0.22	9.5			
Gauss no.13	-	•	58°00'	10°58'	0	10.2	0.46	47	0.112	43	
Gauss no.13A	•	-	58°00'	10° <b>58</b> ′	149	2.7	0. <b>36</b>	14.1			
Gauss no.17	-	-	57°00'	07°00'	0	3.5	0.41	21			
Gauss no.18	•	•	56°00'	06°00'	0	3.2	0.46	19.3			
Gauss no.19	-	•	56°00'	07°00'	0	4.9	1.12	10.3			
Gauss no.20	-	-	55°00'	07°00'	0	3.4	0.70	16.7			
Gauss no.21	•	~	55°00'	06°00'	0	3.4	0.41	23			
Borkumrif	1990	March 31	53°48'	06°22'	0		2.7				
(Lightshif)	•	May 4	•	-	0		1.59				
•	-	June 1	•	-	0		1.94				
•	•	June 28	•	-	0		2.9				
-	-	Nov 30	-	-	0		22				

Location/ cruise	Year	Date	Pos N	sition E	Depth in m	⁹⁰ Sr ⁹⁹ Tc Bgm ⁻³ Bgm ⁻³	¹³⁷ Cs Bq.m ⁻³	134Cs 137Cs	Chernobyl ¹³⁷ Cs	Salinity %
									Bq m ⁻³	
Borkumrif	1991	Jan	53°48'	06°22'	0	1.80				
(Lightship)	*	Jan 17	•	•	0	1.48				
-	۳	Apr 9	-	•	0	2.8				
m	-	May 8	-	•	0	2.6				
•	-	June 8	-	•	0	2.1				
-	•	July 8	-	•	0	2.4				
-	-	Aug 9	-	•	0	1.89				
	-	Sep 9	-	*	0	1.82				
•	•	Oct 8	-	-	0	1.08				
•		Oct 25	•	•	0	1.09				
-	•	Dec 15	•	•	0	1.03				
Elbe 1	1990	Jan 2	54°00'	08°07'	0	1.72				
Lightship)	+	Jan 31	-	-	0	1.94				
-	-	Apr 3	-	•	0	2.7				
-	-	May 1	-	*	0	2.6				
•	-	May 29	-	•	0	2.5				
*	-	June 30		-	0	2.5				
	1991	Jan	-	•	0	0.76				
-	•	Feb	•	•	0	1.23				
-	•	Feb 26	•	•	0	1.37				
-	-	Apr 1	-	-	0	1.62				
•		Apr 29	-	•	0	2.1				
<b>n</b>	н	May 27	-	•	0	1.60				
•	•	July 10	-	•	0	2.2				
~	л	July 30	-	-	0	1.90				
•	•	Sep 11	-	•	0	1.61				
-	*	Oct 11	-	-	0	1.50				
•	-	Nov	-		0	1.25				
-	*	Dec 3	•	•	0	1.24				
St. 413/DMU	1990	Jan 9	56°40'	12°07'	5	0.43				23.5
-	-	Jan 9	-		32	0.63				33.4
•	-	Feb 12	*	-	5	0.52				27.4
-	-	Feb 12	-		40	0.89				31.6
•	•	Mar 22	•	•	5	0.55				26.4
-	-	Mar 22	-	•	40	1.19				32.1
•	-	May 1	-	•	5	0.25				15.5
-	-	Maj 1	-	-	35	1.21				33.6
-	-	June 19	•	•	5	0.23				
-	-	June 19	-	-	30	1.37				
-	-	July 16	-	-	5	0.63				22.0
	-	July 16	-	•	40	1.32				34.0
	-	Aug 14		•	5					20.3
	-	Aug 14	-	-	35	1.29				33.5
•	-	Sep 25		•	5	0.54				32.5
-		Sep 25	-	•	30	0.95				20.6
~	•	Oct 16		•	5	0.78				21.9
-	-	Oct 16	-	٠	30	0.66				32.6

Risø-R-621(EN)

Table 4.4.3. (continued)

Location/ cruise	Year	Date	Posi N	ition E	Depth in m	⁹⁰ Sr Bqm ^{−3}	⁹⁹ ⊺c Bqm ^{−3}	¹³⁷ Cs Bqm ⁻³	134Cs 137Cs	Chernobyi ¹³⁷ Cs Bq m ⁻³	Salinity %.
St. 413/DMU	1990	Nov 6	56°40'	- 12•07'	5						19.2
-	-	Nov 6	-	-	30		0.27				33.6
-	1991	Jan 8	-	-	5		0.46				25.8
•	-	Jan 8	-	•	45		0.46				33.1
•		Feb 11	•	-	5		0.27				17.1
-	•	Feb 11	•	•	35		0.65				33.0
-	-	Mar 18	-	-	5		0.27				16.7
-		Mar 18	-	•	35		0.38				31.9
-	•	Apr 30	-	-	5		0.157				13.6
*	-	Apr 30	-	-	35		0.38				34.0
-	-	June 17	-	-	5		0.32				21.7
-		June 17	-	•	35		0.45				33.5
	-	July 16	-	-	5		0.24				18.3
-	-	July 16	-	-	50		0.46				33.5
-	•	Aug 19	-	•	5		0.25				19.5
-	-	Aug 19	-	-	30		0.48				32.8
-	-	Sep 16	-	-	5		0.27				20.6
-	-	Sep 16	-	-	45		0.44				33.0
-		Oct 7	-	-	5		0.34				22.0
-	-	Cct 7	-	-	50		0.56				33.2
-		Nov 4		-	5		0.29				21.4
-	-	Nov 4	-	-	35		0.49				32.9
St. 925/DMU	1990	Jan 10	56°08'	11°10'	5		lost				20.5
~	-	Jan 10	-	-	25		0.63				31.4
-	-	Feb 21	-	-	5		0.34				22.7
~	•	Feb 21	-	-	30		0.57				27.6
-	-	Mar 21	-	-	5		0.47				26.2
-	-	Mar 21	•		25		0.51				21.3
-	-	May 2		-	5		0.30				13.6
-	-	May 2	•	-	30		1.02				30.4
-	-	June 20	-	-	5		0.30				16.2
-	-	June 20	-	-	25		1.09				32.9
-	•	July 18	-	•	5		0.49				18.6
~	-	July 18	+	-	30		1.31				33.2
-	•	Aug 21	-	-	5		0.23				18.7
-		Aug 21		•	35		1.11				33.0
-	•	Sep 26	•	-	5		0.76				21.7
-	-	Sep 26		-	25		1.07				30.4
-	-	Oct 17	-	-	5		0.75				23.8
-	-	Oct 17	-	-	35		lost				31.6
-	•	Nov 7	-	-	5		lost				19.7
"	-	Nov 7	-	-	30		0.88				32.3
-	1 <b>9</b> 91	Jan 9	-	•	5		0.47				27.4
-	-	Jan 9		-	30		0.38				31.3
		Feb 20	~	-	5		0.33				18.9
-		Feb 20		•	30		0.49				27.8
-	-	Mar 20	-	-	5		0.25				16.6
~		Mar 20	-	•	30		0.38				33.3

Risø-R-621(EN)

Location/ cruise	Year	Date	Pos N	ition E	Depth in m	^{∋0} Sr Bqm ^{−3}	⁹⁹ Tc Bqm ⁻³	¹³⁷ Cs Bqm ⁻³	134Cs 137Cs	Chernobyi ¹³⁷ Cs Ba m ⁻³	Salinity ‰
										Dqm	
St. 925/DMU	1991	May 1	56°08'	11°10'	5		0.22				16.6
-	-	May 1	-	•	30		0.41				32.5
•		June 19	-	•	5		0.27				19.2
-	-	June 19	-	-	30		0.37				33.4
-	*	July 17	*	•	5		0.26				17.8
	-	July 17	•	-	30		0.45				32.0
•	-	Aug 21	*	*	5		0.21				18.6
-	•	Aug 21	-	-	30		0.43				32.7
-	•	Oct 9	-	-	5		0.53				21.7
*	-	Oct 9	-	•	44		0.30				31.9
-	-	Sep 18	-	-	5		0.23				18.7
-	•	Sep 18	-	-	41		0.44				32.2
-	•	Nov 11	-	-	5		0.27				19.5
-	-	Nov 11	•	*	30		0.44				30.8
St. 444/DMU	1990	Jan 12	55°00'	13° 18'	5		0.2 <b>9</b>				8.9
-	-	Feb 22	-	-	5		0.087 A				9.6
-	-	Mar 12	-	•	5		0.176				10.3
-	-	June 21	-	*	5		< 0.06				7.8
-	-	July 19	-	-	5		< 0.06				7.8
-	-	Aug 21	-	-	5		< 0.06				8.1
-	-	Sep 28	-	-	5		0.129				8.2
*	-	Oct 19	-	-	5		0.27				8.4
•		Nov 8	*	-	5						8.2
	1991	Jan 10	-	-	5		0.084				9.1
-	,	Feb 20	-	-	5		< 0.05				7.9
•	-	Mar 21	-	-	5		0.067				7.9
-	Ħ	May 2	-	-	5		< 0.05				7.6
-	-	June 20	-	•	5		< 0.05				7.5
	-	July 18	-	-	5		< 0.05				7.3
•	-	Aug 22	-	-	5		0.056 B				7.5
-	-	Sep 19	-	-	5		0.026 B				7.8
	•	Oct 10	-	-	5		0.077				7.7
-	-	Nov 7	-	-	5		0.056 A				8.2
Risø	1991	June 6	55°42'	12°05'	0			38.0	0.091	31.4	12.6
Hirtshals	1991	June 28	57°36'	09°58'	0		0.60				32.6
-	-	Nov 26		-	0		1.44				32.6
-		Dec 20	-	-	Ô		1.37				32.2



Figure 4.4.5. Technetium-99 in sea water collected in February 1991. Figure in brackets are bottom water. (Unit:  $Bq m^{-3}$ ).



Figure 4.4.6. Technetium-99 in surface sea water from the German Bight 1988-1991. (Unit: Bq  $m^{-3}$ ). Borkum Riff: 53°48'N, 06°22'E and Elbe I: 54°00'N, 08°07'E.

Figure 4.4.7. Technetium-99 in surface sea water collected in 1989-1991. (O = detection limits). (Unit: Bq m⁻³). St. 413/DMU: 56°40'N, 12°07'E St. 925/DMU: 56°08'N, 11°10'E St. 444/DMU: 55°00'N, 13°18'E





Figure 4.4.8. Technetium-99 in bottom sea water collected in 1989-1991. (Unit: Bq m⁻³). St. 413/DMU: 56°40'N, 12°07'E St. 925/DMU: 56°08'N, 11°10'E

Figure 4.4.9. Technetium-99 in sea water and Fucoids from the shore at Klint: 55°58'N, 11°35'E in 1988-1991.



A. A

Distance from rain collector in m	90Sr	¹³⁴ Cs	¹³⁷ Cs 9	Fallout ¹⁰ Sr/ ¹³⁷ Cs	134 <u>Cs</u> 137Cs	Chernobyl ¹³⁷ Cs	Fallout ¹³⁷ Cs
0	58	62	770	6.3	0.081	402	368
200	142	16.5	770	4.7	0.021	1 <b>04</b>	666
400	99	36	720	4.9	0.050	233	487
700	35	30	580	11.0	0.052	1 <b>95</b>	385
1300 (in forest)	147	38	1190	6.4	0.032	246	944
x	96	36.5	876	6.7	0.047	236	570
S.D. %	52	45	28	38	49	46	42

Table 4.5.1. Uncultivated soil (0-5 cm depth) collected at Tornbygård in different distances from the rain collector, May, 17, 1990. (Unit: Bq  $m^{-2}$ ).

ı T



Figure 4.6. Roskilde fjord.

Table 4.6. Radiocesium in marine sediments collected in Roskilde Fjord in 1990 and 1991 at Bolund (55°42'N 12°05'E). (Unit: Bq kg⁻¹ dry)

Date	¹³⁴ Cs	¹³⁷ Cs	Chernobyl ¹³⁷ Cs	Chernobyl ¹³⁷ Cs
Aug 28, 1990	0.82 A	22	5.8	27%
July 1, 1991	0.47	10.4	2.7	26%

# 5. Danish Food and Various Vegetation

by A. Aarkrog

## 5.1. Cows Milk

Milk samples from seven locations (Figure 5.1.1) were collected monthly and analysed for ⁹⁰Sr (Tables 5.1.1.A & B) and for ¹³⁷Cs (Tables 5.1.3.A & B). The samples from Hjørring, Randers and Videbæk were dried milk, the remaining locations were represented by fresh milk samples. Since 1983 the ⁹⁰Sr concentrations in Danish milk have decayed with a halflife of 10 years; the global fallout ¹³⁷Cs has shown a halflife of 6 years and that of Chernobyl ¹³⁷Cs of 1.1 years (1987-1989). During 1989 to 1991 the halflife of Chernobyl ¹³⁷Cs in Danish milk increased to about 3 years.

## 5.2. Other Milk Products

No samples in 1990 and 1991.

## 5.3. Cereal Grain

Grain samples were as previously obtained from the ten Danish experimental farms (cf. Figure 4.2). The samples were combined before analysis as shown in Tables 5.3.1 and 5.3.5. Jutland comprises Tylstrup, Kalø, Borris, Askov and Jyndevad, and the Islands were represented by Årslev, Ledreborg, Tystofte, Abed and Kannikegård (see also Tables 5.3.7.1-5.3.7.2, showing the samples obtained from the various farms).

Figures 5.3.1-5.3.4 show the ⁹⁰Sr levels since measurements began in 1959 and Figures 5.3.5-5.3.8 show the corresponding ¹³⁷Cs concentrations for the period 1962-91. The effective halflife of ⁹⁰Sr in Danish grain has been 10-15 years since 1983.

The effective halflife of global fallout of  137 Cs has since 1983 been 12 years (for oats 16 years) and that of Chernobyl  137 Cs has since 1987 been about 5 years (shorter for barley and oats, longer for wneat and rye) (cf. Tables 5.3.5A & B).

The predictions of the ¹³⁷Cs levels in grain from 1990 and 1991 based upon revised models, including root uptake are summarized in Appendix C, cf. also Appendix A. The predicted values for ⁹⁰Sr and ¹³⁷Cs in Danish grain from 1990 and 1991 were not systematically different from those observed.

## 5.4. Bread

The ¹³⁷Cs rye bread levels in 1990 as well as in 1991 were in general higher than expected from Danish grain measurements (Tables 5.4.3.A & B) while the white bread levels were lower. This may suggest import of rye grain from areas in Europe which were more contaminated by Chernobyl debris than Denmark. Strontium-90 was not determined in bread samples from 1990 and 1991.

### 5.5. Potatoes

The effective halflife of ⁹⁰Sr in potatoes in Denmark has since 1983 been about 20 years, somewhat longer in the Islands than in Jutland (cf. Figures 5.5.1-5.5.2). The ¹³⁷Cs concentrations have shown greater variability partly due to the Chernobyl accident (Figures 5.5.3-5.5.4).

## 5.6. Vegetables and Fruit

The ⁹⁰Sr and ¹³⁷Cs levels in vegetables and fruit were generally a little lower in 1991 than in 1990 (Tables 5.6.3 A & B).

## 5.7. Meat, Fish, Eggs and Various Vegetable Foodstuffs

#### 5.7.1. Meat

During 1990 and 1991 80% of the ¹³⁷Cs in Danish beef came from Chernobyl, this activity decayed with an effective halflife of about 2 years which is shorter than that of global fallout. The high variation of the ¹³⁷Cs concentrations in beef (Table 5.7.1.2.A) suggests import of meat from parts of Europe more contaminated than Denmark by Chernobyl fallout.

#### 5.7.2. Fish

Fish from the inner Danish waters contained 2 times more ¹³⁷Cs than fish from the North Sea. Fish from the Baltic Sea showed nearly an order of mag.uitude higher levels than fish from the North Sea.

The contribution from Chernobyl to the total ¹³⁷Cs concentration in fish was 75% in the inner waters and 62% in the North Sea in 1990 and 1991. Fish from the Baltic Sea showed a percentage of 95%.

The mean content of ²¹⁰Po in Danish fish was 0.40 Bq kg⁻¹, an anova showed that the levels in herring were higher than those in cod (P  $\ge$  97%). The ²¹⁰Po concentrations in fish from the Baltic Sea seemed to be higher than those from the Cattegat and the North Sea, but the difference was not significant in the anova (P ~ 88%).

#### 5.7.3. Eggs

The ⁹⁰Sr concentrations in eggs in 1990 were similar to those in 1989, i.e mean  $\leq 0.01$  Bq kg⁻¹. The ¹³⁷Cs levels were an order of magnitude higher.

#### 5.7.4. Various Vegetable Foods

The levels in hazel nuts, oats, banana, orange, coffee and tea in 1990 were similar (within a factor of 2-3) to those observed at the last sampling in 1988; but rize contained significantly less ⁹⁰Sr and ¹³⁷Cs in 1990.

## 5.8. Total Diet (Consumption Data)

The 90Sr intake with total Danish diet has since 1983 decreased with a halflife corresponding to the radiological halflife of 90Sr. i.e. 28.5 years. The daily pro capite intake of Ca with the Danish diet is now 1.12 g Ca corresponding to 409 g per year.

The global fallout ¹³⁷Cs in the diet decayed with an effective halflife of approx. 5 years whereas Chernobyl ¹³⁷Cs (~ 70%) decreased with 3 years halflife. The determination of the decay of the global fallout is encumbered with uncertainties due to the contribution of Sellafield radiocesium from fish consumption. As ¹³⁴Cs was determined reliably only in the June 1990 diet, the estimate of the Chernobyl ¹³⁷Cs is uncertain too.

## 5.9. Total Diet (Production Data)

The ⁹⁰Cr intake with total diet calculated from the concentrations in the various diet constituents may be compared with the measured levels in total diet (consumption data). In 1990 the production data were 0.12 Bq ⁹⁰Sr day⁻¹ cap⁻¹ and the consumption figure was 0.13. In 1991 the data were 0.11 and 0 13, respectively. The corresponding figures for ¹³⁷Cs were in 1990 0.49 and 0.31, respectively, and in 1991 0.40 and 0.24 Bq ¹³⁷Cs day⁻¹ cap⁻¹, respectively. The discrepancy between the two diet estimates observed for ¹³⁷Cs was due to an overrepresentation of Baltic fish in the diet based upon production data.

## 5.10. Grass

#### 5.10.1. Grass from Zealand

Strontium-90 in grass collected around Risø has since 1987 decayed with an effective halflife of 5 years and ¹³⁷Cs with about 1.5 years halflife. These figures are based on monthly samples collected throughout the year.

#### 5.10.2. Grass Collected Countrywide

Since 1987 the ¹³⁷Cs levels in grass collected during the summer half year at the 10 State experimental farms has decayed with a halflife of about 1.5 years.

## 5.11. Sea Plants

#### 5.11.1. Sea Plants from Roskilde Fjord

The ⁹⁰Sr and ¹³⁷Cs concentrations in Fucus vesiculosus showed an increasing tendency Juring 1990-1991, perhaps due to inflow of Baltic Sea water in the Fjord.

#### 5.11.2. Sea Plants from Inner Danish Waters

Fucus from the southern locations (Strøby Egede and Nysted) showed two times higher ¹³⁷Cs levels than those found at the stations in the Cattegat (Klint and Nakkehoved). The ¹³⁷Cs concentrations in Fucus showed a maximum in May-June. Both observations were in accordance with earlier years (1988-1989) measurements. The observed mean ratio between Bq kg⁻¹ d.w. Fucus and Bq l⁻¹ sea water for ⁹⁹Tc was  $(1.71\pm0.15)\cdot10^5$  (±1 S.E.;n = 21) for Fucus vesiculosus sampled monthly at Klint in 1990 and 1991 (cf. also Table 4.4.3). The observed ratio was higher than seen in 1988-1989 (1.05·10⁵). This may be because the water concentrations of ⁹⁹Tc decreased from 1988-1989 to 1990-1991 (see Figure 4.4.9) and Fucus still »recalls« the higher concentrations.

## 5.12. Lichen and Moss

1

In Figure 5.12 six years observations of ¹³⁷Cs in Danish lichen are shown (1986-1991). It appears that the environmental halflife of global fallout ¹³⁷Cs was 3.5 years at Oustrup Heather and 5.6 years at Skagen while the Chernobyl ¹³⁷Cs showed halflives of 3.3 and 2.9 years, respectively, at the two locations (Figures 5.12.1 and 5.12.2).

	Stron	tium-90	Cesium	Cesium-137		
	1990	1991	1990	1991		
Countrywide dried milk, Bg I-1 fresh	0.048	0.046	0.101	0.076		
Danish cheese, Bg kg ⁻¹	-	-	-	-		
Countrywide rye, Bg kg ⁻¹	0.25	0.23	0.117	0.100		
Countrywide barley, Bg kg-1	0.33	0.32	0.046	0.049		
Countrywide wheat, Bg kg-1	0.33	0.27	0.057	0.045		
Countrywide oats, Bq kg-1	0.37	0.41	0.126	0.159		
Countrywide rye bread, Bq kg ⁻¹	-	-	0.121	0.21		
Countrywide white bread, Bg kg-1	•	-	0.038	0.029		
Countrywide potatoes, Bg kg ⁻¹	0.032	0.029	< 0.055	0.065		
Countrywide cabbage, Bq kg-1	0.152	0.131	0.063	0.058		
Countrywide carrot, Bg kg-1	0.30	0.25	0.053	0.033		
Countrywide beans, Bg kg ⁻¹	0.28	0.25	0.0185	0.0185		
Countrywide apples, Bg kg ⁻¹	0.0179	0.0125	0.037	0.041		
Countrywide Strawberry, Bg kg-1	0.134	0.152	0.031	0.028		
Country intake [†] with diet, Bg day ⁻¹ cap ⁻¹	0.126	0.136	0.33	0.22		
Countrywide beef, Bg kg-1	0.0074	0.0069	0.99	0.37		
Countrywide pork, Bg kg-1	0.002*	0.0020	0.165*	0.49		
Countrywide ° plaice, Bg kg-1	0.0132	0.0199	0.95	0.62		
Countrywide [®] herring, Baka ⁻¹	0.0051	0.0047	2.2	1.50		
Countrywide ° cod, Bg kg ⁻¹	0.0192	0.0093	3.0	5.3		
Countrywide grass, Bq kg-1 fresh	0.51	0.65	0.126	0.118		
[†] Mean of June and December sampling						

Table 5. Geometric means of Strontium-90 and Cesium-137 levels in Danishenvironmental biological samples collected in 1990 and 1991

Ţ:

*Copenhagen samples only *Mean of Caltegat and North Sea samples.

Risø-R-621(EN)

с. М. н.,

ı.



Figure 5.1.1. Dried milk sampling locations in Denmark.

•

Period	Jutiand	The Islands	Geometric mean	Arithmetic mean
Jan-April	57	36	46	47
May-Oct	44	31	37	37
Nov-Dec	48	35	41	41
1990: Geometric mean*	49	34	41	
1990: Arithmetic mean*	50	34		42

Table 5.1.1.A. Strontium-90 in dried milk in 1990. (Unit: Bq (kg Ca)⁻¹)

*The dia a were weighted with the number of months when calculating the mean.

As 1 cubic meter of milk contains 1.2 kg Ca, the mean  $^{90}Sr$  content in Danish milk produced in 1990 was 50 Bq m^{-3} (or 0.050 Bq  $^{90}Sr$  l^-1).

Table 5.1.1.B. Strontium-90 in dried milk in 1991. (Unit: Bq (kg Ca)⁻¹)

Period	Jutland	The Islands	Geometric mean	Arithmetic mean
Jan-April	47	33	39	40
May-Oct	39	31	35	35
Nov-Dec	44	38	41	41
1991: Geometric mean*	43	34	38	
1991: Arithmetic mean*	43	34		39

*The data were weighted with the number of months when calculating the mean.

As 1 cubic meter of milk contains 1.2 kg Ca, the mean  $^{90}Sr$  content in Danish milk produced in 1991 was 46 Bq m^{-3} (or 0.046 Bq  $^{90}Sr \, l^{-1}).$ 

-

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan	50	112	220	94	75	32	22	67	87
Feb	50	56	155	154	58	27	27	60	75
March	86	102	182	101	44	20	40	66	82
April	103	93	195±3	103	57	33	36	75	88
May	62	97	148	93	41	31	29	61	72
June	69	91	174	102	42	46 B	27	66	79
July	79	87	150	71	39	37	24	59	69
Aug	84	85	280	104	38	39	14.4	64	92
Sep	59	116	149	124	41	39	17.2	62	78
Oct	44	110	146	67	46	26	19.2	53	66
Nov	67	82	125	62	43	33	17.0	52	61
Dec	45	64	134	60	35	31	32	50	57
1990:								_	
Geometric									
mean	64	89	167	91	46	32	24	61	
1990:									
Arithmetic									
mean	66	91	172	94	47	33	25		76

Table 5.1.3.A. Cesium-137 in Danish dried milk in 1990. (Unit: Bq¹³⁷Cs (kg K)⁻¹)

As 1 cubic meter of milk contains approx. 1.66 kg K, the mean  137 Cs content in Danish milk produced in 1990 was estimated at 125 Bq m⁻³ (or 0.125 Bq  137 Cs  $l^{-1}$ ).

1 1



Figure 5.1.2. Predicted (curve) and observed ⁹⁰Sr/Ca levels in dried milk from Denmark (May 1962 - April 1992) (milk year). Prediction model given in Risø-R-540 (Table C.3.1).

Figure 5.1.3. Predicted (curve) and observed ¹³⁷Cs/K levels in dried milk from Denmark (May 1962 - April 1992) (milk year) (cf. Figure 5.1.2).



Risø-R-621(EN)

Month	Hjørring	Randers	Videbæk	Abenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan	67	74	91	63	26	40	26	50	55
Feb	42	57	161	63	24	26	21	44	56
March	46	60	106	<del>59</del>	29	23	25	43	50
April	42	68	129	62	37	30	14.3	45	55
Мау	55	79	84	66	39	17.0	20	44	51
June	53	65	101	70	28	28	21	45	52
July	<b>6</b> 6	59	120	121	29	27	15.3	49	62
Aug	79	61	160	83	54	26	16.9	55	68
Sep	77	63	126	40	45	18.8	20	46	56
Oct	59	5 <del>9</del>	113	76	49	21	16.9	47	56
Nov	40	56	98	72	40	29	13.4	42	50
Dec	53	64	93	94	32	15.8	7.6 B	38	51
1991:									
Geometric									
mean	55	63	113	70	35	24	17.4	46	
1991:									
Arithmetic									
mean	56	64	115	73	36	25	18.2		55

Table 5.1.3.B. Cesium-137 in Danish dried milk in 1991. (Unit: Bq ¹³⁷Cs (kg K)⁻¹)

As 1 cubic meter of milk contains approx. 1.66 kg K, the mean  137 Cs content in Danish milk produced in 1991 was estimated at 92 Bg m⁻³ (or 0.092 Bg  137 Cs  ${}^{-1}$ ).

Table 5.1.4.A. Analysis of variance of In Bq  137 Cs (kg K) $^{-1}$  in Danish dried milk in 1990 (from Table 5.1.3.A) (milk year May 1990 - April 1991)

Variation	SSD	f	S²	V²	Р
Between months Between locations Remainder	1.758 29.988 2.902	11 6 66	0.160 4.998 0.044	3.634 113.670	> 99.95% > 99.95%

Table 5.1.4.B. Analysis of variance of ln Bq  137 Cs (kg K)⁻¹ in Danish dried milk in 1991 (from Table 5.1.3.B) (milk year May 1991 - April 1992)

Variation	SSD	f	S ²	V ²	Р
Between months	1.256	11	0.114	1.888	•
Between locations	33.290	6	5.548	91.709	> 99.95%
Remainder	3.872	64	0.060		

Table 5.1.5.A. Radiocesium: ¹³⁴Cs/¹³⁷Cs in Danish dried milk in 1990

k.

Month	Hjørring	Randers	Videbæk	Abenrá	Nyborg	Ringsted Nakskov	Mean ± 1 S.D.	Theoretical 134Cs/157Cs
Jan		0.138	0.158	0.136	0.080		0.128±0.034	0.172
Feb		0.111	0.154	0.085	0.120		0.118±0.028	0.167
March	0.061	0.106	0.142	0.107	0.129		0.109±0.031	0.1 <b>63</b>
April	0.138	0.099	0.128	0.127	0.121		0.123±0.015	0.159
May		0.121	0.116	0.115			0.117±0.003	0.155
June	0.100	0.112	0.111	0.106	0.091	0.076	0.099±0.014	0.151
July		0.084	0.095	0.108			0.096±0.012	0.147
Aug	0.090	0.141	0.122	0.117		0.121	0.118±0.021	0.143
Sept		0.090	0.090	0.116	0.087		0.096±0.014	0.139
Oct		0.092	0.115	0.141	0.081		0.107±0.027	0.136
Nov		0.114	0.077		0.061		0.084±0.027	0.132
Dec								0.129
Observe	ed 134Cs/13	⁷ Cs	- 0 72+0 0	e (1 S D -	0 - 11)			
Theoret	ical 134Cs/1	37Cs	= U./ZIU.U	, טער ס.ע.	.n≠ n;			

Table 5.1.5.B. Radiocesium: ¹³⁴Cs/¹³⁷Cs in Danish dried milk in 1991

Month	Randers	Videbæk	Abenrá	Mean ± 1 S.D.	Theoretical 134Cs/137Cs
Jan	0.110 A	0.141		0.126±0.022	0.126
Feb		0.090	0.095 A	0.092±0.004	0.122
March					0.119
April		0.103		0.103	0.116
Мау					0.113
June		0.117 A		0.117	0.110
July		0.086 A	0.083 A	0.084±0.002	0.107
Aug		0.078		0.078	0.105
Sept		0.073		0-073	0.102
Oct					0.099
Nov		0.067 A		0.067	0.097
Dec	0.122 A		0.091 A	0.106±0.022	0.094
Observe	d 134Cs/137Cs	- 0.96+	0 16 (1 5 D 1	α – <b>Ω</b> )	
Theoretic	cal 134Cs/137Cs	= U.80I	0.10(13.0.;f	1 = 3)	

Location Rye Winter	Bve	Barley		Wh	leat	_ Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Jutland	0.38	0.46	0.67	0.41	0.82	0.63	0.58*
The Islands	0.168	0.20	0.188	0.146	0.25	0.22	0.24**
1990: Geometric mean	0.25	0.30	0.36	0.25	0.45	0.37	0.38
1990: Arithmetic mean	0.28	0.33	0.43	0.28	0.54	0.42	0.41

Table 5.3.1.A. Strontium-90 in Danish grain in 1990. (Unit: Bq kg⁻¹)

*Collected at Borris.

7

**Collected at Kannikegård and Tystofte.

Table 5.3.1.B. Strontium-90 in Danish grain in 1991. (Unit: Bq kg⁻¹)

Location	Rve	Barley		Wh	eat	_ Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Jutland	0.32	0.39	0.33	0.25	0.45	0.55	0.174*
The Islands	0.169	0.31	0.27	0.150	0.33	0.30	0.24**
1991: Geometric mean	0.23	0.35	0.30	0.19	0.39	0.41	0.20
1991: Arithmetic mean	0.24	0.35	0.30	0.20	0.39	0.42	0.21

**Collected at Kannikegård.

Table 5.3.2.A. Strontium-90 in Danish grain in 1990. (Unit: Bq (kg Ca)-1.
---------------------------------------------------------------------------

Location	Rve	Ba	riey	W	neat	Oats Spring	Triticale*
	Winter	Spring	Winter	Winter	Spring		
Jutland	1190	1170	1580	1410	2100	820	1560
The Islands	470	500	410	500	780	260	570
1990: Geometric mean	750	770	800	840	1260	460	940
1990: Arithmetic mean	830	830	990	960	1420	540	1060
*Cf. Table 5.	3.1.A.				· · · · · · · · · · · · · · · · · · ·		

Table 5.3.2.B. Strontium-90 in Danish grain in 1991. (Unit: Bq (kg Ca)-1)

Location	Rve	Barley		Wheat		Oats	Triticale*
	Winter	Spring	Winter	Winter	Spring	Spring	
Jutland	960	1230	790	920	1420	770	750
The Islands	490	780	640	460	860	410	800
1991:							
Geometric							
mean	690	980	710	650	1110	560	770
1991:							
Arithmetic							
mean	720	1000	720	690	1140	590	780
*Cf. Table 5.0	3.1.B.						

Risø-R-621(EN)

Table 5.3.3.A. Analysis of variance of In Bq ⁹⁰Sr kg⁻¹ in grain in 1990 (from Table 5.3.1.A)

Variation	SSD	f	S ²	V ²	Р
Between species Between locations	0.156 3.220	3 1	0.052 3.220	5.435 46.667	- > 99.95%
(spec. × loc.)	0.483	7	0.069		

Table 5.3.4.A. Analysis of variance of ln Bq  90 Sr (kg Ca)⁻¹ in grain in 1990 (from Table 5.3.2.A)

Variation	SSD	f	S²	V2	Р
Between species	0.868	3	0.289	49.664	> 99.5%
Between locations	3.303	1	3.303	566.872	> 99.5%
Spec. × loc.	0.017	3	0.006	0.099	-
Remainder	0.236	4	0.059		

Table 5.3.3.B. Analysis of variance of In Bq ⁹⁰Sr kg⁻¹ in grain in 1991 (from Table 5 3.1.B)

Variation	SSD	f	S ²	V ²	Р
Between species	0.383	3	0.128	4.556	-
Between locations	0.504	1	0.504	17.996	> 97.5%
Spec. × loc.	0.084	3	0.028	0.213	-
Remainder	0.526	4	0.132		

Table 5.3.4.B. Analysis of variance of  $\ln Bq {}^{90}Sr (kg Ca)^{-1}$  in grain in 1991 (from Table 5.3.2.B)

Variation	SSD	f	S ²	V ²	Р
Between species	0.288	3	0.096	4.808	•
Between locations	0.844	1	0.844	42.200	> 99%
Spec. × loc.	0.060	3	0.020	0.200	
Remainder	0.400	4	0.100		



Figure 5.3.1. Strontium-90 in rye collected in Denmark in 1959-1991. (Geometric mean). (Unit:  $Bq kg^{-1}$ ).

Figure 5.3.2. Strontium-90 in barley collected in Denmark in 1959-1991. (Geometric mean). (Unit:  $Bq kg^{-1}$ ).





Figure 5.3.3. Strontium-90 in wheat collected in Denmark in 1959-1991. (Geometric mean). (Unit: Bq kg⁻¹).

Figure 5.3.4. Strontium-90 in oats collected in Denmark in 1959-1991. (Geometric mean). (Unit: Bq kg⁻¹).



Risø-R-621(EN)

				-
Tatle 535A	Radiocesium m	Danish orain in	11990 (Uni	t Ra ko ⁻¹ )
IUCIC J.J.J.71.	THEIOCCSIERIN	Durnon Xrain in	• 1330. (um	LUGKX /

Location	Rve _	Ba	rley	VJI	neat	_ Oats	Tricale
	Winter	Sprir.g	Winter	Winter	Spring	Spring	
Jutland							
(- Askov)	0.194	0.102	0.073	0.139	0.23	0.26	0.197
Askev	1.020	0.26		0.33		0.124	
	(0.137)	(0.22)		(0. <b>130)</b>		(0.26)	
Årslev	0.32	0.055		0.016 B		0.091	
	(0.080 A)						
Zealand +							
Lolland-Faister	0.021 9	0.020 B	0.017 B	0.016 B	0.037 B	0.035 B	0.043 A
Kannikegård	0.020 ₽	0.021 B	0.023 A	0.017 A			0.021 A
1990:							
Geometric							
mean	0.117	0.055	0.032	0.052	0.092	0.126	
1990: Arithmetic							
mean	0.24	0.680	0.041	0.097	0.134	0.166	
In brackets the 1	34Cs/137Cs	are shown.					

Table 5.3.5.B. Cesium-137 in Danish grain in 1991. (Unit:  $Bq \kappa g^{-1}$ )

Locatio.) Rye	Rve	Ba	rley	Wi	neat	Oats Spring	Triticale
	Winter	Spring	Winter	Winter	Spring		
Jutland							
(- Askov)	0.148	0.077	0.060	0.068	0.112	0.35	0.195
Askov	0.191	0.24		0.077		0.34	
Årstev		0.51	0.122	0. <b>048 A</b>	0.033 A	0.153	
Zealand +							
Lolland-Faister	0.065	0.016 B	0.023 B	0.024 B	<0.025	0.035 B	
Kannikegård	0.026 A	0.028 A	0.012 B	0.013 B	0.024 A	0.068	0.037 B
1991:							
Geometric							
mean	0.100	0.059	0.039	0.041	<0.049	0.159	
1991:							
Arithmetic							
mean	0.117	0.113	0.049	0.048	<0.063	0.23	

Ri.;ø-R-621(EN)

Lоса∘оп	Rve _	Ba	arley	w	heat	Oats	Triticale
Winter	Spring	Winter	Winter	Spring	Spring		
Jutland							
(· Askov)	42	21	16.8	31	72	71	38
Askov	230	62		95		36	
Årslev	69	10.1		4.5 B		28	
Zealand +							
Lolland-Falster	4.6 B	4.2 B	4.1 B	4.0 B	10.3 B	8.1 A	8.1 A
Kannikegård	4.1 B	5.0 B	7.4 A	5.2 A			4.5 A
1990:		-	_				
Geometric							
mean	25	11.6	8.1	12.9	27	34	
1990:							
Arithmetic							
mean	53	17.4	9.8	24	41	46	

Table 5.3.6.A. Cesium-137 ... Danish grain in 1990. (Unit: Bq  $(kg K)^{-1}$ )

Table 5.3.6.B. Cesium-137 in Danish grain in 1991. (Unit: Bq (kg K)⁻¹)

Location	Rve	Ba	rley	w	heat	Oats	Triticale
Winter	Winter	Spring	Winter	Winter	Spring	Spring	
Jutland							
(- Askov)	35	17.0	13.7	17.0	28	81	43
Askov	44	52		<b>20</b> .0		80	
Årslev		115	29	12.2 A	8.7 A	40	
Zealand +							
Lolland-Falster	15.0	3.5 B	4.9 B	6.3 B	<6.2	7.9 B	
Kannikegård	6.2 A	6.2 A	2.7 B	3.0 B	5.9 A	15.3	7.8 B
1991:							
Geometric							
mean	23	13	8.8	10.4	<12.3	37	
1991:							
Arithmetic							
mean	28	25	11.2	12.2	<15.9	53	
						-	

Table 5.3.7.1.A.	Grain sample	s obtained	from Iutland	- Askov in 1990.
	Contain Sumple		,,,	

Location	Rye Winter	Barley		Wheat		Oats	Triticale
		Spring	Winter	Winter	Spring	Spring	
Tylstrup	x	x	x	x		x	
Kalø	x	x		x		x	
Borris	x	x	x	x	x	×	x
St. Jyndevad	x	X		x		x	

Table 5.3.7.2.A. Grain samples obtained from the Islands - Kannikegård in 1990.

Location R	Rve	Barley		Wheat		Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tystofte	x	x		x	x	x	x
Ledreborg	x	x	x	x		x	
Abed		x	x	X			

Table 5.3.7.1.B. Grain samples obtained from Jutland - Askov in 1991.

Location	Rye . Winter	Barley		Whe		Oats	Triticale
		Spring	Winter	Winter	Spring	Spring	
Tylstrup	x	x	x	x	x	x	x
Kalø	x	x	x	x	x	x	
Borris	x	x	x	x	x	x	
St. Jyndevad	×	x	x	X		x	

 Table 5.3.7.2.B. Grain samples obtained from the Islands - Kannikegård in 1991.

Location Ry W	Rve	Barley		Wheat		Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tystofte	x	x	x	x	x	x	
Ledreborg	x	x	x	x	x	x	
Abed	<u> </u>	x	x	x			

Risø-R-621(EN)

-
Table 5.3.7.A. Analysis of variance of In Bq ¹³⁷Cs kg⁻¹ in grain in 1990 (from Table 5.3.5.A)

.

Variation	SSD	f	S ²	V ²	Р
Between species	2.306	3	0.769	1.385	-
Between locations	24.825	4	6.206	11.182	> 99.9%
Spec. × loc.	6.105	11	0.555	4.917	> 95%
Remainder	0.564	5	0.113		

Table 5.3.8.A. Analysis of variance of  $\ln Bq {}^{137}Cs (kg K)^{-1}$  in grain in 1990 (from Table 5.3.6.A)

Variation	SSD	f	S ²	V ²	Р
Between species	1.843	3	0.614	1.085	-
Between locations	24.761	4	6.190	10.938	> 99.9%
Spec. × loc.	6.225	11	0.566	3.178	•
Remainder	0.891	5	0.1 <b>78</b>		

Table 5.3.7.B. Analysis of variance of  $\ln Bq^{137}Cs kg^{-1}$  in grain in 1991 (from Table 5.3.5.B)

Variation	SSD	f	S ²	V ²	Р
Between species	4.876	3	1.625	4.154	> 95%
Between locations	16.876	4	4.219	10.782	> 99.9%
Spec. × loc.	4.304	11	0.391	1 140	-
Remainder	1.902	7	0.272		

Table 5.3.8.B. Analysis of variance of  $\ln Bq \, {}^{137}Cs \, (kg \, K)^{-1}$  in grain in 1991 (from Table 5.3.6.B)

Variation	SSD	f	S ²	V ²	Р
Between species	4.473	3	1.491	3.855	> 95%
Between locations	17.531	4	4.383	11.333	> 99.9%
Spec. × loc.	4.254	11	0.387	1.501	-
Remainder	1.803	7	0.25 <b>8</b>		



Figure 5.3.5. Cesium-137 in rye collected in Denmark in 1962-1991. (Geometric mean). (Unit: Bg kg⁻¹).

Figure 5.3.6. Cesium-137 in barley collected in Denmark in 1962-1991. (Geometric mean). (Unit: Bg kg⁻¹).



Risø-R-621(EN)



Figure 5.3.7. Cesium-137 in wheat collected in Denmark in 1962-1991. (Geometric mean). (Unit: Bg kg⁻¹).

Figure 5.3.8. Cesium-137 in oats collected in Denmark in 1962-1991. (Geometric mean). (Unit:  $Bg kg^{-1}$ ).



Risø-R-621(EN)



Figure 5.4. Sample locations for bread and total diet.

I.

.

ı



Figure 5.4.3. Calcium in Danish bread 1962-1989. (Unit:  $g Ca kg^{-1}$  bread).

ī.

Table 5 1 2 A	Radiocesium	in Danis	h bread	collected	in Ium	» 1990
1 HUIE J.T.2.11.	Manocestan	in Dunis		concerca	на зына	

ţ

Loca	ation	Bq ¹³⁷ Cs kg ⁻¹	Rye bread Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs	Bq ¹³⁷ Cs kg ^{-†}	White bread Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs
1	North Jutland	0.21	85	0.140 A	0.065	49	0.137 A
11	East Jutland	0.183	82	0.118 A	0.048	36	0.148 A
H	West Jutland	0.187	72	0.092 A	0.046	34	0.077 B
IV	South Jutland	0.58	189	0.127	0.059	51	0.038 B
V	Funen	0.110	43	0.21 A	0.027 A	21 A	-
VI	Zealand	0.054 A	22 A	-	0.026 A	22 A	-
VII	Lolland-Falster	0.051	22	-	0.023	19.7	-
VIII	Bornholm	0.037 B	9.1 B	•	0.033	25	-
1990 Geo	): metric mean	0.121	45	0.132	0.038	30	0.088
1990 Arith	): Imetic mean	0.176	66	0.137	0.041	32	0.100
Сор	enhagen	0.061 A	22 A	-	0.027 B	26	-
Pop weig	ulation- ihted mean	0.141	55		0.038	31	-

Table 5.4.2.B. Radiocesium in Danish bread collected in June 1991

1

Loca	ation	Bq ¹³⁷ Cs kg ⁻¹	Rye bread Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs	Whit Bq ¹³⁷ Cs kg ⁻¹	e bread Bq ¹³⁷ Cs (kg K) ⁻¹
     V V V  V   V	North Jutland East Jutland West Jutland South Jutland Funen Zealand Lolland-Falster Bornholm	0.46 0.23 0.36 0.73 0.091 0.25 0.056 0.120	168 95 130 300 36 91 19.7 23	- 0.083 A 0.040 - -	0.086 0.024 A 0.020 A 0.052 0.042 0.0166 A 0.0152 A 0.022 B	60 21 A 17.0 A 45 35 13.5 A 12.8 A 17.4
199 Geo	1: metric mean	0.21	78		0.029	24
199 Arith	1 nmetic mean	0.29	109	-	0.035	28
Сор	enhagen	0.72	260	0.070	0.024 A	17.5
Pop weiç	ulation- phied mean	0.41	153	-	0.031	24

Risø-R-621(EN)

п

u

. .

i i

Species	△Bread activity in June 1990 calculated as grain in Bq kg-1	Activity in grain from harvest 1989 Bq kg ⁻¹	"Bread"/grain ratio
Wheat	0.103	0.113	0.91
Rye	0.190	0.151	1.26

Table 5.4.3.A. A comparison between ¹³⁷Cs levels in bread (June) and grain, 1990

Table 5.4.3.B. A comparison between ¹³⁷Cs levels in bread (June) and grain, 1991

n June 1991 calculated as grain in Bq kg-1	grain from harvest 1990 Bq kg ⁻¹	ratio
0.084	0.116	0.72
0.55	0.24	2.3
	0.084 0.55	Grain in Bq kg ⁻¹ Grain nom           0.084         0.116           0.55         0.24

⁴ (Risø Reports 1957-1991).

₽

Table 5.5.1.A. Strontium-90 in Danish potatoes in 1990

Location	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹
Jutland	0.027	910
The Islands	0.038	780
1990: Geometric mean	0.032	840
1990: Arithmetic mean	0.033	850

Table 5.5.1.B. Strontium-90 in Danish potatoes in 1991

Location	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ^{−1}			
Jutland The Islands	0.031±0.003 0.027±0.001	870±122 600± 24			
1991: Geometric mean	0.029	720			
1991: Arithmetic mean	0.029	740			
The error term is 1 S.E. of the mean of double determinations.					

			134Cs
Location	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	137Cs
Jutland (-Askov)	0.054	13.8	
Askov	0.35	87	0.119
Årslev	0.25	61	0.120 A
Zealand + Lolland-Falster	< 0.025	< 5.2	
Bornholm	0.021 A	5.9	
1990: Geometric mean	< 0.055	< 13.2	
1990: Arithmetic mean	< 0.091	< 22	

Table 5.5.2.A. Radiocesium in Danish potatoes in 1990

#### Table 5.5.2.B. Radiocesium in Danish potatoes in 1991

Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-	
0.108	26	
0.134	32	
0.086	19.1	
0.035	8.4	
0.020 B	4.9 B	
0.065	15.5	
0.078	18.5	
	Bq ¹³⁷ Cs kg ⁻¹ 0.108 0.134 0.086 0.035 0.020 B 0.065 0.078	

### Table 5.6.1.A. Strontium-90 in vegetables and fruit collected in 1990

	Cabbage		Ca	Carrots		Beans		Apples		Strawberry	
Location	Bq kg ⁻¹	Bq (kg Ca)-1	Bakg-1	<b>Bq (kg Ca)</b> ⁻¹	Ba kg ⁻¹	8q (kg Ca) ⁻¹	Bq kg ⁻¹	Bq (kg Ca) ⁻¹	Bq kg ⁻¹	Rq (kgCa) ⁻¹	
Jutland	0.21	500	0.43	1490	0.39	700	0.034	670	0.157	1030	
The Islands	0.111	250	0.22	670	0.20	410	0.0095	230	0.115	530	
1990:											
Geometric mean	0.152	360	0.30	1000	0.28	540	0.01 <b>79</b>	390	0.134	740	
1990:											
Arithmetic mean	0.159	380	0.32	1080	0.30	560	0.022	450	0.136	780	

### Table 5.6.1.B. Strontium-90 in vegetables and fruit collected in 1991

	Cahbage		Ca	Carrots		eans	Apples		Strawberry	
Location	Bakg-1	Bq(k2Ca)	1 Bakg-1	Bq (kg Ca) ⁻¹	Bq kg ⁻¹	Bq (kg Ca) ⁻¹	Bq.kg-1	Bq (kg Ca) ⁻¹	Bakg ⁻¹	Bq (kg Ca) ⁻
Jutland	0.22 ±0.00	420±	0.29±0.01	1080±17	0.33	700	0.0156±0.0005	370±13	0.167	940
The Islands	0.077±0.002	143±10	0.21±0.00	590± 9	0.187	360	0.0100±0 0002	250± 3	0.139	680
1991										
Geometric mean	0.131	250	0 25	800	0.25	500	0.0125	307	0.152	800
1991:										
Anthmetic mean	0.149	280	0.25	830	0.26	530	0.0128	310	0.153	810



Figure 5.5.1. Strontium-90 in potatoes collected in Julland in 1959-1991. (Unit:  $Bq kg^{-1}$ ).

Figure 5.5.2. Strontium-90 in potatoes collected in the Islands in 1959-1991. (Unit:  $Bq kg^{-1}$ ).



Risø-R-621(EN)



Figure 5.5.3. Cesium-137 in potatoes collected in Jutland in 1963-1991. (Unit:  $Bq kg^{-1}$ ).

Figure 5.5.4. Cesium-137 in potatoes collected in the Islands in 1963-1991. (Unit:  $Bq kg^{-1}$ ).



Risø-R-621(EN)

80

.

Lucie 5.0.2.77 Reallocistant in ocyclaptics and fran conclica in 1550	Table 5.6.2 A	Radiocesium	in vegetables and	fruit collected in 1990
-----------------------------------------------------------------------	---------------	-------------	-------------------	-------------------------

	Cabbage		Carrots		Beaus'		Apples		Strawberry*	
Location	Bakg '	6q (kg K)-1	Bq kg-1	8q (kg K)-1	Ba kg-1	Bq (kg K) ⁻¹	Bq kg ⁻¹	Bq (lig K) ⁻¹	Bakg-1	8q (kg K)-1
Jutand	0.159 (0.083)	79	0 157 (0.078 A)	91	0.030	10.5	0.047 (0.154 A)	47	0.068 (0.124 A)	51
The Islands	0.025	10.9	0.018 A	8.2	0.011 A	5.1 <b>A</b>	0.030	26	0.0139	9.2
1990										
Geometric mean	0.063	29	0 053	27	0.0185	7.3	0.037	35	0.031	22
1 <del>99</del> 0 ⁻										
Arithmetic mean	0.092	45	0 087	49	0 021	7.8	0.038	36	0.041	30

In brackets the ¹³⁴Cs/¹³⁷Cs are shown.

Ż

Table 5.6.2.B. Cesium-137 in vegetables and fruit collected in 1991

	Cabbage		Ca	Carrots		Beans		Apples		Strawberry	
Location	Bakg ⁻¹	Bq (kg K) ⁻¹	Bq kg-1	Bq (kg K) ⁻¹	Bq kg ⁻¹	Bq (kg K) ⁻¹	Bakg ⁻¹	Bq (kg K) ⁻¹	Bakg-1	8q (kg K)-1	
Jutland	0.063	32	0.044	20	0 031	12.7	0.060	57	0.053	33	
The Islands	0.053	25	0.024 A	7.4 A	0.011 A	60A	0.028	25	0.0144	9.3	
<b>199</b> 1:											
Geometric mean	0.058	28	0 033	12.2	0.0165	8.7	0.041	38	0.928	17.5	
1991:											
Arithmetic mean	0.058	29	0.034	13.7	0.021	9.4	0.044	41	0.034	21	

## Table 5.6.2.C. Radiocesium in beans and strawberry collected in 1990. (Measured before the ash was bulked in two locations)

		Beans Strawber		berry	
Locat	ion	Bq kg ⁻¹	Bq (kg K) ⁻¹	Bq kg ⁻¹	Bq (kg K) ⁻¹
Ŧ	North Jutland	0.016 B	4.8 B	0.034	21
П	East Jutland	0.027	8.0	0.032	22
Ш	West Julland	0.066	30	0.055	41
IV	South Jutland	0.021 B	6.7 B	0.27(0.144)	114
V	Funen	< 0.026	< 8.0	0.012 A	5.7
VI	Zealand	< 0.015	< 7.9	0.0167	11.3
VII	Lolland-Falster	0.016 A	10.0 A	0.0088 B	3.3 B
VIII	Bornholm	0.011 B	4.4 B	0.024	15.1
1990:	Geometric mean	< 0.021	< 8.2	0.030	17.0
1990:	Arithmetic mean	< 0.025	< 9.9	0.057	29

Risø-R-621(EN)

1

н н н н

Dai	ly intake in g	Bq ⁹⁰ Sr kg ^{−1}	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹
50	leaf vegetables (cabbage)	<b>0.159</b>	380	0.092	45
30	root vegetables (carrot)	0.32	1080	0.087	49
40	beans	0.30	560	0.021	7.8
120	g	0.25	620	0.067	34

Table 5.6.3.A. Calculated 90Sr and 137Cs mean levels in vegetables in 1990

Table 5.6.3.B. Calculated ⁹⁰Sr and ¹³⁷Cs mean levels in vegetables in 1991

Dai	ly intake in g	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹
50	leaf vegetables (cabbage)	0.149	280	0.058	29
30	root vegetables (carrot)	0.25	830	0.034	13.7
40	beans	0.26	530	0.021	9.4
120	g	0.21	500	0.040	18.6

 Table 5.7.1.1. Strontium-90 in beef and pork collected in Denmark in June 1990

 and June 1991

Year	Location	Species	Bq kg ^{−1}	Bq (kg Ca) ^{−1}
1990	Denmark	Beef	0.0074 A	100 A
1991	"	"	0.0069	81
1990	Copenhagen	Pork	0.002 B	24 B
1991	Denmark	"	0.0020 A	27 A

			Beef		Po	ork
Zone		Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹
I.	North Jutland	0.51	161	0.093		
II.	East Jutland	0.32	111	0.079 A		
HI.	West Jutland	5.7	1920	0.115		
IV.	South Jutland	0.75	220	0.119		
۷.	Funen 0.40		117	0.082 A		
VI.	Zealand	0.30	100	0.122 A		
VII.	Lolland-Falster	19.7	6000	0.154		
VIII.	Bornholm	0.58	182	0.152		
Geor	netric mean	0.99	320	0.111		
Arithr	netic mean	3.5	1110	0.115		
Соре	nhagen	0.096	34	-	0.165	50
Popu	lation-weighted					
mear		1.51	490			

Table 5.7.1.2.A. Radiocesium in beef and pork collected countrywide in Denmark in June 1990

Ę

Table 5.7.1.2.B. Radiocesium in beef and pork collected countrywide in Denmark in June 1991

			Beef			Pork	
Zone		Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs
<u> </u>	North Jutland	0.25	85	-			
11.	East Jutland	0.96	350	0.087			
111.	V/est Jutland	0.61	160	0.084 A			
IV.	South Jutland	0.50	185	0.087 A			
V.	Funen	0.51	168	0.086 A			
VI.	Zealand	0.182	60	-			
VII.	Lolland-Faister	0.156	52	-			
VIII.	Bornholm	0.32	114	0.112			
Geon	netric mean	0.37	123	0.090			
Arithn	netic mean	0.44	147	0.091	0.49	í 56	0.033 A
Cope	nhagen	0.80	220	0.058 A			
Popul	lation-weighted	' - <b>-</b>					
mean	 	0.59	185				
	1.	1					
Riso-R	-621(FN)				83		
1		1	i.		00		
I.	1	1.1	1				
1	1 I I I		н н н		1 1		1 1
							1 11

Species	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ^{−1}
Cod	0.0192	22
Plaice	0.0132	21
Herring	0.0051	8.0
1990: Geometric mean	0.0109	15.4
1990: Arithmetic mean	0.0125	17 0

Table 5.7.2.1.A. Strontium-90 in fish (flesh) collected in Danish waters in 1990 (samples were obtained from Hundested (Cattegat), Ringkøbing (North Sea), and Bornholm (Baltic Sea)) (Cf. Table 5.7.2.2.A)

Table 5.7.2.1.B. Strontium-90 in fish (flesh) collected in Danish waters in 1991 (samples were obtained from Hundested (Cattegat), Ringkøbing (North Sea), and Bornholm (Baltic Sea)) (Cf. Table 5.7.2.2.B)

Species	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹
Cod	0.0093	19
Plaice	0.0199	27
Herring	0.0047	8.3
1991: Geometric mean	0.0095	16.1
1991: Arithmetic mean	0.0113	18.0

84

				1.1		I.	I.	1.1	1	1	1
				1.1		1	1	1.1	1	1	1
1 1 1		 	ι	1.1			t	1.1.1	ı	ш	1
	 	 	1		Т	1.1	1.1	0.1.1	н н	П	11

Location	Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs	Bq ²¹⁰ Po kg ⁻¹	(n)
Hundested	Feb	Codi	6.0	2000	0.148	•	
(Cattegat)	Feb	Plaice	2.3	780	0.132	-	
- " -	Feb	Herring	1.62	390	0.097	-	
- " -	Oct	Cod	11.9	3400	0.128	0.095±0.020	(3)
- " -	Oct	Plaice	0.68	290	0.067 A	0.27 ±0.016	(3)
- " -	Oct	Herring	1.28	390	0.104	0.62 ±0.098	(3)
1990: Geometric	mean		2.5	790		0.25	
1990: Arithmetic	mean		4.1	1220		0.33	
Ringkøbing	March	Cod	1.16	400	0.053 A	-	
(North Sea)	March	Plaice	1.28	480	0.038 A	-	
`-"-	March	Herring	1.56	610	0.131	-	
- " -	Sept	Cod	0.99	290	-	0.085±0.012	(3)
- " -	Sept	Plaice	0.41	154	-	0.38 ±0.034	(3)
- " -	Sept	Herring	7.6	2700	0.134	0.37 ±0.049	(2)
1990: Geometric	c mean		1.39	490		0.23	
1990: Arithmetic	mean		2.2	770		0.28	
Bornholm	Jan	Cod	14.0	3800	0.162		
(Baltic Sea)	Jan	Plaice	11.3	3800	0.165		
`-"- ´	Jan	Herring	10.6	2600	0.161		
- " -	Sept	Cod	16.7	5000	0.135		
- " -	Sept	Plaice	7.5	2500	0.127		
- " -	Sept	Herring	7.1	2100	0.131		
1990: Geometric	cmean		10.7	3200			
1990: Arithmetic	mean		11.2	3300			
Roskilde Fjord	Мау	Garpike	2.4	650	0.062		
Ringkøbing	November	Plaice	-	-	-	0.053	(1)
1990: Total Geo	metric mean		3.3	1040		0.19	
1990: Total Arith	metic mean		5.6	1710		0.27	

 Table 5.7.2.2.A. Radiocesium and Polonium-210 in fish (flesh) from Danish waters in 1990

Location	Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ²¹⁰ Po kg ⁻¹	(n)
Hundested	March	Cod	20	5500	0.119	-	
(Cattegat)	March	Plaice	0.56	250	-	0.54	(1)
-"•	March	Herring	1.48	560	0.096	0.24	(1)
1991: Geomet	ric mean		2.6	910		0.36	
1991: Arithmet	tic mean		7.4	2100		0.39	
Ringkøbing	March	Cod	1.41	420	-	0.175±0.007	(2)
(North Sea)	March	Plaice	0.68	290	-	0.25 ±0.066	(2)
- " -	March	Herring	1.51	510	0.091	0.27 ±0.002	(2)
1991: Geornet	ric mean		1.13	400		0.23	
1991: Arithmet	ic mean		1.20	410		0.23	
Bornholm	March	Cod	19.6	5300	0.117	0.22 ±0.011	(4)
(Baltic Sea)	March	Plaice	13.0	4300	0.113	0.43 ±0.141	(3)
- " -	June	Herring	11.3	3700	0.110	1.64 ±0.086	(2)
1991: Geomet	ric mean		14.2	4400		0.54	
1991: Arithmet	tic mean		14.6	4400		0.76	
Hundested	April	Garpike	1.11	470	0.047 A	•	
Bornholm	March	Herring	-	-	-	0.23	(1)
1991: Total Ge	eometric me	an	3.1	1070		0.34	
1991: Total Ari	thmetic me	an	7.1	2100		0.44	
The error term	is 1 S.E. of	the mean.					

Table 5.7.2.2.B. Radiocesium and Polonium in fish (flesh) from Danish waters in1991

·~-; •

	I.	I.	I.	П			1				1	
	I.	1	I.	П			I.				T	
1	I.	1	1 1	11 1	I.	П	I.	1		I.	1	T
1	1	I.	1 I I	11 I. I.	1	н	1	1	1	1	1	1

Table 5.7.2.4. Polonium-210 in shrimps and Mytilus edulis flesh collected in Ringkobing and Hundested in 1990

ور در م

Species	Location	Date	Bq ²¹⁰ Po kg ⁻¹	(n)
Shrimps	Hundested	6 September	4.3±0.99	(2)
Mytilus edulis	- " -	6 September	17.6±0.45	(2)
Shrimps	Ringkøbing	22 October	3.1±0.47	(3)

Table 5.7.3. Strontium-90 and radiocesium in eggs collected in Denmark in 1991

Year	Month	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹
1991	June	0.0109	21	0.030	23

Table 5.7.4. Strontium-90 and radiocesium in various imported vegetable food purchased in Copenhagen in November 1990

Sample	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs
Rize Oats	0.0153 0.38	18.5 550	0.009 B 1.46	7.8 B	0.075
Bananas	3.6 0.702 B	2200 41 B	0.60 0.041 B	96 13 B	-
Coffee Tea	0.048 0.23 0.32	380 1980	0.30 A 0.73	14 A 18 A 58	- 0.037 B

	Risø-R-621(EN	<b>V</b> )						87			
						1		1.1			ı.
						i.		11			I.
	1		1		1	1 I	I.	11.1.1		1	L
н н <b>н</b>	1	i i	T	1	i.	1 1	1 1	11.1.1.1	1 11	I.	I.

Location	Bq (kg Ca) ⁻¹	Bq day ⁻¹ cap ⁻¹	g Ca day ⁻¹ cap ⁻¹		
Jutland	121	0.133	1.10		
The Islands	117	0.124	1.06		
Geometric mean	119	0.128	1.08		
Arithmetic mean	119	0.128	1.08		
Copenhagen	83	0.096	1.16		
Population-weighted mean	110	0 121	1 1 1		

Table 5.8.1.A. Strontium-90 in Danish total diet collected in June 1990

Table 5.8 1 R Strontium-90 in Danish total diet collected in June 1991

Location	Bq (kg Ca) ^{−1}	Bq day ⁻¹ cap ⁻¹	g Ca day ⁻¹ cap ⁻¹
Jutland The Islands	123 116	0.128 0.127	1.05 1.10
Geometric mean	120	0.128	1.07
Arithmetic mean	120	0.128	1.08
Copenhagen	102	0.118	1.16
Population-weighted mean	116	0.126	1.10

Table 5.8.2.A. Strontium-90 in Danish total diet collected in December 1990

Location	Bq (kg Ca) ⁻¹	Bq day ⁻¹ cap ⁻¹	g Caday ⁻¹ cap ⁻¹
Jutland The Islands	140 95	0.145 0.108	1.04 1.14
Geometric mean	115	0.125	1.09
Arithmetic mean	118	6.126	1.09
Copenhagen	99	0.1 <b>3</b> 3	1.35
Population-weighted mean	117	0.132	1.16

Table 5.8.2.B. Strontium-90 in Danish total diet collected in December 1991

Location	Bq (kg Ca) ⁻¹	Bq day ⁻¹ cap ⁻¹	g Ca day ⁻¹ cap ⁻¹
Jutland The Islands	1∻9 116	0.159 0.133	1.07 1.15
Geometric mean	131	0.145	1.11
Arithmetic mean	133	0.146	1.11
Copenhagen	110	0.124	1.13
Population weighted mean	130	0.143	1.11

1-1	r i							r		
1.1	1							1		
1 1	1 1 1	1	1	1.111		1			1	
1.1	1 1 1	1	1	1.111	11 I	1	0	1 1	т т т	

Location	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day ⁻¹ cap ⁻¹	¹³⁴ Cs ¹³⁷ Cs
Jutland The Islands	105 128	0.37 0.44	3.5 3.5	0.102 0.113
Geometric mean	116	0.40	3.5	0.107
Arithmetic mean	117	0.41	3.5	0.108
Copenhagen	49	0.161	3.3	-
Population-weighted mean	97	0.33	3.5	-

Table 5.8.3.A. Radiocesium in Danish total diet collected in June 1990

Table 5.8.3.B. Cesium-137 in Danish total diet collected in June 1991

Location	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day ⁻¹ cap ⁻¹
Jutland The Islands	67 45	0.23 0.161	3.4 3.5
Geometric mean	55	0.192	3.4
Arithmetic mean	56	0.196	3.5
Copenhagen	87	0.32	3.7
Population-weighted mean	66	0.24	3.5

Location	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day ⁻¹ cap ⁻¹
Jutland	85	0.29	3.4
The Islands	75	0.26	3.6
Geometric mean	80	0.27	3.5
Arithmetic mean	80	0.28	3.5
Copenhagen	51	0.184	3.6
Population-weighted mean	73	0.25	3.5

Table 5.8.4.A. Radiocesium in Danish total diet collected in December 1990

Table 5.8.4.B. Cesium-137 in Danish total diet collected in December 1991

Location	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day ⁻¹ cap ⁻¹
Jutland	68	0.25	3.7
The Islands	73	0.27	3.8
Geometric mean	70	0.26	3.7
Arithmetic mean	71	0.26	3.8
Copenhagen	37	0.137	3.7
Population-weighted mean	61	0.23	3.7

90 Risø-R-621(EN)

Þ



Figure 5.8.1. Predicted and observed  90 Sr levels in the Danish total diet. The dotted curve represents the predicted values for »Diet C« (cf. Tables 5.8.1 and 5.8.2) and the circles are the corresponding observed values. The unbroken curve represents the predicted values for »Diet P« (cf. Table 5.9.3), and the triangles the corresponding observed values.

Fig. 5.8.2. Calcium in Danish average diet 1962-1991. (Unit: g Ca day⁻¹).

.



Turco	Fraction from harvest 1989			Fraction from harvest 1990			Total	
	kg flour	Bq kg ⁻¹	Bq	kg flour	Bq kg ⁻¹	Bq	Bq	
Rye flour 100% extraction	21.9	0.30	6.57	7.3	0.28	2.04	8.61	
Wheat flour 75% extraction	32.9	0.072	2.37	10.9	0.082	0.89	3.26	
Grits	5.5	0.23	1.27	1.8	0.168	0.30	1.57	
Total	60.3	0.169	10.20	20.0	0.162	3.24	13.44	

Table 5.9.1.A Estimate of the ⁹⁰Sr content in grain products consumed pro capite in 1990

The Sr-90 content in wheat flour (75% extraction) was calculated from the levels in wheat grain by division by 5 (Risø Report No. 23). The Sr-90 content in grits was calculated as approx. 40% of the level found in oats.

Table 5.9.1.B. Estimate of the ⁹⁰Sr content in grain products consumed pro capite in 1991. (Cf. notes to Table 5.9.1.A).

Type	Fraction from harvest 1990			Fraction from harvest 1991			Total	
	kg flour	Bq kg ⁻¹	Bq	kg flour	Bq kg ⁻¹	Bq	Bq	
Rye flour 100% extraction	21.9	0.28	6.13	7.3	0.24	1.75	7.88	
Wheat flour 75% extraction	32.9	0.082	2.70	10.9	0.059	0.64	3.34	
Grits	5.5	0.168	0.92	1.8	0.168	0.30	1.22	
Total	60.3	0.162	9.75	20.0	0.135	2.70	12.44	

1 I I

Risø-R-621(EN)

92

- 14

Type	Fraction from harvest 1989			Fraction from harvest 1990			Total	
	kg flour	Ba kg ⁻¹ Ba		kg flour	Bq kg ⁻¹	Bq kg ⁻¹ Bq		
Ryeflour 100% extraction	21.9	0.151	3.31	7.3	0.24	1.75	5.06	
Wheat flour 75% extraction	32.9	0.056	1.84	10.9	0.058	0.63	2.47	
Grits	5.5	0.20	1.10	1.8	0.125	0.23	1.33	
Total	60.3	0.104	6.25	20.0	0.130	2.61	8.86	

Table 5.9.2.A. Estimate of the ¹³⁷Cs content in grain products consumed pro capite in 1990

The Cs-137 level in wheat flour (75% extraction) was found to be approx. 50% of the level in wheat grain. The Cs-137 content in grits was calculated as 75% of the level found in oats.

Table 5.9.2.B. Estimate of the ¹³⁷Cs content in grain products consumed pro capite in 1991. (Cf. notes to Table 5.9.2.A).

Type	Fraction from harvest 1990			Fraction from harvest 1991			Total	
	kg flour Bq kg ⁻¹		Bq	kg flour	kg flour Bq kg ⁻¹ Bo		Bq	
Rye flour 100% extraction	21.9	0.24	5.26	7.3	0.117	0.85	6.11	
Wheat flour 75% extraction	32.9	0.058	1.91	10.9	<b>0</b> .028	0.31	2.21	
Grits	5.5	0.125	0.69	1.8	0.173	0.31	1.00	
Total	60.3	0.130	7.85	20.0	0.074	1.47	9.32	



L.

93

Table 5.9.3.A. Estimate of the mean content of 90Sr in the human diet in 1990

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr µer kg	Total Bq ⁹⁰ Sr	Percentage of total Bq 90Sr in food	References
Milk and cream	164.0	0.049	8.04	18.9 7.5	(Table 5.1.1.A)
Grain products	80.3	0.167	13.44	31.6	(Table 5.9.1.A)
Potatoes	73.0	0.033	2.41	5.6	(Table 5.5.1.A)
Vegetables	43.8	0.26	11.39	26.8	(Table 5.6.3.A)
Fruit	51.1	0.039	1.99	4.7	1)
Meat	54.7	0.0038	0.21	0.5	2)
**Eggs	10.9	0.0109	0.12	0.3	(Table 5.7.3)
Fish	10.9	0.0125	0.14	0.3	(Table 5.7.2.1.A)
Coffee and tea	5.5	0.26	1.43	3.4	3)
***Drinking water	548	0.33×10 ⁻³	0.18	0.4	(Table 4.3.3.1.A)
Total			42.54		

The mean Ca intake was estimated at 0.41 kg y⁻¹ (approx. 0.1 kg creta praeparata). Hence the  90 Sr/Ca ratio in total diet was 104 Bq  90 Sr (kg Ca)⁻¹ in 1990.

*Calculated from milk. **No collections in 1990, 1991 data used. ***No collections in 1990, 1989 data used.

Table 5.9.4.A. Estimate of the mean content of 137Cs in the human diet in 1990

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food	Reterences
Milk and cream	164.0	0.125	20.50	11.5	(Table 5.1.3.A)
*Cheese	9.1	0.088	0.80	0.5	<b>、</b>
Grain products	80.3	0.110	8.86	5.0	(Table 5.9.2.A)
Potatoes	73.0	0.09	6.64	3.7	(Table 5.5.1.A)
Vegetables	43.8	0.067	2.93	1.7	(Table 5.6.3.A)
Fruit	51.1	0.036	1.84	1.0	1)
Meat	54.7	1.28	70.02	<b>39</b> .4	2)
**Eggs	10.9	0.030	0.33	0.2	(Table 5.7.3)
Fish	10.9	5.8	63.22	35.6	(Table 5.7.2.2.A)
Coffee and tea	5.5	0.44	2.42	1.4	3)
***Drinking water	548	0.105×10 ⁻³	0.06	0.0	(Table 4.3.3.1.A)
Total			177.62		

As the approximate intake of potassium was 1.365 kg  $y^{-1}$  the ¹³⁷Cs/K ratios were 130 Bq ¹³⁷Cs (kg K)⁻¹ in 1990.

*Calculated from milk. **No collections in 1990, 1991 data used. ***No collections in 1990, 1989 data used.

Notes to Tables 5.9.3 and 5.9.4.

¹⁾ Calculated from apples in Tables 5.6.1.B and 5.6.2.B and from banana and orange in Table 5.7.4 with the relative weighting factors 0.714, 0.143, 0.143, respectively.

²⁾ Calculated from the mean of the June and December sampling for ¹³⁷Cs in beef (Tables 5.7.1.2.B and 5.7.1.3.B) and from Table 5.7.1.4.B (¹³⁷Cs in pork). Table 5.7.1.1 gives ⁹⁰Sr data for beef and pork. In the calculation beef is weighted by 0.33 and pork by 0.67.

³⁾ One third of the total consumption consists of tea and two-thirds of coffee. The data from Table 5.7.4. are used for the calculation.

Arithmetic means are used all through.

94

I.	T	1		1 1 1	1	
1	1	I		1 I I	1	1
1	1 I I	I	I.	11 II II	1	1
	i la constante de la constante	I.	1		1 1	i i

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food
Milk and cream	164.0	0.046	7.54	19.5
*Cheese	9.1	0.33	3.00	7.8
Grain products	80.3	0.155	12.44	32.2
Potatoes	73.0	0.029	2.12	5.5
Vegetables	43.8	0.22	9.64	25.0
Fruit	51.1	0.036	1.84	4.7
Meat	54.7	0.0036	0.20	0.5
Eggs	10.9	0.0109	0.12	0.3
Fish	10.9	0.0113	0.12	0.3
Coffee and tea	5.5	0.26	1.43	3.7
**Drinking water	548	0.33×10 ⁻³	0.18	0.5
Total			38.63	

Table 5.9.3.B. Estimate of the mean content of ⁹⁰Sr in the human diet in 1991 (cf. notes to A tables)

The mean Ca intake was estimated at 0.44 kg  $y^{-1}$  (approx. 0.1 kg creta praeparata). Hence the  90 Sr/Ca ratio in total diet was 88 Bq  90 Sr (kg Ca) $^{-1}$  in 1991.

*Calculated from milk. **No collections in 1991, 1989 data used.

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food
Milk and cream	164.0	0.092	15.09	10.3
*Cheese	9.1	0.064	0.58	0.4
Grain products	80.3	0.116	9.32	6.4
Potatoes	73.0	0.078	5.69	3.9
Vegetables	43.8	0.038	1.66	1.1
Fruit	51.1	0.038	1.94	1.3
Meat	54.7	0.47	25.71	17.5
Eggs	10.9	0.030	0.33	0.2
Fish	10.9	7.7	83.93	57.2
Coffee and tea	5.5	0.44	2.42	1.7
**Drinking water	548	0.105×10 ⁻³	0.06	0.0
Total			146.73	

Table 5.9.4.B. Estimate of the mean content of ¹³⁷Cs in the human diet in 1991 (cf. notes to A tables)

As the approximate intake of potassium was 1.3  $\sim$  kg y⁻¹ the ¹³⁷Cs/K ratios were 107 Bq ¹³⁷Cs (kg K)⁻¹ in 1991.

*Calculated from milk. **No collections in 1991, 1989 data used.

1 i

I I



Figure 5.9.3. Strontium-90 in Danish diet, 1961-1991. (Unit: Bq day⁻¹). (Production data).

Figure 5.9.4. Cesium-137 in Danish diet, 1962-1991. (Unit: Bq day⁻¹). (Production data).





	••		
Periods	Bq ⁹⁰ Sr (kg ash) ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr m ⁻²
Jan-March	10.5	220	0.101
April-June	15.3	260	0.170
July-Sept	16.0	199	0.22
Oct-Dec	16.3	250	0.199
1990: Geometric mean	14.3	230	0.166
1990: Arithmetic mean	14.5	230	0.173

Table 5.10.1.1.A. Strontium-90 in grass collected at Rise weekly in 1990

Table 5.10.1.1.B. Strontium-90 in grass collected at Risø weekly in 1991

Bq ⁹⁰ Sr (kg ash) ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr m ⁻²
12.3	220	0.125
17.8	310	0.175
17.3	240	0.192
16.5	230	0.194
15.8	250	0.169
16.0	250	0.172
	Bq ⁹⁰ Sr (kg ash) ⁻¹ 12.3 17.8 17.3 16.5 15.8 16.0	Bq 90Sr (kg ash) ⁻¹ Bq 90Sr (kg Ca) ⁻¹ 12.3         220           17.8         310           17.3         240           16.5         230           15.8         250           16.0         250



Figure 5.10.1. Quarterly ⁹⁰Sr levels in grass, 1957-1991. (Unit: Bq (kg ash)⁻¹).

Figure 5.10.2. Cesium-137 in grass samples collected at Risø, Denmark in the period April 1986 - December 1991. (Unit: Bq kg⁻¹ fresh weight).



Risø-R-621(EN)

1.1

L

Month	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs	g K kg ⁻¹	134Cs
	fresh weight	m ⁻²	fresh weight	137Cs
Jan	0.168	0.044	1.86	-
Feb	0.47	0.071	2.57	0.27 A
March	0.66	0.125	2.37	0.14 A
April	0.37	0.086	5.16	0.17
Mav	0.107	0.049	4.92	0.45
June	0.055	0.033	5.75	•
July	0.052 A	0.026 B	7.47	•
Aug	0.124 A	0.054 A	8.22	-
Sept	0.078 B	0.034 B	4.96	-
Oct	0.132	0.063	4.77	0.33 A
Nov	0.189	0.086	2.72	0.07 A
Dec	0.128	0.042	2.49	-
1990:				
Geometric mean	0.154	0.054	4.0	
1990.				
Arithmetic mean	0.21	0.059	4.4	

Table 5.10.1.2.A. Radiocesium in grass collected at Risø weekly in 1990

Month	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs	g K kg ⁻¹	134Cs
	tresn weight	m -	tresh weight	13/US
Jan	0.24	0.084	4.16	-
Feb	0.195	0.044	1.79	-
March	0.39	0.058	2.71	-
April	0.161	0.044	5.36	•
May	0.082 A	0.035 A	6.30	•
June	0.082 A	0.053 A	5.56	-
July	0.059 B	0.027 B	5.55	-
Aug	0.043 A	0.0161 A	5.72	-
Sept	0.047 A	0.022 A	5.57	-
Oct	0.176	0.067	5.14	-
Nov ) Dec	0.65	0.28	4.71	0.129
	······			
1991:				
Geometric mean	0.154	0.056	4.5	
1991:				
Arithmetic mean	0.23	0.084	4.8	

 Table 5.10.1.2.B. Radiocesium in grass collected at Risø weekly in 1991

# Risø-R-621(EN)

<del>9</del>9

I.

1 1

· ·

•

Location	Bq 137Cs	Bq 137Cs	134Cs	gK
	kg ⁻¹	m ⁻²	¹³⁷ Cs	kg ⁻¹
Tyistrup	0.123	0.063		6.4
Kaio	0.174	0. <b>08</b> 1	0.161 A	5.2
Borris	0.20	0.141	0.088 A	4.5
Askov	0.83	0.47	0.123	4.7
St. Jyndevad	0.34	0.23	0.079 A	5.1
Arslev	0.164	0.073	-	6.1
Tystofte	0.063	0.044	0.29 A	7.2
Ledreborg	0.094	0.138	0.22 A	4.0
Abed	0.031 B	0.026 B	-	8.9
Tornbygård	0.028 A	0.025 A	-	6.1
1990:				
Geometric mean	0.126	0.086	0.144	5.7
S.D. factor	2.83	2.55	1.67	1.27
1990				
Arithmetic mean	0.20	0.129	0.160	5.8
S.D.	0.24	0.135	0.082	1.46
N	10	10	6	10

Table 5.10.2.A. Radiocesium in grass collected at the state experimental farms in June 1990 (fresh weight samples)

 

 Table 5.10.2.B. Cesium-137 in grass collected at the state experimental farms in June 1991 (fresh weight samples)

Location	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs m ⁻²	g K kg ⁻¹
Tylstrup	0.109	0.071	4.6
Kalø	0.089	0.059	5.0
Borris	0.20	0.169	4.4
Askov	0.25	0.1.71	6.3
St. Jyndevad	0.26	0.173	5.6
Arslev	0.150	0.149	4.7
Tystofte	0.036	0.038	6.8
Ledreborg	0.121	0.062	5.9
Abed	0.073	0.045	6.6
Tornbygård	0.086 A	0.046 A	6.9
1991:			
Geometric mean	0.118	0.083	5.6
S.D. factor	1.84	1.87	1.19
1991 [,]			···
Arithmetic mean	0.137	0.099	5.7
S.D.	0.076	0.060	0.96
N	10	10	10

I.

. .

1 1 1 1

I

T.

Location	Bq 90Sr kg ⁻¹	Bq ⁹⁰ Sr m ⁻²	<b>Bq ⁹⁰Sr</b> (kg Ca) ⁻¹
Jutland	0.83	0.48	710
The Islands	0.31	0.27	270
1990:			
Geometric mean	0.51	0.36	440
1990:			
Arithmetic mean	0.57	0.38	490

 Table 5.10.3.A. Strontium-90 in grass collected at the state experimental farms in Jun. 1990 (fresh weight samples)

Table 5.10.3.B. Strontium-90 in grass collected at the state experimental farms in June 1991 (fresh weight samples)

Location	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr m ⁻²	Bq ³⁰ Sr (kg Ca) ⁻¹
Jutland	1.04	0.73	960
The islands	0.41	0.30	331
1991:			
Geometric mean	0.65	0.47	560
1991:			
Arithmetic mean	0.73	0.52	650

Risø-R-621(EN) 101 1 1 1 I 1 11 1



Figure 5.10.3. Cesium-137 median values in grass from the 10 Danish State experimental farms 1986-1991.

Figure 5.10.4. Quarterly Sr-90 levels in grass collected at Rise environment 1987-1991. (Unit: Bq (kg Ca)⁻¹).





Figure 5.11.1. Strontium-90 in sea plants from Roskilde Fjord, 1959-1991. (Unit: Bq (kg Ca)⁻¹).

Risø-R-621(EN)

Table 5.11.1. Radionuclides in Fucus vesiculosus from Bolund (55°42'N 12°05'E) in Roskilde Fjord in 1990 and 1991

Date	% dry matter	<b>Bq ⁹⁰Sr</b> (kg Ca) ⁻¹	Bq ⁹⁰ Sr kg ⁻¹ d.w.	8q ¹³⁷ Cs kg ⁻¹ d.w.	134Cs 137Cs	Salinity in %	
Jan 17, 1990	17.1		•	13.9	0.068 A	13.7	-
June 14, 1990 July 31, 1991	18.2 20.0	1 16 127	2.8 3.7	18.7 16.0	0.119 0.101	14.6 13.1	

Table 5.11.2.A. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Klint (55°58'N, 11°35'E) in 1990. (Unit: Bq kg⁻¹ dry matter)

Species	Date	60C0	¹³⁷ Cs	134Cs 137Cs	aa1c	% dry matter	Salinity in %.
Fu.ve.	Jan 15	1.60	10.7	0.098	79	19.0	20.3
Fu.se.	Jan 15	2.1	11.3	0.159	-	20.2	
Fu.ve.	Feb 15	1.80	7.3	0.114	85	18.9	25.8
Fu.ve.	March 22	1.30	9.3	0.118	73	18.4	23.0
Fu.ve.	April 17	1.01	15.4	0.136	52	17.5	<b>13.9</b>
Fu.ve.	May 15	0.85	23	0.132	51	16.4	13.6
Fu.ve.	June 14		25	0.131	49	19.5	13.5
Fu.ve.	July 20		19.2	0.137	42	14.9	18.1
Fu.ve.	Aug 15		16.7	0.131	<b>39</b>	18.7	16.6
Fu.ve.	Sep 17		16.8	0.111	47	17.7	17.2
Fu.ve.	Oct 15		13.7	0.103	59	18.4	22.1
Fu.ve.	Nov 12	1.65	13.3	0.094	66	19.8	19.2

Table 5.11.2.B. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Klint (55°58'N, 11°35'E) in 1991. (Unit: Bq kg⁻¹ dry matter)

Species	Date	60Co	¹³⁷ Cs	134Cs 137Cs	99Tc	% dry matter	Salinity in ‰
Fu.ve.	Jan 16	1.68	16.9	0.077	109	17.7	24.8
Fu.se.	Jan 16	1.89	12.6	0.118	-	17.9	
Fu.ve.	March 14	1.21	12.6	0.098	129	17.2	13.2
Fu.ve.	April 16	0.96 A	9.9	0.161	72	19.4	18.G
Fu.ve.	May 15	0.75 <i>P</i> .	9.4	0.095	48	18.9	17.2
Fu.ve.	June 14	1.44	13.5	0.127	60	15.9	19.7
Fu.ve.	July 15	1.38	1 <b>5</b> .9	0.097	31	17.2	17.1
Fu.ve.	Aug 14	1.25 A	26	0.105	39	17.9	15.7
Fu.ve.	Sep 16	1.51	23	0.089	lost	15.4	17. <b>8</b>
Fu.ve.	Oct 15	1.20	17.3	C.110	46	22.5	1 <b>9.8</b>
Fu.ve.	Nov 14	1.15	14.8	0.089	49	<b>19.6</b>	22.4
Fu.ve.	Dec 16	1.29	13.0	0.066	52	18.8	19.9

1

1

1 I I I



Figure 5.11.2. Cesium-137 and cesium-134 in Fucus vesiculosus and Fucus serratus from April 1986 to November 1990 collected at Klint, Zealand (55°58'N, 11°35'E). (Unit: Bq kg⁻¹ dry matter).





Location	Position N E	Date	56Co	137Cs	134Cs 137Cs	% dry matter	Salinity in %
Nysted	54*40' 11*44'	Jan 16, 1990		24	0.153	17.4	10.5
	. •.	Feb 16, 1990		22	0.137	17.4	14.7
<b>.</b> •.	. •.	March 23, 1990		19.C	0.129	16.7	14.7
<b>.</b> •.	. •.	April 18, 1990		32	0.132	16.5	11.8
. <b>-</b> .		May 16, 1990		48	0.139	17.8	10.2
<b>.</b> •.	.•.	June 13, 1990		46	0.149	17.4	11.0
<b>.</b> •.	<b>.</b> •.	July 19, 1990		40	0.143	16.7	15.4
<b></b> .	<b>.</b> *.	Aug 16, 1990		45	0.124	20.0	12.0
- <b>*</b> -	.•.	Sep 18, 1990		43	0.134	15.2	11. <b>6</b>
. <b>-</b> .	<b></b> .	Oct 16, 1990		39	0.127	15. <b>6</b>	13.1
<b></b> .	. • .	Nov 13, 1990		37	0.109	16.3	11.2
<b>-</b> • .		Dec 12, 1990		30	0.106	17. <b>6</b>	11.8
<b>.</b> • .	<b>.</b> •.	Aug 14, 1991		45	0.106	11.2	10.1
Streby Egede	55*25' 12*15'	Jan 16, 1990	1.21	28	0.164	17. <b>9</b>	20.5
	. <b>*.</b>	Feb 16, 1990		25	0.139	15.3	15.4
	- <b>-</b> -	March 23, 1990		26	0.152	13.4	12.9
	<b>.</b> *.	April 18, 1990		39	0.140	11. <b>9</b>	10.5
<b>. *</b> .	- <b>•</b> -	May 16, 1990		43	0.148	12.6	9.0
. <b>-</b> .	. <b>-</b> .	June 13, 1990		53	0.142	13.5	9.2
_ <b>-</b> _ •	.•.	July 19, 1990	0.5 B	42	0.137	19.4	10.1
- <b>-</b> .	.•.	Aug 16, 1990		41	0.132	22.3	11.0
<b></b> .	<b>. •</b> -	Sep 18, 1990	0.90 A	44	0.135	17.5	8.8
·*·	<b>. •</b> .	Oct 16, 1990	1,14 A	39	0.132	17. <b>6</b>	11.2
<b></b> .	- <b>-</b> .	Nov 13, 1990	1.14	33	0.127	17.6	8.8
- <b>-</b> -	<b>. •</b> .	Dec 12, 1990	1. <b>46 A</b>	35	0.114	17.5	11.0
. <b>*</b> .	<b>.</b> • .	Aug 14, 1991		57	0.103	17.3	10.6
Reersu	55*31 ⁻ 11*07 ⁻	Jan 15, 1990		15.3	0.169	16.7	14.7
	.•.	Feb 15, 1990		15.4	0.144	16.6	17.6
. <b>*.</b>	<b>.*</b> .	March 22, 1390		14.5	0.126	15.4	16.9
• •	·*.	April 17, 1990		24	0.143	13.8	11.8
. <b>*</b> .	·*.	May 15, 1990		38	0.139	14.2	10.8
. <b>-</b> .	<b>.</b> • •	June 13, 1990		26	0.129	19.8	13.2
	- <b>-</b> -	July 19, 1990		24	0.128	19.0	22.5
.*-	.*.	Aug 15, 1990		30	0.137	20.9	13.5
	·*.	Sep 18, 1990		29	0.107	17.8	18.4
. • .	<b>. *</b> .	Oct 16, 1990		22	0.104	14.4	20.3
. <del>.</del> .	<b>. •</b> .	Nov 12, 1990		21	0.109	17.9	15.6
. • .	.*.	Dec 12, 1990		21	0.101	17.1	18.2
· * -	<b>.</b> *.	Aug 14, 1991		37	0.093	16.6	14.4
Nakkehoved	56*07 12*21	Jan 15, 1990	2.0 A	10.8	0.138	19.0	1 <del>9</del> .5
. • .	. • .	Feb 15, 1990		10.5	0.136	19.6	23.2
.*.	<b>- "</b> -	April 17, 1990	0.96 A	10.0	0.106	14.5	17.0
<b>- *</b> .	. • .	May 15, 1990		18.4	0.137	15.5	14.1
. •	• <b>•</b> •	June 14, 1990	1.1 <b>3 A</b>	23	0.146	15.8	12.1
. <b>*</b> .		Juty 20, 1990		16.5	0.132	15.7	15.8
• • ·	· • -	Aug 15, 1990	1.07 A	20	0.122	16 8	15.6

1

.

Table 5.11.3 Radionuclides in Fucus vesiculosus collected in Danish waters in 1990 and 1991. (Unit: Bq kg⁻¹ dry matter)

106

.
Table 5.11.3. Continued

Location	Position N E	Date	60Cc	¹³⁷ Cs	134Cs 137Cs	% dry matter	Salinity in ‰
Nakkehoved	56°07' 12°21'	Sep 17, 1990	1.3 A	19.6	0.130	15.9	17.7
. " -	.*.	Oct 15, 1990	1.82	12.8	0.121	17.5	21.7
- " -	-*-	Nov 12, 1990	1.90	11.9	0.090	18.6	19.1
- " -	.*.	Aug 14, 1991	2.1	18.5	0.105	9,٢	14.9
Svenskehavn	55°05' 15°09'	May 17, 1990		51	0.160	13.9	8.1
- " -	. " -	May 22, 1991		60	0.122	16.0	7.4
- " -	<b>. "</b> -	Aug 12, 1991		76	0.114	16.7	
Grenā	56°23 10°56'	Aug 21, 1991	0.46	13.0	0.096	23.9	18.7
Udbyhøj	56°36′10°20′	Aug 21, 1991		8.5		16.2	17.6
Ø. Hurup	56°48' 10°19'	Aug 21, 1991		6.4	0.039	21.4	26.0
Hals	57°00' 10°20'	Aug 21, 1991		7.4		23.7	27.2
Bangsbo	57°25' 10°32'	Aug 21, 1991	0.8 A	11.1		15.6	30.1
Albæk	57°36' 10°26'	Aug 21, 1991	1.11	4.9	0.057	18.2	31.2

*54Mn: 0.4 Bq kg⁻¹ dry weight.



Figure 5.11.4. Cesium-137 in Fucus vesiculosus collected in Denmark, August 1991. (Unit: Bq kg⁻¹ dry matter).

Risø-R-621(EN)

	137Cs		134(	 )s	134Cs	%
Sample	Bq kg ⁻¹ d.w.	Bqm ^{−2}	Bq kg ⁻¹ d.w.	<b>Bq</b> m ⁻²	¹³⁷ Cs	Chernobyl ¹³⁷ Cs
Top layer No. 1	230	220	34	33	0.149	
Top layer No. 2	400	430	52	57	0.130	
Top layer No. 3	230	210	26	24	J.114	
Top layer No. 4	300	500	35	58	0.117	
Top layer No. 5	210	210	20	21	0.100	
Bottom layer No. 1	29	1030	1.15	41	0.039	
Bottom layer No. 2	11.7	330	0.75 A	21 A	0.065 A	
Bottom layer No. 3	10.8	340	0.70 <b>A</b>	22 A	0.065 A	
Bottom layer No. 4	17.6	610	0.78 A	27 A	0.044 A	
Bottom layer No. 5	9.9	380	0.36 B	14 A	0.036 A	
x Top ±1 S.D.	270 ±78	310±140	33±12	39±18		58
x Bottom ±1 S.D.	15.8±8.0	540±300	0.75±0.28	25±10		34
Tcp + Bottom						
±1 S.D.		850±310		64±22		55

 Table 5.12.1. Radiocesium in lichen (Clading portentosa) collected at Oustrup Heather

 October 4, 1990, by Ulrik Sachting, Institute of Sporeplants, University of Copenhagen

Table 5.12.2.A. Radionuclides in lichen (Cladina portentosa) collected in Denmark in 1990

Location	Date	¹³⁷ Cs Bq m ⁻²	¹⁰⁶ Ru ¹³⁷ Cs	¹²⁵ Sb ¹³⁷ Cs	¹³⁴ Cs ¹³⁷ Cs	<b>kg d.w.</b> m ^{−2}
*Bornholm	May 17	81			0.116	0.83
Hvide Sande	Sep 13	800	0.032 A	0.0012 A	0.144	0.98
Skagen 1	Oct 22	163			0.130	0.82
Skagen 2	Oct 22	250			0.128	1.06
Skagen 3	Oct 22	200			0.132	0.98
				· · · · · -		

*27% Cladonia stellaris.

1

ī.

ī.

 Table 5.12.2.B. Radiocesium in lichen (Cladina portentosa) collected in Denmark

 in 1991

Date	¹³⁷ Cs Bq m ⁻²	134Cs 137Cs	kg d.w. m ^{−2}
May 22	66	0.076	1.07
June 13	480	0.116	1.04
Sep 14	128	0.069	1.19
Sep 14	66	0.085	0.58
Sep 14	68	0.095	0.63
	1	I	
	T	I.	
	i.	1 1 1	10
	1	1 I I	
	Date May 22 June 13 Sep 14 Sep 14 Sep 14	Date         137Cs Bq m ⁻² May 22         66           June 13         480           Sep 14         128           Sep 14         66           Sep 14         68	Date         137Cs Bq m ⁻² 134Cs 137Cs           May 22         66         0.076           June 13         480         0.116           Sep 14         128         0.069           Sep 14         66         0.095



Figure 5.12.1. The ecological decay of ¹³⁷Cs from Chernobyl and from global fallout in Danish lichen (Cladina portentosa) collected at Oustrup Heather 1986-1990.

Figure 5.12.2. The ecological decay of ¹³⁷Cs from Chernobyl and from global fallout in Danish lichen (Cladina portentosa) collected at Skagen 1986-1991.



### 6. Strontium-90 and Radiocesium in Humans

#### 6.1. Strontium-90 in Human Bone

(by A. Aarkrog)

Tables 6.1.1-6.1.2 A & B summarize the results from 1990 and 1991.

#### 6.2. Radiocesium in the Human Body

by B. Lauridsen and J. Søgaard-Hansen

Whole-body measurements of radiocesium were initiated at Risø in July 1963 (cf. 2.3 in Risø Report No. 85). The initial program stopped in 1977 due to very low body contents. The Chernobyl accident resulted in elevated radiocesium levels in foodstuff and the whole-body measurements were resumed in September 1986.

The new control group comprises a large fraction of the old supplemented with a few newcomers. In total there are about 20 persons in the group including 2 children.

Results from the early whole-body measurements are shown in Figure 6.2.1. The figure shows the average yearly radiocesium contents ( $\pm$  1 S.E.) in the period 1963 to 1977. The measurements are compared with calculated values based on foodstuff data. For comparison the average values for 1986, 1987, 1988, 1989 and 1990 are given.

In Figure 6.2.2 the measured mean values of  $^{134}Cs + ^{137}Cs$  body content are shown for men, women and children (only up to 1989). The figure, furthermore, shows the calculated levels based upon estimated intake of radiocesium with food. In Figure 6.2.2 persons in the control group were omitted if they have been on official travel to countries with relatively high contamination levels. The measured body contents in 1990 are well below the 1987 peak values and are approaching the pre-Chernobyl level. The calculated levels appear to be in good agreement with the observed values. At the beginning of 1991 several persons had body contents below the lower level of detection, hence it was decided to cease the measurements. The mean concentration in 1990 was 415 Bq  $^{134}Cs + ^{137}Cs/(kg K)^{-1}$ (rel. S.D.: 19%).

#### 6.3. Radionuclides in Human Milk

(by A. Aarkrog)

No samples.

#### 6.4. Human Urine

Since the Chernobyl accident in 1986 ¹³⁷Cs has been measured in urine from a Risø control group. The results have been compared with the ¹³⁷Cs levels in diet and body (Figure 6.4). The urine showed a peak in April 1991 (Table 6.4) not explainable from the diet data. This suggests that members of the Risø group have received diet higher in ¹³⁷Cs than normal average Danish diet, perhaps during a stay abroad.

Risø-R-621(EN)

. . . .

Zone/Location	Age	Month of death	Sex	Bq (kg Ca) ^{~1}
Jutland	3 m	6	F	10 B
11	1 y 4 m	5	F	8 B
11	22 y	5	M	12.9
I	24 y	5	F	10.5
H	40 y	6	M	11.1
Jutland	48 y	5	Μ	23
11	50 y	5	М	10.5
m	53 y	5	F	24
H	53 y	5	M	12.2
11	53 y	5	М	9.0 A
11	54 y	6	М	30
Jutland	60 y	5	М	13.2
<b>!!!</b>	64 y	6	M	11.4
I	67 y	5	М	18.8
II	71 y	5	M	12.6 <b>A</b>
11	81 y	5	M	25
*y = year, m = mont	h			

Table 6.1.1.A. Strontium-90 in human bone in 1990

 Table 6.1.1.B. Strontium-90 in human bone in 1991

Zone	Age*	Month of death	Sex	Bq (kg Ca) ⁻¹
111	1 y 11 m	9	F	13.8
1	23 y	8	М	14.4
11	39 y	9	F	18.0
111	47 y	8	Μ	16.7
11	61 y	12	Μ	15.9
H	63 y	9	F	13.1
I	72 y	8	М	13.0
1	74 v	9	Μ	25
1	76 y	8	F	22
11	82 y	9	M	17.8
*y = year, m = month	_			

I.		Risg-R-521(EN)
i	1	

i i

1 1 1

i.



Figure 6.1.1. Strontium-90 levels in bone from new-born (< 1 month) 1961-1991.

Figure 6.1.2. Strontium-90 levels in bone from infants (> 1 month  $\leq$  4 years) 1961-1991.



I



Figure 6.1.3. Strontium-90 levels in bone from children (> 4 years ≤ 19 years) 1960-1991.

Figure 6.1.4. Strontium-90 levels in bone from adults (> 19 years  $\leq$  29 years) 1960-1991.





Figure 6.1.5. Strontium-90 levels in bone from adults (> 29 years) 1960-1991).





Figure 6.1.6. Strontium-90 in human bone from Danish cohorts 1960-1966. Abscissa: age in years. Ordinate: bone level in Bq ⁹⁰Sr (kg Ca)⁻¹.

ш п 1 I. П 1 T. 1 I. н 1 1 T. 1 I i. Risø-R-621(EN) 116 1

Age group	Number of samples	Min.	Max.	Median	Arithmetic maan	Geometric mean
New-born						
(< 1 month) infants	Э	-	-	-	-	-
(≤4 years) Children	2	8	10	3	9	9
(≤ 19 years) Aduits	0	-	-	-		-
(≤ 29 y <i>e</i> ars) Adults	2	16.5	12.9	11.7	11.7	11.6
(> 29 years)	12	9.0	30	12.9	t <b>6</b> .7	15.5

Table 6.1.2.A. Strontium-90 in human vertebrae collected in Denmark (Jutland only) in 1990. (Unit: Bq (kg Ca)⁻¹)

Table 6.1.2.B. Strontium-90 in human vertebrae collected in Denmark (Jutland only) in 1991. (Unit: Bq (kg Ca)⁻¹)

Age group	Number of samples	Min.	Max.	Median	Arithmetic mean	Geometric mean
New-born	-					
(< 1 month) Infants	0	-	-	•	-	
(≤4 years) Chiloren	1	13.8	13.8	13.8	13.8	13.8
(≤ 19 years) Adults	0	-	•	-	-	-
(≤ 29 years) Adults	1	<b>14.4</b>	14.4	14.4	14.4	14.4
(> 29 years)	8	13.0	25	17.3	17.7	17.3

	L	н	I	I	
	I.	11	1	I.	
Dice D 631(ENI)	1	11	T	i.	117
N130-N-021(LIN)	1	П	1	1	11/
1 I	1.1				

No.	Date	Sex	Age	Bq Cs (kg K) ⁻¹	g K (kg) ⁻¹
2	January 25	F	46	570	2.13
2	May 2	F	46	540	2.27
3	January 25	F	57	764	2.14
3	September 17	F	57	920	1.43
4	January 26	м	57	577	1.79
4	May 7	M	57	512	2.02
6	January 22	м	58	398	1.85
6	May 2	M	58	362	2.04
6	September 6	Μ	58	244	1.65
7	January 25	F	50	474	1.62
7	September 7	F	51	269	1.51
9	January 23	F	61	629	1.77
11	January 23	F	53	221	1.46
11	May 9	F	53	378	1.68
14	January 24	м	47	255	2.33
15	January 22	F	48	255	1.46
15	September 12	F	49	145	1.45
18	January 25	F	53	172	1.50
19	January 22	F	51	501	1.61
19	May 21	F	51	658	1.67
20	January 23	М	47	393	1.82
20	May 14	М	47	353	1.87
20	September	М	47	239	1.62
22	January 23	F	8	480	1.30
24	January 30	F	15	402	1.7 <del>9</del>
24	May 10	F	15	284	2.15
27	January 22	М	48	1062	1.68
27	May 15	Μ	48	451	1.74
27	September 6	Μ	48	265	1.48
31	January 23	М	74	426	1.74
31	September 13	М	75	180	1.54
Mean	<ul> <li>January 1990</li> <li>May 1990</li> <li>September 19</li> </ul>	990	474☆ 56 442± 43 323±101		

 

 Table 6.2 Radiocesium (134+13°Cs) in humans from Rise and environment measured in 1990

*Monthly mean values (adults)  $^{134+137}$ Cs Bq (kg K) $^{-1}$ ±1 S.E.

An approximate estimate of the  137 Cs content may be obtained by multiplying the Bq Cs (kg K)⁻¹ by 0.87.

1 1

.

i

•



Figure 6.2.1. A comparison between observed ( $\pm 1$  S.E.) and calculated (Aarkrog 1979) Bq ¹³⁷Cs (kg K)⁻¹ levels in persons from Zealand.

Figure 6.2.2. Radiocesium in Danish men, women and children from Zealand in 1986-1990. The curves represent the calculated levels based upon calculated diet measurements.





Figure 6.4. Radiocesium (Bq  137 Cs (kg K)⁻¹ in diet, urine, and humans from Zealand in 1986-1991. (The human data were calculated from whole-body measurements of ( 134 Cs +  137 Cs) by multiplication with 0.67 in 1986, 0.72 in 1987, 0.78 in 1988 and 0.83 in 1989 and 0.87 in 1990.

Quarters	40K g1⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹
January 1990	0.74	97
April 1990	1.50	110
July 1990	0.68	135
October 1990	0.85	92
January 1991	0.64	197
April 1991	0.97	290
July 1991	1.19	140
October 1991	1.01	86

Table 6.4. Cesium-137 in urine samples from a control group at Rise. 1990-1991

Risø-'R'-621(EN)

1 1 11

# 7. Tritium in the Environment

by Heinz Hansen

#### 7.1. Introduction

Tritium is produced naturally in the atmosphere by the interaction of cosmic-ray protons and neutrons with nitrogen, oxygen or argon. Surface waters contain about 0.4 kBq m⁻³ from this source (UNSCEAR 1982). Tritium is also produced and injected into the stratosphere as the result of thermonuclear explosions. At present, this latter source has enhanced the natural inventory by about a factor of ten (UNSCEAR 1982). Finally, tritium is produced as a by-product of the peaceful uses of atomic energy: it is released both during reactor operation and fuel reprocessing.

#### 7.2. Assay of Tritium in Low-Level Amounts

The present assays of tritium levels in water are based on a relative enrichment of  ${}^{3}\text{H}_{2}\text{O}$  by electrolysis and subsequent liquid scintillation counting as previously described (Risø Reports Nos. 386 etc. (Risø Reports 1957-1991)).

We have found that the tritium background in the air in our laboratory makes it impossible to produce reliable results if the concentrations are below 2 kBq m⁻³. (Personal Communication *G. Östlund*, 1984). Previously we have applied a constant background correction by subtraction of 1.2 kBq ³H m⁻³ from our measured values (cf. Appendix in Risø-R-527) (Risø Reports 1957-1991). This is not done any longer. Instead a blank is following the samples analysed and the ³H level in this blank is used for the correction.

#### 7.3. Summary of Results

The tritium results are shown in detail in the chapters where the samples belong.

Tables 4.2.3 and 4.2.4 give the results for precipitation. The annual mean concentrations in rain in 1990 were: 6.0 kBq m⁻³ at Risø, 2.3 at Tylstrup, 2.1 at Jyndevad, and 2.7 at Bornholm. In 1991 the levels were 5.5, 1.9, 2.2, and 2.6, respectively. The enhanced tritium levels at Risø were due to discharges of the DR 3 reactor at the site.

The tritium concentrations in Danish streams and lakes were 2.4 and 2.1 kBq m⁻³, respectively (Tables 4.3.2.1 and 4.3.2.2).

The levels were in general unchanged compared with those seen in 1988 and 1989.

		1							
		1							
		1							
	I	1			1				
	1	T			1				
	1	1			1	I.			
	1	1			1	1			
	1	I.	I.		1	1		I I	I.
Risø-R-621(EN)	I	1	1		I.	I.	121	1 1	1
1	1	1	1		i	1		1 I	1 I
T	1	T	1	I.	1	1		i i	i 1
1									

# 8. Measurements of Background Radiation in 1990 and 1991

by L. Bøtter-Jensen and S.P. Nielsen

#### 8.1. Instrumentation

Measurements of the background radiation were made with thermoluminescence dosimeters (TLD's), and a Nal(Tl) detector.

#### 8.2. State Experimental Farms

The State experimental farms are situated as shown in Figure 4.2. The results of the TLD measurements are shown in Table 8.2.1.A. The results of the NaI( $\Pi$ ) detector measurements are shown in Tables 8.2.2.A and B.

The  $\gamma$ -background measured with the Nal(Tl) detector in four groups of sampling stations is shown in Figure 8.2.1 from 1962 to 1991.

#### 8.3. Risø Environment

The five zones around Risø are located as shown in Figure 8.3.1. The results of the TLD measurements are shown in Tables 8.3.1.A and B, and the results of the NaI(Tl) detector measurements are shown in Tables 8.3.2.A and B.

#### 8.4. Gylling Næs Environment

The Gylling Næs environment is routinely monitored with TLDs, and the results from the site are given in Table 8.4.1.A. The locations are shown in Figure 8.4.1.

#### 8.5. Great Belt and Langeland Belt Areas

Locations on both shores of the Great Belt and the Langeland Belt (an international shipping route) are routinely monitored with TLDs; the resulto and locations are shown in Table 8.5.1.A and Figure 8.5.1, respectively.

#### 8.6. The Baltic Island of Bornholm

Locations on the island of Bornholm have been monitored with TLDs in the period May 1989 - May 1990 and May 1990 - May 1991. The results and locations are shown in Tables 8.6.1.A and B and Figure 8.6.1, respectively.

> i I

> > 1

.

,

1 1

Risø-R-621(EN)

1

1

1 I 1 İ

Location	Sep 1989 - Sep 1990 μR h ⁻¹
Tylstrup	7.7
Borris	6.9
Ødum	7.1
Askov	7.7
St. Jyndevad	6.6
Arslev	8.6
Tystofte	8.8
Abed	8.5
Mean	7.7

Table 8.2.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) at the State experimental farms in 1989/90

Table 8.2.1.B.	TLD-measurements	of the l	background	radiation	(integrated	over
12 months and	t normalized to μR h⁻	¹ ) at the	State exper	imental fai	rms in 1990	/91

1

Lost.

Risø-R-621(EN)

Location	March	June	October	Mean
Tylstrup	3.3	3.2	3.2	3.2
Borris	3.5	3.5	3.5	3.5
Kalø	3.8	4.0	4.0	3.9
Askov	3.8	3.8	3.8	3.8
St. Jyndevad	2.3	2.2	2.3	2.3
Arslev	4.6	4.6	4.6	4.6
Ledreborg	5.0	4.8	5.0	5.0
Tystofte	4.9	4.8	5.0	4.9
Abed	5.0	5.0	5.0	5.0
Tornbygård	(5.9)	5.9	(5.9)	5. <del>9</del>
Mean	4.2	4.2	4.2	4.2
Figures in bracke	ts were calcula	ated from VA	R3 (Vestergaard	1964).

Table 8.2.2.A. Terrestrial exposure rates at the state  $ex_i$  rimental farms measured with the Nal(Tl) detector in 1990 ( $\mu R h^{-1}$ )

Table 8.2.2.B. Terrestrial exposure rates at the state experimental farms measured with the NaI(TI) detector in 1991 ( $\mu R h^{-1}$ )

Location	March	June	October	Mean
Tylstrup	3.1	3.2	3.1	3.1
Borris	3.2	3.5	3.1	3.3
Kalø	3.7	3.5	3.8	3.7
Askov	3.5	3.9	3.6	3.7
St. Jyndevad	2.1	2.1	2.0	2.1
Årslev	4.5	4.8	5.4	4.9
Ledreborg	4.8	4.6	4.8	4.7
Tystofte	4.9	4.9	4.8	4.8
Abed	4.9	5.3	5.6	5.3
Tornbygård	(5.9)	6.0	(6.1)	6.0
Mean	4.1	4.2	4.2	4.1

1

1

i.

124

Risø-R-621(EN)

1

.

1

1



Figure 8.2.1. Terrestrial exposure rates at the State experimental farms in 1962-1976 and 1978-1991 measured with the NaI(Tl) detector ( $\mu R h^{-1}$ ).

- ..... Åkirkeby/Tornbygård
- _____ Abed . Blangstedgård/Årslev, Tystofte
- _____ Virumgård/Ledreborg, Ødum/Kalø, Tylstrup
- · Jyndevad, Askov, Studsgård/Borris

Figure 8.3.1. The environment of Risø. Locations for measurements of the background radiation.



Table 8.3.1.A. TLD-measurements of the background radiation (mean of  $2 \times 6$  months integration periods and normalized to  $\mu R h^{-1}$ ) in five zones (I-V) around Riso in 1989/90

1       1       8.5         2       9.0         3       19.2         4       8.2         5       9.3         Mean       10.8         II       1         1       2         84       7.6         II       2         1       3         7.6       7.6         Mean       7.7         III       1         1       8.3         III       2         8.0       8.0         III       1         1       8.3         III       1         8.0       7.8         Mean       7.6         IV       1         6.8       7.3         IV       5         1       7.9         V       1         1       7.9         V       1         1       7.9         V       1         1       7.9         V       2         1       7.9         V       1         1       7.9         V <td< th=""><th>Risø zone</th><th>Location</th><th>Oct 1989 - Oct 1990 μR h⁻¹</th></td<>	Risø zone	Location	Oct 1989 - Oct 1990 μR h ⁻¹
1       2       9.0         1       3       19.2         1       4       8.2         1       5       9.3         Mean       10.8         II       1       7.6         II       2       8.4         II       3       7.1         II       4       7.6         Mean       7.7         III       1       8.3         III       2       8.0         III       3       7.8         Mean       8.0       0         IV       1       6.8         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       4       6.7         IV       5       6.9         IV       7       9.0         Mean       7.5       8.0 <tr< td=""><td>1</td><td>1</td><td>8.5</td></tr<>	1	1	8.5
1       3       19.2         1       5       9.3         Mean       10.8         II       1       7.6         II       2       8.4         II       3       7.1         II       4       7.6         Mean       7.7         III       1       8.3         III       1       8.3         III       1       8.3         III       2       8.0         III       1       8.3         III       1       8.3         IV       1       6.8         IV       1       6.8         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       4       6.7         IV       5       8.0         V       1       7.9         V       2       9.1         V	ł	2	9.0
I     4     8.2       I     5     9.3       Mean     10.8       II     1     7.6       II     2     8.4       II     3     7.1       II     4     7.6       Mean     7.7       III     1     8.3       IV     1     6.8       IV     2     7.6       IV     3     8.2       IV     4     6.7       IV     5     6.9       IV     4     7.5       V     1     7.9       V     2     9.1       V     2     9.1       V     2     9.1       V     3     8.6       V     4     7.	1	3	19.2
I     5     9.3       Mean     10.8       II     1     7.6       II     2     8.4       II     3     7.1       II     4     7.6       Mean     7.7       III     1     8.3       III     2     8.0       III     1     8.3       III     2     8.0       III     1     8.3       III     1     8.3       IV     1     6.8       IV     2     7.6       IV     2     7.6       IV     3     8.2       IV     4     6.7       IV     5     6.9       IV     4     6.7       IV     5     6.9       IV     4     6.7       IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     6     8.4       V     7     9.0	1	4	8.2
Mean       10.8         II       1       7.6         II       2       8.4         II       3       7.1         II       4       7.6         Mean       7.7         III       1       8.3         III       2       8.0         III       2       8.0         III       2       8.0         III       3       7.8         Mean       8.0       1         IV       1       6.8         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       6       7.3         IV       7       9.0         Mean       7.5       1         V       1       7.9         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V       8       9.7 <td< td=""><td>1</td><td>5</td><td>9.3</td></td<>	1	5	9.3
II17.6II28.4II37.1II47.6Mean7.7III18.3III28.0III37.8Mean8.0IV16.8IV27.6IV38.2IV46.7IV56.9IV67.3IV79.0Mean7.5V17.9V29.1V38.6V47.4V58.0V68.4V79.0V89.7V98.5V107.9Mean8.5	Mean		10.8
II       2       8.4         II       3       7.1         II       4       7.6         Mean       7.7         III       1       8.3         III       2       8.0         III       3       7.8         Mean       8.0         IV       1       6.8         IV       2       7.6         IV       2       7.6         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       4       8.7         IV       5       8.9         IV       7       9.0         Mean       7.5       7.5         V       1       7.9         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V </td <td>II</td> <td>1</td> <td>7.6</td>	II	1	7.6
II37.1II47.6Mean7.7III18.3III28.0III37.8Mean8.0IV16.8IV27.6IV38.2IV46.7IV56.9IV67.3IV79.0Mean7.5V17.9V29.1V38.6V47.4V58.0V68.4V79.0V89.7V96.5V107.9Mean8.5	11	2	8.4
II       4       7.6         Mean       7.7         III       1       8.3         III       2       8.0         III       3       7.8         Mean       8.0         IV       1       6.8         IV       2       7.6         IV       2       7.6         IV       2       7.6         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       6       7.3         IV       7       9.0         Mean       7.5       7.5         V       1       7.9         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V       8       9.7         V       9       8.5         V <td>II</td> <td>3</td> <td>7.1</td>	II	3	7.1
Mean       7.7         III       1       8.3         III       2       8.0         III       3       7.8         Mean       8.0         IV       1       6.8         IV       2       7.6         IV       2       7.6         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       6       7.3         IV       7       9.0         Mean       7.5         V       1       7.9         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V       8       9.7         V       9       8.5         V       10       7.9         Mean       8.5	Ħ	4	7.6
III18.3III28.0III37.8Mean8.0IV16.8IV27.6IV38.2IV46.7IV56.9IV67.3IV79.0Mean7.5V17.9V29.1V38.6V47.4V58.0V68.4V79.0V89.7V98.5V107.9Mean8.5	Mean		7.7
III2 $8.0$ III3 $7.8$ Mean $8.0$ IV1 $6.8$ IV2 $7.6$ IV3 $8.2$ IV4 $6.7$ IV5 $6.9$ IV6 $7.3$ IV7 $9.0$ Mean $7.5$ V1 $7.9$ V2 $9.1$ V3 $8.6$ V4 $7.4$ V5 $8.0$ V6 $8.4$ V7 $9.0$ V8 $9.7$ V9 $8.5$ V10 $7.9$ Mean $8.5$		1	8.3
III       3       7.8         Mean       8.0         IV       1       6.8         IV       2       7.6         IV       3       8.2         IV       4       6.7         IV       5       6.9         IV       6       7.3         IV       7       9.0         Mean       7.5         V       1       7.9         V       2       9.1         V       2       9.1         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V       8       9.7         V       9       8.5         V       10       7.9         Mean       8.5	111	2	8.0
Mean         8.0           IV         1         6.8           IV         2         7.6           IV         3         8.2           IV         4         6.7           IV         5         6.9           IV         6         7.3           IV         7         9.0           Mean         7.5           V         1         7.9           V         2         9.1           V         2         9.1           V         3         8.6           V         4         7.4           V         5         8.0           V         6         8.4           V         7         9.0           V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	III	3	7.8
IV1 $6.8$ IV2 $7.6$ IV3 $8.2$ IV4 $6.7$ IV5 $6.9$ IV6 $7.3$ IV7 $9.0$ Mean $7.5$ V1 $7.9$ V2 $9.1$ V3 $8.6$ V4 $7.4$ V5 $8.0$ V6 $8.4$ V7 $9.0$ V8 $9.7$ V9 $8.5$ V10 $7.9$ Mean $8.5$	Mean		8.0
IV     2     7.6       IV     3     8.2       IV     4     6.7       IV     5     6.9       IV     6     7.3       IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9	IV	1	6.8
IV     3     8.2       IV     4     6.7       IV     5     6.9       IV     6     7.3       IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	IV	2	7.6
IV     4     6.7       IV     5     6.9       IV     6     7.3       IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	IV	3	8.2
IV       5       6.9         IV       6       7.3         IV       7       9.0         Mean       7.5         V       1       7.9         V       2       9.1         V       2       9.1         V       3       8.6         V       4       7.4         V       5       8.0         V       6       8.4         V       7       9.0         V       8       9.7         V       9       8.5         V       10       7.9         Mean       8.5	IV	4	6.7
IV     6     7.3       IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	IV	5	6.9
IV     7     9.0       Mean     7.5       V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	IV	6	7.3
Mean         7.5           V         1         7.9           V         2         9.1           V         3         8.6           V         4         7.4           V         5         8.0           V         6         8.4           V         7         9.0           V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	IV	7	9.0
V     1     7.9       V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	Mean		7.5
V     2     9.1       V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	v	1	7.9
V     3     8.6       V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	V	2	9.1
V     4     7.4       V     5     8.0       V     6     8.4       V     7     9.0       V     8     9.7       V     9     8.5       V     10     7.9       Mean     8.5	V	3	8.6
V         5         8.0           V         6         8.4           V         7         9.0           V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	V	4	7.4
V         6         8.4           V         7         9.0           V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	V	5	8.0
V         7         9.0           V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	V	6	8.4
V         8         9.7           V         9         8.5           V         10         7.9           Mean         8.5	V	7	9.0
V         9         8.5           V         10         7.9           Mean         8.5	V	8	9.7
V         10         7.9           Mean         8.5	V	9	8.5
Mean 8.5	V	10	7.9
	Mean		8.5

		1	1	I	
		i	1 I	i.	
	1.1	ſ	1	1	
	1.1	D: _ D (4		1	
	1.1	K150-K-62	(EN)	1	1
	1.1	1	т. П.		1
i i					
			Riso-R-62	Riso-R-621(EN)	Riso-R-621(EN)

T T

T T

Т

Risø zone	Location	Oct 1990 - Oct 1991 μR h ⁻¹
		82
ł	2	91
j.	3	17.1
Ì	4	8.6
I	5	8.9
Mean		10.4
11	1	7.8
R	2	8.9
H	3	8.4
	4	8.0
Mean		8.3
111	1	8.1
111	2	8.4
	3	8.0
Mean		8.2
łV	1	7.4
IV	2	8.6
{V	3	8.3
IV	4	7.6
۲ <b>V</b>	5	6.6
۱V ·	6	7.7
_IV	7	9.1
Mean		7.9
V	1	8.1
<b>V</b>	2	8. <del>9</del>
V	3	8.7
V	4	7.6
V	5	8.3
V	6	8.6
V .	7	8.8
V	8	8.4
V	9	8.5
V	10	7.8
Mean		8.4
1 I		
I I		11
11 1		11
Ч		
	1.1	
NOD"N-041(Cl	<b>▼</b> <i>f</i>       	1

1.11

Т

1

L L L III III

Table 8.3.1.B. TLD-measurements of the background radiation (12-month integration period and normalized to  $\mu R h^{-1}$ ) in five zones (I-V) ground Risø in 1990/91

127

I

Risø zone	Location	January	April	July	October	
1	1	5.7	5.6	6.2	6.0	
ł	2	7.1	7.1	7.4	7.6	
I	3	73	70	69	71	
1	4	5.6	5.6	5.2	5.9	
l	5	10.7	10.0	10.3	9.8	
Mean		20	19.6	20	20	
11	1	<b>4</b> .9	4.5	4.4	4.9	
II	2	5.2	5.2	4.9	4.9	
11	3	4.4	4.4	4.3	4.5	
<u> </u>	4	4.6	4.5	4.5	4.8	
Mean		4.8	4.6	4.5	4.8	
m	1		5.2		5.5	
III	2		4.8		4.9	
14	3		4.2		4.4	
Mean			4.7		4.9	
IV	1		4.5		4.5	
IV	2		4.7		4,9	
IV	3		4.8		4.8	
IV	4		4.5		4.6	
IV IV	5		3.0		3.1	
IV RV	6 7		3.8 A E		4.1	
	/		4.5		4.9	
Mean			4.2		4.4	
V	1		4.5		4.6	
V	2		5.2		5.4	
V	3		5.0		5.2	
V	4		5.2		5.0	
V V	5 E		5.4 5.0		5.2	
v V	0 7		5.U 5.0		5,0 5.0	
v	8		<b>4</b> .1		4.5	
v V	9		4.*		4.5	
V	10	1	3.7		4.2	
Mean			4.7		4.9	
		1		• A-4	I I	
		1			 I	
		I			I I	
	I	i I				
	1 1	I.		I.	1 I I	
	i i	I.		1 1	1 I I	1
1						1
28		 I			Risd-R-671	(FN
	i i	і I	1	1 1	M30-11-021	ر <b>د</b> ما ۲۰

Table 8.3.2 A. Terrestrial exposure rates at the Risø zones in 1990 measured with the NaI(Tl) detector ( $\mu R h^{-1}$ )

_..

1

ı I

1

т т

Table 8.3.2.B. the Nal(Tl) de	Terrestrial e iector (µR h ⁻	xposure rate: 1)	s at the Ris	o zones in	1991 measu
Risø zone	Location	January	April	July	October
-	-			.   .	
	- (	0 0 0 0	ο Ο Ο	n n n	5 G 7 G
	<b>N</b> (			0 ľ	0000
	°.≺	0/ E E	0 4 0	10	8 4
	<b>t</b> L	- C 1 C	• •	+ (  )	0.0
-	0	4./	4. /	o./	6
Mean		18.4	18.9	18.4	18,4
	,				
= :	- (	<b>4</b> 10	<b>4</b> 9.0	<b>4</b> .6	4.6 9.1
= :	2	4.7	4.8	4.9	4.7
=	ო	4.4	4.4	4.3	4.2
=	4	4.6	4.7	4.7	4.5
Mcon		U V	A C	J V	U V
MEAN		<del>1</del>	0. 7	0 7	1) #
111	-		С С		5.3
E	~ ~		47		4.8
:=	<b>ი</b> თ		4.3		6.4 0.6
Mean			4.8		4.8
2	-		4 6		4 C
:≥	- 0		2		
2 2	10		0 U F =		i u
2 2	0 4		0 4 7		0 7 7
2 ≥	t ut		0 C		ד ס ס ס
: 2	) ц		5 <b>6</b>		
: ≥	-		4.6		4.6
Mean			4.3		4.1
>	-		4.7		45
· >	• •		с <u>с</u>		) C
• >	1 (7		i u		5 u 1 C
• >	) <b>-</b>		, <del>,</del>		d d d
• >	r ur		- C		5 <del>-</del>
· >			4 8		40
· >	- 	_	9 4		<b>7</b>
· >	. 00		44		44
• >	σ	_	V V		
· >	, <u>0</u>		t 4 t 0		4 4 0,4
	-	_			
Mean	-	-	4.8		4.7
	-	_			
	-	_			
			_		
	-				
Kisə-R-621(E	- 2	_	-		-

ired with 1001 Ē

129

- --

-

_

_ _

-



Figure 8.4.1. The environment of Gylling Næs. Locations for measurements of the background radiation.

Figure 8.5.1. The coasts of the Great Belt. Locations for measurements of the background radiation.



Table 8.4.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) at the Gylling Nxs sitc in 1989/90

Location	Sep 1989 - Sep 1990 μR h ⁻¹
1	8.2
2	-
3	8.3
Mean	8.2

Table 8.4.1.B. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) at the Gylling Næs site in 1990/91

Lost.

Table 8.5.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) along the coasts of the Great Belt and Langeland Belt in 1989/90

Røsnæs7.5Reersø8.7Svendstrup7.5Vesternæs8.7Frederiksdal8.4Kolde No.9.9	
Reersø8.7Svendstrup7.5Vesternæs8.7Frederiksdal8.4Kalde No.9.9	1
Svendstrup7.5Vesternæs8.7Frederiksdal8.4Kalde No.9.9	1
Vesternæs 8.7 Frederiksdal 8.4	1
Frederiksdal 8.4	1
Kolde No: 0.0	1
Neius IVU: 3.3	
Tranekær 12.2	
Hov 8.3	1
Fyns Hoved 9.1	1
Knuds Hoved 10.1	i
Mean 9.0	1
	T
	1
	1
	r.
	1
	I.
	i.
(	i
	i.
1	,
Risø R-621(EN)	
11 1 1 1	I

r I

i.

i.

1.1

. .

1.1



Figure 8.6.1. Locations for measurements on Bornholm.

Table 8.5.1.B. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) along the coasts of the Great Belt and Langeland Belt in 1990/91

Lost.

Location	May 1989 - May 1990 μR h ⁻¹
1	9.5
2	9.4
3	9.7
4	15.1
Mean	10.9

Table 8.6.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to  $\mu R h^{-1}$ ) on the island of Bornholm in 1989/90

Table 8.6.1	.B. TLD-measu	i <b>rement</b> s of th	e background	radiation	(integrated	over
13 months	and nor <mark>ma</mark> lized	to $\mu R h^{-1}$ on	the island of E	Bornholm i	1 1990/91	

Loc	ation	I I I	May 1990 - May 1991 μR h ⁻¹	
1	r	1	11.6	r.
2		1	11.5	
3	I	1	12.9	
4	11	i	16.5	i i
Mea	an	1	13.1	
	11	1		
132	11 [1]	i T		Rişø-R-621(EN)

## 9. Conclusion

#### 9.1. Environmental Monitoring at Rise

No radioactive contamination of the environment originating from the operation of Riso National Laboratory was ascertained outside its boundaries in 1990 and 1991.

#### 9.2. Fallout in the Abiotic Environment

The mean content of 90Sr in air collected in 1990 and 1991 were 0.3  $\mu$ Bq m⁻³.

The mean concentrations of  137 Cs in air from 1990 and 1991 were 1.0 and 0.9  $\mu$ Bq m⁻³, respectively.

The depositions of ⁹⁰Sr at the ten State experimental farms in Denmark were  $0.5 \text{ Bq m}^{-2}$  in 1990 and 0.6 Bq m⁻² in 1991. The corresponding depositions for ¹³⁷Cs were 2.6 and 1.6 Bq m⁻².

The concentrations of  90 Sr and  137 Cs in the surface sea water of inner Danish waters have been nearly unchanged since 1987, i.e. about 16 Bq  90 Sr m⁻³ and 76 Bq  137 Cs m⁻³.

#### 9.3. Fallout Nuclides in the Human Diet

The mean concentrations in Danish milk were 0.05 Bq  90 Sr l⁻¹ and 0.10 Bq  137 Cs l⁻¹ in 1990 and in 1991 the levels were 0.046 and 0.076, respectively. The effective halflife of  90 Sr in Danish milk was 10 years and for global fallout  137 Cs it was 6 years. The halflife of Chernobyl  137 Cs has shown an increasing tendency in all samples. During 1987-1989 it was 1 year in Danish milk, during 1989 to 1991 it had increased to 3 years.

Danish grain from 1990-1991 contained 0.3 Bq  90 Sr kg⁻¹ and 0.09 Bq  137 Cs kg⁻¹.

Danish vegetables (cabbage and carrots) contained 0.2 Bq ⁹⁰Sr kg⁻¹ and 0.05 Bq ¹³⁷Cs kg⁻¹ in 1990 and 1991. Potatoes showed mean concentrations of 0.03 Bq ⁹⁰Sr kg⁻¹ and 0.06 Bq ¹³⁷Cs kg⁻¹.

The intake of ⁹⁹Sr with total diet was 0.13 Bq d⁻¹ in 1990 and .1991, and the ¹³⁷Cs intake was 0.3. The effective halflife of Chernobyl ¹³⁷Cs in Danish total diet is 3 years, while global fallout ¹³⁷Cs decays with approx. 5 years halflife. Strontium-90 has decayed with an effective halflife similar to the radiological halflife.

#### 9.4. Strontium-90 and Cesium-137 in Humans

The  90 Sr mean content in adult human bone (vertebrae) collected in 1990 was 17 Bq (kg Ca)⁻¹ and in 1991 the level was 18.

Whole-body measurements of  137 Cs were resumed after the Chernobyl accident. The measured mean level in 1990 was 359 Bq  137 Cs (kg K)⁻¹.

#### 9.5. Tritium in Environmental Samples

The tritium mean concentrations in 1990 and 1991 in stream and lake water were around 2 kBq m⁻³. The mean content of precipitation in 1990 and 1991 was 2.3 kBq m⁻³.

	1 11	J	1
	1.1	1	I.
Risø-R-621(EN)	1.11	I	1
	L II – L	1	1

#### 9.6. Background Radiation

The average total background exposure rate measured with TLDs at the State experimental farms was 7.7  $\mu$ R h⁻¹. The mean of the terrestrial exposure rates at the State experimental farms measured with the Nal(Tl) detector was 4.2  $\mu$ R h⁻¹. The annual means in 1990-1991 are not different from the levels prior to the Chernobyl accident.

1

Risø-R-621(EN)

1

1

1.1

# Acknowledgements

The authors wish to thank the staff of the Ecology Section for their conscientious performance of their work of this report.

We are specially indebted to the staffs of the ten State experimental farms at Tylstrup, Kalø, Borris, Askov, St. Jyndevad, Årslev, Tystofte, Ledreborg, Abed, Kannikegård and Tornbygård, who have continued to supply us with a number of the most important samples dealt with in this report.

R/V DANA belonging to the Ministry of Fisheries have collected surface water samples from the North Sea, the Danish Straits, and the Baltic Sea.

R/V GAUSS and other vessels from the Bundesamt für Seeschiffahrt und Hydrographie, formerly the German Hydrografic Institute, in Hamburg, collected a substantial number of the sea water samples in this report.

DMU (National Environmental Research Institute) assisted with the collection of sea water samples from the inner Danish waters.

Part of this work was supported by the CEC Radiation Protection Programme (contract no. B17-0044) by the CEC MAST Programme (contract MAST-052-c) and by the Nordic Nuclear Safety Research Programme.

1

.

1 1

. .

# Appendix A

#### Revised Models for ¹³⁷Cs in Danish Grain

(Cf. Risø-R-570) (Risø Reports, 1957-1991).

where  $d_{i(May-Aug)}$  is the fallout rate in Bq ¹³⁷Cs m⁻² in May-Aug in year (i) and A_i is the accumulated fallout by year (i) in Bq ¹³⁷Cs m⁻² according to Appendix D.3.



# Appendix **B**

### Statistical information

Zone		<del>ددد</del> in km²	△→Population in thousands	⁴ Annual milk production in mega-kg	Annual wheat production in mega-kg	Annual rye production in mega-kg	⁴ Annual potato production in mega-kg	-Grass and green fodder production in mega-kg	
1:	North Jutiand	6,171	482	893					
11:	East Jutland	7,561	909	1,427	090	425	980	17 640	
NI:	West Jutland	12,104	711	1,326	900			17,049	
IV:	South Jutland	3,929	250	663					
<b>V</b> :	Funen	3,486	455	357					
VI:	Zealand	7,435	2,115*	306	000		400	0.546	
VII:	Loiland-Faister	1,795	141	76	992	140	120	2,536	
VIII:	Bornholm	588	47	51					
Total	·····	43,069	5,110	5,099	1,972	565	1,100	20,185	

*1,170,000 people were living in Greater Copenhagen and 945,000 in the remaining part of Zealand.

4 (ref. Danmarks Statistik 1986)

44 (ref. Danmarks Statistik 1988)

ref. Danmarks Statistik 1972) ددد



# **Appendix C**

#### A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1990 and 1991

Sample	Location	Unit	Number observations in mean	Observed ±1 S.E. (Arithmetic mean)		Observed ±1 S.E. (Arithmetic mean)		Observed ±1 S.E. (Arithmetic mean)		Observed ±1 S.E. (Arithmetic mean)		Predicted	Obs.pred.	Model in reference { <i>Aarkrog</i> 1979}
Dried milk	Jutland	Bq 90Sr (kg Ca)−1	3	50	±4	100	0.50	a)						
• " •	Islands	- " -	3	34	±2	31	1.10	a)						
Rye	Jutland	Bq 905g-1		0.3	В	0.37	1.03	C.2.2.1 No. 1						
-	Islands	- * .		0.1	68	0.102	1.64	C.2.2.1 No. 3						
Bariey	Jutland	- * -	2	0.5	7 ±0.11	0.63	0.90	C.2.2.1 No. 4						
*	islands	·"-	2	0.1	9 ±0.01	0.198	0.96	C.2.2.1 No. 6						
Wheat	Jutiand	<b>. .</b> .	2	0.6	2 ±0.21	0.45	1.38	C.2.2.1 No. 8						
-	Islands	- " -	2	0.2	0 ±0.05	0.160	1.25	C.2.2.1 No. 10						
Oats	Jutland	- " -		0.6	3	1.29	0.49	C.2.2.1 No 12						
•	Islands	- " -		0.2	2	0.58	0.38	C.2.2.1 No. 13						
Potatoes	Jutland	- * -		0.0	27	0.091	0.30	C.2.5.1 No. 8						
-	Islands	<b>.</b> *.		0.0	38	0.083	0.46	C.2.5.1 No. 10						
Cabbage	Jutland	<b>- "</b> -		0.2	1	0.29	0.72	C.2.5.1 No. 1						
•	Islands	<b>. "</b> .		0.1	11	0.25	0.44	C.2.5.1 No. 3						
Carrot	Jutland	<b>. "</b> .		0.4	3	0.49	0.88	C.2.5.1 No. 5						
-	Islands	- * -		0.2	2	0.13	1.69	C.2.5.1 No. 6						
Apples	Denmark	<b>.</b>	2	0.0	22±0.012	0.011	2.00	C.2.5.1 No. 13						
Pork	-	- " -		0.0	02	0.021	0.10	C.3.4.1 No. 3						
Beef	•	<b>. "</b> .		0.0	074	0.031	0.24	C.3.4.1 No. 1						
Eggs	-	• <b>"</b> -		•		0.0091	-	C.3.6.1 No. 6						
Total diet C	•	Bq 90Sr (kg Ca)-1		122		127	0.96	C.4.2.1 No. 1						
Total diet P	•	. * .		104		96	1.08	C.4.2.1 No. 7						
Human bone >	•													
29 yr		<i>.</i> * .	12	16.7	±2.0	36	0.46	C.4.3.1 No. 13						
Whole year														
grass	Islands	<u>.</u> " .	4	230	±14	332	0.69	C.2.4.1 No. 1						
Fucus														
vesiculosus	•	<b>.</b> .		116		401	0.29	C.2.7.1 No. 3						
Ground														
water*	Denmark	Bq ⁹⁰ Sr m-3				0.20		C.1.4.1 No. 1						
Stream water*		.*.				5.75	•	C.1.4.1 No. 3						
Lake water*	•	- " -				33	-	C.1.4.1 No. 6						

Table C.1. A Comparison between observed and predicted ⁹⁰Sr levels in environmental samples collected in 1990

* No samples in 1990.

a) New prediction models from Table C.3.1 in Risø-R-540.

Risø-R-621(EN)

Sample	Location	Unit	Number observations in mean	Obse ±1 S. (Arithma	erved E. etic mean)	Predicted	Obs/pred.	Model in reference (Aarkrog 1979)
Dried milk	Jutland	Bq ⁹⁰ Sr (kgCa) ⁻¹	3	43	±2	96	0.45	a)
. <b>* .</b>	Islands	- " -	3	34	±2	29	1.17	a)
Rye	Jutland	Bq ⁹⁰ Sr kg ⁻¹		0.32		0.35	0.91	C.2.2.1 No. 1
•	Islands	- " -		0.169	•	0.112	1.51	C.2.2.1 No. 3
Barley	Jutland	- " -	2	0.36	±0.03	0.53	0.68	C.2.2.1 No. 4
•	Islands		2	0.29	±0.02	0.196	1.48	C.2.2.1 No. 6
Wheat	Jutland	- " -	2	0.35	±0.10	0.35	1.00	C.2.2.1 No. 8
-	Islands	<b>- "</b> -	2	0.24	±0.09	0.157	1.53	C.2.2.1 No. 10
Oats	Jutland	- <b>"</b> -		0.55		1.20	0.42	C.2.2.1 No. 12
•	Islands	- " -		0.30		0.57	0.53	C.2.2.1 No. 13
Potatoes	Jutland	. • .		0.031	]	0.089	0.35	C.2.5.1 No. 8
	Islands	- " -		0.027	,	0.031	0.33	C.2.5.1 No. 10
Cabbage	Jutland	.*.		0.22		0.28	0.79	C.2.5.1 No. 1
*	Islands			0.077	7	0.24	0.32	C.2.5.1 No. 3
Carrot	Jutland	- " -		0.29		0.48	0.60	C.2.5.1 No. 5
	Islands	- <b>" -</b>		0.21		0.12	1.75	C.2.5.1 No. 6
Apples	Denmark	- " •		0.012	8±0.0028	0.011	1.16	C.2.5.1 No. 13
Pork				0.002	20	0.020	0.10	C.3.4 1 No. 3
Reef				0.000		0.020	0.10	C 3 4 1 No. 1
Faas	-	. • .		0.000	na	0.000	1 31	C 3 6 1 No. 6
Cyyu Total diat C	-	Ba 90Sr /ka Ca)-1		123	5	123	1.00	C 4 2 1 No. 1
Total diet D	-	e".		99		02	00.1	C 4 2 1 No. 7
Human bana s				00		JL	0.30	0.4.2.1140.7
numanuone. 20 ur	"		e	177	+1 AG	24	0.50	C 4 2 1 No. 12
23 yı Mihole year			σ	11.1	11.40	34	0.52	0.4.3.1140.13
WILLIE YEAR	Islanda	"		250	+20	207	0.01	C 2 4 1 No. 1
Grass	15101105		4	200	120	307	0.01	G.2.4.1 NO. 1
rusus	-	-		107		200	0.32	C 3 7 1 No 3
Vesiculosus		• •	•	121		300	0.33	G.2.7.1 NO. 3
Ground	Deemed					0.10		01418-1
Water	Uenmark	Del	~			0.19		C.1.4.1 NO. 1
Stream water			8	7.0	10.9	5.0	1.25	C.1.4.7 NC. 3
Lake water		• "•	8	11.3	±2.0	32	0.35	C.1.4.1 NO. 5
*No samples in a) See note to	n 1991. Table C.1./	λ.						I I
								·····
								T
								I
								1
								1
								1
						I		I
						I		i i
	1					I		1 1
	1					I		1 1
	1					T		1 1
	i.		1			T		1 1
1. 1. (A1/F		T	i.		1.1	100		11 1
15Ø-K-021(E	(M)	I.	1			139		11 1
	I.	1	1			I.		11 1
	i.	1.1	т. т. т. т.		ст. т.	1		1.1 I

Table C.1.B. Comparison between observed and predicted ⁹⁰Sr levels in environmental samples collected in 1991

Sample	Location	Unit	Number observations in mean	Number Observed I servations ±1 S.E. in mean (Arithmetic mean)		Predicted	Obs./pred.	Model in reference ( <i>Aarkrog</i> 1979)	
Dried milk	Jutland	Bq ¹³⁷ Cs (kg K)-1	48	106	±7	112	0.95	a)	
- * -	Islands	. •.	36	35	±2	34	1.03	a)	
Rye	Jutland	Bq 137Cs kg-1		0.36		0.22	1.64	Appendix A	
P	Islands	.*.		0.09	6	0.64	1 50	Appendix A	
Barley	Jutland	<b>. *</b> .		0.11	6	0.150	0.77	Appendix A	E
-	Islands	- <b>-</b> .		0.0%	4	0.035	0.69	Appendix A	ğ
Wheat	Jutland	• * -		0.186		0.150	1.24	Appendix A	E S
-	Islands	. " -		0.020		0.046	0.43	Appendix A	Ę
Oats	Jutland	<b>. "</b> .		0.23		0.31	0.74	Appendix A	
-	Islands			£.05	4	0.046	1.17	Appendix A	
Potatoes	Jutland	. * -		6.11	3	0.161	0.70	C.2.5.3 No. 5	
	Islands	· • ·		0.06	9	0.005	13.8	C.2.5.3 No. 7	
Cabbage	Denmark	. <b>*</b> .	2	0.09	2±0.067	0.060	1.53	C.2.5.3 No. 1	
Carrot	-	. ".	2	0.08	7±0.070	0.038	2.29	C.2.5.3 No. 3	
Apples	-	· * ·	2	0.03	8±0.0065	0.157	0.21	0.2.5.3 No. 11	
Pork	-	. " -		0.16	5	0.29	0.57	C.3.4.2 No. 3	
Beef	-	· <b>*</b> ·		3.5		0.60	5.83	C.3.4.2 No. 1	
Eggs*	-	- * -				0.041	-	C.3.6.2 No. 6	
Total diet C	-	Bq ¹³⁷ Cs (kg K)- ¹		106		21	5.05	C.4.2.2 No. 1	
Total diet P	-	. •.		130		74	1.76	C.4.2.2 No. 6	
Persons	Zealand	.".		359		719	0.50	C.4.5.1 No. 1	

Risø-R-621(EN)

i

Teble C.P.A. Comparison between observed and	predicted 13	³⁷ Cs levels in	environmental san	whes collected in 1990
----------------------------------------------	--------------	----------------------------	-------------------	------------------------

*No samples in 1990.

a) Cf. Table C.1.A.

Sample	Location	Unit	Number observations in mean	Observed ±1 S.E. (Arithmetic mean)	Predicted	Obs./pred.	Model in reference (Aarkrog 1979	)
Dried milk	Jutland	Br; 137Cs (kg K)-1	48	77±1	85	0.91	a)	
	Islands	.*.	36	26±2	32	0.81	<b>ב</b> )	
Ryre	J. tland	Bq ¹³⁷ Cs kg ⁻¹		0.157	0.187	0.84	Appendix A	<b>۱</b>
-	Islands			0.052	0.05 <del>6</del>	0.93	Appendix A	
Barley	Jutiand	-*-		0.088	0 122	0.72	Appendix A	-
•	Isiands	· * -		0.079	0.031	2.55	Appendix A	ĮŽ
Wheat	Jutiand	- * -		3.086	0.122	0.70	Appendix A	l s
•	Islands	-*-		0.027	0.942	0 64	Appendix A	Ę
Oats	Jutland	••·		0.35	0.29	1,21	Appendix A	
•	Islands			0.973	0.041	1.78	Appendix A	ו
Potatoes	Jutland	• * •		0.113	0.152	0.74	C.2.5.3 No. 5	
-	Islands	- * -		0.042	0.004	10.5	C.2.5.3 No. 7	
Cabbage	Denmark	·•.		0.058	0.054	1.07	C.2.5.3 No. 1	
Carrot	•	- * -		0.034	0.030	1.13	C.2.5.3 Nc. 3	
Apples	-	.".		0.044	0.082	0.54	C.2.5.3 No. 11	1
Pork	-	-*-		0.49	0.16 <del>9</del>	2.90	C.3.4.2 No. 3	
8eef	-	.*.		0.44	0.42	1.05	C.3.4.2 No. 1	
Eggs	-	- * -		0.030	0.036	0.83	C.3.6.2 No. 6	
Tutal diet C	-	Bq ¹³⁷ Cs /kg K) ⁻¹		66	10.3	6.41	C 1 2.2 No. 1	
Total diet P	•	- "-		107	59	1.81	C.4.2.2 No. 6	

Table C.2.B. Comparison between observed and predicted ¹³⁷Cs levels in environmental samples collected in 1991

a) Cf. Table C.1.A.

			1			1	
1			I.			1	
I.			1			1	
I.			1			1	
I.	Dieg D. 621/END	1.1	1	1	1	1 4 1	
I.	KI50-N-921(LIN)	1.1	1	1	1	141	
I.	1	1 1	1	1	1	1 1	
i.	1 I I	1 1	1	I.	i i	1 1 1	1

## Appendix D

# Fallout Rates and Accumulated Fallout in Denmark 1950-1991

#### d;

Annual fallout rate in mCi  99 Sr km⁻² y⁻¹ or Bq  90 Sr m⁻² y⁻¹. Accumulated fallout by the end of the year (i) assuming effective half-lives of  90 Sr of 28.8 y. Unit: mCi  90 Sr km⁻² or Bq  90 Sr m⁻².

#### di(May-Av.;) and di(July-Aug):

The fallout rates in the periods: May-Aug and July-Aug, respectively. Unit: mCi  99 Sr km⁻² period⁻¹ or Bq  90 Sr m⁻² period⁻¹. The fallout rate (d_i) was based on precipitation data collected for all Denmark in the period 1962-1984 (cf. Table 4.2.1) (Risø Reports 1957-1989). Before 1962 the levels in the table were estimated from the HASL data for New York (HASL Appendix 291, 1975) (HASL 1958-1978) considering that the mean ratio between  90 Sr fallout in Denmark and New York was 0.7 in the period 1962-1974.

The  $d_{i(May-Aug)}$  and  $d_{i(July-Aug)}$  values were also obtained from 4.2 (Risø Reports 1957-1991) for the period 1962-1984. For the years 1959-1961 the values were calculated from data obtained from ⁹⁰Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø. Before 1959, the values were estimated from the corresponding  $d_i$  values assuming that the ratios  $d_{i(May-Aug)}/d_i$  and  $d_{i(July-Aug)}/d_i$  were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

Table D.1 shows the mCi  90 Sr km⁻² figures and Table D.2 gives the Bq m⁻² values.

Table D.3 (Bq ¹³⁷Cs m⁻²) was until 1986 based upon Table D.2 (the ¹³⁷Cs fallout was assumed to be 1.6 times the ⁹⁰Sr). Since 1986 the ¹³⁷Cs fallout has been based on actual measurements.

142/143

Risø-R-621(EN)
	Den	mark	Jut	land	isia	inds
Year	di	Ai _(28.82)	di	Ai _(28.82)	di	Ai _(28.82)
1950	0.021	0.020	0.022	0.021	0.020	0.020
1951	0.101	0.118	0.114	0.132	ປ. <b>088</b>	0.105
1952	0.198	0.309	0.224	0.347	0.172	0.270
1953	0.500	0.789	0.566	0.891	0.434	0.687
1954	1 901	2.623	2.152	2.967	1.650	2,279
1955	2 501	4 997	2 831	5 655	2 171	4 340
1956	3 101	7 898	3 510	8 939	2 692	6 858
1957	3 101	10 728	3 5 1 0	12 142	2 692	9 313
1958	4 302	14 658	4 869	16 501	3 734	12 725
1050	6 102	20 247	6 908	22 918	5 297	17 576
1060	1 140	20.247	1 201	23 610	0.207	18 107
1061	1.140	20.005	1.231	23.010	1 295	19 012
1062	7.401	21.707	7.070	24.001	6 990	25 155
1062	10 005	20.493	10 452	40.041	14 027	20.100
1903	10.095	44.071	10.400	49.041	14.937	39.101
1964	0.412	53.136	11.005	59.225	9.139	47.048
1965	3.954	55.679	4.204	61.861	3.704	48.497
1966	2.145	56.395	2.166	62.445	2.124	50.345
1967	1.047	56.023	1.176	62.048	0.918	49.997
1968	1.403	56.006	1.568	62.045	1.237	49.968
1969	1.035	55.632	1.241	61.721	0.829	49.542
1970	1.647	55.863	1.993	62.140	1.301	49.586
1971	1.506	55.951	1.726	62.288	1.286	49.615
1972	0.435	54.993	0.457	61.194	0.413	48.792
1973	0.192	53.821	0.215	59. <b>8</b> 91	0.168	47.750
1974	0.710	53.183	0.779	59.171	0.643	47.197
1\$75	0.414	52.272	0.452	58.150	0.376	46.397
1976	0.103	51.082	0.116	56.826	0.090	45.339
1977	0.384	50.204	0.405	55.827	0.362	44.581
1978	0.463	49.426	0.538	54,985	0.388	43.867
1979	0.166	48.379	0.174	53.810	0.156	42.947
1980	0.095	47.244	0.114	52,556	0.078	41.932
1981	0.451	46.358	0.309	51.559	0.269	41 159
1982	0.046	45 257	0.048	50 332	0.200	40 184
1983	0.036	40.207	0.036	49 1 23	0.040	30 227
1084	0.000	43 1 10	0.033	A7 041	0.037	20 282
1095	0.023	42.067	0.000	AC 776	0.020	27 260
1006	1.041	42.007	1 091	40.770	1.000	37.300
1900	0.041	42.042	0.020	40.074	1.000	07.000
1907	0.039	42.022	0.036	40.049	0.040	37.390
1900	0.027	41.049	0.024	40.004	0.030	30.03/
1909	0.0147	40.068	0.0112	44,492	0.0183	35.68/
1990	0.0137	39.149	0.0113	43.445	0.0160	34.854
1991	0.0151	38.233	0.0056	42.418	0.0095	34.035
		N.	i			
		I	1			
I.			1			
I.					1	
T			1		1	
I.			1		1 I	
44			1		Risa-R-621(1	FND
		1 I	I.		1130-11-041(1	
1		1 1	n		1 1	1
			u	1	1 1	

i.

,

Appendix D.1. Fallout rates and accumulated fullout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1991

Den	mark	Jut	land	Isla	ands
di _(May-Aug)	di _(July-Aug)	di _(Mcy-Aug)	di _( )uiy-Aug)	di _(May-Aug)	di _{(July-Aug}
0.01	0.01	0.01	0.01	0.01	0.01
0.05	0.02	0.06	0.03	0.05	0.02
0.11	0.05	0.12	0.65	0.09	<b>0.04</b>
0.27	0.12	0.31	0.14	0.23	0.10
1.03	0.46	1.16	0.52	0.89	0.40
1.35	0.60	1.53	0.68	1.17	0.52
1.67	0.74	1.90	0.84	1.45	0.65
1.67	0.74	1.90	0.84	1.45	0.65
2.32	1.03	2.63	1.17	2.01	0.90
2.50	0.68	2.76	0.75	2.24	0.61
0.47	0.31	0.52	0.34	0.42	0.28
0.66	0.47	0.73	0.52	0.590	0.42
4.223	1.857	4.566	2.052	3.880	1.562
9.965	5.629	10.753	5.932	9.177	5.327
6.235	2.568	7.170	2.910	5.2 <del>9</del> 9	2.226
2.029	0.850	2.094	0.352	1.964	0.848
1.049	0.418	0.984	0.496	1.114	C.340
0.367	0.141	0.380	0.134	C.354	0.148
0.848	0.426	0.910	0.460	0.786	0.392
0.614	0.276	0.723	0.319	0.505	0.233
0.908	0.547	1.076	0.632	0.740	0.462
0.992	0.405	1.154	0.516	0.830	0.294
0.253	0.084	0.262	0.084	0.244	0.084
0.075	0.033	0.093	0.039	0.057	0.027
0.421	0.190	0.463	0.219	0.378	0.162
0.15 <del>9</del>	0.075	0.179	0.091	0.157	0.060
0.032	0.010	0.632	0.011	0.032	0.009
0.178	0.107	0.164	0.085	0.190	0.129
0.232	0.096	0.275	0.098	0.188	0.093
0.086	0.030	0.087	0.031	0.084	0.029
0.051	0.022	0.064	0.025	0.038	0.0180
0.175	0.060	0.176	0.058	0.174	0.061
0.022	0.0071	0.024	0.0085	0.020	0.0058
0.013	0.0048	0.015	0.0055	0.0114	0.0043
0.013	0.0075	0.016	0.0090	0.0106	0.0059
0.0086	0.0054	0.0075	0.0046	0.0088	0.0062
0.74	0.052	0.78	0.055	0.70	0.048
0.0159	0.0068	0.0178	0.0068	0.0141	0.0070
0.0121	0.0075	0.0125	0.0074	0.0117	0.0076
0.0077	0.0042	0.0059	0.0025	0.0095	0.0060
0.0069	0.0037	0.0070	0.0034	0.0068	0.0041
0.0081	0.0052	0.0059	0.0026	0.0102	0.0078

Risø-R-621(EN)

ī.

	Der	mark	Ju	tland	Isia	ands
Year	di	Ai _(28.82)	di	Ai(28.82)	di	Ai _(28.82)
1950	0.777	0.759	0.814	0.795	0.740	0.722
1951	3.737	4.389	4.218	4.894	3.256	3.884
1952	7.326	11.436	8.288	12.868	6.364	10.004
1953	18.500	29.225	20.942	33.007	16.058	25.443
1954	70.337	97.196	79.624	109.954	61.050	84.438
1955	92.537	185.224	104.747	209.599	80.327	160.849
1956	114.737	292.833	129.870	331.402	99.604	254.264
1957	114.737	397.884	129.870	450.310	99.604	345.458
1958	159.174	543.820	180.153	615.481	138.158	472.124
1959	225.774	751.306	255.596	850.377	195. <b>98</b> 9	652.236
1960	42.180	774.629	47.767	876.800	36.630	672.495
1961	54.797	809.716	62.012	916.502	47.545	702.929
1962	274.836	1058.779	295.112	1182.821	254.560	934.736
1963	617.715	1636.653	684761	1821.249	552.669	1452.058
1964	385.244	1973.849	12.345	2200.039	338.143	1747.659
1965	146.298	2069.764	155.548	2299.609	137.048	1839.918
1966	79.365	2098.057	80.142	2323.199	78.588	1872.915
1967	38.739	2086.017	43.512	2310.468	33.966	1861.566
1968	51.911	2087.122	58.016	2312.200	45.769	1862.009
1969	<b>38.29</b> 5	2074.909	45.917	2302.078	30.673	1847.704
1970	60.939	2085.0 <b>9</b> 2	73.741	2319.360	48.137	1850.789
1971	55.722	2089.939	63.862	2326.587	47.582	1853.258
1972	16.095	2055.987	<b>16.909</b>	2287.806	15.281	1824.135
1973	7.104	2014.063	7.955	2241.204	6.216	1786.854
1974	26.270	1991.847	28.823	2216.082	23.791	1767.617
1975	15.318	1959. <b>46</b> 7	16.724	2179.746	13.912	1739.193
1976	3.811	1916.622	4.292	2132.136	3.330	1701.114
1977	14.208	1884.946	14.985	2096.097	13. <b>39</b> 4	1673.764
1978	17.131	1856.876	19.906	2065.718	14.356	1649.004
197 <b>9</b>	6.142	1818.745	6.438	2022.914	5.772	1614.475
1980	3.504	1 <b>778.945</b>	4.229	1979.966	2.869	1577.924
1981	10.662	1747.079	11.447	1944.499	9.967	1549.659
1982	1.691	1707.212	1.782	1900.127	1.601	1514.297
1983	1.344	1667.954	1.329	1856.433	1.359	1479.475
1984	1.094	1629.385	1.209	1813.506	C.980	1445.264
1985	0.806	1591.452	0.744	1771.286	0.868	1411.618
1986	38.5	1591.218	40	1766.622	37	1415.882
1987	1.44	1554.810	1.41	1726.017	1.47	1383.670
1988	0.989	1518.827	0.874	1685.853	1.105	1351.867
1989	0.544	1483.265	0.413	1646.193	0.677	1320.402
1990	0.506	1448.510	0.418	1607.481	0.593	1289.603
1991	J.560	1414.635	0.207	1569.483	0.353	1259.302

Appendix D.2. Fallout rates and accumulated fallout (Bq ⁹⁰Sr m⁻²) in Denmark 1950-1991

				I.	I.							
	1			I.	I.	1	1					
1	T.			I.	I.	1	1	1	1			
1	T			1			Die Dicator	1	1			
I.	1			1	)	(EN)	KI5Ø-K-621(E	1	I.			
1	11	i.		*	1	1	1	T	1	1		
I.		11	1	I.	1	1	1	T.	1 1	T.	T.	
	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1				N), , , , , , , , , , , , , , , , , , ,	Řisø-R-621(EN)	Řisø-R-621(EN)	Risø-R-621(EN)	Risø-R-621(EN)	Risø-R-621(EN)

Olitary Aug         Olitary Aug <tho< th="">         Olitary Aug         Olit</tho<>	-	Denmar	*		and :	lsia	spr] :
0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.370         0.376         0.376         0.376         0.376         0.376         0.376         0.376         0.376         0.376         0.376         0.376         0.376 <td< th=""><th>di(Atay-A</th><th>G G</th><th>(Env.Vr)</th><th>di(May-Aug)</th><th>di(Juiy-Aug)</th><th>di(May-Aug)</th><th>dil,thy-Aug)</th></td<>	di(Atay-A	G G	(Env.Vr)	di(May-Aug)	di(Juiy-Aug)	di(May-Aug)	dil,thy-Aug)
1850         0.740         2.220         1110         1850           4,070         1,850         3.30         3.30           9,950         2.2300         56.10         25.160         4.3290           61,790         2.7380         70.300         3.308         8.300           85,840         2.7380         70.300         31.080         53.550           85,840         2.7380         70.300         31.080         53.550           85,840         2.7380         70.300         31.080         53.550           85,840         2.7380         70.300         31.080         53.550           85,840         2.7380         70.300         31.080         53.550           85,840         11,470         119,240         27.380         70.306           24,420         11,470         192,404         3395.47         7.756           25,775         168,762         27.486         31.564         3395.47         7.756           38813         15,762         35.716         15,762         35.757         18.865           31376         15,762         35.671         17.020         27.68         37.750           31376         15,762	0.37	0,	0.370	0.370	0.370	0.370	0.370
4070     1.850     4.440     1.850     3.330       9990     4.440     11470     5.180     8.510       81100     77.200     5.160     73.260     53.550       617790     27.380     70.300     31.080     53.650       85.160     27.380     70.300     31.080     53.650       85.17380     70.300     31.080     53.650       85.250     27.380     70.300     31.080     53.650       85.250     27.380     70.300     31.080     53.650       85.250     27.173     19.240     12.580     15.540       17.390     17.390     17.390     27.750     82.800       15.577     11.390     17.350     14.558     14.556       26.665     36.406     188.705     14.556     14.556       27.55     36.701     19.240     12.580     15.577       21.376     13.456     77.750     13.056     33.556       21.376     21.456     36.408     14.330.549       27.56     38.71     14.565     33.556     14.518       21.456     36.408     18.705     33.556     33.566       21.456     36.408     19.022     33.566     33.566       27.56 <td>1.85</td> <td>9</td> <td>0.740</td> <td>2.220</td> <td>1.110</td> <td>1.850</td> <td>0.740</td>	1.85	9	0.740	2.220	1.110	1.850	0.740
9990         4.440         11,470         5.180         8510           38110         17.202         4.2920         19.240         33550           61.790         27.380         70.300         31.080         53550           61.790         27.380         70.300         31.080         53550           85.840         38.110         92.40         11,470         5.160         32.550           95.561         28.739         70.300         31.080         53550         22.390           95.610         27.380         70.300         31.080         53550         23.550           17.390         11,470         19.240         12.590         21.840         33556           75.073         31.450         77.478         31.524         72.668           35.761         19.240         17.202         29.06         33.524           31.376         15.762         35.711         11.803         11.686         77.369           31.376         15.762         35.671         11.4303         11.686         77.369           31.376         15.762         35.671         11.803         11.686         77.369           31.376         15.762         35.676	4.07	0	1.850	4.440	1.850	3.330	1.480
38.110     17.020     42.920     19.240     32.930       61.790     27.380     70.300     31.060     53.550       61.790     27.380     70.300     31.060     53.550       85.640     38.110     97.310     87.290     73.560     55.610     53.550       85.640     25.160     11.470     102.120     27.380     70.305     53.560       85.640     25.160     11.470     102.120     27.750     53.560     53.560       25.671     13.670     17.390     27.010     19.240     21.830       75.673     31.450     77.750     27.940     15.9464     3395.543       368.705     200273     38.97861     21.9464     3395.543       368.705     200273     35.760     17.478     31.524       31376     15.762     35.670     17.478     31.524       31376     15.762     33.670     17.478     31.935       31376     15.762     33.670     17.478     31.768       31376     15.762     33.670     17.478     31.769       31376     15.762     33.670     17.478     21.94       31376     15.762     33.670     17.4705     20.023       31376     13.7	66.6	2	4,440	11.470	5.180	8.510	3.700
49.950         22.200         56.610         25.160         43.290           61.790         27.380         70.300         31.080         53.650           85.840         38.110         97.310         97.310         53.650           85.840         38.110         97.310         77.380         73.00         53.650           85.840         38.110         97.310         97.310         73.290         27.750           85.840         38.11470         19.240         12.540         15.540         74.740           17.330         17.390         27.55.94         14.356         74.740         33.554           368.705         50.610         75.730         31.650         74.780         33.564         74.740           368.705         368.705         168.942         75.944         33.564         74.740           368.705         368.705         37.661         102.710         12.560         74.740           313.76         15.762         33.671         11.7020         25.666         33.656           313.76         15.762         33.671         11.7020         25.602         33.671           313.76         15.762         33.671         11.403         31.666<	38.11	0	17.020	42.920	19.240	32.930	14.800
61/760         27/380         70.300         31.080         53.650           61/790         27/380         70.300         31.080         53.650           85.06         25.160         102.120         27.750         82.880           92.500         25.160         192.40         12.560         15.540           24.420         17.390         27.700         27.820         27.830           368.705         268.773         31.450         77.520         82.880           75.073         31.450         77.478         31.524         75.540           75.073         31.450         77.478         31.524         77.560           75.073         31.450         77.478         31.554         77.268           75.073         31.450         77.478         31.554         77.268           38.813         15.762         35.771         11.803         18.685           31.376         15.775         30.670         17.020         29.082           31.376         15.762         33.670         17.020         29.082           31.376         15.762         33.670         17.020         29.082           31.3356         15.762         33.670         17	49.95	0	22.200	56.610	25.160	43.290	19.240
61.790         27.380         70.300         31.080         53.550           85.840         38.110         97.310         43.2290         74.740           92.550         11.470         192.40         12.580         74.740           92.551         88.705         98.640         15.540         27.830           15.6251         88.709         75.073         31.450         77.476         31.524           75.073         31.450         77.478         31.524         71.835         55.801         195.466         38.910         77.478         31.524         71.833         56.93         33.560         21.830         73.05         33.560         21.830         73.05         33.560         21.830         73.05         33.560         33.561         17.354         31.524         72.568         33.566         33.566         33.566         33.566         33.566         33.566         33.566         33.766         33.566         33.766         33.566         33.766         33.566         33.766         33.566         33.718         33.966         55.727         33.067         31.66         33.718         33.966         33.718         33.966         33.718         33.966         33.718         33.677         33.677 <td>61.79</td> <td>2</td> <td>27.380</td> <td>70.300</td> <td>31.080</td> <td>53.650</td> <td>24.050</td>	61.79	2	27.380	70.300	31.080	53.650	24.050
85.840         38.110         97.310         87.320         74.740           22.500         25.160         102.120         27.750         82.880           17.330         11.470         122.40         125.80         15.540           156.251         68.709         168.942         75.924         143.560           368.705         29.5016         285.300         107.670         192.461         339.549           368.705         20.86.73         397.861         219.484         339.549         11           368.705         29.5016         285.290         107.670         192.440         218.46           38813         15.465         36.408         18.352         412.18         315.560           313.76         15.762         33.670         17.020         29.082         33.959           313.76         15.772         33.867         17.020         29.08         33.552           313.76         15.762         33.867         17.020         29.08         33.666           313.76         15.762         33.867         17.020         29.08         33.656           3145         5.775         13.08         2.109         15.866         3.668         3.666	61.79	2	27.380	70.300	31.080	53.650	24.050
92.500         25.160         102.120         27.750         82.800           17.390         11.470         19.240         12.540         15.540           15.420         13.760         168.942         75.924         143.560           368.705         50.16         255.290         107.670         196.063           75.073         31.450         77.478         31.524         75.540           75.073         31.450         77.478         31.524         75.540           75.073         31.450         77.478         31.524         71.803           75.073         31.450         77.478         31.524         72.668           75.073         31.450         77.478         31.524         72.668           31.376         15.762         33.670         17.020         29.082           31.376         15.762         33.670         17.020         29.082           31.356         20.217         14.066         48.65         33.670           31.357         7.030         17.131         8.103         2.109           31.65         1.7110         3.219         11.47         2.109           31.65         1.1103         3.367         1.147 <td>85.84</td> <td>0</td> <td>38.110</td> <td>97.310</td> <td>43.290</td> <td>74.740</td> <td>33.300</td>	85.84	0	38.110	97.310	43.290	74.740	33.300
17.390         11.470         19.240         12.540           156.251         68.779         18.342         75.540           156.655         268.779         18.342         75.524           156.655         268.779         19.240         21.830           75.073         31.450         77.478         31.524         73.566           75.073         31.450         77.478         31.524         72.668           36813         15.466         36.408         19.352         73.568           313579         5.217         14.060         19.352         72.668           313579         5.217         14.060         19.352         72.668           31561         15.77         33.671         17.020         29.082           33566         35.217         14.965         46.64         33.086           2775         1.211         10.212         26.751         11.803         13.665           3567         1.3108         3.168         13.108         13.08         3.736           3557         1.0212         26.751         11.803         13.666         3.676           3686         3.552         10.177         3.108         1.420 <td< td=""><td>92.50</td><td>9</td><td>25.160</td><td>102.120</td><td>27.750</td><td>82.880</td><td>22.570</td></td<>	92.50	9	25.160	102.120	27.750	82.880	22.570
24.420       17.390       27.010       19.240       21.830         156.251       68.709       168.942       75.924       143.560         330.655       95.016       255.26       143.560       33.549       75.924       143.560         75.073       31.456       74.78       33.524       72.668       33.546       143.560         75.073       31.456       31.546       36.408       18.352       412.18         3813       15.466       36.408       18.352       412.18         313.776       15.762       35.670       177.020       29.082         313.76       15.762       35.670       177.020       29.082         313.76       15.762       33.671       11.003       18.655         33.566       20.238       33.812       27.108       9.028         35.775       1.0212       2.656       30.710       9.028         35.775       1.221       3.441       1.443       2.109         35.70       1.180       17.131       8.103       30.710         9361       2.733       1.121       3.445       7.030         1.184       0.316       0.370       0.316       0.326	17.39	2	11.470	19.240	12.580	15.540	10.360
156.251         68.709         168.942         75.924         143.560           368.705         230.665         397.661         279.484         339.569         17           368.705         230.1450         77.478         31.524         72.68         339.569         17           368.705         5217         14.660         4.958         13.524         72.68         339.569         17.670         196.063         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.524         72.68         31.096         31.696         31.696         31.790         31.696         37.109         32.69         37.109         32.696         37.109         32.696         37.109         32.696         37.109         32.696         37.109         32.696         37.109         32.696         37.703         32.696         37.703         32.696         37.703         36.66         36.66         36.66         36.66	24.42	0	17.390	27.010	19.240	21.830	15.540
368.705         208.273         397.861         219.484         339.549         1           75.073         31.450         77.478         31.524         72.668         33.524         72.668           75.073         51.456         36.408         18.352         41.218         31.524         72.668           31.376         5.217         14.060         18.352         41.218         31.524         72.668           31.376         5.217         14.060         18.352         41.218         31.524         72.668           31.376         15.762         33.670         17.020         29.082         30.710           31.376         15.775         1.0212         26.751         11.803         18.665         30.710           33.556         20.239         33.812         23.341         1.400         31.66         43.367           33.557         1.0212         26.751         11.803         13.396         580         580           2775         1.221         3.441         1.443         2.109         5106           1.184         0.376         0.366         0.314         0.407         1.184           5.883         2.775         6.623         3.267	156.25		68.709	168.942	75.924	143.560	61.494
230.655         95.016         285.290         107.670         196.063           75.073         31.450         77.478         31.524         72.668           38.813         15.765         35.406         115.762         31.656           31.376         15.762         33.600         17.020         29082           31.376         15.762         33.600         17.020         29082           31.376         15.762         33.600         17.020         29082           35.704         14.985         42.698         19.092         30.710           9361         3.108         9.694         31.08         9.028           35.775         1.221         3.441         1.443         27.380           35.86         3.959         6.068         3.145         7.030           55.777         7.030         17.131         8.103         3.386           55.883         2.775         6.668         3.145         7.030           55.864         3.959         6.068         3.145         7.030           55.87         1.110         3.219         1.147         3.108           55.87         0.1763         0.205         0.147         0.436	368.70	5	208.273	397.861	219.484	339.549	197.099
75.073         31.450         77.478         31.524         72.668           38.13         15.466         36.408         18.352         41.218           31.376         15.762         35.670         17.020         29.062           22.718         15.762         35.670         17.020         29.062           33.596         20.212         25.77         14.060         4.956         13.008           35.704         14.965         32.670         17.020         29.062         30.710           35.704         14.965         42.696         19.092         30.710         9.26           35.775         1.221         3.441         1.443         2.709         1.3966           55.77         7.030         1.7.131         8.103         30.710         9.28           55.88         2.775         1.221         3.441         1.443         2.709           55.84         3.552         10.175         3.626         6.956         9.28           56.86         3.367         0.164         0.407         1.184         0.720           1.184         0.370         0.581         0.325         0.425         0.425         0.425           0.456	230.69	5	95.016	265.290	107.670	196.063	82.362
38.813         15.466         36.408         18.352         41.218           13.579         5.217         14.060         4.958         13.098           31.376         15.762         33.670         17.020         29.002           31.376         15.762         33.670         17.020         29.002           35.704         14.985         45.651         11.803         18.665           35.704         14.985         25.873         11.803         18.665           35.704         14.985         25.872         21.09         27.380           35.704         14.985         25.83         3.108         9.027           35.883         2.775         1.221         3.441         1.443         2.109           5.883         2.775         1.221         3.441         1.443         2.109           5.883         2.775         6.623         3.367         7.030           8.584         3.552         10.173         8.103         7.030           8.584         3.552         10.176         0.407         1.184           0.464         2.205         0.666         6.494         2.144         6.433           0.464         2.205	75.07	5 S	31.450	77.478	31.524	72.668	31.376
13579       5.217       14.060       4.958       13.098         31376       15.762       33.670       17.020       29.082         32.718       10.212       26.751       11.803       18.685         33.596       20239       39.812       23.364       27.380         36.704       14.985       42.698       19.092       30.710         36.704       14.985       42.698       19.092       30.710         36.704       14.985       42.698       19.092       30.710         36.704       14.985       42.698       19.092       30.710         36.715       1.201       17.131       8.103       21.98       9028         2775       0.370       17.131       8.103       13.965       5.803         5.883       2.775       6.6523       3.441       1.447       3.108         1.184       0.370       1.184       0.407       1.184       0.755         0.858       3.355       10.175       3.2626       6.956       6.956         3.182       1.110       3.219       0.407       1.184       0.755         0.453       0.178       0.266       0.216       0.423       0.423 <td>38.81</td> <td>с С</td> <td>15.466</td> <td>36.408</td> <td>18.352</td> <td>41.218</td> <td>12.580</td>	38.81	с С	15.466	36.408	18.352	41.218	12.580
31.376     15.762     33.570     17.020     29.082       22.718     10.212     26.751     11.803     18.685       33.596     20.239     39.812     23.384     27.380       36.704     14.985     42.698     19.092     30.710       9.361     3.108     9.894     31.08     9.028       35.775     1.221     3.441     1.443     2.109       1.5577     7.030     17.131     81.03     13.996       5.5577     7.030     17.131     81.03     33.996       5.588     2.775     6.668     3.145     7.030       5.584     3.552     10.175     3.626     6.956       3.182     1.110     3.219     1.147     3.108       5.584     3.552     10.175     3.626     6.956       3.182     1.110     3.219     1.147     3.108       1.903     0.816     0.326     0.336     0.335       0.467     0.178     0.202     0.407     1.420       0.468     0.217     0.581     0.305     0.423       0.416     2.366     0.168     0.314     0.755       0.417     0.178     0.202     0.423     0.255       0.447     0	13.57	ð	5.217	14.060	4.958	13.098	5.476
22.718       10.212       26.751       11.803       18.685         33.596       20.239       39.812       23.384       27.380         36.704       14.985       42.698       19.092       30.710         9.361       3.108       9.694       3.108       9.028         2.775       1.221       3.441       1.443       2.109         15.577       7.030       17.131       8.103       0.306         15.577       7.030       17.131       8.103       0.306         15.662       3.552       10.175       3.666       9.696         1.868       3.552       10.175       3.626       6.956         3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.3365       0.0423       0.423         0.464       2.205       6.494       2.144       6.433         0.473       0.266       0.314       0.755       0.423         0.486       0.277       0.586       0.326       0.326         0.410       0.266       0.266       0.423       0.423         0.447       0.276       0.166       0.265       0.423         0.59 <td>31.37</td> <td>9</td> <td>15.762</td> <td>33.670</td> <td>17.020</td> <td>29.082</td> <td>14.504</td>	31.37	9	15.762	33.670	17.020	29.082	14.504
33.596       20.239       39.812       23.384       27.380         36.704       14.985       42.698       19.092       30.710         9.361       3.108       9.694       3.108       9.028         2.775       1.221       3.441       1.443       2.109         15.577       7.030       17.131       8.103       30.710         5.883       2.775       6.623       3.367       5.809         5.883       2.775       6.623       3.367       5.809         5.883       2.775       6.623       3.367       7.030         6.586       3.959       6.068       0.407       1.184         6.588       3.552       10.175       3.266       6.956         3.185       0.176       0.217       0.314       0.723         0.816       0.265       6.494       2.144       6.433         0.453       0.178       0.277       0.316       0.326         0.410       1.184       0.277       0.581       0.725         0.453       0.178       0.216       0.326       0.325         0.416       0.277       0.281       0.326       0.432         0.255	22.71	8	10.212	26.751	11.803	18.685	8.621
36.704     14.985     42.698     19.092     30.710       9.361     3.108     9.694     3.108     9.028       2.775     1.221     3.441     1.443     2.109       15.577     7.030     17.131     8.103     13.986       5.883     2.775     6.623     3.367     5.809       1.184     0.370     1.184     0.407     1.184       6.586     3.959     6.068     3.145     7.030       8.584     3.552     10.175     3.676     6.956       3.182     1.110     3.219     1.147     3.108       1.903     0.816     2.386     0.314     0.755       0.464     2.205     6.494     2.144     6.433       0.483     0.263     0.178     0.314     0.755       0.483     0.277     0.581     0.336     0.3355       0.483     0.277     0.581     0.336     0.325       0.447     0.276     0.166     0.255     0.423       0.59     0.157     0.219     0.093     0.325       0.55     0.166     0.255     0.423       0.55     0.166     0.255     0.423       0.255     0.169     0.093     0.325 <t< td=""><td>33.59</td><td>ę</td><td>20.239</td><td>39.812</td><td>23.384</td><td>27.380</td><td>17.094</td></t<>	33.59	ę	20.239	39.812	23.384	27.380	17.094
9.361     3.108     9.694     3.108     9.028       2.775     1.221     3.441     1.443     2.109       2.775     1.221     3.441     1.443     2.109       5.883     2.775     6.623     3.357     5.809       1.184     0.370     1.184     0.407     1.184       6.586     3.959     6.068     3.145     7.030       8.584     3.552     10.175     3.626     6.956       3.182     1.1110     3.219     1.147     3.108       1.903     0.816     0.263     6.494     2.144     6.433       0.453     0.178     0.263     0.814     0.755       0.475     0.263     0.876     0.314     0.755       0.486     0.200     0.263     0.314     0.755       0.477     0.263     0.169     0.326     0.423       0.741     0.277     0.263     0.314     0.755       0.59     0.201     0.272     0.169     0.326       27.4     1.91     28.8     2.05     0.755       0.59     0.157     0.219     0.033     0.351       0.255     0.157     0.219     0.033     0.351       0.256     0.193	36.70	Ŧ	14.985	42.698	19 092	30.710	10.878
2.775       1.221       3.441       1.443       2.109         15.577       7.030       17.131       8.103       3.396         5.883       2.775       6.623       3.367       5.809         1.184       0.370       1.184       0.407       1.184         6.586       3.959       6.068       3.145       7.030         8.584       3.552       10.175       3.626       6.956         3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.386       0.936       1.420         6.464       2.205       6.494       2.144       6.433         0.475       0.178       0.263       0.314       0.755         0.475       0.263       0.314       0.755       0.423         0.475       0.263       0.314       0.755       0.423         0.488       0.277       0.581       0.336       0.335         0.59       0.263       0.169       0.326       0.325         0.518       0.2019       0.033       0.326       0.432         0.255       0.166       0.255       0.432       0.326         0.286       0.138 </td <td>9.36</td> <td></td> <td>3.108</td> <td>9.694</td> <td>3.108</td> <td>9.028</td> <td>3.108</td>	9.36		3.108	9.694	3.108	9.028	3.108
15.577     7.030     17.131     8.103     13.986       5.883     2.775     6.623     3.367     5.809       1.184     0.370     1.184     0.407     1.184       6.586     3.959     6.068     3.145     7.030       8.584     3.552     10.175     3.626     6.956       3.182     1.110     3.219     1.147     3.108       1.903     0.816     2.386     0.936     1.420       6.464     2.205     6.494     2.144     6.433       0.453     0.178     0.581     0.335     0.423       0.453     0.178     0.581     0.336     0.335       0.453     0.178     0.581     0.336     0.335       0.488     0.277     0.581     0.336     0.326       0.488     0.277     0.581     0.336     0.326       0.59     0.276     0.276     0.169     0.326       0.59     0.276     0.265     0.635     0.432       0.255     0.157     0.288     0.025     0.432       0.298     0.193     0.219     0.033     0.336       0.298     0.193     0.219     0.033     0.335       0.298     0.193     0.219 <td>2.77</td> <td>5</td> <td>1.221</td> <td>3.441</td> <td>1.443</td> <td>2.109</td> <td>0.999</td>	2.77	5	1.221	3.441	1.443	2.109	0.999
5.883       2.775       6.623       3.367       5.809         1.184       0.370       1.184       0.407       1.184         6.586       3.959       6.068       3.145       7.030         8.584       3.552       10.175       3.626       6.956         3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.205       6.494       2.144       6.433         0.464       2.205       6.494       2.144       6.433         0.403       0.178       0.263       0.314       0.755         0.466       0.263       (.876       0.314       0.755         0.433       0.200       0.277       0.581       0.336       0.326         0.433       0.200       0.276       0.169       0.326       0.423         0.59       0.200       0.276       0.169       0.326       0.432         0.59       0.255       0.166       0.265       0.432       0.432         0.208       0.193       0.218       0.093       0.351       0.523         0.295       0.193       0.219       0.093       0.378       0.378         0.298 <td>15.57</td> <td>2</td> <td>7.030</td> <td>17.131</td> <td>8.103</td> <td>13.986</td> <td>5.994</td>	15.57	2	7.030	17.131	8.103	13.986	5.994
1.184     0.370     1.184     0.407     1.184       6.586     3.959     6.068     3.145     7.030       8.584     3.552     10.175     3.626     6.956       3.182     1.110     3.219     1.147     3.108       1.903     0.816     2.386     0.936     1.420       6.464     2.205     6.494     2.144     6.433       0.453     0.178     0.263     (.876     0.314     0.755       0.453     0.178     0.263     (.876     0.314     0.755       0.453     0.178     0.261     0.236     0.423       0.453     0.178     0.261     0.236     0.423       0.453     0.178     0.261     0.336     0.326       0.453     0.274     0.202     0.423       0.318     0.200     0.276     0.169     0.326       0.47     1.91     28.8     2.05     26.0       0.54     0.193     0.219     0.093     0.326       0.255     0.138     0.219     0.093     0.316       0.255     0.193     0.218     0.093     0.361       0.298     0.193     0.219     0.093     0.378       0.298     0.193     <	5.88	g	2.775	6.623	3.367	<u>5</u> .809	2.220
6.586       3.959       6.068       3.145       7.030         8.584       3.552       10.175       3.626       6.956         3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.386       0.936       1.420         6.464       2.205       6.494       2.144       6.433         0.816       0.263       0.876       0.314       0.755         0.453       0.178       0.263       0.876       0.336         0.488       0.277       0.281       0.336       0.335         0.318       0.200       0.276       0.169       0.326         0.318       0.200       0.276       0.169       0.326         0.47       0.291       0.336       0.336       0.423         0.59       0.200       0.276       0.169       0.326         0.447       0.276       0.169       0.265       0.432         0.255       0.133       0.259       0.136       0.253         0.265       0.133       0.219       0.093       0.351         0.298       0.193       0.269       0.132       0.365         0.255       0.193	1.18	<u>s</u>	0.370	1.184	0.407	1.184	0.333
NA       3.552       10.175       3.626       6.956         3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.386       0.936       1.420         6.464       2.205       6.494       2.144       6.433         0.816       0.263       0.876       0.314       0.755         0.453       0.178       0.263       0.876       0.335         0.488       0.277       0.581       0.202       0.423         0.318       0.200       0.277       0.581       0.755         0.318       0.200       0.276       0.169       0.326         0.318       0.200       0.276       0.169       0.326         0.47       1.91       28.8       2.05       0.610         27.4       1.91       28.8       2.05       0.652         0.447       0.253       0.169       0.0336       0.432         0.255       0.138       0.219       0.093       0.351         0.255       0.193       0.219       0.093       0.351         0.256       0.193       0.219       0.093       0.253         0.255       0.193 <t< td=""><td>6.58</td><td>9</td><td>3.959</td><td>6.068</td><td>3.145</td><td>7.030</td><td>4.773</td></t<>	6.58	9	3.959	6.068	3.145	7.030	4.773
3.182       1.110       3.219       1.147       3.108         1.903       0.816       2.386       0.936       1.420         6.464       2.205       6.494       2.144       6.433         0.816       0.263       (.876       0.314       0.755         0.453       0.178       0.581       0.202       0.423         0.488       0.277       0.581       0.202       0.423         0.318       0.200       0.276       0.336       0.395         0.318       0.200       0.276       0.336       0.395         0.318       0.200       0.276       0.423       0.326         0.318       0.200       0.276       0.423       0.326         0.447       0.276       0.462       0.275       0.432         0.255       0.157       0.219       0.093       0.351         0.255       0.138       0.259       0.126       0.253         0.298       0.193       0.219       0.097       0.378         0.298       0.193       0.219       0.097       0.376         0.298       0.193       0.219       0.097       0.378         0.298       0.193	8.58	র	3.552	10.175	3.626	6.956	3 441
1.903       0.816       2.386       0.936       1.420         6.464       2.205       6.494       2.144       6.433         0.816       0.263       (.876       0.314       0.755         0.453       0.178       0.564       0.202       0.423         0.488       0.277       0.581       0.202       0.423         0.488       0.277       0.581       0.203       0.423         0.318       0.200       0.276       0.169       0.395         0.318       0.200       0.276       0.169       0.326         27.4       1.91       28.8       2.05       0.326         0.59       0.276       0.462       0.272       0.432         0.285       0.157       0.219       0.093       0.351         0.255       0.138       0.218       0.025       0.432         0.298       0.193       0.218       0.093       0.351         0.298       0.193       0.218       0.035       0.378         0.298       0.193       0.218       0.093       0.353         0.298       0.193       0.218       0.097       0.378         0.298       0.193	3.18	<u>ល</u>	1.110	3.219	1.147	3.108	1.073
6464       2.205       6494       2.144       6433         0.816       0.263       (.876       0.314       0.755         0.453       0.178       0.544       0.202       0.423         0.488       0.277       0.581       0.202       0.423         0.318       0.200       0.276       0.169       0.326         27.4       1.91       28.8       2.05       26.0         27.4       1.91       28.8       2.05       0.52         0.59       0.25       0.66       0.25       0.52         0.47       0.276       0.462       0.272       0.432         0.285       0.138       0.219       0.093       0.351         0.255       0.138       0.219       0.093       0.351         0.2098       0.193       0.218       0.0253       0.253         0.298       0.193       0.218       0.0351       0.351         0.298       0.193       0.218       0.0351       0.355         0.298       0.193       0.218       0.0253       0.253         0.298       0.193       0.219       0.0351       0.351         0.298       0.193       0.	1.90	<u>ღ</u>	0.816	2.386	0.936	1.420	0.664
0816 0.263 (.876 0.314 0.755 0.453 0.178 0.544 0.202 0.423 0.488 0.277 0.581 0.336 0.395 0.318 0.200 0.276 0.169 0.326 27.4 1.91 28.8 2.05 26.0 0.59 0.25 0.66 0.25 0.52 0.447 0.276 0.462 0.272 0.432 0.255 0.157 0.219 0.093 0.351 0.255 0.138 0.259 0.126 0.253 0.256 0.193 0.218 0.097 0.378	6.46	4	2.205	6.494	2.144	6.433	2.265
0453 0.178 0.544 0.202 0.423 0.488 0.277 0.581 0.336 0.395 0.318 0.200 0.276 0.169 0.326 27.4 1.91 28.8 2.05 26.0 0.447 0.276 0.462 0.25 0.52 0.447 0.276 0.462 0.272 0.432 0.285 0.157 0.219 0.093 0.351 0.298 0.193 0.218 0.097 0.253 0.298 0.193 0.218 0.097 0.253 147	0.81	9	0.263	0.876	0.314	0.755	0.215
0488 0.277 0.581 0.336 0.395 0.318 0.200 0.276 0.169 0.326 27.4 1.91 28.8 2.05 26.0 0.59 0.25 0.66 0.25 0.52 0.447 0.276 0.462 0.272 0.432 0.266 0.25 0.65 0.193 0.269 0.126 0.253 0.298 0.193 0.218 0.097 0.378 0.298 0.193 0.218 0.097 0.378	0.45	9	0.178	n.544	0.202	0.423	0.160
0.318 0.200 0.276 0.169 0.326 27.4 1.91 28.8 2.05 26.0 0.59 0.25 0.66 0.25 0.432 0.447 0.276 0.462 0.272 0.432 0.285 0.157 0.219 0.093 0.351 0.256 0.138 0.259 0.126 0.253 0.298 0.193 0.218 0.097 0.378 1.47	0.48	g	0.277	0.581	0.336	0.395	0.216
27.4     1.91     28.8     2.05     26.0       0.59     0.25     0.66     0.25     0.52       0.447     0.276     0.462     0.272     0.432       0.285     0.157     0.219     0.093     0.351       0.255     0.138     0.259     0.126     0.253       0.298     0.193     0.219     0.097     0.351       0.298     0.193     0.218     0.253     0.351       0.298     0.193     0.218     0.037     0.253       0.298     0.193     0.218     0.037     0.378       0.298     0.193     0.218     0.097     0.378       147     147     147     147     147	0.31	8	0.200	0.276	0.169	0.326	0.230
0.59 0.25 0.66 0.25 0.52 0.447 0.276 0.462 0.272 0.432 0.285 0.157 0.219 0.093 0.351 0.259 0.138 0.259 0.126 0.253 0.298 0.193 0.218 0.097 0.378 147	27.4		1.91	28.8	2.05	26.0	1 76
0.447 0.276 0.462 0.272 0.432 0.285 0.157 0.219 0.093 0.351 0.258 0.138 0.259 0.126 0.253 0.298 0.193 0.218 0.097 0.378 N)	0.59	_	0.25	0.66	0.25	0.52	0.26
0.285 0.157 0.219 0.093 0.351 0.255 0.138 0.259 0.126 0.253 0.298 0.193 0.218 0.253 147	0.44	2	0.276	0.462	0.272	0.432	0.280
0.255 0.138 0.259 0.126 0.253 0.298 0.193 0.218 0.097 0.378 147	0.28	5	0.157	0.219	0.093	0.351	0.221
0.298 0.193 0.218 0.097 0.378	0.25	S	0.138	0.259	0.126	0.253	0.151
2 142	0.29	8	0.193	0.218	0.097	0.378	0.289
I47							
I 47							
I47				-			
-	ź				-	147	-
	-	_		-	_		-

-

	Der	mark	Jut	iand	Isla	ands
Year	dı	Ai _(39.02)	đi	Ai _(30.02)	di	Ai _(30.02)
1950	1.243	1.215	1.302	1.273	1.184	1.157
1951	5.979	7.030	6.749	7.838	5.210	6.221
1952	11.722	18.323	13.261	20.618	10.182	16.0 <b>29</b>
1953	29.600	46.830	33.507	52.889	25.693	40.770
1954	112.539	155.731	127. <b>398</b>	176.173	97.680	135.290
1 <b>9</b> 55	148.059	296.857	167.595	335.922	128.523	257.792
1956	183.579	469.471	207.792	531.304	159.366	407.637
1957	183.579	638.145	207.792	722.227	159.366	554.062
1958	254.678	872.445	288.245	987.409	221.053	757.424
1959	361.238	1205.526	408.954	1364.492	313.582	1046.561
1960	<b>67.488</b>	1243.959	76.427	1408.032	58.608	1079. <b>940</b>
1961	87.675	1301.241	<b>99.219</b>	1472.849	76.072	1129.632
1962	439.738	1701.242	472.179	1900.635	407.296	1501.849
1963	988.344	2628.199	1092.418	2924.739	884.270	1331.659
1964	616.390	3170.535	691.752	3533.949	541.029	2807.121
1965	234.077	3326.905	248.877	3696.486	<b>219.277</b>	2957.324
1966	126.984	3375.057	128.227	3737.418	125.741	3012.697
1967	61.982	3358.593	<b>69.619</b>	3720.145	54.346	2997.040
1968	83.058	3363.098	92.826	3725.944	73.230	3000.195
1969	61.272	3346.212	73.467	3712.693	49.077	2979.675
1\$70	97.502	3365.115	117.986	3743.247	77.01 <del>9</del>	2986.928
1971	89.155	3375.430	102.179	3757 659	76.131	2993.148
1972	25.752	3323.554	27.054	3698.331	24.450	2948.724
1973	11.366	3258.804	12. <b>728</b>	3626.358	9.946	2891.141
1974	42.032	3225.498	46.117	3588.654	38.066	2862.350
1975	24.509	3175.328	26.758	3532.894	22.259	2818.771
1976	6.098	3109.302	6.867	3458.970	5.328	2759.642
1977	22.733	3060.549	23.976	3403.451	21.430	2717.597
1978	27.410	3017.479	31.850	3356.893	22.970	2678.016
1979	9.827	2958.211	10.301	3290 341	9.235	2625.917
1980	5.606	2896.171	6.766	3221.854	4.591	2570.470
1981	17.059	2846.738	18.316	3165.216	15.948	2527.385
1982	2.706	2784.409	2.851	3096.736	2.561	2472.203
1983	2.151	2722.959	2.126	3028,134	2.175	2417 902
1984	1.751	2662.521	1.935	2960.911	1.567	2364.247
1985	1.290	2603.012	1,191	2894.495	1.388	2311.642
1986	1210.000	3725.984	1340.000	4137.847	1080.000	3314.232
1987	29.000	3669.280	32.000	4074.674	26.000	3263.994
1988	11.900	3597.161	13.400	3994.768	16.300	3199 562
1989	3.500	3518.480	4.510	3907.998	2.530	3129.007
1990	2.63	3440.744	3.85	3822.564	1.41	3058.968
1991	1.63	3363.805	1.92	3737.194	1.36	2990.480
					······································	

Appendix D.3. Fallout rates and accumulated fallout (Bq ¹³⁷Cs m⁻²) in Denmark 1950-1991

				1		i.		1		
				I.		1		1		
				T		I.		1	I.	
				I.	1	1		1	1	1
				I.	1	1		1	1	1
				I.	1	1		1	1	I.
			1	1.1		1			i.	1
148	I.	I.	1 1	1 1	I.	1	Ris	5ø-R-62	1(EN)	т. т.
	I.	I.	1 1	1.1	I.	1		I.	I.	1 I
	I.	I.	1 1	1 1	I.	1 1	I.	I.	1	1 I I
	i.	I.	1 1	1.1	1.1	1 1	1	1	1.1	

i.

Aug)         di _(Juby-Aug) di _{(May} 592         0.592         0.4           960         1.184         3.4           512         2.960         7.7           984         7.104         18.5           976         27.232         68.6           920         35.520         90.5           864         43.808         112.4           864         43.808         112.4           864         43.808         112.4           864         43.808         112.4           864         43.808         112.4           864         43.808         12.4           864         43.808         12.4           864         43.808         12.4           864         43.808         12.4           864         43.808         12.4           928         33.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339 <th>Aug)         Cli (July Au           592         0.593           552         1.770           104         2.960           352         8.28           572         30.78           576         40.250           480         49.720           480         49.720           596         69.260           392         44.40           784         20.122           216         30.78           307         121.47           578         351.17           464         172.27           965         50.43           253         29.363           496         7.933           872         27.23           802         18.82</th> <th>di_(May-Aug)           2         0.592           6         2.960           0         5.328           8         13.616           4         52.688           6         69.264           8         85.840           8         85.840           4         119.584           0         132.608           8         24.864           4         34.928           8         229.696           4         543.278           2         313.701           8         116.269           3         65.949</th> <th>^{di}(July-Aug 0.592 1.184 2.368 5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202</th>	Aug)         Cli (July Au           592         0.593           552         1.770           104         2.960           352         8.28           572         30.78           576         40.250           480         49.720           480         49.720           596         69.260           392         44.40           784         20.122           216         30.78           307         121.47           578         351.17           464         172.27           965         50.43           253         29.363           496         7.933           872         27.23           802         18.82	di _(May-Aug) 2         0.592           6         2.960           0         5.328           8         13.616           4         52.688           6         69.264           8         85.840           8         85.840           4         119.584           0         132.608           8         24.864           4         34.928           8         229.696           4         543.278           2         313.701           8         116.269           3         65.949	^{di} (July-Aug 0.592 1.184 2.368 5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
592         0.592         0.5           960         1.184         3.5           512         2.960         7.5           984         7.104         18.5           976         27.232         68.6           920         35.520         90.5           864         43.808         112.4           864         43.808         112.4           344         60.976         155.0           000         40.256         163.5           824         18.352         30.7           072         27.824         43.2           062         109.934         270.5           928         333.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	592       0.592         552       1.77         104       2.96         352       8.28         576       40.25         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	2         0.592           6         2.960           0         5.328           8         13.616           4         52.688           6         69.264           8         85.840           8         85.840           4         119.584           0         132.608           8         24.864           4         34.928           8         229.696           4         543.278           2         313.701           8         116.269           3         65.949	0.592 1.184 2.368 5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
960       1.184       3.9         512       2.960       7.1         984       7.104       18.3         976       27.232       68.6         920       35.520       90.9         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       18.52       30.7         000       40.256       163.5         002       109.934       270.5         928       333.237       636.5         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349	552       1.77         104       2.96         352       8.28         572       30.78         576       40.25         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	6       2.960         0       5.328         8       13.616         4       52.688         6       69.264         8       85.840         8       85.840         4       119.584         0       132.608         8       24.864         4       34.928         8       229.696         4       543.278         2       313.701         8       116.269         3       65.949	1.184 2.368 5.920 23.680 30.784 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
512       2.960       7.         984       7.104       18.         976       27.232       68.0         920       35.520       90.8         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       12.4         900       40.256       163.1         824       18.352       30.7         072       27.824       43.4         062       109.934       270.5         928       333.237       636.5         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726 </td <td>104       2.96         352       8.28         572       30.78         576       40.25         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82</td> <td>0 5.328 8 13.616 4 52.688 6 69.264 8 85.840 8 85.840 4 119.584 0 132.608 8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949</td> <td>2.368 5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202</td>	104       2.96         352       8.28         572       30.78         576       40.25         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	0 5.328 8 13.616 4 52.688 6 69.264 8 85.840 8 85.840 4 119.584 0 132.608 8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	2.368 5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
984       7.104       18.:         976       27.232       68.0         920       35.520       90.!         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         344       60.976       155.0         000       40.256       163.3         824       18.352       30.7         072       27.824       43.2         062       109.934       270.5         928       333.237       636.5         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726       23.976       68.3	352       8.28         572       30.78         576       40.25         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	8       13.616         4       52.688         6       69.264         8       85.840         8       85.840         4       119.584         0       132.608         8       24.864         4       34.928         8       229.696         4       543.278         2       313.701         8       116.269         3       65.949	5.920 23.680 30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
976       27.232       68.0         920       35.520       90.5         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         864       43.808       112.4         844       60.976       155.0         000       40.256       163.3         824       18.352       30.7         072       27.824       43.2         062       109.934       270.5         928       333.237       636.5         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726       23.976       68.3	572       30.78         576       40.25         480       49.72         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.92	4       52.688         6       69.264         8       85.840         8       85.840         4       119.584         0       132.608         8       24.864         4       34.928         8       229.696         4       543.278         2       313.701         8       116.269         3       65.949	23.680 30.784 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
920         35.520         90.5           864         43.808         112.4           864         43.808         112.4           864         43.808         112.4           344         60.976         155.0           000         40.256         163.3           824         18.352         30.7           072         27.824         43.4           062         109.934         270.5           928         333.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	576       40.25         480       49.72         480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.92	6 69.264 8 85.840 8 85.840 4 119.584 0 132.608 8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	30.784 38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
864       43.808       112.4         864       43.808       112.4         344       60.976       155.0         000       40.256       163.3         824       18.352       30.7         072       27.824       43.4         062       109.934       270.3         928       333.237       636.4         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726       23.976       68.3	480       49.72         480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	8         85.840           8         85.840           4         119.584           0         132.608           8         24.864           4         34.928           8         229.696           4         543.278           2         313.701           8         116.269           3         65.949	38.480 38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
864       43.808       112.4         344       60.976       155.0         000       40.256       163.3         824       18.352       30.3         072       27.824       43.4         062       109.934       270.5         928       333.237       636.5         112       152.026       424.4         117       50.320       123.5         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726       23.976       68.3	480       49.72         596       69.26         392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.82	8         85.840           4         119.584           0         132.608           8         24.864           4         34.928           8         229.696           4         543.278           2         313.701           8         116.269           3         65.949	38.480 53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
344       60.976       155.0         000       40.256       163.3         824       18.352       30.7         072       27.824       43.4         062       109.934       270.5         928       333.237       636.9         112       152.026       424.4         117       50.320       123.9         101       24.746       58.2         726       8.347       22.4         202       25.219       53.8         349       16.339       42.8         754       32.382       63.5         726       23.976       68.3	596         69.26           392         44.40           784         20.12           216         30.78           307         121.47           578         351.17           464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18.82	4 119.584 0 132.608 8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	53.280 36.112 16.576 24.864 98.390 315.358 131.779 50.202
000         40.256         163.:           824         18.352         30.:           072         27.824         43.:           062         109.934         270.:           928         333.237         636.!           112         152.026         424.4           117         50.320         123.!           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	392       44.40         784       20.12         216       30.78         307       121.47         578       351.17         464       172.27         965       50.43         253       29.36         496       7.93         872       27.23         802       18.22	0 132.608 8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	36.112 16.576 24.864 98.390 315.358 131.779 50.202
824         18.352         30.1           072         27.824         43.4           062         109.934         270.5           928         333.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	784         20.12           216         30.78           307         121.47           578         351.17           464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18.22	8 24.864 4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	16.576 24.864 98.390 315.358 131.779 50.202
072         27.824         43.4           062         109.934         270.5           928         333.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.4           726         8.347         22.4           202         25.219         53.6           349         16.339         42.6           754         32.382         63.5           726         23.976         68.3	216         30.78           307         121.47           578         351.17           464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18.92	4 34.928 8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	24.864 98.390 315.358 131.779 50.202
062         109.934         270.5           928         333.237         636.5           112         152.026         424.4           117         50.320         123.5           101         24.746         58.4           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	307         121.47           578         351.17           464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18.22	8 229.696 4 543.278 2 313.701 8 116.269 3 65.949	98.390 315.358 131.779 50.202
928         333.237         636.!           112         152.026         424.4           117         50.320         123.9           101         24.746         58.4           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.9           726         23.976         68.3	578         351.17           464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18 82	4 543.278 2 313.701 8 116.269 3 65.949	315.358 131.779 50.202
112         152.026         424.4           117         50.320         123.9           101         24.746         58.2           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.9           726         23.976         68.3	464         172.27           965         50.43           253         29.36           496         7.93           872         27.23           802         18.22	2 313.701 8 116.269 3 65.949	131.779 50.202
117         50.320         123.9           101         24.746         58.4           726         8.347         22.4           202         25.219         53.8           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	965 50.43 253 29.36 496 7.93 872 27.23 802 18.82	8 116.269 3 65.949	50.202
101         24.746         58.4           726         8.347         22.4           202         25.219         53.4           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	253 29.36 496 7.93 872 27.23 802 18.82	3 65. <del>9</del> 49	
726         8.347         22.4           202         25.219         53.1           349         16.339         42.8           754         32.382         63.5           726         23.976         68.3	496         7.93           872         27.23           802         18.82		20,129
202         25.219         53.4           349         16.339         42.8           754         32.382         63.6           726         23.976         68.3	872 27.23 802 18 82	3 20.957	8.762
349         16.339         42.8           754         32.382         63.9           726         23.976         68.5	18 92	2 46 531	23.206
754 32.382 63.9 726 23.976 68.3		5 29,596	13.794
726 23.976 68.3	599 37.41	4 43 808	27 350
	317 <b>3054</b>	7 49 136	17 405
978 1973 154	510 <b>1</b> 97	14 445	4 973
440 1 954 57	506 230	9 3 374	1 598
923 11 248 27 /	10 12.06	5 0.0 <del>4</del> 5 22 378	9.590
A13 A 440 10 !	507 538	7 0 204	3 552
894 0.592 1.1	BUA 0.35	1 1 804	0.533
538 6334 0 ⁻	709 5.03	2 11.249	7 637
734 5 683 16 1	280 5.80	2 11 130	5 506
	150 1.83	5 4 973	1 717
045 1 305 31		9 4.373 9 2.271	1.063
342 3 528 10 1	200 242	1 10 20 5	3.654
305 0 420 1 4		3 1.208	0.34-
773 0.285 0.1	270 0.30	A 0.677	0.040
781 0443 00	220 0.220		0.2.30
508 0 320 0 4	141 0.00	0.002 G 0.502	0.047
000 0.320 0.4 000 78.000 700 /	ττι <u>υ.2</u> /Υ 100 ΟΔΙΟΩ	0 0.322 0 75 <i>4</i> 000	0.000 0.000
000 70.000 700. 000 540C 127	500 <del>34</del> .00 500 5.60	0 7 J. 400	00.000 5 200
800 2 400 E	310 3.50 310 2.50	0 A 160	2.300 2.300
	210 2.02	0 0.740	L.UUU () A10
1 1 1 1 1 1 1 1 1 1 1 1 1	190 0 72	U U./ HU	0.410
	<b>490</b> 0.73	0.62	0 27
000         78.000         790.0           000         5.40C         12.5           800         2.400         5.5	000 500 310	94.00 5.50 2.62 0.73	94.000         754.000           5.500         11.400           2.620         4.160           0.730         0.740

r r r

1 1 1 1 1 1

# **Appendix E**

# **Transfer of Radiocesium in the Soil-Grass-Lamb** Food Chain

by A. Aarkrog and S.P. Nielsen

This work is part of a Nordic comparative study carried out in all the Nordic countries (Denmark, The Faroe Islands, Finland, Iceland, Norway and Sweden). The purpose is to compare the radioecological sensitivity of radiocesium (Bq kg⁻¹ year per Bq m⁻²) in the soil-grass-lamb foodchain for a number of Nordic locations. As a first step the observed ratios between the levels in lamb and soil (0-5 cm layer), lamb and grass, and grass and soil are compared for the samples collected in 1990 and 1991.

A location in Southwest Denmark, Vester Vedsted 7 km SW of Ribe, was selected for the Danish samples. Lambs meat is only a marginal constituent of the average Danish diet (about 1% of the total meat consumption), but in the West Jutland there are a number of herds grazing lowland fallows behind the dikes to the North Sea.

Tables E.1-E.3 show the results of soil, grass and lamb analysis.

## Conclusions

 There is no significant difference between ¹³⁴Cs/¹³⁷Cs in lamb, »grass« and soil (0-5 cm layer). Ì

- The mean ratio in the samples at September 1, 1991, was 0.078±0.001 corresponding to 76% Chernobyl ¹³⁷C₅.
- The transfer of Chernobyl and global fallout ¹³⁷Cs does thus not differ significantly in this foodchain.
- The transfer of ¹³⁷Cs from soil (0-5 cm layer) to lamb meat (fresh weight) was 0.6 Bq kg⁻¹ per kBq m⁻² (rel. 3.D.: ±40%).
- The transfer of ¹³⁷Cs from soil (0-5 cm layer) to »grass« (dry weight) was 0.7 Bq kg⁻¹ per kBq m⁻² (rel. S.D.: ±20%).
- The observed ratio between ¹³⁷Cs in lamb and grass (Bq kg⁻¹ f.w./Bq kg⁻¹ d.w.) was 0.8 (relative S.D.: ±30%).
- The observations were based upon 5 soil, 2 grass and 3 lamb samples collected from the same field at Ribe in SW Jutland in the summer of 1991.

								I	
								1	
								1	
					1			l.	
			I.		Т			I.	
			I.		I.			L	
			I.	1	1			I.	i.
150			1	I.	1	Risø-R-6	21(EN)	I.	T.
1	1		(		1.1	I.		1	1
I.	1		1	ш	1.1	I.		I.	T.
1	1		1		1.1	I.	I	I.	1
1	I.	I.	1	11.1		I.	I	T.	
1.1									

Table E.1.A. Radiocesium in untreated, uncultivated soil (0-5 cm) collected in South Jutland (near Pibe) June 26, 1990. (Unit: Bq m⁻²)

No.	¹³⁷ Cs	¹³⁴ Cs ¹³⁷ Cs	Chernobyi ¹³⁷ Cs*
1	2179	0.122	1784
2	2133	0.102	1460
3	2327	0.114	1780
Mean	2213		1675
Relative S.D.	5%		11%

*Calculated from ¹³⁴Cs/¹³⁷Cs assuming that this ratio was 0.55 in pure Chernobyl debris on April 26, 1986.

Collection No.	0-5	5-10	10-20	Σ 0-10	Σ 0-20	Chernobyl ¹³⁷ Cs* 0-5 cm
91018	2221 (0.092)	1593	948	3814	4762	1824
91019	1994 (0.076)	1683	-	3677	-	1353
91020	1694 (0.091)	1360	-	3054	-	1376
91021	2473 (0.086)	1232	-	3705	-	1899
91022	1799 (0.078)	1228	-	3027	•	1253
Mean Relative S.D.	2036 16%	1419 15%	948	3455 11%	4762	1541 19%

Table E.1.B. Radiocesium in uncultivated soil collected in South Jutland (near Ribe) June 3, 1991. (Unit: Bq ¹³⁷Cs m⁻²) (¹³⁴Cs/¹³⁷Cs)

*Calculated from ¹³⁴Cs/¹³⁷Cs assuming that this ratio was 0.55 in pure Chernobyl debris on April 26, 1986.

Riso-R-621(EN)

1.11.1

151

1

.

П П

п

п

1

Table E.2.A. Radiocesium in grass collected in South Jutland (near Ribe) in 1990

	137	Cs	134	Cs	40K
Date	Bq kg ⁻¹ fresh	Bq m ⁻²	Bq kg ⁻¹ fresh	Bq m ²	g kg ⁻¹ fresh
June 26	1.08	0.90	0.148	0.122	8.0

Table E.2.B. Radiocesium in grass collected in South Jutland (near Ribe) in 1991

¹³⁷ Cs			¹³⁷ Cs			¹³⁴ Cs			÷₀K	
Date	Remarks	Bq kg ⁻¹ fresh	Bqkg ⁻¹ dry	Bqm ⁻²	Bq kg ⁻¹ fresh	Bq kg ¹ dry	Bqm ^{−2}	g kg ⁻¹ fresh	g kg ⁻¹ dry	
3 June	Low	2.8	9.0	0.32	0.176	0.56	0.0198	6.3	20.3	
3 June	High	1.18	4.8	1.06	0.120	0.49	0.108	8.5	34.9	
10 July		1.172	1.51	0.144	<0.035			7.9	69.5	
30 August		0.38	1.43	1.186	<0.052			11.6	44.2	

 Table E.3.A. Radiocesium in lamb meat collected in South Jutland (near Ribe) in

 1990. (Unit: Bq kg⁻¹ fresh)

Date	¹³⁷ Cs	¹³⁴ Cs	40K*
June 26	5.0	0.68	3.4
*g K kg ⁻¹ frest	3.		

 Table E.3.B. Radiocesium in lamb meat (neck) collected in South Jutland (near Ribe) August 27, 1991. (Unit: Bq kg⁻¹ fresh)

Collection	¹³⁷ Cs	¹³⁴ Cs	40K'
1	1.13	0.071 A	3.3
2	1.69	0.140 A	3.3
3	0.91	0.094 A	3.3
1+2+3 bulked	1.22	0.096	3.2
*g K kg ⁻¹ fresh.	<u></u>		

					1			1			
		1	1 1		1			1	1		
152		I	1 I		Risø-F	621(EN)		1	1	T	T
ι.		I.	1		1	I.		1	1	I.	1
1		I I	1.1.1.1		1	1		1 1	I.	1	I.
1 1	1	11 11	1.11	I.	1 1	1	1	1 1	I.	1	I

# Appendix F

by M. Strandberg

## **Radiocesium in a Danish Forest Ecosystem**

Results from simultaneous samplings of soil and biota from a Danish forest are presented. Most samples are from a stand of Scotch pine (*Pinus silvestris*) in Tisvilde Hegn in North Zealand (NZ), Figure F.1, but a few results from Gribskov (NZ), Figure F.1, will also be presented here.

#### The Locality »Tisvilde Hegn«

Tisvilde Hegn is a marine influenced forest on sandy ground. Climatically Tisvilde Hegn belongs to the northern part of the 'mperate zone.

The composition of trees are mainly Scotch pine (*Pinus silvestris*), Norway spruce (*Pices abies*), Beech (*Fagus silvaticus*) and Oak (*Quercus robur*). Birch (*Betula pendula*) is common as upgrowth whereever light conditions allows it. The coniferous parts of the forest are very Scandinavian as regards composition of understorey species e.g. Linnaea borealis, Goodyera repens and Vaccinium vitis-idaea. Also the fungi species are widely distributed in Scandinavian coniferous forests e.g. Rozites caperatus and Russula decolorans. Lichen heath is often developed in areas with Scotch pine, where soil quality is low.

The sampling site is old seafloor, which gives a very plain topography. The area where sampling took place was mainly under Scotch pine, but some samples of fungi were c llected in other forest types.

#### Radiocesium in the Forest Soil

Both Chernobyl debris and global fallout cesium is still (1991) concentrated in the upper soil layers, see Table F.1 and Figure F.2.

From the ratio ¹³⁴Cs/¹³⁷Cs the Cs-contribution from Chernobyl can be calculated.

In the autumn of 1991 there is totally in the soil (down to 20 cm) and litter 3135 Bq  137 Cs m⁻², 923 Bq  137 Cs m⁻² deriving from Chernobyl and 2212 Bq  137 Cs m⁻² deriving from weapon testing, Table F.1. The Chernobyl cesium is distributed with 20% in the litter layer and 80% in the upper 5 cm of the soil column. The distribution of global fallout cesium in the soil column shows that 3% is in the litter layer, 56% is in the upper 5 cm, 27% in the 5-10 cm and 14% in the 10-20 cm layer (Figure F.2).

The occurrence of a higher proportion of ¹³⁷Cs to K in the upper soil layers might be part of an explanation of the availability of cesium in the forest ecosystems.

The observed low penetration of radiocesium in the soil layers is of course due to some kind of fixation or binding to soil compounds. The relative high bio-availability shows that the binding is reversible to some degree. This indicates that a part of the soil cesium in the forest ecosystem

			1.1		1	
			1.1		1	
Risø-R-621(EN)		1	1.1		1	153
1		1	T T	1	1	
I.		1	1.1	1	1	
I.	I.	1	1.1	1	1	
1	1.1	i.	1.1	1 II	1 1	
				1		

is bound in such a way that release to roots, rhizoids and mycelia of plants, mosses and fungi is possible. The low penetration and the high bioavailability from soil to plant of cesium, also constitutes the main differences between forest soil and agricultural soil. The very low clay content in the Tisvilde soil (*Nielsen & Strandberg* 1989) might be one explanation of the low fixation observed. The results indicate a higher availability of Chernobyl cesium than of fallout. Maybe the most likely explanation is that Chernobyl cesium is concentrated in the surface soil, where it to a large degree can be supposed to be associated with humus.

It can be calculated that 95% of the cesium in the system is in the soil and only 5% in above ground parts (*Stranaberg* 1992). On the other hand if 20% or more of the soil cesium is situated in below ground parts of mycelia of fungi (Brückmann 1992), we can conclude that more than 25% of the cesium in the forest system are in the biosphere.

Differences in cesium and potassium distribution in the soil profile might explain some of the reason of the enlarged uptake of cesium in the forest ecosystem. A complete answer to this question demands further and more detailed studies of cesium and potassium distribution in the soil profile as well as studies of the feeding depths of the investigated plant species. The mechanisms and velocity of uptake immediately after deposition must also be of great importance, this could be an interesting object of a future experimental study.

#### Radiocesium in the Living Parts of the Forest Ecosystem

In plants, mosses and lichens in Tisvilde Hegn we rarely see observed ratios (OR) higher than  $0.1 \text{ m}^2 \text{ kg}^{-1}$  (Table F.10 and Figure F.4) - while in the fungi OR is often higher than  $1.0 \text{ m}^2 \text{ kg}^{-1}$  and as high as  $6.55 \text{ m}^2 \text{ kg}^{-1}$  (Table F.11). The highest values are seen in the genus Cortinarius and in the closely related species Rozites caperatus. In this group we see total observed ratios (TOR) ranging from  $0.75 \text{ m}^2 \text{ kg}^{-1}$  to  $6.55 \text{ m}^2 \text{ kg}^{-1}$  see Table F.11. Although Cortinarius anomalus have the highest total uptake 20543 Bq ¹³⁷Cs, some of the samples of Rozites caperata have a higher uptake of Chernobyl cesium but a much lower of fallout cesium (Table F.11 and Figure F.5).

Observed ratios for Chernobyl cesium (COR) are higher than the other observed ratios for nearly all species thereby indicating a higher availability of cesium from Chernobyl. A species like Tricholoma portentosum, which have a fairly high uptake of 137Cs (610 Bq kg⁻¹), makes an exception by not having detectable amounts of 134Cs. The most likely reason is that its mycelia is placed at deeper levels than is reached by penetrating Chernobyl cesium until now.

The lowest value of TOR observed is  $0.002 \text{ m}^2 \text{ kg}^{-1}$  which is Lactarius vellereus. Most of the mykorhizal fungi lie in the range from  $0.2 - 1.3 \text{ m}^2 \text{ kg}^{-1}$ . The saprophytes investigated range between 0.004 and  $0.11 \text{ m}^2 \text{ kg}^{-1}$ . This indicates that the symbiotic fungi generally have a higher uptake of cesium that, the saprophytes.

Why do we observe these differences? Do some fungi have some specialised physiological capability of reversing cesium fixation to soil compounds like clay or maybe any other than clay? Or is the cesium situated in the mycelia of the fungi, and how did it come there? The high uptake of potassium seen in most fungi, compared to other plant species, might explain part of the enlarged levels of cesium seen (Tables G.2-G.9). How-

1 I

Risø-R-621(EN)

1 1

ever at the same time it raise new questions. How do some fungi with a high potassium uptake avoid taking up cesium e.g. Agaricus, Russula xerampelina, Lactarius vellereus.

One assumption claims that the ratio ¹³⁴Cs/¹³⁷Cs in the fungi reflects the ratio in the soil layer from which it is taken up (e.g. Byrne, 1988, Battiston, 1989). The species of Russula and Lactarius should after this assumption get most of the cesium from layers just beyond the litter layer, while the species of Cortinarius have their main uptake from the upper soil layers. A more exact investigation of the distribution of cesium in the upper soillayers is necessary to establish a more exact relationship between the ratio in fungi and that in the corresponding soil layers. According to the above mentioned assumption the fixation of fallout cesium and Chernobyl cesium is equal.

Figure F.3 shows that concentrations are highest in the endshoots of Scotch pine and decreasing by a factor 30 to the new wood and by a factor 3 from the new wood to the old wood. Looking at potassium it is seen that the corresponding factors are 10 and 3. The picture is the same but the decline in concentration is not so high for potassium from endshoots to new wood as it is for cesium (Figure F.3).

From the results in Table F.2 it is seen that the concentration of cesium in endshoots of Scotch pine is 4 times higher than it is in leaves of birch. The samples of pine and birch are taken very close to each other from a mixed stand. This indicates a higher uptake rate for Scotch pine than for Birch. A comparison of Observed Ratios (OR) for the plant and lichen samples are given in Table F.10.

The relative high levels of ¹³⁷Cs found in the roedeer (Table F.8) is interesting, this ought to be taken into account when assessing total doses. The problem concerning the cesium transfer from soil to roe deer need more investigation. In Sweden it has been observed (*Karlen*, *Johansson & Bergström* 1991) that the ¹³⁷Cs levels in roedeer show a peak in the autumn due to the consumption of mushrooms. Such a maximum could also be expected in Danish roedeer as fungi also here is part of the roedeer's diet in autumn (*Petersen & Strandgaard* 1992).

Risø-R-621(EN)



Figure F.1. Map of Zealand showing the situation of Tisvilde Hzgn and Gribskov.

Risø-R-621(EN)							
			I.	1	1		
			1	1	1		
1	1		1	1	1		
1	1	1	1	П	1		

	134	Cs	13	¹⁷ Cs	134Cs	к
	Bq kg ⁻¹	Bq m−2	Bq kg ⁻¹	Bq m ⁻²	¹³⁷ Cs	g kg ⁻¹
Litter						
Mean of 3	10.0	15.4	156	235	0.071	3.28
± S.D.	3.1	3.2	92	115	0.018	0.96
Soil 0-5 cm						
Mean of 3	4.75	69	109	1989	0.038	8.06
± S.D.	4.56	13	65	634	0.015	<b>5.94</b>
Soil 5-10 cm						
Mean of 3	-	-	23.5	602		11.48
± S.D.			29.5	366		3.64
Soil 10-20 cm						
Mean of 3			2.6	309		12.14
± S.D.			2.7	325		1.32
Total	15	84		3135		
Fallout				2212		
Chernobyl				923		
Total - Litter	10	69		2900		
Litter + 0-5 cm	-	84		2224		
Soil 0-5 cm	10	69	109	1989		

 Table F.1. Content of radiocesium and potassium in soil under Scotch pine in

 Tisvilde Hegn in the autumn of 1991. (Bq is given per kg of dry weight)

Risø-R-621(EN)

1



Figure F.2. The distribution of  $^{137}Cs$  and K in the soil layers in Tisvilde Hegn 1991. It is seen that the penetration of cesium is slow in the forest soil.

	I.		1
	I.		0
I.	1	Risø-K-621(EN)	T
T. Contraction of the second sec	1		I.
1	1		1
1.1.1		T	I.

## Trees

	¹³⁴ Cs Bq kg ⁻¹	¹³⁷ Cs Bq kg ⁻¹	134Cs 137Cs	K g kg⁻¹
Pinus silvestris		-		
Year-shoot Mean of 3 ± S.D.	5.39 3.38	105.5 65.4	0.050 0.004	5.78 0.56
Wood after 1986 Mean of 3 ± S.D.		3.11 0.57		0.56 0.17
Wood before 1986 Mean of 3 ± S.D.	1.05	0.30	0.19	0.04
Birch leaves Mean of 3 ± S.D.	0.85 0.50	27.43 4.84	0.029 0.011	6.13 2.01

Table F.2. Content of radiocesium and potassium in Scotch pine (Pinus silvestris) and Birch (Betula pendula) from Tisvilde 1991. (Bq is given per kg of dry weight)

	Risø-R-621(EN)					159						
						1			1			
						1			1			
	1					i.		1				
1	1 1	1			I.	1		I	I.	1		
		1										



Figure F.3. The distribution of concentrations of cesium and potassium in shoots and wood of Scotch pine in Tisvilde Hegn autumn 1991.

		I.						I.
169		ı I			Risø-R	-621(EN9	1	ı I
1		I.		1		1	1	1
1		1		1		I.	1	I.
I.		1		1		I.	1	1
I.		1	I	1		I.	1	1
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							

## Shrubs

	¹³⁴ Cs		137	137Cs		к	
· · · · · · · · · · · · · · · · · · ·	Bq kg-1	Bq m ⁻²	Bq kg-1	Bqm ⁻²	137Cs	g kg-1	
Calluna vulgaris							
Mean of 3	12.97	3.4	213.9	55.8	0.058	4.05	
± S.D.	6.93	1.8	96.8	23.7	0.01	0.99	
Empetrum nigrum							
Mean of 3	1.80		23.74		0.076	4.45	
± S.D.	0.46		6.3		0.004	0.79	
	134	Cs	137Cs		134Cs	к	
	Bql	(g-1	Bal	(g-1	137Cs	g kg-:	
Vaccinium vitis-idaea							
Mean of 2	9.	52	147	. <b>69</b>	0.066	5.04	
± S.D.	1.09		37.5		0.01	0.42	
Vaccinium uliginosun	7						
V.uliginosum	4.	64	56.	.83	0.082	5.12	

Table F.3. Content of radiocesium and potassium in shrub species from Tisvilde hegn 1991. (Bq is per kg of dry weight)

#### Grasses

Table F.4. Content of radiocesium and potassium in species of grass in Tisvilde Hegn 1991. (Bq is per kg of dry weight)

	13- Bq	⁴Cs kg−1	137 Bq	′Cs kg-1	134Cs 137Cs	K g kg-1
Molinea caerulea						
Mean of 3	1.8	607	34	.06	0.051	13.47
± S.D.	0.	1	16	.9	0.022	2.48
	134	4Cs	137	′Cs	134Cs	к
	Bq kg-1	Bq m-2	Bq kg-1	Bq m-2	137Cs	g kg-1
Deschampsia flexuosi	a					
Mean of 3	3.9	0.38	44	4.4	0.082	8.13
± S.D.	2.5	0.24	23	2.3	0.019	3.06

#### Risø-R-621(EN)

1

## Mosses

 Table F.5. Content of radiocesium and potassium in species of moss (Hylocomium splenden: & Polytrichum commune) from Tisvilde Hegn 1991. (Bq is per kg of dry weight)

	134Cs Bq kg-1	¹³⁷ Cs Bq kg ⁻¹	13×Cs 137Cs	K g kg ⁻¹
H. splendens				
Mean of 3	8.74	104.75	0.082	4.53
± S.D.	2.93	17. <b>29</b>	0.015	1.31
P. commune	10.31	116.78	0.088	5.82

### Lichenz

 Table F.6. Content of radiocesium and potassium in species of lichens in Tisvilde

 Hegn 1991. (Bq is per kg of dry weight)

	<b>134Cs</b> Bq kg ⁻¹	¹³⁷ Cs Bq kg ⁻¹	134Cs 137Cs	K g kg-1
Cladina portentosa				
Mean of 4 ± S.D.	17.59 7.84	196.28 85.16	0.0899 0.0061	2.05 0.56
Hypogymnia physodes	;			
Mean of 3 ± S.D.	22.46 3.59	250.31 38.50	0.0897 0.0015	3.02 0.68
Cetraria islandica				
C. islandica	9.31	103.31	0.0902	2.60

162			R150-R-621(EN)	I I		1 1
	1		I.	1	1	,
1		T	1	1	I.	ı.
1	1 1 1 1	1.1	н			



Figure F.4. Observed Ratios_{plant/soil} (m² kg⁻¹) for plants, mosses and lichens in Tisvilde hegn, autumn 1991.

#### Fungi

The replicate samples of fungi represents species that in some connection have been selected as species suited for sampling and international comparison, or species suited for collection and use in characterization of this particular forest ecosystem. Other samples is taken in order to determine differences on the level of genus and ecotype.

	¹³⁴ Cs Bq kg ⁻¹	¹³⁷ Cs Bq kg ⁻¹	134Cs 137Cs	K g kg ^{.1}
R.caperatus Mean of 3 ± S.D.	869.4 131.8	13343 876	0.065 0.007	45.57 0.98
C. alboviol. Mean of 3 ± S.D.	257.9 77.4	5241 1928	0.050 0.004	52.00 6.79
S.variegatus Mean of 3 ± S.D.	55.35 15	892 245	0.0 <del>0</del> 3 0.01	25.79 0.96
B.badius ∋an of 3 ± S.D.	69.55 3.1	1300 200	0.054 0.01	33.61 3.23
L.rufus Mean of 3 ± S.D.	159.3 88.1	2205 1206	0.072 0.004	30.00 3.12
C. cibarius Mean of 2 ± S.ū.	< 14.84 3.59	212 71	0.071 0.007	47.46 9.12
C.tubaeformis Mean of 4 ± S.D.	76.1 18.11	1366 493	0.057 0.007	39.60 5.79

Table F 7.1. Content of radiocesium and potassium in replicate samples in Tisvilde Hegn, collected in the autumn of 1991. (Bq is per kg of dry weight)

(The species listed in the table are Rozites caperatus, Cortinarius alboviolaceus, Suillus variegatus, Boletus badius, Lactarius rufus, Cantharellus cibarius, and Cantharellus tubaeformis).

	134Cs	137Cs	134Cs	к
	Bq kg-1	Bq kg ⁻¹	137Cs	g kg-1
Corti tarius				
Conomalus	062 1	20542	0.047	32 40
C.anomalus	902.1	20343	0.047	33.40
C.subtulgens	291.7	3736	0.078	31.09
C.infractus	142.9	2442	0.05 <del>9</del>	44.48
C.trivialis	121.9	2400	0.051	39.01
C alboviolaceus	312.6	6604	0.047	56.80
C.alboviolaceus	203.2	3877	0.052	47.20
Mean	339.1	6600	0.056	42.00
± S.D.	314.7	6999	0.012	9.53
Russula R docelerene	56 A5	006	0.062	25.05
R.decolorans	50.45	900	0.062	35.05
R.flava	49.56	679	0.072	35.26
R.ochroleuca	16.77	230	0.073	43.48
B.oaludosa	38.16	669	0.057	32.62
R sardonia	153.2	2021	0.076	32 46
	- 3	21	0.070	31 02
n.vesta		000	0.070	31.32
H.vinosa	/5.20	982	0.079	30.99
R.virescens	8.D.L.	9	-	30.01
R.xerampelina	4.40	54	0.081	22.12
Mean	51.22	620	0.071	32.66
± S.D.	49.43	649	0.009	5.60
T antimus				
Luciurius	404 5	4 4 6 6	0.000	00.57
L.VIELUS	101.5	1482	0.069	20.57
L.pubescens	80.8	1033	0.078	28.58
L.veilereus	< 1.5	6	-	34.42
L.necator	31.25	491	0.064	43.48
L deliciosus	140.4	1778	0.079	22.30
Linufue	67 70	997	0.068	26 50
Laufue	242.4	2400	0.000	21.01
	243.4	2200	0.071	37.01
	100.7	2209	0.075	32.49
Mean	104.16	1425	0.072	30.67
± S.D.	77.78	1062	0.0055	6.44
Saprophytes				
(wooddecomposers)				
A obsource	5 28	01	0.065	19 16
	0.20	207	0.000	70.IJ
w.platypriylla	20.//	33/	0.085	27.03
K.mutabilis	18.67	311	0.060	43.39
T.purpurea	4.04	55	0.074	31.07
Mean	14.19	196	0.071	37.56
± S.D.	11.76	149	0.011	9.78
Saprophytes				
(leaves and twig decompo	osers)			400 0
A.silvaticus	< 1.31	< 13	• • -	103.6
C.maculata	24.24	308	0.078	23.31
L.fumosum	< 4.0	140		64 20

Table F.7.2 Content of radiocesium and potassium in fungi in Tisvilde Hegn inthe autumn of 1991. (Bq is per kg of dry weight)

The investigated saprophytes are Armillaria obscura, Megacollybia platyphylla, Kuehneromyces mutabilis, Tricholomopsis purpurea, Agaricus silvaticus, Collybia maculata & Lyophyllum fumosum.

Risø-R-621(EN)

165





Figure F.5. See text nest page

						1
í.	1				1	1
166	1			Risø-R	-621(EN)	1
ιορ	1		I.		L L	1
1	1 1	1	1		1.1	1
1	1.1.1	1	1	1	1.1	1



Figure F.5. Observed ratios  $(m^2 kg^{-1})$  COR and FOR for fungi in Tisvilde hegn in the autumn of 1991. FOR (Observed Ratio_{fungi/soil} of Fallout cesium) is illusirated both for the fraction in the upper 5 cm and totally. a. Cortinarius, b. Boletales, c. Russula d. Lactarius.

Risø-R-621(EN)

### Roedeer

Table F.8.	Radiocesium and	potassium	in three	specimens o	f Roedeer (C	Capreolus
ca <mark>p</mark> reolus)	collected in Tisvil	de Hegn in	October	1991. (Bq is	per kg of dr	y weight)

	¹³⁴ Cs Bq kg-1	¹³⁷ Cs Bq kg ⁻¹	¹³⁴ Cs ¹³⁷ Cs	K g kg ⁻¹
Roe	3.72	49.25	0.076	12.60
Fawn	3.96	66.65	0.059	8.24
Arithmetical				
Mean per kg	15 Bq +21 Bg	298 Bq = 3	13 Bq	
	121 04	1452 by		
(Bq/kg Fresh weig	ht)			
Roe 9 kg	0.95	12.60		
Roebuck 11 kg	8.22	166.1		
Fawn 6 kg	1.04	17.47		
Arithmetical				
Mean per kg	( 4.05	78.67)	× 700000 = 579	04000 Bg
± S.D.	5.53	114.45		
Mean/animal	(11.69	681.77)	× 70000 = 565	53700 Bq
± S.D.	15.98	991.89	_	·
Geometrical				
Mean/animal	(16.90	279.00)	× 70000 = 207	13000 Bq
S.E.	4.3	5.1		
Mean per kg	( 1.95	32.19)	× 700000 = 238	98000 Bq

The yearly consumption of deer in Denmark is 70000, which equals 700000 kg usable meat. Below and right in the table it is calculated how much cesium is transferred to man through roedeer in Denmark.

ī.

1

1

Risø-R-621(EN)

I

ı.

Table F.9. Results from Gribskov 28-10/1991. Samples of Common yellow Russula (Russula ochrelewca) from stands of Norway spruce (Piceu abies) and Beech (Fagus silvaticus) (Bq is per kg of dry weight)

	n	¹³⁴ Cs Bq kg ⁻¹	^{i 37} Cs Bq kg ⁻¹	Ratio	K gikg−1
Fagus silvaticus stand					
Russula ochroleuca ± S.D.	4	37.95 32.21	670.9 504.5	0.055 0.005	39.94 5.83
Picea abies stand					
Russula ochroleuca ± S.D.	4	33.19 8.09	688.5 176.3	0.048 0.005	41.00 3.81
	n	¹³⁴ Cs Bq m ⁻²	¹³⁷ Cs Bq m ⁻²	Ratio	K g kg-1
Litter 1-0 cm Soil 0-5 cm Soil 5-10 cm Soil 10-20 cm	1 2 2 2	17.06 104.8 -	180.9 2055 659 373	0.094 0.061	5.78 19.87 21.60 22.55

Table F.10. Observed Ratios  $OR_{(plant/Soil)}$  ( $m^2/kg$ ) for the species investigated in Tisvilde Hegn 1991. (Bq is per kg of dry weight)

Sample type	Number	¹³⁴ Cs Bqkg ⁻¹	¹³⁷ Cs Bq kg-1	134Cs 137Cs	OR ¹³⁴ Cs	OR ¹³⁷ Cs	Chernobyi % ¹³⁷ Cs
P.s. endsh.	3	5.39	105.5	0.051	0.064	0.034	53.0
P.s. new wood	3	0.17	3.6	0.047	0.002	0.001	50.1
P.s. old wood	3	> 0	1.0	> 0	0.000	0.0003	> 0
C. vulgaris	3	12.97	213. <b>90</b>	0.058	0.154	0.068	61.5
E. nigrum	3	1.80	23.74	0.076	0.021	0.008	80.5
V. vitis-idaea	3	9.52	147.69	0.066	0.113	0.047	69.9
M. caerulea	3	1.81	34.06	0.051	0.021	0.011	54.0
D. flexuosa	3	3.90	44.00	0.082	0.046	0.057	86.9
P. schreberi	3	8.72	104.75	0.083	0.103	0.033	88.0
P. commune	1	10.31	116.78	0.088	0.123	0.037	93.3
C. portentosa	4	17.59	196.28	0.090	0.209	0.063	88.2
H. physodes	3	22.46	250.31	0.090	0.267	0.080	90.3
C. islandica	1	9.32	103.31	0.090	0.111	0.033	88.5

¹ 

- i i

. .

the upper 5 centimeters a	ind what is p	resent in t	otal and	TOR is th	w observ	ed ratio of	all prese	nt Cs-1	37
Name	Forest	137Cs	Chern.	Fallout	COF	FOR	FOR	TOR	TOR
	type	%	%	%		0-5cm	Fotal		weigh:
Cortinarius									
anomalus	oak	20543	<b>4</b> 5	54	10.2	8.5	U	6.6	188.5
alboviolaceus	oak	6604	<b>4</b> 5)	¥	3.3 3	2.7	1.6	2.1	60 6
alboviolaceus	oak	3877	51	49	2.1	1.5	0.0	1.2	35.6
subfulgens	beech	3736	<u>77</u>	23	<u>3</u> .1	0.7	0.4	1 i>	34.3
infractus	beech	2442	58	42	1.5	0.8	0.5	0.8	22.4
trivialis	mixed	2400	50	50	1.3	0.9	0.5	0.8	22.0
Rozites									
caperatus	pine	14186	71	2 <u>0</u>	10.9	3.2	1.9	<b>4</b> .5	130.1
caperatus	pine	13406	57	<b>4</b> 3	8. <b>3</b>	4.4	2.6	<b>4</b> .3	123.0
caperatus	pine	12438	64	<u>з</u> 6	8.6	3.4	N	4.0	114.1
Amanita									
rubescens	pine	4093	5	<b>4</b> 5	2.3	1.5	0.9	1.3	37.6
virosa	pine	2252	50	50	ц N	0.9	0.5	0.7	20.7
fulva	beech	600	<b>4</b> 8	52	0.3	0.2	0.1	0.2	5.5 5
rubescens	oak	38						0.0	0.3
Lactarius									
rufus	pine	3409	70	30	2.6	0.8	0.5	1.1	31.3
rufus	pine	2209	74	26	1.8	0.4	0.3	0.7	20.3
deliciosus	pine	1778	78	22	1.5	0.3	0.2	0.6	16.3
vietus	birch	1482	68	32		0.4	0.2	0.5	13.6
pubescens	birch	1033	17	ខ	0.9	0.2	0.1	0.3	9.5
rufus	pine	766	67 67	រ ដ	א 0.7 מי	0.3	> 0 • -	> 0 > is	- 9.1
vellereus	oak	9 - 24	S	S	U.ن	<u>,</u>	<b>C</b>	0 0	C
		ſ							
Russula									
sardonia	pine	2021	75	<u>Ŋ</u>	1,6	0.4	0.2	<b>C</b> .6	18.5
vinosa	pine	982	79	21	0.8	0.2	0.1	0.3	9.0
decolorans	pine	906	, 6 <u>1</u>	39	0.6	0.3	0.2	0.3	8.3
flava birch	pine	579	72	28	0.5	0.1	0.1	0.2	6.2
paludosa	pine	669	- 56 - 56	84	0.4	0.1	0.1	0.2	6.1
ochroieuca	beech	230	12	28	0.2			0.1	2.1
Russula ochroleuca									
	beech	1369	61	39	0.9	0.4	0.2	0.4	12.6
	spruce	953	46	54	0.5	0,4	0.2	0.3	8.7
	beech	684	49	5	0.4	0.3	0.2	0 0	6.3
	spruce	602	46	54	0.3	0.2	0.1	0.2	່ ເກ ເ ເ ເ ເ
	, pruce	<b>6</b> 00	ς τ	57	0.3	0.3	0.2	0.2	י גר ה גר
	spruce	669	۲¥	46	0.4	0.2	0.1	0.2	5
	beech	425	50	: 2	0.2	0.2	0.1	0.1	3.9
	beech	206	56	44	0.1	0.1	,	0,1	1.9
	-								

Rise-R-621(EN)

- -

- - -

-

Name	Forest type	137Cs %	Chern. %	Fallout %	COR	FOR 0-5cm	FOR Total	TOR	TOR weight
Russula									
xerampelina	pine	54	7 <del>9</del>	21				U.O	0.5
vesca	mixed	31						0.0	0.3
virescens	beech	9						0.0	0.1
Cantharellus									
tubaeformis	spruce	1382	56	44	0.8	0.5	0.3	0.4	12.7
tubaeformis	pine	1067	65	35	0.8	0.3	0.2	0.3	9.8
tubaeformis	beech:	<b>9</b> 59	57	43	0.6	0.3	0.2	0.3	8.8
cibarius	pine	262	65	35	0.2	0.1		0.1	2.4
cibarius	ріпе	162	•••	•••	•	••••		0.1	1.5
Suillus									
bovinus	pine	2095	65	35	1.5	0.6	0.3	0.7	19.2
variedatus	pine	1035	66	34	0.7	0.3	0.2	0.3	9.5
variegatus	pine	1033	53	47	0.6	0.4	0.3	0.3	9.5
variegatus	pine	609	65	35	0.4	0.2	0.1	0.2	5.6
Boletus									
badius	pine	1483	51	49	0. <b>8</b>	<b>G.6</b>	0.3	0.5	13.6
badius	pine	1330	49	51	0.7	0.5	0.3	0.4	12.2
badius	pine	1087	33	67	0.4	0.6	0.3	0.3	10.0
edulis	beech	363	36	64	0.1	0.2	0.1	0.1	3.3
ervthropus	oak	43		•	•	•	••••	0.0	0.4
pinophilus	pine	15	•					0.0	0.1
Leccinum									
roseofractum	birch	856	73	37	0.7	0.2	0.1	0.3	7.9
versipelle	birch	117	83	17	0.1	-	-	0.0	1.1
versipelle	birch	84	68	32	0.1			0.0	0.8
Tricholoma	pine	621						0.2	5.7
Gyroporus	pine	25						0.0	0.2
Hygrophorus	beech	19						0.0	0.2
Saprophytes									
Megacoli. platyphylla		337	83	17	0.3			0.1	3.1
Kuehnero, mutabilis		311	59	41	0.2	0.1	0.1	0.1	2.9
Collybia maculata		308	78	22	0.3	0.1		0.1	2.8
Lyophyllum fumosum		140	28	72		0.1		0.0	1.3
Armillaria obscura		81	64	36	0.1			0.0	0.7
Tricholomopsis rutilans		55	73	37				0.0	0.5
Agaricus silvaticus		13		<u> </u>				0.0	01

## Table F.11. (Continued)

1						I			I	
Risø-R-621(E	<b>N</b> )		I.	i.	I	1	171			
I.	I.		1	1	1	I		1	1.1	1
1	1	I.	1	1	1	1	1	I.	1.1	1

# References

- Aarkrog, A. (1979). Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides ⁹⁰Sr and ¹³⁷Cs. Risø-R-437.
- Aarkrog, A. (1988). Studies of Chernobyl Debris in Denmark, Environment International 14, 149-155.
- Aarkrog, A. (1989). Radioecological Lessons Learned from Chernobyl, Proceeding of the XVeth Regional Congress of IPRA, Visby, Gotland, Sweden, 10-14 Sept., 1989, 129-134.
- Battiston, G.A. (1989). Radioactivity in mushrooms in Northeast italy following the Chernobyl accident. J. Environ. Radioactivity 9 (1989) pp.53-60.
- Bryant, F.J., Morgan, A. and Spicer, G.S. (1959). The Determination of Radiostrontium in Biological Materials. AERE-R 3030.
- Danmarks statistik. Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).
- Brückmann, A. (1992). Personal communication on radiocesium in underground parts of fungi. Axel Brückmann Institut für Bodenkole + Waldernähr, Büsgenweg 2, 3400 Göttingen.
- Byrne, A.R. (1989). Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident. J. Environ. Radioactivity 6, 177-183.
- Danmarks statistik. Landbrugsstatistik 1985. (Statistical Yearbook) (Copenhagen, 1986).
- Danmarks statistik. Statistisk årbog 1987 (Statistical Yearbook) (Copenhagen 1988).
- Hald, A. (1958). Private communication.
- Harley, John H. (1972). Manual of Standard Procedures. HASL-300.
- HASL (1958-1978). General reference to: Environmental quarterly. Quarterly reports from Health and Safety Laboratory, U.S. Atomic Energy Commission, later U.S. Energy Research and Development Administration and latest Environmental Measurements Laboratory, Department of Energy (New York).
- Karlén, G.; Johansson, K.J. & Bergström, R. (1991). Seasonal variation in the activity concentration of ¹³⁷Cs in Swedish roedeer and in their daily intake. J. Environ. Radioactivity 14, 91-103.
- Lippert, J. (1975). Statdata, Risø-M-1780.
- Nielsen, B. & Strandberg, M. (1989). Cæsium i græsningsfødekæden. Thesis from Risø National Laboratory (MIL-ECO) 1989.
- Petersen, M.R. and Strandgaard, H. (1992). Rise deer's food selection in two different Danish roe deer biotopes. CIC Symposium »Capreolus« in Salzburg, April 1992.
- Osmond, R.G., Owers, M.J., Healy, C. and Mead, A.P. (1959). The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899.
- Quittner, P. (1969). Nucl. Instr. and Methods 76, 115-124.
- Risø National Laboratory (1957-91). Risø Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323, 345, 361, 386, 403, 421, 447, 469, 487,509, 527, 540, 549, 563 and 570.
- Strandberg, M. (1992). Radiocesium in a Danish pineforest ecosystem. Information presented at »Seminar on The dynamic behaviour of radionuclides in forests« in Stockholm May 18-22. 1992. To be published.

UNSCEAR. (1982). United Nations Scientific Committee on the Effects of Atomic Radiation.. Ionizing Radiation: Sources and biological effects. (New York) 773 pp.

Vestergaard, J. (1964). Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).

Risø-R-621(EN)

I.

### Bibliographic Data Sheet Riso-R-621(EN)

Title and authorts) Environmental Radioactivity in Denmark in 1990 and 1991 A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm, Bente Lauridsen, S.P. Nielsen, Morten Strandberg and J. Søgaard-Hansen

ISBN	ISSN
87-550-1802-5	0106-2840
	0106-407X
Dept. or group	Date
Health Physics	
Department	December 1992
Groups own reg. number(s)	Project/contract no.

- Pages	Tables	Illustrations	References
174	164	76	23

#### Abstract (Max. 2000 characters)

Strontium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, sea water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, bread, potatoes, vegetables, fruit, grass, moss, lichen, sea plants, total diet, and humans. Estimates are given of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1990 and 1991. Tritium was determined in precipitation, fresh waters, and sea water. The y-background was measured regularly by TLD's and a NaI detector. Tc-99 determinations were carried out on various marine samples, first of all sea water.

#### Descriptors INIS/EDB

AIR. ANTIMONY 125; AQUATIC ECOSYSTEMS; ATMOSPHERIC PRECIPITATIONS; BACKGROUND RADIATION; BONE TISSUES, CESIUM 134; CESIUM 137; CHERNOBYLSK-4 REACTOR; COBALT 60; DENMARK; DIET; ENVIRONMENT; FALLOUT DEPOSITS; FISHES; FOOD; FOOD CHAINS; FORESTS; FRESH WATER; FUNGI; GLOBAL FALLOUT; LOCAL FALLOUT; MAN; MILK; NUMERICAL DATA; PLANTS; POLONIUM 210; POTASSIUM, POTASSIUM 40; RADIOACTIVITY; REACTOR ACCIDENTS; RISOE NATIONAL LABORATORY; RUTHENIUM 1%0, SEAWATER; SEAWEEDS; SEDIMENTS; SOILS; STRONTIUM 90, TECHNETIUM 99, TERRESTRIAL ECOSYSTEMS; TRITIUM; VEGETABLES

Available on request from Risø Library, Risø National Laboratory, (Risø Bibliotek, Forskningscenter Risø), P.O.Box 49, DK-4000 Roskilde, Denmark. Telephone +45 42 37 12 12, ext. 2268/2269 Telex 43 116. Telefax +45 46 75 56 27.

Available on request from: Risø Library Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark Phone +45 42 37 12 12, ext. 2268/2269 Telex 43116, Telefax +45 46 75 56 27

ISBN 87-550-1802-5 ISSN 0106-2840 0106-407X