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ABSTRACT 
This paper presents a general framework for hybrids of Hid- 
den Markov models (HMM) and neural networks (NN). In 
the new framework called Hidden Neural Networks (HNN) 
the usual HMM probability parameters are replaced by 
neural network outputs. To ensure a probabilistic interpret- 
ation the HNN is normalized globally as opposed to the local 
normalization enforced on parameters in standard HMMs. 
Furthermore, all parameters in the HNN are estimated sim- 
ultaneously according to the discriminative conditional max- 
imum likelihood (CML) criterion. The HNNs show clear 
performance gains compared to standard HMMs on TIMIT 
continuous speech recognition benchmarks. On the task of 
recognizing five broad phoneme classes an accuracy of 84% 
is obtained compared to 76% for a standard HMM. Addi- 
tionally, we report a preliminary result of 69% accuracy on 
the TIMIT 39 phoneme task. 

1. INTRODUCTION 
Among speech research scientists it is widely believed that 
HMMs are one of the best and most successful modelling ap- 
proaches for acoustic events in speech recognition. However, 
common assumptions like state conditional observation inde- 
pendence and time independent transition probabilities limit 
the classification abilities of HMMs. These assumptions 
can be relaxed by introducing neural networks in the HMM 
framework and recently several approaches for HMM/NN 
hybrids have been proposed, see e.g. [l, 2, 3, 4, 5, 6, 7, 81. 
In [6] a standard feedforward NN is trained separately to 
estimate phoneme posterior probabilities. These posteriors 
are scaled with observed phoneme frequencies and replace 
the usual emission densities in a HMM during decoding. A 
similar approach is taken in [7], but here a recurrent NN 
is used. Instead of training the HMM and the NN separ- 
ately several authors have proposed architectures where all 
parameters are estimated simultaneously. In some hybrids 
[2, 4, 51 a feedforward NN or recurrent NN [8] performs 
an adaptive input transformation of the observation vec- 
tors. Thus, the network outputs are used as new observation 
vectors in a continuous density HMM and simultaneous es- 
timation of all parameters is performed by backpropagating 
errors calculated by the HMM into the NN. 

Our approach is somewhat similar to the idea of adaptive 
input transformations, but instead of retaining the compu- 
tationally expensive mixture densities we propose to replace 
some or all HMM probability parameters by the output of 
small state specific neural networks. Simultaneous estim- 
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ation of all parameters cam then be performed similar to 
what is done for adaptive input transformations. A proper 
probabilistic interpretation is guaranteed by normalizing the 
model globally as opposed to the often approximate local 
normalization enforced in many existing hybrids, e.g., us- 
ing softmax on neural network outputs or using prior scaled 
network outputs. However, calculating the normalization 
term can be avoided if the discriminative CML criterion is 
used for training. 

2. THE HNN 

In the HNN it is possible to assign up to two networks to 
each state: 1) a match network estimating the probability 
that the current observation matches a given state and 2) 
a transition network that estimates transition probabilities 
conditioned on observations. This is very similar to the 
IOHMM architecture [3] although training and decoding of 
the IOHMM differs somewhat from that of the HNN. One of 
the two types of networks in each HNN state can be omitted 
and replaced by standard HMM parameters. In fact all sorts 
of combinations with standard HMM states are possible. In- 
stead of using state specific match networks we could use one 
big network with the same number of outputs as there are 
states in the HNN. This would correspond to tying weights 
between input and hidden ,units in all the match networks. 

More formally the HMM emission probability q5i(q) of 
observation vector ZI in state i is replaced by a match net- 
work +,(SI; w'), which is parameterized by weights w' with 
input SI and only one output. The network input SI corres- 
ponding to x1 will usually be a window of context around 
XI, e.g., a symmetrical context window of 2K + 1 obser- 
vation vectors, 2 1 - K ,  x I - K + l , .  . . , X I + K .  It can however be 
any sort of information related to x1 or even the observa- 
tion sequence in general. Similarly, the probability 0;j of 
a transition from state i to j ,  is replaced by the output of 
a transition network &(SI; U ' ) ,  which is parameterized by 
weights d. The transition network assigned to state i has 
3; outputs, where Ji is the inumber of (non-zero) transitions 
from state i. The neural networks in the HNN can be stand- 
ard feedforward networks or recurrent networks. In fact, 
they need not even be neusal networks - they can be any 
smooth mapping defined on the space of observation feature 
vectors. 

In complete analogy with the likelihood p(xlM) of a 
HMM for observation sequence x = XI,. . . , XL, we define 
the quantity 

d 4 M )  =: dz, 4 M )  (1) 
7f 
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with 

where M denotes the whole model, Le., all parameters, 
and the state sequence A = TI, . . . , TL is a particular path 
through the model. We define TO = 0 and Ooi (so; U’) is the 
probability of initiating a path in state a. SO is the context 
we choose to associate with the beginning of the sequence. 
The probabilistic interpretation is ensured by explicit nor- 
malization of q, 

(3) 

The integration in the denominator is taken over the space 
of observation vector sequences X. For the HNN it is gener- 
ally not possible to calculate the normalization in (3), since 
this would require knowledge of the network outputs for all 
possible inputs. However, as shown below, we do not need 
to compute the normalization term. 

Note that the likelihood definition (3) is also applicable 
to conventional HMMs. Actually, a discrete HMM with 
non-normalizing parameters is equivalent to the so called 
Boltzmann Chain introduced in [9]. 

Apart from making this model elegant from a mathemat- 
ical and computational point of view, we also believe that 
it may be beneficial to give up local normalization of para- 
meters even for standard HMMs. In fact, non-normalizing 
parameters are already used frequently to increase speech 
recognition accuracy by introducing so-called “transition bi- 
ases” and “stream exponents”, see e.g. [7, lo]. 

2.1. Training and decoding 
Assume that the complete labeling is available, i.e., that each 
observation has an associated label yl corresponding to 
the class to which it belongs. In speech recognition the 
classes could be distinct phonemes. Similarly, assume that 
each state in the HNN is assigned a class label. To maximize 
the prediction accuracy we choose parameters so as to max- 
imize the conditional likelihood of the observed labeling’ 
Y = Y l , . . . , Y L ,  

(4) 

as we have previously proposed in [ll]. Maximizing (4) 
is known as Conditional Maximum Likelihood estimation 
(CML) and is equivalent to Maximum Mutual Information 
estimation (MMI) [12, 131 if the language model is fixed 
during training. p(z,ylM) is calculated as a sum over all 
paths consistent with the labeling, i.e., if observation 1 is 
labeled f only paths in which the E-th state has label f are 
allowed. If the set of these consistent paths is called d(y)  
we have, 

~~ 

‘The extension to multiple training sequences is straightfor- 
ward by assuming that training sequences are independent. 

Since cv, q(z‘,y’lM) = q(z‘lM) the normalization is the 
same in (3) and ( 5 ) ,  so 

and the normalizing factor has conveniently disappeared. 
Both q(zlM) and q(z, ylM) can be calculated by a straight- 
forward extension of the forward algorithm, see e.g. [ll]. 

Using the above framework for phoneme recognition re- 
quires that the phoneme segmentation (complete labels) of 
the spoken utterance is known. However, in continuous 
speech recognition the desired output of the recognizer is not 
the phoneme label corresponding to each speech frame (com- 
plete labeling), but rather the phoneme transcription (in- 
complete labeling) [13]. Similar to procedures for standard 
HMMs (e.g. [5, lo]) we can build a “transcription model” 
by concatenating phoneme submodels according to the ob- 
served phoneme transcription of a given training utterance. 
Analogous to (4) and (7) the goal is now to maximize, 

where w is the phoneme transcription corresponding to x 
and M, is the transcription model. In this work training 
using the complete or incomplete labeling is called complete 
and incomplete label training respectively. 

To maximize (7) or (8) we use stochastic online gradient 
ascent augmented by a momentum term, where the para- 
meter update is performed after each observation sequence. 
We found that online gradient ascent with an adaptive step- 
size yields considerably faster convergence than batch train- 
ing (updating after presenting the entire training set). Cal- 
culating the derivative of log P(ylz,  M )  w.r.t. a weight in the 
match or transition networks yields backpropagation train- 
ing of the neural networks based on an error signal cal- 
culated by the forward-backward algorithm, see e.g. [2, 51. 
Thus, for each sentence a forward-backward pass is followed 
by backpropagation training of the neural networks. 

In agreement with [5] we have found that Viterbi decoding 
does not perform well for discriminatively trained models. 
A probable reason for this is that the Viterbi path through 
the model need not correspond to the optimal transcription. 
Ideally the decoder should output the labeling that max- 
imizes the full likelihood of the model. In this work we use 
the computationally efficient full likelihood based N-best de- 
coder proposed in [14]. This decoder allows multiple active 
partial transcriptions in each state during a Viterbi style 
decoding. For computational reasons it is usually necessary 
to limit the number of active partial transcriptions in each 
state. We use an upper limit of 10 active partial transcrip- 
tions and only the most likely transcription is considered 
after decoding. 

3. GENERAL EXPERIMENTAL SETUP 
Initially the HNN has been evaluated on the task of recog- 
nizing five broad phoneme classes in the TIMIT database: 
Vowels (V), Consonants (C), Nasals (N), Liquids (L) and Si- 
lence (S). We use one sentence from each of the 462 speakers 
in the TIMIT training set for training, and the results are 
reported for the recommended TIMIT core test set. An in- 
dependent crossvalidation set is used for selecting the best 
performing model after training. 
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The preprocessor outputs an observation vector every 
lOms consisting of 26 features: 12 me1 scaled cepstral coef- 
ficients, 1 log energy coefficient and the corresponding delta 
coefficients. These vectors are normalized to zero mean and 
unit variance in order to speed up training of the HNN. 
Each of the five classes are modelled by a simple left- 

to-right three state model. The last state in any submodel 
is fully connected to the first state of all other submodels. 
Since we did not observe any improvements using transition 
networks all models use standard HMM transition probabil- 
ities. Note however, that transitions between submodels are 
also trained discriminatively when using the CML criterion 
as opposed to the MMI criterion. 

Our baseline system is a standard discrete HMM using a 
codebook of 256 prototype vectors (3856 free parameters). 
In the HNN we replace the emission distribution by fully 
connected match networks with a symmetric input window 
of 2K+1 observation vectors and a sigmoid output function. 

CML training is performed using a maximum of 100 on- 
line gradient ascent epochs and the Baum-Welch reestim- 
ation algorithm is used for ML training. The best model 
found within 30 epochs of complete label training is used as 
initial model for incomplete label training. Training times 
are less than one day on a fast workstation for all models 
evaluated on the broad class problem. 

3.1. Baseline results 
In table 1 the results for complete label training are shown 
for the baseline system. For the ML trained model it is ob- 
served that Viterbi and N-best decoding yields approxim- 
ately the same accuracy’. However, for the CML estimated 
model a considerably higher accuracy is obtained by the N- 
best decoder. Probably this is because the CML estimated 
models are trained so as to maximize the probability of the 
labeling, which need not correspond to the most probable 
path found by the Viterbi algorithm. 

Table 1 shows that the difference between complete and 
incomplete label training is negligible for the ML estimated 
models, but significant for the CML estimated models. The 
reason for this is that the CML criterion is very sensitive 
to mislabelings, because it is dominated by those training 
sequences that have an unlikely labeling. Since the phon- 
eme segmentation in TIMIT is set by hand it is very likely 
to contain mislabelings which degrade performance of the 
complete label trained model. Thus, an accuracy of 81.3% 
is obtained using incomplete label CML training compared 
to 79.0% for complete label CML training. For compar- 
ison the ML estimated discrete HMM only reaches 76.1%. 
In [5] an accuracy of 69.3% is reported for a ML trained 
continuous density HMM with a mixture of six diagonal co- 
variance gaussians per state. Thus, for approximately the 
same number of parameters the ML trained discrete HMM 
outperforms the continuous density HMM by more than 6%. 
For a MMI trained model with a single diagonal covariance 
gaussian per state they report an accuracy of 72.4%, com- 
pared to our 81.3% for the CML trained discrete HMM. 

3.2. HNN Results 
The match networks in the HNN are initially trained by a 
few iterations of standard backpropagation to classify the 
observations into the five broad classes. This speeds up 

I K = l  
10 hidden units 

‘%Acc = 100% - %Ins - %Del - %Sub , where %Ins, %Del 
and %Sub denote the percentage of insertions, deletions and sub- 
stitutions used for aligning the observed and the predicted tran- 
scription. The NIST standard scoring package “sclite” ver. 1.1 
is used in all experiments. 

1216 81.7 

4246 8A.O 
#Parms N-Best 

Table 1. Discrete H’MM recognition accuracies. 

CML 76.6 79.0 
I Incomdete labels I Vit N-Best I TTl 

CML 81.3 

Table 2. HNN recognition accuracies. For K = 1 a context 
of one left and one right f a m e  is used, i.e., a total of three 
frames is used. 

I K = l  I 12046 I 83.6 I 
training of the HNN considerably and the models are less 
prone to getting stuck in local minima. All HNNs are es- 
timated using incomplete label CML training. 

Even though the HNN with zero hidden units and no con- 
text (K = 0) contains almost ten times less parameters than 
the baseline system it achieves a comparable recognition ac- 
curacy of 80.8%, see table 2. For a context of one left and 
right frame (K = 1) the HNN outperforms the CML es- 
timated HMM. No further improvement was observed for 
contexts larger than K = 1. It is interesting to note that 
the match networks in the HNN without hidden units actu- 
ally just implements linear weighted sums of input features 
(passed through a sigmoid output function). Adding hidden 
units to the HNN drastically increases performance even if 
no context is used, see table 2. Thus, for approximately 
the same number of parameters as used in the baseline sys- 
tem the HNN with 10 hidden units and no context (K = 0) 
obtains 84.0% recognition accuracy. Context degrades test 
set performance slightly for the HNN with 10 hidden units. 
We believe this is due to overfitting, because of the large 
number of parameters in these models. In [5] a feedforward 
NN is used as a global adaptive input transformation to a 
continuous density HMM with a single diagonal covariance 
gaussian per state. This hybrid is trained by MMI and N- 
best decoding gives an accuracy of 78.5%. The result has 
later been improved to 81.3% by using a linear transforma- 
tion instead of the NN and by using multiple CML training 
passes [4]. 

Using the forward-backward algorithm it is straightfor- 
ward to calculate the posterior probability P(al = ilz, M )  
of occupying state i at time 1 [13]. For a test sentence 
(si2183: “Books are for schnooks”) the state posterior prob- 
abilities provided by the €INN with 10 hidden units and no 
context are shown for the the consonant submodel states in 
fig. 1. The posteriors for the “begin” and “end” states are 
only large at the class boundaries, whereas the posteriors for 
the “middle” state is large only between these boundaries. 
Hence, the model is very good at discriminating between 
different classes. This is a,lso verified in fig. 2 showing that 
more than 50% of the frames have a winning-label posterior 
probability3 P(y; Iz, M) larger than or equal to 0.9. This 

3Posterior label probabilities for each frame are obtained by 
summing state posteriors at time 1 for states that carry the same 
label. The winning-label y; at time 1 is defined by the largest 
label posterior at time 1 .  
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Figure 1. State posterior probabilities P(.rrilx, M )  for the 
three states i n  the consonant submodel for  test sentence 
“si2183”. The  broad class segmentation is shown at the 
bottom of the plot. 

- 1 -  , 
- I 

I I I I I 
IO 3.0.41 , ? , l , l , l , l ,  I 

10 r r o Q 4  : J  
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Figure 2. Solid line: Average label posterior probabilaty 
of winning class P ( y ; l x , M )  ranked into 7 equally spaced 
bins and plotted as function of the observed frame accuracy 
in these bins. Dashed line: Percentage of frames falling 
into the 7 bans located at the corresponding observed frame 
accuracies. 

corresponds to an observed frame recognition rate of more 
than 95%. Furthermore, there is an almost perfect correl- 
ation between the observed frame accuracy and the aver- 
age label posterior of the winning class. Thus, the larger 
P(y; 12, M )  the more confident is the prediction. 

3.3. TIMIT 39 phoneme recognition 
A set of experiments were carried out on recognizing the re- 
duced 39 TIMIT phoneme set also considered in [4, 7, lo]. 
In these experiments we used the same preprocessor and 
submodel setup as in the broad class problem, but a total 
of 39 phoneme submodels were used. The full TIMIT train- 
ing and testing set (except all “sa-sentences”) were used in 
these experiments. For a HNN using no context, 10 hidden 
units in the match networks, standard transition probab- 
ilities and incomplete label training a preliminary test set 
result of 69% accuracy is obtained. This is comparable to 
results on the same task reported in the literature for stand- 
ard context independent HMMs [lo] and for a HMM using 
a global linear adaptive input transformation [4]. Currently 
one of the best results reported is 75% accuracy and is ob- 
tained by a HMM/recurrent NN hybrid [7]. 

4. CONCLUSION 
It has been shown that the HNN combination of neural net- 
works and a Hidden Markov model yields a better recogni- 
tion accuracy than a standard HMM on TIMIT continuous 
phoneme recognition. In addition it was illustrated that the 
HNN provides very accurate estimates of phoneme posterior 
probabilities. The particular architecture introduced here is 

characterized by: 1) All parameters are trained discrimin- 
atively at the same time 2) Proper probability distributions 
are obtained by global normalization as opposed to local 
normalization, and 3) Large flexibility in that not all of the 
HMM parameters need to be replaced by neural networks. 
Future work includes further experiments on the 39 phon- 
eme task, other optimization methods, e.g., second order 
methods, and careful network design to reduce model com- 
plexity. 
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