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Ratchet device with broken friction symmetry
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An experimental setup~gadget! has been made for demonstration of a ratchet mechanism induced
by broken symmetry of a dependence of dry friction on external forcing. This gadget converts
longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is
in accordance with given theoretical arguments. Despite the setup being three dimensional, the
ratchet rotary motion is proved to be described by one simple dynamic equation. This kind of
motion is a result of the interplay of friction and inertia. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1468900#

As described originally by Smoluchowski1 and noted by
Feynman,2 a Brownian particle can undergo net transport on
a potential energy surface, even if it is externally driven by
oscillating or fluctuating forces of zero average.3 These so-
called Brownian ratchets have attracted considerable atten-
tion because of their description of molecular motors4 and
other technological devices.5–9 Among these, the ratchet
model that contains finite inertia,10 represents a considerable
technical challenge because under certain conditions it ad-
mits a chaotic behavior, which has to be suppresed in tech-
nological applications.

The fundamental condition for the rectified transport to
occur is that certain symmetries, associated with spatial or
time reflection, are broken.11 On the other hand, a similar
symmetry breaking can also be achieved parametrically,
when at least one of the system parameters depends asym-
metrically on the velocity or external forcing. More pre-
cisely, let us consider the dynamic equation for a particle
moving in a periodic potentialU(x), with x5x(t) being a
coordinate of the particle, generalized to include some addi-
tional dynamic properties such as nonlinear friction, depen-
dence on external forcing, etc.,

ẍ1U8~x!1g~ f !s~ ẋ!/ ẋ5 f . ~1!

Here the friction is supposed to depend on an external force
f (t) with zero average and the functions5s( ẋ) describes
the type of friction. Following the symmetry arguments,11

one can classify the following three particular types of Eq.
~1!, each of which admits ratchet dynamics.

~i! The friction is a symmetric function with respect to
an external force@g(2 f )5g( f )# and its dependence on the
velocity is linear (s5 ẋ2). The rectification in this case oc-
curs either due to broken symmetries in space@U(2x)
ÞU(x)# or in time ~e.g., harmonic mixing!,3,11 except for
supersymmetric ratchets.12

~ii ! The periodic potential is absent@U(x)[0# and
g(2 f )5g( f ). The rectification occurs in the case when
both nonlinearity ofs ~e.g., if s5 ẋ21 ẋ4) and broken time
symmetry~e.g., due to harmonic mixing!5 are present.

~iii ! The periodic potential is absent@U(x)[0#, the
functions( ẋ) does not necessarily result in a nonlinear fric-
tion term in the equation of motion~1!, and the time sym-
metry is not broken. The rectification can occur due to bro-
ken symmetry of the force@if g(2 f )Þg( f )# or velocity @if
s(2 ẋ)Þs( ẋ)# dependent friction.

In this letter, we focus on the last possibility, when
s( ẋ)5uẋu ~dry friction!. In this case, if the system is suffi-
ciently sophisticated, a ratchet motion can occur through a
broken symmetry of the dependence of friction on an exter-
nal driving force. To support the idea of the ratchet as a result
of broken friction symmetry, we have constructed an experi-
mental device~see its photograph and schematic sketch in
Figs. 1 and 2, respectively!—a mechanical diode that
changes the friction coefficient, while an external force is
applied to the system, resulting in a biased rotational motion.

As depicted in Figs. 1 and 2, the setup consists of two
massive plates~weights! A andB with massesMA andMB ,
which are connected by two lateral springs 1 and 2, so that
their geometric arrangement mimics a right-handed helical

a!Electronic mail: yz@imm.dtu.dk

FIG. 1. The experimental setup that consists of two~upper and lower!
helically rotating coupled plates. The supporting bottom plate creates fric-
tion for the lower plate. A driving oscillating or fluctuating force is applied
to the upper plate, e.g., by hitting it slightly from various directions. Colored
noise was created by the sound from a fog horn, acting on a horizontal
membrane glued on top of the upper plate. In all cases of forcing vertically
~from above or below!, the helical system was observed to rotate only clock-
wise when viewed from above.
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structure. In experiments with this helicity, the device shows
unambiguously the rotary ratchet motion directed clockwise,
when viewed from above~shown with the arrow in Fig. 2!,
whereas the left-handed helicity implies the counterclock-
wise rotation. In other words, the change of direction of
springs 1 and 2 does not affect the problem of rectification,
changing only the direction of rectified motion. Next, it is
important that springs 1 and 2 are very soft to bend, but hard
to compress or stress~being in fact elastic rods!. WeightA is
resting on weightB with a lower vertical spring~3! in be-
tween, while an upper vertical spring~4!, for which the upper
end is fixed, controls the pressure of plateB on a supporting
plate. Therefore, the vertical distance between platesA and
B is fixed only by vertical springs 3 and 4, and the lateral
springs do not participate in the force balance. The ends of
the lateral springs are attached to the plates rigidly, whereas
the vertical springs are allowed to slide freely on the surfaces
of the plates when they rotate.

In equilibrium, both springs 3 and 4 are little pressed,
and this construction allows us to exclude effectively the role
of gravity in experiments. Indeed, when the gadget is ori-
ented, e.g., horizontally, plateA will be found in another
~shifted! equilibrium position, but still being pressed to the
supporting plate, resulting in a nonzero friction. Therefore,
gravity is not essential for the existence of a ratchet motion
and both weightsA and B can be considered as masses.
Instead, the inertia of plateA is crucial for the sliding rota-
tion of plateB on the supporting plate. In a rotation around
the vertical axis, the friction of weightB depends on the
current vertical position of weightA; that friction is larger as
the weight ~force! on spring 3 is larger, so that when an
external oscillating or fluctuating force is applied on weight
A, the friction in a rotation of weightB sliding on the sup-
porting plate depends strictly on the force applied to weight
A. The pair of lateral springs~elastic rods! converts the os-
cillating or fluctuating normal force applied on weightA into
a force changing the angle between the rotating plates. Be-
cause the friction coupling between theA rotation and theB
rotation is larger when spring 3 is contracted than when it is

extended, we get a rectification as the lateral springs transfer
a normal motion into a rotation of plateB.

Let R0 be the radius of the helical backbone of the setup.
The equilibrium state of the system is given by the dimen-
sionless~measured in units ofR0! vertical distanceh and the
mismatch anglef,p/2. Under different motions of platesA
and B, the length of springs 1 and 2, given byl
5Ah212(12cosf), practically does not change and there-
fore they create a constraint in the system. The supporting
plate in the setup~see Figs. 1 and 2! generates a sliding
friction for a rotary motion of plateB. This friction depends
on the normal response forceNB directed upwards and cre-
ated by the supporting plate. In its turn, this response de-
pends on how spring 3 is pressed~or stretched!, and this
dependence is governed by an external normal forceFn(t),
acting from plateA through spring 3 as well as through the
lateral springs, acting as a constraint. Any tangential forcing
that exceeds the friction of rest, results in a rotation of plate
B.

One of the equations of motion can be derived for the
angular variablesuA(t) anduB(t), instantaneous deviations
of platesA andB from their equilibria. We denote the mo-
ments of inertia byaMAR0

2 andbMBR0
2, with a andb being

~dimensionless! geometric form factors for platesA and B,
respectively. Since the lateral springs are soft to bend, the
interaction ofA andB through these springs in the vertical
direction can be ignored. This technical point essentially
simplifies the full system of dynamic equations, which in
general take a very complicated form. Therefore, in this
setup, one can account for only a tangential response forceTt

that appears due to the constraint created by the lateral
springs. In general, except for the forceTt , an external tan-
gential forceFt may be applied, so that the tangential equa-
tion of motion for plateA is aMAR0üA5Tt1Ft . The second
equation that governs the friction dynamics of plateB can be
written in the formbMBR0üB1G( u̇B ,NB)/(R0u̇B)52Tt ,
where the dissipation functionG for the lower plate depends
on the angular velocityu̇B and the response forceNB , acting
from the side of the supporting plate. Next, the response
forceTt can be excluded from these two equations of motion
and, as a result, we obtain one tangential equation for the
angle variablesuA anduB :

aMAüA1bMBüB1G~ u̇B ,NB!/~R0
2u̇B!5Ft /R0 . ~2!

The equation of motion that describes the vertical dy-
namics of plateA driven by the normal forceFn(t) reads

MAz̈1hAMAż1KV8~z!5Fn /R0 , ~3!

wherez is the displacement of plateA from its vertical equi-
librium position given by springs 3 and 4~and weightA if
the gadget is oriented vertically!. The functionV(z), with a
minimum atz50, describes the strain energy of the vertical
springs. The string parametershA and K stand for the fric-
tion and stiffness, respectively.

Finally, the last equation of motion results from the con-
straint imposed on platesA andB by the stiff lateral springs
~acting in fact as rods!, leading to a geometric relation be-
tween the variablesuA , uB , andz. Since the length of the
lateral springs in our setup is practically unchanged~because
they are too hard to compress or stress!, one finds in the

FIG. 2. Schematic sketch of the setup: the two lateral springs~acting as
elastic rods! 1 and 2 are shown by thick solid lines.
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linear approximation the relationz5h21(uA2uB)sinf. Us-
ing this equation, the variableuA can be eliminated in Eq.
~2!, leading to the equation

V̇1G~V,NB!/~MR0
2V!52m z̈ ~4!

with respect to the angular velocityV[u̇B of plateB. Here
M5aMA1bMB and m5ahMA /(M sinf) are system pa-
rameters. As follows from Eq.~2!, the tangential forceFt

does not affect the rectification of rotary motion and there-
fore it is omitted in Eq.~4!. Without loss of generality, one
can write G(V,NB)5MBR0

2G(NB)s(V), where s(2V)
5s(V) and the friction coefficientG obviously increases
with NB . In our gadget, we deal with dry friction and there-
fore one can puts(V)5uVu, neglecting more sophisticated
dependences, which are still subject to controversy.13,14

As mentioned earlier, the responseNB depends on how
spring 3 is stretched or compressed, i.e., on the displacement
z of plateA from its equilibrium. More precisely, the depen-
dence NB5NB(z) is given by the equation NB

52KR0V8(z2z1) if z<z1 and NB50 if z.z1 , wherez1

.0 is the distance, at which spring 3 becomes completely
unpressed. Therefore, the functionḠ(z)[G@NB(z)# must
decrease withz and become zero for allz.z1 . On the other
hand, when plateB is strongly pressed by spring 3 to the
supporting plate, the rotation is entirely supressed. This oc-
curs forz,z2 , wherez2 is a critical value~friction at rest!,
below which the friction becomes infinite. The function
Ḡ(z)5Ḡ0 exp@a/(z2z1)#(z2z2)

21, a.0, Ḡ0.0, defined on
the intervalz2,z,z1 , is mostly appropriate to describe the
friction dependence on the displacementz because it
smoothly approaches zero asz→z1 , being infinitely differ-
entiable at this point. Obviously, this is not a unique choice;
in general, any monotonically decreasing function, like an
exponential behavior14 or the rational functionḠ(z)5Ḡ0(z1

2z)/(z2z2), can be chosen for a qualitative analysis of the
friction dynamics.

In the particular case of a sinusoidal forceFn(t) with a
frequencyv, the steady-state solution~trajectory or attractor!
of Eq. ~3! is also a sinusoidal function with the amplitudez0

being proportional to the force amplitudeF0 .15 Next, we

denote the right-hand side of Eq.~4! by f (t)
[mz0v2 sin(vt), acting as an external force on plateB.
Then Eq.~4! can be rewritten in the form

V̇1sgn~V!g~ f !5 f , ~5!

with a dimensionless friction coefficientg depending on the
force f (t).

As expected intuitively, for any nonincreasing, but nec-
essarily decreasing at least in some neighborhood of the
point f 50 in the domain of the functiong( f ), the global
~average! velocity ^V(t)& can be proved rigorously to be
positive and this means that plateB rotates clockwise as
shown in Fig. 2. In the particular case of the rational func-
tion, the steady-state solution to Eq.~5! was found numeri-
cally. As shown in Fig. 3, after starting numerical simula-
tions, the solutionV(t) approaches the steady state very fast.
This figure clearly demonstrates that plateB practically
never steps backwards and this behavior is indeed observed
visually in experiments with our gadget.

In conclusion, we have discussed the ratchet mechanism,
which can occur due to broken friction symmetry in the
equation of motion~1! or ~4! and seems to be important for
applications. In particular, combination of self-propulsion
theories16 with the asymmetric dependence of the friction on
~internal or external! forcing or velocity can gain an insight
into physics of microbiological motility.17
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