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Solitons in an isolated helix chain

P. L. Christiansen, A. V. Zolotaryuk,* and A. V. Savin,†

Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
~Received 16 December 1996!

A molecular chain with helix structure has been investigated in the three-dimensional space in the case when
it is considered as an isolated object~not subjected to any substrate potential!. Each of the chain molecules is
allowed to move in three dimensions, and intermolecular interactions~bonds! are assumed to be of the pair
type and to have spherical symmetry. The helix structure is provided by the first- and second-neighbor inter-
molecular bonds as well as by the nearest-neighbor interactions along the longitudinal direction of the chain,
stabilizing the helix backbone which can be considered as a generalization of the well-known one-dimensional
Fermi-Pasta-Ulam model to include transverse degrees of freedom of the chain molecules. In the particular
case of thea-helix molecular chain, the intermolecular interactions involved into the model are the point-point
bonds connecting the first-, second-, and third-nearest neighbors. The set of nonlinear field equations with
respect to the longitudinal and transverse~torsional and radial! displacements of the chain molecules has been
derived and treated. Stable nontopological soliton solutions which describe supersonic pulses of longitudinal
compression propagating together with localized transverse thickening~bulge! and torsional stretching~un-
twisting! have been found. The stability properties of these~three-component! soliton solutions have been
studied by using numerical techniques developed for seeking solitary-wave solutions in complex molecular
systems.@S1063-651X~97!04307-9#

PACS number~s!: 87.15.2v, 63.20.Ry, 63.20.Pw

I. INTRODUCTION

One-dimensional~1D! nonlinear ~anharmonic! lattices,
the studies of which were originated in a series of pioneering
works @1–4#, are usually considered as the basic models to
describe transport properties in biomolecules@5,6#. Any in-
termolecular potential in such a 1D lattice~chain! has a hard-
ening ~positive! anharmonicity. This is a conventional type
of anharmonicity in nonlinear lattices and its physical mean-
ing is as follows. When neighboring atoms~or molecules! of
the chain are displaced from their equilibrium positions, the
repulsion force between them becomes stronger than the har-
monic approximation of this interaction. In other words, a
hardening anharmonic force contributes to this repulsion
with the positive sign. As a result of the presence of such a
positive anharmonicity, dynamically stable solitary waves
can propagate along the chain with supersonic velocities
@2–4#. These nonlinear collective excitations are referred to
as lattice~or acoustic! solitons. For some particular choices
of the intermolecular potential, like Toda, Boussinesq, etc.,
the solitons are named accordingly.

In applications to real biological quasi-one-dimensional
objects @7–9#, the standard 1D Fermi-Pasta-Ulam~FPU!
model @1# should be generalized in order to include trans-
verse motions of chain molecules. However, as shown by
numerical simulations@10,11#, solitonic excitations in anhar-
monic chains are extremely sensitive to their transverse per-
turbations and therefore the problem of soliton propagation
in 3D objects is far from fully understood. Consequently, the

question on the existence and stability of moving solitary
waves along realistic biomolecules, considered as 3D ob-
jects, is of great interest. In particular, investigations of an-
harmonic chains, atoms, or molecules which have transverse
degrees of freedom@10,12–17# should be mentioned. On the
other hand, in some cases transverse displacements of mol-
ecules are considered the most important motions in bio-
physical processes. Thus, in the DNA molecule, the stretch-
ing of base pairs in the transverse direction determines the
fundamental mechanism of the denaturation of this molecule.
The Peyrard-Bishop model of DNA melting@18–20# has just
been formulated in terms of only transverse degrees of two
complementary strands. Although the DNA molecule is con-
sidered in this approach as an isolated object, the model ac-
tually describes the 1D dynamics of chain molecules in an
effective substrate potential.

The present paper aims to findpure solitary-wave solu-
tions for a helix backbone, the molecules of which are al-
lowed to move in 3D space. All intermolecular interactions
are assumed to be of the point-point type. The backbone is
considered as anisolatedobject which is not subjected to
any substrate potential. Since only point-point intermolecular
interactions are involved, the helix backbone will have a
single stabilized ground state in the case if, besides the
nearest-neighbor coupling, at leasttwo other bonds are taken
into account. For instance, in this paper we consider interac-
tions between the first, second, and nearest neighbors in the
longitudinal directions. Particularly, for thea-helix macro-
molecule, these interactions are between the first, second,
and third neighbors. In any case of a 3D helix backbone,
three intermolecular interactions is the minimal number of
bonds required to have a regular structure of the backbone
when it is found in an undistorted~ground! state. As shown
in Ref. @21#, in the 2D case, when the helix backbone is
reduced to a planar zigzag chain,two intermolecular interac-
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tions~between the first and second neighbors! are a sufficient
number of bonds to create a stable zigzag structure. Note that
in the Olsen-Lomdahl-Kerr~OLK! model for thea helix, the
two intermolecular interactions~between the first neighbors
and the nearest molecules in the longitudinal direction! is not
a sufficient number to fix a stable ground state. Any pair of
geometric parameters describing the helix structure can be
given in terms of the backbone radius, and therefore the helix
geometry is arbitrarily scaled by this parameter. Therefore,
our generalized version of the OLK model may be consid-
ered as the most simple theoretical model of an isolated mo-
lecular chain corresponding to realistic situations in biomo-
lecular sciences.

Finally, it should be emphasized that even in the case
where molecules are assumed to be coupled by harmonic
forces, an effective anharmonicity appears because of the
geometry of the system. For breatherlike solutions, the ef-
fects of such a geometric nonlinearity have previously been
investigated by Cadet@22#.

The rest of the paper is organized as follows. In Sec. II we
describe a helix model with first- and second-neighbor inter-
actions, including the nearest-neighbor interactions~soft hy-
drogen bonds! along the longitudinal direction of the back-
bone. In this section, we describe the geometry of the helix
structure, and derive the basic set of three-component equa-
tions of motion. The reduction of these equations to lower
dimensions is briefly discussed there. In Sec. III, we study
the small-amplitude linear limit of the equations of motion.
In Sec. IV, we generalize a numerical method developed
previously for low dimensions to seek pure solitary-wave
solutions of stationary profile in our 3D model. These solu-
tions are chosen in Sec. V as initial conditions for simula-
tions of the equations of motion. The comparison of the ini-
tial and final soliton profiles has been carried out there. The
concluding remarks on the results of the present paper are
outlined in Sec. VI.

II. A HELIX MODEL

Let molecules~e.g., amino acids! be linked together in a
molecular~polypeptide! chain, as illustrated in Fig. 1, by the
first-, second-, andn-neighbor forces. The forces between the
nth and (n1n)th molecules form a soft~hydrogen! bond in
the longitudinal direction of the helix backbone, and there-
fore the integern ~the number of spines! is determined from
the condition that then-neighboring bond has to be the short-
est distance in this direction. This chain has a 3D helical
structure, and its molecules are allowed to move in all three
(X,Y,Z) directions.

A. Sets of geometric parameters for the description
of helix structure

The geometry of a regular helix backbone, when its mol-
ecules are found in equilibrium positions, can be uniquely
given by a set of three parameters. To this end, it is conve-
nient to define the positions of the vertices of the helix back-
bone, using the cylindrical system of coordinates. In this
frame the helix structure can be described by~i! the radius
R0 of the cylinder which spans the helix backbone,~ii ! the
constant anglef in the XY plane which is formed by each
three successive chain molecules~this angle is the projection

of the valence anglec between the nearest valence bonds
onto theXY plane!, and~iii ! the heightDz which measures
the Z projection of the distance between the nearest-
neighboring molecules in the chain. Then the radius vector
of each molecule of the helix backbone is given by

Rn5R0„cos~nf!,sin~nf!,nh…, n50,61,..., ~1!

whereh5Dz/R0 . Whenf.2p/n(f,2p/n), we refer to
such a chain as a right~left! helix.

Alternatively, the helix can be described by three other
parameters, namely, by the distances between~i! the nearest
molecules (D1), ~ii ! the second neighbors (D2), and~iii ! the
nth and (n1n)th molecules (Dn). The length of the vector

ajn5~Rn1 j2Rn!/R05„cos@~n1 j !f#2cos~nf!,

sin@~n1 j !f#2sin~nf!,

jh…, ~2!

which connects thenth and (n1 j )th vertices of the regular
helix backbone, does not depend on the number of the chain
site:

uajnu5A2@12cos~ jf!#1 j 2h2[aj5Dj /R0 , j51,2,n.
~3!

Using the expression for the distance between thenth and
(n1 j )th vertices of the backbone~3!, we find the equation
for the anglef:

FIG. 1. A fragment of the helix backbone consisting of 11 mol-
ecules. The geometry of the backbone is in accordance with the
structure ofa-helix, i.e., n53 andf5100°. The intermolecular
interactionsUj , j51,2,3, are schematically shown by the springs
of different diameters. The thicker springs correspond to stronger
stiffness of the bonds.
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324 cosf1cos~2f!

n2212n2 cosf1cos~nf!
5

4a1
22a2

2

n2a1
22an

2 . ~4!

When Eq.~4! has been solved, we obtain

R05
A4D1

22D2
2

4 sin2~f/2!
, Dz5

AD2
2/42D1

2 cos2~f/2!

sin~f/2!
. ~5!

Thus there is a one-to-one correspondence between the two
sets of parameters:$R0 ,f,h% and$D1 ,D2 ,Dn%.

The third set of parameters which may also be adopted for
the description of the helix geometry is$D1 ,c,Dn%, wherec
is the valence angle between the nearest-neighboring bonds.
The relation between the parameter sets$R0 ,f,h% and
$D1 ,c,Dn% is determined as follows. First, we find the equa-
tion for the anglef:

12cos~nf!

12cosf
1S n22

an
2

a1
2D 12cosf

11cosc
5n2. ~6!

Then the remainder two parametersR0 andh are given by

R05
D1 cos~c/2!

12cosf
, Dz5D1S ucosf1coscu

12cosf D 1/2. ~7!

Note that the inequality

cosf1cosc,0 ~8!

is always valid if the integern.1.
Since the regular helix structure is given uniquely by

threegeometric parameters, we need to consider three types
of intermolecular interactions which stabilize this structure.
One of these has to be introduced, as usual, between the
nearest neighbors along the helix chain and it may be re-
ferred to as valence bonds. The second type of interactions
couples the molecules situated along the longitudinal direc-
tion of the chain as in the OLK model@10#. It is responsible
for the secondary structure of the chain macromolecule. Thus
in protein these interactions are called hydrogen bonds.
However, as shown above, in order to have a stable helix
backbone when the intermolecular interactions are spheri-
cally symmetric~i.e., if only point-point central interactions
are assumed!, besides the interactions between the nearest
neighbors along the helix backbone and along the longitudi-
nal direction, we have to consider some third type of inter-
molecular bonds. For instance, it can be the three-particle
interaction fixing a certain valence anglec. The simplest and
most straightforward way to take this fact into account is to
consider the interaction between thenth and (n12)th mol-
ecules, i.e., the second-neighbor coupling. In this respect,
such a helix will be the most simple generalization of the
FPU chain considered as a 3D object.

Now we need to discuss the number of spinesn. This
integer should be chosen in such a way that the length of
longitudinal~hydrogen! bonds would be the shortest distance
between thenth and (n1n)th molecules. Using the first
equation in Eq.~7!, we exclude the variablea1 in Eq. ~6!,
and find the relation

an
2

2
512cos~nf!2n2

~cosf1cosc!~12cosf!

11cosc
, ~9!

which gives the dependence of the distancean on the integer
n. The minimization of the distancean5an(f,c) with re-
spect to all integersn>3 at given values of the anglesf and
c yields the required integern. Thus, for thea-helix macro-
molecule we havef5100° andc5110°. In this case, the
minimal distancean occurs atn53.

In the case of three spines~e.g., in protein!, whenn53, it
is interesting to consider the equidistance case when
D15D25D3 . In this particular case Eqs.~3! and~4! can be
solved explicitly. As a result, we find the anglef:sin(f/2)
5A5/6. The other two parameters are given bya15a2
5a3510/3) andh5 1

3A10/3. Since the anglef exceeds the
value 2p/3, this particular case corresponds to a right helix.

B. Equations of motion

The total Hamiltonian of the described helix backbone
with three types of interactions, which link the first and sec-
ond neighbors as well as the nearest neighbors along the
longitudinal direction of the chain, can be written in the form

H5(
n

F12 M ~ ẋn
21 ẏn

21 żn
2!1KR0

2 (
j51,2,n

Uj~r jn!G ~10!

whereM is the mass of chain molecules,K is the character-
istic stiffness of the intermolecular forces, the coordinates
xn , yn , andzn describe the displacements of thenth mol-
ecule from its equilibrium position given in theXYZ frame
by the radius vector~1!, and the dots denote the differentia-
tion with respect to timet. Each of the three functions
Uj (r jn)’s, which are assumed, in general, to be different,
describes an intermolecular interaction between the nearest-
neighboring (j51), second-neighboring (j52), and ~n!-
neighboring (j5n) molecules. These interactions are as-
sumed to depend only on the dimensionless intermolecular
distancesr jn5Rjn /R0 whereRjn is the distance between the
nth and (n1 j )th molecules. The intermolecular potentials
Uj (r ), j51,2,n, are normalized byUj (aj )50, Uj8(aj )50,
and they have the standard form, like the Lennard-Jones in-
teraction. In order to deal with both the harmonic approxi-
mation and with more realistic potentials, and to have a pa-
rameter of intermolecular nonlinearity~anharmonicity!, we
will use the Morse potentials

Uj~r !5 1
2 ~k j /g j

2!$12exp@2g j~r2aj !#%
2

5 1
2k j~r2aj !

2@12g j~r2aj !1•••#, j51,2,n,

~11!

where k j5Kj /K5Uj9(aj ) is the dimensionless stiffness
constant of the bond connecting thenth and (n1 j )th mol-
ecules, whileg j is the anharmonicity parameter of this bond.
In the limit g j→0, potentials~11! describe the harmonic ap-
proximation.

For the dimensionless description it is convenient to in-
troduce the normalized time

t5v0t, v05AK/M , ~12!
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and the dimensionless vectorsqn’s defined by

qn~q1n ,q2n ,q3n!5Rn /R01vn ,

vn5~v1n ,v2n ,v3n!5~xn ,yn ,zn!/R0 . ~13!

Then the distancesr jn are represented as

r jn5uqn1 j2qnu ~14!

and the Hamiltonian~10! can be rewritten in the dimension-
less form. Given in the units ofKR0

2, it takes the form

H5(
n

F12 S dqndt D 21(
j
U j~ uqn1 j2qnu!G . ~15!

The equations of motion which correspond to the Hamil-
tonian ~15! take the following form:

d2qn
dt2

5(
j

@Wj~r jn!~qn1 j2qn!2Wj~r j ,n2 j !~qn2qn2 j !#,

~16!

where the functionsWj (r jn) are defined by

Wj~r jn!5
Uj8~r jn!

r jn
. ~17!

In Eq. ~16! and in the following, the summation overj
51,2,n is not indicated explicitly, except for the particular
cases when the number of spinesn is specified.

C. Local frame of coordinates

It is more natural to describe the displacements of mol-
ecules from the equilibrium positions locally at each mol-
ecule. More precisely, at each equilibrium position of the
nth molecule, we consider the normal and tangent~to the
circle in theXY plane, as shown in Fig. 2! components of the
displacement vectorvn @see Eqs.~13!#. We denote this vector
in the local system byun5$u1n ,u2n ,u3n%, whereu1n and
u2n are the normal and tangent projections of the vector
un , respectively. The longitudinal coordinate is not trans-
formed, so thatu3n[v3n . Therefore, both the systems of
coordinates are related by the rotational transformationTn
defined by

Tnvn5un , Tn5S cos~nf!

2sin~nf!

0

sin~nf!

cos~nf!

0

0
0
1
D . ~18!

The set of the unitary operatorsTn’s forms a group:TmTn
5Tm1n , with the unityT05I , whereI is the unity operator.

The substitution of the expressionqn5Rn /R01Tn
21un

@see Eqs.~13! and ~18!# into the equations of motion~16!
yields

d2un
dt2

5(
j

@T j
21Fj~un ,un1 j !2Fj~un2 j ,un!#, ~19!

where the intermolecular forcesFj ’s are defined by

Fj~un ,un1 j !5Wj~r jn!~cj1un1 j2T jun!. ~20!

Here the distancer jn between thenth and (n1 j )th mol-
ecules is represented by

r jn5uajn1Tn1 j
21 un1 j2Tn

21unu, ~21!

and the constant vectorscj ’s are defined by

cj5~12cos~ jf!,sin~ jf!, jh !. ~22!

As can be seen from Eqs.~20! and ~21!, the forcesFj ’s are
not expressed in terms of the differences of the vectorsun
and un1 j because of the presence of the operatorsT j ’s in
these expressions.

D. Lower dimensions

Consider some particular cases corresponding to lower
~one and two! dimensions, e.g., takingn51 or n52. First,
we note that the equations of motion for the 1D case can be
obtained from Eqs.~2! and ~17!–~22! if we put theref
52p. Particularly, we obtainajn5(0,0,jh) andTn5I . Re-
ducing to the 1D case givesvn5un5(0,0,un) and qn1 j
2qn5(0,0,r jn), wherer jn5 jh1un1 j2un . As a result, Eq.
~19! is reduced to

d2un
dt2

5(
j

@Uj8~ jh1un1 j2un!2Uj8~ jh1un2un2 j !#.

~23!

In the simplest casen51, this equation describes the stan-
dard FPU model, while forj.1 we obtain the 1D generali-
zation of this model including long-range intermolecular in-
teractions. For the particular case of the first- and second-
neighbor interactions,n52 ( j51,2), this model has been
extensively studied in Refs.@23,24#.

Similarly, puttingf5p, we reduce the 3D helix back-
bone to a planar zigzag chain studied previously in Ref.@21#.
Indeed, in the case with the first- and second-neighbor inter-
actions (n52), we obtain

a1n5„2~21!n11,0,h… a2n5~0,0,2h!,

Tn5S ~21!n

0
0

0
~21!n

0

0
0
1
D . ~24!

FIG. 2. The frame of local normal and tangent coordinates in the
XY plane.
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Let un5(un,0,bn), with un(t) andbn(t) being generalized
coordinates. Then in terms of these coordinates, the first- and
second-neighbor distances are

r 1n5A~21un1un11!
21~h1bn112bn!

2,

r 2n5A~un122un!
21~2h1bn122bn!

2, ~25!

respectively. The corresponding equations of motion for the
lattice fieldsun(t) andbn(t) are derived immediately from
the Lagrangian

L5(
n

F12 S dundt D 21 1

2 S dbn

dt D 22 (
j51,2

Uj~r jn!G . ~26!

As was shown in Ref.@21#, these equations admit stable
two-component nontopological soliton solutions.

III. SMALL-AMPLITUDE WAVES

In the harmonic approximation for all of the intermolecu-
lar forces~g j→0, j51,2,n!, we obtain the linear expansion

Fj~un ,un1 j !5a j^un1 j2T jun ,cj&cj1••• , ~27!

wherea j5k j /aj
2 and ^ & denotes the inner product. Conse-

quently, the linearized equations of motion take the form

d2un
dt2

5(
j

a j@^un1 j2T jun ,cj&T j
21cj

2^un2T jun2 j ,cj&cj #. ~28!

Substituting the plane wave

un5An exp@ i ~kn2Vt!# ~29!

into Eqs.~28!, we obtain the following dispersion law:

UV22c11
ic12
ic13

2 ic12
V22c22

2c23

2 ic13
2c23

V22c33
U50, ~30!

with the coefficients

c1152(
j

a j@12cos~ jf!#2@11cos~ jk !#,

c1252(
j

a j@12cos~ jf!#sin~ jf!sin~ jk !,

c1352(
j

a j~ jh !@12cos~ jf!#sin~ jk !,

~31!

c2252(
j

a j sin
2~ jf!@12cos~ jk !#,

c2352(
j

a j~ jh !sin~ jf!@12cos~ jk !#,

c3352(
j

a j~ jh !2@12cos~ jk !#.

Explicitly, Eq. ~30! can be rewritten as

V62~c111c221c33!V
41~c11c221c11c331c22c332c12

2 2c13
2

2c23
2 !V21~c11c23

2 1c22c13
2 1c33c12

2 2c11c22c33

22c12c13c23!50. ~32!

Using the explicit form of Eqs.~30!–~32!, one can be
convinced of the existence of three nondegenerate and non-
negative roots of the cubic~with respect toV2! equation~32!
for all 0,k<p. In the long-wavelength limitk→0, the free
term, and the coefficient atV2 in the dispersion equation
~32! tend to zero. Therefore, two of three solutions of this
equation are acoustic branches. These twoV l(k) and
V t(k) ~see Fig. 3! correspond to the longitudinal and tor-
sional oscillations of the chain molecules, respectively. The
third root of Eq.~32! gives an optical branchVop(k), corre-
sponding to the transverse oscillations of molecules in the
radial direction of the helix backbone. Explicitly, atk50 we
have

Vop
2 ~0!5c111c221c3354(

j
a j@12cos~ jf!#2. ~33!

The presence of two acoustic branches should result in the
existence of two speeds of sound: longitudinal (v l) and tor-
sional (v t). In dimensionless form, they can be defined as
the limits

sl ,t5
v l ,t
v0

5h lim
k→0

V l ,t~k!

k
, ~34!

where v05(K/M )1/2R0 is the characteristic velocity of
small-amplitude waves in the helix backbone.

For numerical computations we choose the following val-
ues of the system parameters:

n53, f5100°, h51, k1510, k255, k351.
~35!

FIG. 3. The frequenciesV t ~curve 1!, V l ~curve 2!, andVop

~curve 3! against wave numberk, 0<k<p, for the chain with the
parameter set~35!.
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In the parameter set~35!, the values for the numbern and the
angle f correspond to thea-helix protein molecule. The
stiffness constantsk1 , k2 , andk3 are related each to other
approximately as the elasticities of the valence bond, valence
angle, and hydrogen bond. The form of all of the three dis-
persion curves for the values~35! is shown in Fig. 3. Atk
50, the frequencies areV l5V t50 andVop55.11. It fol-
lows from the explicit representation of the coefficients~31!
that at a certain value of the wave numberk5k0 , the free
term in Eq.~32! becomes zero. This means that, at this value,
softening the torsional oscillations happens@V t(k0)50#.
For the parameter set~35! this value isk051.748. As fol-
lows from Fig. 3, the frequency spectrum of the helix chain
consists of one separate optical zone and two acoustic zones.
The frequency spectrum of the torsional oscillations lies in-
side the frequency spectrum of the longitudinal oscillations.
Moreover, the velocity of the longitudinal soundsl53.39
significantly exceeds the speed of the torsional soundst
50.75.

IV. A SOLITON ANALYSIS

In this section we develop a numerical scheme for seeking
solitary-wave solutions of the stationary profile for the basic
equations of motion~16!. This scheme can be applied if the
profile of such solutions appears to be sufficiently smooth,
though varied from site to site along the chain. In order to
study discreteness effects, we should use more complicated
numerical techniques such as the pseudospectral method sug-
gested by Eilbeck and Flesch@25#, later developed by Dun-
canet al. @26#. When the soliton solutions have been found,
then they can be chosen as initial conditions for numerical
simulations of these equations. The final profile of the vector
lattice field qn(t) obtained under the simulations at suffi-
ciently large timest allows us to conclude whether or not the
initial soliton profile is a stable solution of Eqs.~16!. The
main point in such a numerical approach is an appropriate
choice of a discrete functional in the numerical scheme. As
was shown previously@21#, such a functional can be con-
structed from the corresponding Lagrangian of the system.

To accomplish the soliton analysis of the equations of
motion ~16!, we treat them in the cylindrical system of co-
ordinates. Therefore, we write

q1n5~11hn!cos~nf1un!,

q2n5~11hn!sin~nf1un!,

q3n5nh1bn ~36!

wherehn describes the radial displacement of thenth mol-
ecule from the cylinder surface which spans the helix back-
bone when its molecules are situated at the equilibrium po-
sitions. It is positive if the displacement is outside, and the
thickening of the helix occurs in this place. If the displace-
ment is directed inside the helix, thenhn is negative. The
second generalized coordinateun describes the azimuthal de-
viation of thenth molecule from its equilibrium position, and
bn is the Z coordinate of the displacement. Then the La-
grangian of the helix backbone written in terms of these new
variables takes the form

L5LH dhn

dt
,hn ;

dun
dt

,un ;
dbn

dt
,bnJ 5(

n
H 12 F S dhn

dt D 2

1~11hn!
2S dun

dt D 21S dbn

dt D 2G2(
j
U j~r jn!J , ~37!

where the distancer jn is given by

r jn
2 5~11hn!

21~11hn1 j !
222~11hn!~11hn1 j !

3cos~ jf1un1 j2un!1~ jh1bn1 j2bn!
2. ~38!

The corresponding equations of motion are

d2hn

dt2
5~11hn!S dun

dt D 22(
j

$Wj~r j ,n2 j !@11hn

2~11hn2 j !cos~ jf1un2un2 j !#1Wj~r jn!@11hn

2~11hn1 j !cos~ jf1un1 j2un!#%, ~39!

d2un
dt2

5
1

11hn
H 22

dhn

dt

dun
dt

1(
j

@Wj~r jn!~11hn1 j !

3sin~ jf1un1 j2un!2Wj~r j ,n2 j !~11hn2 j !

3sin~ jf1un2un2 j !#J , ~40!

d2bn

dt2
5(

j
@Wj~r jn!~ jh1bn1 j2bn!2Wj~r j ,n2 j !~ jh1bn

2bn2 j !#. ~41!

We assume that soliton solutions have moving permanent
profile, i.e., we puthn5h(nh2st), un5u(nh2st), and
bn5b(nh2st), wheres5v/v0 with v0 being the charac-
teristic sound velocity defined in Sec. III. As illustrated by
Fig. 3, there are three types of waves: one optical and two
acoustic modes. Therefore, there is no need to take into ac-
count the dispersion of the optical mode, and therefore we
can approximate the first and second time derivatives ofhn
by the simplest spatial difference derivatives as follows:

dhn

dt
52sh8~nh2st!.2s~hn112hn21!/2h,

~42!

d2hn

dt2
5s2h9~nh2st!.s2~hn1122hn1hn21!/h

2.

However, for the longitudinal and torsional displacements
we need to take into account the dispersion which arises
from the discreteness of the chain backbone. To this end, we
represent the time derivatives ofun and bn by differences
which additionally contain higher-order spatial difference
derivatives chosen in such a way that they cancel the higher
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expansion terms while passing to the continuum limit. Thus,
introducing the relative displacementswn5un112un and
rn5bn112bn , we can write

dun
dt

52su8~nh2st!.2sS un112un21

2h

2
un1223un1113un2un21

6h D
5s~un1226un1113un12un21!/6h

5s~wn1125wn22wn21!/6h, ~43!

d2un
dt2

5s2u9~nh2st!.s2S un1122un1un21

h2

2
un1224un1116un24un211un22

12h2 D
52s2~wn11215wn115wn212wn22!/12h

2,

~44!

dbn

dt
.s~bn1226bn1113bn12bn21!/6h

5s~rn1125rn22rn21!/6h, ~45!

d2bn

dt2
5s2b9~nh2st!.2s2~rn11215rn115rn21

1rn22!/12h
2. ~46!

Using the discretized versions~42!–~46!, we derive from
the dynamical equations~39!–~41! the following discrete
equations for the displacementshn , wn , andrn :

F1n[
s2

h2
@hn1122hn1hn212~11hn!~wn1125wn

22wn21!
2/36#1(

j
HWj~r j ,n2 j !F11hn

2~11hn2 j !cosS jf1(
i51

j

wn2 j1 i21D G1Wj~r jn!

3F11hn2~11hn1 j !cosS jf1(
i51

j

wn1 i21D G J 50,

~47!

F2n[
s2

12h2
@~11hn!~wn11215wn115wn212wn22!

12~hn112hn21!~wn1125wn22wn21!#

1(
j

FWj~r jn!~11hn1 j !sinS jf1(
i51

j

wn1 i21D
2Wj~r j ,n2 j !~11hn2 j !sinS jf1(

i51

j

wn2 j1 i21D G50,

~48!

s2

12h2
~rn11215rn115rn212rn22!

1(
j

FWj~r jn!S jh1(
i51

j

rn1 i21D 2Wj~r j ,n2 j !

3S jh1(
i51

j

rn2 j1 i21D G50. ~49!

The last equation can be integrated and, as a result, it is
transformed to

F3n[
s2

12h2
~rn11214rn1rn21!1(

j
(
l51

j

Wj~r j ,n2 j1 l !

3S jh1(
i51

j

rn2 j1 l1 i21D 50. ~50!

The system of the discrete equations~47!, ~48!, and~50!
was solved numerically in the particular case of thea helix
(n53) macromolecule. Our aim was to find only pure soli-
ton solutions of this system. Each of these solutions
$hn ,wn ,rn%n51

N smoothly depends on the chain siten, and
has zero asymptotics at the chain ends. It is convenient to
seek the first approximation of such a solution as a minimum
of the functional

F5 1
2 (
n54

N23

~F1n2 1F2n2 1F3n2 !, ~51!

whereN is the number of the chain sites. The problem for
the conditional minimum

F→min: hn5wn5rn50, n51,2,3,N22, N21, N,
~52!

was solved numerically by using the Broyden-Fletcher-
Goldfarb-Shanno variable metric algorithm@27#. The initial
point was taken in the form of the bell-shaped pulses

hn5An /cosh
2@m~n2N/2!#,

wn5Aw /cosh
2@m~n2N/2!#, ~53!
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rn5Ar /cosh
2@m~n2N/2!#

wherem is an adjustable parameter. It describes the width of
the pulse chosen as a starting point for the minimization
procedure. The parametersAh , Aw , andAr are the ampli-
tudes of this starting pulse. It is necessary to choose the
number of sitesN approximately ten times larger than the
width of the solution. In this case, the shape of the solution
will be not affected by the chain ends. We tookN5200, and
this number was appropriate for finding sufficiently broad
soliton solutions.

Since the surface F5F(h4 ,...,hN23 ;
w4 ,...,wN23 ; r4 ,...,rN23) is strongly ravined, the search of
soliton solutions as a minimum of the function~51! leads to
slowly convergent numerical procedure. Therefore the final
shape of the soliton solution was found as a numerical solu-
tion of the system of 3(N26) nonlinear equations~47!, ~48!,
and~50! with respect to the variables$hn ,wn ,rn%n54

N23 where
hn5wn5rn50 if n51,2,3,N22,N21,N. A modification
of the Powell hybrid method including the programHYBRD
from the packet of subprogramsMINPACK was used for these
purposes. Each minimum point obtained under solving the
minimization problem~52! was used as an initial point in
this method. The necessary condition for the present numeri-
cal scheme to be applied for seeking soliton solutions is their
smooth dependence onn. In the class of such solutions, the
method allows us to find their profiles and determine the
region of parameter values where soliton solutions exist. The
absence of this type of solutions to the set of Eqs.~47!, ~48!,
and~50! implies the absence of soliton solutions of the basic
system of the equations of motion~16!.

Besides the velocitys, it is convenient to describe three-
component soliton solutions$hn ,wn ,rn%n51

N , obtained nu-
merically by solving the system of Eqs.~47!, ~48!, and~50!,
by their energy

E5 (
n54

N23 H s2

8h2 F ~hn112hn21!
21

1

9
~11hn!

2~wn1125wn

22wn21!
21

1

9
~rn1125rn22rn21!

2G1(
j51

3

Uj~r jn!J
~54!

~in this definition, Eqs.~37!, ~42!, ~43!, and ~45! have been
used!, the amplitudes

Ah5 max
1<n<N

hn , Aw5 max
1<n<N

wn , Ar5 min
1<n<N

hn ,

~55!

and the mean-root-square width

L52S (
n51

N

~n2nc!
2rn /RD 1/2, ~56!

where

R5 (
n51

N

rn ~57!

is the total compression of the helix backbone and

nc5
1
21 (

n51

N

nrn /R ~58!

is the position of the soliton center.

V. NUMERICAL RESULTS

In this section we will numerically find three-component
soliton solutions, and study their stability properties for the
a-helix backbone with the parameter values~35!. The non-
linearity of the dynamics of thea-helix protein molecules in
the first turn is caused by the anharmonicity of soft hydrogen
bonds. Therefore we will take into account only the anhar-
monicity of the third neighbors (n53), i.e., we takeg1
5g250 andg3.0. Let us find soliton solutions for three
values of the anharmonicity:g350.1, 1, and 10. The nu-
merical solution of systems~47!, ~48!, and ~50! has shown
that at weak anharmonicity~e.g.,g350.1!, there are no soli-
ton solutions, while for the valueg351 the soliton solutions
exist only with velocities in the segment 1,s/sl,1.065. In
this interval of velocities, the solutions have bell-shaped soli-
ton profiles, smoothly depending on the chain site, as illus-
trated by Fig. 4. The dependences of the energyE, width
L, and amplitudesAh , Aw , and Ar of the soliton on its
dimensionless velocitys/sl are given in Table I. As follows

FIG. 4. The three-component profile of the soliton in the helix
backbone with the parameter values~35! and the anharmonicities
g15g250 andg351 at the initial instant of timet50 ~dashed
line! and at the final instantt528 062.45 when the soliton has
passed 100 000 chain sites~solid line!. The initial velocity of the
soliton wass51.05sl .
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from Fig. 4, in the region of the localization of the soliton
solution, compression of the chain occurs, accompanied by
localized thickening and untwisting. The solitons can exist
only in a narrow interval of supersonic velocities. When
s→sl , the soliton energy and amplitudes monotonically tend
to zero, while the width increases to infinity. With the
growth of the velocity, the energy and absolute values of the
amplitudes monotonically increase, whereas the width mono-
tonically decreases. For strong anharmonicity, the soliton has
a finite supersonic speed spectrum. Thus atg3510 we have
the segment 1,s/sl,1.065. For this case, the dependences
of the energyE, width L, and amplitudesAh , Aw , andAr

on the velocitys/sl are illustrated by Table II.
The second stage of our numerical studies was the simu-

lation of the dynamics of the soliton profiles obtained above
by solving the nonlinear algebraic equations~47!, ~48!, and
~50!. To this end, we considered the dynamics in a finite
chain with fixed ends. The dynamics of such a system is
governed by the system of the equations of motion~39!–~41!
with 4<n<N23, whereN is the number of molecules in
the chain. The displacementshn , un , andbn of the mol-
ecules at the chain ends, with the subscriptsn51, 2, 3,
N22, N21, and N are assumed to be fixed. Let
$hn

0,wn
0,rn

0%n51
N be a soliton solution obtained by solving the

system of Eqs.~47!, ~48!, and~50!. Then the soliton center is
found at the (N/2)th chain site, and this solution is used to
construct the initial conditions for numerical integration of
Eqs. ~39!–~41! as follows. First, we note that in order to
simulate the propagation of the soliton in an infinite chain,
instead of the chain consisting ofN sites, we choose the
initial conditions in the ‘‘prolonged’’ chain, which contains
2N sites, according to the relations

hn~0!5hn
0, n51,...,N, hn~0!5hN

0 , n5N11,...,2N,

u1~0!50, un11~0!5un~0!1wn
0, n51,...,N,

un~0!5uN11~0!, n5N12,...,2N,

b1~0!, bn11~0!5bn~0!1rn
0, n51,...,N,

bn~0!5bN11~0!, n5N12,...,2N,

hn8~0!52s@hn11~0!2hn21~0!#/2h,

un8~0!52s@un11~0!2un21~0!#/2h,

bn8~0!52s@bn11~0!2bn21~0!#/2h, n54,...,2N23,
~59!

h j85u j85b j85h2N2 j8 5u2N2 j8 5b2N2 j8 50, j51,2,3;

where the prime denotes the differentiation with respect to
the dimensionless timet. Next we shift the soliton profile
back by N sites just when it passesN sites, i.e., when
b3N/2(t) becomes greater thanbN/2(0); we accomplish the
substitutions

hN1n~t!5hn~t!, uN1n~t!5un~t!, bN1n~t!5bn~t!,

hN1n8 ~t!5hn8~t!, uN1n8 ~t!5un8~t!,

bN1n8 ~t!5bn8~t!, n51,...,N,

hn~t!5h2N~0!, un~t!5u2N~0!, bn~t!5b2N~0!,

hn8~t!50, un8~t!50, bn8~t!50, n5N11,...,2N.
~60!

After each such shift, we compare the current soliton profile
with its initial shape. To this end, we define the ‘‘distance’’
function

d~t!512 1
3 @ASh~t!/Rh1ASw~t!/Rw1ASr~t!/Rr#,

~61!

where

TABLE I. Dependence of the energyE, width L, and amplitudesAh , Aw , andAr of the soliton on its velocitys/sl for g351.

s/sl E L Ah Aw Ar

1.01 0.020 26 20.79 0.005 39 0.004 88 20.009 29
1.02 0.057 63 15.19 0.010 62 0.009 63 20.018 30
1.03 0.106 69 11.01 0.015 74 0.014 29 20.027 11
1.04 0.165 57 10.01 0.020 82 0.018 78 20.035 74
1.05 0.233 26 9.61 0.025 76 0.023 27 20.044 17
1.06 0.309 10 9.50 0.030 55 0.027 61 20.052 21

TABLE II. Dependence of the energyE, width L, and amplitudesAh , Aw , andAr on the velocitys/sl for g3510.

s/sl E L Ah Aw Ar

1.01 0.000 22 20.82 0.000 57 0.000 51 20.000 97
1.02 0.000 64 15.23 0.001 14 0.001 00 20.001 92
1.03 0.001 18 12.61 0.001 70 0.001 48 20.002 84
1.04 0.001 83 11.05 0.002 26 0.001 95 20.003 74
1.05 0.002 57 10.06 0.002 81 0.002 41 20.004 64
1.06 0.003 41 9.58 0.003 36 0.002 86 20.005 51
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Sh~t!5 (
n51

2N

@hn~t!2hn~0!#2,

Sw~t!5 (
n51

2N21

@wn~t!2wn~0!#2,

Sr~t!5 (
n51

2N21

@rn~t!2rn~0!#2,

Rh5 (
n51

2N

hn
2~0!, Rw5 (

n51

2N21

wn
2~0!, Rr5 (

n51

2N21

rn
2~0!.

~62!

Function~61! allows us to estimate the change of the soliton
shape. When the current and initial profiles coincide per-
fectly, thend51. Otherwise,d,1.

We have studied the soliton dynamics in the chain con-
sisting ofN5100 molecules with the parameters~35! when
g15g250 and g351. When the initial speed wass/sl
51.05 (s53.5645), then the soliton passed 100 000 chain
sites during the timet528 062.45, and this propagation cor-
responds to the velocitys5100 000/t53.563551.0497sl .
As can be seen from Fig. 4, the soliton shape at the final
instant of time practically coincides with the initial profile.
The change of the soliton shape in time, described by the
functiond5d(t) @see Eqs.~61! and~62!#, is given in Fig. 5.
Its behavior demonstrates small oscillations around the mean
value d̄50.985. The nonsmooth behavior of the distance
d(t) appears due to incommensurateness of the velocity of
motion with the value of the discrete step of integration
Dt. The system of the equations of motion~39!–~41! was
integrated by the fourth-order Runge-Kutta method with the
constant step of integrationDt50.02. The discreteness of
time does not allow us exactly to find an instant of time
when the soliton has passed exactly 200 chain sites. There-
fore some small shifts of the soliton center occur and, as a
result, small-amplitude oscillations appear in the function
d(t). Simulations of the equations of motion have shown

that the numerical procedure of looking for soliton solutions
gives correct soliton profiles, and solitons themselves are dy-
namically stable.

Consider now the head-in collision of the solitons. The
simulations have shown that for velocities close to the speed
of longitudinal sound, the collision of solitons occurs practi-
cally elastically without emission of small-amplitude waves
~see Fig. 6!. However, for higher velocities, close to the up-
per edge of the segment of admissible velocities~‘‘velocity
spectrum’’!, the interaction of solitons becomes inelastic.
The collision leads to the emission of small-amplitude waves
as illustrated by Fig. 7.

In finite a-helix chains, the solitons can be created at the
ends of the chain. Therefore, we have considered the dynam-
ics of the chain when it is initially compressed at one of the
ends. To this end, for the simulations of Eqs.~39!–~41!, we
have chosen the following initial conditions:

hn~0!50, hn8~0!50, un~0!50, un8~0!50,

bn8~0!50, n51,...,N; ~63!

b1~0!5b2~0!5b3~0!5A, bn~0!50, n54,...,N.

HereA.0 is the amplitude of the initial compression at the
first three chain sites of the left end, andN52000 is the total
number of sites chosen for the simulations. Again, we take
g15g250 andg3.0. The simulations have shown that, for
the weak anharmonicityg350.1, the initial compression of
the chain leads only to the appearance of an oscillating wave
packet propagating with subsonic velocities. Supersonic soli-

FIG. 5. Dependence of the functiond, describing the change of
the soliton shape, on timet for the soliton with the initial velocity
s51.05sl in the helix chain with the same parameter values as in
Fig. 4.

FIG. 6. Elastic collision of the solitons in the chain backbone
with the same parameter values as in Fig. 4. Both the solitons
propagate with the velocitys51.01sl53.4287.
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tons are not formed, and their absence is in accordance with
the result obtained above for the backbone with weak anhar-
monicity. In the case with middle anharmonicity, the com-
pression with the amplitudesA50.1 and 0.2 also resulted in
the appearance of a subsonic wave packet. However, the
compression with larger amplitudes also resulted in the ap-
pearance of a supersonic soliton. Thus, forA50.3, the soli-
ton had the velocitys/sl51.031 and forA50.4, the velocity
was s51.049. For the stronger anharmonicity,g3510, the
compression with the amplitudeA50.05 resulted in the for-
mation of a supersonic soliton with the velocitys/sl
51.066~see Fig. 8!. The presence of the two sound veloci-
tiesst andsl leads to the appearance of two oscillating wave
packets ~torsional and longitudinal waves, respectively!
which are clearly seen in Fig. 8. The compression with the
larger amplitudeA50.1 leads to the formation of the soliton
like supersonic pulse with the velocitys/sl51.175~see Fig.
9!. This value of the velocity is outside the soliton velocity
spectrum. Therefore the motion of such a soliton is accom-
panied by the continuous emission of small-amplitude waves
~phonons!. In an infinite chain, such emission should result
in decreasing the soliton velocity, approaching the upper
edge of the soliton velocity spectrum; however, in a finite
chain, the soliton has no time to throw down its velocity.
Thus these simulations of the time evolution of a narrow
initial pulse have confirmed our conclusions drawn above on
the finiteness of the supersonic soliton velocity spectrum on
one side, and the absence of soliton solutions for weak an-
harmonicity on the other side.

Finally, we note that the accuracy of the numerical inte-

gration of Eqs.~39!–~41! was estimated through the conser-
vation of the integral of the total energy@see Eq.~37!#

H5 (
n54

N23 H 12 F S dhn

dt D 21~11hn!
2S dun

dt D 21S dbn

dt D 2G
1(

j
U j~r jn!J . ~64!

The value of the integration stepDt50.02, used in the
present paper, ensured the conservation of integral~64! with
an accuracy up to six digits during the whole time of the
numerical integration.

VI. CONCLUSION AND DISCUSSIONS

It was an attractive point of view to study the transport of
vibrational energy in biopolymers such as protein on the ba-

FIG. 7. Inelastic collision of the solitons in the backbone with
the same parameter values as in Fig. 4. The initial velocity of the
solitons iss51.05sl53.5645.

FIG. 8. Formation of the supersonic soliton and of two wave
packets in the helix backbone under the initial (t50) compression
of the three bonds at its left end. The parameters of the backbone
are given by Eqs.~35!, g15g250, andg3510. The amplitude of
the initial compression isA50.05. The distribution of the longitu-
dinal relative displacementsrn’s along the helix chain is plotted at
the instantt5500.

FIG. 9. Formation of the supersonic soliton emitting small-
amplitude waves and of two wave packets in the helix backbone
with the same parameter values as in Fig. 8 under the initial (t
50) compression of the left end bonds. The amplitude of the initial
compression isA50.1. The distribution of the longitudinal relative
displacementsrn’s along the chain is given att5400.
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sis of 1D nonlinear lattice models. The first attempt in this
direction was formulated by Davydov with co-workers~see
the Refs.@5# and @6#, and references therein! who suggested
that the intramolecular vibrational amide-I mode could be
self-trapped through its interaction with deformation in the
protein structure. Further, Davydov and co-workers@28,29#
and Scott @30# generalized this theory by taking dipole-
dipole coupling between the three spines into account. While
the Davydov model and the related models~the Takeno
model @31# should also be mentioned! considered intramo-
lecular modes, Yomosa@8# modeled the energy transfer in
protein, essentially applying the Fermi-Pasta-Ulam model.
The present paper also focuses only on the large-amplitude
supersonic lattice solitons, so that we do not consider any
intramolecular modes. All intermolecular~or interatomic! in-
teractions in our model are represented by pair central forces.
However, in order somehow to stabilize a chain backbone
and to fix a single ground state, except for the nearest-
neighboring interactions, we should take into account some
additional intermolecular forces, including next or more re-
mote neighbors. As a result, the latter forces in biology form
secondary structure, i.e., some regular spatial configuration
of the chain. In the simplest case, such a configuration has
naturally the form of a so-called 310 helix. Therefore Olsen,
Lomdahl, and Kerr@10# considered two types of intermo-
lecular forces: between the first neighbors and between the
nearest neighbors along the longitudinal direction. In order to
have a completely stabilized helix backbone in the 3D space,
we incorporated in the helix model a third type of intermo-
lecular forces, namely, between the second neighbors. For
instance, in the case of the 310-helix backbone, our model
contains the first-, second-, and third-neighboring intermo-
lecular forces. Alternatively, instead of this coupling, a three-
body force, which fixes the valence anglec, could be con-
sidered. Any of these force constraints is sufficient for a
helix backbone to have a single ground state. In this paper
we restricted ourselves to the case when the chain molecules
are coupled only through central forces of spherical symme-
try. Given in terms of valence bonds, the helix Hamiltonian
becomes more complicated. Therefore the Hamiltonian~15!
may be considered as the most simple 3D generalization of
the 1D FPU chain.

Thus, in the present paper the standard 1D FPU model has
been generalized to the three spatial dimensions when each
chain molecule is allowed to have three degrees of freedom.
The resulting geometric structure is a helix backbone with
n>3 spines. Three-component nontopological solitons have
been shown to exist and propagate with supersonic velocities
in the helix backbone with any number of spines. Similarly
to the 1D case, for the existence of the soliton solutions, the
presence of anharmonicity, at least, in the longitudinal~hy-
drogen! bonds connecting eachnth and (n1n)th molecules,
is a necessary condition. However, compared to the 1D FPU
model, the existence of stable soliton solutions in the 3D
helix backbone appears to be more limited. First, they exist if
the anharmonicity of then-neighboring forces~longitudinal
bonds! is sufficiently strong. Second, the segment of admis-
sible ~supersonic! velocities of solitons is always finite. It is
quite narrow and for all velocities from this segment, and the
soliton propagation is uniform, retaining velocity and profile.
However, when the solitons collide, their behavior after col-

lision depends on velocity. At the lower edge of the segment
~soliton velocity spectrum!, the soliton collision is elastic,
whereas, for higher velocities, at the upper edge the solitons
collide inelastically with the radiation of small-amplitude
waves. Summarizing, we conclude that in a 3D isolated helix
backbone the three-component solitons, describing super-
sonic pulses of longitudinal backbone compression, still exist
as dynamically stable objects. However, the range of their
existence is more limited if compared to the 1D FPU lattice.

Since the present paper focuses mainly on the problem of
how to find pure soliton solutions, in order to check the
stability of the soliton solutions obtained under the minimi-
zation procedure, as well as to demonstrate the accuracy of
the method for seeking these solutions, we performed nu-
merical simulations of waves traveling over 100 000 chain
sites. Of course, it is very rare for realistic biological macro-
molecules to beuniformover such long lengths. Thus a pro-
tein which consists of amino acids should be modeled by a
chain with mass variation. We performed numerical simula-
tions of the time evolution of the lattice solitons in the 1D
FPU chain with randomly distributed masses, and found that
their propagation through disordered segment is, in general,
unstable. Thus, if the mass impurity is sufficiently small,
then emission of small-amplitude waves occurs when the
soliton passes through the impurity. For larger impurities,
splitting the soliton, for instance, into two solitons, one of
these reflects the impurity. If the impurity is very large, then
inelastic reflection of the soliton takes place. Assuming a
soliton to be incident on a disordered segment of the chain
embedded between two homogeneous semi-infinite chains,
the transmission coefficient of the soliton energy could be
calculated. In the 1D case, this problem was solved numeri-
cally in Ref. @32#.

We do not expect that the 1D results will change crucially
for the helix chain. At least, they should be similar at the
lower edge of the soliton velocity spectrum where the soliton
profile is broad. However, in any case we have energy loss
and eventually soliton breaking. The scattering of the lattice
solitons on mass impurities is due to their high~supersonic!
velocities. Slow solitons such as envelope solitons or topo-
logical defects are much more stable with respect to impuri-
ties. Therefore, from the point of view of ‘‘soliton transpar-
ency’’ in real biological macromolecules, the Davydov-Scott
self-trapping mechanism seems to be much more promising,
as Davydov’s soliton does not loose energy at all, at least for
sufficiently small velocities@33#. However, it should be
noted that the helix part of the Davydov-Scott ‘‘exciton-
helix’’ model @28–30,34,35# is simplified because only lon-
gitudinal displacements of the chain molecules are consid-
ered. Though transverse displacements along the radial
directions of the helix backbone can be taken into account
@29#, nevertheless the model is still one-dimensional because
the intermolecular interactions are considered only in the
longitudinal direction. The coupling between the spines is
incorporated only through a semiclassical term, namely, the
transverse dipole-dipole interaction energy between the
nearest-neighbor amino acids. It is important to note that on
the basis of this oversimplified exciton-helix model, the nu-
merical calculations by Scott and co-workers@30,34,35# dis-
covered the threshold of the exciton-phonon coupling for
formation of the soliton states in protein, while, in the cor-
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responding single chain, the self-trapping occurs at any value
of this coupling. Therefore it is not obvious what happens
with the intramolecular mode when the lattice~helix! sub-
system is completed properly, as described in this paper.
From this point of view, the present work may be considered
as a first step to study more carefully the Davydov-Scott
exciton-helix model. Therefore the numerical simulations
performed by Scott and co-workers@30,34,35# should be ex-
tended to the case when the helix part of the Hamiltonian is
given by Eq. ~10!. Moreover, since the helix subsystem
changes significantly~three degrees of freedom for the chain
molecule motions and three types of intermolecular interac-
tions are involved!, the corresponding Langevin equations
will essentially differ from those used by Lomdahl and Kerr
@36#. Therefore their results on the thermal stability of Davy-
dov’s soliton should be revised in the ‘‘complete’’ exciton-
helix model. Thus, semiclassical investigations in the spirit

of Refs.@30, 34, 35#, on one hand, and numerical simulations
similar to those of Lomdahl and Kerr@36# and Lawrence
et al. @37#, on the other hand, are of great importance in the
future.
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