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Solitons in an isolated helix chain

P. L. Christiansen, A. V. ZoIotaryuT<,and A. V. Savin'
Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 16 December 1996

A molecular chain with helix structure has been investigated in the three-dimensional space in the case when
it is considered as an isolated objéabt subjected to any substrate potenti&ach of the chain molecules is
allowed to move in three dimensions, and intermolecular interactiooisdg are assumed to be of the pair
type and to have spherical symmetry. The helix structure is provided by the first- and second-neighbor inter-
molecular bonds as well as by the nearest-neighbor interactions along the longitudinal direction of the chain,
stabilizing the helix backbone which can be considered as a generalization of the well-known one-dimensional
Fermi-Pasta-Ulam model to include transverse degrees of freedom of the chain molecules. In the particular
case of thex-helix molecular chain, the intermolecular interactions involved into the model are the point-point
bonds connecting the first-, second-, and third-nearest neighbors. The set of nonlinear field equations with
respect to the longitudinal and transve(s®sional and radialdisplacements of the chain molecules has been
derived and treated. Stable nontopological soliton solutions which describe supersonic pulses of longitudinal
compression propagating together with localized transverse thickéhirige and torsional stretchingun-
twisting) have been found. The stability properties of thé¢geee-componentsoliton solutions have been
studied by using numerical techniques developed for seeking solitary-wave solutions in complex molecular
systems[S1063-651X97)04307-9

PACS numbegps): 87.15-v, 63.20.Ry, 63.20.Pw

[. INTRODUCTION question on the existence and stability of moving solitary
waves along realistic biomolecules, considered as 3D ob-
One-dimensional(1D) nonlinear (anharmonit lattices, jects, is of great interest. In particular, investigations of an-
the studies of which were originated in a series of pioneerindnarmonic chains, atoms, or molecules which have transverse
works [1-4], are usually considered as the basic models talegrees of freedoifl0,12—17 should be mentioned. On the
describe transport properties in biomoleculB®]. Any in-  other hand, in some cases transverse displacements of mol-
termolecular potential in such a 1D lattitehain) has a hard- ecules are considered the most important motions in bio-
ening (positive anharmonicity. This is a conventional type physical processes. Thus, in the DNA molecule, the stretch-
of anharmonicity in nonlinear lattices and its physical mean-ing of base pairs in the transverse direction determines the
ing is as follows. When neighboring atorter moleculesof  fundamental mechanism of the denaturation of this molecule.
the chain are displaced from their equilibrium positions, theThe Peyrard-Bishop model of DNA melting8—2Q has just
repulsion force between them becomes stronger than the haseen formulated in terms of only transverse degrees of two
monic approximation of this interaction. In other words, acomplementary strands. Although the DNA molecule is con-
hardening anharmonic force contributes to this repulsiorsidered in this approach as an isolated object, the model ac-
with the positive sign. As a result of the presence of such aually describes the 1D dynamics of chain molecules in an
positive anharmonicity, dynamically stable solitary waveseffective substrate potential.
can propagate along the chain with supersonic velocities The present paper aims to fiqmlire solitary-wave solu-
[2—-4]. These nonlinear collective excitations are referred taions for a helix backbone, the molecules of which are al-
as lattice(or acousti¢ solitons. For some particular choices lowed to move in 3D space. All intermolecular interactions
of the intermolecular potential, like Toda, Boussinesq, etc.are assumed to be of the point-point type. The backbone is
the solitons are named accordingly. considered as arsolated object which is not subjected to
In applications to real biological quasi-one-dimensionalany substrate potential. Since only point-point intermolecular
objects [7-9], the standard 1D Fermi-Pasta-Ula(RPU) interactions are involved, the helix backbone will have a
model [1] should be generalized in order to include trans-single stabilized ground state in the case if, besides the
verse motions of chain molecules. However, as shown byearest-neighbor coupling, at leasb other bonds are taken
numerical simulation§10,11], solitonic excitations in anhar- into account. For instance, in this paper we consider interac-
monic chains are extremely sensitive to their transverse petions between the first, second, and nearest neighbors in the
turbations and therefore the problem of soliton propagatioriongitudinal directions. Particularly, for the-helix macro-
in 3D objects is far from fully understood. Consequently, themolecule, these interactions are between the first, second,
and third neighbors. In any case of a 3D helix backbone,
three intermolecular interactions is the minimal number of
* Also at the Bogolyubov Institute for Theoretical Physics, 252143bonds required to have a regular structure of the backbone

Kyiv, Ukraine. when it is found in an undistorte@round state. As shown
TAlso at the Institute for Problems of Physics and Technology,in Ref. [21], in the 2D case, when the helix backbone is
119034 Moscow, Russia. reduced to a planar zigzag chaiwp intermolecular interac-
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tions (between the first and second neighbene a sufficient
number of bonds to create a stable zigzag structure. Note that
in the Olsen-Lomdahl-KerfOLK) model for thea helix, the

two intermolecular interactionghbetween the first neighbors
and the nearest molecules in the longitudinal diregtismot

a sufficient number to fix a stable ground state. Any pair of
geometric parameters describing the helix structure can be
given in terms of the backbone radius, and therefore the helix
geometry is arbitrarily scaled by this parameter. Therefore, |
our generalized version of the OLK model may be consid-
ered as the most simple theoretical model of an isolated mo-
lecular chain corresponding to realistic situations in biomo-
lecular sciences.

Finally, it should be emphasized that even in the case
where molecules are assumed to be coupled by harmonic
forces, an effective anharmonicity appears because of the
geometry of the system. For breatherlike solutions, the ef-
fects of such a geometric nonlinearity have previously been
investigated by CaddR2].

The rest of the paper is organized as follows. In Sec. Il we
describe a helix model with first- and second-neighbor inter-
actions, including the nearest-neighbor interacti@ust hy-
drogen bondsalong the longitudinal direction of the back-
bone. In this section, we describe the geometry of the helix FIG. 1. A fragment of the helix backbone consisting of 11 mol-
structure, and derive the basic set of three-component equaeules. The geometry of the backbone is in accordance with the
tions of motion. The reduction of these equations to lowerstructure ofa-helix, i.e., »=3 and ¢=100°. The intermolecular
dimensions is briefly discussed there. In Sec. Ill, we studynteractionsU;, j=1,2,3, are schematically shown by the springs
the small-amplitude linear limit of the equations of motion. of different diameters. The thicker springs correspond to stronger
In Sec. IV, we generalize a numerical method developedtiffness of the bonds.
previously for low dimensions to seek pure solitary-wave
solutions of stationary profile in our 3D model. These solu-Of the valence angles between the nearest valence bonds
tions are chosen in Sec. V as initial conditions for simula-onto theXY plang, and (i) the heightAz which measures
tions of the equations of motion. The comparison of the ini-the Z projection of the distance between the nearest-
tial and final soliton profiles has been carried out there. Th@eighboring molecules in the chain. Then the radius vector
concluding remarks on the results of the present paper a@f each molecule of the helix backbone is given by

outlined in Sec. V. R,=R,(Cogna),sinng),nh), n=0-+1,.., (1)

Il. A HELIX MODEL whereh=Az/R,. When ¢>2/v(h<27/v), we refer to

Let moleculese.g., amino acidsbe linked together in a such a chain as a riglteft) helix.
molecular(polypeptide chain, as illustrated in Fig. 1, by the  Alternatively, the helix can be described by three other
first-, second-, and-neighbor forces. The forces between the parameters, namely, by the distances betw@etne nearest
nth and 1+ v)th molecules form a softhydrogen bond in  molecules D,), (ii) the second neighbor®(), and(iii) the
the longitudinal direction of the helix backbone, and there-nth and (+ »)th molecules D,). The length of the vector
fore the integew (the number of spingss determined from
the condition that the-neighboring bond has to be the short- a;,=(R,.j—R,)/Ro=(cog (n+j)$]—cogne),
est distance in this direction. This chain has a 3D helical
structure, and its molecules are allowed to move in all three si(n+)¢]—sin(ng),
(X,Y,Z) directions.

, - jih), 2
A. Sets of geometric parameters for the description
of helix structure which connects thath and (1+ j)th vertices of the regular

The geometry of a regular helix backbone, when its mol-helix backbone, does not depend on the number of the chain
ecules are found in equilibrium positions, can be uniquelysite:
given by a set of three parameters. To this end, it is conve-
nient to define the positions of the vertices of the helix back- |a;,|= V2[1—cogj ¢)]+j2h25aj =Dj/Ry, j=12v.
bone, using the cylindrical system of coordinates. In this 3
frame the helix structure can be described(bythe radius
R, of the cylinder which spans the helix backbofiig) the  Using the expression for the distance betweenritteand
constant angleb in the XY plane which is formed by each (n+j)th vertices of the backbon@), we find the equation
three successive chain molecu(#ss angle is the projection for the angleg:
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3—4 cosp+cog2¢) 4a%—aj3

= . 4
v2—1—12 cosp+cogve) v?a’—a’ @
When Eq.(4) has been solved, we obtain
J4D3-D3 JD3/4—D? coS(/2)
z= (5)

Ro= 2 si(o2)" sin( ¢/2)

< N

a
?=1—COS(V¢)—V

) (cosp+cosp)(1l—cosp) 9

1+cosy O
which gives the dependence of the distaag®n the integer
v. The minimization of the distance,=a,(¢,y) with re-
spect to all integerg=3 at given values of the anglesand
i yields the required integer. Thus, for thea-helix macro-
molecule we havep=100° andy=110°. In this case, the
minimal distancea, occurs atv=3.

Thus there is a one-to-one correspondence between the two | the case of three spinés.g., in proteif, wheny=3, it

sets of parameter$R,, ¢,h} and{D,,D,,D,}.

is interesting to consider the equidistance case when

The third set of parameters which may also be adopted fop, = p,=D,. In this particular case Eqé3) and(4) can be

the description of the helix geometry{B,,#,D,}, wherey

solved explicitly. As a result, we find the angle sin(¢/2)

is the valence angle between the nearest-neighboring bondg.\/%_ The other two parameters are given &y=a,

The relation between the parameter s¢Ry,¢,h} and

{D4,#,D,} is determined as follows. First, we find the equa-

tion for the angle¢:

1—-coqvo)
1—cosp

l-cosp

T cosy " ©)

2

Vi
a;

Then the remainder two parametétg andh are given by

Dy coqyl2)

_ [|cosp+ coa,b|>1’2
0="1"cosp Z_Dl(— )

1—cosp
Note that the inequality
cosp+cosp<0 (8)

is always valid if the integep>1.

=ay=10/3/3 andh=3/10/3. Since the angle exceeds the
value 2/3, this particular case corresponds to a right helix.

B. Equations of motion

The total Hamiltonian of the described helix backbone
with three types of interactions, which link the first and sec-
ond neighbors as well as the nearest neighbors along the
longitudinal direction of the chain, can be written in the form

1 i o
H=2 |5 MOG+Yatz) + KRS >
n i=1.2,

1L,V

Uj(rjp)| (10

whereM is the mass of chain moleculds,is the character-
istic stiffness of the intermolecular forces, the coordinates
Xn, Yn, andz, describe the displacements of théh mol-
ecule from its equilibrium position given in theY Z frame

by the radius vectofl), and the dots denote the differentia-

Since the regular helix structure is given uniquely bytion with respect to timet. Each of the three functions
three geometric parameters, we need to consider three typdd;(r;,)’s, which are assumed, in general, to be different,
of intermolecular interactions which stabilize this structure.describes an intermolecular interaction between the nearest-
One of these has to be introduced, as usual, between tmeighboring {=1), second-neighboringj&2), and (v)-
nearest neighbors along the helix chain and it may be reneighboring {=v) molecules. These interactions are as-
ferred to as valence bonds. The second type of interactiorsumed to depend only on the dimensionless intermolecular
couples the molecules situated along the longitudinal direcdistances ;,=R;,/R, whereR;, is the distance between the

tion of the chain as in the OLK modg10]. It is responsible

nth and f+j)th molecules. The intermolecular potentials

for the secondary structure of the chain macromolecule. Thug(r),j=1,2,v, are normalized byJ;(a;)=0, Uj’(aj) =0,

in protein these interactions are called hydrogen bondsand they have the standard form, like the Lennard-Jones in-
However, as shown above, in order to have a stable helixeraction. In order to deal with both the harmonic approxi-
backbone when the intermolecular interactions are spherination and with more realistic potentials, and to have a pa-
cally symmetric(i.e., if only point-point central interactions rameter of intermolecular nonlinearig@anharmonicity, we

are assumed besides the interactions between the neareswill use the Morse potentials

neighbors along the helix backbone and along the longitudi-

nal direction, we have to consider some third type of inter- U,-(r)=%(:<j/yf){1—exr[— yi(r—ap]}?

molecular bonds. For instance, it can be the three-particle
interaction fixing a certain valence angleThe simplest and

=3x(r—a)l-y(r—a)+--1 j=12v,

most straightforward way to take this fact into account is to (12)

consider the interaction between thth and f+2)th mol-

ecules, i.e., the second-neighbor coupling. In this respectyhere «;=K;/K=Uj(a;) is the dimensionless stiffness
such a helix will be the most simple generalization of theconstant of the bond connecting théh and (+j)th mol-

FPU chain considered as a 3D object.
Now we need to discuss the number of spinesThis

ecules, whiley; is the anharmonicity parameter of this bond.
In the limit y;— 0, potentialg11) describe the harmonic ap-

integer should be chosen in such a way that the length gbroximation.

longitudinal (hydrogen bonds would be the shortest distance

For the dimensionless description it is convenient to in-

between thenth and (+ v)th molecules. Using the first troduce the normalized time

equation in Eq(7), we exclude the variable; in Eq. (6),
and find the relation

wo=KIM., (12

7= wot,
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cogng) sin(ng) O
ToVp=U,, T,=| —sin(ng) cogng) 0]|. (18
0 0 1

The set of the unitary operatofig,’s forms a groupT,,T,
=Tm+n, With the unityTo=1, wherel is the unity operator.
The substitution of the expressimn1=Rn/R0+T;1un
[see Egs(13) and (18)] into the equations of motiofl6)

yields

. . d?u -
a2 e a2 =2 [T Fj(Un Une ) = Fi(Un- U] (19

FIG. 2. The frame of local normal and tangent coordinates in thgyhere the intermolecular forcé‘q’s are defined by
XY plane.

. . . Fj(un,Un+j):Wj(rjn)(cj+un+j_TjUn). (20)
and the dimensionless vectags's defined by
Here the distance;, between thenth and (+j)th mol-

An(d1n+G2n,03n) = Rn/Ro+Vy, ecules is represented by
Vo=(01n,02n,03n) = (Xn,Yn»Zn)/Ro. (13 Fin=an+ToijUnsj— To g, (21
Then the distances, are represented as and the constant vectocg's are defined by
Fin=1]0n+j—Onl (14 ¢j=(1-cogj¢),sinj¢),jh). (22

and the Hamiltoniari10) can be rewritten in the dimension- As can be seen from Eq&0) and (21), the forcesF;’s are
less form. Given in the units d{Rj, it takes the form not expressed in terms of the differences of the veatgrs
andu,,; because of the presence of the operaiys in
H= E (%
n 2 dT

these expressions.
The equations of motion which correspond to the Hamil-
tonian (15) take the following form:

2
+Ej Ui(|th+j—aaD |- (15

D. Lower dimensions

Consider some particular cases corresponding to lower
(one and two dimensions, e.g., taking=1 or v=2. First,
d2q,, we note that the equations of motion for the 1D case can be
WZZ [Wi(rn) (Qn+j—An) = Wi(rj n-)(dn—0n- 1, obtained fr_om Eqs(2) and_(l?)—(22) _|f we put there ¢

! (16) = 2. Particularly, we obtaira,=(0,0,jh) andT,=1I. Re-
ducing to the 1D case giveg,=u,=(0,0,u,) and qp;

where the function®V,(r;,) are defined by —9,=(0,0rj,), whererj,=jh+u,,;—u,. As aresult, Eq.
(19) is reduced to

Wi(r:,) Vi) (17) d?u

(r..)= i n I 1o

e Fin F:Ej [Uj(ih+upsj—up) = Uj(jh+u,—u,j)].
In Eq. (16) and in the following, the summation ovgr (23

=1,2,v is not indicated explicitly, except for the particular

) o In the simplest case=1, this equation describes the stan-
cases when the number of spines specified.

dard FPU model, while foj>1 we obtain the 1D generali-

zation of this model including long-range intermolecular in-

teractions. For the particular case of the first- and second-
It is more natural to describe the displacements of molfeighbor interactionsy=2 (j=1,2), this model has been

ecules from the equilibrium positions locally at each mol-extensively studied in Ref$23,24.

ecule. More precisely, at each equilibrium position of the Similarly, putting ¢=m, we reduce the 3D helix back-

nth molecule, we consider the normal and tang@atthe  bone to a planar zigzag chain studied previously in Rzif].

circle in theXY plane, as shown in Fig)Zomponents of the Indeed, in the case with the first- and second-neighbor inter-

displacement vector, [see Eqs(13)]. We denote this vector actions ('=2), we obtain

in the local system byi,={uq,,U,,,Us,}, whereu;, and

C. Local frame of coordinates

u,, are the normal and tangent projections of the vector a;,=(2(=1)""*,0,h) a,,=(0,0,),

u,, respectively. The longitudinal coordinate is not trans-

formed, so thatus,=v3,. Therefore, both the systems of =" o0 0

coordinates are related by the rotational transformafign T,=| O (-n" o (24)
defined by 0 0 1
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Let u,=(u,,0,8,), with u,(7) andB,(7) being generalized

coordinates. Then in terms of these coordinates, the first- and

second-neighbor distances are

ln= \/(2+un+un+l)2+(h+ﬂn+1_ﬁn)21

r2n:\/(un+2_un)2+(2h+ﬁn+2_ﬁn)21 (25)

respectively. The corresponding equations of motion for the

lattice fieldsu,(7) and B,(7) are derived immediately from
the Lagrangian
du\? 1 2
5 _

Lz% %(F)ZJF

As was shown in Ref[21], these equations admit stable
two-component nontopological soliton solutions.

dBn
dr

> Uj(rin)

i=1,2

| o

Ill. SMALL-AMPLITUDE WAVES

In the harmonic approximation for all of the intermolecu-
lar forces(y;—0, j=1,2,»), we obtain the linear expansion

(27)

WhereaJ:Kj/aj2 and({ ) denotes the inner product. Conse-
quently, the linearized equations of motion take the form

Fi(Un U+ j) = aj{Un+j = TjUn GG+,

d?u, .
F:; a’j[<un+j_TJ‘Un,Cj>Tj Cj
—(Un=TjUy—j, GGl (28)
Substituting the plane wave
u,=A, exdi(kn—Qn)] (29

into Egs.(28), we obtain the following dispersion law:

0%-cyy  —icy —iCy3
icyy 92_sz —Cy | =0, (30
iC13 —Co3 Q2_033
with the coefficients
cn=2§ aj[1—cogj ¢) 13 1+ cog jk)],
c12=2§ a;[1—cosj $)1sin(j ¢)sin(jk),
c15=22, a;(jh)[1—cogj¢)]sin(jk),
: (31)

c22=2; a; sirf(j #)[1—codjk)],
c23=2$ a;j(jh)sin(j ¢)[1—cogjk)],

c33=22j a;(jh)[1—cogjk)].
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FIG. 3. The frequencie$), (curve 1, Q, (curve 2, andQ,
(curve 3 against wave numbéy, O<k< 1, for the chain with the
parameter se35).

Explicitly, Eq. (30) can be rewritten as

Q58— (Cp1+Copt Ca9) Q4+ (C11Copt C11Ca3+ CoCag— Coo— Cla
— 5902+ (C11Co5+ CoLigt CaCho— C11CLas
—2C1C13C23) = 0.

Using the explicit form of Eqs(30)—(32), one can be
convinced of the existence of three hondegenerate and non-
negative roots of the cubievith respect td)?) equation(32)
for all 0<k= . In the long-wavelength limik— 0, the free
term, and the coefficient &2 in the dispersion equation
(32) tend to zero. Therefore, two of three solutions of this
equation are acoustic branches. These t@gk) and
Q.(k) (see Fig. 3 correspond to the longitudinal and tor-
sional oscillations of the chain molecules, respectively. The
third root of Eq.(32) gives an optical brancf k), corre-
sponding to the transverse oscillations of molecules in the
radial direction of the helix backbone. Explicitly, lat0 we
have

(32

ﬂip(0>=cn+c22+c33=4$ aj[1-codjp)1% (33

The presence of two acoustic branches should result in the
existence of two speeds of sound: longitudingl) (and tor-
sional ). In dimensionless form, they can be defined as
the limits

Oy (k)
i

Ult .
S t=—=h lim
" Vo k—0

(34)

where vo=(K/M)¥?R, is the characteristic velocity of
small-amplitude waves in the helix backbone.

For numerical computations we choose the following val-
ues of the system parameters:

v=3, ¢$=100°, h=1, =10,

Ko=5, Kk3=1.

(39
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In the parameter s¢B5), the values for the numberand the do, de, da, 1
angle ¢ correspond to then-helix protein molecule. The »’3=~C[F,7ln; Fﬁn: F,ﬁn]=2 |§
stiffness constantg;, «,, and k5 are related each to other "
approximately as the elasticities of the valence bond, valence de,\? [(dB,\?
angle, and hydrogen bond. The form of all of the three dis- +(1+ 77n)2<F) +( qr )
persion curves for the valug85) is shown in Fig. 3. Atk
=0, the frequencies ar,;=Q=0 and(),,=5.11. It fol-
lows from the explicit representation of the coefficie(8%)  where the distancg, is given by

that at a certain value of the wave numberk,, the free

term in Eq.(32) becomes zero. This means that, at this value, 2 _ 2 N2 ,
softening the torsional oscillations happep@,(k,)=0]. Fin= (14 70)"+ (14 704 )" = 2(1+ 70) (1 + 704§)

For the parameter s¢B5) this value isko=1.748. As fol- X o+ Onyj— 0n)+(jh+Bnsj— B2 (39
lows from Fig. 3, the frequency spectrum of the helix chain

consists of one separate optical zone and two acoustic zoneg, corresponding equations of motion are

The frequency spectrum of the torsional oscillations lies in-
side the frequency spectrum of the longitudinal oscillations.

Moreover, the velocity of the longitudinal soursj=3.39 d?7,
significantly exceeds the speed of the torsional soend a2 =1t m)

—Ej U,-<r,-n>], (37)

de,\?
dr) _; IW;(rj -1+ 7,

=0.75.
—(1+ my-j)cosjp+ 0y — 0n- ) ]+ W,(rjn)[1+ 7,
IV. A SOLITON ANALYSIS — (14 74 )COK | b+ Oy j— O 11, (39)
In this section we develop a numerical scheme for seeking
solitary-wave solutions of the stationary profile for the basic g2¢, 1 da, do,
equations of motiorf16). This scheme can be applied if the  ——= = T { 24 FJFEJ: [Wi(rjn)(1+744)
n

profile of such solutions appears to be sufficiently smooth,
though varied from site to site along the chain. In order to XSIN(j + Oy j— 0) = Wi(rj 0 ) (1+ 7))

study discreteness effects, we should use more complicated '

numerical techniques such as the pseudospectral method sug- o

gested by Eilbeck and Fles¢B5], later developed by Dun- XSin(j =+ 0= ‘9”1)]}’ (40)
canet al.[26]. When the soliton solutions have been found,

then they can be chosen as initial conditions for numericaldzﬁ

simulations of these equations. The final profile of the vector@ bn : .

lattice field g,(7) obtained under the simulations at suffi- W_; [Wi(rin) (W oy = Br) =Wi(rj n-) (10 + By
ciently large timesrallows us to conclude whether or not the

initial soliton profile is a stable solution of Eq&l6). The = Bn-j ] (41)
main point in such a numerical approach is an appropriate

choice of a discrete functional in the numerical scheme. As \ye assume that soliton solutions have moving permanent
was shown previously21], such a functional can be con- prqfile, i.e., we puty,=n(nh—s7), 6,=6(nh—s7), and
structed from the corresponding Lagrangian of the system. .= B(nh—s7), wheres=v/v, with v, being the charac-

To accomplish the soliton analysis of the equations Oferistic sound velocity defined in Sec. Ill. As illustrated by
motion (16), we treat them in the cylindrical system of co- Fjg 3. there are three types of waves: one optical and two

ordinates. Therefore, we write acoustic modes. Therefore, there is no need to take into ac-
_ count the dispersion of the optical mode, and therefore we
Q10 =(1+ 7q)COSNS+ by), can approximate the first and second time derivatives,of

) by the simplest spatial difference derivatives as follows:
d2n=(1+ ny)sin(ng+0,),

dzn=nh+8, (36) dd’:” =—sp’(nh—s7)=—5(7n+1— 71_1)/2h,
where »,, describes the radial displacement of tith mol- 42
ecule from the cylinder surface which spans the helix back- d2y,
bone when its molecules are situated at the equilibrium po- F=szn”(nh—57-)zsz( Mne1— 200+ Pn_1)/h2.
sitions. It is positive if the displacement is outside, and the
thickening of the helix occurs in this place. If the displace-
ment is directed inside the helix, they), is negative. The However, for the longitudinal and torsional displacements
second generalized coordinatgdescribes the azimuthal de- we need to take into account the dispersion which arises
viation of thenth molecule from its equilibrium position, and from the discreteness of the chain backbone. To this end, we
B, is the Z coordinate of the displacement. Then the La-represent the time derivatives éf, and 8, by differences
grangian of the helix backbone written in terms of these newhich additionally contain higher-order spatial difference
variables takes the form derivatives chosen in such a way that they cancel the higher
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Fon= 12n2 [(1+ 70)(@nr1— 1500+ 15001~ ¢n_2)

2¢0n-1)]

i
jo+ E Pn+i— 1)

+2(7nr1— M- (Pny1—Spn—

2w

lin )(1+ 77n+J)S|n

—Wi(rjn-j)(1+ n4-j)sin

i
j¢+i=21 @nj+i1”zoa

(48
2
W (Pn+1= 1507+ 150, 1= pn-2)
i
+; Wi(rn) jh+i§l Pn+il>_Wj(rj,nj)
j
x|ih+ 2 pn,-+ilﬂ=o. (49)

The last equation can be integrated and, as a result, it is
transformed to

2

j
S
f3n5m(pn+l_14pn+pn—l)+$ 21 Fin—j+1)
j
X jh+i§l Pn—j+i+i-1]=0. (50

expansion terms while passing to the continuum limit. Thus, g2
introducing the relative displacements,=6,,,,— 6, and
Pn=PBn+1— Bn, We can write
dan , On+1— On-1
F——Sa (nh—ST)——S(T
~ bni2=30h11F 36—
6h
:S(0n+2_60n+1+30n+26n,1)/6h
=S(¢nr1—5¢n—2¢,-1)/6h, (43
d?6, —26,+6
—2pn . _ n+l n—1
g2 S 0"(nh—s7)=s? iz
. Oni2—=40n411660,—460,_ 1+ 0,
12h?
:_52(‘Pn+1_15‘Pn+15¢n71_¢n—2)/1212,
(44)
dBn
dr =S(Bn+2=6Bn+1+t3Br+2B,-1)/6h
=S(pn+1~5pn=2pn-1)/6h, (45)

B "
57 =SB (nh=57)=—5%(py 1~ 15py+ 15p, ¢

+pn-2)/12h2, (46)

Using the discretized versiorig2)—(46), we derive from

the dynamical equation§39)—(41) the following discrete

equations for the displacements, ¢,, andp,:

82

Fin= h2 [7n+1— 270+ 71— (14 77)(@ns1— 5S¢

Wi(rj n-p| 1+ 7,

—2¢,_1)2136)+ >,
]

j

—(1+ ﬂn—j)C05(1¢+i21 Gn-jri-1] | TW(rjn)

j
X 14— (14 ’7n+1)005< i+ ‘Pn+i1)“ =0,
7

The system of the discrete equatidds), (48), and(50)
was solved numerically in the particular case of thaelix
(v=3) macromolecule. Our aim was to find only pure soli-
ton solutions of this system. Each of these solutions
{7, @n,Prin_, smoothly depends on the chain sitg and
has zero asymptotics at the chain ends. It is convenient to
seek the first approximation of such a solution as a minimum
of the functional

N-3

F=5 2 (Fint Font Fon), (51

whereN is the number of the chain sites. The problem for
the conditional minimum
F—min: n,=¢,=pp=0, n=123 N-2,N—-1,N,
(52)

was solved numerically by using the Broyden-Fletcher-
Goldfarb-Shanno variable metric algoritH27]. The initial
point was taken in the form of the bell-shaped pulses

7n=An/cOSH[ w(n—N/2)],

en=A,/cosi[ u(n—N/2)], (53
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pn=A,lcosi[ u(n—N/2)]

whereu is an adjustable parameter. It describes the width of

the pulse chosen as a starting point for the minimization _f

procedure. The parametefs,, A,, andA, are the ampli-
tudes of this starting pulse. It is necessary to choose thi
number of sitedN approximately ten times larger than the
width of the solution. In this case, the shape of the solution
will be not affected by the chain ends. We tadk= 200, and
this number was appropriate for finding sufficiently broad
soliton solutions.

Since the surface F=FHm4,-sIN-3;
@4, ON—3; P4s---PN—3) IS Strongly ravined, the search of
soliton solutions as a minimum of the functi¢®l) leads to
slowly convergent numerical procedure. Therefore the final
shape of the soliton solution was found as a numerical solu
tion of the system of 3{—6) nonlinear equation@l?), (48),
and(50) with respect to the variabldsy,, , ¢, , pn}w; f where
m=en=pn=0if n=1,2,3,N—2,N—1, N. A modification
of the Powell hybrid method including the programBrD
from the packet of subprogranwNnrPACK was used for these
purposes. Each minimum point obtained under solving the
minimization problem(52) was used as an initial point in
this method. The necessary condition for the present numeri
cal scheme to be applied for seeking soliton solutions is thei
smooth dependence an In the class of such solutions, the
method allows us to find their profiles and determine the
region of parameter values where soliton solutions exist. The
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absence of this type of solutions to the set of E43), (48),

and(50) implies the absence of soliton solutions of the baswba

system of the equations of motigh6).

Besides the velocitg, it is convenient to describe three-

component soliton solution§y, ,@n,pnth-,, obtained nu-
merically by solving the system of Eqgl7), (48), and(50),
by their energy

Z [8;2

—2¢,- l) +3

(Mn+1— Mn— 1) +_(1+77n) (en+1—5¢n

(pn+1 Spn—2pn- 1)

3
JE i(r m)]
(54)

(in this definition, Eqs(37), (42), (43), and(45) have been
used, the amplitudes

A =

A,= max n,, A,= p

i [
1=sn=<N

max ¢,
1<n=<N

min 7,,
1=sn=<N

(55)

and the mean-root-square width

N 1/2
I—Iz(E (n_nc)zpn/R ) (56)
n=1
where
N
R=2 pn (57
n=1

is the total compression of the helix backbone and

FIG. 4. The three-component profile of the soliton in the helix
ckbone with the parameter valug$) and the anharmonicities
v1=7,=0 andyz=1 at the initial instant of timer=0 (dashed
line) and at the final instant=28 062.45 when the soliton has
passed 100 000 chain sitésolid line). The initial velocity of the
soliton wass=1.05, .

N

:§+nZl np,/R (58)

is the position of the soliton center.

V. NUMERICAL RESULTS

In this section we will numerically find three-component
soliton solutions, and study their stability properties for the
a-helix backbone with the parameter valu@$). The non-
linearity of the dynamics of the-helix protein molecules in
the first turn is caused by the anharmonicity of soft hydrogen
bonds. Therefore we will take into account only the anhar-
monicity of the third neighbors=3), i.e., we takey;
=1v,=0 andy3>0. Let us find soliton solutions for three
values of the anharmonicityy;=0.1, 1, and 10. The nu-
merical solution of systemgl7), (48), and (50) has shown
that at weak anharmonicitie.g., y3=0.1), there are no soli-
ton solutions, while for the valugz=1 the soliton solutions
exist only with velocities in the segmentds/s;<1.065. In
this interval of velocities, the solutions have bell-shaped soli-
ton profiles, smoothly depending on the chain site, as illus-
trated by Fig. 4. The dependences of the endfgywidth
L, and amplitudesA,,, A,, and A, of the soliton on its
dimensionless velocitg/s, are given in Table I. As follows
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TABLE I. Dependence of the enerdy, width L, and amplitude#\,, A,, andA, of the soliton on its velocitys/s; for y;=1.

s/'s E L A A A

7 (4 P
1.01 0.020 26 20.79 0.005 39 0.004 88 —0.009 29
1.02 0.057 63 15.19 0.010 62 0.009 63 —0.018 30
1.03 0.106 69 11.01 0.01574 0.014 29 —0.027 11
1.04 0.165 57 10.01 0.020 82 0.018 78 —0.03574
1.05 0.233 26 9.61 0.025 76 0.023 27 —0.044 17
1.06 0.309 10 9.50 0.030 55 0.027 61 —0.052 21
from.Fig. 4, in the .region of the !ocalization of the so!iton B1(0),  Bni1(0)=Bn(0)+p% n=1,..N,
solution, compression of the chain occurs, accompanied by
localized thickening and untwisting. The solitons can exist B.(0)=PBn.1(0), N=N+2,... A,
only in a narrow interval of supersonic velocities. When
s—§g;, the soliton energy and amplitudes monotonically tend 7/(0)= [ 71+ 1(0)— 7, 1(0)]/2h

n n n— ’

to zero, while the width increases to infinity. With the

growth of the velocity, the energy and absolute values of the
amplitudes monotonically increase, whereas the width mono-
tonically decreases. For strong anharmonicity, the soliton has

0n(0)= =3[ 05..1(0) = 6,-1(0)]/2h,

a finite supersonic speed spectrum. Thuyat 10 we have Bn(0)==8[Bn+1(0)= Bn-1(0))/2n,  n=4,..N=3,
the segment £ s/s,<1.065. For this case, the dependences (59
of the energyE, width L, and amplitudes\,,, A, andA, 7 =0/ =B == O =Bin_;=0, =123

on the velocitys/s, are illustrated by Table II.

The second stage of our numerical studies was the simuyhere the prime denotes the differentiation with respect to
lation of the dynamics of the soliton profiles obtained abovethe dimensionless time. Next we shift the soliton profile
by solving the nonlinear algebraic equatiods), (48), and  pack by N sites just when it passeN sites, i.e., when

(50). To this end, we considered the dynamics in a finiteg,, () becomes greater thaBy,,(0); we accomplish the
chain with fixed ends. The dynamics of such a system isybstitutions

governed by the system of the equations of mo{@8)—(41)
with 4<n=<N-3, whereN is the number of molecules in 7y, n(7)=7.(7), Onsn(D=0,(7), Bnen(T)=Bn(7),
the chain. The displacementgs,, 6,, and 3, of the mol-

ecules at the chain ends, with the subscriptsl, 2, 3, Misn(D =117, Osn(T)=04(7),
N—2, N—1, and N are assumed to be fixed. Let
{(72,02,p%N_, be a soliton solution obtained by solving the Blin(M=BL(, n=1,...N,

system of Eqs(47), (48), and(50). Then the soliton center is
found at the N/2)th chain site, and this solution is used to
construct the initial conditions for numerical integration of
Egs. (39-(41) as follows. First, we note that in order to
simulate the propagation of the soliton in an infinite chain,
instead of the chain consisting &f sites, we choose the

initial conditions in the “prolonged” chain, which contains ater each such shift, we compare the current soliton profile
2N sites, according to the relations with its initial shape. To this end, we define the “distance”

function
m(0)=7° n=1,...N, 2,(0)=75% n=N+1,.. N,

7n(7)=12n(0),  0,(7)=6:n(0), Bn(7)=B2n(0),

7 (1=0, 6/(1)=0, Bi(r)=0, n=N+1,...N.
(60)

5.(0)=0, 6 11(0)= 0 ()4 b, N=L...N, d(T)=1—§[\/S,7(T)/R,7+\/S¢(T)/R‘P+JSP(T)/RP],(GD

0,(0)=6y,:1(0), nNn=N+2,.... N, where

TABLE II. Dependence of the enerdy, width L, and amplitude#\,, A,, andA, on the velocitys/s, for y;=10.

sls E L A, A, A,

1.01 0.000 22 20.82 0.000 57 0.000 51 —0.000 97
1.02 0.000 64 15.23 0.001 14 0.001 00 —0.001 92
1.03 0.001 18 12.61 0.001 70 0.001 48 —0.002 84
1.04 0.001 83 11.05 0.002 26 0.001 95 —0.00374
1.05 0.002 57 10.06 0.002 81 0.002 41 —0.004 64

1.06 0.00341 9.58 0.003 36 0.002 86 —0.00551
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FIG. 5. Dependence of the functiah describing the change of
the soliton shape, on timefor the soliton with the initial velocity
s=1.0% in the helix chain with the same parameter values as in
Fig. 4.
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FIG. 6. Elastic collision of the solitons in the chain backbone

2N—1 ) with the same parameter values as in Fig. 4. Both the solitons
Sy(1)= 21 [on(7) = pn(0)]%, propagate with the velocitg=1.01s,=3.4287.
n=
that the numerical procedure of looking for soliton solutions
2N 2N-1 2N-1 . : ) :
_ 5 B 2 20 R _ 2 20 gives correct soliton profiles, and solitons themselves are dy-
Rn—n; 77(0),  Ry= ~ en(0), R,= ~ Pn(0). namically stable.

(62) Consider now the head-in collision of the solitons. The
simulations have shown that for velocities close to the speed

Function(61) allows us to estimate the change of the soliton®f longitudinal sound, the collision of solitons occurs practi-

shape. When the current and initial profiles coincide perCally elastically without emission of small-amplitude waves

fectly, thend=1. Otherwised<1. (see Fig. & However, for higher \{elqcmes, clo_se to the up-
We have studied the soliton dynamics in the chain conPer €dge of the segment of admissible velocitiaslocity

sisting of N=100 molecules with the parameté@5) when spectrur.n’.), the interaction Qf _solltons become; inelastic.

y,=7v,=0 and ys=1. When the initial speed was/s, The_: collision Ieads_ to the emission of small-amplitude waves

=1.05 (s=3.5645), then the soliton passed 100 000 chairfS illustrated by Fig. 7. _

sites during the time= 28 062.45, and this propagation cor- In finite a-he!IX chains, the solitons can be created at the

responds to the velocitg= 100 000+ =3.5635- 1.049%,.  €nds of the chain. Therefore, we have considered the dynam-

As can be seen from Fig. 4, the soliton shape at the findfS of the chaln when it is mmally .compressed at one of the

instant of time practically coincides with the initial profile. ends. To this end, for the s.|mglat|ons'qf E¢R9)—(41), we

The change of the soliton shape in time, described by th§ave chosen the following initial conditions:

functiond=d(7) [see Eqs(61) and(62)], is given in Fig. 5. _ Ty — _ 1Ay —

Its behavior demonstrates small oscillations around the mean 7(0)=0. 7(0)=0. 6,(0)=0. 6,(0)=0,

value d=0.985. The nonsmooth behavior of the distance BL(0)=0, n=1,...N; (63)

d(7) appears due to incommensurateness of the velocity of

motion with the value of the. discrete step of integration  g,(0)=p,(0)=pB5(0)=A, B,(0)=0, n=4,...N.

A 7. The system of the equations of moti¢B9)—(41) was

integrated by the fourth-order Runge-Kutta method with theHere A>0 is the amplitude of the initial compression at the

constant step of integratioA 7=0.02. The discreteness of first three chain sites of the left end, aNek 2000 is the total

time does not allow us exactly to find an instant of timenumber of sites chosen for the simulations. Again, we take

when the soliton has passed exactly 200 chain sites. Theres = y,=0 andy;>0. The simulations have shown that, for

fore some small shifts of the soliton center occur and, as ¢he weak anharmonicity;=0.1, the initial compression of

result, small-amplitude oscillations appear in the functionthe chain leads only to the appearance of an oscillating wave

d(7). Simulations of the equations of motion have shownpacket propagating with subsonic velocities. Supersonic soli-
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FIG. 8. Formation of the supersonic soliton and of two wave
packets in the helix backbone under the initiaH0) compression
of the three bonds at its left end. The parameters of the backbone
are given by Eqs(35), y,=7y,=0, andy3;=10. The amplitude of
the initial compression i&=0.05. The distribution of the longitu-
dinal relative displacemenis,’s along the helix chain is plotted at
the instantr=500.

gration of Egs(39)—(41) was estimated through the conser-
vation of the integral of the total ener§gee Eq(37)]
FIG. 7. Inelastic collision of the solitons in the backbone with h=a |2

d7,\? de,\? [(dB,\?
L) PR ) B
dr dr dr
the same parameter values as in Fig. 4. The initial velocity of the

solitons iss=1.0%5=3.5645. +§j: Uj(rjn)}- (64)

tons are not formed, and their absence is in accordance with

the result obtained above for the backbone with weak anharlhe value of the integration stef7=0.02, used in the
monicity. In the case with middle anharmonicity, the com-Present paper, ensured the conservation of int¢galwith
pression with the amplitudes=0.1 and 0.2 also resulted in @n accuracy up to six digits during the whole time of the
the appearance of a subsonic wave packet. However, tH&merical integration.

compression with larger amplitudes also resulted in the ap-

pearance of a supersonic soliton. Thus, 4ct 0.3, the soli- VI. CONCLUSION AND DISCUSSIONS

ton had the velocity/s;=1.031 and forA= 0.4, the velocity
was s=1.049. For the stronger anharmonicity;=10, the
compression with the amplitud®= 0.05 resulted in the for-
mation of a supersonic soliton with the velocits/s «10°
=1.066(see Fig. 8 The presence of the two sound veloci-

tiess; ands, leads to the appearance of two oscillating wave
packets (torsional and longitudinal waves, respectively
which are clearly seen in Fig. 8. The compression with the
larger amplitudeA= 0.1 leads to the formation of the soliton

like supersonic pulse with the velocigfs;=1.175(see Fig. o
9). This value of the velocity is outside the soliton velocity
spectrum. Therefore the motion of such a soliton is accom-
panied by the continuous emission of small-amplitude waves
(phonong. In an infinite chain, such emission should result

in decreasing the soliton velocity, approaching the uppet
edge of the soliton velocity spectrum; however, in a finite
chain, the soliton has no time to throw down its velocity.
Thus these simulations of the time evolution of a narrow gy 9. Formation of the supersonic soliton emitting small-
initial pulse have confirmed our conclusions drawn above ORmplitude waves and of two wave packets in the helix backbone

the finiteness of the supersonic soliton velocity spectrum ORith the same parameter values as in Fig. 8 under the initial (
one side, and the absence of soliton solutions for weak an=0) compression of the left end bonds. The amplitude of the initial

harmonicity on the other side. compression iA=0.1. The distribution of the longitudinal relative
Finally, we note that the accuracy of the numerical inte-displacementg,’s along the chain is given at=400.

N 3{1
H=2 {>

It was an attractive point of view to study the transport of
vibrational energy in biopolymers such as protein on the ba-

solitary wave |
with phonon
radiation

longitudinal waves

torsional waves

460 800 n 1200 1600
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sis of 1D nonlinear lattice models. The first attempt in thislision depends on velocity. At the lower edge of the segment
direction was formulated by Davydov with co-workgsee  (soliton velocity spectrum the soliton collision is elastic,
the Refs[5] and[6], and references thergiwho suggested whereas, for higher velocities, at the upper edge the solitons
that the intramolecular vibrational amidemode could be collide inelastically with the radiation of small-amplitude
self-trapped through its interaction with deformation in thewaves. Summarizing, we conclude that in a 3D isolated helix
protein structure. Further, Davydov and co-workg28,29 backbone the three-component solitons, describing super-
and Scott[30] generalized this theory by taking dipole- sonic pulses of longitudinal backbone compression, still exist
dipole coupling between the three spines into account. Whilas dynamically stable objects. However, the range of their
the Davydov model and the related modétee Takeno existence is more limited if compared to the 1D FPU lattice.
model [31] should also be mentiong@onsidered intramo- Since the present paper focuses mainly on the problem of
lecular modes, YomosE8] modeled the energy transfer in how to find pure soliton solutions, in order to check the
protein, essentially applying the Fermi-Pasta-Ulam modelstability of the soliton solutions obtained under the minimi-
The present paper also focuses only on the large-amplitudeation procedure, as well as to demonstrate the accuracy of
supersonic lattice solitons, so that we do not consider anthe method for seeking these solutions, we performed nu-
intramolecular modes. All intermoleculéar interatomig in- merical simulations of waves traveling over 100 000 chain
teractions in our model are represented by pair central forcesites. Of course, it is very rare for realistic biological macro-
However, in order somehow to stabilize a chain backbonenolecules to beiniform over such long lengths. Thus a pro-
and to fix a single ground state, except for the nearesttein which consists of amino acids should be modeled by a
neighboring interactions, we should take into account somehain with mass variation. We performed numerical simula-
additional intermolecular forces, including next or more re-tions of the time evolution of the lattice solitons in the 1D
mote neighbors. As a result, the latter forces in biology formFPU chain with randomly distributed masses, and found that
secondary structure, i.e., some regular spatial configuratiotiheir propagation through disordered segment is, in general,
of the chain. In the simplest case, such a configuration hagnstable. Thus, if the mass impurity is sufficiently small,
naturally the form of a so-called;ghelix. Therefore Olsen, then emission of small-amplitude waves occurs when the
Lomdahl, and Keri{10] considered two types of intermo- soliton passes through the impurity. For larger impurities,
lecular forces: between the first neighbors and between thsplitting the soliton, for instance, into two solitons, one of
nearest neighbors along the longitudinal direction. In order taghese reflects the impurity. If the impurity is very large, then
have a completely stabilized helix backbone in the 3D spacenelastic reflection of the soliton takes place. Assuming a
we incorporated in the helix model a third type of intermo- soliton to be incident on a disordered segment of the chain
lecular forces, namely, between the second neighbors. F@mbedded between two homogeneous semi-infinite chains,
instance, in the case of thgghelix backbone, our model the transmission coefficient of the soliton energy could be
contains the first-, second-, and third-neighboring intermo-<alculated. In the 1D case, this problem was solved numeri-
lecular forces. Alternatively, instead of this coupling, a three-cally in Ref.[32].
body force, which fixes the valence angle could be con- We do not expect that the 1D results will change crucially
sidered. Any of these force constraints is sufficient for afor the helix chain. At least, they should be similar at the
helix backbone to have a single ground state. In this papdower edge of the soliton velocity spectrum where the soliton
we restricted ourselves to the case when the chain moleculgsofile is broad. However, in any case we have energy loss
are coupled only through central forces of spherical symmeand eventually soliton breaking. The scattering of the lattice
try. Given in terms of valence bonds, the helix Hamiltoniansolitons on mass impurities is due to their higlupersonig
becomes more complicated. Therefore the Hamiltofi&  velocities. Slow solitons such as envelope solitons or topo-
may be considered as the most simple 3D generalization dbgical defects are much more stable with respect to impuri-
the 1D FPU chain. ties. Therefore, from the point of view of “soliton transpar-
Thus, in the present paper the standard 1D FPU model hascy” in real biological macromolecules, the Davydov-Scott
been generalized to the three spatial dimensions when easkelf-trapping mechanism seems to be much more promising,
chain molecule is allowed to have three degrees of freedonas Davydov’s soliton does not loose energy at all, at least for
The resulting geometric structure is a helix backbone withsufficiently small velocities[33]. However, it should be
v=3 spines. Three-component nontopological solitons haveoted that the helix part of the Davydov-Scott “exciton-
been shown to exist and propagate with supersonic velocitidselix” model [28—-30,34,3%is simplified because only lon-
in the helix backbone with any number of spines. Similarlygitudinal displacements of the chain molecules are consid-
to the 1D case, for the existence of the soliton solutions, thered. Though transverse displacements along the radial
presence of anharmonicity, at least, in the longitudihgt  directions of the helix backbone can be taken into account
drogen bonds connecting eacith and (1+ v)th molecules, [29], nevertheless the model is still one-dimensional because
is a necessary condition. However, compared to the 1D FPlithe intermolecular interactions are considered only in the
model, the existence of stable soliton solutions in the 3Dongitudinal direction. The coupling between the spines is
helix backbone appears to be more limited. First, they exist ifncorporated only through a semiclassical term, namely, the
the anharmonicity of the-neighboring forceglongitudinal  transverse dipole-dipole interaction energy between the
bonds is sufficiently strong. Second, the segment of admis-nearest-neighbor amino acids. It is important to note that on
sible (supersonig velocities of solitons is always finite. It is the basis of this oversimplified exciton-helix model, the nu-
quite narrow and for all velocities from this segment, and themerical calculations by Scott and co-work¢88,34,33 dis-
soliton propagation is uniform, retaining velocity and profile. covered the threshold of the exciton-phonon coupling for
However, when the solitons collide, their behavior after col-formation of the soliton states in protein, while, in the cor-
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responding single chain, the self-trapping occurs at any valuef Refs.[30, 34, 35, on one hand, and numerical simulations
of this coupling. Therefore it is not obvious what happenssimilar to those of Lomdahl and Kefi36] and Lawrence
with the intramolecular mode when the lattifeelix) sub- et al.[37], on the other hand, are of great importance in the
system is completed properly, as described in this papefuture.

From this point of view, the present work may be considered

as a first step to study more carefully the Davydov-Scott

exciton-helix model. Therefore the numerical simulations ACKNOWLEDGMENTS
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molecule motions and three types of intermolecular interacA.V.Z.) would also like to express our gratitude to the
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