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Two-dimensional dynamics of a free molecular chain with a secondary structure
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Hnstitute of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
2Bogolyubov Institute for Theoretical Physics, 252143 Kyiv, Ukraine
3Institute for Physico-Technological Problems, Prechistenka Street, 13/7, 119034 Moscow, Russia
(Received 11 April 1995; revised manuscript received 11 December) 1995

A simple two-dimensional(2D) model of an isolated (free) molecular chain withprimary and
secondarystructures has been suggested and investigated both analytically and numerically. This model can
be considered as the simplest generalization of the well-known Fermi-Pasta-Ulam model of an anharmonic
chain in order to includdransversedegrees of freedom of the chain molecules. Both the structures are
provided by thefirst- and secondneighborintermolecular bonds, respectively, resulting imegular zig-zag
(“2D helix”) chain on a plane. The set of two coupled nonlinear field equations with respect to the
longitudinal andtransversedisplacements of the chain molecules has been derived. Two types of stable
(nontopologicagl soliton solutions which describe eith@y a supersonicsolitary wave oflongitudinal stretch-
ing accompanied bytransverse slenderingr, as in the 1D model(ii) supersonicpulses oflongitudinal
compressiompropagating together with localizédinsverse thickening (bulgépave been found. Some peculiar
stability properties of these two-component soliton solutions have been discovered by using numerical tech-
niques developed in this pap€51063-651X96)10809-9

PACS numbsgs): 68.45.Kg, 63.20.Ry, 63.20.Pw

I. INTRODUCTION approach as arsolatedobject, the model actually describes
the 1D dynamics of the chain molecules in an effeciub-
The 1D nonlineafanharmonit lattices, which have been strate (on-site)potential.
studied in a series of papefsee, e.g., Ref$1—6]), are usu- In this paper, we allow the chain molecules to move in
ally considered as the basic models to describe transpohboth the longitudinal and perpendiculéransversg direc-
properties in biomolecules. Any intermolecular potential intions and the chain is considered asiswlated (free)object
such a 1D latticéchain has ahardening(positive anhar-  which is not subjected to any substrate potential. Such a 2D
monicity. This is a conventional type of anharmonicity in molecular chain is supposed to have samgular structure
nonlinear lattices and its physical meaning is as followswhen it is found in an undistorte(ground state. Such a
When neighboring atom®r moleculeg of the chain are dis- requirement immediately leads with necessity to s@ee-
placed from their equilibrium positions, the repulsion forceondary structureand this is really the case in biology for
between them becomestrongerthan theharmonicap- many macromolecule€DNA, protein, etc.. Geometrically,
proximation of this interaction. In other words, a the secondary structure is realized in the form dfedix.
hardening anharmonic force contributes to this repulsion  The aim of the present paper is to study the soliton propa-
with the positive sign. As a result of the presence of such @ation in an isolated molecular chain for whi@h the trans-
positive anharmonicity, dynamically stable solitary wavesverse motions of the molecules afi) helical structure are
can propagate along the chain with supersonic velocitiegaken into account. For simplicity of the analytical investiga-
These nonlinear collective excitations are referred to as th#on we consider onlpnetransverse dimension. As a result,
lattice (or acoustic) solitonsFor some particular choices of the 3D helical structure is essentially simplified, transform-
the intermolecular potential, like Toda, Boussinesq, etc., théng into the “2D helix” which is merely a planarig-zag
solitons are called accordingly. chain. Then the primary and secondary structures are pro-
After the pioneering wor7], where it was discovered vided by thefirst- andsecond-neighbointermolecular inter-
that the solitonic excitations in 1D nonlinear lattices are ex-actions, respectively. Such a system can be considered as the
tremely sensitive to their transverse perturbations, a series aimplest theoretical model of an isolated molecular chain and
papers(see, e.g., work§8—11] and references thergimas it corresponds to the realistic situation in biomolecular sci-
appeared on the studies of soliton propagation in nonlineagnces. More precisely, the planar zig-zag structure is much
lattices whentransverse motions of the chain molecules closer to the reality of biomolecular dynamics than the 1D
are taken into account. Moreover, in some cases the trangonlinear lattices. Note that on the qualitative level, the 2D
verse displacements of molecules are considered as the masid 3D cases should not essentially differ from each other.
important motions in biophysical processes. Thus, in theHowever, the difference between the 1D and 2D cases, as
DNA molecule, the stretching of the base-pairs in the transwas expected and pointed out earlié~10|, turns out to be
verse direction determines the fundamental mechanism afrastic.
the denaturation of this molecule. The Peyrard-Bishop model It should be emphasized that the important point of the
of DNA melting [12—-14] has just been formulated in terms zig-zag model is the secondary structure. Even in the 1D
of only thetransversemotions of the two complementary chain, the introduction of the second-neighbor interactions
strands. Although the DNA molecule is considered in thiscrucially changes the dynamics of the systfdf,16. There-
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the thickness of the zig-zag structure. Then the equilibrium
distance between each pair of the nearest-neighboring mol-
ecules is determined by the dimensionless parameter
b=h%+1/4.

The total Hamiltonian of the planar zig-zag system is
given by

l—; less parametdr describes the geometry of the chain, namely
n
Yn

H=2, %M('x§+'yﬁ>+KIZ[U(rn>+V(qn>], ®

X

+1
n whereM is the mass of moleculdg.g., peptide groupsand

K is the characteristic stiffness constant. The dimensionless
htermolecular potentialsU(r) and V(q) describe the
primary (between the nearest neighboed secondary

fore the zig-zag structure with the first- and second-neighbofP€tween the second neighbpristeractions, respectively.
interactions, which can be referred to aslence and The couplings between the nearest-nelg_hborlng molecules
hydrogenbonds, respectively, essentially make the theonf@n be referred to asalence bonds while the second-

more sophisticated. Note that even if the molecules are ad1€ighboring interactions can be callegdrogenbonds. Ac-
sumed to be coupled byarmonicforces, an effective an- cording to Fig. 1, thédimensionlessdeviations of the equi-

harmonicity appears because of the geometry of the systeriPrium lengths are defined by
For breatherlike solutions, the effects of such a “geometri- > 5
cal” nonlinearity have previously been investigated by Cadet r= \/(% N Xn+]|__Xn 4 ( he yn+IYn+1) b
[17]. ’

The paper is organized as follows. In the following sec- 2
tion we describe a planar zig-zag model with the first- and
second-neighbor interactions. In this section we derive the \/
basic equations of motion which have the difference- n—
differential form. The transition to the continuum limit is
described in Sec. Ill and, as a result, two pairs of coupledrhe potentialdJ(r) andV(q) are normalized as follows:
partial differential equations have been derived. Each pair
has the corresponding 1D analog, the ill-posed or improved)(0)=0=V(0), U”"(0)=k«4, and V"(0)=k,, 3
form of the Boussinesq equation. The linear dispersion law
for the motion of small-amplitude waves in the zig-zag chainwhere the primes denote the differentiation of the functions
is studied in Sec. IV. The next section is devoted to theU(r) and V(q) with respect to their arguments and
analytical studies of solitary-wave solutions in the continuumx; =K, /K and x,=K,/K are the dimensionless stiffness
limit. In Sec. VI we develop a numerical method for seekingconstants of the primary and secondary interactions, respec-
localized solutions of a stationary profile which are taken intively.
the next section as initial conditions for simulations of the The corresponding Euler-Lagrange equations of motion
equations of motion. The comparison of the initial and finalare
soliton profiles has been carried out there. The concluding
remarks on the results of the present paper are outlined in
Sec. VIII.

FIG. 1. Schematic representation of a zig-zag molecular chai
(h=1/2).

2
-1.

1+ | |

2
Xn+l_xn—1) +<yn+1_yn—1

J J
MX,= —KI 7 W and My, = —KI 7y W,

IIl. A ZIG-ZAG CHAIN MODEL Wo=U(rn_ ) +U(r)+V(0no1) +V(Gns1). (4

Let molecules(e.g., amino acidsbe linked together in a o the dimensionless description it is convenient to intro-
molecular(polypeptide chain, as illustrated in Fig. 1, by the yce the dimensionless time

first- and second-neighbor forces with the stiffness constants
K; andKj, respectively. This chain has the 2D heli¢aé., r=wol, wo=KIM. (5)
planar zig-zay structure and its molecules are allowed to

move and rotate in th&? plane. The chain backbone, with The corresponding lattice fields can also be rescaled to the
lattice spacingd, is directed along theX axis and it can be dimensionless form as,(7)=x,(t)/| andv,(7)=y,(t)/I.
considered as consisting of two linear chains coupled by |t follows from the form of the deviations of the equilib-
valencebonds. Let the molecules of this backbone be siturium distances,, andq, given by Eqs(2) that the dynami-

ated at sitest=nl, with the integerm=0,=1,... forone cal equation$4) can be rewritten in terms of the lattice fields
of the chains and the half-integens= =1/2,+3/2, ... for
the other chain as shown in Fig. 1. The chain molecules are Pn=Ups1—U, and pp=vptvni1. (6)

supposed to have two degrees of freedom: the longitudinal
(xn) and transversey(,) displacements from the equilibrium Indeed, keeping the same notations for the deviatig(s)
positions stabilized by the zig-zag structure. The dimensionandq,(7) defined as functions of, we obtain
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1 2 Zy— ,
M= \/ §+Pn) +(h—7,2-b, S(21,25)= -~ U[f(Zl zy)]= mU [r(z1,22)],
7
@) . .
= J A+ py 1+ pr) 2+ (go— 1) 2—1. T(z1,25)= &_ZZV[Q(Zl'ZZ)] 11 q(z1.25) )V [a(z1,2,)],
Next, it is convenient to introduce the following abbrevia- \yhere the primes, as before, denote the differentiation of the
tions: functionsU(r) andV(q) with respect to their arguments
andq, respectively. Similarly, the set of the lattice field
=) =iU(rn) Qn:i (an) can be represented as the appropriate values of the functions
(13):
8
Pn=P(z1=pn.22= 1),
Si=—U Ty=v
n_‘”]n (Tn). n_0777n (Gn)- Qn=Q(Z1=pn-1FPn:22= M= -1,
(14)
Then Egs.(4) are transformed to the dimensionless form as
follows: Sn=8(21= pn122= 10),
d?p Th=T(z1=pn-1+pPn:Z2= 70— Mn-1)-
?20_ n+1— —2P +Pn 1+Qn+2 Qn+1_Qn+Qn—1a " " " "
(9) The next step in the transition to the continuum limit,
when n=A&7/l1=x, is to expand correctly the spatial differ-
g2 77n ences in Eqgs(9) and (10). These expansions can be repre-
e —(Sh1 28, + S ) T The1—Tho1+Thao— T, sented in terms of the generating functidd8). Indeed, re-

placing the discrete fields,(7) andqg,(7) by the continuous
functionsr(x,7) andq(x,7), respectively, we can write the
This “canonical” representation of the equations of motion €xpansions up to the fourth order as follows:

is preferable for localized solutions when the relative dis- 1 1 1 1

placement fielgp,(7) rapidly decreases to zero at infinity. anlzpiipﬁ gpxxi4—8Pxxx+ 3—84Pxxxxi o

(10

Il. THE CONTINUUM LIMIT (15
In order to find an adequate continuum version of the 1 1 1
basic difference-differential equatiof® and(10), we intro- Pn=2=PEpxt SPacE gPxoxxt 57 PwoooE (16)

duce in this section the following sigeneratingfunctions
of two real continuous variables; andz,. The first two of  and the similar expansions up to the second order for the

these functions come from the definition of the distance depther |attice fields,(7). Note that we need only the second-
the longitudinal acoustic waves which appears due to the
other field ,(7), its second-order expansions in both Egs.

viations defined by Eqg7): order expansions for the latter field because it belongs to the
(11)  discreteness of the chain. Therefore we keep the fourth-order
Therefore, Egs(7) can be rewritten in terms of these func- (9) and (10) are sufficient for the correct transition to the

2
+(h_22)2_

I optical type. However, the relative displacement figldr)
1(z1,2,)= \/ 5Ta
expansions of the fielgp,(7) in Eq. (9) whereas only its

is of the acoustic type. It contains the negative dispersion of
q(zy,2,) = V(1+27)%+ z5—1. second-order expansions are required in @§). As for the

tions as follows: continuum limit. After some lengthy but straightforward
_ _ B “expansion” calculations we find that the resulting con-
Fn=T(Z1=pn.22= 7n) tinuum version of Egs(9) and (10) can be represented

and q,=9(z1=pr_1+ Pr+Zo= Tn— 1) (12) through the generating functiori$1) and(13) as follows:

The remaining four generating functions are defined by P=P(z,=p,22=7), Q=Q(z1=2p,2,=7,2),
17)

d 1/2+z;
P(z1,2,)= U[f(Zl,Zz)] mU [r(z1,25)], S=S(zy=p,2,=7), T=T(z1=2p,2,=7,/2).
Explicitly, we get
V'[a(z1,22)],
(13

g
Q21,22)= 7 VlA(z1.22) 1= m

1
Ps1= 2Pyt Py =7 (14 7/48)Pyy, (18
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1 1
Qn+2_Qn+1_Qn+anl:§Qxx+gRu (19
1
Sn-1F 250+ Sn41=45+ 75, (20)
Thi1=Tho1+ Th =T =2T,, (21)
where
14Q 10°Q(_ , 13
R= § %pxxxx_F W 3pxx+ ?pxpxxx
115°Q , 5 4'Q ,
Ay ﬁpxpxﬁ 24 9p% Px- (22
Therefore, Eqs(9) and(10) take the form
1 1
4p,,=(P+2Q)ut 4_8Pxxxx+ E R, (23
1
7., +4S+ ZSXX_ 2T,=0. (24

The system of Eq<€23) and(24) can further be simplified

if we use the linearized form of the generating functions

(13). In fact, in the next sections we will need their expan-
sions including the nextnonlineay terms. First, we expand
the anharmonic potentiald andV up to their cubic terms.
As a result, we obtain

1 o
2 3
2 7 3'

1
and V(q)= K2<Eq2— §q3) .
(25

U(r):Kl(

Next, we expand the generating functiqi4) and(13) up to
the second order. Using the definiti¢h?), we find

K
P= 4—b12(p—2h7]+Ap2+ Bpy+Cn?)+---, (26

2 1 2
Q=rka| 2p=4Bp + gy |+ -+, (27)
h 1
S=- 5K p—2hy+(A—2)p%+ B+4h—|pn
+(C+2) 2|+ -, (28)
T=xapnxt---, (29)
where the constantg, B, andC are given by
Al 3h? « Beh 3 at 2a
" BTNt )
c 3 2ah? 30
T h (30

A. V. ZOLOTARYUK, P. L. CHRISTIANSEN, AND A. V. SAVIN
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The final step in the procedure of deriving the equations
of motion in the continuum limit is téinearize the highest
derivative terms in both Eq$23) and(24). More exactly, in
Eq. (23), we keep in the fourth-order derivative expressions
only linear terms inp, i.e., those terms which are propor-
tional to py4yx, and similarly, in the second-order derivative
expressions we keep only linear termssznin Eqg. (24), we
linearize the second-order derivative terms in bpthand
7. Therefore, according to the expansig¢@6)—(29), we can
write the following approximations:

K1 2
Py prxxxv R= § K2Pxxxx (3D
in Eq. (23) and
h
Six=— WKl(p_Zh"])xxa T,=0 (32

in Eq. (24). As a result, both Eq923) and (24) are trans-
formed to

ay
P+2Q+ gpxx) =0,

XX

4p,— (33)

72 gpz1(p— 2N 7)o -45=0. (34)

The constanty; in Eqg. (33) takes into account the geometry
of the zig-zag chain and it is given by
a1:K1/64b2+ Kyp. (35)

It should be noticed that Eq33) corresponds to the so-
calledill -posedBoussinesq equation in the 1D casee,
e.g., Ref[11] and other references thergisimilarly to the
1D case, anmproved version of Eq.(33) can also be de-
rived. In order to find it, we multiply both sides of E({J3)
by the operator (+ a2<9§/12) where the constat, is to be
determined from the requirement that all the fourth-order de-
rivatives in the right-hand sidé.h.s) of this equation have
to be canceled. Then using the approximate express&ins
as well as the relation
(36)

X000 2K2Pxxxx

which follows from the expansiof27), we obtain

. K1/64b2+ Ko
az_K]_/le + Ko ’

(37

As a result, Eq(23) is transformed to the equation

a
? P TT) =0
XX

which may be referred to as an improved version of B8).
Notice that 0<a;<c whereas 1/4a,<1. Therefore, for

the improved versior(38), the constant, appears to be
more specified and less independent on the geometry of the
chain and on the potentiald andV than for the ill-posed
equation(33).

4p,,—| P+2Q+ (39
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Finally, Egs.(33) or (38) can further be simplified if we IV. THE SMALL-AMPLITUDE LIMIT

take into account the form of the functi@p(z,,z,) in Egs.

(13) as well as the expansiorig5) and(27). Then Eq.(38)

becomes

In this section we study the propagation of small-
amplitude waves along the zig-zag backbdsee Fig. 1
The corresponding dispersion law can be derived from the
a, linearized version of the basic equations of moti® and
4p,.— P+2V'(2p)+§pﬂ. =0. (39 (10. Using the linearized form of the generating functions

XX P, Q, S, andT, given by Egs.(11) and (13), and by the

. . . definitions(14), we find
Thus, we have derived the pair of two coupled nonlinear

field equations which describe the dynamics of the 2D zig- K1
zag chain. In what follows, we will study the improved ver- Pn=2pz(Pn=2070),  Qu=rkalpn-1+pn),
sion of the Boussinesg-like equation, i.e., E(@l) and(39),
where, according to Eq$l1), (13), and(17), the functions
P andS are defined by

(44

h
Sv= 5z K1(pn—2n7m),  T=0.

12+p n—h
P=P(p,m)= b+r U'(r) and S=S(p,n)= b+r u'(r) Substituting these relations into Eq®) and (10), we get
(40 their linearized form
with d’pn Ky
F: W(Pn+l_zpn+l)nfl)+K2(Pn+2_2Pn+Pn72)
1 2
r=r(p,n)= \/(§+p) +(h=m?-b. (4D h
- EZKl( M1~ 270t Pn-1),
It is interesting to consider different limiting cases of the (45)
continuum equations of motio{33) [or (39)] and(34). Con- )
sider the well-known 1D limit when only the longitudinal d“n, B top 4
degrees of freedom with the nearest-neighbor interactions are d2 ~ apzkilPn-172pn Pn+1)
kept, i.e.,7—0 and Eq.(34) disappears. This limit can be h

realized when eithefi) both the chains in the zig-zag back-
bone are decoupled, i.e—0, so that the first-neighbor
interactions are ignored and only the second-neighbor ones

- qu( Mn-1T 270+ Pns1)-

are kept, ofii) the zig-zag structure is shrinked, i.e—0 or Next, substituting the plane waves
?\/—)_%{)2) and the second-neighbor interactions are omitted po=ALeKV2-00) ang p — Al (kn2-07)

In the first limiting case,P—0, a;— x,=V"(0), and
a,—1. As a result, Eq(39) as well as its ill-posed analog
[see Eq(33)] become

ke[ —2m,27], (46)

into Egs. (45), we obtain the followinglinear dispersion

| V'(0) equation:
4p7.7._ 2V (ZP)XX_ 3 pXXXX:0 Kl k k 4h2 k

2 2 P2 2 —
(Q —b25|n24 4K23|n22)<ﬂ b2 cho§4

1
and @’TT_ 2V,(2P)xx_ §pXX’T’T:0' (42) h k 2
—(chlsin§> =0. (47)
Rescaling then the displacement fietd p/2, we find that

both Egs.(42) are transformed to the well-known ill-posed |n the decoupling limit, whem;— 0, the dispersion equation

and improved Boussinesq equations, respecti{@l§,11. (47) is reduced to the well-known linear dispersion law for a
In the other limiting caser—p, P—U'(p), Q—0,  single linear chain:

a;— k1/16=U"(0)/16, anda,— 1/4. As a result, EqS.33)

and(39) are, respectively, reduced to

Q=2x,

k
sini. (48)
Ap 7= U (P)xx™ —ZgPxooo=0 In the other particular case, whety,—0 andh—0 (and

b—1/2), Eq.(47) is reduced to the other dispersion law

=2k,

1
and 4p7'7'_ u ,(P)xx_ 1_2p>(>(7'7': 0. (43)

k
st (49
Rescaling the lattice spacing—x/2, in both these equa-

tions, we find that they coincide with the ill-posed and im- which again corresponds to the linear chain if its lattice spac-
proved Boussinesq equations, respectively. ing is rescaled by the substitutidr-1/2.



3886

In the general case, the dispersion I&4¥) describes the
coupling of the two linear modes, i.e.,
small-amplitude(i) longitudinal displacementp,(7) with
the acoustical-like dispersion law,

QL \/4b2$|n2 —+ K2$|n2

and(ii) transverse displacemenig(7), with the optical-like
dispersion relation

(50

A. V. ZOLOTARYUK, P. L. CHRISTIANSEN, AND A. V. SAVIN

the propagation of

2h k
F\/K_lcosd—f.

(51)

The last term in Eq(47) is due to the interaction between
these modes. Since it is negativegap in the frequency
spectrum(as shown in Fig. Pappears. The explicit solution
of the dispersion equatiof@7) gives two branches:

1+

k
+2K23il'12§1

02 = 1_i K
ac,op K1 2p2 COSi

The upper sign( ) in this equation corresponds to the
low-frequency acousticdl() ,.—branch in Fig. 2 part of the
frequency spectrum whereas the other gigr-" ) gives the
high-frequency optica({2,, branch in Fig. 2 part of this
spectrum.

In the long-length-wave limit K—0) we have
Qgc—> k,k? and therefore the velocity of longitudinal sound
along the chain is given by

UOZI \/Kz/M or 50: \/K—Z

(53

It is interesting to notice that this velocity coincides with the
sound velocity for a single chain. The optical branch for
smallk is described by the relation

4h? 1/ 1 )
opszKl‘l' Z W_l Klk . (54)
6 T
(b)

FIG. 2. Dependence of the dimensionless frequenflgs,,
(solid lineg and Q1 (dashed lingson the dimensionless wave
numberk for the zig-zag chain with the parametéas h=1/4 (the
case of positive dispersion 61,, at smallk) and (b) h=3/4 (the
case of negative dispersion 0f,, at smallk).

1 K K2 [h K2
k1| 1= 57+ cos; —2f<25|n2§ | pzrasing | (52)

As follows from this relation, the long-length waves propa-
gate with positive dispersion ii<1/2 [see Fig. 2a)] and
with negative dispersion ifi>1/2 [see Fig. 2b)].

V. SOLITARY-WAVE SOLUTIONS

In this section we will show that even in the case when
both the intermolecular potentidls andV are harmonic, the
zig-zag backbone admits solitary-wave solutions due to the
effective nonlinearity which comes from the geometry of the
configuration of the equilibrium positions of the chain mol-
ecules. It can clearly be seen from the expansions in &js.
when the next(anharmonig terms are kept. This kind of
nonlinearity may be referred to as “geometrical” anharmo-
nicity [17] in order to distinguish it from the “intrinsic”
anharmonicity of intermolecular interactions given, for in-
stance, by the parametarsand 8 in the expansion&5). As
was mentioned above, we treat only the improved version,
i.e., Egs.(34) and (39). Substituting the expansion&5),
(26), and(28), where the parameters and 8 are still kept,
into these equations, we obtain

a2 K1 h
Prr 1oPxxrr™ || 12 T K2|PT gpZ K17
2 k2815 | o2+ L (Bpmt )| =0
Tep2 <1 K2|p°F 1552 (Bpn+Cy =0
(55)
h
77~ gpz 1P~ 2h ) gz k| p—2hy+ (A 2)p?
1
+|B+4ah—+ pn+(C+2)5%=0 (56)

For the waves of a stationary profile moving with the
dimensionless velocits=v/lwy [see Egs.(5)], Egs. (55)
and(56) are transformed to
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The compatibility of the two relation&4) results in the

4
Zab?s%p" +[ k1 +160%(k,—5%) ]p—2hky 7 following equation with respect to the coefficient

3
+(Ak,—3202%Bk,y) p?+ k1 (Bpy+Cry?) =0, $°— kot (2hx—1) K /1607 1—-2hy
(57) 4a,5°I3 - 2hy—1+8b%s?y/hk;’
(65)
4b? . . .
p"—2| h+ msz 7"+ 16 p—2hp+(A—2)p? where the velocitys satisfies the equation
1
1 2 P eyt L (1—2hy)| 1422 (66)
+ B+4h—ﬁ pn+(C+2)np°|=0 (58 K2T 1602 X D,/

where the primes denote the differentiation of the fieldsSince u2>0, both sides of Eq(65) must be positive. The
p(€) and (&) over the variablg€=x—sr. positivity of the r.h.s. of this equation leads to the inequality
In order to treat the system of coupled nonlinear ordinaryl —2hx>0, so that the coefficieng must be in the interval
differential equationg57) and (58), we need todecouple
them in some appropriate way. From the geometrical and
physical points of view, it is reasonable to assume an ap-
proximate proportionality of both the fieldsp(¢) and  On the other hand, the positivity of the L.h.s. of E§5)
7(§), i.e., we can assume the following decoupling relation:implies that onlysupersonic(s>sy= Jk,) velocities are

0<y<1/2h. (67)

(&)= xp(£), (59)

where the parameter has to be determined and it should be
positive. Indeed, if théongitudinal deformationp(¢) is a
positive (negativepell-shaped function, then the chain in the

transversedirection shouldoecome thin (thicker)
Substituting the relatiof69) into both Egqs(57) and(58),

we immediately find that they are reduced to the following

two forms of the same Boussinesg-like equation:

Cop”“l‘ Clp+ C2p2:O and Dop"+ D1P+ D2p2=0.
(60)

Here the two series of the constants are defined by
Co=4a,b?s?/3k,,
Ci=1-2hy+16b%(ky,—S?)/ k1, (61)
C,=A+Byx+Cx?—320%Bk,/k;

and
1 22
Do=¢(2hx—1+8b°S’x/h«y),
D,;=2hy—1, (62)

D2:2_A_

1
B+4h—H)X—(C+2)X2.

Each of Eqs(60) has the well-known soliton solution

p(&)=pocosh 2(pé), (63)

where the amplitude, and the inverse half-width are
given by the relations

. 3Cp
po__Z_CZ__

C. D
T 4C, 4Dy
(64)

appropriate solutions of Eq#5) and (66).

Finally, substituting the expression fef given by Eq.
(66) into Eq. (65), we find the following algebraic equation
of the sixth order with respect to the coefficignt

P(x)=(1-2hx)[3G1(hxG;i+ k1xG2—2hk;G5)
- SazKle(hGl+ KlG2)]
+1&)2K2G2(3XG1_8a2K162):0, (68)

where G;=«,C, and G,=hD,. Only those roots of Eq.
(68), which satisfy the inequalitie€&7) and provide the in-
equality s> \'k,, must be chosen.

Since the constang has to be always positive, it follows
from Eq.(59) thattwo types of soliton solutions can exist. If
the amplitude of the longitudinal soliton compongw is
found to be positive, then the amplitude of the transverse
componenty, is also positive. In this case, the soliton solu-
tion describes a localizetbngitudinal stretchingwhich is
accompanied by a localizeslendering(7,>0). In fact,
this transverse slendering occurs with the amplitugdeex-
ceeding the thickneds.

In what follows, the two-component soliton solutions will
be called accordingly to the type tdngitudinal deforma-
tion. Therefore a solitary-wave solution, the longitudinal
component of which is positive function, will be referred
to as astretchingsoliton. On the other hand, according to Eq.
(59), a localized longitudinatompressiorcan coexist with
a transverse thickeningbulge of the chain. We call this
type of localized deformation aompressionsoliton. Note
that the latter type of solitons resembles the conventional
lattice solitons in a 1D anharmonic chain.

It follows from Egs.(30), (62), (64), (66), and(67) that
even in the case when the intrinsic anharmonicity is absent,
i.e., a= B=0, the stretching solitary-wave solution exists.
Indeed, in the particular case=0 the corresponding in-
equalitiespy>0 ands>s; imply

1/2—h? 3n’\x 3
2:T+ 1—FT H_WX >0, (69)
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' ' ; have to be satisfied. As follows from the expressions for
D, andC,+D, given in Egs.(69) and(70), for sufficiently
large anharmonicity3 and sufficiently large thickneds the
inequalities(71) can be fulfilled. Therefore, for each chain
there exists a certairhresholdof longitudinal anharmonic-
ity, above which the compression solitons can exist. On the
other hand, for sufficiently smali (thin chaing the solitons
cannot exist and this phenomenon can be explained as their
transverse instabilityas was pointed out in Ref7] under
numerical simulations. Note that in the 1D theory of nonlin-
ear lattices the solitons exist at any positive anharmonicity
and with any supersonic velocity.e., there are no gaps in
the soliton velocity spectrum

Finally, it should be noticed that the existence of soliton
solutions, with some fixed values of their velocity, within the
ansatz59) does not yet imply either their dynamical stability
at these velocities or the existence oflescrete velocity
spectrum. The appearance of the fixed soliton velocities is
merely a result of the decoupling procedure of E§3) and
(58) by using the constrain®9). In order to find exactly all
soliton solutions, some specific numerical techniques will be
developed in the next section.

0.15

0.1

Pn

0.05

0.08

Un

0.04

VI. A NUMERICAL METHOD

In this section we develop a numerical minimization
scheme for seeking solitary-wave solutions of a stationary
placements for the stretching soliton in the zig-zag chain withprOfIIe for the basic equations of moti¢@) and(10). When
h=0.1, ;= x,=1, anda=B=0, including () schematic repre- f[hgs.e soluthns have been.founq, they can be chosen as
sentation of the chain deformation. The dashed lines show the sollNitial _conditions for numerical simulations of these equa-
ton profiles obtained as a result of solving the sixth-order algebrai¢ions. Then afinal profile of the lattice fieldsp,(7) and
equation(68). The solid lines represent the result of solving the 7n(7) Obtained under the simulations at sufficiently large
minimization problem for the function(80) at the velocity times 7 allows us to conclude whether or not the initial con-
s=s,=1.102 5%s;. dition found by the minimization procedure is a correct

stablesolution of Eqs(9) and(10). The main point in such
P a numerical approach is an appropriate choice of a
—3228—=>0. (70) discretefunctional for minimization. As was shown previ-
K1 ously (see, e.g., Ref$18,19), such a functional can be con-
structed from the corresponding Lagrangian of the system.
For sufficiently smalh both these inequalities can obviously However, the zig-zag backbone studied in this paper appears
be fulfilled even if we putg=0 in Eq.(70). Thus, for the  to be a rather complicated system and therefore the numeri-
zig-zag chain with the parameter value§=0.1, cal scheme developed previously in Rdfs8,19 cannot be
k1= Kp,=1, anda=B=0, we have found two roots in the applied directly for seeking solitary-wave solutions in this
interval (67). However, only one of them corresponds to asystem.
supersonic velocitg=s,. This root isy= x;=1.32 and the The (dimensionless Lagrangian, which corresponds to
corresponding value for the soliton velocityis calculated the Hamiltonian(1), has the form
from Egs.(66), (69), and(70): s=s;=1.11. Next,py=0.14
and ©=0.33, and since the inequalit$9) is fulfilled, this du, dv,,
solution describes atretchingsoliton. Its longitudinal and £=£[ gy Un ;d—,vn]
transverse profiles are depicted, according to E§@). and T T

FIG. 3. The profiles ofa) longitudinal and(b) transverse dis-

C2+D2=2(1—X2)+(1—4h2)%

(63), in Fig. 3[the dashed lines i) and (b)]. Finally, as 1[{du,\? [dv,\?

was mentioned above, the transverse amplitude of the = [5 (E) +(E) _U(rn)_V(Qn)}-
stretching solitony, always exceeds the thicknelssand, as "

a result of such “overslendering,” the transverse deforma- (72

tion [see Fig. &)] hastwo nodes[where n(£)=h] and a

bulge between therfwhere (£)>h]. The main idea in our numerical scheme is to replace the time

For the existence of the second type of solitary-wave soderivativesdu,/dr and dv,/dr in the Lagrangian72) by
lutions, compressionsolitons with a localized transverse appropriate spatial differences of the lattice fietdl§) and
thickening, the inequalities 7n(7). Such a replacing procedure can be applied to those

lattice functions whicHi) are sufficiently smooth from site to
D,<0 and C,+D,<0 (71 site and(ii) have a stationary profile moving with velocity
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s. According to the previuos studiésee Refs[18,19)), the  both these procedures and did not find any significant differ-
simplest choice of such an approximation would be as folence while the presence of the fourth-order difference term

lows: in the l.h.s. of Eq(76) is crucial.
The difference equationd6) and(77) can be twice “in-
du, _ B tegrated” and transformed to
ar = —su'(n—=s7)=—2s(Uy+1—U,)=—2sp, (73
1
and 4s? Pn— 1_2(Pn+1_2Pn+Pnl)}_Pn_Qn_QnJrl:O’
. (79
v
qr =S/ (N=s)==25wns v (74 45U 41~ 2+ Un 1)+ Sy 1t St T 1= Ty

. e . . These equations correspond to the Lagrangian function
In this case, we can obtain tfiaite-dimensionalagrangian

function L= £L{p, ,v,} which can be studied by the steepest L=L{pn,vn}
descent method. However, for our zig-zag model the ap-
proximation defined by Eq€73) and(74) is too crude be- :2 [232
cause it does not contain the lattice dispersion of the longi- n
tudinal waves.

In order to improve the numerical scheme, the second —U(rn)—V(qn)]. (79

2 1 2 2
pnt l_z(pn+1_pn) +(Vny1—vn)

time derivative in Eq(9) has to contain also the fourth-order

spatial derivative with an appropriate coefficient chosen in . .
such a way that the continuum limitip to the fourth-order The exrenum cond|t|ons?£/apn=.0 and ‘va“.zo give
expansionsof the resulting discrete equation would coincide MMediately the system of the difference equatiors).

completely with the continuum versici83) or (38). There- Howeyer, the extrenum pqints of th_e Lagrangian function
fore, we write the following improved discretization as com- (79), which correspond to soliton solutions, are not necessary

pared with Eq(73): to be mir_lima or maxima. They might be sadd_le points as
well. For instance, for the 1D Boussinesq equation, there are
d?p,, 5 neither minimum nor maximum points at the corresponding
Wz4s [Pn+1—2pntpPn-1 Lagrangian surface. In this case, the extrenum points which
correspond to the supersonic soliton solutions are only of the
—C(pnr2—4pns1t6pn—4pn_1t+pn_21, saddle-type, and therefore it is impossible to find any super-

(75 sonic solution by minimization of the functiofr9). How-

ever, in this case we can make a ‘“reflection” of the La-

where the constant is to be determined. The last group of 9rangian surface in such a way that saddle points are
terms in Eq.(75) is the fourth-order difference derivative fransformed into minimum points at this “deformed” sur-
which has to cancel the corresponding fourth-order Conface._The most direct and simple way is to construct the
tinuum derivative appearing from the first group in this equafunctional

tion. As a result, we find=1/12 and then in the continuum 1 oL\2 [ ar)\2

limit (up to the fourth orderEq. (75) is transformed to F=Hpn vnt =5, [ —) +(_)
d?p,/d72=s?p". Consequently, the set of Eq®) and(10) 2°% [\ dpn dun
can be replaced by the following difference equations: and then to study it for minima. Those minima which corre-

1 spond to bell-shaped profiles are chosen as appropriate

4% pps1—2pnF Pro1— = solitary-wave solutions of our problem. Other minima de-
12 scribing bell-shaped configurations accompanied by any

ripples, etc., are to be excluded from the further consider-

(80)

X(pn+2=4pn+1+t6pn—4pn_1+pn-2) ation. ) ) ) ) )
The analytical solution found in the preceding section can
=P 41— 2P+ P, 1+ Q10— Qpi1—Qn+Qp_1, be chosen as a starting point for the descent. The minimiza-

(76) tion process is over when the discrete functioi@®) reaches
its minimum. It should be noticed that instead of the function
4% (Pns1— 200+ Pn_1)=—(Sn—1+2Sh+Sns1) + Thi (79) we could use the corresponding discretized Lagrangian
L{pn,nn}. However, in this case we would lose some dis-
persion terms in a final discretized version of the Lagrangian.

. . .More exactly, instead of the su®,_;+2S,+S,,, in Eq.
The left-hand sides of these equations represent the dis: .
cretized second-order time derivatives in E(®. and (10). ?77) [or Eq. (10)], we would obtain only the term$},.

Notice that the last equation could also be discretized in the
same way as Ed76) in order to take into account the lattice
dispersion of transverse vibrations. However, as was shown We have numerically studied the zig-zag system in both
before, this dispersion is not “responsible” for the solitons cases(i) without any intrinsic anharmonicity, when the mol-
and therefore it is not necessary to use this more complicatescules are assumed to be coupled harmonicaily 8= 0),
discretized version. In fact, we have checked the results odind(ii) with this type of anharmonicity, when the parameter

_Tn71+Tn+2_Tn- (77)

VII. NUMERICAL RESULTS
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FIG. 4. The two-component soliton profiles given by the longi- g1 5 |nelastic interaction of the stretching solitons under their
tudinal (u,) and transverseu(,) displacements. The initial profile |,.54-in collision with velocitys=1.102 57 p=0.1, x;=rx,=1
(at 7=0) has been found by the minimization of the functi@®) anda=B=0). '

and it is represented by dots. The final profgelid line9 is a result

of evolution of this profile[according to the equations of motion _

(4)] when the soliton has passed 100000 chain sitstime  time 7=45 348.8, its velocitys=s and two-component pro-
=45 348.8). file plotted in Fig. 4 by the solid lines were not changed. As

illustrated in this figure, the initial profile found by the mini-

B is positive. In the former case, we have chosen the zig-zagnization scheme completely coincides with the final profile
geometry withh=0.1 by takingx;=«,=1. The numerical obtained as a result of the numerical simulation of the equa-
minimization of the functiona(79) has shown that the sys- tions of motion. For all other velocities, either the soliton
tem has the soliton solution only ane value of the velocity ~ stabilizes its motion with the velocitg=s leaving small-
s=s,=1.102 59. The minima at other values of the velocity amplitude ripples or it decays into a subsonic wave packet.
s do not providepure bell-shapedoliton profiles; as a rule, Thus, if we take the analytical solution, obtained in the con-
they give profiles with ripples. The accuracy of the solutiontinuum limit and given by Eqs(63) and (64), with h=0.1,
was reached up to 18° The results of the minimization are «;=,=1, anda= =0, as an initial profile, then the soli-
plotted in Fig. 3 by the solid lines. ton propagation, which starts with any velociys, is ac-

The dynamics of the soliton solutions has been studiedompanied by emission of small-amplitude waves and its
numerically in the zig-zag chain consisting f=300 mol-  velocity decreases approaching the vaaes. The intensity
ecules, with the free ends. The accuracy of integration obf emission of small-amplitude waves also decreases and the
Egs.(4), rewritten in terms of the dimensionless lattice fieldssoliton motion is stabilized. At any velocity<s, the soliton
un(7) andv,(7), was estimated through the conservation ofmotion is also accompanied by emission of small-amplitude
the total energy given by the Hamiltonidf). Initially, the  waves which results in gradually breaking and finally de-
soliton was situated at the site= 100. After the passage of stroying the soliton.
100 sites, the fielda,(7) and v,(7) were replaced by The effects of interaction of the stretching solitons have
Un_10d7) andv,,_1o 7), respectively. The similar substitu- also been investigated by numerical simulations. To this end,
tion was also accomplished with the time derivatives of theseve have simulated their head-in collision. This collision
fields. This procedure allows us to cut off nonsoliton contri-leads to the appearance todinsversevibrations of the chain
butions appearing due to emission of small-amplitude wavesnolecules. The results of these simulations are illustrated in

The numerical simulation of the equations of motion hasFig. 5. They show that the stretching solitons are sensitive

proved the stability of propagation of tretretchingsoli-  with respect to their mutual collisions resulting in the emis-
ton. Thus, it was shown that starting with thitial veloc-  sion of transverse oscillatiorisptical phonons
ity s=s,, the soliton propagation with thé&énal velocity Consider now the second type of the solitons which de-

s=s=1.102 57 was extremely stable as illustrated by Fig. 4scribe a localizedongitudinal compression of the zig-zag
Thus, after the soliton passed 100 000 lattice sites, during thehain. As was pointed out in Sec. V, these solitons can exist



54 TWO-DIMENSIONAL DYNAMICS OF A FREE ... 3891

0.3}
0.25F 4
6 02 (a) ]
015
o1}
005}
% o5 11 115
I 5/80
35 ; .
0 ® |
25 .
A 2
e . .
£ -0.04 o
10}
-0.08 5 1.05 1 115
s/so
L]
0 : .
80 100 120
(C) -0.05} (C)
Ar
0.1
<
-0.15
Ap
-0.2
n -025 :
1 105 11 115
s/sg

FIG. 6. The bell-shaped profiles of the compression soliton
which are represented by the lattice fields(af longitudinal rela-

tive displacementsp, and (b) transverse displacements, ) ; . . .
(h=1/2y3, x;=1 andx,=0.1,a=0, andB—0.1). These profiles Zn;p())lltludesAﬁ and A of the compression soliton on its velocity at

describe(c) a longitudinal compression and a transverse thickening.
The soliton has the velocity/s;=1.1, the energ¥=0.06, and the
diameterD=7.75. transverse ;) soliton components on the velocity are
shown in Fig. 7(for 8=0.1) and in Fig. 8for 8=0.01).
The numerical simulations have also shown that the com-
| pression solitons are dynamically stable for the anharmonic-

FIG. 7. Dependence of the enerdy the diameterD, and the

only in the case if the longitudinal anharmonicityith the
parameterg) is sufficiently strong. Take the most typical ! > )
situation for molecular chains when the rakig/ , is of one 1ty parameter3=0.1. Thus, at the initial velocitg/so=1.1
order. For instance, in alpha-helix protein the constant the_sollton propagates anng_lOO 000 chain cells during the
corresponds to hard deformations of the valence bonds whilgeriod 7=143 826.8. The soliton was moving with the ve-
the other constant, determines soft vibrations of the hydro- l0cCity s/so=1.0993 retaining its profile as illustrated by Fig.
gen bonds. It is reasonable to consider the anharmonicity. The solitons of this type have been proved to interact
only in the soft bonds because they can have large amplielastically (see Fig. 10
tudes of deformation. Therefore we take=0 andB>0. Let The compression solitons in the chain with a weak anhar-
k1=1, k,=0.1, anch=1/2\/3 (corresponding to the zig-zag monicity (for instance, with3=0.01) propagate as stable
angle 120°). The following three values of the paramgter objects only for velocites from the interval
have been chose®=0.1, 3=0.01, and3=0.001. The nu- 1<s/sy<1.015. However, their interaction appears to be in-
merical solution of the minimization of the functigB0) has  elastic; after the collision the emission of transverse small-
shown that thecompressionsolitons can exist only for amplitude wavegoptical phononsoccurs(see Fig. 11
sufficiently strong anharmonicity in the zig-zag chain. The Thus, the numerical studies have proved that in an anhar-
typical two-component profile of the compression soliton ismonic zig-zag chain the existence of the compression soli-
presented in Fig. 6. As demonstrated here, in the localizetbns depends on the magnitude of the anharmonicity param-
region of the soliton, a longitudinal compression and a transeter 3. For each zig-zag chain there existstlreshold
verse thickening take place. value of this parameter, above which the compression soli-
Contrary to the 1D anharmonic chain, the velocity spectons do exist. The solitons of this type have always a
trum of the compression soliton in the zig-zag chain consist§inite band of supersonic velocities. This band is enlarged
of anarrow bandin the supersonic region which turns out to with increasing the paramet@. The solitons lose their dy-
be bounded aboveThus, we have obtained the following namical stability at theipper edge of the band. Below this
velocity bands: ¥ s/sp<1.16 if 8=0.1 and K s/sp<1.03  edge, with decreasing velocity, the compression solitons
if 3=0.01. The dependence of the enegythe diameter becomedynamically stableobjects, interacting aslastic
D, as well as the amplitudes of the longitudinad,() and  particles.
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FIG. 9. The two-component profiles of the compression soliton
represented by the displacement fialjdsandv,,. The initial profile
(shown by dotsat 7=0 has been found by the minimization pro-
cedure while the final profilésolid lines has been obtained as a
result of time evolution of this initial profile after the passage of

VIIl. DISCUSSION AND CONCLUSIONS 100 000 chain siteq@t =143 826.8). The soliton velocity is given
by s/sy=1.1; the other parameters ate= 1/2y3, k;=1 and

It was an attractive point of view to study some dynamicalx,=0.1, =0, and8=0.1.
processes in biopolymers on the basis of the 1D nonlinear
lattice models with nearest-neighbor interatomic interactionsuch a zig-zag chain were supposed to have two degrees of
which admit propagation of extremely stable supersonidreedom: longitudinalX,) and transversey(). The essence
pulses of longitudinal lattice compression. Thus, Yomosa esef this model is that the basic equations of moti@ and
sentially applied the Fermi-Pasta-Ulam model for studies 0f10) can be treated analytically in the continuum limit. On
energy transport in proteirf20]. However, since any the other hand, from the point of view of the soliton stability
biopolymer should be considered as a 3D object, its dynamstudies some numerical techniques appeared to be also use-
ics has to include also theansversedegrees of freedom of ful. Thus, the numerical minimization scheme which allows
the chain molecules, as was suggested, for instance, in Refss to findpure soliton solutions in nonlinear models of big
[7-10. complexity has been suggested and developed in this paper.

Once(i) the transverse motions of the chain molecules arélhe analytical results have been used as starting points under
allowed and(ii) all the intermolecular forces in the system the minimization procedure.
are assumed to have spherical symmetry, then some addi- We do not expect any significant qualitative differeriice
tional intermolecular forces, including the next or more re-the dynamical behaviphbetween the 3D helix and its over-
mote neighbors and forming a secondary structure, have tsimplified zig-zag version. However, under the “transition”
be taken into account in order to stabilize some regular sparom the 1D theory to the 2D case, some drastic changes in
tial configuration of the chain. In the simplest case, such dhe soliton dynamics appear. Thus, compared to the 1D chain
configuration has naturally the form of a so-calleg-Belix =~ model where the compression solitons can propagate with
[7]. From the point of view of analytical studies, we have any supersonic velocity, the corresponding two-component
simplified the helical structure as much as possible by keepsolitons(longitudinal compression and transverse thickening,
ing the main features of the secondary structure. More presee Fig. § in the zig-zag chain actually have a narrow band
cisely, our simplification has been done Gy reducing one of supersonic velocities. The existence of the upper bound in
transverse coordinate and) taking into account only the the velocity spectrum follows from the geometry of the sys-
second-neighbor intermolecular interactions. Such an ovetem. Furthermore, the solitons of this type were proved to
simplified “planar helix” is nothing more than a 2D zig-zag collide elastically, as shown by Fig. 10, if their velocities are
chain in which the first- and second-neighbor molecules aréound at thelower edge of the velocity band. On the con-
coupled by intermolecular interactions. All the molecules oftrary, if they propagate with velocities at thgpper edge,

FIG. 8. Dependence of the enerdy the diameterD, and the
amplitudesA, and.A;of the compression soliton on its velocity at
B=0.01.
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FIG. 10. Elastic head-in collision of two compression solitons  FIG. 11. Inelastic head-in collision of two compression solitons
with velocity s/sy=1.1 (h=1/2y/3, k;=1 andx,=0.1,a=0, and  with velocitys/s,=1.01 (h=1/2y3, x;=1 andx,=0.1,a=0, and
£=0.1). B=0.01).

their collision happens to be inelasfigee Fig. 1L tween them where the “overslendering” occurs. The second
The next important observation in our studies is that thanteresting feature of this soliton is that there exists only
stability properties of the above-mentioned solitons essemene fixed velocity at which itsstablepropagation happens.
tially depend on botlti) the zig-zag chain geometry defined This value of the soliton velocity has been found in this
by its thicknessh and (ii) the magnitude of the intrinsic paper both analytically and numerically.
anharmonicity of the second-neighbor intermolecular forces The existence of a single value of the soliton velocity can
(i.e., the parameteB). As was shown analyticalljsee Eqs. be explained from the physical point of view as follows.
(69 and (70)], the solitons with longitudinal compression Roughly speaking, the soliton propagation along the zig-zag
cannot exist in the zig-zag chains wifh small thicknessh backbone can be considered as some superposition of two
or (i) week anharmonicity3, while in a 1D chain they exist motions, one of which occurs only along the valence bonds
at any value of the intermolecular anharmonicity. The ab-while the second one happens along the hydrogen bonds.
sence of the soliton solutions in this region of the parameterEach of these propagation processes has its own
h and 8 is due to the transverse instabilities of the solitonnonlineardispersion law, i.e., some dependence of the am-
motion which have previously been discovered in Refsplitude of deformation on the velocity. On the other hand,
[10,21. both the amplitudes of the chain deformation are clearly re-
However, instead of the solitons with a localized longitu- lated because of the zig-zag geometry. Therefore their rela-
dinal compression, a stable soliton solution which corretion imposes a constraint on the soliton velogtyBoth the
sponds to longitudinal stretching and transverse slenderingmplitudes become self-consistent at some value of the ve-
(illustrated by Figs. 3 and)fas been found analytically and locity s=s=s;=s, which has been found in this paper. Of
numerically by using minimization techniques. As wascourse, this value essentially depends on the geometrical
proved in Sec. V, this solution appears due to the geometristructure and its exact value was found numerically.
cal anharmonicity; it exists for thin chains with weak intrin- It should be emphasized that in some more simple sys-
sic anharmonicities including also the case with harmonidems, the existence of discretevelocity spectrum can be
intermolecular forces¢= B=0). However, it should be no- observed and explained much more easily. For instance, let
ticed that the soliton amplitude of the transverse displaceus consider the motion of the lattice soliton in the on-site
ments, which are directed inside the zig-zag backbone, exsubstrate potential of double-well topology. In this case, the
ceeds its thicknes$h. As a result of such transverse double-well topology of a substrate potential imposes a con-
“overslendering,” the chain deformation takes the form straint on the amplitude of the soliton; only that amplitude
which is schematically shown in Fig.(@. The transverse which is equal to thelistancebetween two minima of the
component of this soliton has two nodes with a bulge be-on-site potential is available. This constraint immediately re-
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sults in fixing some value of the supersonic veloatgue to  Boussinesq equation. As a result, the coefficigntwhich

the dependence of the amplitude of the lattice soliton on itsatisfies the inequalities ¥4a,<1 and depends on the ge-
velocity. In other words, the presence of some constraints oometry of the system appears in the continuum version of the
an anharmonic molecular chaife.g., fixing its ends equations of motion. Note that the ill-posed analog contains
selectsfrom its continuoussupersonic spectrum of ve- another coefficienta; which varies in the broad interval
locities some discrete values. Such a fixed value of the su3<a; <> (also depending on the geometry of the chain
personic velocity has been observed in R82] for the lat-  and therefore the former choice is preferable for analytical
tice soliton moving in an on-site potential of tigé¢-form. As  studies.

for the present case, we also have the constraint caused by

thg zig-zag structure. We expect that in the _3D case, the ACKNOWLEDGMENTS

existence of discrete values of the soliton velocity also holds.

Finally, we notice that the basic set of equations of mo- This work was partially carried out with the financial sup-
tion in the continuum limit does not appear to be a simpleport from the European Economic CommunigEC) under
“complementation” of the Boussinesq equation in its ill- the INTAS Grant No. 94-3754. One of y#.V.Z.) would
posed or improved form by an equation for transverse dealso like to express his gratitude to the MIDIT Center and the
grees of freedom. In fact, the coupling between the longituinstitute of Mathematical Modelling of the Technical Uni-
dinal and transverse degrees of freedom becomes quiteersity of Denmark for the Guest Professorship and hospital-
sophisticated. In setting up the continuum version of the disity. Stimulating and useful discussions with T.C. Bountis,
crete equations of motion we have accomplished the procéd.W. McLaughlin, and A.C. Scott are gratefully acknowl-
dure similar to deriving thémproved form of the 1D  edged.

[1] M.D. Kruskal and N.J. Zabusky, J. Math. Ph$s231(1964). [13] M. Peyrard, T. Dauxois, H. Hoyet, and C.R. Willis, Physica D

[2] N.J. Zabusky, Comp. Phys. Commu.1 (1973. 68, 104 (1993.
[3] M. Toda, Phys. Repl8, 1 (1975. [14] T. Dauxois, M. Peyrard, and A.R. Bishop, Phys. Rev4E
[4] M.A. Collins, Chem. Phys. LetZ7, 342 (1981). R44 (1993.

[15] N. Flytzanis, St. Pnevmatikos, and M. Remoissenet, J. Phys. C
18, 4603(1985.
[16] N. Flytzanis, St. Pnevmatikos, and M. Peyrard, J. Phy&2A

[5] P. Rosenau, Phys. Lett. A18 222 (1986.
[6] 3.M. Hyman and P. Rosenau, Phys. Lettl24, 287 (1987).
[7] O.H. Olsen, P.S. Lomdahl, and W.C. Kerr, Phys. Lettl26,

783(1989.
402(1989. ~ [17] S. Cadet, Phys. Letl21, 77 (1987.
[8] P.L. Christiansen, P.S. Lomdahl, and V. Muto, Nonlineadity [18] A.V. Zolotaryuk and A.V. Savin, Physica B6, 295 (1990.
477 (1990. [19] A.V. Zolotaryuk, St. Pnevmatikos, and A.V. Savin, Physica D
[9] V. Muto, P.S. Lomdahl, and P.L. Christiansen, Phys. Rev. A 51, 407 (1991.
42, 7452(1990. [20] S. Yomosa, Phys. Rev. 82, 1752(1985.
[10] P.S. Lomdahl, O.H. Olsen, and M.R. Samuelsen, Phys. Lett. A21] J. Pouget, S. Aubry, A.R. Bishop, and P.S. Lomdahl, Phys.
152 343(1992). Rev. B39, 9500(1989.
[11] S.K. Turitsyn, Phys. Rev. B7, R796(1993. [22] A.M. Kosevich and A.S. Kovalev, Solid State Commur2,

[12] M. Peyrard and A.R. Bishop, Phys. Rev. L&2, 2755(1989. 763(1973.



