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Abstract

The use of sloshing liquid as a passive means of suppressing the rolling motion of ships
was proposed already in the late 19th century. Some hundred years later the use of liquid
sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the
civil engineering community.

The TLDs studied in this thesis essentially consist of a rectangular container partially
filled with liquid in the form of plain tap water. The frequency of the liquid sloshing
motion, which is adjusted by varying the length of the tank and the depth of the wa-
ter, is tuned to the structural frequency of interest. When, due to various disturbances,
the structure starts vibrating, the liquid motion or sloshing is initiated due to the fre-
quency tuning and sloshing forces are imposed on the structure. The main focus of the
present work has been the development of a mathematic model capable of predicting the
interaction between a structure and fluid sloshing forces.

A mathematical model describing liquid sloshing in shallow water is formulated by
simplifying the full Navier-Stokes equations expressed in a moving frame of reference. The
resulting set of equations are known as the Nonlinear Shallow Water (NSW) equations, or
the St. Venant equations, named after the originator who derived the set of equations in
1871. The set of equations are developed with the purpose of describing sloshing in tanks
with relatively large base amplitudes which result in the formation of moving hydraulic
jumps or bores, by some researchers on TLDs termed wave breaking. A large part of the
energy dissipation in the fluid is anticipated to stem from the turbulence in the vicinity
of the moving hydraulic jump, and in order to verify this supposition the effect of bottom
friction is included in the mathematical model. Studies reveal that for realistic roughness
parameters the bottom friction has very limited effect on the liquid sloshing behavior and
can be neglected. Herby the postulate is verified.

Based on the mathematical model three dimensionless parameters are derived showing
that the response of the damper depends solely on ratio of the base amplitude and tank
length, A/L, on the frequency ratio of the forcing frequency and sloshing frequency,
Ω/ωw, and finally on a friction parameter γ. These dimensionless parameters have been
postulated by several researches in the field of TLDs but has not been derived rigorously
as in the present thesis.

In the derivation of the dimensionless parameters it is assumed that the proposed
mathematical model captures the relevant physical processes in the problem. The model
is based on a shallow water assumption and an extensive measurement campaign is carried
out to establish an appropriate upper limit for the filling or depth defined by the ratio
of the water depth and tank length, h/L, for which the mathematical model is valid.
Moreover, the experiments are used to determine the effects of the forcing ratio A/L and
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frequency ratio Ω/ωw on the sloshing behavior. The current study is novel in its rigorous
approach and brings valuable information on the range of application for the proposed
mathematical model.

In order to solve the mathematical model an extensive amount of work has been
invested in computational fluid dynamics. Other similar reported studies of the NSW
equations in connection with sloshing has used cumbersome, computationally expensive
and somewhat outdated numerical solution schemes. We compare a state of the art, high
order, shock capturing method with a simpler low order scheme and find that the simple
scheme is adequate for simulating shallow water sloshing.

The interaction between a shallow water TLD and a structure, the main focus of the
work, is analyzed experimentally and by simulation. The mathematical sloshing model
is coupled to a simple Single-Degree-Of-Freedom (SDOF) system in a general framework
and a time integration scheme is proposed. A number of interaction experiments are
performed where TLDs are coupled to an elastic structure. The elastic structure is given
an initial horizontal displacement and then released. The mathematical interaction model
captures the transient free surface behavior of liquid sloshing as well as the position of the
hydraulic jump very well. By coupling the shallow water TLD to the structure, the total
structural damping is increased and the increased damping is estimated precisely by the
model. The mathematical model is further verified using experimental results from the
literature on the interaction of shallow water TLDs and elastic structures. The interaction
model predicts the structural amplitude satisfactorily but introduces a small error in the
frequency location of the maximum structural amplitude.



Resumé

Anvendelsen af væskers frie overflade til begrænsning af rulning af skibe blev fremsat
allerede i slutningen af det nittende århundrede. Godt og vel hundrede år senere begy-
ndte lignede anordninger, ofte benævnt væske dæmpere, at finde anvendelse i bygnings
konstruktioner. Væskedæmperne studeret i denne afhandling best̊ar i al sin enkelthed at
en rektangulær tank delvist fyldt med væske i form a vandhanevand. Frekvens a væskens
skvulpebevægelse, som kan justeres ved at variere tank længden og væske dybden, er tunet
s̊aledes at skvulpefrekvensen er sammenfaldende med den p̊agældende konstruktions egen-
frekvens. N̊ar strukturen begynder at svinge som følge af eksterne p̊avirkninger, begynder
væsken at skvulp p̊a grund af frekvenstuningen og hydrodynamisk kræfter p̊aføres kon-
struktionen. Det har været hoved formålet med nærværende afhandling at opstille en
matematisk model til at estimere interaktionen mellem en struktur og hydrodynamiske
kræfter fra skvulpebevægelser. En matematisk model til beskrivelse af bevægelsen af frie
væskers overflade i lavt vand er formuleret ved en simplificering af de fulde Navier-Stokes
ligninger opskrevet i et henførelsessytem. De udledte ligninger er kendt som de ikke-
lineære fladvands ligninger, eller St. Venant ligninger, opkaldt efter udvikleren som udledte
ligningerne i 1871. Ligninger udledes med hensigt p̊a at beskrive skvulpebevægelser i kar
udsat for relativt store vandrette bevægelser som resulterer i dannelsen af rejsende hy-
drauliske spring, refereret til som brydende bølger af visse forskere indenfor væskedæm-
pere. En stor del af energidissipationen forventes at stamme fra turbulens i det hydrauliske
spring og for at verificere dette postulat medtages effekt af bundfriktion i den matematiske
model. Nye studier viser at for realistiske ruhedder har bund friktionen en meget begrænset
effekt p̊a væskebevægelsen og kan negligeres. Hermed kan det konkluderes at hovedparten
af energidissipationen i væsken stammer fra det hydrauliske spring. Ud fra den matema-
tiske model udledes tre dimensionsløse parameter der viser at den frie overflade af væske
alene er styret af forholdet mellem den vandrette flytning af tanken og længden af tanken
A/L, af forholdet mellem belastningsfrekvens og skvulpefrekvensen og endelig af en frik-
tionsparameter. Disse dimensionsløse parametre er tidligere blevet postuleret af forskere i
væskedæmpere men er ikke blevet udledt rigoristisk som i den nuværende afhandling. Ved
udledningen af de dimensionsløse parametre er det forudsat at den matematiske model kan
anvendes og er i stand til at beskrive de relevante fysiske processer tilstede i problemet.
Modellen er baseret p̊a en lavvandsantagelse og en omfattende forsøgsmatrix udføres for
a fastlægge en fornuftig øvre grænse for dybdeforholdet defineret som forholdet mellem
væske dybden og tank længden h/L, for hviket den matematiske model kan anvendes.
Ydermere bruges eksperimenterne til at fastlægge effekten af flytningsforholdet A/L og
frekvensforholdet Ω/ωw. P̊a trods af at lignende forsøg har være udført føri forbindelse
med beskrivelse af væskedæmpere, s̊a er nærværende studie unik i form af sin ritoristiske
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tilgang og tilføjer vigtig viden til hvorn̊ar den forsl̊aede matematiske model kan anvendes.
For at løse den matematiske model er et omfattende mængde arbejde blevet investeret
i numerisk fluid mekanik. Andre lignende rapporterede studier af St. Venant ligninger i
forbindelse med skvulpning, har anvendt komplicerede, beregningstunge og i en vis grad
gammeldags, numeriske metoder. Vi sammenligner en moderne, højere ordens metode
men en simplere lav ordens metode og finder at den simple metode er tilstrækkelig til
beskrivelse af de undersøgte fænomen. Resultat er nyt og meget brugbart for ingeniører
med en interesse i lavvands væskedæmpere men med en begrænset indsigt i numerisk
fluiddynamik. Interaktion mellem en lavvands væskedæmper og struktur, hovedfokus for
nærværende arbejde, analyseres eksperimentelt og ved simuleringer. Den matematiske
model til beskrivelse af frie væskers overflade kobles til et simpelt ét frihedsgradsystem
in en generel ramme, og en tidsintegrationsprocedure fremsættes. Et antal interaktion-
seksperimenter udføres hvor væskedæmpere kobles til en elastisk struktur. Den elastiske
struktur gives en initial vandret udbøjning og slippes herefter. Dem matematiske interak-
tionsmodel fanger det transiente forløb af den frie væskeoverflade samt placeringen af det
hydrauliske spring meget overbevisende. Ved at koble lavvands dæmperen til strukturen
øges dæmpning af systemet og den forøgede dæmpning estimeres præcist af modellen. For
store vibrationsamplituder er modellens estimater af dæmpningen bedre end for lave vi-
brationsamplituder. Den matematiske model verificeres yderligere ved hjælp af resultater
fra litteraturen omhandlende interaktionen mellem lavvands væskedæmpere og elastiks
strukturer udsat for harmonisk belastninger. Interaktionsmodellen estimerer størrelsen af
strukturens udbøjning tilfredsstillende men introducerer en lille afvigelse i frekvensen hvor
den største udbøjning af strukturen forekommer.
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Chapter 1

Introduction

All tall and slender structures such as chimneys, telecommunication towers, cables etc.
are characterized by having a relatively low natural frequency as well as a low struc-
tural damping. This makes the structures especially vulnerable to dynamic loads such
as buffeting wind loads and aero-elastic loads from vortex shedding and galloping. The
dynamical response of a structure is a function of structural damping and the magnitude
and frequency of the applied load. Thus, in order to reduce the dynamic response of a
structure, one is forced either to alter the loading or increase the damping. This thesis is
concerned with the latter aspect, namely methods for increasing the structural damping.

It appears that the most popular means of increasing damping in chimney, cables,
telecommunication towers etc is by installing so-called Tuned Mass Dampers (TMDs).
However, in the last 10-20 years Tuned Liquid Dampers (TLDs) have become increasingly
popular and are now being routinely used, for example by a number of Danish chimney
manufacturers. It is easy to understand their popularity considering the simplicity of a
TLD which in essence is nothing more than a tank partially filled with water added an anti
freezing substance. Such a device obviously requires very little maintenance compared to
a mechanical device such as a TMD. The popularity of TLD’s seem to be limited by the
fact that their description is far more complex than a simple spring-mass system like a
TMD, making them difficult to design, and equally important from a deign point of view,
difficult to predict.

Though TLD’s have been researched rater extensively the main focus has been on
the application of TLDs in connection with the serviceability limit states (SLS), such
as occupant discomfort in residential buildings and airport control towers. Vibrations
in connection with SLS studies are characterized by having a relatively small vibration
amplitude with an allowable root mean square (RMS) value typically in the order of 10
milli-g or 0.1m/s−2. Assuming a structural frequency of 0.5Hz, this corresponding to
RMS displacements in the order of 10 mm. By comparison the allowable displacements
for a chimney is easily 4-6 times higher and for cables even as much as 10 times higher.
Since the present work is concerned with TLD’s for the latter type of structures the case
of TLDs exposed to high vibration levels must be considered.

When dealing with TLD’s one inevitable has to deal with sloshing. The phenomenon
of sloshing is defined as the movement of the free surface of liquids contained in close
tanks. The sloshing motion of the contained liquid generates hydrodynamic loads on the
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Introduction 1.1 Slosh Dampers

a) b) c)

Figure 1.1: Three different sloshing patterns:a) Planer sloshing, b) Wave breaking or for-
mation of moving hydraulic jump. Surface profile discontinuous c) Smooth
continuous surface profile impacting tank ceiling

tank walls, and the prediction of these loads is in general the main challenge for engineers
working with liquid sloshing. Besides being relevant for TLD’s, sloshing is of great concern
in aerospace, nuclear, naval and civil engineering. Hence, an abundant literature on the
subject can be found. Thus, recently Ibrahim (2005) made an intensive review on liquid
sloshing collecting thousands of references.

The description of TLDs obviously requires a description of the interaction between
the liquid sloshing forces and the structure to which the device is attached. The most
complicated part in this equation is by far the description of the sloshing forces. For this
reason a large part of this thesis has been devoted entirely to sloshing and on the derivation
and solution of mathematical models used to simulate sloshing. This strategy has been
chosen, partly based on the fact that having established an accurate sloshing model the
interaction between the sloshing forces and structure is relatively straight forward and
partly by the belief that in order to understand TLDs one needs to dive down deeper in
the phenomenon of sloshing.

The remaining part of the introduction is organized as follows. First a short introduc-
tion and a review of TLDs is presented followed by a description of various strategies for
simulating liquid sloshing in general. We then proceed with a more detailed description of
sloshing in rectangular tanks, which has been the sole focus of the present work. Finally
the motivation and organization of the thesis is summed up.

1.1 Slosh Dampers

A tank, partially filled with liquid, given a disturbance will result in a motion of the
free liquid surface. This motion of free surface, Figure 1.1, may be everything from
simple planar to discontinuous to violent and chaotic depending on the character of the
disturbance but also, and as importantly, on the geometry of the container together with
the physical properties of the liquid. A civil engineer may experience sloshing behavior
in this entire range, and depending on the application, the sloshing may be regarded as
a positive or negative phenomenon. Figure 1.2 shows a sketch of a water tower which
typically consists of a concrete tower suspending a large liquid tank. If the structure is
excited by for example an earthquake the presence of the liquid in the tank may generate
large hydrodynamics forces, increasing the design loads, which in this case have to be
taken into account when designing the tower structure. On the other hand, it is possible
to take advantage of the sloshing loads which is utilized in TLD’s. The basic and primary
function of a TLD is to generate a feedback force to the structure to which the device
is attached. Regarding the position of the device on the structure, generally it can be
said that the closer the TLD is placed to the maximum deflection point of the structural
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vibration mode of interest, the higher the efficiency. This rules applies to all vibration
damping devices. The efficiency of the TLD naturally depends on the magnitude of
the generated sloshing force, but equally important, on the phase of the sloshing force
relative to the motion of structure, to which it is fed back. Thus in order to describe a
TLD satisfactorily one must establish a mathematical model that provide a description
of the magnitude of the sloshing forces as well as the phase of the sloshing forces relative
to the structural response.

1.1.1 Anti-roll devices

In naval engineering a device for suppressing the roll motion of ships was first introduced
at the end of the nineteenth century by Watts (1885) and simply consisted of a liquid
tank placed onboard the ship thereby creating a counter balancing moment when the
ship oscillated in roll at its resonance frequency. Later Frahm (1909) introduced U-tube
shaped tanks, which are fundamentally different from the free surface tank proposed by
Waters, in the sense that the effect of the free surface vanishes i U-tube and the problem
is essentially reduced to that of describing an internal fluid flow in the tube. Frahm’s
U-tubed tanks, often termed Tuned Liquid Column Dampers (TLCD) or Liquid Column
Vibration Absorbers (LCVA), have been investigated quite extensively recently by several
authors for use in civil engineering structures with promising results Yalla and Kareem
(2000); Hochrainer (2005). However, these devices are by construction primarily limited
to unidirectional use.

1.1.2 Tuned Liquid Dampers

Since Watts’s and Frahm’s inventions, several applications of utilizing liquid motion as
vibration control devices has been reported in the literature. Since the early 1960’ties
TLD’s have been applied as damping devices to reduce the oscillations of space satellites

ag(t)

Fhydrodynamic

Fhydrodynamic

(a) Sketch of water towers (b) Conical water tower

Figure 1.2: a) Sketch of two different types of water tower exposed to a ground acceler-
ation ag(t) from an earthquake. b) Picture of conical water tower.
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a) b)

Figure 1.3: Anti roll devices used in naval engineering. a) Device proposed by Watts
utilizing free surface sloshing of liquid in a container b) Frahm’s anti-rolling
device comprised of two liquid filled compartments attached with a tube.

Fujino et al. (1988). They are typically used for for controlling the librational motion
(i.e. oscillating motion of orbiting bodies relative to each other) of satellites where the
period may range from 90 minutes to as long as 24 hours Seto and Modi (1997). The
idea of applying TLD’s to reduce vibrations in civil engineering structures emerged in the
1980’ties and it seems to be generally acknowledged Fujino et al. (1988); Tait (2004) that
the early pioneers were Bauer (1984) together with Modi and Welt (1987) and Kareem
and Sun (1987). Numerous articles have been written on TLDs in the last 20 years. In
the late 1980’ties a group led by Fujino, Fujino et al. (1988, 1992); Fujino and Sun (1993)
and including Sun et al. (1989); Sun (1991); Sun et al. (1992); Sun and Fujino (1994),
Pacheco and Chaiseri, investigated TLDs experimentally and numerically. This work was
followed up by Tamura et al. (1992, 1995, 1996), Wakahara et al. (1992) and Koh et al.
(1994, 1995) in a number of articles more concerned with practical applications of TLDs.
One of the pioneers, Modi and Welt (1987); Modi et al. (1995); Modi and Seto (1997,
1998); Modi and Akinturk (2002) together with Welt and Modi (1992b,a) contributed
significantly with the use of TLDs in connection with wind induced vibrations. Another
important contribution is from Reed et al. (1998) and Gardarsson (1997); Gardarsson
and Yeh (2001) and Yu et al. (1999), who focused on the more fundamental aspects of
sloshing as well on TLDs and derived simplistic design models to be used by engineers.
The present work has to a great extent been inspired by the work of Gardarsson (1997).
Kareem and Sun (1987); Kareem (1990) and Yalla also contributed significantly however
the majority of their work focused on applying Tuned Liquid Column Dampers where as
aforementioned the liquid free surface is not important. Finally The group of El Damatty
and Tait et al. (2002, 2004a,b, 2005b,a, 2007, 2008) did a rather extensive research on
TLDs both numerically and experimentally. There entire work was based on deep water
TLD’s in connection with SLS studies and hence relatively low amplitude applications.

All the above mentioned references concerned with TLDs took a small wave ampli-
tude assumption as point of departure, except for the work by Gardarsson (1997) and
Reed et al. (1998) who assumed large wave amplitudes. The models based on small
waves amplitude simply break down when the wave amplitudes become large. Different
strategies to overcome this problem has been propose. Fujino et. al. added empirical
damping terms to the fluid equations to get a proper fit with experiments and Tait et.
al. added porous screens in the liquid, thereby introducing a large amount of internal
damping which reduced the wave amplitudes to an acceptable limit for the model point
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of view. Gardarsson (1997) took a large wave amplitude as point of departure and used a
complete different set of equations than Fujino et. al. that are capable of describing wave
breaking. These equations were derived by the brilliant French mechanician and mathe-
matician Adhémar Jean Claude Barré de Saint-Venant in 1871 for studying open channel
flows. The equations, known as the St. Venant equations or the Nonlinear Shallow Water
(NSW) equations, were analyzed briefly in Gardarsson (1997) and later by Reed et al.
(1998).

1.2 Modelling Sloshing

As mentioned earlier the main problem in sloshing is the prediction of the hydrodynamic
forces acting on the tank. The local pressure distribution in the liquid, typically near
a wall, may be extremely complex and impossible to model accurately and one may be
forced to conduct an experimental investigation. Over the last fifty years or so, several
researchers and engineers have modelled sloshing using many different methods, depending
on the assumptions made, the computational cost and the accuracy.

1.2.1 Mechanical analogies

The fastest, but not necessarily the simplest, way to model sloshing forces consists of
defining an analogous mechanical system. Many different system have been chosen from
simple linear mass-spring systems to more complex nonlinear pendulum systems. In an
early paper by Graham and Rodriguez (1952) linear mechanical systems were derived to
describe the response of fuel in a rectangular tank with prescribed harmonic motions in
translation, pitching and yawing. The derived system for translational motion is depicted
in figure 1.4 and as the figure indicates the sloshing behavior can be described by an
infinite number modes each defined by simple spring-mass systems with a unique mass,
stiffness and damping. In the original investigation by Graham et. al. the mass for each
mode was found as Graham and Rodriguez (1952):

mn

mw

=
8 tanh((2n+ 1)πh/L)

(2n+ 1)3h/L
, n = 0, 1, 2, ... (1.1)

where mw is the total mass of water contained in the system. The expression (1.1) is
shown in figure 1.4 and it is clear that the first mode is by far the dominating. Also it is
interesting to note that in a linearized theory the participating mass of the first sloshing
mode converges, for a decreasing liquid depth, to a maximum value of 81% of the total
water mass. Later H.N. (1966) in an extensive NASA report described a large variety of
models which recently was updated by Dodge (2000). In Dodge (2000) he describes the
program SLOSH, which computes the properties of an analogue mechanical system given
a certain tank geometry. On http://sloshcentral.bbbeard.org/ the mentioned references,
and many others, are shared online.

1.2.2 Potential theory

More complicated models of sloshing loads can be deduced from the potential theory, i.e.
the fluid equations describing the motion of irrotational and inviscid flow. In the linearized
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(a) Sketch of water towers
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(b) Conical water tower

Figure 1.4: Mechanical analogy of rectangular tank in translational motion. a) Mechan-
ical system b) Participating mass

form these equations were used by Graham and Rodriguez (1952), just mentioned, to
derive analogous mechanical systems. Faltinsen proposed a truncated modal theory by
decomposing the free surface into a sum of modes, and included nonlinearities up to third
order, Faltinsen (1974). Later Faltinsen et al. (2000) extended the modal theory and
derived an infinite system of ordinary differential equations, each describing the amplitude
of a given mode, and solved the truncated system numerically, typically using in the
order of 10-20 modes, with very little computational cost. While the method developed
by Faltinsen et. al. provide fast results they fail when the base motion amplitude is
large or when the liquid is shallow. Moreover the models are limited to certain tank
geometries, they cannot handle breaking waves and dissipation must be introduced with
the use empirical correction factors obtained from experiments.

1.2.3 Full Navier Stokes solvers

When the flow is characterized by breaking, impacting on the tank ceiling and other ex-
treme situations, one may resort to solving the full Navier-Stokes (N-S) equations directly.
As the efficiency and speed of computers grow this approach is becoming more relevant
and popular for many engineering disciplines. The methods are especially relevant for
situations where local fluid behavior is of interest, e.g. slamming loads locally on a wall.

When handling free surface flows an additional nonlinear equation arises from the
free surface description which complicates the numerical procedures substantially. The
complication lies in the fact that the computational domain is no longer fixed in space
due to the free surface boundary. In general the problem can be solved using either
grid methods or meshless methods. For the grid methods the most popular techniques for
capturing the free surface are Marker and Cell (MAC) technique, Level Set (LS) technique
and the Volume of Fluid (VOF) method. Common for all the methods is that the mesh
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must be updated in every time step which requires the use of a stabilization technique. The
so-called meshless methods, also called gridless methods or particle methods, are based on
a Lagrangian formulation consisting in dividing the fluid domain into particles each with
advective fluid properties. Among these methods the Smooth Particle Hydrodynamics
(SPH) method is particularly popular. Despite growing computer power, the method
is still relatively time consuming, and as reported in the recent paper by Marsh et al.
(2010), who studied 2D sloshing in a rectangular tank, the CPU time varied between
approximately 1 day to 2 weeks, depending on the water depth, for a 20 second simulation
time.

1.2.4 Shallow water theory

In the area of coastal hydrodynamics, concerned with modelling of flows in rivers, channels,
estuaries etc, shallow water approximations of the incompressible Navier-Stokes equations
are often used. The most popular model equations for studying near-shore hydrodynamics,
Brocchini et al. (2001), and in general free surface flows in shallow water, are the Nonlin-
ear Shallow Water Equations (NSW equations) also known as de Saint-Venant equations
together with a large class of so-called Boussinesq-type equations (BT equations). A com-
prehensive overview and review of BT equations is given in Madsen (1999). In the shallow
water models the momentum and mass conservation equations are depth-integrated re-
sulting in a reduction of variables by one compared to the full problem described earlier.
But more importantly, by substituting the nonlinear kinematic boundary condition into
the depth integrated mass and momentum equations, the full nonlinear description of
the free surface is retained exactly leaving only, for the 3D case, two equations for the
conservation of momentum and one equation for the conservation of mass. The variable
describing the free surface enters into the mass conservation equation and thus requires
no special treatment.

While these simplified models fail to give a detailed description of the local fluid
behavior, a natural consequence of the averaging, they are very well suited for providing
a description of the over all fluid behavior. The models though are by construction limited
to the shallow water case which might be a serious limitation. However, and imperative
for use in connection with describing TLDs, the models are often very fast to solve.

1.3 Sloshing in rectangular tanks

As aforementioned, the present work is limited to studying sloshing in rectangular tanks.
From a practical point of view rectangular containers are often used, and from a mod-
elling point of view this restriction simplifies the mathematical formulation considerably.
Moreover only horizontal motion of the tank is consider which is clearly the dominating
motion in connection civil engineering structures.

The function describing the free surface height in a rectangular container partially
filled with liquid, η(x, y), can be described by an infinite Fourier series with a circular
frequency for each mode given by

ωw,ij =
√

gkij tanh(kijh), kij = π
√

(i/L1)2 + (j/L2)2, i+ j ̸= 0 (1.2)
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where g is the gravitational constant, kij the wave number, L1 and L2 the horizontal
dimension of the tank in the two directions and h the liquid depth. The corresponding
surface profiles are described by

η(x, y) = cos[iπ(x+
1

2
L1)/L1] cos[jπ(y +

1

2
L2)/L2], i, j ≥ 0 (1.3)

For the 2D case L2 = ∞ and (1.2) is further simplified by

ωw,i =
√
gki tanh(ki), ki = πi/L1 (1.4)

For the shallow water case, defined by h/L ≪ 1 on may use the following approximation
of (1.4):

ωshallow
w,i = ki

√
gh (1.5)

where c =
√
gh is the well known expression for the propagation speed of waves in shallow

water. An estimate of the error on the sloshing frequency when using (1.5) is easily derived
using a Taylor series expansion of tanh as

ω̃w

ω̃shallow
w

= 1− 1
6
(kh)2 +O((kh)4) (1.6)

Thus for h/L = 0.1 the error on the frequency using the simplified expression is 1.6%
while for h/L = 0.05 the error is 0.4%.

1.3.1 Critical depth and jump frequency

When considering linear potential theory, described just previously, the response of the
fluid is identical to that of a classic linear oscillator, i.e. the frequency response curve
describing the relation between forcing frequency and magnitude of the steady state re-
sponse, has a unique peak at the resonance frequency. When considering the nonlinear
fluid equations the steady state response does not present a single amplitude for a given
frequency, but instead different steady states solution exist depending on wether the given
frequency is approached with an increasing or decreasing forcing frequency as shown in
figure 1.5. Ockendon and Ockendon (1973) showed that the frequency response curve
changes from a hardening type (increasing amplitude with increasing forcing frequency)
to a softening type behavior (decreasing amplitude with increasing forcing frequency) as
the depth passes through a certain critical value. Waterhouse (1994) showed that this
depth, often referred to as the critical depth, is given by h0/L = 0.34. The steady state
curves showing this behavior is depicted in figure 1.5. Looking at the frequency response
curves one could be tempted to select fluid depth equal to the critical depth. However
the solution for this water depth is unstable and might result in swirling motion of the
liquid Faltinsen et al. (2003). Also in figure 1.5 the so called jump frequency is shown.
The presence of a single jump frequency has been experimentally verified by many au-
thors including the present one Krabbenhoft et al. (2010a). Recently Gardarsson (2007)
presented experimental results for a oscillating tank showing the presence of two jump
frequencies i.e. a different jump frequency for increased and decreased forcing frequency
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β = Ω/ωw

Amplitude

Stable branch

Unstable branch

h0

L
< 0.34h0

L
> 0.34

Figure 1.5: Frequency response functions illustrating the hardening and softening behav-
ior for fillings ratios below and above the critical depth, respectively. Also
shown is the stable and unstable branches together with two jump frequencies.

as shown in the presented figure. Finally it must be emphasized that the frequency re-
sponse curves shown in figure 1.5 is a very crude simplification of the real physics. The
stability diagram for liquid sloshing in a rectangular tank is extremely complex and is a
function also of forcing ratio, forcing direction and liquid properties Faltinsen et al. (2000,
2005).

1.3.2 Breaking waves

When the depth ratio h/L becomes small experimental studies shown for relatively low
forcing values A/L, so-called bores, also sometimes referred to as traveling hydraulic
jumps, appear for forcing frequencies near the lowest sloshing frequency. The bores in-
troduce a a high internal liquid dissipation and as a consequence the motion of the liquid
in the tank is rapidly periodic at the forcing frequency. The mathematical modelling of
such phenomena requires a careful selection of method. An obvious method would be the
SPH method described earlier and used by Marsh et al. (2010). However, as mentioned
this method is extremely CPU demanding. Another much simpler, cheaper and elegant
approach is to use the NSW equations which conserves momentum and mass and are
capable of capturing discontinuous surface profiles and the associated energy loss. This is
the main reason for the popularity of the NSW equations in the area of coastal engineering
where the model is useful for modelling phenomena as run-up on beaches or simulation
of tsunamis were wave breaking is present for both cases.

1.4 Motivation and organization of thesis

Simulation of liquid sloshing is an enormous field and many different strategies can be
used depending on the shape of the liquid tank, the depth ratio h/L and the magnitude
of the forcing term A/L. The geometry has already been chosen as rectangular so the
two parameters that will decide on the modelling strategy is the magnitude of the depth
ratio and forcing ratio.

Department of Civil Engineering - Technical University of Denmark 11



Introduction 1.4 Motivation and organization of thesis

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h/L

f w
 [

H
z]

 

 

L = 0.1
L = 0.2
L = 0.3
L = 0.4
L = 0.5
L = 0.6

Figure 1.6: Sloshing frequency fw as function of filling ratio h/L for discrete tank lengths
L.

1.4.1 Shallow or deep water TLD’s and forcing ratio

As stated in equation (1.4) the sloshing frequency is a function of liquid depth h and tank
length L. Notice from the equation that a given sloshing frequency ωw can be constructed
using many different h/L ratios, see figure 1.6 In the present thesis we are primarily
interested in slender structures such as structural cables, chimneys, telecommunication
towers etc. The mentioned structures all have the common feature of having a low natural
frequency, typically well below 1 Hz, and a relative small horizontal dimension, the latter
resulting in an often limited installation space, i.e. a limited horizontal TLD length. If we
again return to figure 1.6 the sloshing frequencies for six different tank lengths between 10
and 60cm is shown as function of the filling ratio. It is clear that for structural frequencies
in the range, say 0 < fw < 0.7 Hz, the filling ratio hardly exceeds h/L = 0.1 and in fact
stays well below for L < 40 cm. This very simple study clearly shows the motivation for
using shallow water TLD’s with h/L < 0.1.

Another important parameter is the forcing ratio A/L, A in this context being the
structural amplitude at the installation point of the damper. The allowable maximum
displacement varies for different structures, but an acceptable peak amplitude of 2-5 cm is
not unusual, resulting in a forcing ratio for a 40 cm tank in the range 0.05 < A/L < 0.12.
Experimental results show that forcing ratios of this magnitude will result in the formation
of bores, i.e. breaking waves.

1.4.2 Scope of thesis

The main aim of the present work is to establish a mathematical model for simulating
rectangular shallow water TLD’s attached to elastic structures. Based on the previous
discussion we decided to model liquid sloshing using a mathematical model that conserves
momentum and mass but captures energy dissipation in breaking waves. This feature is
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a) b) c)

L

L

L

Figure 1.7: Different examples of rectangular TLD installation (TLD showed as red
boxes): a) placed between to cable hangers or smoke stacks b) Placed in-
side a chimney c) Placed on the outer perimeter of a steel stack.

found in the NSW equations which are derived from the full N-S equations formulated
in a non-inertial coordinate system. The same equations have been studied by several
researchers in connection with sloshing, Dillingham (1981); Armenio and Rocca (1996);
Gardarsson (1997) ,however the present study has several improvements and additions.

The present research includes the following:

• The NSW equations are derived from the full viscous N-S equations and the impor-
tance of bottom friction is studied.

• The equations are formulated in a non-inertial system incorporating the effect of
tank movements elegantly and easily. In fact the equations are derived for a general
moving and rotating tank for use in future studies.

• Dimensionless parameters defining the liquid sloshing behavior will be derived.
These are useful for gaining insight in the problem and for construction eventual
design procedures for shallow water TLD’s.

• The equations are solved suing state of the are methods numerical methods and the
simplest method possible for solving the fluid equations is found.Moreover in this
connection the numerical treatment is done rigorously with an extensive convergence
study performed for verification of the numerical implementation. Methods used
earlier for studying sloshing in connection with NSW equations are too complex to
be used by non expert engineers in fluid dynamics.

• An extensive measurement campaign is carried out in order to determine the range
of applicability of the proposed mathematical model. To the authors knowledge this
data is nonexistent.

• A mathematical model describing the interaction of liquid sloshing and elastic struc-
tures will be formulated and tested in transient decay experiments as well as for force
steady state experiments.

The thesis is divided into two main parts: First an extensive summary supplemented with
previously unpublished material, covering the main theory and typical results is presented.
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This part is then followed by three journal papers and a single conference paper covering
the material of the thesis. The thesis, or extended summary, is organized as follows:

In chapter 2 the mathematical sloshing model is derived with an in depth discussion
on choice of formulation. In chapter 3 the numerical methods for solving the fluid model
are derived and discussed. Chapter 4 presents a comparison study of experimental and
simulated results and the range of application is discussed. Chapter 5 is devoted to the
description and discussion of a proposed mathematical model for simulating the interac-
tion of TLD’s and structures. Final remarks, conclusions, discussion and future work is
presented in the final chapter 6.
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Chapter 2

Mathematical fluid models

When developing, or choosing, a mathematical model one must base the selection on at
least the following criteria:

Relevant physics: The mathematical model should be able to describe the relevant
physics of the investigated problem. In this connection it is important to emphasize
the word relevant since this is where the art of engineering judgement often enters the
modelling process.

Accuracy: Having decided on which physics the mathematical model should capture
one must also pose the question on what accuracy is needed. Often a linear model may
be sufficient and provide the required accuracy and for other cases a pertubation of the
nonlinear system, including only a few nonlinear terms may be sufficient.

Computational cost: Having chosen a mathematical model, that we suspect, or at
least hope, will describe the physics of the problem at hand, the mathematical model
must be solved. Often the mathematical model is too complex for an analytical solution
to be derived and a numerical method has to be applied. In this context accuracy again
enters, however in a different meaning than accuracy form a model point of view. If the
mathematical model is not accurate one can use any high order, state of the art, numerical
method to solve the equations but the results will still be inaccurate. On the other hand
if the mathematical model is accurate and relevant a poor numerical method may provide
inaccurate results leaving the precise mathematical model useless. In either case it is
simply paramount that the chosen numerical method is able to solve the mathematical
model satisfactorily so the engineer can decide wether the mathematical model is sufficient
or not

Regarding the first point discussed above regarding the relevant physics, we may ask
which physical quantities or variables describes liquid sloshing in a closed container. It
turn out, that the variables are in fact the same that enter all free surface flow problems,
namely: the particle velocity in in the three orthogonal directions x, y and z denoted
u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) which are all function of space and time, the
pressure in fluid and at the boundaries p(x, y, z, t), and finally the position or motion of
the free surface describe by the function z = η(x, y, t). Thus the complete sloshing problem
is described by the five independent variables u, v, w, p and η. For an incompressible fluid,
which as a very good approximations is considered her, two material properties are needed,
namely a density ρ and a viscosity µ. Depending on the material behavior of the fluid

15



Mathematical fluid models 2.1 Full 3D Navier-Stokes equations

different mathematical models must be used to describe the viscous effects.
In sloshing problems, and in general free surface flow problems, the Navier-Stokes

(N-S) equations together with kinematic and dynamic boundary conditions is the most
complex and complete mathematical model. Neglecting viscosity and assuming an initial
irrotational flow the N-S equations can be further simplified into the Euler equations.
Removing all nonlinearities in the equations lead to a relatively simple set of linear equa-
tions which for some very simple cases can be solved analytically and for other cases a
numerical solution must be performed.

2.1 Full 3D Navier-Stokes equations

The governing equations describing three dimensional flows of a constant density and
incompressible fluid are the well know N-S equations which express the conservation of
momentum and mass Casulli and Zanolli (2002):

ut + (uu)x + (uv)y + (uw)z = −px/ρ+ (νux)x + (νuy)y + (νuz)z (2.1)

vt + (vu)x + (vv)y + (vw)z = −py/ρ+ (νvx)x + (νvy)y + (νvz)z (2.2)

wt + (wu)x + (wv)y + (ww)z = −pz/ρ+ (νwx)x + (νwy)y + (νwz)z − g (2.3)

ux + vy + wz = 0 (2.4)

where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the velocity components in the horizon-
tal x, y direction and vertical z direction, p(x, y, z, t) is the pressure, g is the gravitational
constant, ρ the constant fluid density and ν = µ/ρ a viscosity coefficient which must be
determined from a relevant materia, and/or turbulence model, and is in general a function
of space and time. We have chosen to use the subscript notation for partial derivatives,
i.e.

()x =
∂()

∂x
, ()t =

∂()

∂t
(2.5)

When possible this notation will be used. The first three equations (2.1)-(2.3) express the
conservation of momentum in the x, y and z direction respectively, while (2.4) express
the conservation of mass.

2.1.1 Boundary conditions for free surface flows

The N-S equations given in (2.1)-(2.4) apply to all flows and not only free surface flows.
In order to describe a free surface flow an additional variable is introduced defined by z =
η(x, y, t). This function is assumed to be single valued and therefor cannot describe e.g.
collapsing flows such as plunging breakers. The kinematic surface condition is expressed
as Vreugdenhil (1994)

ηt + usηx + vsηy = ws (2.6)

where the superscript s refers to surface. The above equation, in popular terms, express
that fluid particles must not leave the free surface. A similar condition is applied at the
bottom and assuming the bottom topography can be expressed also by a single valued
function z = h(x, y), the kinematic bottom condition is

ubhx + vbhy + wb = 0 (2.7)
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where superscript b refers to bottom. The condition states that the velocity component
perpendicular to the bottom must vanish.

At the free surface a an additional boundary condition relating to the pressure is
needed, termed a dynamic boundary condition, and is given by the following

p(x, y, η, t) = pe(x, y, t) (2.8)

where the subscript e refers to excess pressure. For situations where no external pressure
is actively applies the excess pressure will be constant and equal to the atmospheric
pressure.

For the non-viscous case the above boundary conditions completely define the free
surface problem and closes the system equations an the system is said to be well-posed.
For the viscous case four additional equations are needed: two for the free surface and
two for the bottom, specifying the tangential stress condition. For the free surface we get
Vreugdenhil (1994)

ν(uz + uxηx − uyηy)
s = τ sx (2.9)

ν(vz + vxηx − vyηy)
s = τ sy (2.10)

where τ sx and τ sy are applied tangential surfaces stresses in the x and y direction respec-
tively. Similarly conditions can be stated for the bottom

ν(uz + uxhx + uyhy)
b = τ bx (2.11)

ν(vz + vxhx + vyhy)
b = τ by (2.12)

where τ bx and τ by are tangential surfaces stresses in the x and y direction respectively.

2.1.2 Evaluation of boundary shear stresses

The surface shear stresses in practice arise in environmental flows as a consequence of
wind stresses Vreugdenhil (1994) and are a function of the external wind velocity near
the surface and a shape factor. For the case of sloshing in a closed container one can as
a very good approximation set τ sx = τ sy = 0. As for the shear stress at the bottom the
situation is more complex. The size and direction of the shear stresses at the bottom is a
complex function of surface roughness, Reynolds number, flow stationarity etc. and is an
active area of research. Because of this complexity many researchers and engineers choose
to describe the bottom stress using empirical formulas. A very popular formulation is the
so-called Manning formula Madsen et al. (2005)

τxb = γBub γBτ
y
b = vb (2.13)

with

γB =
g

M2(h+ η)1/3

√
u2
b + v2b (2.14)

where M is the manning number with the dimension m1/3/s (the inverse of the also
commonly used Manning’s n) and g is the gravitational constant . The assumption in
(2.13) that the bottom stress is proportional to the square of the horizontal velocity
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is valid only for stationary or near-stationary flows such as long period shallow water
flows, where shear stresses and horizontal fluid velocity are in phase Vreugdenhil (1994).
More explicitly it can be shown that the approximation is valid as long as the relation
h2/ν < 0.1T is fulfilled, where h is the water depth, ν the viscosity and T the period of
the oscillating flow. An estimate of the eddy viscosity is ν ≃ 0.1 m2/s and h0 ≃ 0.1 m
giving a period T > 1 s which is valid for all our experiments. The friction coefficient
(2.14) is seen to be inverse proportional to the total local water depth, and thus can be
expected to have increasingly strong effects as the depth decreases. It must be stressed
that the above discussion is based on some quite coarse simplifications. The boundary
layer behavior for the sloshing problems considered in this context are very complex and
include laminar and turbulent regions and transition regions between the two. Evaluating
shear stresses based on the assumption of turbulent flow is conservative, i.e. turbulent
wall shear stresses are much larger the laminar stresses Faltinsen and Timokha (2009),
and can thus be used as a good starting point for evaluating the importance of bottom
friction.

2.2 Governing equations in a non-inertial tank fixed coordinate
system

The N-S equations given in (2.1)-(2.3), expressing conservation of momentum, are derived
using Newton’s second law which is well known only to be valid in an inertial system which
is defined as system, or frame of reference, in which an object moves with a constant
velocity unless acted on by external forces. The earth is a very good approximation of
an inertial system for our case, however when considering e.g. tidal waves or atmospheric
flows the earth can no longer be regarded as an inertial system but must instead be treated
as a non-inertial system or a moving frame of reference.

For our case we want to study the fluid behavior relative to the tank motion and this
is done most appropriately by introducing a tank fixed coordinate system from which all
flow variables can be described locally. By choosing a non-inertial frame of reference we
need to transform each variable from the original globally fixed, or inertial system, to the
tank fixed coordinate system. The spatial derivatives are invariant, i.e. not affected by
transformations, however the time derivatives are affected and have to be altered Faltinsen
and Timokha (2009).

Let the translation and the angular velocity of the tank-fixed coordinate system be
described by the following vector functions

R(t)T = [X(t), Y (t), Z(t)] Ω(t)T = [θ̇1(t), θ̇2(t), θ̇3(t)] (2.15)

and let the position and fluid velocity vector relative to the tank-fixed coordinate system
be defined by

vT = [u, v, w] rT = [x, y, z] (2.16)

Then the absolute acceleration Vt of a particle is given by

Vt = R̈+ Ω̇× r+Ω× (Ω× r) +
Dv

Dt
+ 2Ω× v (2.17)
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where we have used the notation (̇) = d()/dt and the notation Dv/Dt to emphasize that
it is the particle or material derivative. In (2.17) v is the non-inertial velocity, i.e. the
velocity measured relative to the tank-fixed coordinate system, and the time derivatives
(and convective terms naturally) in (2.1)-(2.3), must be replaced by the whole righthand
side of (2.17) in order to describe the fluid motion in the tank-fixed coordinate system.
Also the gravitational constant should be rotated according to Faltinsen and Timokha
(2009):

g1 = g sin θ2, g2 = −g cos θ2 sin θ1, g3 = −g cos θ2 cos θ1 (2.18)

It is obvious that rotation around the vertical z-axis θ3 does not alter g. Finally the N-S
equations expressed in a tank-fixed coordinate system are

ut + (uu)x + (uv)y + (uw)z = −px/ρ+ (νux)x + (νuy)y + (νuz)z +B1 (2.19)

vt + (vu)x + (vv)y + (vw)z = −py/ρ+ (νvx)x + (νvy)y + (νvz)z +B2 (2.20)

wt + (wu)x + (wv)y + (ww)z = −pz/ρ+ (νwx)x + (νwy)y + (νwz)z +B3 (2.21)

ux + vy + wz = 0 (2.22)

with

B =

 B1

B2

B3

 =

 g sin θ2
−g cos θ2 sin θ1
−g cos θ2 cos θ1

− R̈− Ω̇× r−Ω× (Ω× r)− 2Ω× v (2.23)

2.2.1 Pure translation of non-inertial system

For a pure translational non-inertial system we have Ω = 0 and the B is simply

B =

 B1

B2

B3

 =

 0
0
−g

−

 Ẍ(t)

Ÿ (t)

Z̈(t)

 (2.24)

2.2.2 Translation and rotation of 2D non-inertial system

Next consider the 2D case for translation and rotation, i.e. RT = [X, 0, Z] and ΩT =
[0, θ̇2, 0]. This results in the following additional terms

B =

 B1

B2

B3

 =

 g sin θ2
0

−g cos θ2

−

 Ẍ(t) + θ̈2z + θ̇2
2
x

0

Z̈(t)− θ̈2x+ θ̇2
2
z − 2θ̇2u

 (2.25)

2.3 Shallow water theory

In the area of coastal engineering, concerned with areas such as modelling of flows in
harbors, channels estuaries and rivers, a large variety of different possible wave conditions,
bottom topographies etc. usually have to be analyzed for a given problem. For these
problems a mathematical model should be able to at least account for nonlinear effects,
and possibly also, depending on wether breaking occur or not, to account for frequency

Department of Civil Engineering - Technical University of Denmark 19



Mathematical fluid models 2.3 Shallow water theory

X

Z
x,1

z,3

O
′

R

r

O
P

θ2

(a) Translation and rotation of non-inertial sys-
tem

x,1

z,3

θ2

g
g cos θ2

g sin θ2

(b) Projection of g along the di-
rection of local coordinate x and
z axis.

Figure 2.1: Translation and rotation of non-inertial frame of reference.

dispersion effects, i.e. the effect that the wave celerity, or wave speed, depends on the wave
length. The incompressible Navier-Stokes equations (2.1)-(2.4) would certainly provide a
very accurate mathematical model for all these mentioned problems however the numerical
solution of a problem would involve a three-dimensional spatial domain with a complex
free surface boundary condition (2.6). The price, measured in CPU time, of solving such
a model is very high and would for many practical applications require the use of a large
computer cluster, and for other large problem it might simply be impossible to solve. For
this reason more simple mathematical models have been developed by coastal engineers
that reduces the number of equations involved but retains the most important physics of
the problem. In practice the simplified mathematical models utilizes the shallow-water
nature of these coastal near-shore problems, by averaging the Navier-Stokes equations
through the depth reducing the order of the spatial dimension by one. But equally
important, by averaging the continuity equation (2.4), the nonlinear free surface boundary
condition is absorbed into this equation, thus requiring no special solution strategies for
the complex free surface. Remember, as mentioned in the introduction, that capturing
the free surface in the full N-S equations is by far trivial and a large number of methods
have accordingly been developed with a sole purpose of handling this problem. The very
natural question then of course arises: When can the water be treated as shallow?

2.3.1 Long wave theory - amplitude and frequency dispersion

Instead of the term shallow water the word long wave theory is often used instead as a
general classification of waves with long wave lengths compared to the water depth. More
precisely, according to the classical paper by Peregrine, the ratio of water depth h to wave
length λ, i.e.

σ =
h

λ
(2.26)
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must satisfy σ ≪ 1 for all long wave theories. However to finalize the classification of the
wave a second parameter is needed expressing the ratio of wave height H to wavelength

ϵ =
H

λ
(2.27)

Before continuing with the classification two important definitions are introduced namely

h

η(x)
c(x)

x

(a) Amplitude dispersion

x

c(x)

h

η(x)

(b) Amplitude and frequency dispersion

Figure 2.2: Illustration of amplitude and frequency dispersion.

amplitude dispersion and frequency dispersion. The two definitions relate to how waves
disperse or propagate. From linear shallow water theory it is well known that waves
propagate with a celerity given by c =

√
gh where h is the undisturbed water depth.

Mathematically this is expressed as a constant value in the advection term in the wave
equation, i.e. the ux term. Imagine now that the advection is a function of the local fluid
velocity, i.e. a nonlinear advection term of the form uux, then as u increases the celerity
also increases. Nonlinear advection terms give rise to amplitude dispersion since c(x) =√

g(h+ η(x)), i.e. the deeper the total water depth the faster celerity. This phenomenon
is illustrated in figure 2.2(a) showing that amplitude dispersion finally leads to a breaking
wave characterized by a vertical front or a shock. The importance of amplitude dispersion
is governed by the term ϵ, i.e. by the magnitude of the wave amplitude H compared to
the wave length. A consequence of amplitude dispersion is that the wave will always
break independent of the initial conditions. Of course from real life experience we know
that this is certainly not the case. By adding a so-called dispersion term to the equations
they now become what is called frequency dispersive. In general in literature the term
dispersion is related to frequency dispersion, and simply implies that the propagation
speed of the wave depended on the wave number, i.e. the wave length. Notice for case of
pure amplitude dispersion that the celerity is independent of the wave length, i.e. they
contain no frequency dispersion. By including frequency dispersion the classical soliton
waves are produced as shown in 2.2(b) where the wave gathers in to a hump of water.
This hump will never break which certainly is not true either since we know that for
a certain steep front eventually the wave will break. But breaking never occurs due
to an equilibrium between the nonlinear advection term and the dispersion terms. The
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L L

λ

Figure 2.3

importance of frequency dispersion is determined from the magnitude of σ, i.e. the depth
ratio h/λ.

Using the above two parameters there are three cases that can be considered Svendsen
(1994): Case 1: ϵ ≪ σ2

The situation corresponds to the case of very small wave amplitudes and linear theory
can be used. Frequency dispersion should be included

Case 2: ϵ = σ2

This is the case studied by Peregrine Peregrine (1967) and is the case where nonlinear
effects, i.e. amplitude dispersion, is of the same order of magnitude as the frequency
dispersion. The derived equations are termed the Boussinesq equations. In the derivation
the vertical velocity is approximated by a linear variation leading to a non-hydrostatic
pressure distribution.

Case 3: ϵ ≫ σ2

This corresponds to the case where the amplitude dispersion dominates the problem.
Amplitude dispersion simply means that the wave celerity depends on the wave amplitude.
As a result of this an initially smooth wave will eventually steepen or break as the particles
at the highest point of the wave moves faster than particles below. This behavior is
described by the so-called Nonlinear Shallow Water equations (NSW equations) or St.
Venant equations. The equations have no frequency dispersion in the sense that the
wave celerity is independent of the wavelength as as aforementioned only depend on the
amplitude of the wave. The vertical velocity is assumed negligible leading to a hydrostatic
pressure distribution.

Now returning to the question posed before entering this discussion on long wave
theory on when to use shallow water or not? Based on the previous discussion a more
relevant question is: When can we assume shallow water, and if in fact we can assume
shallow water should frequency dispersion be included or not? It turns out that the two
questions can not be entirely separated. Thus for flows classified by Case 2, i.e. where
frequency and amplitude dispersion are of same order, the theory requires h/λ < 0.1
Le Méhauté (1976). For case 3, i.e. for flows with steepening waves, it turns out that
h/λ < 0.05. Two important notes should be made here. First of all the given limits are
only guiding and should be treated as such. Secondly the limits given here are based on
waves in open waters and therefor may not apply to sloshing problems. As show in figure
2.3 the first sloshing mode in a rectangular tank has a wave length twice the tank length
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λ = 2L. Thus for the above classifications to apply for sloshing one might assume that
for case 2 we would require h/L < 0.2 and for case 3 h/L < 0.1, i.e. more favorable
restrictions.

Regarding the question on wether to include frequency dispersion or not it is the mo-
tivation of this work to describe sloshing for relatively large base amplitudes which by
experimental verification is known to lead to breaking waves. For this reason we concen-
trate on the NSW equations and leave the frequency dispersive Boussinesq equations.

2.4 The NSW equations in a non-inertial system

η(x, t)

h(x, t)

x

z

O
′

X(t)

u

w

Figure 2.4: Sketch of flow domain

In the following the nonlinear shallow water equations, NSW equations, for a new-
tonian fluid in a non-inertial frame are derived. The various simplifications performed
in the derivation will be addressed and discussed. The shown derivation follows Casulli
(2007); Pinder (1977), but is however extended by formulating the fluid equations in a
pure horizontally translational coordinate system, i.e. BT = [Ẍ(t), Ÿ (t),−g].

The derivation of the NSW equations in essence consist of first simplifying the ver-
tical momentum equation (2.21), then integrating the horizontal momentum equations
(2.19)-(2.20) as well at the continuity equation (2.22), and in the process utilizing the
boundary conditions (2.6)-(2.7) together with the shear stresses (2.9)-(2.12) to simplify
the integrated expressions. The derivation is most naturally started with integration of
the continuity equation since no assumptions are made in this part.

2.4.1 Integration of the continuity equation

Integrating the continuity equation (2.22) over the depth, i.e. from −h to η yields∫ η

−h

uxdz +

∫ η

−h

vydz +

∫ η

−h

wzdz (2.28)

We are looking for terms expressing the average particle velocity i.e.

U(x, y, t) =
1

H

∫ η

−h

u(x, y, z, t)dz V (x, y, t) =
1

H

∫ η

−h

v(x, y, z, t)dz (2.29)

where the total depth H is defined as

H(x, y, t) = h(x, y) + η(x, y, t) (2.30)
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Thus, (2.28) must be manipulated such that the integration and differentiation operator
switch positions. For this the Leibniz integral rule can be used, expressing∫ b(x)

a(x)

∂f(x, z)

∂x
dz =

∂

∂x

∫ b

a

fdz +
∂a

∂x
f(x, a)− ∂b

∂x
f(x, b) (2.31)

i.e. the differentiation operator is moved outside the integral by adding two additional
terms including the differentiation of the lower and upper integration limit. Using this
result (2.28) is rewritten as

∂

∂x

∫ η

−h

udz − usηx + ub(−h)x +

∂

∂y

∫ η

−h

vdz − vsηy + vb(−h)y + ws − wb = 0

Applying the boundary conditions (2.6)-(2.7) yields the depth integrated continuity equa-
tion

ηt +
∂

∂x

∫ η

−h

udz +
∂

∂y

∫ η

−h

vdz = 0 (2.32)

The equation is rewritten using (2.29) as

Ht + (HU)x + (HV )y = 0 (2.33)

Here it is also utilized that the bottom variation function of space only, and therefor η can
be replaced by H under the time differentiation. Some authors define the two variables
Madsen et al. (2005)

Q = HU, P = HV (2.34)

which inserted in (2.33) gives

Ht +Qx + Py = 0 (2.35)

It is quite remarkable that the nonlinear surface and bottom boundary conditions have
been absorbed in the continuity equation and that the final partial differential equation
reduces to a simple linear 2D advection equation.

2.4.2 Assumptions on the vertical momentum equation

In flows where the horizontal length scales are large compared to vertical scales one can
assume that the vertical acceleration of the fluid, as well as the vertical viscous forces
are small compared to the acceleration of gravity and to the pressure gradient in the
vertical direction Casulli and Cheng (1992). Consequently, by neglecting the acceleration
and viscous terms in the vertical momentum equation the following equation for pressure
results

pz = B3 = −ρg (2.36)
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The pressure equation readily yields the pressure distribution in the depth by integration

p(x, z, t) = pe(x, t) + ρg (η(x, t)− z) (2.37)

where pe(x, t) = p0 is the excess pressure. The pressure distribution is clearly seen to be
hydrostatic which is a consequence of neglecting inertia and viscous forces in the vertical
direction. Substituting the pressure expression (2.37) into the horizontal momentum
equations yields the following two dimensional model equations

ut + (uu)x + (uv)y + (uw)z = −gηx + (νux)x + (νuy)y + (νuz)z +B1 (2.38)

vt + (uv)x + (vv)y + (vw)z = −gηy + (νvx)x + (νvy)y + (νvz)z +B2 (2.39)

Ht + (HU)x + (HV )y = 0 (2.40)

The above three equations contain four unknowns u, v, w and η, so in order to close
the system an additional fourth equation is needed or one of the variables have to be
eliminated. It turns out that by integrating the horizontal momentum equations the
vertical particle velocity can be eliminated using the kinematic surface bottom boundary
conditions, thereby closing the system of equations.

2.4.3 Integration of horizontal momentum equations

To keep a sense of perspective in these somewhat tedious manipulations, we split the
procedure up into four parts: first the left hand side of the momentum equation, i.e.
the advection terms, is integrated, secondly the pressure term on the right hand side
is treated, thirdly the inhomogeneous source term which arise as a consequence on the
non-inertial system description is integrated and finally the viscous terms are integrated.

Advection terms

Vertical integration of the left hand side of equation (2.38) from bottom to top yields:∫ η

−h

[ut + (uu)x + (uv)y + (uw)z]dz

=
∂

∂t

∫ η

−h

udz +
∂

∂x

∫ η

−h

uudz + n
∂

∂y

∫ η

−h

uvdz

− us[ηt + usηx + vsηy − ws] + ub[ub(−h)x + vb(−h)y − wb]

= (HU)t + (HUU)x + (HUV )y (2.41)

+
∂

∂x

∫ η

−h

(u− U)2dz +
∂

∂y

∫ η

−h

(u− U)(v − V )dz (2.42)

Pressure term

Integrating the pressure term yields∫ η

−h

gηxdz = Hgηx (2.43)

The integrated result is slightly rewritten in order to use H, and not η, as a variable

Hgηx = gH(η + h)x − gHhx = (1
2
gH2)x − gHhx (2.44)
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Non-inertial term

Integration of the inhomogeneous term from the non-inertial description needs to be
performed. Here caution should be shown since B1 is in general a function of r and hence
can not in general be multiplied by the depth as for the pressure term (2.43). However
for the case of pure translational motion the result is∫ η

−h

B1dz = −HẌ(t) (2.45)

where X(t) is a known function of time.

2.4.4 Viscous terms

Integration of the viscous terms on the right side of (2.38) yields∫ η

−h

[(νux)x + (νuy)y + (νuz)z]dz

=
∂

∂x

∫ η

−h

νuxdz +
∂

∂y

∫ η

−h

νuydz

− ν(uxηx + uyηy − uz)|z=η + ν(ux(−h)x + uy(−h)y − uz)|z=−h

The last two terms in the above equation are seen to equal the shear stresses in the x-
direction at the surface and bottom, τ sx and τ bx respectively, as expressed by (2.9) and
(2.11). The two first advection terms in the above equation can not directly be evalu-
ated. How ever, by adding and subtracting both of the following integrals

∫ η

−h
νUxdz and∫ η

−h
νVxdz, yields the following

∂

∂x

∫ η

−h

νUxdz +
∂

∂y
νUydz + τxs − τ yb

+
∂

∂x

∫ η

−h

ν(u− U)xdz +
∂

∂y

∫ η

−h

(u− U)ydz

= (ν̄HUx)x + (ν̄HUy)y + τ sx − γBU (2.46)

+
∂

∂x

∫ η

−h

ν(u− U)xdz +
∂

∂y

∫ η

−h

(u− U)ydz − γB(u
b − U) (2.47)

where the vertically averaged viscosity coefficient ν̄ is defined as

ν̄ =
1

H

∫ η

−h

νdz (2.48)

2.5 The final equations

In the previous, the momentum equation in the x-direction was integrated vertically and
the exact same steps follow for the momentum equation in the y-direction. If u and v are
assumed independent of z, i.e. the vertical variation of the horizonal particle velocities is
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assumed small, then the terms in (2.42) and (2.47) disappear and the full depth averaged
equations are

(HU)t + (HUU + 1
2
gH2)x + (HUV )y = gHhx −HẌ

+(ν̄HUx)x + (ν̄HUy)y − γBU (2.49)

(HV )t + (HUV )x + (HV V + 1
2
gH2)y = gHhy −−HŸ

+(ν̄HVx)x + (ν̄HVy)y − γBV (2.50)

Ht + (HU)x + (HV )y = 0 (2.51)

Here the surface stresses have been neglected i.e. τ sx = τ sy = 0. These three coupled PDEs
are the complete depth averaged NSW equations, including viscosity, for a non-inertial
system, which have to be solved for the three unknown function U(x, y, y), V (x, y, t) and
H(x, y, t). Numerical methods for solving the equations will be discussed in the next
chapter.

2.5.1 Discussion of viscosity and bottom topography

The depth averaged momentum equations (2.49) and (2.50) each contain three terms
accounting for viscous effects. The first two terms in each equation account for viscous
effects in the fluid bulk and the last terms for bottom friction. In the foregoing analysis
the viscosity term ν has not been addressed detailed and has as such been regarded as a
known function in space and time. To establish a function would either require extensive
experimental measurements or detailed CFD analysis, both which are out of scope with
the present work. Instead we choose to neglect the two terms for the bulk viscosity and
focus only the the bottom friction term. As discussed earlier, the physical processes in
the bottom boundary layer are complex, and we have already chosen the well known
engineering approach as discussed in e.g. Brocchini et al. (2001) or Madsen et al. (2005)
to approximate the friction components using the Manning formula 2.13. Also in this
light it seems excessive to include further complicated viscosity terms.

As regards the inhomogeneous terms describing the effect of bottom topography it is
seen that the terms enter the equations as a constant defined by the slope of the bottom
multiplied with the water depth. In the following a flat bottom is assumed and the bottom
terms disappear. The final set of equations can now be written as

(HU)t + (HUU + 1
2
gH2)x + (HUV )y = −HẌ(t)− γBU (2.52)

(HV )t + (HUV )x + (HV V + 1
2
gH2)y = −HŸ (t)− γBV (2.53)

Ht + (HU)x + (HV )y = 0 (2.54)

2.6 Flux or velocity formulation

As discussed earlier the formation of breaking waves are expected in the solution due to
relative large base motion amplitudes. In the NSW equations a breaking wave appears
in the solution as a moving hydraulic jump often termed a bore in coastal engineering.
Mathematically a moving hydraulic jump, which in essence is a discontinuity, is called
a shock. To handle shocks correctly one should show show extra care in choosing the
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correct mathematical formulation as this turns out to be crucial for the behavior of the
solution. In the following two apparently identical formulations, but with quite different
behavior, are presented and discussed.

First we put the derived equations (2.52)-(2.54) on matrix vector form as

Ut + F(U) +GU = S(U) (2.55)

where the conserved vector of variables is

U =

 H
HU
HV

 (2.56)

and

F(U) =

 HU
HUU + 1

2
gH2

HUV

 G(U) =

 HV
HUV

HV V + 1
2
gH2

 (2.57)

S(U) =

 0

−HẌ(t)− γBU

−HŸ (t)− γBV

 (2.58)

The formulation given here is the so-called flux formulation which conserves the variables
given inU which are massH, and momentum in the two horizontal directionsHU andHV
respectively. These variables are often referred to as physical variables since they conserve
the physical quantities of mass and momentum Toro (Apr 2009). It is remarkable fact
that these equations implicitly describe the energy dissipation that is well known to occur
across a bore or hydraulic jump. This is a very strong motivation for using the equations
for complex sloshing problems involving wave breaking and is in fact probably the only
simplified fluid model capable of this. Certainly the Boussinesq type equations discussed
previously can not capture this effect.

Many researchers often formulate the NSW equations in another set of variables,
known as mathematical variables, which are the particle velocities in the two directions,
i.e. U and V , and the mass H is left unchanged. This formulation is known as the velocity
formulation and is easily derived by expanding the derivatives in (2.52) and (2.53):

Ut + UUx + V Uy = −HẌ(t)− γBU (2.59)

Vt + UVx + V Vy = −HŸ (t)− γBV (2.60)

Ht + (HU)x + (HV )y = 0 (2.61)

For the 2D case, i.e. for V = G = 0, the matrix vector form of the equations are

U =

[
H
U

]
(2.62)

F(U) =

[
HU

1
2
UU + gh

]
S(U) =

[
0

−HẌ(t)− γBU

]
(2.63)
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Figure 2.5: Dam-break problem using a momentum conserving and velocity conserving
formulation

Even though the flux formulation (2.52)-(2.54) and (2.59)-(2.61) may seem identical they
are far from it. In Krabbenhoft et al. (2010a) the two formulations were investigated
and it was found that for strong shocks, i.e. large discontinuities in the water depth, the
velocity formulation failed to converge to the exact solution, while the flux formulation
clearly converged, see figure 2.5. For weaker shocks the discrepancy between the two
methods became less pronounced. However as there is no difference in the complexity of
the solution procedure of the two formulations one should always use the flux formulation
thereby guaranteeing conservation of momentum.

2.7 Important sloshing parameters - the 2D case

It is convenient to rewrite the NSW equations on non-dimensional form to extract gov-
erning dimensionless parameters. In papers concerning TLD’s the base motion amplitude
to tank length ratio A/L has been used Reed et al. (1998); Yu et al. (1999) to charac-
terize the dampers, but the used ratio has not been justified on a theoretical basis. Also
no other parameters for characterizing the a TLD exists. In this section all dimensional
variables are starred unless otherwise stated. Furthermore, without any loss of generality,
we consider only the 2D case of (2.55)-(2.58) by setting V = 0.

2.7.1 Nondimensionalization

In the following the bottom is assumed to be flat, i.e. h = h0. Assuming the base motion
as being sinusoidal the horizontal acceleration of the tank is given by

Ẍ∗(t∗) = −A∗Ω∗2 sin(Ω∗t∗) (2.64)

The scaling parameters are chosen as follows:

x∗ = x/k∗, t∗ = t/ω∗
w, H

∗ = Hh∗
0, U

∗ =
√
gh∗

0U (2.65)
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where k∗ = π/L∗, L∗ is the tank length, ω∗
w = k∗

√
gh0

∗ the lowest linear sloshing frequency
of the water using a shallow water assumption, h∗

0 the mean still water level (in general
h = h(x)) and g the acceleration of gravity. The following identities are obtained using
the chainrule and 2.65

∂()

∂t∗
=

∂()

∂t
k∗
√

gh∗
0

∂()

∂x∗ =
∂()

∂x
k∗ (2.66)

Combining (2.64)-(2.66) with (2.55)-(2.58) the nondimensionalized set of mass and mo-
mentum conserving equations are derived

Ut + F(U)x = S(U, x, t) (2.67)

U =

(
H
HU

)
,F =

(
HU

HU2 + 1
2
H2

)
,S =

(
0

−γ |U |U
H1/3 +HΛΩ2 sin(Ωt)

)
(2.68)

I.C. : H(x, 0) = 1, U(x, 0) = 0
B.C. : U(π

2
, t) = U(π

2
, t) = 0

(2.69)

with the dimensionless parameters

β =
Ω∗

ω∗
w

Λ = A∗k∗ = π
A∗

L∗ γ =
g

µM∗2h∗
0
1/3

(2.70)

where the depth ratio µ has been defined as

µ = h∗
0k

∗ = π
h∗
0

L∗ (2.71)

The depth parameter is only relevant as long as friction term is present. From the nondi-
mensionalization we can conclude that the sloshing problem in shallow water is alone
governed by the three dimensionless parameters in (2.70): a frequency parameter β, an
amplitude parameter Λ and finally a friction parameter γ. It should be emphasized that
the analysis is based on the NSW equations, and the parameters are as such only mean-
ingful from a practical point of view as long as the NSW equations captures the relevant
physics involved in given problem. As mentioned in the introduction it is the objective of
the current work to clarify this.

The magnitude of the forcing term from the base motion of the tank is seen to be
a product of the amplitude parameter Λ, as stated by previous researchers Reed et al.
(1998); Yu et al. (1999), and the frequency ratio squared β2. At resonance, which is the
working area of interest, the forcing frequency is approximately equal to the linear sloshing
frequency Ω∗ ≃ ω∗

w resulting in β ≃ 1, leaving as an approximation Λ as the only relevant
parameter with respect to the forcing term. Further more, neglecting the bottom friction
and sloping bottom the depth term and friction parameter vanishes leaving Λ as the only
relevant parameter. This is a very strong results and shows the motivation for establishing
the parameter range for which the NSW equations are valid. Returning to the first term
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on the right side of (2.68) the strength of the friction term depend, not surprisingly, on
the inverse of the depth parameter µ. This is in agreement with e.g. Brocchini et al.
(2001), but also from a physical argumentation it seems reasonable based on the fact
that the dissipating bottom boundary layer extends relatively over a larger part of the
total water depth for shallow water. A parameter study in Krabbenhoft et al. (2010a)
showed that the effect of bottom friction, for realistic depth ratios and surface roughness
has little effect on the liquid sloshing response. The result confirms the supposition that
the majority of dissipation stems from turbulence in the moving hydraulic jump.

2.7.2 Non dimensional sloshing force and energy dissipation

x

z

O
′

Ẍ(t)

HL HRFS

Figure 2.6: Definition of horizontal sloshing force FS using a hydrostatic pressure as-
sumption

For the shallow water case the sloshing force, i.e. the force containing both the inertial
and dynamic contribution Krabbenhoft et al. (2010a,b), is calculated using the hydrostatic
pressure assumption as the difference between the integrated pressure on the right and
left tank wall

F ∗
S = 1

2
ρ∗g(H∗

R
2 −H∗

L
2) (2.72)

The sloshing force is nondimensionalized with the maximum inertial force of the water
treated as a solid mass

FS =
F ∗
S

m∗
wA

∗Ω∗2 =
1

2πΛβ2
(H2

L −H2
R) (2.73)

where m∗
w is the total mass of water pr. tank width. Another important quantity is the

work done by the sloshing force pr. forcing period defined as

∆E∗ =

∫ ∗

T

F ∗
SdX

∗(t∗) (2.74)

With respect to TLD’s (2.74) is a measure of structural energy being dissipated pr. cycle
by the sloshing force. For this reason we refer in the following to ∆E∗ as the dissipated
energy pr. cycle. ∆E∗ is nondimensionalized as follows

∆E =
∆E∗

1
2
m∗

w(A
∗Ω∗)2

=
2

Λ

∫
T

FSdX(t) (2.75)

The factor 1
2
m∗

w(A
∗Ω∗)2 is not the energy of liquid motion but simply a reference value.
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2.8 Summary and conclusion

Solving the full Navier-Stokes equations for simulating Tuned Liquid Dampers is too
excessive for several pragmatic reasons. The first, and foremost reason, is the CPU
time required for solving the set of equations. A simulation time of seconds can easily
require hour, days or even weeks of CPU time. In the future with growing computer
power this approach may become attractive. Second, constructing numerical schemes
for capturing the complex discontinuous surface profile, as we expect to be present, is
a rather complicated problem and requires specialized methods which rely on empirical
tuning parameters for guaranteeing stability of the free surface.

The following conclusions can be drawn:

• By assuming long wave theory and vertical particle velocities to be unimportant the
full N-S equations can be approximated by the so called Nonlinear Shallow Water
equations or St. Venant equations. The dimension of the problem is hereby reduced
by 1, and the description of the free surface is treated exactly and much easier than
for the full 3D problem.

• The NSW equations are amplitude dispersive and are capable of describing wave
breaking. For the base amplitudes A and tank lengths L considered, breaking waves
will indeed be present for the majority of practical cases of interest. For lower base
amplitudes the generated wave amplitudes will become smaller and for this case a
Boussinesq type formulation, including frequency dispersion, should be used. The
Boussinesq equations conserve energy and thus empirical constants must be added
to account for dissipation in the boundary layers and surface Keulegan (1959); Miles
(1967); Vandorn (1966); Lepelletier and Raichlen (1988).

• The NSW equations can be formulated with two different sets of conserved variables,
namely mass and momentum, known as the flux formulation, and mass and particle
velocity, known as the velocity formulation. It is important to use the correct
formulation, given by the flux formulation, in order to estimate the correct speed
of the bore known as the shock speed. If the flux formulation is used the equations
implicity capture the energy dissipation across the bore and no empirical constants
are required.

• The effect of bottom friction is found to have little effect on the liquid sloshing for
relevant tank parameters.

• By performing a nondimensionalization it is found that the shallow water sloshing
can be described by only three dimensionless parameters and only two for the non-
viscous case. The depth enters the equations as a pure scaling parameter and thus
does not alter the behavior of the solution. In other words, if the NSW equations
provide a applicable model for the sloshing behavior, then the engineer in a design
situation should pay no special attention to the depth but solely focus on the A/L-
ratio. This will make the deign process of the TLD much simpler.

With respect to the last point the fundamental question then naturally arises: do the
NSW equations in fact constitute an usable model, and if yes for which depth ratios h/L,
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amplitude ratios A/L and frequency ratios β does the model perform well. In order to
answer these questions a strategy for solving the NSW equations must be established
which is the topic of the following chapter.
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Chapter 3

Numerical methods

Having established a mathematical model the equations must be solved to provide a solu-
tion. Analytical solutions are always preferred, however establishing analytical solutions
to nonlinear partial differential equations is extremely difficult, time consuming and of-
ten impossible. Instead the equations must be solved approximately using a numerical
method.

Having constructed and implemented a numerical methods it is essential to verify that
the method gives reliably results, i.e. solves the mathematical problem with an acceptable
accuracy. The only way to verify this is by testing the numerical method on problems
where an analytic solution exists. If an analytical solution does not exist then one must
be constructed.

This chapter focuses on the choice, development and verification of numerical methods.

3.1 Mathematical models - classification

In the present research the numerical work has almost entirely been focused on the solution
of the mathematical fluid models. The solution of linear structural systems is far more
simple and the description of a coupled TLD-structure model is presented in Krabbenhoft
et al. (2010c) where solution strategies for the structural model is addressed. In the
following the focus is on mathematical models of the type:

Ut + F(U) +G(U) = S(U) (3.1)

Here U is a vector of conserved variables and F and G are, in general, nonlinear vector
functions of U and S is a source term vector. The system of Partial Differential Equations
(PDEs) in (3.1) is by mathematicians referred to as a first order hyperbolic system of par-
tial differential equations. A subclass of hyperbolic equations are the so-called System of
Balance Laws, or SBL in short, to which the equation in (3.1) belongs. If the source terms
is omitted, i.e. only the homogeneous part is considered, the equations are often called a
System of Conservation Laws, or SCL in short LeVeque (2002). The term conservation
stems form the fact that in certain volume quantities are conserved and can change only
due to disturbances along the volume boundary.

Elliptic equations, and thus SBL’s and SCL’s, can be characterized as being wave-
like. This means that disturbances in a certain point in a domain is felt only locally and
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from the disturbance position propagates with a finite speed out into the domain along
certain routes know as characteristics. This local character of the equations makes the
use of explicit methods very attractive. The behavior of hyperbolic equations is thus
qualitatively fundamentally different from e.g. parabolic equations, such as heat flow,
where a disturbance on the boundary immediately is felt in the complete domain.

It is well know that the hyperbolic systems of equations given by the NSW equations
will develop discontinuous solutions, also know as shocks, even when given smooth initial
conditions. Handling of shocks or discontinuous solutions is in general very difficult to
treat numerically and is an important parameter when choosing a numerical methods.

The source term in (2.55) constitute another possible difficulty. We showed in (2.14)
that the term describing bottom friction may become very large for shallow water depths.
Such source terms are commonly classified as being stiff and are notoriously difficult to
treat numerically.

3.2 Choice of numerical method

In theory, and practice, many different numerical method can be used for solving System
of Balance Laws as (3.1), and in-fact many different methods are being used. The choice
of method relies on many different factors where an important one is without doubt based
on tradition. The most popular methods for solving SCL’s and SBL’s, though, seem to
be the Finite Volume (FV) method, followed by the Finite Difference (FD) method and
Finite Element (FE) method, where the last mentioned seems to be growing in popularity.
A methods which is receiving much attention is the so called Discontinuous Galerkin (DG)
method, which is a hybrid of standard Galerkin FE and the FV method. In the area of gas
dynamics, the Euler equations of gas dynamics, or just the compressible Euler Equations,
take the form given by (3.1). Gas dynamics is an that has been researched extensively
during the last century and he FV method has been used widely in this research which
has matured it significantly. Also, as discussed earlier, the nature of the NSW equations
eventaully lead to discontinuities in the solution in the shape of bores or shocks, and
this is naturally described in a FV context, as opposed to e.g. a FD method where
derivatives are approximated by finite differences which can be expected to break down
near discontinuities.

During the period of this PhD study all methods, except the standard FE method,
were examined and tested, and we found that the FV method suited our specific needs
the best.

3.3 The Finite Volume Method

One of the main differences of the FV method, compared to e.g. FD or FE methods, is
that the domain of interest is broken down into grid cells or volumes, rather than into grid
points. Each grid cell is defined by its boundaries or volume and a point, typically chosen
in the barycenter (center of mass) of the volume, at which the average of the variable of
interest is defined. I.e the discrete approximate solution is represented by averaged values
at the barycenter of the discrete cells rather than approximations of the solution at single
points.
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Figure 3.1: Control volume Vi in space and time.

Without any significant loss of generality we start out by considering the 2D SCL
given by

Ut + F(U) = S(U) (3.2)

with

U =

[
H
Q

]
F(U) =

[
Q

Q2/H + 1
2
gH2

]
(3.3)

where the momentum Q is defined by Q = HU . The above system of PDEs corresponds
to the homogeneous 2D case of the NSW equations given in (2.55)-(2.58). The equation
stated in e.g. (3.2) is called the differential form a SCL and is valid only for the case
of smooth solutions. A more general form of the equation is the integral form which is
derived by integrating (3.2) along the boundary of the domain, i.e.∮

[Ut + F(U)x]ds = 0 (3.4)

Choosing a quadrilateral control volume in the x− t plane with the dimensions

Vi = [x
i−1

2
, x

i+
1
2
]× [tn, tn+1] (3.5)

he following integral form of the balance law is derived

Un+1
i = Un

i −
∆t

∆xi

[Fi+ 1
2
− Fi− 1

2
] (3.6)

where the average value of the solution in the element Qi =]xi− 1
2
, xi+ 1

2
[ is given by

Un
i =

1

∆xi

∫ x
i+1

2

x
i− 1

2

U(x, tn)dx (3.7)

and

Fi+ 1
2
=

1

∆t

∫ tn+1

tn
F(U(xi+ 1

2
, t))dt (3.8)

In the above the element size ∆x and time increment ∆tis defined by

∆xi = xi+ 1
2
− xi− 1

2
, ∆t = tn+1 − tn (3.9)
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Figure 3.2: Averaged smooth solution

The equation stated in (3.6) is exact, and is the integral form of of the SCL defined on
differential form in (3.2). The main point here is that the derived integral form of the
equations have no limitations regarding discontinuities, and hence notice that no differen-
tial operators appear in (3.6)-(3.8) but rather only integral operators are present. In fact
we want to use the form (3.6) directly as a numerical scheme and in order to do so, the
numerical fluxes Fi± 1

2
must be approximated in some way. The Russian mathematician

Sergei Godunov proposed a method for this purpose and thereby gave birth to a whole
class of methods known as Godunov methods.

3.4 Godunov method

The idea proposed by Godunov is in fact very simple and relies on the physics of the
considered problem. Godunov utilized the fact that when a smooth solution q(x, t) is
discretized by averages as shown in figure 3.2 then the interface between each cell is in in
fact characterized by a so-called Riemann problem. The Riemann problem is defined by
the following initial value problem

Ut + F(U) = 0

U(x, 0) =

{
UL

UR

 (3.10)

The initial value problem is sketched in figure 3.3 at the initial time and the depth
and velocity are shown beneath the initial state at a later time t = t∗. This problem
shows two characteristic wave patterns that also were observed in the performed sloshing
experiments. A shock wave, or compression wave, travels from left to the right. The
shock moves from high depth to shallow depth with a certain speed. To the left a so-
called rarefraction wave, or a depression wave is present which is not characterized, as the
shock, by a single front but instead by a head and a tail front and a smooth behavior in
between. The wave patterns in x− t space is depicted at the lowest graph. Here the shock
is seen to be describe by a single line in x − t-space, called a characteristic, which gives
the position and speed of the shock. To the left the rarefraction wave is described by a
so-called fan of characteristics with a clear head and tail. What is extremely interesting
about the wave pattern is that in the region x/t = 0 the solution is constant for all t.
This is simply the nature of the Riemann problem and it can be shown that the solution,
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Figure 3.3: Riemann problem

depending on the initial conditions, can be described by a total of ten different wave
patters of the kind shown at the bottom of figure 3.3 Toro (April 2001). All solution bare
the property with a constant solution in time at x/t = 0. Recall that the the numerical
flux function, that we are after, is defined by the following integral

Fi+ 1
2
=

1

∆t

∫ tn+1

tn
F(U(xi+ 1

2
, t))dt (3.11)
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i.e. the integral evaluated in time at an element boundary. It has just been shown that
the solution at the edge is constant in time so the numerical flux can simply be evaluated
as

Fi+ 1
2
= F(Ui+ 1

2
(0)) (3.12)

where the solution vector along the line x/t = 0 is Ui+ 1
2
(x/t = 0). Having evaluated the

numerical fluxes along the boundaries the solution can be updated suing (3.6) which ends
the description of Gudonov methods. Of course there are some unanswered questions:
how is the solution at the interface along the line x/t = 0 actually found and what about
time stepping restrictions.

3.4.1 Time stepping

The time stepping restriction is very simple. We demand that each of the Riemann
problems at all the interfaces of the domain do not interact. Thus if the fastest wave
speed in the entire domain is say Smax and the smallest element length is ∆x, then the
restriction of the time step is simply

∆t < CFL
∆x

Smax

(3.13)

The CFL number, or courant number, should in general be chosen between 0 and 1 to
guarantee stability. Often CFL = 0.9 is chosen in practice. The maximum wave speed
Smax can be estimated using the following formula

Sn
max = max

i

{
|Un

i |+
√

gHn
i

}
(3.14)

3.4.2 Acquiring solution along x/t = 0

Given the Riemann problem (3.10) it is actually possible to derive the exact solution. The
complete solution of the Riemann problem is described in Toro (April 2001). The group
of solver that use the exact solution of the Riemann problem to find the solution along all
the element interface are know as exact Riemman solvers. The exact Riemann solvers are
quite slow since the process of finding the solution along the element boundary requires
all ten wave patterns to be looked through, also known as the sampling process, and is
very time consuming. The so-called Random Choice Method, or Glimm’s methods, relies
on the exact solution of the Riemann problem. Alternatively the Riemann problem can
be solve approximately which has given name to a very popular class of solvers known as
approximate Riemann solvers.

3.5 Approximate Riemann solvers

An exhaustive collection of approximate Riemann solver is given by Toro in the Toro
(April 2001,A). The most popular approximate Riemann solvers are the HLL method,
developed by Harten, Lax and Van Leer, the method of Roe and finally the Rusanov
method. The complexity of the methods vary from a derivation point of view but from
an implementation point of view they are quite similar.
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In general the computation of a flux at a given element interface, say at location xi+ 1
2

requires information of the states on each side of the interface, i.e. Ui and Ui+1 for the
right boundary on element i. Thus the computation of the numerical flux can be written
as

Fi+ 1
2
= Fh(UL,UR) (3.15)

where Fh is some function based on an approximative solution of the Riemann problem.
The subscript L and R refer to left and right state, respectively. For the the flux at
the right boundary in (3.15) UL = Ui and UR = Ui+1. We choose to use the Rusanov
scheme, with the following flux function:

FRus
i+ 1

2
=

1

2
(F(Un

L) + F(Un
R))−

1

2
S+∆t(Un

R −Un
L) (3.16)

where
S+ = max{|UL|+ aL, |UR|+ aR}, aL =

√
gHL (3.17)

3.6 Source terms

Source terms potentially constitute a difficulty for the case of stiff source terms. However
non stiff source terms are in general more easy to treat using a splitting procedure. In-
cluding a source term the update formula (3.6) is simply augmented with an additional
term

Un+1
i = Un

i −
∆t

∆xi

[Fi+ 1
2
− Fi− 1

2
] + ∆tSi (3.18)

with

S =
1

∆t

1

∆xi

∫ x
i+1

2

x
i− 1

2

∫ tn+1

tn

S(U, x, t)dxdt (3.19)

In general we find that using a simple forward Euler integration in space and time works
well, i.e.

Si ≃ S(Un
i , xi, t

n) (3.20)

3.7 High order methods

The methods mentioned so far have all been first order methods, i.e. the approximation
error is of order ∆x. The methods are relatively simple to implement, stabile and mono-
tone, but have the rather big disadvantage of being very dissipative. This is essentially
what guarantees their stability. As our focus is analyzing sloshing behavior in tanks,
and a very important part of the problem is estimating the internal fluid damping, it is
important that the estimated energy dissipation stems from the physics and not from the
numerical methods. This was our main motivation for implementing a high order method.
Another motivation is that certain high order methods can treat stiff source terms very
efficiently which may become important when including bottom friction for very shallow
water depths.

To start the discussion once aging we return to the exact update formula given in (3.6).
The accuracy of the method simply depends on the accuracy of the numerical fluxes Fi± 1

2
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and the accuracy of the state vector Ui, expressing the averaged value of the state within
element i. Thus in order to increase the accuracy, or order of the method, the order of the
spatial discretization must be increased but also the temporal elapse of the state vector
must be established in order to compute the numerical flux (3.8) with a higher degree of
accuracy.

3.7.1 Spatial discretization - reconstruction

When using the FV method one always operates on average cell values. This is simply
in the structure of the method as seen when deriving the integral form of the conserva-
tion law. Consider an initially smooth function at time n, q(x, tn), depicted in figure 3.2
and approximate this smooth function by cell averages as shown with the black stair-
cases. Then the order of the proposed method will naturally depend on the accuracy of
which these cell averages represent the solution. The simplest 1. order method simply
approximates the initial smooth solution with the averages

qni =
1

∆xi

∫ i+ 1
2

i− 1
2

q(x, tn)dx (3.21)

Even though the integral in (3.21) is done exactly the variation of solution q(x, t) is
now represented as a staircase function and therefor the approximate solution is of order
O(∆x).

Given the exact averages, which can always be computed using any high order Gaus-
sian quadrature, it is however possible to reconstruct the initial smooth solution. Thus
using average values a variables does not prohibit a higher order spatial discretization of
the solution and thereby a higher order method. Often the local solution is reconstructed
using polynomials: a first order method reconstructs using a polynomium of order 0, i.e.
a constant value, a second order methods reconstructs the solution using a first order
polynomium, i.e. s straight line, and so on.

There is however quite a substantial aber dabei when increasing the method to a
higher order which is concerned with the smoothness or monotonicity of the solution. In
connection with his PhD work Godunov derived a theorem directly related to construction
of higher order methods. The theorem states that:all linear schemes of accuracy greater
than one will produce spurious oscillations in the vicinity of discontinuities Toro (April
2001). Linear in this context is essentially linked to the reconstruction operator, i.e.
how the reconstruction is performed. The theorem is analogous of saying that any linear
scheme having the property of providing non-oscillatory, i.e. monotone, solutions can at
most have 1. order accuracy. For this reason it was not until Van Leer in the early nineteen
seventies were able to develop a second order scheme without spurious oscillations Toro
(April 2001).

As a result of Godunov’s theorem an extensive research has been done, and is still very
active, on reconstructions techniques that provide a non-oscillatory solution. The most
popular are the Total Variational Deminishing (TVD) schemes for second order accuracy
and Essential Non Oscillatory (ENO) and Weighted Essential Non Oscillatory (WNEO)
reconstruction schemes, for higher order accuracy Dumbser et al. (2008). Common for
all three methods is that they provide a nonlinear reconstruction of the solution across
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the element and thus circumvent Godunovs first theorem and provide non-oscillatory
solutions. There are many ways of performing the ENO or WENO reconstruction Liu
et al. (1994); Jiang and Shu (1996); Hu and Shu (1999), where the WENO approach
suggested in Dumbser et al. (2008), has been used in the present work.

We start by defining the new relative space variable ξ

x = xi− 1
2
+ ξ∆x , ξ ∈ [0, 1] (3.22)

Given the cell averaged data q̄nj (in the following a bar is used to emphasize that this is
an average value) in all elements Qj we want to construct a spatial polynomial in element
Qi, based on cell averaged data at time tn, of the form

wi(ξ, t
n) =

M∑
l=0

Ψl(ξ)ŵl(t
n) (3.23)

where Ψ(ξ) are re-scaled Legendre polynomials that form an orthogonal basis on the
interval I = [0, 1]. Thus, coefficients ŵ(tn) needs to be computed. For the method to be
conservative the reconstructed polynomial should conserve the initial averaged data for
element Qi and the surrounding elements Qj, i.e.∫

Qj

wi(ξ, t
n)dξ =

M∑
l=0

∫
Qj

Ψl(ξ)dξ ŵl(t
n) = q̄nj (3.24)

This integral conservation laws enables os to compute the coefficients but first a number
of stencils, i.e. a collection of elements, must be defined. The reconstruction is performed
for every element, and for each element a number of stencils must defined where the size
of the stencil defines the order of the reconstruction. Define the stencils Ss

i , for element i
by

Ss
i =

i+s+k∪
j=i+s−k

(3.25)

where s is the stencil shift, i the element for which the reconstruction is performed and k
the length of the stencil. For our case three stencils are used for each element: a central
stencil S0

i , left stencil S
−k
i and a right stencil Sk

i . Choosing a reconstruction polynomial
of order M = 2, i.e. a third order method, results in a stencil with spatial extension k = 1
Dumbser et al. (2008). The three stencils for this case are shown in figure 3.4. Using
(3.24) and (3.25) a linear system of equations can be used to find the coefficients ŵl, i.e.

Ajl · ŵ(i,s)
l = q̄nj (3.26)

where standard tensor notation is used. Notice that the system of equations in (3.26)
must be solved for each stencil. The linear reconstruction process will for k = 1 provide
three reconstructed polynomials w−k

i (ξ, t), w0
i (ξ, t) and wk

i (ξ, t) but only one is needed.
In order to obtain the final non-oscillatory reconstruction polynomial for element Qi the,
altogether nine, coefficients obtained from (3.26) will be combined into three values by
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Figure 3.4: Left, centered and right stencil for Qi with k = 1.

weighting these with nonlinear weights obtained from the averaged values. The final
polynomial is

wi(ξ, t
n) = ŵi

l(t
n)Ψl(ξ) (3.27)

with
ŵi

l(t
n) = ω0ŵ

(i,0)
l (tn) + ω−kŵ

(i,−k)
l (tn) + ωkŵ

(i,k)
l (tn) (3.28)

The nonlinear weights are computed as

ωs =
ω̃s

ω0 + ω−k + ωk

, ω̃ =
λs

(σs + ε)r
(3.29)

The oscillation indicator σs is defined by

σs = Ξlmŵ
s
l ŵ

s
m, Ξlm =

M∑
α=1

∫ 1

0

∂αΨl(ξ)

∂ξα
∂αΨm(ξ)

∂ξα
dξ (3.30)

whereM is the degree of the reconstruction polynomial. Note that the so-called oscillation
indicator matrix Ξlm is is independent of the mesh and of the problem and is thus universal.
The parameters ε and r are constant and we choose ε10−14 and r = 12. The linear
weights λs are chosen as λ1 = λ−1 = 1 and a large central weight λ0 = 105 Dumbser
et al. (2008). Using these weights, which are empirical and, then by experience the
reconstructed polynomial will be monotone. Using the above nonlinear weights the central
stencil is used in regions with a smooth solution and for shocks, which occur very locally,
the left or right stencils will automatically be preferred.

3.7.2 Local space-time representation

Having established a higher order spatial reconstruction polynomial the last thing we
need to take care of, in order to construct a high order method, is the time integration.
The lowest order of the space or temporal discretization will decide the order of the
complete scheme. In many WENO methods the spatial reconstruction shown just earlier
is combined with a Runge-Kutta integration scheme for the time integration. This mean
that in each of the Runge-Kutta steps the reconstruction procedure must be performed
and furthermore the limits on the time step are often very restrictive with CFL conditions
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of the type ∆t = O(∆x2) Dumbser et al. (2008). Another route, and the one chosen here,
is the so-called local space-time DG method proposed by Dumbser et al. (2008). The
idea is to construct a local space-time representation of the solution and then integrate
the numerical fluxes (3.8) in time and use the standard updating formula (3.6). This will
result in scheme with a time step restriction of the type ∆t = O(∆x) and furthermore
the reconstruction needs to be performed only once per time step. Instead a space-time
representation must be constructed and then a numerical integration of the fluxes, and
eventual source terms, must be performed. In the following a detailed description of the
method is performed. The derivation is performed for a scalar nonlinear Balance Law
but the procedure follows exactly the same steps for a System of Balance Laws Dumbser
et al. (2008). Thus, consider the scalar nonlinear Balance Law:

ut + f(u)x = s(u) (3.31)

It is convenient to make a change of variables in space and time defined by

x = xi− 1
2
+∆xiξ t = tn + τ∆t 0 ≤ τ, ξ ≤ 0 (3.32)

Using (3.32) in (3.31) yields

uτ +
∆t

∆x
f(u)ξ = ∆ts(u) , u = u(ξ, τ) (3.33)

where the constants on the flux and source term arises from the coordinate transformation
The computational domain is covered by spatial elementsQi =]xi− 1

2
, xi+ 1

2
[ and cell average

of u(ξ, τ) within Qi at time tn is defined by

ūn
i =

∫ 1

0

u(ξ, 0)dξ (3.34)

Integrating (3.33) in dimensionless space ξ and time τ leads to the well know update
formula (3.6)

ūn+1
i = ūn

i −
∆t

∆xi

(fi+ 1
2
− fi− 1

2
) + ∆tSi (3.35)

with

fi− 1
2
=

∫ 1

0

f(ui(0, τ))dτ Si =

∫ 1

0

∫ 1

0

s(ui(ξ, τ)) (3.36)

As discussed in 3.5 the computation of the numerical flux in general requires the states
on either side of the given interface. I.e. considering the interface at position xi+ 1

2
, or

ξ = 1, requires the use of ui(1, τ) and ui+1(0, τ) in the computation of the numerical flux
fi+ 1

2
. The solution in space and time is approximated by the following sum

ui(ξ, τ) ≃
N∑
l=1

Φl(ξ, τ) · ûi
l := Φl(ξ, τ)û

i
l (3.37)

where the sum is expressed using classical summation convention in tensor calculus, i.e.
summation over all indexes that appear twice. The space-time test functions Φl(ξ, τ) are
constructed using Lagrange polynomials in space and time Ψ(ξ) and Ψ(τ) as

Φk(ξ, τ) = Ψi(ξ) ·Ψj(τ) (3.38)
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Figure 3.5: Mono-index k for given values of i and j.

where k is so-called mono-index ranging from 1 to the number of degrees of freedom
N = (M + 1)2, where M is the order of the polynomials used. For the current work we
have used M = 2, i.e. polynomials of 2. order and thus the mono-index ranges from
1 to 9. Now the governing PDE (3.33) is multiplied with the test functions (3.38) and
integrated over the element in space and time⟨

Φk,
∂

∂τ
ui

⟩
+

∆t

∆x

⟨
Φk,

∂

∂ξ
f(ui)

⟩
= ∆t ⟨Φk, s(ui))⟩ (3.39)

where the space-time operator is defined by

⟨f, g⟩ =
∫ 1

0

∫ 1

0

f(ξ, τ)g(ξ, τ)dξdτ (3.40)

In a standard Discontinuous Galerkin (DG) scheme one would apply integration by parts
thereby first moving the derivative onto the test function and secondly introducing in-
formation about the neighbor elements. How ever in the present context we are only
interested in a local formulation and thus do not integrate by parts in space. The inte-
gration by parts is performed only in the temporal part which yields

[Φk, ui]1 − [Φk, wi]0 −
⟨

∂

∂τ
Φk, ui

⟩
+

∆t

∆x

⟨
Φk,

∂

∂ξ
f(ui)

⟩
= ⟨Φk, s(ui)⟩ (3.41)

where the spatial integration operator has been defined by

[f, g]τ =

∫ 1

0

f(ξ, τ)g(ξ, τ)dξ (3.42)

Note that the temporal differentiation is removed and for τ = 0 the state is effectively
defined by the reconstruction polynomial wi = Ψm(ξ)ŵ

i
m(t

n), as discussed earlier. At
time τ = 1 we consider the solution inside the element and thus by introducing the ansatz
(3.37) and the reconstruction polynomial at time tn into (3.41) yields(

[Φk,Φl]1 −
⟨

∂

∂τ
Φk,Φl

⟩)
ûi
l

−[Φk,Ψm]0ŵ
i
m(t

n) +
∆t

∆xi

⟨
Φk,

∂

∂ξ
f(ui)

⟩
−∆t

⟨
Φk, S(Φlû

i
l)
⟩
= 0 (3.43)

The numerical flux can approximated by

f(ui) ≃ Φkf(û
i
l) (3.44)
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which results in the final nonlinear system of equations for the unknown ûi
l:(

[Φk,Φl]1 −
⟨

∂

∂τ
Φk,Φl

⟩)
ûi
l

−[Φk,Ψm]0ŵ
i
m(t

n) +
∆t

∆xi

⟨
Φk,

∂

∂ξ
Φk

⟩
f(ûi

l)−∆t
⟨
Φk, S(Φlû

i
l)
⟩
= 0 (3.45)

The system of equations can be written in a more compact format as(
F 1
kl −Kτ

kl

)
ûi
l − F 0

kmŵ
i
m +

∆t

∆xi

Kξ
klf(û

i
l)−∆tSl = 0 (3.46)

In practice the nonlinear system of equations (3.46) is solved by constructing an initial

guess û
(i,1)
l using the reconstruction coefficients ŵi

m, which is know for local time τ = 0,
and solving

u
(i,2)
l =

(
F 1
kl −Kτ

kl

)−1
(
∆tSl −

∆t

∆xi

Kξ
klf(û

(i,1)
l ) + F 0

kmŵ
i
m

)
(3.47)

Using û
(i,2)
l new fluxes and source terms are computed and a new value û

(i,3)
l is computed.

The procedure converges very quickly and the mentioned procedure is approximately three
times for the solution to converge.

3.7.3 Summing up

We can now summarize the described method and the steps needed in order to solve gen-
eral nonlinear Balance Laws. For each element the following steps should be performed:

I Compute the reconstruction polynomials ŵi
m(t

n) at time tn given the cell averages
ūn
i using (3.28).

II Compute the local space-time solution ûi
l by solving the system of nonlinear equa-

tions in (3.46).

III Use the solution ui(ξ, τ) to compute the source and numerical fluxes in (3.36) using
a gaussian quadrature and update the solution using (3.35).

Its quite clear from the the previous that the derived method is extremely complex com-
pared to the first order approximate Riemann solvers discussed earlier. Not only is the
price in implementation increased substantially but also the CPU time is increased quite
dramatically. The reason for the large increase in CPU time is mainly due to the solu-
tion of the nonlinear system of equations (3.47) but also by the fact that the Gaussian
quadrature is performed when evaluating the source terms and numerical fluxes.

In the implementation polynomials of 2. degree are used corresponding to a third
order method. This results in a source vector Sl with nine elements. Each element in the
source vector has the form

Sl =
⟨
Φk, S(Φlû

i
l)
⟩
=

∫ 1

0

∫ 1

0

Ψi(ξ)Ψj(τ)S(ξ, τ)dξdτ (3.48)
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Table 3.1: Initial values used for the dam-break problem

HL UL HR UR xc tend
[m] [m/s] [m] [m/s] [m] [s]
1.0 0.0 0.5 0.0 0.5 0.1

Using second order polynomials thus results in an integrand of minimum fourth order,
depending on the order of the source term. The Gaussian quadrature very quickly grows
in size and for our case we found it necessary to use three points in space and time
resulting in 9 terms to be evaluated for each element in the source term matrix Sl, i.e. a
total of 81 evaluation for each element.

The price is certainly high, but in return the scheme is extremely robust, third order
accurate and able to handle stiff source terms which may be relevant when studying
friction terms in very shallow water.

3.8 Numerical tests

The purposes of performing the numerical test is fist and foremost to establish a solid
foundation for determining what numerical scheme to use. I.e. is a low order scheme
sufficient or should a high order method be used. We have implemented the first order
Godunov scheme and the third order scheme discussed in 3.7. Both schemes have been
tested a reported in Krabbenhoft et al. (2010a) and in the following we discuss the results.
In all tests the 2D NSW equations (3.2), with and with out source terms, are treated.

If implemented correctly it is without any doubt that the high order scheme will
outperform a lower order scheme. On the other hand, the implementation cost and CPU
time, is much greater for a high order scheme so we would rather use a simple, and efficient
low order scheme. The method should be able to capture shocks, handle source terms,
and have low numerical dissipation, compared to physical dissipation. These three points
are discussed in the following sections

3.8.1 Shocks

HL, UL

HR, UR

x

z

xc

Figure 3.6: Dam-break problem. Initial depth profile at time t = 0

The dam break problem is a classical test case for verifying shock capturing capabilities
of a method. The vertical wall at position xcis remove at time t = 0 and the water depth
and particle velocities are computed at a later time tend = 0.1s. The problem corresponds
to a classical Riemann problem as discussed in 3.4 and contains a right moving shock, or
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(b) 3. order

Figure 3.7: Dam-break problem grid convergence study for 1. order and 3. order meth-
ods. CFL = 0.9

compression, wave and a left moving rarefraction, or depression wave. The results in figure
3.7 clearly show that the 1. and 3. order method both converge to the exact solution
for increasing mesh density and more important the methods capture the position of the
right moving shock wave. Also in Krabbenhoft et al. (2010a) the convergence is proven
by computing the convergence rates.

3.8.2 Source terms

To test how well the implemented methods handle source terms an exact reference solution
is constructed as discussed in Krabbenhoft et al. (2010a). A convergence study verifies
that both the 1. order and 3. order methods converge with rates of approximately 1 and
3, respectively, and it is thus concluded that the implementation is correct. While the 3.
order method certainly converges with a much higher rate and with very impressive low
error norms the CPU time is also large compared to the 1. order method.

3.8.3 Sloshing simulation

Having established that both methods are capable of capturing shocks as well as treating
source terms the methods are ready to be tested on a sloshing problem given on non-
dimensional form in (2.68). We consider a 2D tank with length L = 0.59 m with a water
depth of h = 0.0295 m. This corresponds to a shallow water sloshing frequency of

w =

√
gh

2L
= 0.456Hz ⇒ ωw = 2πfw = 2.865rad/s (3.49)

The tank is given a sinusoidal horizontal base motion described by the function

X(t) = A sin(Ωt) (3.50)

with Ω = ωf , i.e. the excitation frequency is set equal to the linear sloshing frequency
corresponding to β = 1.0, and A = 0.1 m. Using a time stepping restriction of CFL=0.9
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Table 3.2: Tank dimension and forcing values.

L h0 A Ω g A/L β γ

[m] [m] [m] [rad/s] m/s2 [-] [-] [-]

0.590 0.0295 0.059 2.865 9.81 0.1 1.0 0.0

Table 3.3: Parameters for sloshing simulation

and 128 elements the water depth at the left tank wall, the total horizontal sloshing force
and the hysteresis loop is shown in figure 3.8, computed using a 1. order and 3. order
method. It is clear from the figure that for the specific test case the 3. order method brings
limited extra information to the results. A very important parameters is the computed
energy using the hysteresis loop. This parameter is a measure of the interaction between
the sloshing force and the base to which the liquid container is fixed. In Krabbenhoft
et al. (2010a) the energy is computed using the 1. and 3. order method and it i shown
that the difference in the computed energy between the two methods is less than 1% when
using 256 elements or more.

3.9 Summary and conclusion

The numerical treatment of systems of nonlinear inhomogeneous hyperbolic partial dif-
ferential equations known as System of Balance Laws has been treated in detail. The
equations are complicated in treating primarily due the presence of shocks. We have im-
plemented and tested two different approximate Riemann solvers of 1. and 3. order. The
following conclusions can be drawn:

• The implementation of the 1. order method is simple compared to the complex 3.
order method derived.

• The 1. and 3. order approximate Riemann solver using a numerical Rusanov flux
is capable of capturing shocks very well.

• Source terms are generally not simple to handle. We have tested the 1. and 3. order
methods on a test case with a constructed source term showing that both methods
converge.

• In a sloshing simulation, using realistic physical values, the 1. and 3. order methods
are compared showing that they produce almost identical results. When Using more
than 256 elements the the computation of the energy in the hysteresis loops differ
with less than 1%.

Summing up the main conclusions it is clear that 1. order methods is sufficient for treating
sloshing simulations based on the NSW equations.
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Figure 3.8: Sloshing simulations using 1.order and 3. order methods
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Chapter 4

Shaking table experiments and
verification

In the present study two different types of experiments were performed, namely shaking
table experiments where the tank was enforced a prescribed horizontal sinusoidal base
motion and experiments where the interaction between the TLD and a SDOF structure
was examined. Finally with respect to the TLD-structure interaction experiments results
from experiments performed by Sun Sun (1991) were used in the verification of a proposed
TLD-strcuture interaction model Krabbenhoft et al. (2010c) In this chapter the results
from the shaking table experiments with a prescribed motion is discussed.

4.1 Objectives

The derived mathematical model consisting of the NSW equations formulated in a non-
inertial frame of reference, was investigated in detail in chapter 2. By nondimensionalizing
the governing equations it was shown that the liquid behavior depends on three dimen-
sionless parameters and that the depth is a simple scaling parameter. It is clear that for
some depth ratios h/L the mathematical model is bound to break down. As the depth
increases the vertical particle velocity increases in importance and the hydrostatic pres-
sure assumption becomes invalid. The second parameter of interest is the forcing ratio
A/L. For low forcing we expect that the mathematical model will be inadequate since for
low wave amplitudes dispersion becomes increasingly important as argued in 2.3.1. For
very high forcing ratios we also expect the mathematical model to break down. The third
parameter of interest is the frequency ratio β = Ω/ωw. Finally the fourth parameter is
the effect of bottom friction. It was shown in the theoretical paper Krabbenhoft et al.
(2010a) that for realistic Manning numbers (describing the friction of the bottom) the
bottom friction was with little effect on the results. For this reason we initially simply
neglect the bottom friction in the following. To sum up the experimental results should
be used to establish a working range for the mathematical model and more specifically
clarify the following points

• How does h/L-ratios affect the sloshing behavior?

• How does A/L-ratios affect the sloshing behavior?
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• How does the frequency ratio β affect the solution?

• Should bottom friction be included in the mathematical model?

4.2 Presented variables

In all the performed experiments we measured the horizontal displacement and accelera-
tion of the shaking table X(t) and Ẍ(t), the wave height at the left and right tank wall
HL and HR, and the total base shear force Fx in the direction of the shaking motion.
Based on the measured signals the following quantities were derived:

Dimensionless forcing frequency

The horizontal motion of the shaking table is prescribed according to

X(t) = A sin(Ωt) (4.1)

We define the dimensionless forcing frequency β by

β =
Ω

ωw

(4.2)

where ωw is the linear shallow water sloshing frequency given in (1.5).

Dimensionless water depth

The dimensionless water depth at the tank end walls is defined by

H ′
L(t) =

HL(t)

h
H ′

R(t) =
HR(t)

h
(4.3)

For displaying the variation of water depth in time the above definition is sufficient. For a
certain time series we also want to show the water depth as function of forcing frequency,
i.e. frequency response curves or functions. In figure 4.1 a general response signal y is
shown representing H(t) with the excitation period indicated at the top. Based on the
measured time series the local maximum and minimum values inside equidistant time
windows, defined by the forcing period, are found and the maximum value is defined as
the mean value of N collected local maximum values.

ymean =
1

N

N∑
i=1

ymax
i (4.4)

The same definition applies to the minimum values. Likewise the standard deviation may
be computed as

yrms =
1

N

N∑
i=1

(ymax
i − ymean)2 (4.5)

When plotting frequency response curves the above definitions are used.
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Figure 4.1: Definition of maximum and minimum values

Dimensionless sloshing force

The sloshing force include the inertial force from ”frozen liquid” FS is nondimensionalized
according to Krabbenhoft et al. (2010b)

F ′
S(t) =

FS(t)

mwΩ2A
(4.6)

where the base motion is defined by (4.1) andmw is the mass of frozen watermw = ρLWh.
The sloshing force will have the same magnitude in either direction and therefor we

do not need to define a maximum and a minimum as for the case of the water depth.
However we still use the definitions (4.4) and (4.5) when plotting the sloshing force as
function of excitation frequency.

Dimensionless energy

The definition of mechanical work is given by the following path integral

WC =

∫
C

F · dx (4.7)

where in general force and displacement is combined using the dot product. If we want
to compute the amount of mechanical work done by sloshing force pr. excitation period
the result is

∆E =

∫ t0+Te

t0

FS(t)dX(t) (4.8)

where Te = 2π/Ω. The dot product has been omitted since the direction of sloshing force is
parallel to the displacement vector. It is important to emphasize that the above equation
(4.8) is an expression for the work done by the sloshing pr. cycle and not the energy
dissipated inside the liquid. To convince one self that this is in fact the case on might
think of the simple case of an undamped mass-spring system placed on a moving base.
For a base motion frequency equal to the natural frequency of the spring-mass system, the
integral (4.8) will grow towards infinity since the force grows to infinity and is in phase
with Ẋ. Thus the size of ∆E depends on both the magnitude of the force and on the phase
difference between the. We choose in the following, maybe a bit misleadingly, to name
the quantity ∆E the energy dissipation pr. cycle. The quantity is nondimensionalized
using the mechanical energy of the ”frozen liquid”, i.e.

∆E ′ =
∆E

1
2
mw(AΩ)2

(4.9)
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Dimensionless phase

In all the shaking table experiments we consider steady state response of the sloshing
motion by fixing the excitation frequency Ω for a period of 120 seconds pr. chosen
value. The liquid response will be nonlinear and a spectral analysis will show that the
signals, wether it be the water depth variation or sloshing force, contains the fundamental
sloshing frequency ω1 = ωw, together with odd numbers of the fundament frequency
i.e. ω1, 3ω1, 5ω1, ... and so on. The reason for the odd frequencies is naturally that thy
correspond to the unsymmetrical sloshing modes.

It is interesting to perform a spectral analysis of the liquid response to quantify the
number of higher harmonic involved in the sloshing motion but also to gain insight in the
phase between the sloshing modes and the shaking table displacement X(t).

The one-sided cross power spectral density (CPSD) Sxy between two signals x and y
is defined by

Sxy(ω) =
∞∑
0

Rxye
−iωτdτ (4.10)

where Rxy(τ) is the correlation function given by

Rxy(τ) = lim
T→∞

∫ T/2

−T/2

x(t)y(t+ τ)dt (4.11)

The phase spectrum Φxy(ω) defining the phase between the spectral components of x and
y is defined by

ϕxy(ω) = tan−1 Im[Sxy]

Re[Sxy]
,Φxy(ω) ∈]− π, π[ (4.12)

The phase spectrum ϕxy will contain phase information about all spectral components of
x and y independent of the energy contained at the respective frequencies. To extract
only the relevant phase components multiply (4.12) with the normalized CPSD:

ϕ′
xy(ω) =

ϕxy(ω)

π

Sxy(ω)

max(Sxy(ω))
(4.13)

such that only phase information for relevant frequencies are presented. Thus for ϕ′
xy =

1
2

there is a 90 degrees phase between the base amplitude and sloshing force. By setting
x(t) = X(t) and y(t) = Fs(t) the spectra SX , SFs and SXFs and the phase ϕ′ can be
computed using the shown formula.

4.3 TLD subjected to horizontal base motion

An extensive measurement campaign was carried out as shown in table 4.1. We used the
same container for all experiments with horizontal dimension LxW = 590.

4.3.1 Effect of forcing ratio A/L

In figure 4.2 three snap shots show the free liquid surface for different forcing ratios. It is
clear from the pictures that the character of the free surface changes quite dramatically
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File id h h/L ωw fw

[-] [mm] [-] [rad/s] [Hz]

h20a05 - h20a60 20 0.034 2.360 0.376

h30a05 - h30a60 30 0.051 2.890 0.460

h40a05 - h40a60 40 0.067 3.337 0.531

h50a05 - h50a60 50 0.085 3.731 0.594

h60a05 - h60a60 60 0.102 4.087 0.651

Table 4.1: Measurement campaign

for the shown forcing ratios. Thus for A/L = 0.009 the surface is smooth and more than
a single wave mode is present in the solution, while for A/L = 0.034 a discontinuity has
been formed that travels back and forth and for A/L = 0.1 a clear bore is present with
the free surface close to horizontal on either side of the discontinuity. In Krabbenhoft
et al. (2010b) a similar analysis was performed with a more detailed description.

Figure 4.3 presents the measured and computed sloshing force for a period of 60
seconds. First note that the mathematical model captures the sloshing forces remarkably
well and with the model giving better results for larger A/L values. It seems that the
numerical model underestimates the magnitude of the sloshing forces compared to the
measured values. The bottom friction is not included in the simulation and from the
shown comparison study it seems certain that friction should not be included as this will
result in a further decrease of the simulated sloshing force.

Next it is noted that the magnitude of the sloshing force decreases dramatically for
increased forcing ratios which must be explained by an increase in internal fluid damping
for higher A/L-values. This is not surprising considering the behavior of the free surface
as shown in figure 4.2 where certainly more energy is dissipated when a bore is present
compared to the situation with a smooth free surface. This will later turn out to be a
major weakness of shallow water TLDs namely that the internal damping simply becomes
too large for large A/L-ratios. For the lowest forcing ratio A/L = 0.009 higher harmonics
are clearly present in the solution which is not described by the NSW equations.
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(a) A/L = 0.009

(b) A/L = 0.034

(c) A/L = 0.10

Figure 4.2: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 5, 20
and 60 mm corresponding to A/L = 0.009, 0.034 and 0.10. Water depth
h = 40 mm.
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Figure 4.3: Experimental and computed dimensionless sloshing force F ′
S for β = 1 and

h = 40 mm. Experiments: , simulations:
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Figure 4.4: Experimental and computed hysteresis loops for β = 1 and h = 40 mm.
Experiments: , simulations:
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4.3.2 Effect of depth ratio h/L

Presented in figures 4.5-4.5 are surface profiles for three different water depths for three
different forcing ratios. In all figures the frequency ratio is constant at β = 1.0. In figure
4.5 the lowest forcing ratio of A/L = 0.009 is considered for water depths of h = 20, 40
and 60 mm. For the water depths the surface profiles, visually, all seem smooth and no
breaking occurs. Also for the highest depth ratio a single soliton is visible traveling back
and forth in the tank, see Krabbenhoft et al. (2010b) for further visual data, while for
lower depth ratios it seems that more wave modes are present. In figure 4.6 the forcing
ratio is increased to A/L = 0.034 while the same three water depths are considered. The
free surface is now no longer smooth and all profiles have a clear discontinuity in the form
of breaking region traveling back and forth. Finally, for the forcing ratio of A/L = 0.10
the discontinuity is now even clearer. For the lowest depth ratio the discontinuity appears
as turbulent rather flat region. For higher dept ratios the discontinuity is seen to be
represented by spilling breaker or by a clear roller.

In figures 4.8-4.10 the elapse of the sloshing force and hysteresis loops, corresponding
to the previously shown snap shots, are presented for a time period of 20 seconds. For
the lowest forcing ratio A/L = 0.009 the aforementioned trend of higher wave harmonics
appearing for shallower water is clear from the time variation of the sloshing force in figure
(4.8)(a-b). Even though higher harmonics are clearly present their contribution to the
dissipated energy ∆E ′ is negligible which can be concluded by comparing the dissipated
energy from experiment with that form the simulation. Increasing the depth ratio to
0.068 seems to remove one of wave modes and hence reducing the dissipated energy. The
simulation curves, do not vary for the different water depths, however as seen in the
dissipated energy ∆Esum there are small variations. The reason for this is as follows. For
each experiments the displacement time series of the shaking table is fitted to a harmonic
function as described in Krabbenhoft et al. (2010b). This fitted function is passed on
to the numerical routine. As a consequence there may be small variations in the forcing
ratio A/L for each experiment which leads to small variations in the dissipated energy
from the simulations. Finally for the largest depth ratio of 0.1 the sloshing force time
series is represented by a signal, clearly nonlinear, with a single peak for each maxima and
minima. Observe to the right in figure 4.8(f) that the measured sloshing force is almost
in phase with the base motion displacement and thus the hysteresis loop hardly opened
up. This results in a very poor energy dissipation. From a TLD perspective this results
is very important and shows that using a large filling ratio, even though the frequency
ratio is 1, results in a sloshing force that dissipates very little mechanical energy.

Increasing the forcing amplitude, figure 4.9 and 4.10 results in near perfect fits between
experiments and simulations. Clearly the agreement is better for low depth ratios but
even for, what must in the current context be considered as, large depth ratios of 0.1 the
agreement is extremely well. Again one should bear in mind that the mathematica model
is based on solid physical argumentation and that no empirical constants are used, and
when considering the extreme complex fluid behavior shown in the previous snap shots,
the agreement is even more impressive.
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(a) h/L = 0.034

(b) h/L = 0.068

(c) h/L = 0.10

Figure 4.5: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 5 mm
corresponding to A/L = 0.009. Water depth h = 20, 40 and 60 mm.

62 Department of Civil Engineering - Technical University of Denmark



4.3 TLD subjected to horizontal base motion Shaking table experiments and verification

(a) h/L = 0.034

(b) h/L = 0.068

(c) h/L = 0.10

Figure 4.6: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 20
mm corresponding to A/L = 0.034. Water depth h = 20, 40 and 60 mm.
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(a) h/L = 0.034

(b) h/L = 0.068

(c) h/L = 0.10

Figure 4.7: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 60
mm corresponding to A/L = 0.10. Water depth h = 20, 40 and 60 mm.
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Figure 4.8: Dimensionless sloshing force and hysteresis loops for β = 1.0 and amplitude
A = 5 mm corresponding to A/L = 0.009. Water depth h = 20, 40 and 60
mm. Experiments: , simulations:
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Figure 4.9: Dimensionless sloshing force and hysteresis loops for β = 1.0 and amplitude
A = 20 mm corresponding to A/L = 0.034. Water depth h = 20, 40 and 60
mm. Experiments: , simulations:
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Figure 4.10: Dimensionless sloshing force and hysteresis loops for β = 1.0 and amplitude
A = 60 mm corresponding to A/L = 0.10. Water depth h = 20, 40 and 60
mm. Experiments: , simulations:
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4.3.3 Effect of frequency ratio β

In the previous section we considered the variation of the sloshing force and hysteresis
loops for fixed frequency ratios of β = 1. As the frequency is varied the sloshing behavior
will alter its characteristics which will be described in the following.

Again three different water depths are investigated namely h = 20, 40 and 60 mm and
the forcing ratio is set to a constant value of A/L = 0.034 corresponding to A = 20 mm.
In figure 4.9 we considered these three cases for β = 1. Presented in figure 4.11 are the
frequency response curves for the dimensionless forcing frequency and dissipated energy,
i.e. the variation of the quantities as function of the frequency ratio β. We present both
experimental and simulated results, with the experimental results defined by mean values
(4.4) together with standard deviation (4.5) shown with green error lines in the figures.

First the width of the frequency response curves are noticed. There seem to be quite
a large region in the vicinity of β = 1 where the sloshing force and energy dissipation
is almost constant. The tendency though is clear that the curves peak at a frequency
slightly larger than β = 1 which is characteristic for hardening type systems as a shallow
water sloshing system is typically characterized as Krabbenhoft et al. (2010a,b).

The simulation captures the frequency response curve for the sloshing force very well,
and even better for the dissipated energy. According to our mathematical model each
of the computed curves in 4.11 are identical for a fixed forcing ratio and variable depth
ratio, i.e. they are independent of the water depth. The experimental curves are clearly
affected by changing depth ratios noticed by the frequency position of the sudden drop,
know as the jump frequency. For the lowest depth ratio the experimental sloshing forces
experiences a sudden drop, or jump, for β ≃ 1.4 while for a depth ratio of 0.1 the drop
happens at β ≃ 1.2. This jump is clearly not captured by the mathematical model which
results in a much smoother frequency response curve for the sloshing force and dissipated
energy.

To further clarify the effect of the depth ration on the experiment result the dimension-
less sloshing force, dissipated energy and water depth at the left tank wall, are presented
for the three different water depths h = 20, 40 and 60 mm, in figure 4.12-4.14. The effect
of depth ratio now becomes clearer. In general the sloshing force is captured well in the
frequency region of say 0.7 < β < 1.2, except for low forcing ratios. This is as expected
from the previous analysis in section 4.3.1. For β > 1.2 the mathematical model over
estimates the experimental results and should not be used in this frequency region for
estimating the sloshing force. In figure 4.13 the dissipated energy is presented and the
results are much more convincing with an over all better agreement between experiments
and simulations. However still the frequency region of applicability is still limited to
0.7 < β < 1.2. For low depth ratios the energy dissipation is actually captured quite
well and the agreement is much better here than for the sloshing force. The explanation
lies in the fact that the plotted sloshing force contains a lot of higher harmonics that
do not contribute so significantly to the dissipated energy which must be a consequence
of a non optimal phase shift. Finally in figure 4.14 the water depth at the left wall is
presented. The agreement is quite poor except for the lowest depth ratio and is, like just
aforementioned, a consequence of a significant amount of higher wave harmonics in the
solution which are not present in the mathematical model.
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Figure 4.11: Dimensionless sloshing force and dissipated energy for a fixed amplitude
A = 20 mm corresponding to A/L = 0.034. Water depth h = 20, 40
and 60 mm. Experimental mean value: , Experimental ±σ: ,
simulations:
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Figure 4.12: Frequency response curves for maximum sloshing force.
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Figure 4.13: Frequency response curves for dissipated energy per. cycle.
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Figure 4.14: Frequency response curves for maximum and minimum water depth at left
wall.

72 Department of Civil Engineering - Technical University of Denmark



4.4 Phase lag and sloshing force amplitudes Shaking table experiments and verification

4.4 Phase lag and sloshing force amplitudes

The computation of the dissipated energy using the integral (4.8) is a measure of the
mechanical energy being dissipated by the sloshing force, as discussed earlier. The mag-
nitude of the dissipated energy depends on the magnitude of the sloshing force as well as
the phase difference between the sloshing force and base amplitude. Thus if the sloshing
force is, say, in phase with the base amplitude the dissipated energy will be zero.

To investigate the phase between the sloshing force and base amplitude spectral anal-
ysis of the sloshing force is performed as described in 4.2. We consider the case with a
forcing ratio of A/L = 0.039, i.e. a base amplitude of 20 mm, and three different depth
depths of h = 20, 40 and 60 mm. The results from the analysis is presented in figure 4.15.
To the left standard deviation of the 1 harmonic is shown together with the standard
deviation of the full signal, i.e. the signal including all harmonics. To the right the di-
mensionless phase between the first harmonic of the sloshing force and the base amplitude
is plotted. Form the figures to the left it is noted that the first harmonic contains by far
the largest amount of the signal however for larger water depths the higher harmonics
seem to become more dominating. The phase lag is seen to have an almost linear varia-
tion with the optimal value of ϕ ≃ 0.5 occurring for larger values of β as the forcing ratio
increases. The mathematical model captures the sloshing force amplitude as well as the
phase rather convincingly.

4.5 Summary and conclusion

An in depth analysis of the sloshing behavior of water in a rectangular tank with an
enforced sinusoidal horizontal motion, has been investigated in depth. All the presented
graphs together with additional graphs not presented in the chapter can be found in the
appendix.

The following main conclusions can be drawn:

• In all the simulations the bottom friction has been omitted indicating that this term
is not important for the studied cases. This agrees with the analytical and numerical
investigation of the friction term in Krabbenhoft et al. (2010a).

• The forcing ratio A/L should in general be larger than 0.03 when using the NSW
equations for modelling sloshing in a rectangular container. For very low depth
ratios the mathematical model may provide reasonable results for a lower forcing
ratios.

• Increasing the forcing ratio A/L decreases the dimensionless sloshing force and dissi-
pated energy as a result of increased energy dissipation internally in the fluid. Thus
one might expect the internal liquid damping to result in a non-optimal damper.

• The water depth ratio h/L has a significant influence on the sloshing behavior.
Especially a combination of low forcing ratio and high depth ratio is difficult for
the mathematical model to handle. On the other hand the proposed model handles
large depth ratios surprisingly well for high forcing ratios. The upper limit proposed
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(a) A = 20 mm, h = 20 mm.
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(b) A = 20 mm, h = 40 mm.
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(c) A = 20 mm, h = 60 mm.

Figure 4.15: Amplitude of sloshing force and phase. : experimental first harmonic,
: experimental all harmonics, : simulation first harmonic, :

simulation all harmonics.
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in chapter 2 of h/L = 0.1 seems to be a reasonable choice. However the present
results indicate that one may increase this limit for larger forcing ratios.

• The fact that the depth ratio has no significant influence on the sloshing behavior
in a qualitatively sense can be useful for establishing deign charts for dampers or
for developing simpler analogous mechanical sloshing models.

• The frequency ratio β should in general be in the range 0.7 < β < 1.2 for the
mathematical model to capture the sloshing force and dissipated energy. For large
forcing and water ratios a larger frequency ratio than β = 1.2 should not be used,
however for smaller depth ratios of h/L < 0.05 the mathematical model may be
used up to β = 1.4.

• The free surface elevation at the tank walls is not capture very well by the model.
The higher wave harmonics an substantial ”run-up” effects cause the experimental
signals to differ from the simulated signals. The effect of the higher harmonics,
however, is less pronounced for the sloshing forces and even less for the dissipated
energy.

• A frequency analysis sows that the majority of information is contained in the first
harmonic. Additionally the phase between the first harmonic of the sloshing force
and the base amplitude follow a very simple almost linear trend.
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Chapter 5

TLD-structure interaction

Instead of imposing a prescribed motion of the tank, as done in chapter 4, it is possible to
analyze the coupled motion, or the interaction of the liquid in the tank and an external,
typical, elastic structure. TLD-structure interaction analysis is relevant for determining
the amount of increased damping of the structure as a result of the coupling.

The coupling between sloshing flows and elastic systems has been studied in the past
for several different applications using analytical and numerical models to describe the
fluid motion. Modelling the interaction of liquid sloshing and elastic structures using
mechanical analogies for the liquid system was being used already in the early sixties
in connection with propellant sloshing in aeronautical engineering Bauer (1963). Later
Dillingham Dillingham (1981), in a completely different field, studied the motion of ship
vessels with water on deck. In his study he coupled the NSW equations in a rectangular
tank, which he solve using the Random Choice Method, or Glimm’s method, with a simple
two degree of freedom system. The study was purely numerical. Sayer and Baumgarten
Sayar and Baumgarten (1982) studied the coupling between spherical slosh dampers and
elastic systems using a nonlinear pendulum analogy for describing the fluid sloshing.
A couple of years later Bauer Bauer (1984) analyzed the coupling motion between a
rectangular liquid container and an excited structure. The analytical derived expressions
were compared to experimental results. In Chaiseri et al. (1989) a Boussinesq type fluid
model, later referenced quite extensively by Fujino Fujino et al. (1992); Fujino and Sun
(1993) and Sun Sun (1991); Sun et al. (1989, 1992); Sun and Fujino (1994), was coupled
to an elastic structure excited with a harmonic force. Kareem in Kareem (1990) made
an analytical study of fluid slosh dampers. Kaneko et. al. coupled Peregrine’s Peregrine
(1967) Boussinesq equations to a pylon structure to investigate the added damping effects.
They used deep water dampers with a filling ratio of h/L = 0.18 and considered low forcing
ratios of approximately A/L = 0.001. To increase the effect of the damper they added
internal damping screens which they also included in their mathematical model. This
model was later used by Tait et. al. in an extensive study Tait et al. (2004a, 2005b,a,
2007).

There exist a very limited amount of published data concerned with the interaction
between shallow water TLDs, modelled using the NSW equations, and elastic structures.
In Yu et al. (1999) the authors concluded: Although the use of numerical simulation of the
sloshing motion under large amplitude excitation using the shallow water wave equations
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has been successfully accomplished,Reed D. A. (1996a,b), this model does not provide an
effective design tool in its present form. Instead the authors tried to develop a mechanical
analogy using experimental data.

In the paper Krabbenhoft et al. (2010c) we pursued the idea of coupling the NSW
equations with an elastic structure to determine how well the interaction model handles
transient effects as well as forced state state situations. This chapter describes the work
done in this paper.

5.1 Experimental setup

In order to verify the proposed mathematical interaction model, discussed in the next
section, experiments are conducted. The test rig was constructed in such a way that it
could be used both for prescribed motion experiments as well as interaction experiments.
Regarding the latter we initially wanted to perform both free decay as well as forced ex-
periments, but due to technical difficulties the forced experiments could not be conducted
within the time frame of this study. Instead we chose to borrow experimental data from
the work of Sun Sun (1991) who conducted a total of four forced response experiments in
connection with his PhD work. The two first experiments were low amplitude experiments
with A/L ≃ 0.004− 0.01 and the last two with larger amplitudes of A/L ≃ 0.025− 0.05.
We only compared the last two experiments as reported in Krabbenhoft et al. (2010c)

5.1.1 Free decay experiments

(a) (b)

Figure 5.1: Photograph of simple release mechanism.

For conducting the free decay experiments a simple release mechanism, depicted in
figure 5.1, was constructed. The table, suspended by four wires and attached with four
horizontal springs, was given a horizontal initial displacement of approximately 60 mm
and was secured using the hinge as depicted in figure 5.1. After the water had come to
a rest the hinge was knocked out of its position, i.e. released, and the liquid response
together with the table response were recorded using LabView and National Instrument
equipment.
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Exp. name L W h mw h/L fw fw/fs mw/ms

[-] [mm] [mm] [m] [kg] [-] [Hz] [-] [-]

Case1a 590 335 58 11.5 0.098 0.640 1.08 2.29

Case1b 590 335 50 9.88 0.085 0.594 1.01 1.98

Case1c 590 335 45 8.89 0.076 0.563 0.96 1.78

Case1d 590 335 40 7.91 0.068 0.531 0.90 1.58

Case2a 400 200 28 2.24 0.070 0.655 1.11 0.45

Case2b 400 200 25 1.98 0.062 0.617 1.05 0.40

Case2c 400 200 22 1.79 0.056 0.586 0.99 0.36

Case2d 400 200 19 1.54 0.048 0.543 0.92 0.31

Table 5.1: Different tank configurations for the free decay tests.

In the free decay experiments, two TLD’s with different dimensions were tested. The
TLD data is given in table 5.1. The reason for testing the two different sized containers
was simply to verify that the scaling effects are captured by the mathematical model.

5.1.2 Forced experiments

In the work by Sun Sun (1991) interaction experiments were conducted where the elastic
structure was enforced with a harmonic load. A container with a length of 390 mm and
width of 220 cm was filled with 30 mm of water corresponding to a sloshing frequency
of fw = 0.696 Hz. The mass ratio of TLD to structure was 1.05% and the structural
frequency and damping of the structure was measured to fs = 0.689 Hz and δs = 0.32
%, respectively. Two different loading cases were considered: one where the structural
response at resonance experienced a maximum value of Xmax = 50 mm and another with
Xmax = 100 mm.

5.2 Mathematical model

A mathematical model coupling the liquid sloshing with a SDOF system was derived in
Krabbenhoft et al. (2010c):

ż = A(z) + F (5.1)

with

A(z) =

 V
−(2ζsωsv + ω2

s)/M
−F(U)x)

 , F =

 0
(Fe + FS(H))/M

S(H, Ẍ)

 (5.2)

The coupled nonlinear system in (5.1) is integrated in time using an explicit approach as
discussed in Krabbenhoft et al. (2010c).
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(a) Case1a: fw/fs = 1.08
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(b) Case1b: fw/fs = 1.01
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(c) Case1c: fw/fs = 0.96
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(d) Case1d: fw/fs = 0.90

Figure 5.2: Coupled free decay experiments Case1a-d.

5.3 Free decay - results

For all eight cases given in table 5.1 the experimental and simulated free structural re-
sponse X(t) is shown in figure 5.2 and figure 5.3. Note from table 5.1 that the mass
ratio for Case1 is approximately 2% and only around 0.4% for Case2. For Case1 in figure
5.2 the structural response and the decay is seen to be captured extremely well by the
proposed interaction model for all four different water depths, i.e. four different frequency
ratios. From a visual judgement Case1c seems to be the best configuration with a very
fast decay. When the structural displacement reaches a certain low value a clear beating
response appears. For low base amplitudes the surface profile changes from discontinuous
to continuous and the internal fluid damping is decreased accordingly, resulting in a beat-
ing phenomenon well know from Tuned Mass Dampers with too low internal damping
ratios.

For Case2 the mass ratio is roughly 4-5 times smaller and the damping effect therefor
also much smaller. In figure 5.3 the structural response is shown and notice the time axis
is started from t = 60 seconds. Obviously the decay is much less significant compared to
Case1, but also the interaction model does not capture the response quite as good. The
explanation could be the long simulation time compared to the previous case. Nonetheless
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(a) Case1a: fw/fs = 1.11
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(b) Case1b: fw/fs = 1.05
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(c) Case1c: fw/fs = 0.99
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(d) Case1d: fw/fs = 0.92

Figure 5.3: Coupled free decay experiments Case2a-d.

the agreement is still very convincing and certainly useful for predicting the increased
structural damping of the coupled system.

Based on the structural time series the logarithmic decrement of the coupled TLD-
structure displacement was defined as Krabbenhoft et al. (2010c)

δs+w =
1

n
ln

X(t)

X(t+ nTs)
(5.3)

with Ts defined as the structural period Ts = 1/fs. The factor n is use for smoothing
the damping function. For Case1 and Case2 the logarithmic decrement for the coupled
response is depicted in figure 5.4. The structural damping is shown by a solid red line
and is seen to attain a rather constant value of δs ≃ 2.5%, with a small tendency to
increase for decreasing structural amplitude, which is a bit unusual and could indicate
that friction damping is present in the structural system. The total logarithmic damping
is seen to be quite constant for both cases for high structural amplitudes and the value
is more or less constant for the different depth ratios, i.e. tuning rations. TLDs are
known by practitioners to be very robust in terms of frequency tuning, which the shown
curves to some degree substantiate. The reason for the very robust behavior should most
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Figure 5.4: Experimental and simulated logarithmic decrements as function of structural
displacements. The simulated curves are shown with full lines and the ex-
perimental results with marked lines. Each line color represents a different
case.

likely be found in the high internal liquid damping present for large base amplitudes. The
drawback of a robust damper is a lack of efficiency. The increase in structural damping
for Case1 is approximately a factor of 5-6 for high amplitudes while for Case2 the increase
in the high amplitude range is a modest factor 2. Remember though that the mass ratio
is 4-5 times lower for this case.

In the low amplitude range the damping is seen to increase dramatically for fw/fs ≃ 1,
while the damping is almost constant for the depth ratios resulting in a frequency range far
from 1.0. The explanation should once again be found in nature of the internal damping.
For low structural amplitudes the internal fluid damping decreases and clearly approaches
a more optimal value resulting in a better damping of the structure. How ever when the
internal damping is reduces the frequency tuning, i.e. the ratio fw/fs becomes more
important, analogous to the tuning of TMDs, and hence the modest increase in damping
for the two depth ratios with poor frequency tuning. The interaction model captures the
trend qualitatively but the values are not very exact. For this low amplitude range a more
appropriate choice of sloshing model might be a Boussinesq type fluid model.

5.4 Forced response - results

Using the dampers to capture the transient response, as shown in Krabbenhoft et al.
(2010c) both by a visual comparison of video recordings and simulated free liquid surface
as well as structural response time series, must be considered as a more challenging test
than a forced steady state response test case. Presented in figure 5.5 are experimental
results from Sun Sun (1991) and simulated results from the proposed interaction model.
The interaction model captures the magnitude of the structural amplitude well but there
seems to be quite a significant frequency shift in the position of the maximum amplitude.
Thus the simulation, for both cases, estimates the maximum vibration amplitude at a
lower frequency ratio β = fe/fs, with fe being the excitation frequency, than the exper-
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(b) Xmax = 100 mm

Figure 5.5: Frequency response curves for horizontal displacement of 1-DOF structure
equipped with TLD. Experimental results taken from Sun et al. (1992)

imental studies show. More experimental tests must be carried out, where the sloshing
forces should be measured and compared to the simulated sloshing forces, in order to
establish an explanation for this phenomenon.

5.5 Summary and conclusion

In chapter 4 an extensive experimental campaign was carried out in order to verify the
proposed mathematical model. In all the experiments, and the following verification, the
liquid tank, or TLD, was imposed a prescribed harmonic base motion and all the sloshing
variables of interest were recorded and compared. In this chapter, instead of imposing
a base motion, the sloshing model was coupled to an elastic structure, a simple linear
SDOF system, and the interaction was studied. Based on the presented results an on the
article Krabbenhoft et al. (2010c) the following conclusions can be drawn:

• The proposed interaction model is capable of reproducing the free decay of a struc-
ture coupled with a TLD. The frequency ratio of the TLD and structure was varied
between 0.9 < fw/fS < 1.1 and good agreement was found for all ratios.

• For large structural amplitudes the frequency ratio of the TLD and structure was
found to be less important with respect to the total damping of the coupled system.
For lower structural amplitudes the frequency ratio became important

• The TLD’s that were tested worked better for low vibration amplitudes with a
very high increase in total structural damping for low amplitudes compared to high
amplitudes. This surely indicates that TLD’s should be designed, if possible, to
work at low amplitudes.

• For mass ratios as low as 0.4% the tested TLD’s approximately double the logarith-
mic decrement from 2.5% to 5%. The value was constant for a very large amplitude
range. This indicates that though the TLD may not be optimal tuned, analogous
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to a detuned TMD, the TLD is extremely robust, and works in a large amplitude
range in which the frequency tuning is not so important. Thus for the frequency
range tested between 0.9 < fw/fS < 1.1 the total logarithmic decrement was almost
identical in the high amplitude range.

• A visual comparison in Krabbenhoft et al. (2010c) showed that the interaction
model, and in particular the sloshing model, captures the free liquid surface well,
even for transient experiments. This indicates that the model might be useful for
studying impact type sloshing behavior,

• Results from two forced experiments performed by Sun in Sun (1991) showed that
the interaction model can reproduce the magnitude of the structural frequency re-
sponse curve very well, however with an error in the frequency location of the
maximum structural response. More experimental data is needed for studying this
problem further.
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Chapter 6

Concluding remarks

The basic aim of this thesis was to establish a mathematical model for describing the in-
teraction between a Tuned Liquid Damper and a structure. The road to this goal however
turned out to be more crooked and hilly than expected. We chose to follow a road that
gathered three of the main engineering disciplines namely mathematical modelling, nu-
merical simulation and experimental verification as reflected in the subtitle of the present
thesis.

Even though the goal throughout the study was to describe Tuned Liquid Dampers, the
area of sloshing quite quickly became the center or rotation, with the simple reasoning that
having established a model that could precisely and efficiently describe the sloshing forces
the final coupling of this model to an elastic structure would be much less of a challenge,
and thereby the initial problem of describing the interaction between a TLD and structure,
would be virtually solved. For this reason a large part of the thesis has been devoted
to studying liquid sloshing, which essentially is a study of the Navier-Stokes equations
formulated in a non-inertial system, together with experimental work to understand and
visually observe the real and relevant physics that any sound mathematical model must
reproduce to an acceptable degree.

The thesis is finished with a conclusion, a discussion on the success in meeting the
initial aim and suggestions to future work in this challenging and interesting area of
research

6.1 Conclusion and discussion

• Starting from the Navier-Stokes equations the NSW equations including viscous
effects were derived in a non-inertial coordinate system. Only the bulk viscous
terms were retained in the solution. The effect of bottom friction in connection
with numerical modelling of shallow water TLDs has not been performed using
this approach in previous studies. In the work of Sun (1991) the effect of bottom
friction and side wall friction was incorporated using results from classical studies
Miles (1967) based on linear sloshing. The effect of bottom friction in connection
with shallow water TLDs exposed to large base amplitudes has not been researched
earlier to the authors knowledge. The study in Krabbenhoft et al. (2010a,b) showed
that the effect of bottom friction can be neglected as long as the depth ratio h/L is
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sufficiently large and when the material used for the tanks is smooth such as plastic,
steel etc.

• The governing fluid equations for shallow water sloshing, the NSW equations, were
analyzed by performing a nondimensionalization. The analysis revealed that for
sloshing in a flat bottomed rectangular container the solution of the problem is
defined by three parameters, namely a forcing term A/L, a frequency term β =
Ω/ωw and a term concerned with the bottom friction. Although these dimensionless
parameters have been used by previous researchers we have not seen a rigorous
derivation or even argumentation for using them. This is done in Krabbenhoft et al.
(2010a). The result from the nondimensionalization is important in connection with
understanding the physics of the problem and certainly for designing TLDs. With
respect to the latter point consider the following example. A TLD should always be
designed such that the linear sloshing frequency is close to the structural frequency
of interest i.e. ωw ≃ ωs. Now, designing a damper with a given frequency can be
achieved by various choices of liquid depth h and tank length L, see (1.4). However
from the analysis it was shown that A/L is the term defining the sloshing behavior
and thus the damper dimension should be chosen not only based on the frequency
but, very importantly, also based on the tank length. Another very important
result from the analysis is the fact that the acceleration of the base motion, as one
might suspect, is not the important term but in fact A/Lβ2, i.e. the forcing ration
multiplied with the frequency ratio squared is the governing term. This implies
that for β = 1 and given a tank with a fixed length L, the fluid behavior will
qualitatively behave in the same manner for a fixed base amplitude A. Consider for
example increasing the fluid depth while still keeping β = 1 and the base amplitude
fixed. This would result in an increased acceleration but the qualitatively behavior
of the fluid would not change. This argumentation holds only as long as the depth
enters as a pure scaling parameter as in the NSW equations. Thus, it is essential to
study the effect of the h/L-ratio on the sloshing behavior.

• The derivation of the mathematical model was based on certain assumptions on
the forcing ratio A/L and depth, or filling, ratio h/L. No information exists on
the working range for the NSW equations in connection with modelling of slosh-
ing in rectangular containers and the experimental and numerical work reported
in Krabbenhoft et al. (2010a,b) is novel in this sense. Reed et. al. Reed et al.
(1998) reported results from an experimental study followed by a rather perfunc-
tory comparison study between experimental and numerical results. However based
on the present rigorous work a working range for the application of the NSW equa-
tions in connection with sloshing has been established. It has been shown that
choosing a depth ratio between 0.03 < h/L < 0.1 combined with a forcing ratio of
0.015 < A/L < 0.1 and a frequency range of 0.7 < β < 1.2 results in good agree-
ment between experimental and numerical results with respect to sloshing forces
and dissipated energy. This information is imperative in connection with using the
proposed model for simulating TLDs.

• The numerical solution of the NSW equations is a huge field of research with a
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enormous amount of papers being published with new numerical schemes. For an
engineer interested in simulating shallow water Tuned Liquid Dampers, and thus
simulating the NSW equations, this research field may seem immense and very
difficult to grasp. In the present research, therefor, a very large amount of work was
dedicated to the numerical treatment of the fluid equations, for investigating and
finding the simplest and most efficient way of solving the fluid equations for other
researchers to use for studying TLDs. In Krabbenhoft et al. (2010a) a state of the art
high order numerical method was compared to a simpler and easier implementable
method, showing that the simpler method is adequate for solving the NSW equations
in connection with sloshing. In several papers concerned with simulating sloshing
behavior using the NSW equations, e.g. Reed et al. (1998); Armenio and Rocca
(1996); Dillingham (1981) cumbersome, somewhat outdated and CPU expensive
methods were used, making it difficult or impossible for engineers and researcher
not experts in fluid dynamics, to use the proposed methods. The present study
proposes a method that is clear, well documented and thus possible to implement
without being an expert in computational fluid dynamics.

• The interaction of sloshing, described using the NSW equations and elastic struc-
tures has received very little attention in the research community as a whole. In
connection with the design of TLDs there has been no significant attempts reported,
and the work presented in Krabbenhoft et al. (2010c) is thus novel.

• The proposed interaction model is documented by free decay experiments with a
visual analysis showing that the mathematical fluid model captures the transient
fluid behavior very well. To the authors knowledge no numerical or experimental
comparison studies exist in connection with this transient interaction. The results
are convincing and indicate that the proposed model might be useful for studying
impact dampers based on liquid sloshing. This result certainly meets a part of the
initial aim of the present study as discussed earlier in this chapter.

• The interaction between the TLD and structure results in an increased damping
of the coupled system. The free decay of the structural response for the coupled
system is captured very well by the mathematical model.

• The total damping of the coupled system increases for decreased structural ampli-
tudes. This effect is reproduced by the mathematical model.

• Experimental data from Sun (1991) was used to verify the model for the steady
state interaction of a TLD and a structure with a harmonic load. The results from
the analysis shows that the mathematical model captures the magnitude of the
structural response. However, there is a shift in the simulated frequency at which
the maximum structural response occurs.
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6.2 Future work

6.2.1 Experiments

The test rig used in this study has room for improvements where the most obvious are
the following

• In connection with interaction experiments an extensive study should be under-
taken. This requires the generation of a reliable harmonic force with an adjustable
frequency and load amplitude.

• Studying the interaction of shallow water TLDs and structures subject to random
loading has not been studied in connection with shallow water TLDs. An experi-
mental study would require the use of a random load generator.

• The unidirectional mode of the shaking table is secured by using primitive guiding
wheels. The structural damping stems from this mechanism and should be improved,
such that the structural damping can be adjusted more rigorously.

• All the experiments conducted in this research were unidirectional. Extension of
the shaking table to a bidirectional table could be very interesting, and specially
interesting in connection with interaction experiments.

• The effect of varying the fluid viscosity has not been tested experimentally. Studies
by Sun Sun (1991) show that viscosity does have an effect on the liquid sloshing. In
the derived equations it was assumed that the bulk viscosity could be neglected and
that bottom friction was the only relevant contributor to energy dissipation, besides
turbulence in the hydraulic jump. For a high viscous fluid the viscous term for the
fluid bulk can most likely not be neglected. This will require a further study.

6.2.2 Mathematical models

The mathematical model derived and analyzed in this work should be further verified
against numerical experiments. The error in the frequency shift in connection with the
loaded interaction experiments should be further investigated.

Some point that have not been mentioned in this work and that could be researched
in the future include

• The proposed model should be extended to 3D, enabling the simulation of 3D tanks
of arbitrary geometry, and tested on more realistic structures and more realistic
loading scenarios.

• The effect of a sloping bottom needs further attention. The point is interesting from
a practical installation point of view where the mounting surface may be slightly
inclined.

• In the field of naval engineering sloshing coupled to ships is simulated using different
advanced methods. These methods should be studied as they might be useful for
constructing simpler design models to be used by engineers.
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Appendix A

Experimental calibration

Tank

Laser displacement meter

Wavegage 1Wavegage 2

Water

Accelerometer
Loadcell

Motor with crank

X(t)

Figure A.1: Experimental setup

A.1 Experimental calibration procedure

In the experiments four different types of transducers are use: wave gages, a force trans-
ducer, an accelerometer and a displacement transducer. All transducers, except for the
wave gages, are delivered with calibration constants, i.e. constants relating the measured
voltage signal denoted V transducer

i , where the lower index i indicates a discrete or sampled
signal and the upper index refers to the specific transducer, with physical values. Thus

Stransducer
i =

V transducer
i

Ktransducer
(A.1)

In the following the calibration constant are verified through a series of shaking table
experiments collected in table A.1
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Experimental calibrationA.2 Calibration of accelerometer and laser displacement transducer (LDT)

Experiment i.d. A fe mass configuration mtot

[-] [mm] [Hz] [-] [kg]

m01a05 5 0.4-1.2 11 15.045

m01a20 20 0.4-1.2 11 15.045

m01a60 60 0.4-1.2 11 15.045

m02a05 5 0.4-1.2 12 22.311

m02a20 20 0.4-1.2 12 22.311

m02a60 60 0.4-1.2 12 22.311

m03a60 60 0.4-1.2 13 0.0

Table A.1: Measurement campaign. Calibration of FT and accelerometer.

A.2 Calibration of accelerometer and laser displacement trans-
ducer (LDT)

The laser displacement transducer WayCON LAS-T-250A is delivered as calibrated and
supplies a 0.10 voltage signal in the displacement range 50-300 mm, corresponding to a
signal output of 25 mm/volt.

The accelerometer used in the test is of type B&K 4575 and has a calibration constant
of 102.3 mv/ms−2. The calibration constant is based on a calibration procedure from B&K
in the frequency range from 1 to 200 Hz and thus the calibration constant may be different
in the low frequency range 0.5-1.2 Hz where the majority of our experiments are carried
out. A range of experiments are conducted to establish the amplitude relationship between
the accelerometer and LDT. The shaking table is moved in the horizontal direction with
an amplitude A and frequency Ω, thus the table displacement is approximately given by

X(t) = A sin(Ωt) (A.2)

To establish the relation between the measured acceleration and displacement we choose
to fit the measured displacement signal to the following function

X̃(t) = Ã sin(Ω̃t+ ϕ̃) (A.3)

where the unknowns Ã, Ω̃ and ϕ̃ are found using a least square optimization procedure,
thus a very good estimate of the table frequency and amplitude has been established.
The frequency could of course also have been established using a Fourier transformation,
however later on we will need the shown data fit. For every experiment id in table A.1 a
total of nine experiments are performed varying the table frequency from 0.4 to 1.2Hz in
steps of 0.1 Hz and keeping the table amplitude in a fixed position. The data processing
shown in figure A.2 is performed for every one of the nine runs and based on the data the
standard deviation of the voltage signal from the accelerometer and LDT is found and
plotted as shown in figure A.3. A best straight line is estimated where the slope is an
estimate of the calibration constant Kacc, using the following definition

Kacc[V/ms−2] =
σV acc

i

Ω̃2σXi

(A.4)
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A.2 Calibration of accelerometer and laser displacement transducer (LDT)Experimental calibration

Read 60 s data file remove first 30 seconds Low pass filter

Fit measured displacement to

X̃(t) = Ã sin(Ω̃t+ φ̃)
Multiply cal. constannt

Figure A.2: Fitting procedure
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Figure A.3: Best straight line fit through accelerometer and displacement data. The data
is taken from experiment m02a60, see table A.1

Experiment i.d. Kacc

[-] volt/ms−2

m01a05 0.1030

m01a20 0.1035

m01a60 0.1040

m02a05 0.1028

m02a20 0.1037

m02a60 0.1041

m03a60 0.1034
1
N

∑
0.1035

Table A.2: Computed slopes

In table A.2 the computed slope is shown for all seven experiments. The calibration
constant is close to constant for the different amplitudes. It is seen that the estimated
calibration constant is close to the value supplied by B&K 4575 with a value of 0.1023
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Experimental calibration A.3 Calibration of Force Transducer (FT)

V/ms−2. This value is used in the experiments.

A.3 Calibration of Force Transducer (FT)

A vital part of the experimental setup is the Force Transducer (FT) used to measure
the horizontal sloshing forces. The FT used in the experiments is of the type AMTI
MC3-6-500 and is capable of measuring three force and three moment components.

The calibration is divided into a static part and a dynamic part. The purpose of a
static calibration is solely to establish the static calibration constant while the dynamic
calibration is twofold. First we need to determine the size of the inherent dead mass of
the FT since this mass will give a contribution to the total inertia force. Secondly we
need to determine the dynamic characteristics of the FT in the frequency area of interest.

A.3.1 Static calibration

The static calibration setup is depicted in figure A.4. A thin string is attached to the FT
at at height h above the FT top plate, and is along a horizontal line drawn to and around
a frictionless wheel where a mass tray is finally hung. By adding mass the gravity force Fg

and thereby the horizontal force acting on the FT, can be varied. The calibration curve
is shown in figure A.5 where the mean value of the voltage signal from the FT is shown
as function of the applied force. The trend is very linear and the calibration constant is
found as the slope of the shown line to

KFT = 0.0540
volt

N
(A.5)

Loadcell

h

Frictionless wheel

kg

Fg

Figure A.4: Static calibration of force transducer
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Figure A.5: Static calibration of force transducer. In the figure h = 0 mm

A.3.2 Dynamic calibration - inherent FT mass

To establish the inherent FT mass a number of shaking table experiments are conducted
with no mass added to the FT. The experiment are identified as m03a60 in table A.1. In
the experiments the amplitude of the table is set to a constant value of A = 60 mm and
the frequency is varied from 0.4 Hz to 1.2 Hz in steps of 0.1 Hz. For each frequency value
the standard deviation of the FT signal and acceleration signal is recorded and plotted
as shown in figure A.6. Based on the following relation
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Figure A.6: Dynamic calibration of FT. Inherent mass

σSFT
i

= minhσSacc
i

(A.6)

the slope of the line in figure A.6 is a measure of the inherent FT mass mmathrminh and is
found to

minh = 0.290 kg (A.7)
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A.3.3 Dynamic calibration - amplitude

The total horizontal inertia force acting on a force transducer loaded with a mass m and
given a horizontal acceleration Ẍ(t) is

FI(t) = (m+minh)Ẍ(t) = mtotẌ(t) (A.8)

In the previous section the calibration constant relating voltage output from the FT to
force, KFT, was found A.11 through a static calibration and also the calibration constant
relating voltage output from the accelerometer to acceleration, Kacc, was established A.2.
This enables us to compute the inertia force from either the FT or from the total mass
and acceleration. The residual defined as

ri = SFT
i −mtotS

acc
i (A.9)

i.e. the difference between the force measured using the FT and the signal computed
using measured acceleration and total mass, should be minimized, and theoretically equal
to zero. However due to measurement noise, small phase lags between the different trans-
ducers, the residual will de different from zero. This is shown in figure A.7 where the
force signals are shown to the left and the residual together with the FT signal to the
right for different frequency values and a fixed amplitude of A = 5 mm. It is noticed that
especially the low frequency case has a quite large residual signal. To improve this we
try to use the displacement signal from the LDT and convert this into acceleration using
the forcing frequency. As long as the forcing signal is narrow banded the error in the
computed acceleration signal is very limited. In figure A.8 the force signals and residuals
are again depicted nut now with a force based on the signal from the LDT. The residuals
are reduced very much for the low frequency case while the effect is smaller for the higher
frequencies.

To quantify the error connected with subtracting the two force signals we define the
Noise to Signal Ratio, NSR, as the following

NSR =
σri

σSFT
i

(A.10)

In figure A.9 the Noise to Signal Ration has been plotted as function of the acceleration
for mass configuration 1 and 2. In each figure the NSR has been computed using the
accelerometer signal and the converted LDT signal. For all cases it is seen that the NSR
for the converted LDT signal is well below 10% and for most cases around 5%. Even
though the NSR is lower for the accelerometer based force in the acceleration range 0.5-
3 ms−2 we find that using the converted LDT signal in general gives a more smooth
signal, since of course spurious high acceleration peaks are not measured by the LDT,
and therefor we use this approach for cases where the forcing frequency is narrow banded.
For other cases the accelerometer based force will be used.

A.4 Calibration of wave gages

A wave gage is mounted in each end of the tanks and are not supplied with a calibration
constant. The calibration routine is performed in the following way. The tank is placed
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Figure A.7: Force measured by FT and force computed using measured acceleration Sacc
i

and total mass mtot.

is placed on a horizontal plane with the wave gages in the working position. A fixed
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Figure A.8: Force measured by FT and force computed using measured displacement
SLDT
i , forcing frequency Ω and total mass mtot.

volume of water is measured on a scale and is poured into the tank. The undisturbed
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Figure A.9: Noise to Signal Ratio, NSR, for mass configuration 1 and 2
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Figure A.10: Wave gage calibration

water depth is easily found using the dimensions of the tank together with the density of
water ρ = 1000kg and the mass of the mass. Using this routine compared to measuring
the depth directly is much more precise. Of course the plane where the tank is mounted
must be perfectly plane which is assured using a digital inclinometer. The results from the
calibration are shown in figure A.10 and the calibration constants defined as the slopes of
the best fitted straight lines are

KWG1 = −0.04130
volt

mm
, KWG2 = −0.04327

volt

mm
(A.11)
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Figure B.1: Frequency response curves for sloshing force. Water depth h = 20 mm
corresponding to h/L = 0.034.
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Figure B.2: Frequency response curves for sloshing force. Water depth h = 30 mm
corresponding to h/L = 0.051.
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Figure B.3: Frequency response curves for sloshing force. Water depth h = 40 mm
corresponding to h/L = 0.068.
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Figure B.4: Frequency response curves for sloshing force. Water depth h = 50 mm
corresponding to h/L = 0.085.
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Figure B.5: Frequency response curves for sloshing force. Water depth h = 60 mm
corresponding to h/L = 0.101.
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Figure B.6: Frequency response curves for energy dissipation. Water depth h = 20 mm
corresponding to h/L = 0.034.
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Figure B.7: Frequency response curves for energy dissipation. Water depth h = 30 mm
corresponding to h/L = 0.051.
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Figure B.8: Frequency response curves for energy dissipation. Water depth h = 40 mm
corresponding to h/L = 0.068.
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Figure B.9: Frequency response curves for energy dissipation. Water depth h = 50 mm
corresponding to h/L = 0.085.
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Figure B.10: Frequency response curves for energy dissipation. Water depth h = 60
mm corresponding to h/L = 0.101.

Department of Civil Engineering - Technical University of Denmark 119



Frequency response curves

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.5

1

1.5

2

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(a) a = 5 mm, A/L = 0.009

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(b) a = 10 mm, A/L = 0.017

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(c) a = 20 mm, A/L = 0.034

0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(d) a = 40 mm, A/L = 0.068

0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(e) a = 60 mm, A/L = 0.101

Figure B.11: Frequency response curves for wave depth at left tank wall. Water depth
h = 20 mm corresponding to h/L = 0.034.
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Figure B.12: Frequency response curves for wave depth at left tank wall. Water depth
h = 30 mm corresponding to h/L = 0.051.

Department of Civil Engineering - Technical University of Denmark 121



Frequency response curves

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(a) a = 5 mm, A/L = 0.009

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(b) a = 10 mm, A/L = 0.017

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

2

4

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(c) a = 20 mm, A/L = 0.034

0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(d) a = 40 mm, A/L = 0.068

0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

β [−]

H
L
 [−

]

 

 
Experiment
Simulation

(e) a = 60 mm, A/L = 0.101

Figure B.13: Frequency response curves for wave depth at left tank wall. Water depth
h = 40 mm corresponding to h/L = 0.068.
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(e) a = 60 mm, A/L = 0.101

Figure B.14: Frequency response curves for wave depth at left tank wall. Water depth
h = 50 mm corresponding to h/L = 0.085.
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(e) a = 60 mm, A/L = 0.101

Figure B.15: Frequency response curves for wave depth at left tank walln. Water depth
h = 60 mm corresponding to h/L = 0.101.
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Shallow Water Sloshing. Part I. Theoretical and numerical
background

J. Krabbenhøft∗,a, C.T. Georgakisa

aDepartment of Civil Engineering, Technical University of Denmark, Building 118, Brovej, 2800 Kgs. Lyngby, Denmark

Abstract

The nonlinear shallow water equations (NSW equations) describing fluid motion in a partially
filled rectangular tank given a prescribed horizontal oscillatory base motion is investigated. The
NSW equations, including contributions from friction and variable bottom topography, are de-
rived. and a dimensional analysis, assuming a flat bottom, is carried out. This analysis results in
three governing parameters: an amplitude parameter Λ, defining the ratio of base motion ampli-
tude to tank length, a frequency parameter β, defining the ratio base motion frequency to linear
shallow water sloshing frequency, and finally a friction parameter γ based on a Chezy type for-
mulation. Neglecting friction, the behavior of the liquid sloshing at resonance is alone governed
by the amplitude parameter Λ.

In order to solve the inhomogeneous set of hyperbolic partial differential equations (PDE)
describing the liquid motion of two different algorithms are first tested intensively on problems
with reference solutions and afterwards on a sloshing problem. The study shows that the simplest
of the two methods is adequate for solving the governing set of hyperbolic PDEs. Also, in
the numerical study the importance of using a consistent conserving formulation is illustrated,
showing that a non-conserving formulation estimates an incorrect shock speed for a moving
hydraulic jump when the jump is large.

A parameter study reveals that the system exhibits a hardening type behavior, especially with
respect to the maximum wave height variation. The dimensionless sloshing force decreases
with increasing base motion amplitude Λ indicating that the internal fluid dissipation increases
with increasing Λ values. The work of the sloshing force per cycle follows the same behavior.
Finally the effect of bottom friction on the solution is investigated, showing that for very shallow
water tanks with a rough bottom the effect becomes significant, while for containers with smooth
bottom the effect is negligible.

Key words: Nonlinear shallow water equation, sloshing, Tuned Liquid Damper, Energy
dissipation

1. Introduction

Free surface oscillation of liquids in partially filled containers is of relevance in a large num-
ber of engineering disciplines. In naval engineering Liquid Nitrogen Gas (LNG) containers with
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ballast tanks experience heave, pitch and roll motions due to wave loads on the ships. As a re-
sult, the containers must be designed to withstand the sloshing and slamming loads. In aerospace
engineering, fuel containers must be analyzed and dimensioned such that the sloshing forces do
not generate unwanted destabilizing feedback forces to the aircraft. Another unwanted effect of
water sloshing is the destabilizing effect of green water on ship decks. This problem is espe-
cially relevant for stability of fishing vessels. Finally, Tuned Liquid Dampers (TLD) are used to
limit unwanted structural vibrations in vibration sensitive structures such as high rise buildings,
chimneys, telecommunication towers, and cables. In the present paper our focus is mainly on the
description of TLDs. Although the theory presented is generally applicable, we limit ourselves
to treating the case of horizontally oscillated rectangular containers. The analysis is further sim-
plified by examining only the two-dimensional case, i.e. unidirectional container oscillations,
and more importantly restricting the water to be shallow compared to the length of the container.

The mathematical description of sloshing is in general very complex and in its full form in-
volves solving the full incompressible Navier-Stokes equations together with kinematic and dy-
namic free surface and bottom boundary conditions. More precisely the full three-dimensional
problem consists of three equations for the conservation of momentum, one equation for the con-
servation of mass, a kinematic and dynamic equation for the free surface and finally a kinematic
equation for the bottom topography. In some early analytical studies on fluid sloshing the full
nonlinear set of equations were simplified by neglecting viscous effect and assuming irrotational
flow (permitting the use of a potential formulation), linearizing the free surface condition and as-
suming flat-bottom containers. The resulting linear set of equations are know as the linear Euler
equations. One of the earliest studies [1] solved the linear Euler equations in an oscillating rect-
angular flat bottomed container. Based on the results obtained an equivalent mechanical model
of the fluid container was derived revealing that the so-called participating mass for a rectangular
container oscillating in a horizontal direction attains a maximum value of approximate 81% of
the total liquid mass. As the liquid depth to length ratio (h/L-ratio) increases the participating
mass decreases. This early result has been utilized in several subsequent studies concerning the
design of TLDs [2, 3]. For more complex geometry, e.g. for variable bottom topography, inclu-
sion of baffles etc, it becomes difficult, or even impossible, to solve the linear Euler equations
analytically and one must resolve to numerical methods. Some recent papers include [4, 5, 6]
where the Finite Element Method has been used to handle more complex geometry and the case
of baffled containers.

The linearized Euler equations, while possible to handle analytically and relatively easy to
handle numerically, fail to give a description of the fluid behavior for forcing frequencies close
to the natural sloshing frequencies. To analyze the resonance behavior of fluid sloshing a number
of researchers have solved the full nonlinear set of equations for the 2D case [7, 8, 9, 10, 5] and
for the 3D case [11, 12]. The simulations often agree qualitatively well with experimental results
and handle extremely complex physical processes such as overturning and breaking waves, but
the simulation time is often very long, spanning from hours [9] to days [11] or weeks [7]. The
long simulation time together with an often complex numerical solution procedure, makes the
approach far from obvious for simulating TLDs.

In the area of coastal hydrodynamics, concerned with the modelling of flows in for example
rivers, channels, estuaries etc, shallow water approximations of the incompressible Navier-Stokes
equations are often used. The most popular model equations for studying near-shore hydrody-
namics [13], and in general free surfaces in shallow water flows, are the Nonlinear Shallow Water
Equations (NSW equations) also known as the Saint-Venant equations together with a large class
of so-called Boussinesq-type equations (BT equations). A comprehensive overview and review
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of BT equations is given in [14]. In the shallow water models the momentum and mass conser-
vation equations are depth-integrated resulting in a reduction of variables by one compared to
the full problem described earlier. But more importantly, by substituting the nonlinear kinematic
boundary condition into the depth integrated mass and momentum equations, the full nonlinear
description of the surface is retained exactly leaving only, for the 3D case, two equations for
the conservation of momentum and one equation for the conservation of mass. The variable de-
scribing the free surface enters into the mass conservation equation and thus requires no special
treatment.

The price for performing the approximations is loss of a large part of the physics and thus
the different approximate equations must be chosen and used with care such that they describe
and represent the fundamental physical phenomena of interest. As a reward the equations can be
solved extremely fast and very easily coupled to elastic structures to examine the fluid structure
interaction relevant for for example TLDs.

The main difference between NSW and BT equations lie in their dispersion characteristics.
The NSW equations are non-dispersive, i.e. waves propagate with a speed independent of its
wave length, but are however capable of capturing very complex physical phenomena such as
hydraulic jumps and bores, including the energy loss associated with these processes. The nature
of the NSW equations result in development of bores given infinitely small and smooth initial
conditions which is non-physical and thereby limits the use of the equations. The BT equations,
on the other hand, include dispersion and are in general used to model long wavelength, small
amplitude gravity waves [15]. The inclusion of dispersion in the BT equations results in a smooth
surface profile and thus in order to include energy dissipation empirical terms must be added [13].

To date, most studies of liquid sloshing in partially filled containers have focused on the BT
approach. An early paper by Chester and Bones [16], concerned with shallow water sloshing
in horizontally excited rectangular containers, compared analytical expressions including disper-
sion to experimental results and found reasonable agreement. This study was based on a low
excitation level of A/L = 0.0013 − 0.0052, A being the maximum amplitude of the base motion
amplitude, and h/L-ratios between approximately 0.02 and 0.08. An often cited and somewhat
classical numerical/experimental study of shallow water sloshing is [17] who solved the BT
equations proposed by Peregrine [18] for a horizontally oscillating rectangular tank. The energy
dissipation was modelled following the work of Miles [19]. The equations were solved using
the FEM and good comparison was found between simulations and experiments. However, the
base motion amplitude for the steady state experiments, A/L ≃ 0.003, was rather low. In [20]
another set of BT equations, derived by Wei and Kirby [21], were solved for a rectangular con-
tainer oscillating in both horizontal and vertical directions. Also here a good agreement between
numerical and experimental results was found. A similar study using the same set of equations
was performed later by Frandsen and co-workers also for low abse motion amplitudes [22]

Fewer studies have been carried out in connection with shallow water sloshing using the non-
dispersive NSW equations. One of the earliest studies focusing on shallow water sloshing in
rectangular tanks exposed to roll motion is reported in the paper by Verhagen and Wijngaarden
[23]. An analytical expression derived from the linearized shallow water equations predicted
infinite wave amplitudes in contradiction with the experiments where a bore was developed.
Based on the 1D compressible Euler equations describing gas flow, an analytical expression was
derived showing good agreement with the experimental results. Shallow water sloshing was
studied numerically in [24] in connection with studies of vessels with water on deck. The NSW
equations were here solved using the Random Choice Method together with a splitting scheme
to handle the source terms generated by the moving frame of reference. In [25] roll motion
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of a rectangular container was considered with depth ratios between h/L = 0.05 − 0.20. The
authors concluded that the NSW equations could be used for depth ratios as high as h/L = 0.15
to provide fairly accurate results even for large excitation amplitudes.

In the context of Tuned Liquid Dampers, a model based on BT equations was used by Fujino
and co-workers [26] to simulate sloshing in a rectangular container oscillating in a horizontal
direction. The model was later modified with empirical functions to handle breaking waves
[27]. In [28] Kaneko et. al. modelled Peregrines BT equations and included submerged nets in
the formulation to simulate TLDs. The model was later used to analyze a TLD mounted on a
bridge pylon. In [29] Reed and co-workers investigated rectangular containers with depth ratios
between 0.029-0.079 exposed to horizontal base motion oscillations with amplitude ratios in the
range A/L = 0.03 − 0.068. A single experiment with a h/L-ratio of 0.05 and A/L = 0.03 was
compared to numerical simulations of the NSW equations showing good agreement.

Despite the many investigations of shallow water sloshing in rectangular containers, there is to
the authors’ knowledge, no comprehensive source of information regarding the application range
of the NSW equations in connection with horizontally oscillating containers. It is essential for
any practitioner wanting to use the NSW equations in a design situation that the working range
of the equations are thoroughly established. Indeed, we must expect the NSW equations to break
down for certain h/L-ratios but also for certain A/L-ratios. It is the main objective of this paper,
together with an experimental companion paper, to investigate and establish a parameter range
for which the NSW equations can be used to simulate sloshing in rectangular tanks oscillated
in a horizontal direction. The chosen overall procedure is the following: first derive the the
governing equations and find governing parameters. Next find a suitable numerical scheme to
solve the equations. In this context suitable means simple, effective and precise. This is the
subject matter of the present article. Next a range of experiments are performed, varying the
governing parameters, and the experimental findings are compared to simulation results. This is
the subject matter of the companion paper.

The present paper is laid out on the following form. First the 2D Euler equations for incom-
pressible fluid are formulated in a non-inertial reference system, i.e. in a moving coordinate
system. Based on these equations the depth averaged mass and momentum equations are de-
rived for a tank with general bottom topography - the NSW equations. To establish governing
system parameters the NSW-equations are nondimensionalized and the relevant dimensionless
parameters are found. The NSW equations with source terms constitute a so-called System of
Balance Laws which are not trivial to solve. We choose to solve the equations in a Finite Vol-
ume framework and implement two different schemes: A relative simple 1. order scheme and a
more complicated 3. order scheme especially suited for handling System of Balance Laws. The
schemes are first verified on different test cases and finally tested on a sloshing problem. Finally
a full parameter study of the NSW equations is performed.

2. Nonlinear shallow water equations

In the following the nonlinear shallow water (NSW) equations, for a Newtonian fluid in a
non-inertial frame are derived. The various simplifications performed in the derivation will be
addressed and discussed. The derivation largely follows [30, 31] to whom the reader is referred
to for further details.
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Figure 1: Sketch of rectangular TLD tank

2.1. Navier-Stokes equations
The governing equations describing two dimensional constant density flows of an incompress-

ible fluid are the well known Navier-Stokes equations which express the conservation of momen-
tum and mass:

ut + (uu)x + (uw)z = −px/ρ + (νux)x + (νuz)z − Ẍ (1)
wt + (wu)x + (ww)z = −pz/ρ + (νwx)x + (νwz)z − g (2)

ux + wz = 0 (3)

In the above u(x, z, t) and w(x, z, t) are the velocity components in the x and z directions, t is the
time, p(x, z, t) is the pressure, g is the gravitational acceleration, Ẍ is a function describing the
acceleration of the inertial system in the x-direction and ν is a kinematic viscosity coefficient.

2.2. Boundary conditions for free surface flows
In the derivation of the NSW equations we place no restrictions on the vertical boundaries

at x = ±L/2, but instead consider the domain as having an infinitely horizontal extent. The
boundary conditions at the vertical walls will be formulated for the final set of equations later.
The vertical velocity of a point on a moving surface z = F(x, t) can be expressed mathematically
as

dz
dt
=
∂F
∂t
+
∂F
∂x

dx
dt
, at z = F(x, t) (4)

For free surface flows the surface elevation is described by a variable η(x, t) as shown in figure
2. Using (4), the kinematic boundary condition, expressing that water particles remain at the
surface, is given by

ws − ηt − usηx = 0, at z = η(x, t) (5)

where superscript s refers to the free surface. Equivalently, at the bottom the kinematic boundary
condition, expressing that the velocity component perpendicular to the solid boundary vanishes,
is given by

wb + ubhx = 0, at z = −h(x) (6)

where superscript b refers to the bottom and where it is assumed that the bottom topography is
static, i.e. fixed in time.
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Since viscous terms are included in the momentum equations, tangential stress boundary con-
ditions need to be applied at the free surface and at the bottom-water interface. For the free
surface, the tangential stress in the horizontal direction is zero which is formulated as [32]

(uz − uxηx)|z=η = 0 (7)
(8)

The tangential boundary condition at the bottom is given by specifying the bottom stress as
follows

ν(uz + uxhx)|z=−h = γBub (9)
(10)

where γB is a nonnegative bottom friction coefficient. The effect of bottom friction is an active
research area which is still not fully understood and it is not within the scope of the present paper
to include an in-depth study of the matter. However, simple semi-empirical formulas such as
Chezy’s law, have been successfully used in oscillating flows [13]. In the following we take γB

as [33]
γB = Cτ|ub|, Cτ =

g

M2(h + η)
1
3

(11)

where M is the Manning number with the dimension m1/3/s (the inverse of the also commonly
used Manning’s n) and g is the gravitational constant. The assumption in (9)-(11) that the bottom
stress is proportional to the square of the horizontal velocity is valid only for stationary or near-
stationary flows such as long period shallow water flows, where shear stress and horizontal fluid
velocity are in phase [32]. More explicitly it can be shown that the in-phase approximation is
valid as long as the relation h2/ν < 0.1T . An estimate of the eddy viscosity is ν ≃ 0.1 m2/s and
h0 ≃ 0.1 m giving a period T > 1 s which is valid for all our experiments. The friction coefficient
(11) is seen to be inversely proportional to the total local water depth, and thus can be expected
to have an increasing significance as the depth decreases.

The last boundary condition needed is the dynamic boundary condition at the surface specify-
ing the excess pressure which we set to a constant:

pe(x, t) = p0 (12)

2.3. Two-dimensional hydrostatic model

In flows where the horizontal length scales are large compared to the vertical scales one can
assume that the vertical acceleration of the fluid, as well as the vertical viscosity forces are small
when compared to the gravity acceleration and to the pressure gradient in the vertical direction
[34]. Consequently, by neglecting the acceleration and viscous terms in the vertical momentum
equation the following equation for pressure results

pz = −ρg (13)

The pressure equation readily yields the pressure distribution in the depth by integration

p(x, z, t) = pe(x, t) + ρg (η(x, t) − z) (14)
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where pe(x, t) = p0 is the excess pressure. The pressure distribution is clearly seen to be hydro-
static which is a consequence of neglecting inertia and viscous forces in the vertical direction.
Substituting the pressure expression (14) into the horizontal momentum equation yields the fol-
lowing two dimensional model equations

ut + (uu)x + (uw)z = −gηx + (νux)x + (νuz)z − Ẍ (15)
ux + wz = 0 (16)

The above two equations contain three unknowns u, w and η, so in order to close the system an
additional equation is needed which is the free surface boundary condition (5).

2.4. Depth integrated continuity equation

Integrating the continuity equation over the depth, i.e. from −h to η, applying the Leibnitz rule
on the first and second term while integrating the third term, and finally applying the boundary
conditions (5)-(6) yields

ηt +
∂

∂x

∫ η

−h
udz = 0 (17)

The above equation expresses the conservation of mass and is the fourth equation needed to close
the system in (15). Denoting the total depth H(x, t) = h(x)+η(x, t) and introducing the following
notation for the averaged velocity in horizontal direction

U(x, t) =
1
H

∫ η

−h
u(x, z, t)dz (18)

the continuity equation (17) is rewritten as

Ht + (HU)x = 0 (19)

Here we have utilized that the bottom variation is not a function of time. Hence, η can be replaced
by H under the time differentiation.

2.5. Depth integrated momentum equation

In the following the momentum equation (15) is integrated over the depth. Vertical integration
of the left hand side of equation (15) yields

LHS =
∂

∂t

∫ η

−h
udz +

∂

∂x

∫ η

−h
uudz (20)

−us[ηt + usηx − ws] + ub[ub(−h)x − wb] (21)

where the terms in the brackets vanish due to the boundary conditions (5)-(6). By adding and
subtracting ∂

∂x

∫ η
−h U2dz to the above equations the following result is easily derived

LHS = (HU)t + (HU2)x +
∂

∂x

∫ η

−h
(u − U)2dz (22)
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Integration of the right hand side is done in two stages. First the pressure term and the forcing
term are integrated and afterwards the viscous terms are treated. Integration of the pressure and
forcing term is especially simple, the result being∫ η

−h
−gηx − Ẍdz = −Hgηx − HẌ (23)

Next, integrating the right hand side viscosity terms (RHS τ) in the momentum equation over the
depth and applying Leibnitz’ rule yields

RHSτ =
∂

∂x

∫ η

−h
νuxdz + ν (ux(−h)x − uz) |z=−h − ν (uxηx − uz) |z=η (24)

Utilizing the tangential boundary conditions (7)-(9), adding and subtracting ∂
∂x

∫ η
−h νUxdz as well

as γbU yields

RHSτ =
∂

∂x

∫ η

−h
νUxdz − γbU (25)

+
∂

∂x

∫ η

−h
ν(u − U)xdz − γb(ub − U) (26)

Lastly, by introducing the vertically averaged viscosity coefficient ν̄ = 1
H

∫ η
−h νdz and adding (23),

the final right hand side expression is found as

RHS = (ν̄HUx)x − γbU (27)

+
∂

∂x

∫ η

−h
ν(u − U)xdz − γb(ub − U) − −gHηx − HẌ (28)

2.6. One-dimensional nonlinear shallow water model
In the above derivation the vertical viscosity term has been retained. However, using the same

argumentation as earlier concerning horizontal and vertical scales, only the horizontal viscosity
related to the bottom friction is retained in the following. To further reduce the equations it is
assumed that the horizontal fluid velocity u is independent of z, i.e. constant across the depth.
Thereby, the integrals in (22) and (27) cancel out and the final set of NSW equations can be
stated as

Ht + (HU)x = 0 (29)

(HU)t + (HU2)x = −gHηx − γbU − HẌ(t) (30)

2.7. Velocity and flux formulation
It is convenient to formulate the governing PDEs (29) in matrix notation. A set of hyperbolic

inhomogeneous PDSs is commonly referred to as a system of balance laws (SBL) and takes the
form

Ut + F(U)x = S(U, x, t) (31)

where the vector U is the vector of conserved variables, F is a flux function and S(U, x, t) is the
source term vector. The NSW equations (29) derived in the previous section can be formulated

8



in the general form (31) with two different sets of conserved variables. The flux formulation uses
the water depth and momentum as conservative variables:

U =
(

H
HU

)
,F =

(
HU

HU2 + 1
2 gH2

)
,S =

(
0

−gHhx − γbU − HẌ(t)

)
(32)

The velocity formulation uses the so-called primitive variables which are water depth and veloc-
ity and is easily derived by expanding derivatives in the momentum equation of (32) and utilizing
the continuity equation in expanded form. The result is the following

U =
(

H
U

)
,F =

(
HU

1
2 U2 + gH

)
,S =

(
0

−ghx − γbU − HẌ(t)

)
(33)

The boundary and initial conditions for both formulations are given by

I.C. : H(x, 0) = h(x), U(x, 0) = 0
B.C. : U(−L/2, t) = U(L/2, t) = 0 (34)

For smooth solutions the two formulations will give similar results. However, for flows where
shocks or bores are generated the two formulations will yield different results which is a conse-
quence of conserving velocity instead of momentum. In Section 5.1, this effect will be demon-
strated numerically to underline the importance of using a correct formulation that conserves
mass and momentum.

3. Governing parameters

It is convenient to rewrite the NSW equations on non-dimensional form to extract governing
dimensionless parameters. In previous studies concerning TLDs the base motion amplitude to
tank length ratio A/L has been used to characterize the dampers [29, 35]. However, these ratios
have not been justified on theoretical grounds. In the following, this justification is provided.
Moreover, it is shown that no other parameters for characterizing a TLD exists. In what follows
all dimensional variables are starred unless otherwise stated.

3.1. Non-dimensionalization
In the following the bottom is assumed to be flat, i.e. h = h0. The horizontal acceleration of

the tank is given by
Ẍ∗(t∗) = −A∗Ω∗2 sin(Ω∗t∗) (35)

The scaling parameters are chosen as follows:

x∗ = x/k∗, t∗ = t/ω∗w,H
∗ = Hh∗0,U

∗ =
√

gh∗0U (36)

where k∗ = π/L∗, L∗ is the tank length, ω∗w = k∗
√

gh0
∗ is the lowest linear sloshing frequency of

the water using a shallow water assumption, h∗0 is the mean still water level (in general h = h(x)),
and g is the acceleration of gravity. The following identities are obtained using the chain rule
and 36

∂()
∂t∗
=
∂()
∂t

k∗
√

gh∗0
∂()
∂x∗
=
∂()
∂x

k∗ (37)
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Combining (35)-(37) with (32) the following non-dimensional set of mass and momentum con-
serving equations result:

U =
(

H
HU

)
,F =

(
HU

HU2 + 1
2 H2

)
,S =

(
0

−γ |U |UH1/3 + HΛΩ2 sin(Ωt)

)
(38)

I.C. : H(x, 0) = 1, U(x, 0) = 0
B.C. : U( π2 , t) = U( π2 , t) = 0 (39)

with the dimensionless parameters

β =
Ω∗

ω∗w
Λ = A∗k∗ = π

A∗

L∗
γ =

g
µM∗2h∗0

1/3 (40)

where the depth ratio µ has been defined as

µ = h∗0k∗ = π
h∗0
L∗

(41)

The depth parameter is only relevant as long as the friction term is present. From the non-
dimensionalization we can conclude that the sloshing problem in shallow water is governed
solely by the three dimensionless parameters in (40): a frequency parameter β, an amplitude
parameter Λ, and a friction parameter γ. It should be emphasized that the analysis is based on
the NSW equations, and the parameters are as such only meaningful from a practical point of
view as long as the NSW equations captures the relevant physics involved in the given problem.

The strength of the forcing term from the base motion of the tank is seen to be a product of
the amplitude parameter Λ, as pointed out by previous researchers [29, 35], and the frequency
ratio squared β2. At resonance, which is the working area of interest, the forcing frequency is
approximately equal to the linear sloshing frequency Ω∗ ≃ ω∗w resulting in β ≃ 1, leaving as an
approximation Λ as the only relevant parameter with respect to the forcing term. Furthermore,
neglecting the bottom friction and sloping bottom, the depth, sloping and friction parameters
vanish leaving Λ as the only relevant parameter. This is a very strong results and shows the moti-
vation for establishing the parameter range for which the NSW equations are valid. Returning to
the first term on the right side of (38), we see that the strength of the friction term depends, not
surprisingly, on the inverse of the depth parameter µ. This is in agreement with e.g. [13], but also
from a physical argumentation it seems reasonable based on the fact that the dissipating bottom
boundary layer extends over a relatively larger part of the total water depth for shallow water.

3.2. Sloshing force and energy dissipation
The resultant hydrodynamic force acting on an accelerated fluid container consists of two

contributions[36]: one contribution from the acceleration of the water treated as frozen, i.e. an
inertial contribution Finertia, and one contribution from the convective or dynamic part of the
water Fdyn. The sum of the horizontal hydrodynamic forces is denoted the sloshing force, FS ,

FS = Finertia + Fdyn (42)

For the shallow water case the sloshing force, i.e. the force containing both the inertial and
dynamic contribution, is calculated using the hydrostatic pressure assumption as the difference
between the integrated pressure on the right and left tank wall

F∗S =
1
2ρ
∗g(H∗R

2 − H∗L
2) (43)
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Figure 2: Definition of horizontal sloshing force FS using a hydrostatic pressure assumption

The sloshing force is non-dimensionalized with the maximum inertial force of the water treated
as a solid mass

FS =
F∗S

m∗wA∗Ω∗2
=

1
2πΛβ2 (H2

L − H2
R) (44)

where m∗w is the total mass of water per tank width. Another important quantity is the work done
by the sloshing force per forcing period:

∆E∗ =
∫ ∗

T
F∗S dX∗(t∗) (45)

In the context of TLDs, (45) is a measure of structural energy being dissipated per cycle by the
sloshing force. In the following, therefore, we refer to ∆E∗ as the dissipated energy per cycle.
This is non-dimensionalized as follows

∆E =
∆E∗

1
2 m∗w(A∗Ω∗)2

=
2
Λ

∫
T

FS dX(t) (46)

where the factor 1
2 m∗w(A∗Ω∗)2 is a reference value.

4. Numerical scheme

The system of balance laws (SBL) expressed in (32) can be solved using any numerical
method, the most popular choices being the finite element method [37], the finite difference
method [34], and the finite volume method [38, 39]. In the current paper the finite volume
method is chosen since this method is especially well suited for handling systems of conser-
vation laws (SCL) and SBL as well as problems containing discontinuities such as shocks or
bores.

It is well known that simple first-order Godunov upwind methods are quite diffusive, see e.g.
[38], with the degree of numerical diffusion varying for different choice of numerical flux. How-
ever, due to this numerical diffusion, the methods are very stable and produce non-oscillatory
solutions. In order to reduce the numerical diffusion, high order methods have been developed.
The main drawback of such methods is that the lead to oscillatory solutions unless remedies are
used, the implementation of which may be rather complex. When source terms are added to the
SCL, the resulting SBL can be very challenging to solve depending on the characteristics of the

11



source term. However, regardless of the nature of the source term, developing and implement-
ing high order methods for SBL is challenging. In the context of the current work we seek a
numerical method that is capable of handling shocks, i.e. is shock preserving, together with han-
dling source terms efficiently. Moreover, it is obviously desirable that the method be as simple
as possible.

With these considerations in mind, two different schemes have been implemented, tested and
compared in order to find the best suited scheme for our application. Both schemes guarantee
conservation of mass and momentum. The first, and most simple, is a first order Godunov-
type method using the Rusanov scheme [39]. Source terms are treated using a simple splitting
procedure. The second, and certainly more complex, is a third order Godunov-type method,
capable of efficiently handling shocks, and handling complex source terms of any order using
the so-called ADER approach. Both methods are implemented in the framework of one-step
finite volume methods.

It is well known that the first order Rusanov scheme, as well as other first order approximate
Riemann solvers, have a large numerical dissipation. On the other hand they are relatively easy to
implement. In general, higher order methods have lower numerical dissipation, but the tradeoff
is a more complicated and CPU intensive scheme.

4.1. One-step finite volume methods
We consider hyperbolic SBLs for the vector of conserved quantities U on the following form{

PDE : Ut + F(U)x = S(U, x)
IC : U(x, 0) = U0(x) (47)

The one-dimensional spatial domain Ω ∈ [0, L] is covered completely by N non-overlapping
elements Qi =]xi− 1

2
, xi+ 1

2
[ with ∆xi = xi+ 1

2
− xi− 1

2
and the cell average of Ui within Qi is defined

at time tn as

Un
i =

1
∆xi

∫ xi+ 1
2

xi− 1
2

U(x, tn)dx (48)

Integrating the governing systems of PDEs (47) over the space-time control volume Vi = Qi ×
[tn, tn+1] the following integral form of the balance law is derived

Un+1
i = Un

i −
∆t
∆xi

[Fi+ 1
2
− Fi− 1

2
] + ∆tSi (49)

where

Fi+ 1
2
=

1
∆t

∫ tn+1

tn
F(U(xi+ 1

2
, t))dt and Si =

1
∆t

1
∆x

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

S(U(x, t), t)dxdt (50)

The scheme (49) is known as the one-step FV scheme and is exact given that the numerical fluxes
and source term in (50) can be evaluated exactly.

4.2. First-order Godunov-type method
In the first-order method the solution is approximated by a piecewise constant solution for all

discrete points in time. Thus, the solution given at each cell barycenter is a value for the average
12
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Figure 3: Computational domain

solution in the actual cell. In order to progress the solution in time from n to n + 1 the flux
function 50 must be evaluated at the cell intersections. This can done by considering each cell
intersection as as an independent initial value problem, known as the Riemann problem:

PDE : Ut + F(U)x = 0

IC : U(x, 0) =
{

UL x < 0
UR x > 0

(51)

Numerical methods based on the exact solution of the Riemann problem, originally proposed
by Godunov [40], are known as exact Riemann solvers, while methods which only use parts of
the information concerning the wave propagation directions, are known as approximate Riemann
solvers. We choose to use a simple approximate Riemann solver, namely the Rusanov scheme,
with the following flux function:

FRus
i+ 1

2
=

1
2

(F(Un
L) + F(Un

R)) − 1
2

S +∆t(Un
R − Un

L) (52)

where
S + = max{|UL| + aL, |UR| + aR}, aL =

√
gHL (53)

The source term is treated using a simple splitting scheme, meaning that first the homogeneous
SCL in (47) is advanced in time using (49), whereafter the temporary solution is used as an initial
condition in a successive initial value problem. The scheme is written as

PDE : Ut + F(U)x = 0
IC : U(x, tn) = Un(x)

}
→∆t U∗ (54)

and

ODE : d
dt U = S(U, x)

IC : U∗

}
→∆t Un+1 (55)

The ODE in (55) can be solved using any conventional ODE solver. In the present work the ODE
is simply integrated using a forward Euler method.

4.3. High order Godunov-type methods
We wish to construct a higher order method and still evolve the system using the one step FV

scheme (49). Also, the method must be stable and non-oscillatory. Using the procedure known
as the ADER approach [41] an FV scheme of arbitrary order can be constructed. The original
ADER approach was recently extended by [42] to handle stiff source terms and will be used
here. The ADER approach can be viewed as a three step method: First a reconstruction of the
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averaged data is carried out using a WENO (weigthed essentially non-oscillatory) reconstruction
technique [43]. This procedure guarantees a high-order non-oscillatory spatial representation of
the state at time n. Secondly, the temporal evolution of the reconstruction is computed locally
inside each cell using the governing PDE. The third and last step of the ADER approach consist
of integrating the source in space and time and integrating the flux function in time at the element
interfaces (50). For the evaluation of the flux at the interface the Rusanov flux (52) is used again.
Finally, the solution is advanced using 49.

4.4. Time stepping restriction

In the update formula (49) certain restrictions must be placed on the size of the time step in
order for the method to be stable. The value of the time step is dependent of the CFL condition
which for the one dimensional shallow water equation can be stated as

∆t = CFL
∆x

S n
max

(56)

where S n
max is the maximum propagation speed in absolute value in the differential equation. A

practical choice of the maximum propagation speed is the following

S n
max = max

i
{|Un

i | +
√

gHn
i } (57)

i.e. the maximum wave speed in the computational domainΩ. In the following we use CFL = 0.9
to satisfy the stability condition that CFL ≤ 1.

4.5. Boundary conditions

In the following, the treatment of periodic and solid wall boundary conditions are discussed.
The first order method requires values from the neighboring cells on either side of cell i. There-
fore, at each boundary and additional ghost cell is needed, the values of which are determined
by application of a boundary condition. Periodic boundary conditions are modeled using the
following relations

H0 = Hm,U0 = Um

Hm+1 = H1,Um+1 = U1
(58)

Solid wall boundary conditions are modeled using

H0 = H1,U0 = −U1

Hm+1 = Hm,Um+1 = −Um
(59)

For the third order scheme an additional ghost cell at each boundary is needed in order to carry
out the WENO reconstruction. As an example, a periodic boundary condition applied at the left
boundary is given by

H0 = Hm,U0 = Um

H−1 = Hm−1,U−1 = Um−1
(60)
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Table 1: Initial values used for the dam-break problem

HL UL HR UR xc tend

[m] [m/s] [m] [m/s] [m] [s]
1.0 0.0 0.5 0.0 0.5 0.1

5. Numerical convergence studies

To investigate the performance of the two proposed methods a numerical convergence study
is carried out. First, the dam-break problem is solved. This is a standard benchmark test for
numerical methods and is useful for validating the ability of the numerical methods to handle
discontinuities and predict correct shock speeds. Next, the methods are tested on the nonlinear
shallow water equations with source terms, i.e. on a system of balance laws, for which an exact
reference solution is developed by construction. In general, the solution of SBLs is far from
trivial it is imperative that the numerical scheme can handle source terms effectively. The last
test case is a rectangular tank undergoing forced horizontal oscillations. The bottom friction
and bottom slope are here neglected. In the study, the amplitude parameter Λ and frequency
parameter β are varied while bottom friction is neglected (γ = 0). No analytical solutions exist
for this test case and the purpose of the study is to compare the two different methods and estimate
the necessary number of cells needed for the sloshing simulations.

5.1. Dam-break problem
The dam-break problem consists of an initial water level distribution with a discontinuity in

depth at x = xc and zero initial velocity. The initial depth ratio, HR/HL between the right side,
HR, and the left side, HL, of the dam determines the evolution of the flow for t > 0. This problem
is the classical Riemann problem described earlier which can be solved exactly by implementing
the procedure given in [39]. First, a grid convergence study using the flux formulation (32) is
performed. Next, using a fixed mesh, the results produced by the fl;ux and velocity formulations
are compared. For all the cases the computational domain is given by Ω = [0m, 50m], and the
initial conditions are given in Table 1. For all the simulation the Courant number is chosen to
CFL = 0.9. The computed total water depth is presented in 5.1 at time t=0.1 s together with the

HL, UL

HR, UR

x

z

xc

Figure 4: Dam-break problem. Initial depth profile at time t = 0

exact solution. The figures indicate that both solutions are converging to the analytical solution
as the mesh is refined. To finally conclude that the methods are indeed converging we compute
the L1 norms at t = tend for the total depth variable Hn

i , where the L1 norm is defined as

e(h) =
∫
Ω

|wh − ue|pdΩ (61)
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Table 2: Convergence rates for dam-break problem

First-order Third-order

M L1 k L1 k
25 2.34E-02 1.37E-02
50 1.49E-02 0.7 4.98E-03 1.5
100 9.30E-03 0.7 2.68E-03 0.9
200 5.61E-03 0.7 1.36E-03 1.0
400 3.31E-03 0.8 6.15E-04 1.1

In the above wh is the reconstructed numerical solution, which for a first-order method is a
piecewise constant solution and for the third order-method is a polynomial. The exact solution is
denoted by ue and h is a measure of the mesh spacing. The error of a k-th order method then has
the following asymptotic behavior

e(h) = C · hk (62)

The results of the convergence rates and L1 norms in Table 5.1 show that both method converge
and with the third-order method being superior over the first-order method. The convergence
rate is per definition defined for smooth problems which explains the low convergence rate of
approximately 1 for the third-order method.
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Figure 5: Dam-break problem grid convergence study for first-order and third-order methods

Finally, a computation comparing the flux formulation (32) and the velocity formulation (33)
for two different initial conditions is performed. The first-order method is used with M = 400,
CFL=0.9. The results in Figure 5.1 clearly show that the error associated with using the velocity
formulation depends on the strength of the shock. Thus, for a relatively weak shock, HR/HL =

0.5, the solutions are close while using HR/HL = 0.1 as initial condition give rise to an incorrect
shock speed when using the velocity formulation. The results underline the importance of using
an appropriate formulation for the problem at hand.
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Figure 6: Dam-break problem using a momentum conserving and velocity conserving formulation.

5.2. System of balance laws
Consider the following system of balance laws

Ht + Qx = S 1 (63)

Qt + (Q2/H + 1
2 gH2)x = S 2 (64)

with

S 1 = (He)t + (Qe)x (65)

S 2 = ν cos(Ωt)(Q − Qe) + (Qe)t + (Q2
e/He +

1
2 gH2

e )x (66)

By choosing any differentiable functions He(x, t) and Qe(x, t) in (65) it is easily verified that
H = He and Q = Qe satisfies (63) for all times t, and hence an exact reference solution can been
constructed and used for convergence studies. In the following we chose the reference solution
given by

He = H0 + AH sin(kwx − ωt) , Qe(x, t) = Q0 + AQ cos(kwx − ωt) (67)

with the parameters: H0 = 4, AH = 0.1, Q0 = 6, AQ = 0.3, kw = ω = 2π and Ω = 2π. The
parameter ν is varied. Our system (63) is solved on the domainΩ ∈ [0; 1], with periodic boundary
conditions. The Courant number is set to CFL = 0.9. The initial conditions are H(x, 0) = He(x, 0)
and Q(x, 0) = Qe(x, 0) and the solution is computed for one period, i.e. up to the final output time
t = 1.0. It is clear from Table 3 that both methods are capable of treating source terms with a
convergence rate somewhat below 1 for the first-order method, but for a very stable convergence
rate of close to 3 for the third-order method. Also the L1 norms show a much more precise result
for the third-order method. The force factor ν has little influence on the results.

5.3. Oscillating rectangular tank
We now consider the system of balance laws together with the initial and boundary given in

(38)-(39) describing horizontal oscillations of a rectangular tank. With length and water depth
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Table 3: Convergence rates for ν = 1 and ν = 3.

First-order Third-order First-order Third-order
ν = 1 ν = 1 ν = 3 ν = 3

M L1 k L1 k L1 k L1 k
8 7.65E-02 1.03E-02 1.35E-01 1.34E-02
16 4.86E-02 0.7 1.80E-03 2.5 1.03E-01 0.4 2.29E-03 2.6
32 2.77E-02 0.8 2.40E-04 2.9 6.48E-02 0.7 3.07E-04 2.9
64 1.58E-02 0.8 3.03E-05 3.0 3.73E-02 0.8 3.89E-05 3.0

128 8.91E-03 0.8 3.80E-06 3.0 2.04E-02 0.9 4.90E-06 3.0

given in Table 5 the linear shallow water sloshing frequency is computed as ω∗w = 2.8645 rad/s,
which is the value we choose for our forcing frequency Ω∗. The effect of bottom friction is
neglected (γ = 0.0). In all the simulation the Courant number is chosen as CFL = 0.9 and
the total simulation time is set to five periods. For both the first-order and third-order method
a total of 128 cells is used in the simulations. In Figure 5.3 three graphs showing variation of
wave height at the left tank wall, horizontal sloshing force and force-displacement elapse, are
presented. The variation in the results are seen to be limited, indicating that the simple first-order
method is adequate for describing the fluid sloshing behavior.

To establish a value for the number of cells needed in the sloshing simulations a grid con-
vergence study is performed. The simulation time is as before set to five forcing periods and
in the time window spanning from period 3 to 4 the maximum wave height, maximum sloshing
force and the integral of the hysteresis loop, see e.g. Figure 7(b), is recorded. The results for
different mesh sizes is given in Table 6 for the first-order and third-order method. It is clear from
the results that both methods are convergent which has also been illustrated in Figure 5.3 where
the energy ∆E is plotted as function of mesh density. The last column in Table 6 shows the
difference between the energy dissipation estimated using a first and third-order method. When
using more than 256 cells the difference between the two methods is less than or equal to 1%.
Moreover, when comparing the dissipated energy for the first-order method using 128 cells to
the third-order method using 1024 the difference is only 1.5% which for practical purposes is
negligible. These observations indicate that using a first-order method for estimating sloshing
behavior is sufficient.

5.4. Choice of numerical method
In the previous three sections the simple first-order method and highly accurate but complex

third-order method have been tested on three cases. Both methods have shown to be capabile of

Table 4: Tank dimensions and forcing values.

L∗ h∗0 A∗ Ω∗ g Λ/π β γ

[m] [m] [m] [rad/s] m/s2 [-] [-] [-]

0.590 0.0295 0.059 2.8645 9.81 0.1 1.0 0.0

Table 5: Parameters for sloshing simulation
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Figure 7: Sloshing simulations using first-order and third-order methods
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Table 6: Sloshing results

First-order Third-order

M Hmax
L Fmax

S ∆E Hmax
L Fmax

S ∆E ϵ∆E

[-] [-] [-] [-] [-] [-] [-] [%]
16 0.061294 2.0839 11.073 0.064596 2.286 10.608 4.4
32 0.063318 2.2171 10.863 0.06432 2.2694 10.244 6.0
64 0.063867 2.2628 10.421 0.064145 2.2674 10.025 4.0
128 0.064037 2.2741 10.127 0.064425 2.2784 9.9254 2.0
256 0.064055 2.2723 9.9702 0.064201 2.28 9.8711 1.0
512 0.064041 2.2696 9.8896 0.064139 2.2753 9.8365 0.5
1024 0.064032 2.2682 9.8485 0.064065 2.2704 9.8207 0.3

capturing shock and rare fraction waves as well as handling source terms. In general the third-
order method gives smaller errors compared to the first-order method and for smooth problems
also a high convergence rate of close to three. The price however is a more expensive algorithm
computationally and, perhaps more importantly, a much more complicated implementation. In
the final test case the two methods are compared for a sloshing simulation. For the specific case
again the third-order methods converges faster than the first-order method but the difference in
the simulation results are very small and therefore we choose the first-order methods using 256
cells for the following simulations.

6. Parameter study

Having established the governing NSW equations (38) describing fluid motion in a horizontal
oscillating rectangular container, together with relevant dimensionless parameters (40), we want
to perform a parameter study to determine how the individual parameters affect the solution.
More precise we will be studying the effects of the amplitude parameter Λ together with the
frequency parameter β. Moreover the effect of friction will also be investigated based on realistic
friction parameters.

6.1. Sloshing response without friction

In the following the friction term is neglected, γ = 0, and only the influence of the amplitude
and frequency parameters is studied. A total of 1320 simulations are performed, with Λ/π =
[0.005, 0.01, 0.025, 0.05, 0.075, 0.1 and β ∈ [0.6, 2.2]. The domain is modeled using 256 cells
and a Courant number of CFL = 0.9 is used in all runs. For each simulation a total of 30
periods are computed, and based on the last 10 periods the following steady state values are
computed for each (Λ, β)-pair: the maximum and minimum total depth at the left container wall
Hmax

L and Hmin
L respectively, the maximum horizontal sloshing force Fmax

S , and the dissipated
energy per cycle ∆E. Figure 6.1, denoted the frequency-response curve what follows, shows
the variation Hmax

L as function of the frequency β. From this figure it is clear that the system
exhibits a hardening type behavior in line with observations made in early works, e.g. [16]. In
more recent studies [44, 29, 45] the same effect was reported and the hardening effect, which
effectively is a consequence of the system responding more rapidly for increased forcing, can be
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Figure 9: Frequency response curve for maximum and minimum steady state water water depth at left tank
wall

explained by the fact that the propagation, or shock speed of a bore is a function on the water
depth ratio to the left and right of the bore. More precisely, the propagation speed for a right
facing shock, HL > HR, is given by [39]

S = UR +

√
1
2 g

HL

HR
(HL + HR) (68)
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Figure 10: Frequency response curves for FS and ∆E
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(a) H(x) at time 1 (b) H(x) at time 2 (c) H(x) at time 3 (d) H(x) at time 4
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(e) Dimensionless hysteresis loop

Figure 11: A single period solution for Λπ = 0.05 and β = 1.0

Hence, for increased forcing, i.e. increased Λβ2, the ratio HL/HR as well as UR increases, result-
ing in a faster moving shock equivalent to a ”stiffer” system. In Figure 6.1 a solid line has been
drawn through each maximum of the frequency-response curves. This line, also known as the
backbone curve, can be used to estimate the governing parameters in the Duffing equation [46].

Moving on to Figures 10(a)-10(b), which show frequency-response curves for the horizontal
sloshing force and dissipated energy per cycle, the hardening effect is not as clear. From the
energy curves in particular, the effect is only visible by an increase in the frequency location of
the maxima while the elapse of the curves have no ”leaning effect” and seem almost symmetric
around their maxima. From the two figures it is also seen that the sloshing force and energy
dissipation curves decrease in magnitude with increasing Λ values. This is not surprising since
a stronger forcing term produces a stronger shock with an increase in internal fluid dissipation,
reducing the force and energy dissipation (note again that the so-called energy dissipation is not
the energy dissipated by the fluid internally but the work of the sloshing force with respect to the
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(a) H(x) at time 1 (b) H(x) at time 2 (c) H(x) at time 3 (d) H(x) at time 4
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(e) Dimensionless hysteresis loop

Figure 12: A single period solution for Λ/π = 0.05 and β = 0.6

base motion, see (45)). Generally speaking, the situation is analogous to a simple base excited
mass-spring-damper system with the damper having nonlinear amplitude dependent characteris-
tics.

In Figures 11, 12 and 13 a detailed description of the sloshing behavior is illustrated for an
amplitude ratio Λ/π = 0.05 and three different forcing ratios, β = 1.0, 0.6, 1.4, respectively. In
the top row the water elevation is shown for four different time instances given in each of the six
underlying figures. The initial tank position is shown in the figures with a dotted line. The two
top curves show the base motion amplitude and velocity, respectively, using the sign convention
from figure 2. The last four figures show the variation of water at the left and right wall, the
variation of the sloshing force, defined positively to the right as shown in figure 2, and finally,
a diagram showing the hysteresis loop. Is is clear from the figures that as the frequency ratio
approaches unity the hysteresis curve opens up, corresponding to the sloshing force being in
phase with the velocity, and energy is dissipated.
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(a) H(x) at time 1 (b) H(x) at time 2 (c) H(x) at time 3 (d) H(x) at time 4
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(e) Dimensionless hysteresis loop

Figure 13: A single period solution for Λ/π = 0.05 and β = 1.4

Table 7: Friction factor γ using g = 9.81m/s2.

M∗ h∗0 µ/π γ
[m1/3/s] [m] [−] [−]

150 0.02 0.01 0.022
100 0.02 0.01 0.050
70 0.02 0.01 0.103

6.2. Effect of bottom friction

In the following the influence of friction is assessed, i.e we set γ > 0. For estimating the
dimensionless friction parameter γ knowledge of realistic Manning numbers must be established.
An extensive list of Manning numbers for a large variety of materials is contained in [47]. For
smooth materials such as steel, plastic etc, a typical Manning number is M ≃ 100. In [48]

24



0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

1

1.5

2

2.5

3

3.5

4

4.5

5

β [−]

H
 [−

]

 

 

Λ = 0.005
Λ = 0.01
Λ = 0.025
Λ = 0.05
Λ = 0.075
Λ = 0.10

    γ

(a) Maximum water depth H at left wall

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

6

7

8

β [−]

F S [−
]

 

 

Λ = 0.005
Λ = 0.01
Λ = 0.025
Λ = 0.05
Λ = 0.075
Λ = 0.10

    γ

(b) Maximum sloshing force FS

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

5

10

15

20

25

30

35

40

45

50

β [−]

∆ 
E

 [−
]

 

 

Λ = 0.005
Λ = 0.01
Λ = 0.025
Λ = 0.05
Λ = 0.075
Λ = 0.10

   γ

(c) Dissipated energy ∆E

Figure 14: Effect of Λ, β and γ. Friction parameters used are γ = [0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12]. The
arrows indicates direction of rising γ-values.

Manning numbers for corrugated polyethylene pipes was reported to vary between 70 and 110.
Much lower values have been reported though in different studies such as [33] where values of
M = 200 − 300 were reported in connection with the modelling of tidal bores. There is clearly
a large deviation in Manning numbers and also it should be stressed that the Manning numbers
are based on a steady flow, which only approximately is valid for our case. In the present context
though we are only interested in a qualitatively assessment of the friction term on the sloshing
behavior and thus are satisfied with establishing a reasonably realistic level of the friction factor
γ. In Table 7 three different friction factors have been computed using three different Manning
numbers and estimates of the water depth and depth ratio, resulting in a friction factor in the
range of γ ≃ 0.02 − 0.10. A lower water depth will result in a higher friction factor as will a
lower depth ratio. However, the values used in Table 7 are very low and thus provide a rather
conservative estimate.

Figure 11 shows the frequency response curves for maximum dimensionless water depth at
left wall, Hmax

L , maximum sloshing force, Fmax
S , and dissipated energy per cycle, ∆E. In each

graph the effect of varying the amplitude, Λ, and friction factor, γ, is illustrated. The case of
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Table 8: Effect of γ and Λ on water depth Hmax
L

Λ/π[−]

γ[−] 0.005 0.01 0.025 0.05 0.075 0.1

0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.02 1.00 1.00 0.99 0.99 0.99 0.99
0.04 0.99 0.99 0.99 0.98 0.98 0.98
0.06 0.99 0.99 0.98 0.97 0.96 0.96
0.08 0.99 0.98 0.98 0.96 0.95 0.95
0.10 0.98 0.98 0.97 0.96 0.94 0.94
0.12 0.98 0.98 0.96 0.95 0.93 0.93

Table 9: Effect of γ and Λ on sloshing force Fmax
S

Λ/π[−]

γ[−] 0.005 0.01 0.025 0.05 0.075 0.1

0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.02 0.99 0.98 0.98 0.98 0.98 0.97
0.04 0.97 0.97 0.97 0.96 0.96 0.95
0.06 0.96 0.96 0.95 0.94 0.94 0.93
0.08 0.95 0.94 0.93 0.92 0.92 0.91
0.10 0.94 0.93 0.92 0.91 0.90 0.89
0.12 0.92 0.92 0.90 0.89 0.89 0.87

γ = 0 is represented by the dominant black curve while curves for variable γ are depicted as light
grey. The friction factor is seen, not surprisingly, to have an effect on the maximum values of the
curves while the overall shape of the frequency response curves are more or unless unaffected.

For each of the frequency response curves in 14, the maximum value has been found and are
shown in Tables 8-10. These values have been normalized with results from the non-friction case.
In general, the effect of the friction factor increases with higher Λ values, with the largest effect
on sloshing force, and less effect on the water depth and energy dissipation. With the largest
γ-value of 0.12, which is a very conservative estimate, the maximum value of the frequency
response curves for the sloshing force is lowered some 8-13% and for the dissipated energy 5-
9%. For a container with smooth bottom a more realistic γ-values is 0.02 which gives a reduction
of the maximum values in the range of 1-3% and thus is of little practical importance.

7. Conclusions

In this work two dimensional nonlinear sloshing in a rectangular tank has been studied. Based
on the assumption of an incompressible fluid, negligible viscous effects in the fluid bulk, and
hydrostatic pressure assumptions, the governing set of nonlinear equations were derived - the so-
called NSW equations including bottom friction. The set of equations were analyzed analytically
and numerically and the following main conclusion can be drawn.

I. The behavior of fluid sloshing in a horizontally oscillated rectangular container described
by the NSW equations is governed solely by three dimensionless parameters: an amplitude
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Table 10: Effect of γ and Λ on dissipated energy ∆E

Λ/π[−]

γ[−] 0.005 0.01 0.025 0.05 0.075 0.1

0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.02 0.99 0.99 0.99 0.99 0.98 0.98
0.04 0.98 0.98 0.97 0.97 0.97 0.97
0.06 0.97 0.97 0.96 0.96 0.96 0.95
0.08 0.96 0.95 0.95 0.95 0.94 0.94
0.10 0.95 0.94 0.94 0.93 0.93 0.92
0.12 0.94 0.93 0.93 0.92 0.92 0.91

parameter Λ, a frequency parameter β, and a friction parameter γ. The two first parameters
are independent of the absolute liquid depth, while the friction parameter is dependent on
the absolute water depth as well as on the depth ratio µ.

II. The governing system of balance laws describing sloshing can be effectively solved using
a simple first-order finite volume method. Although such methods are renowned for ex-
cessive numerical dissipation, this source of dissipation is far outweighed by the physical
dissipation occurring as a result of the development of bores.

III. Neglecting bottom friction, the liquid response at resonance, i.e. at β = 1, is governed solely
by the amplitude parameter Λ.

IV. The response of the liquid is dependent of the friction factor for tanks with very shallow
water and rough bottom conditions. For relatively smooth bottom conditions the effect of
bottom friction is limited and will have little effect on the response.

V. The frequency response curves for maximum water depth, sloshing force, and dissipated
energy all display a stiffening behavior meaning that the maximum values of the respective
curves occur at increased β values for increased Λ values. The effect is most pronounced for
the maximum water depth and less so for the dissipated energy. The effect is very important
in the context of designing tuned liquid dampers as these will show a significant amplitude-
dependent behavior.
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Abstract

The sloshing of water in a rectangular tank subjected to forced base motion is investigated exper-
imentally and numerically with the aim of determining the range of applicability of the nonlinear
shallow water equations derived and analyzed in Part I [1].

The experiments show that the depth ratio has a large influence on the fluid behavior in the
range 0.03 < h/L < 0.1, being in contradiction with the theoretical shallow water assumption.
However, for the frequency range 0.7 < β < 1.1 the experimental results show reasonable agree-
ment with the NSW equations, dependent though on the base amplitude A/L and depth ratio h/L.
Thus, for very shallow water, h/L = 0.03, the NSW equations provide a fair description of the
fluid behavior for low base amplitudes of A/L = 0.009 while for h/L > 0.07 and A/L = 0.009
the agreement is poor. Increasing the base amplitude greatly improves the fluid description pro-
vided by the NSW equations, suggesting that the NSW equations could be used to model coupled
tank-structure systems for a large range of depth and amplitude ranges.

Key words: Nonlinear shallow water equation, sloshing, Tuned Liquid Damper, Energy
dissipation

1. Introduction

In Part I [1] a set of nonlinear, inhomogeneous PDEs describing sloshing of water in oscillating
rectangular tanks were derived based on the full two-dimensional incompressible Navier-Stokes
equations formulated in a translating coordinate system. The resulting set of equations, known as
the nonlinear shallow water equations (NSW equations), were analyzed to determine governing
parameters and numerically to study the effect of the derived parameters on the solution. The
analysis revealed that shallow water sloshing described by the NSW equations are governed by
three parameters: an amplitude parameter, Λ, defining the ratio of base motion amplitude to tank
length, a frequency parameter, β, defining the ratio between the forcing frequency and shallow
water frequency, and a friction parameter, γ, describing the effect of bottom friction. The purpose
of this Part II is to describe experiments carried out in the Civil Engineering Laboratory at the
Technical University of Denmark and to compare the findings with the numerical results from
Part I.
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Sloshing experiments in rectangular container with shallow water have been carried out by
several researchers. Verhagen and Wijngaarden [2] and Armenio et. al [3] performed shallow
water sloshing experiments in rectangular containers exposed to roll motions. An experimental
study of horizontally oscillated containers, the focus of the present study, was performed by
Reed et. al. [4] who concluded that bores or moving hydraulic shocks were formed and that the
system exhibited a hardening type behavior. In the work by Reed et. al., which was primarily
experimental, the authors compared a single experimental frequency response curve for a depth-
length ratio of h/L = 0.05 and a base motion amplitude-length ratio of A/L=0.03 to a numerical
simulation, showing promising results. In this study both the base amplitude as well as the depth
ratio were expanded to h/L = A/L = 0.1 and compared to solutions of the NSW equations.

As mentioned earlier, and derived in detail in Part I of this paper, the general problem of shal-
low water sloshing with bottom friction is fully described by three dimensionless parameters. In
the case where friction is neglected (and it was shown that this is a reasonable assumption), only
two parameters are necessary. Finally, in the resonant case, β ≃ 1, a single parameter, namely
the amplitude parameter Λ, remains. This effectively means that the problem must be analyzed
for variable Λ and β. In the NSW equations the depth enters purely as a scaling parameter and
thus has no effect on the qualitative behavior of the solution. This fact is very convenient since it
simplifies the problem considerably, but entices one to pose the question: for which h/L values
will the theory represent the actual physics? Moreover, for which combinations of Λ and β will
the theory be adequate? These questions are the major motivation of the current work and is
imperative when to the use the NSW equations for modeling sloshing, in the general case and in
the context of tuned liquid dampers as is the focus of this work.

The paper is organized as follows. The theoretical results from the preceding Part I are first
briefly summarized and the experimental program is then detailed. Next, results comparing
experimental and numerical free surface profiles, time variation of water depth, sloshing force,
and dissipated energy are presented. Finally, experimental and theoretical frequency-response
curves are compared before conclusions are drawn.

2. Theoretical and numerical considerations

2.1. Governing fluid equations

η(x, t)

h(x, t)

L

x

z

O
′

X(t)

Figure 1: Sketch of rectangular TLD tank

The rigid rectangular container (figure 1), which has the length L, width W and still water
depth h, is subjected to a horizontal base motion X(t). It is convenient to refer the fluid motion
to a moving coordinate system with origo attached to the middle of the tank at the free liquid
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surface. Assuming an inviscid and incompressible fluid the equations describing the total water
depth H = H(x, t) and mean horizontal particle velocity U = U(x, t) are the Nonlinear Shallow
Water (NSW) equations:

Ut + F(U)x = S(U, x, t) (1)

with

U =
(

H
HU

)
,F =

(
HU

HU2 + 1
2 gH2

)
,S =

(
0

−HẌ(t)

)
(2)

It was shown in [1] that including bottom friction had little effect on the solution for smooth tanks
and is left out here. The boundary conditions expressing solid end walls and initial conditions
are

I.C. : H(x, 0) = h, U(x, 0) = 0
B.C. : U(−L/2, t) = U(L/2, t) = 0 (3)

2.2. Base shear force due to liquid motion
Considering hydrostatic pressure and neglecting vertical acceleration effects as done in the

derivation of the NSW equations the pressure can be expressed as

p(z) = ρg(η − z) (4)

The base shear force of the tank due to liquid motion is found as the difference of the integrated
the pressure on either sides of tank, i.e.

FS (t) = 1
2ρg(H2

R − H2
L) (5)

Here the friction of the side wall and bottom have been neglected.

2.3. Governing parameters
It was shown in the companion paper that the solution of the equations (2)-(3), for a harmonic

base motion X(t) = A cos(Ωt), is alone governed by the two dimensionless parameters

β =
Ω

ωw
Λ = π

A
L

(6)

with the linear shallow water frequency given by

ωw = k
√

gh, k = π/L (7)

2.4. Numerical simulation method
The nonlinear inhomogeneous set of hyperbolic PDE’s (2)-(3) are solved using a Finite Vol-

ume scheme described in detail in [1]. The computational domain Ω ∈ [−L/2, L/2] is partitioned
into N = 256 non overlapping cells Ω =

∪256
i=1 where the solution is assumed constant in each

cell. The solution is updated using a ones-step Finite Volume scheme

Un+1
i = Un

i −
∆t
∆xi

[Fi+ 1
2
− Fi− 1

2
] + ∆tSi (8)
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where the numerical fluxes F
i± 1

2
are evaluated using a Rusanov flux. As a time stepping restric-

tion we use
∆t = 0.9

∆x
S n

max
(9)

where the maximum wave speed in the computational domain is found suing the simple approx-
imation

S n
max = max

i
{|Un

i | +
√

gHn
i } (10)

3. Experimental setup

3.1. Experimental setup and apparatus

Tank

Laser displacement meter

Wavegage 1Wavegage 2

Water

Accelerometer
Loadcell

Motor with crank

X(t)

(a) Side view

Regular-speed video camera

W

L

Accelerometer

Wavegage 2 Wavegage 1

LED

Shaking table 120x120 cm

Horizontal spring

Stabilizing wheel

(b) Top view

Figure 2: Experimental setup viewed from the side and top.

A simple shaking table has been constructed in order to conduct an intense measurement
campaign. A sketch of the shaking table in Figure 2(b) shows the construction principle of the
test setup. A spacious steel frame, with a horizontal ground area of 120 × 120 cm covered with
a 2 cm plywood plate, is suspended by four 300 cm steel cables. To ensure a uniaxial motion
the steel cables have been installed with a slight inclination. Furthermore, guiding wheels have
been mounted on the sides of the shaking table. Also, four horizontal springs laterally mounted
between each corner of the shaking table and four vertical steel consoles ensure a stable motion.
The test setup can be used both for simulating a flexible 1 degree of freedom system and for
performing controlled sinusoidal base motion, the latter being of interest in the current context.
A controlled base motion is generated by connecting a 120 cm long connector rod between
the steel frame and motor shaft, i.e. a so-called crank mechanism is used. The motor used
to drive the crank mechanism is a Lenze 9.2 kW servo controlled AC motor with a gearing of
1:23 securing a very high moment capacity, and with a maximum available frequency of 2.0
Hz. The excitation amplitude is varied by adjusting the connection eccentricity at the motor
shaft, and the frequency varied by adjusting the rotational speed of the motor. In Figure 4 a
typical measured displacement and acceleration time series is shown together with a best fit sine
function, indicating a close to perfect sinusoidal signal. A rectangular tank with inner length
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L = 590 mm, inner width W = 335 mm and a height of 300 mm, made of 10 mm acrylic plates,
is used in all the experiments. An acrylic lid is fixed to the tank top where two wave gages made
of steel wire are attached. Each wave gage is located 5 mm from the tank walls. The acrylic tank
is placed on a load cell of type AMTI MC3-6-500 capable of measuring three force and three
moment components. The horizonal base motion of the tank X(t) is measured using a Laser
Displacement Transducer (LDT) of type WayCON LAS-T-250A and the horizontal acceleration
is measured using a variable capacitance accelerometer from Brüel and Kjær of the type B&K
4575 with a frequency range 0-300 Hz and 1000 mV/g sensitivity. All quantities are recorded
using National Instruments hardware.

3.2. Presented variables and data treatment
Several dimensionless parameters are defined for presentation of the results. The base shear

force measured by the force gauge in the x-direction, Fx, can be separated into three components:
The inertial force due to the mass of the tank, wave gauges etc, FT, the inertial force of the water
treated as frozen liquid, FW, and the dynamic force from the hydrodynamic pressure, FD:

Fx(t) = FT(t) + FW(t) + FD(t) (11)

We define the sloshing force as the sum of the inertial force of the ”frozen” water and the hydro-
dynamic force, i.e.

FS (t) = FW(t) + FD(t) (12)

Combining (11) and (12) the sloshing force is evaluated as

FS (t) = Fx(t) − FT(t) (13)

Figure 3: Photographs of experimental setup.
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(a) Base motion displacement X(t)
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(b) Base motion acceleration Ẍ(t)

Figure 4: Measured and fitted displacement and acceleration signals. The target amplitude and frequency
are A = 60 mm and Ω = π rad/s, respectively.

The sloshing force is non-dimenzionalized using the maximum inertial force of the ”frozen”
liquid

F′S (t) =
FS (t)

mwAΩ2 (14)

where mw = hLρ. A TLD system subjected to a harmonic base motion defined by X(t) =
A cos(Ωt) will return a sloshing FS (t) which will produce an amount of mechanical work per
cycle, on the base, given by

∆E =
∫ t+ 2π

Ω

t
FS (t)dX(t) (15)

Having two measured time series FS (t) and X(t) it is straightforward to evaluate the latter integral
in (15) using numerical integration. It is important to stress that the energy computed by (15)
is not the energy dissipated in the fluid but the energy dissipated by the sloshing force. In the
following we refer to (15) as the dissipated energy and put it on dimensionless form using the
following relation

∆E′ =
∆E

1
2 mw(ΩA)2

(16)

i.e. the energy pr. cycle is divided by the mechanical energy of the ”frozen” water. Finally, a
wave gauge is located 5 mm from the left tank wall, Figure 2(b), to record the variation of the
total water depth. The dimensionless water depth at the left wave gage is defined by

H′ =
H
h

(17)

The wave forms of the time histories vary significantly as either the excitation frequency β or the
base amplitude A/L varies. For low base amplitudes and excitation frequencies below resonance
the time histories of H and FS are close to sinusoidal. Near resonance the time histories become
non-sinusoidal and show traces of higher harmonic response due to the nonlinearity of the liquid
motion. In Figure 5 a general harmonic signal y is shown, representing either H or FS , with the
excitation period indicated at the top. Based on the measured time series the local maximum and
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Figure 5: Definition of maximum and minimum values

minimum values inside equidistant time windows, defined by the forcing period, are found and
the maximum value is defined as the mean value of N recorded local maximum values:

ymax =
1
N

N∑
i=1

ymax
i (18)

An equivalent definition applies to the minimum values.

3.3. Measurement campaign

The complete measurement campaign is given in Table 1. A total of 25 different (h/L, A/L)-
configurations are tested, i.e. five different water depths and five different base motion ampli-
tudes. For each combination of A/L and h/L we perform around 50 runs with the frequency
parameter β varied between 0.7 to 1.5-1.9, depending on the amplitude of the base motion, in
steps of 0.02. The experiments are performed by starting the motor with β = 0.7 and waiting
until the liquid motion has reached a steady state which typically takes around 1-3 minutes. The
data acquisition is started with a sampling frequency of 256 Hz and at the same instance a NI
analog output module triggers a LED thereby synchronizing video recordings with the measured
data. After 120 seconds the data is saved to a file and a new file is created while the base motion
frequency is incremented with ∆β = 0.02 over a 10 second period. This procedure is repeated
until the base motion frequency has reached the final β value between 1.5-1.9. The raw data sig-
nals are processed by applying a low pass filter with a cut-off frequency defined by ωc = 10ωw,

File id h h/L ωw fw
[-] [mm] [-] [rad/s] [Hz]

h20a05 - h20a60 20 0.034 2.360 0.376
h30a05 - h30a60 30 0.051 2.890 0.460
h40a05 - h40a60 40 0.067 3.337 0.531

h50a05 - h50a60 50 0.085 3.731 0.594

h60a05 - h60a60 60 0.102 4.087 0.651

Table 1: Measurement campaign
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A [mm] 5 10 20 40 60

A/L[−] 0.009 0.017 0.034 0.068 0.102

Table 2: Base motion amplitude A and amplitude parameter Λ/π

i.e. we include the first ten harmonics of the linear sloshing frequency in the analysis. The filter-
ing is performed using a zero-phase forward and reverse technique assuring a precise zero phase
distortion [5].

4. Numerical and experimental results

4.1. Free surface profiles – qualitatively analysis

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 5 mm corresponding to
A/L = 0.009. Three different water depths are shown: (a)-(d) h = 20mm or h/L = 0.034, (e)-(h) h = 40mm
or h/L = 0.067, (i)-(l) h = 60mm or h/L = 0.10. In the first photo (i.e. (a), (e) and (i)) the surface profile
has a maximum value at the right tank wall and the waves then travel from right to left

From the extensive measurement campaign a very large amount of data was accumulated and
thus we are forced to restrict the presentation to only a few specific tests. These are chosen to
highlight important characteristic flow features.

For all the the test cases we used a regular-speed video camera (25 frames per second corre-
sponding to ∆t = 1/25=0.04 s) to record the water surface. Afterwards the recorded video was
processed by extracting and editing relevant frames.

In figure 6-8 the effect of varying the amplitude ratio A/L and depth ratio h/L around the
resonance condition β = 1, is illustrated. For a low amplitude ratio of A/L = 0.009 , Figure 6,
the water surface remains continuous, or close to continuous, for all of the three shown water
depths. It is not too clear in the figure but actually an increasing number of higher harmonics is
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 20 mm corresponding
to A/L = 0.034 =. Three different water depths are shown: (a)-(d) h = 20mm or h/L = 0.034, (e)-(h)
h = 40mm or h/L = 0.067, (i)-(l) h = 60mm or h/L = 0.10. In the first picture (i.e. (a), (e) and (i)) the
surface profile has a maximum value at the right tank wall and the waves then travel from right to left

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8: Surface profiles for fixed forcing frequency β = 1.0 and amplitude A = 60 mm corresponding to
A/L = 0.103. Three different water depths are shown: (a)-(d) h = 20mm or h/L = 0.034, (e)-(h) h = 40mm
or h/L = 0.067, (i)-(l) h = 60mm or h/L = 0.10. In the first picture (i.e. (a), (e) and (i)) the surface profile
has a maximum value at the right tank wall and the waves then travel from right to left
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observed in the surface profile for decreasing water depths. Clearly the non-dispersive shallow
water theory based on the limiting value of h/L → 0 will result in a single dominant wave trav-
eling back and forth and is thus intuitively in contradiction with the experimental observations.
However, dispersive models do in fact show an increasing number of higher harmonics in the
solution for h/L → 0 as reported in the analytical study by Ockendon et al. [6] and also address
by Faltinsen et al. in [7]. For larger depth ratios the higher harmonics seem to disappear and for
h/L = 0.1 a single solitary wave propagates back and forth. Increasing the amplitude ratio from
0.009 to 0.033, Figure 7, alters the surface profile significantly. Now the surface profile, for all
water depths, develops a clear discontinuity with a front, or bore, traveling back and forth in the
tank. As the front hits the tank wall a sheet film of water is driven up along the wall. This effect
becomes more dominant for higher water depths and in Figure 7(k) the effect is clearly seen.
Notice also the depression in the surface profiles in Figure 7, which is a consequence of water
being displaced as the thin sheet film of water initially driven up later is accelerated downward
as a falling jet [8]. For a further increase in the amplitude ratio to A/L = 0.1 the discontinuity in
the surface profile appears sharper and an almost ideal bore propagates in the tank. As the depth
increases, plunging breakers start appearing, Figure 8(e) or (i), which for the deepest water levels
results in a depression in the surface profile close to the middle of the tank, Figure 6(j).

4.2. Time variation of water depth - end wall wave profiles
The dimensionless water depth at the left wall H′L as function of time is presented in the follow-

ing section. The experimental data is shown as a black solid line and the numerical simulations
with a grey dashed line. For fixed β-values and variable water depths, i.e. column-wise, the
results from the numerical simulations are identical since the water depth only enters the NSW
equations as a scaling parameter. In this way the figures can be used to identify the valid working
range for the NSW equations.

In Figure 9 the end wall wave profiles are shown for the lowest base motion amplitude of
A = 5 mm corresponding to A/L = 0.009. The experimental end wall wave profiles for the off
resonance situations β = 0.8 and β = 1.2 are seen to be quite similar for all three water depths
and also the NSW equations gives a very good fit, whereas the resonance situation being the most
relevant shows rather different wave profiles for variable water depths. As discussed earlier, the
effect of increasing higher harmonics for lower water depths is clearly illustrated. For the lowest
water depth h = 20 mm, corresponding to h/L = 0.034, the numerical solution captures quite
well the overall trend of the end wall wave profile but because of its nondispersive character the
higher harmonics are not represented in the solution. Increasing the water depth worsens the
numerical solution and for h = 60 mm the numerical simulation underestimates the maximum
end wall wave height but also far from captures the shape of the profile corresponding to the end
wall water depth variation.

Increasing the base motion amplitude to A = 20 mm or A/L=0.034, Figure 10, dramatically
improves the agreement between the experimental data and numerical simulations below and at
resonance. The improvement is not too surprising bearing in mind the in Figure 7 showing the
development of propagating bores in the tank. The agreement between the experimental data
and simulation is again best for h = 20 mm and deteriorates for deeper water depths. In the end
wall wave profile, for h = 20 mm and β = 1.0, the presence of the higher harmonics can be
seen but the phases of the higher harmonics are organized in such a way that a saw-tooth shaped
profile is formed. For deeper water depths, the higher harmonics again become more visible in
the end wall wave profile. Notice the wave profile for β = 1.2 and h = 40 mm in Figure 10(f)
showing a pattern with close to 50% higher water depths at every second period which is clearly
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(i) β = 1.2, h = 60 mm

Figure 9: Time variation of total water depth at resonance and off-resonance with base motion amplitude
A = 5 mm corresponding to A/L = 0.009. Experiments: , simulations: .

not captured by the NSW equations. In general for h > 40 mm and β = 1.2 the end wall wave
profile is captured rather poorly by the NSW equations.

When the base motion amplitude is further increased to A = 60 mm, figure 11, the character-
istic saw-tooth shaped wave profiles are seen again. From the profiles in 11 the numerical data is
seen to underestimate the wave height at the end wall quite significantly. It should be noticed that
for large water depths and base motion amplitude a significant sheet of water is driven vertically
up the end wall as the bore impacts, which affects the wave gauge placed 5 mm from the end
wall.

4.3. Time variation of sloshing force and hysteresis loops

The ability of the numerical method to predict the free surface is relevant in connection with
e.g. establishing a tank geometry with sufficient height to avoid a low ceiling blocking the water
flow. However, the ability to predict the sloshing forces as well as the phase between the base
motion and sloshing force is of far greater importance with respect to the design of e.g. tuned
liquid dampers. The numerical method should obviously be able to predict the magnitude of
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(i) β = 1.2, h = 60 mm

Figure 10: Time variation of total water depth at resonance and off-resonance with base motion amplitude
A = 20 mm corresponding to A/L = 0.034. Experiments: , simulations: .

the sloshing force, and since the amount of energy dissipated by the sloshing force is effectively
evaluated as the area enclosed by the force-displacement hysteresis loops, capturing the phase
between the sloshing force and base motion is equally important from a TLD-structure inter-
action point of view. As for the end wall wave profiles results for three different water depths
and base amplitudes will be presented in the following. Slightly below resonance, β = 0.9, the
numerical and experimental results are in general in good agreement, and for a fixed water depth
of 40 mm hysteresis loops for three different base motion amplitudes are illustrated in Figure 12.
Varying the water depth doesn’t have a noticeable effect on the curves. The most interesting
situation occurs at resonance and slightly above i.e. β ≥ 1. For the resonance case, β = 1, and a
low base amplitude of A = 5 mm, Figure 13, the sloshing force follows the same trend as the end
wall wave profiles with increased oscillations for decreasing water depth, which is not surprising
considering that the pressure in the shallow water limit is hydrostatic and thereby proportional
to the surface elevation. For h = 20 mm the numerical method captures the overall trend of the
sloshing force and the hysteresis loop is also captured even better. Notice in the hysteresis loop
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(i) β = 1.2, h = 60 mm

Figure 11: Time variation of total water depth at resonance and off-resonance with base motion amplitude
A = 60 mm corresponding to A/L = 0.103. Experiments: , simulations: .
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Figure 12: Hysteresis loops for fixed values of β = 0.9, h = 40 mm and three different base motion
amplitudes.Experiments: , simulations: .
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Figure 13: Time variation of sloshing force F′S and hysteresis loops at resonance with base motion amplitude
A = 5 mm corresponding to A/L = 0.009. Experiments: , simulations: .

that the higher harmonics tend to cancel out when integrating the area. Indeed, for the shown
curve the difference between the two areas is less than 2%. This result, which agrees with find-
ings by Reed et al. [4], must be a consequence of fact that the sloshing forces generated by
the higher wave harmonics tend to be in phase with the base displacement or base acceleration,
thereby providing no contribution to the energy dissipation which by definition requires a force
component in phase with the base velocity, (15). For h = 40 mm the NSW equations overesti-
mate the dissipated energy by close to 20% and for h = 60 mm the energy is overestimated by
more than a factor of four. For this case, the non-dispersive shallow water theory described by
the NSW equations clearly becomes invalid and, based on the results in Figure 13, in seems rea-
sonable to conclude that for water depths ratios h/L > 0.05 and base amplitudes A/L < 0.01 the
NSW equations are not valid for the resonant case. To capture the liquid behavior more precisely
one should include dispersion in the equations, using e.g. the classical Boussinesq approxima-
tion derived by Peregrine [9] and later used by several researchers for sloshing simulations, see
e.g.[? 10, 11, 12].

Increasing the base amplitude to A = 20 mm, Figure 15, the sloshing force and hysteresis loops
are captured almost perfectly near resonance, subfigures (a)-(f), and also relatively well above
resonance, subfigures (g)-(l). For base amplitude of A = 10 mm the results are almost identical
to those of Figure 15 and are not shown here. Again, it is noticed that in general an increased
water depth deteriorates the agreement between the numerical and experimental results, and a
water depth of 60 mm, corresponding to h/L ≃ 0.1, seems to be a fair suggestion for maximum
depth ratio that can be accommodated by the NSW equations.

For a base amplitude of A = 60 mm, Figure 12, which must be regarded as a rather extreme
condition, the NSW equations captures the sloshing force and hysteresis loops remarkably well.
It must be emphasized that no empirical factors have been used to tune the governing equations or
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Figure 14: Time variation of sloshing force F′S and hysteresis loops at resonance and off-resonance with
base motion amplitude A = 20 mm corresponding to A/L = 0.034. Experiments: , simulations: .

the numerical scheme. Considering the extreme complexity of the fluid pattern and the relatively
simplicity of the NSW equations, the results must be regarded as very satisfactory. Again the
depth ratio of h/L ≃ 0.1 seems to be a good choice for an upper limit.
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(l) β = 1.2, h = 60 mm

Figure 15: Time variation of sloshing force F′S and hysteresis loops at resonance and off-resonance with
base motion amplitude A = 60 mm corresponding to A/L = 0.103. Experiments: , simulations: .

4.4. Frequency-response curves
The time histories presented previously, for a few discrete forcing frequencies, are supple-

mented in the following by frequency response curves for the three parameters: maximum and
minimum total water depth at the left tank edge, maximum sloshing force and dissipated energy.
The presented maximum and minimum total water depth and maximum sloshing force are com-
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Figure 16: Frequency response curves for maximum and minimum water depth at left wall.

puted according to (18) and the energy dissipation is computed as the average value of energy
per cycle for a 60 second period. For each of the discussed parameters the frequency response
curves are shown for three different water depths of h = 20,40 and 60 mm, and three different
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Figure 17: Frequency response curves for maximum sloshing force.

base amplitudes A = 5, 20 and 60 mm, analogous to the results presented earlier.
The frequency response curves for maximum and minimum water depths are depicted in Fig-

ure 16. For each subfigure the experimental results are shown for the three different water depths
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Figure 18: Frequency response curves for dissipated energy pr. cycle.

as well as the numerical simulation, which as mentioned earlier is independent of the water
depth. For the lowest base amplitude the numerical simulation, as expected from the previous
time history analysis, gives a very poor fit. The amplitude is clearly underestimated and the
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frequency response curve has a much smoother trend than the experimental curves which have a
sharp drop as the frequency approaches a value clearly above the linear resonance value of β = 1.
The frequency value at which the drop, or jump, depending on which side one views it, occurs
is commonly called the jump frequency. Systems exhibiting jump frequencies higher than the
linear natural frequency are of the so-called hardening type. It is interesting to note the effect of
the water depth on the solution which shows a clear tendency of reducing the jump frequency.
It is a well established result, see e.g. [13], that for a certain depth ratio of h/L = 0.337, know
as the critical depth, the behavior changes from being a hardening type system to a softening
type. So increasing the water depth further will result in the frequency response curve bend-
ing less to the right, becoming more symmetrical around β = 1, and at last bending left when
exceeding the critical depth. Finally, it is seen that increasing the water depth in general leads
to increased wave amplitudes. Increasing the base amplitude improves the performance of the
NSW equations, which was also seen earlier, and for h = 20 mm and A = 20 mm the agreement
between experiments and simulations is relatively good. However, notice that the error in the
jump frequency worsens for this case. For a base amplitude of 60 mm the frequency response
curves show an almost linear trend in the beginning, with the slope of the curves increasing for
increasing water depths. The jump frequency is now no longer present and the curves show a
more symmetric behavior, though with a maximum value at a frequency drastically above the
linear sloshing frequency. The fact that the presence of a clear jump frequency cease to exist
should most likely be found in the fact that the internal fluid damping increases for increasing
base amplitudes, thereby smoothing the frequency response curves.

In Figure 17 the frequency response curves for the maximum sloshing force are presented.
The curves show the same trend though with some clear differences. First of all, it seems that
the effect of water depth on the experimental results are less distinct than for the maximum water
depth for the frequency range β < 1.1. Secondly, the agreement between the numerical simula-
tion and experiments is better, and especially in the frequency region β < 1.1 the agreement is
quite good.

Finally, the frequency response curves for the energy dissipation are shown in figure 18. For
A = 5 mm the frequency response curve is quite well reproduced by the numerical simulation for
h = 20 mm, and reasonably well for h = 40 mm. For h = 60 mm the curve shows a very distinct
drop near ? followed by a large peak near β = 1. For A = 20 mm and β < 1.2 the influence of
the water depth on the results is limited and the frequency response curve is captured remarkably
well by the numerical simulation. For A = 60 mm and the effect of the water depth becomes very
apparent, with increasing agreement between simulation and experiments for decreasing water
depth. Thus, for h = 20 mm energy dissipation is captured well in the entire range 0.7 < β < 1.9.
For increased water depth, the frequency range of acceptable agreement is narrowed down and
for h = 60 mm the upper limit of the frequency range is approximately 1.1.

Comparing the frequency response curves of the three studied parameters it is clear that the
amplitude of the curves are reduced for increased base amplitudes, which is naturally an effect
of a rise in the internal fluid energy dissipation.

5. Concluding remarks

The liquid motion in a rectangular tank undergoing a horizontal harmonic base motions has
been investigated both by experiment and by numerical analysis. Previous comparison studies by
Reed et al. [4] between shallow water theory and experimental data consulted only a single base
amplitude and depth ratio. In this study both the base amplitude as well as the depth ratio were
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expanded to h/L = A/L = 0.1 and compared to solutions of the NSW equations. The following
important novel conclusions can be drawn from the study

I The influence of the depth ratio h/L has a strong influence on the sloshing behavior in the
region 0.3 < h/L < 0.1. Thus, one need to exercise caution when applying the NSW
equations in this region, and most certainly for h/L > 0.1.

II The valid working range for the NSW equations depends on the three parameters: β, h/L
and A/L. For excitation frequencies in the range 0.7 < β < 1.1, the energy dissipation ∆E′

is captured remarkably well for A/L > 0.03. For A/L < 0.03 ∆E′ is captured reasonably
for h/L < 0.05. For β > 1.1 the energy dissipation is still captured well for low depth ratios
and low amplitude ratios whereas for increased depths and amplitudes the upper limit of
the valid frequency range is reduced. For the end wall wave profiles and sloshing force the
same overall observations are made.

III For the parameter region 0.7 < β < 1.1, 0.015 < A/L < 0.1 and 0.03 < h/L < 0.1 the
dissipated energy ∆E is to a good approximation independent of the depth ratio h/L. This
strongly indicates that the NSW equations can be used successfully for simulating tuned
liquid dampers in this parameter region.

IV In the theoretical model the boundary layer is completely neglected indicating that this
cannot be a major source of energy dissipation. For lower base amplitudes where hydraulic
jumps are not formed the energy dissipation in the boundary layer may become important
as suggested by e.g. Sun et al. [10].

V As the base amplitudes increase the strength of the hydraulic jump also increase. The en-
ergy dissipation across a moving hydraulic jump depends on the strength of the jump [14]
which explains the reduced sloshing force F′S and hence reduced ∆E′ for increased base
amplitudes.

The working range of the NSW equations has been established using forced base motion ex-
periments. Instead of imposing the motion of tank it is more relevant from a practical point to
analyze the coupled motion of the liquid and an external elastic structure. In future work this
investigation will be undertaken in order to verify the presently estimated parameter region in
connection with coupled tank-structure systems.
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Abstract

A mathematical model describing the interaction between a shallow water Tuned Liq-
uid Damper (TLD) and a singe-degree-of-freedom (SDOF) structure is presented. The
mathematical model of the TLD is based on the non-viscous Non Linear Shallow Water
equations and the structure is modelled as a simple linear mass-spring system. Good
agreement is found between simulations and experiments for the case of free decay. The
mathematical model here captures the transient behavior of the fluid very well. The
model is then verified against forced excitation tests showing that the magnitude of the
frequency response function for the structural amplitude is reproduced.

Key words: Tuned Liquid Damper (TLD), Nonlinear Shallow Water (NSW) equations,
transient response, steady state response.

1. Introduction

The application of vibration-control devices in civil engineering structures has become
an accepted technology. One type of passive control device that has been used widely is
the Tuned Liquid Damper [1, 2, 3, 4, 5, 6].

Vibration control devices utilizing hydrodynamic forces to produce a feedback force to
the structure can roughly be divide into free surface dampers and liquid column dampers.
The fluid behavior in the two are fundamentally different: in the free surface dampers
the generated hydrodynamic forces are a result of the water sloshing which is a highly
nonlinear and complex phenomenon, while the fluid behavior in the column dampers are
much simpler to describe since the flow is internal and the free surface does not require
any detailed description [7, 8]. For this reason liquid column dampers has received rather
much attention in the last decade. The main advantage of the free surface dampers is
clearly that these can be designed to work in several directions where the liquid column
dampers are typically limited to working in one direction.

The class of free surface dampers can further be divided into two subclasses namely
shallow water dampers and deep water dampers. The distinction between the two, as the
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name indicates, relies on the ratio of the still water level h to the horizontal extension of
the liquid container L, i.e. on the magnitude of h/L. The transition from one subclass
to the other is not abrupt but rather gradual, and roughly one can use h/L = 0.1
as guiding transition value. In a recent paper [9] a theoretical model was compared
to experimental results to establish a working range of h/L to use in a shallow water
theory. The study showed that h/L = 0.1 seems to be an appropriate upper limit when
applying nondispersive shallow water theory for modelling sloshing. The main difference
in sloshing behavior of shallow and deep water dampers is found in the free surface.
For shallow water dampers a moving hydraulic jump, a so called bore, is developed for
quite low base amplitudes A. In a previous study [9] it was shown that for amplitude
ratios as low as A/L = 0.015 a clear bore was formed near the linear sloshing frequency.
Contrary to the discontinuous surface profile developed in shallow water dampers, the
free surface in deep water dampers will have a tendency to remain continuous. This
results in a much lower internal fluid dissipation, compared to the energy dissipation in a
bore, and for this reason deep water dampers are often equipped with screens to increase
the internal damping [10, 11, 12, 6].

The interaction of shallow water TLDs and structures has been investigated almost en-
tirely for low amplitude vibrationd, i.e. for cases where the ratio A/L remains low. Thus
in a paper by Tamura et. al. [1] the maximum used base amplitude was A/L ≃ 0.007,
in Tamura et. al [2] dampers installed in the Airport Tower at the Tokyo International
Airport experienced vibration levels of A/L ≃ 0.002 during a storm and in Fuji et. al.
[3] dampers installed in the Airport Tower of Nagasaki Airport experienced vibrations
levels of A/L ≃ 0.003. Sun et. al. [13] performed TLD-structure interaction experiments
and found good agreement for A/L = 0.008. For higher base amplitudes they corrected
their model using empirical expressions to include the high energy dissipation due to
wave breaking and found reasonable agreement between experiments and their model for
A/L = 0.02− 0.04.

In the present work we focus on dampers subjected to base motion amplitudes of
a significant magnitude, i.e. A/L > 0.01, where development of bores will most likely
occur. A mathematical model that captures this behavior, without applying any em-
pirical calibration factors, is the Nonlinear Shallow Water equations (NSW equations)
analyzed in depth in [14, 9] using forced shaking table experiments. In this work the
developed mathematical sloshing model will be coupled to an elastic structure to study
the interaction behavior. Free decay and harmonic forcing will be investigated

First a TLD-structure interaction model is proposed and is verified through free decay
as well as forced excitation experiments. This interaction model is relatively fast and
precise and thus expected to be use full as an aid in designing shallow water TLDs.

2. Theoretical and numerical considerations

2.1. General description of TLD

Several different TLD geometries have been proposed in literature where the most
popular are the annular tank proposed by Modi et. al. [15], circular [16] and rectangular
[17]. Common for all the mentioned dampers is that the bottom is flat and horizontal.
Sayer and Baumgarten investigated the interaction between a structure and spherical
fluid container in [18, 19] and Gardarsson et. al. investigated the behavior of sloped-
bottom TLDs in [20]. The price of working with more complex geometries is that the
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Figure 1: Sketch of flat bottomed rectangular TLD tank

already rather complex mathematical models become even more complex and using ap-
proximate shallow water models becomes very difficult. Thus in the present work a 2D
rectangular tank with a flat bottom is used as shown in figure 1.

2.2. Governing fluid equations

The rigid rectangular container shown in figure 1, which has the length L, width W
and still water depth h, is subjected to a horizontal base motion X(t). It is convenient
to refer the fluid motion to a moving coordinate system with origo fixed to the middle
of the tank at the free liquid surface. Assuming an inviscid and incompressible fluid the
equations describing the total water depth H = h+ η(x, t) and mean horizontal particle
velocity U = U(x, t) are the Nonlinear Shallow Water (NSW) equations [14]:

Ut + F(U)x = S(U, x, t) (1)

with

U =

(
H
HU

)
,F =

(
HU

HU2 + 1
2gH

2

)
,S =

(
0

−HẌ(t)

)
(2)

It was shown in [14] that including bottom friction had little effect on the solution for
smooth tanks and is left out here. The boundary conditions expressing solid end walls,
and initial conditions expressing quiescent fluid conditions are

B.C. : U(−L/2, t) = U(L/2, t) = 0
I.C. : H(x, 0) = h, U(x, 0) = 0

(3)

2.3. Base shear force due to liquid motion

Considering hydrostatic pressure and neglecting vertical acceleration effects as done
in the derivation of the NSW equations the pressure can be expressed as

p(z) = ρg(η − z) (4)

The base shear force of the tank due to liquid motion is found as the difference of the
integrated the pressure on either sides of tank, i.e.

FS(t) =
1
2ρgW (H2

R(t)−H2
L(t)) (5)

Here the friction on the side walls and bottom have been neglected.
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2.4. Numerical solution of fluid equations

The nonlinear inhomogeneous set of hyperbolic PDE’s (2)-(3) are solved using a Finite
Volume scheme described in detail in [14]. The computational domain Ω ∈ [−L/2, L/2] is

partitioned into I non overlapping cells Ω =
∪I

i=1 where the solution is assumed constant
in each cell. The solution is updated in each time step using a ones-step Finite Volume
scheme

Un+1
i = Un

i − ∆t

∆xi
[Fi+ 1

2
− Fi− 1

2
] + ∆tSi (6)

where the numerical fluxes F
i± 1

2
are evaluated using a Rusanov flux [21]. As a time

stepping restriction we use

∆t = 0.9
∆x

Sn
max

(7)

with the maximum wave speed in the computational domain evaluated using the simple
approximation

Sn
max = max

i
{|Un

i |+
√

gHn
i } (8)

2.5. Interaction model

O
′

X(t)

K

C

MStructure Fe

HL

HRFS

Figure 2: Coupling of TLD and simple SDOF structure.

The present TLD-structure interaction model is a single degree of freedom (SDOF)
structure attached with a TLD as shown in figure 2. The structure is exerted by an
external force denoted Fe and a horizontal feedback force from the liquid sloshing de-
noted FS given in (5). The equation of motion describing the state of the structure is
accordingly

MẌ + CẊ +KX = Fe(t) + FS(t) (9)

where the structural mass, damping and stiffness are denoted with uppercase letters.
The equation of motion (9) is expressed in the more practical form as

Ẍ + 2ζsωsẊ + ω2
sX =

1

M
(Fe(t) + FS(t)) (10)

where ωs = (K/M)
1
2 is the undamped angular frequency of the structure and ζs =

C/(2Mωs) is the critical damping ratio of the structure. Introducing the state vector
4



Initialize X1 = X0, V
1 = V0, H

1 = H0, U
1 = U0

for n = 1 : N

∆t = 0.9 ∆x
Sn
max

using (7)-(8)

Fn
S = 1

2ρgW ((Hn
R)

2 − (Hn
L)

2)

Find Xn+1 and V n+1 given initial conditions Xn, V n and Fn
S

Ẍn = −2ζsωsẊ
n − ω2

sX
n + (Fn

e + Fn
S )/M

Un+1
i = Un

i − ∆t
∆xi

[Fi+ 1
2
− Fi− 1

2
] + ∆tSn

i

end

Table 1: Time-stepping algorithm for coupled system

zT = [X,V,U], with V = Ẋ and U given in (1) the coupled TLD-structural system ca
be expressed as

ż = A(z) + F (11)

with

A(z) =

 V
−(2ζsωsv + ω2

s)/M
−F(U)x)

 , F =

 0
(Fe + FS(H))/M

S(H, Ẍ)

 (12)

The equations (11)-(12) describe the state of the coupled system and must be solved
using a numerical integration scheme.

2.6. Solution strategy for coupled system

It would be possible to solve the coupled 1. order nonlinear system of ordinary dif-
ferential equations directly using an ODE solver, e.g. a Runge-Kutta method. However,
since we already have a stabile and robust scheme, namely (6), for solving the fluid
equations, which by far is the most complex part of the coupled system, this strategy
would be unwise, and instead we solve the fluid system and mechanical system with
separate methods. For a mechanical system described by a linear 2. order ODE, as (10)
with constant coefficients, the integration in time can be performed exact, assuming a
piecewise linear forcing term [22]. A more general solution strategy, capable of handling
nonlinear mechanical systems, is to use a high order explicit time integration scheme
where some of the most popular are the 3. and 4. order Runge-Kutta methods [23].
In the present context we use a third order Runge-Kutta scheme. The structure of the
complete time-stepping algorithm for the coupled TLD-structural system is indicated in
table 1

Numerical simulations are always conducted under the condition that the water is
initially at rest, i.e. U1

i = 0 and H1
i = h for all i. The liquid domain in discretized using

I = 256 elements and size of the time stepping increment is controlled using a Courant
number of CFL = 0.9.
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3. Experiments

The proposed fluid model (2) was investigated by experiments and numerical simu-
lations in [14, 9]. In order to verify the proposed fluid model coupled with an elastic
structure a number of free decay experiments were performed.

3.1. Experimental setup and apparatus

Tank

Laser displacement meter

Right wavegageLeft wavegage

Water

Accelerometer
Loadcell

X(t)

(a) Sketch of setup (b) Photograph of setup

(c) Acrylic tank

L

W

h

Direction of excitation

(d) Tank dimensions

Figure 3: Experimental setup.

A simple spring-pendulum shake table shown in figure 3 was constructed to perform
the free decay experiments of the coupled TLD-structure system. The setup is a uni-
directional single degree of freedom system with a horizontal vibration direction. The
structural properties given by a mass M and stiffness K can easily be adjusted by adding
or removing weights and by changing springs, respectively. Naturally this facilitates ad-
justments of the system frequency ωs. No additional damping is added since the guide
wheels provide a sufficient amount of structural damping. At one edge of the shake table
a simple hook system was mounted permitting the table to be given a fixed initial dis-
placement. The hook was in place until the water had come to rest, and was then released
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by a applying an impulse force on the hook with a rubber hammer. This corresponds,
as a good approximation, to structural initial conditions [X(t = 0), Ẋ(t = 0)] = [X0, 0]

Two different rectangular tanks were used in the experiments. One with horizontal
inner dimensions L × W = 590 × 335 mm and the other with L × W = 400 × 200
mm. Both tanks had a height of 300 mm and were made of 10 mm acrylic plates. An
acrylic lid was fixed to the tank tops where two wave gages made of steel wire were
attached. Each wave gage is located 5 mm from the tank walls. The acrylic tank was
placed on a load cell of type AMTI MC3-6-500 capable of measuring three force and three
moment components. The horizonal base motion of the tank X(t) was measured using a
Laser Displacement Transducer (LDT) of type WayCON LAS-T-250A and the horizontal
acceleration measured using a variable capacitance accelerometer from Brüel and Kjær
of the type B&K 4575 with a frequency range 0-300 Hz and 1000 mV/g sensitivity. All
quantities were recorded using National Instrument hardware.

3.2. Theoretical structural frequency

θ

x

y

l

K
K

M

Figure 4: Spring-pendulum system.

It is convenient to use an energy principle to find the equation of motion for the
spring-pendulum system. Lagrange’s equation is given by

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
, L = T − V (13)

Assuming small rotations, i.e. X/L << 1 and thereby θ << 1, we approximate sinθ ≃ θ
and cos θ ≃ 0, resulting in a kinetic and potential energy of the system given by

T = 1
2m(lθ̇)2 (14)

V = 4 1
2k(θl)

2 +mgl(1− cos θ) (15)

where cos θ is retained in the potential energy equation in order for this term not to
vanish when differentiated in Lagrange’s equation. Inserting (14)-(15) into (13) gives the
following result

θ̈ + ω2
sθ = 0, ωs = 4

k

m
+

√
g

l
(16)

In the analysis the mass is attached with four springs in total, two on each side, hence
the constant value of four in the frequency expression (16)
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Figure 5: Free decay experiments of shaking table for determining structural damping ζs and
structural frequency ωs.

3.3. Estimation of structural parameters

Even though the theoretical expression (16) should provide a very good estimate of
the structural frequency, variations in the springs and uncertainties on the geometry, may
result in a slightly different measured frequency. In order to determine the structural
frequency and damping a range of free decay experiments were performed and the hor-
izontal displacement of the structure was measured. Assuming the structural damping
to be viscous the response can be described by

X(t) = Ae−ζsωst sin(ϕ+ ωst) (17)

The values in (17) are found by fitting the expression to experimental decay records.
A datafit for two different response histories is shown in figure 5 and it is clear that
the viscous damping assumption is sufficiently precise for modelling the free decay. The
damping and frequency are found to be almost independent of the amplitude and using
fs = ωs/2π = 0.590 Hz and ζs = 0.004 provides a good fit of the measured data. The
structural parameters are summarized in table 2

M K l f theory
s fs ζs

[kg] [N/m] [m] [Hz] [Hz] [-]

496.3 1260 2.5 0.596 0.590 0.004

Table 2: Structural parameters

4. Results

In order to verify the proposed coupled TLD-structure model first a number of coupled
free decay experiments were performed. The purpose of the campaign is solely to verify
the model and not to analyze the efficiency of the TLD. Next the TLD-structure model
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Exp. name L W h mw h/L fw fw/fs mw/ms

[-] [mm] [mm] [m] [kg] [-] [Hz] [-] [-]

Case1a 590 335 58 11.5 0.098 0.640 1.08 2.29

Case1b 590 335 50 9.88 0.085 0.594 1.01 1.98

Case1c 590 335 45 8.89 0.076 0.563 0.96 1.78

Case1d 590 335 40 7.91 0.068 0.531 0.90 1.58

Case2a 400 200 28 2.24 0.070 0.655 1.11 0.45

Case2b 400 200 25 1.98 0.062 0.617 1.05 0.40

Case2c 400 200 22 1.79 0.056 0.586 0.99 0.36

Case2d 400 200 19 1.54 0.048 0.543 0.92 0.31

Table 3: Different tank configurations for the free decay tests.

is tested on two forced excitation experiments with experimental results taken from [13].

4.1. Coupled free decay experiments

The two tanks were filled with four different water depths, given in table 3, in order
to vary the sloshing frequency of the liquid. The sloshing frequency of the water is
calculated using the dispersion relation for shallow water given by

fw =

√
gh

2L
(18)

The tanks were mounted on the shaking table and the table was given an initial displace-
ment of X(t = 0) ≃ 60 mm. When the water in the tank had come to a rest the table
was released.

It is interesting to study the transient behavior of the sloshing and to see how well
the proposed interaction model captures this. In figure 6-7 a total of sixteen snapshots,
taken from video recordings, are presented for different time instances normalized by
the structural period T = 1/fs. Seen from the video camera, the structure is initially
displaced to the left. In each of the snapshots the simulated free surface is shown with a
solid red line. The snapshots show that the model captures the location of the moving
front very well and also the surface elevation at the two walls is captured remarkably well.
It is clear from the pictures that the flow pattern is extremely complex and e.g. in picture
7(h) a spilling breaker is present which by the model is represented by a discontinuity in
the surface. In fact for almost all the snapshots it is noticed that the front is represented
by the model as moving front or hydraulic jump, i.e. a bore.

The motion of the table X(t) for Case1a-d is shown in figure 8. Comparing to the free
decay of the structure without TLD, figure 5, it is clear that the structure is far more
damped with an attached TLD. For all the four tested cased the simulation captures
the decay well, and for experiments as well as simulations, the case of fw/s = 0.96 is

9



(a) t/Ts = 0 (b) t/Ts = 0.15

(c) t/Ts = 0.35 (d) t/Ts = 0.45

(e) t/Ts = 0.55 (f) t/Ts = 0.62

(g) t/Ts = 0.69 (h) t/Ts = 0.80

Figure 6: Snapshots in time window 0.0 ≤ t/Ts ≤ 0.80. Case 1b

seen to be the best damped configuration. The logarithmic decrement of the coupled
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(a) t/Ts = 0.90 (b) t/Ts = 1.00

(c) t/Ts = 1.05 (d) t/Ts = 1.15

(e) t/Ts = 1.30 (f) t/Ts = 1.40

(g) t/Ts = 1.65 (h) t/Ts = 1.75

Figure 7: Snapshots in time window 0.90 ≤ t/Ts ≤ 1.75. Case 1b

TLD-structural response is defined by

δs+w =
1

n
ln

X(t)

X(t+ nTs)
(19)

11



0 20 40 60

−60

−40

−20

0

20

40

60

t [s]

X
(t

) 
[m

m
]

 

 
Experiment
Simulation

(a) Case1a: fw/fs = 1.08
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(b) Case1b: fw/fs = 1.01
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(c) Case1c: fw/fs = 0.96
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(d) Case1d: fw/fs = 0.90

Figure 8: Coupled free decay experiments Case1a-d.

Using (19) it is possible to compute curves showing the damping, δs+w, as function of
vibration amplitude X(t). Using n > 1 seem to provide smoother curves and in figure
9 damping curves for case1 and case 2 are presented where n = 4 has been used. For
both cases the measured structural damping is plotted with a solid red line showing aa
almost constant structural damping value of δs = 2πζs ≃ 2.5%. For Case1a-d in 9(a)
the damping is seen to be slightly overestimated by the simulation for all cases, how
ever the trend is very well captured for all four cases. Thus for Case1b and Case1c the
damping is seen to increase quite dramatically for decreasing structural amplitudes while
case1a and case1d have a more moderate increase for lower structural amplitudes. For
all cases the damping for high structural amplitudes is relatively constant with a value of
δs+w ≃ 15%. Thus, by attaching a TLD to the structure the damping has been increased
by around 12%. For Case2a-d the trend is quite similar and the simulation captures the
damping δs+w extremely precise for large structural displacements.

4.2. Forced excitation experiments

In a paper by Sun et. al. [13] two coupled TLD-structure experiments were performed
where wave breaking occurred in the TLD. A container with a length of 390 mm and
width of 220 cm was filled with 30 mm of water corresponding to a sloshing frequency
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Figure 9: Experimental and simulated logarithmic decrements as function of structural displace-
ments. The simulated curves are shown with full lines and the experimental results with marked
lines. Each line color represents a different case.

of fw = 0.696 Hz. The mass ratio of TLD to structure was 1.05% and the structural
frequency and damping of the structure was measured to fs = 0.689 Hz and δs = 0.32
%, respectively. Two different loading cases were considered: one where the structural
response at resonance experienced a maximum value of Xmax = 50 mm and another with
Xmax = 100 mm. The frequency ratio defined by

β =
fe
fw

(20)

with fe being the excitation frequency, was swept from 0.8 to 1.2. In figure 10 frequency
response curves for the horizontal structural displacements are given for the two different
loading cases. According to [13] breaking waves were clearly observed near resonance.
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(b) Xmax = 100 mm

Figure 10: Frequency response curves for horizontal displacement of SDOF structure equipped
with TLD. Experimental results taken from [13]

13



For both cases the maximum structural response is captured very well by the proposed
interaction model however there is a clear discrepancy between the simulated and exper-
imental frequency ratio at which the maximum response occurs. The simulated curve
peaks at a lower frequency than the experimental curve for both loading cases. However
in the range β > 1 the agreement between experiment and simulation is satisfactory.

5. Concluding remarks

In the present study we have proposed a coupled TLD-structure model for estimating
the response of structures equipped with TLDs. The study can be summarized as follows:

I An earlier proposed sloshing model based on the NSW equations is coupled to a
simple 1-degree-of-freedom system and a simple explicit time-stepping algorithm
for the coupled system is presented.

II Free decay experiments for coupled TLD-structure systems, with the structure
given an initial displacement, show that the proposed model captures the transient
behavior of the free water surface well and estimates the position of the wave front
precisely.

III The total damping of the coupled system is estimated rather accurately by the
model for structural amplitude above 10 mm. For lower structural amplitude larger
deviation is found between experimental and simulated results. How ever qualita-
tively the model still performs well in this region.

IV Forced excitation experiments for a coupled TLD-structure system taken from [13]
show that the model estimates the maximum value of the frequency response curve
satisfactorily. The maximum value of the simulated frequency response curves has
its maximum at a lower frequency value than the experimental curve.

As regards the last point further force excitation experiments should be conducted and
the phase of the measured and simulated hydrodynamic fed back to the structure should
be analyzed in order to establish an explanation of the found discrepancy. This will be
performed in future work.
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ABSTRACT: Rectangular tanks filled with shallow liquid, also know as shallow-water type Tuned Liquid
Dampers, have been investigated by several researchers. Common to the approaches is that an energy conserving
form of the nonlinear shallow water equations is used for describing the sloshing motion. This form, also known
as the velocity formulation, breaks down when discontinuities in the surface or waves are formed. In the current
paper we use a formulation of the nonlinear shallow water equations based on momentum conservation instead.
Using this approach the energy dissipation as a result of discontinuities is captured by the method. Numerical
simulations and experimental results show surprisingly well agreement, taking the degree of nonlinearity in
consideration, and that no calibration is performed of the numerical model.

1 INTRODUCTION

The idea of applying tuned liquid dampers (TLD) to
reduce vibrations in civil engineering structures began
in the mid-1980s. Because of its clearly economical
benefits and high efficiency TLDs are increasingly
being used as vibration absorbers to mitigate the
dynamic response of structures. Unlike tuned mass
dampers (TMD), which often respond in a purely
linear manner, the behavior of TLDs is in general
highly nonlinear due to the fluid motion. The aim of
the dampers is of course the same, namely to transfer
mechanical energy from the structure to the damper,
thereby dissipating energy. In order for the damper
to dissipate energy the damper must equipped with
some sort of internal dissipation mechanisms. In a
TMD the internal damping is often attained by adding
e.g. a viscous damper to the damper mass. In a TLD
the internal damping is attained directly through the
fluid and thus is in general a very complex quantity to
describe.

TLD’s are often classified in two categories:
shallow-water and deep-water type damper. The
characterization is based on the ratio of the water
depth to the horizontal dimension of the tank. In
the limit of infinite small vibration amplitudes both
types of dampers behave qualitatively identical and
their behavior is well described by linear potential

theory. However as the vibration amplitudes increase
the behavior of the two dampers significantly changes
and the same theory can no longer be applied to model
both damper types.

In the case of a deep water-damper the free water
surface at large vibration amplitudes becomes non-
linear but remains continuous. The energy dissipation
in the fluid for this case stems primarily from the
bottom friction and the free surface. Since these
contributions are in general small, additional baffles
and screens are often inserted in the fluid thereby
increasing the internal energy dissipation.

In the case of shallow water type dampers the
free surface at large vibration amplitudes no longer
remains continuous. Due to nonlinearities a moving
hydraulic jump or a shock wave is formed, also known
as a bore, which is characterized as a wave with an
almost vertical front. The generated bore is dominated
by a large recirculating roller region from which
turbulence originates and hence dissipates energy. The
energy dissipated by the bore will generally be of
such magnitude that no additional energy dissipating
devices inside the bulk of the fluid is needed.

The motion of fluids in rigid containers has received
considerable attention over the the last five or six
decades due to its frequent application in many
engineering disciplines. One of the first studies done
(Graham and Rodriguez, 1952) was on the behavior



of fuel motion in tanks and was solved using linear
potential theory and analogous mechanical models
were derived. These analogous mechanical models
have received much attention due to their simplicity
and physical interpretation of mechanical quantities.
A weakness however of the methods is their need to
be calibrated up against experimental results.

Numerical modelling of shallow-water dampers
have been done by several researchers (Sun et al.,
1992; Sun and Fujino, 1994; Koh et al., 1994). For
some reason though the majority of work done up to
now has been based on an energy conserving form of
the nonlinear shallow water equations also know as the
velocity formulation. For base motions where no bore
is developed the model works very well but as pointed
out in (Sun and Fujino, 1994) even for relatively small
base motions bores are developed and the velocity
formulation is no longer valid. In order to capture the
energy dissipation empirical constants are added to the
equations, and thus the model needs calibration.

In this paper a momentum conserving form, also
know as the flux formulation, is used instead. By
conserving mass and momentum the equations are able
to capture the energy loss occurring in the bore and
hence calibration of the model can be avoided.

2 MODEL FOR LIQUID SLOSHING IN A TLD

The rigid rectangular TLD tank (Figure 1), which
has the length 2a, width b, and still water liquid
depth h, is subjected to a horizontal base-motion xs . It
is convenient to refer the fluid motion to a moving
coordinate system as the variables are measured
relative to the moving frame. The local cartesian
coordinate system (O, x, z) is thus attached to the
tank at the center of the free liquid surface. The
fluid is assumed inviscid, incompressible and initially
irrotational. The equations describing liquid sloshing
in the moving frame of reference are the continuity
equation

∂u
∂x
+ ∂w
∂z
= 0 (1)

and two-dimensional Euler equations

∂u
∂t
+ u

∂u
∂x
+ w∂u

∂z
+ 1
ρ

∂p
∂x
=−ẍs

∂w

∂t
+ u

∂w

∂x
+ w∂w

∂z
+ 1
ρ

∂p
∂z
= g

(2)

for −h ≤ z ≤ η. The kinematic boundary condition at
the free surface is

w = ∂η
∂t
+ u

∂η

∂x
, at z = η(x, t) (3)

and at the bottom

w =−u
∂h
∂x
, at z =−h(x) (4)

At the end walls the boundary conditions are

u(x =±a, t)= 0 (5)

x

z

w

u
2a

h

η

O

xs

O ′

Figure 1. Sketch of a rectangular TLD tank.

2.1 Vertical integration of continuity and Euler
equations

The depth integrated continuity equation is found by
integrating the continuity equation (1) and utilizing (3)
and (4):

∂η

∂t
+ ∂

∂x

∫ η

−h
udz = 0 (6)

Integrating the horizontal momentum equation (2) and
again utilizing (3) and (4) leads to:

∂

∂t

∫ η

−h
udz + ∂

∂x

∫ η

−h
u2dz + ∂

∂x

∫ η

−h

p
ρ

dz+
∂h
∂x

1
ρ

p(−h)+ ẍs(η + h)= 0
(7)

At last integration of the vertical vertical momentum
equation is given by

1
ρ

p(z)= g(η − z)+ ∂

∂t

∫ η

−h
wdz+

∂

∂x

∫ η

−h
uwdz − w2(z)

(8)

2.2 Shallow water approximations

In the following we assume that the vertical variation
of the horizontal velocity component is negligible
and that the flow can be approximated by a uniform
velocity profile

u(z)'U ≡ Q
h + η, where Q ≡

∫ η

−h
udz (9)

Since the vertical flow velocity is significantly
weaker than the horizontal one the pressure can be
assumed hydrostatic, i.e. (8) is approximated by

1
ρ

p(z)' g(η − z) (10)



2.3 The flux formulation

By inserting (9) and (10) into (7), the depth integrated
horizontal momentum equation simplifies to

∂Q
∂t
+ ∂

∂x

(
Q2

h + η
)
+ (h + η)

(
g
∂η

∂x
+ ẍs

)
= 0

(11)
This should be combined with the depth integrated
continuity equation

∂η

∂t
+ ∂Q
∂x
= 0 (12)

and the boundary and initial conditions

B.C. : Q(±a, t)= 0
I.C. : Q(x, 0)= Q0(x), η(x, 0)= η0(x)

(13)

Following (Madsen et al., 2005) we emphasize that
the governing equations (11)-(12) conserve depth
integrated mass and momentum. This implies that
continuous as well as discontinuous solutions are
possible and as a very important and essential point:
the energy dissipation associated with a discontinuity
will be described by the equations.

By introducing the variable d ≡ h + η(x, t) and the
following operator

∂F
∂t
+ ∂H
∂x
+ S= 0 (14)

the flux formulation (11) and (12) can expressed as

F=
[

d
Ud

]

H=
[

Ud

U 2d + 1
2

gd2

]
(15)

S=
[

0
dẍs

]

This form will be used in the numerical solution
procedure described next.

3 NUMERICAL SOLUTION PROCEDURE

The problem defined by equations (13)-(15) is
discretized by using the Finite Volume method (FV)
(LeVeque, 2002). The domain � is partitioned into N
non-overlapping cells �=⋃N

k=1 �k and the solution
within each cell is assumed to be constant. The
differential equation is integrated over each cell

∫

�k

∂F
∂t
+ ∂H
∂x
+ Sd�= 0 k = 1 . . . N (16)

The divergence theorem is applied on the second term
of the above equation and (16) becomes∫

�k

Ḟd�+ [H]xk
xk−1
+
∫

�k

Sd�= 0 k = 1 . . . N

(17)

The solution is approximated by a constant value
inside each cell. The approximated flux Hh becomes
discontinuous along the cell boundaries and has to be
replaced by a suitable numerical flux G that depends
on the values of the neighbor elements. The properties
of the FV discretization depends on the choice of
the numerical flux. Many suitable schemes have been
utilized in practice (LeVeque, 2002) and in the present
article we use the Roe numerical flux (Fagherazzi et al.,
2004)

G(i, j)= 1
2

(
Hh

i +Hh
j

)
− 1

2
|A|

(
Fh

i − Fh
j

)
(18)

where the index i refers to the values computed inside
the cell and the index j refer to the flux and the solution
in the neighbor cell. The matrix A is computed as

A=
[

0 1
c̄2 − ū2 2ū

]
(19)

c̄ =
√

1
2

(
c2

i + c2
j

)
ū = ci ui + c j u j

ci + c j
ci =

√
ghi

(20)

The discretized equations becomes

hkḞh
k +G(k, k + 1)−G(k, k − 1)+ hkSh = 0

k = 1 . . . N
(21)

The equations are integrated in time using a standard
4th order Runge-Kutta solver.

4 EXPERIMENTAL SETUP AND PROCEDURE���������������������������������������������������������������������������������
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Figure 2. Sketch of the experimental setup.

A steel frame or table as shown schematically in
figure 2 has been constructed in order to verify the
results from the numerical simulations. The structure



consist of a steel frame with mass M being suspended
by four cables with a length of L = 3000mm. In each
corner of the frame a horizontal spring is mounted
and by varying the spring stiffness and mass a large
variety of structures, mainly low frequency ones, can
be represented by the setup. In the current setup the
mass of the structure is M = 440kg and the frequency
is ω = 4.52rad/s.

The TLD tank is placed on a frictionless support
on top of the table making it possible to measure the
total horizontal force using a force gage. The tank has
a total inner length of 2a = 400mm and a width of
b = 200mm. The liquid depth is fixed to h = 37mm
in all the experiments carried out. In the TLD tank
two wave gages are placed, one at each end. The
horizontal acceleration of the table is measured by an
accelerometer. In order to excite the table an actuator
is placed on the table, shown to the right of the TLD
tank in figure 2, which supplies a horizontal force to
the table at a chosen frequency. The data acquisition
is done using LabVIEW.

The experiments are carried out in the following
way: The actuator is programmed to deliver a
sinusoidal force with a forcing frequency close to the
natural frequency of the table and the TLD. After some
time, typically around 30-60 seconds, a steady state
motion of the liquid motion and table motion is reached
and the acceleration, force and wave height is recorded
for a period of 30s. By varying the forcing frequency
the amplitude of the base excitation can be varied.
The purpose of the experiments is not to determine
the efficiency of the TLD but to get some records that
can be verified by the numerical procedure.

5 VERIFICATION

To verify the experimental results we use the measured
acceleration time series and apply these directly to the
equations as ẍs . The maximum horizontal amplitude
of the table is estimated from the acceleration time
series as

A = xmax =�2 ẍs,max (22)

where � is the frequency of the horizontal table
motion. The fundamental natural frequency of the fluid
based on linear potential theory is given by (Lamb,
1932)

ω2
f = g

π

2a
tanh

(
hπ
2a

)
(23)

which for our case givesω f = 4.67rad/s. Based on the
linear frequency the frequency ratio β is defined as

β = �

ω f
(24)

5.1 Wave height comparison

The first method of verifying the numerical scheme is
by comparing the measured wave height d at one of
the end walls of the tank with the computed records. In
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Figure 3. Free surface at x =−0.2m. A/2a = 0.02 and β = 0.90
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Figure 4. Free surface at x =−0.2m. A/2a = 0.07 and β = 0.95
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Figure 5. Free surface at x =−0.2m. A/2a = 0.16 and β = 0.97

all the following comparison plots the measured wave
height is shown by a full curve while the computed
wave heights are depicted by dashed curves.

It is clear from figure 3-6 that the equations describe
the fluid motion remarkably well and it should be
stressed that no calibration of the numerical model
of any kind has been performed. The still water level
is h = 0.037m and the nonlinearity of the problem is
noticed by asymmetry of the free surface elevation; the
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Figure 6. Free surface at x =−0.2m. A/2a = 0.04 and β = 1.00

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

x [m]

d 
[m

]

t=12.0s t=12.2s

t=12.4s t=12.5

t=12.6st=12.8s
t=13.0s

t=13.2s

Figure 7. Surface profile for A/2a = 0.16 and β = 0.97 at eight
different time instances. Full curve: Bore travelling from left to
right. Dashed curve: Bore travelling from right to left.

free surface elevation in the upward direction is larger
than in the downward direction. Computed surface
profiles at eight different time instances in figure 7
also show the complexity of the problem.

It seems to be a general trend when studying the
experimental data that higher harmonic components
are superimposed on the bore. The numerical solution
however does not capture this effects and the solution
is instead more smooth. Also the numerical method
very consistently underestimates the measured wave
height. When performing the experiments it is visually
observed that some splashing occurs when the bore hits
the end walls, an effect which the numerical model is
unable to capture.

As a last point it is noticed that the numerical model
is able to capture the behavior of the fluid very well
for base motions ranging from 2% to 16% of the tank
length.

5.2 Force comparison

The second part that needs to be verified is the ability
of the numerical model to capture the total horizontal
force as a results of fluid sloshing. The total horizontal
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Figure 8. Total horizontal force Fs . A/2a = 0.02 and β = 0.90
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Figure 9. Total horizontal force Fs . A/2a = 0.07 and β = 0.95
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Figure 10. Total horizontal force Fs . A/2a = 0.16 and β = 0.97

force from the fluid motion is found by taking the
difference of the integrated hydrostatic pressure (10)
at both ends of the tank:

Fs =
1
2
ρgb

(
d2

x=−a − d2
x=+a

)
(25)

This force is compared with the horizontal force
measured by the force gage, see figure 2. The
comparison is presented in figures 8-11.

Again the numerical model is seen to capture the
experimental data very well. As was also the case in the
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Figure 11. Total horizontal force Fs . A/2a = 0.04 and β = 1.00

previous section the measured force is underestimated
by the numerical simulation.

6 DISCUSSION-CONCLUSION

The conclusions that can be drawn from the present
study are summarized as follows:

(i) By numerically solving the nonlinear shallow
water equations using a mass and momentum
conserving form, the behavior of shallow
water dampers can be described very well
without having to introduce empirical constants
describing the internal damping of the fluid.
Both the wave height and sloshing force are
captured very well by the numerical model.

(ii) The experiments show clearl traces of higher
harmonic components which the numerical
model is unable to capture. Instead the model
seems to smooth out the solution.

(iii) The numerical method works well for different
base motion amplitudes.
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The application of vibration-control devices in civil engineering structures has become an ac-
cepted technology. One type of passive control device that has been widely used is the Tuned 
Liquid Damper (TLD). However, despite its frequent use the understanding of the interaction 
between TLD’s and structures is by far fully understood. A mathematical model describing liquid 
sloshing in shallow water has been developed and validated by extensive experimental results. 
The mathematical sloshing model has further been coupled to an elastic structure to study the 
interaction effects of sloshing forces and structural response.
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