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A Long-Distance Travel Demand Model for 
Europe 

Jeppe Rich1 and Stefan L. Mabit2  
DTU Transport, Technical University of Denmark, Denmark 

 

In Europe, approximately 50% of all passenger kilometres come from trips beyond 100 km 

according to matrices developed in the TRANSTOOLS project. This accounts for an even larger 
share of CO2 emissions due to a higher modal share of air transport. Therefore long-distance trips 
are increasingly relevant from a political and environmental point of view. The paper presents 
the first tour-based long-distance travel demand model for passenger trips in and between 42 
European countries. The model is part of a new European transport model developed for the 
European Commission, the TRANSTOOLS II model, and will serve as an important tool for 
transport policy analysis at a European level. The model is formulated as a nested logit model 
and estimated based on travel diary data with segmentation into business, private, and holiday 
trips. We analyse the estimation results and present elasticities for a number of different level-of-
service variables. The results suggest that the perception of both travel time and cost varies with 
journey length in a non-linear way. For car drivers and car passengers, elasticities increase with 
the length of the journey, whereas the opposite is true for rail, bus, and air passengers – a fact that 
reflects a change in substitutability.  Moreover, elasticities differ significantly by trip purpose 
with private trips having the highest and holiday trips the lowest elasticities.  
 
Keywords: destination choice, discrete choice, long-distance model, mode choice, passenger 
demand, revealed-preference data 
 

1. Introduction 

The opportunity to travel long distances fast at a low cost combined with economic growth has 
made long-distance transport a basic part of people’s activities. According to a recent survey 
(STOA 2008) more than 60% of all people find it important or very important to have access to 
easy and efficient transport across Europe. During the last decade (1999-2008) European air 
passenger traffic has increased by more than 50%. This is partly driven by an increase in average 
travel distances from 791 to 1050 km (Airbus 2009). Furthermore, it is expected that air transport 
in Europe will double in the next 15 years (Airbus 2009).  

In terms of invested resources in travel demand models (in the past), there is no doubt that most 
resources have been applied to regional and national models, with only little attention given to 

                                                        
1 Bygningstorvet 116B, DK-2800 Kgs. Lyngby, T: +4545251536, F: +4545936533, E: jr@transport.dtu.dk 
2 Bygningstorvet 116B, DK-2800 Kgs. Lyngby, T: +4545251510, F: +4545936533, E: smab@transport.dtu.dk 
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multi-country models. As a result, models capable of analysing global factors such as climate 
effects or abilities to meet overall CO2 targets have had little attention. Consequently, the 
substitutability among long-distance modes including air transport and high-speed rail has not 
been given the same attention as substitution among short-range urban modes.  

To our knowledge, the model presented in this paper is the first tour-based multi-country model3 
which has been estimated on disaggregate data and subsequently implemented for policy 
analysis. The model is part of the TRANSTOOLS II model framework (TRANS-TOOLS 2008), 
which will form the basis for transport policy analysis by the European Commission with respect 
to climate, infrastructure, and economic development. More specifically, the model is intended to 
be central to the evaluation of; (i) high-speed rail initiatives in Europe and the substitution 
pattern between air and rail transport in general; (ii) road charging initiatives at the European 
level; (iii) subsidising schemes for the European Commission of large European infrastructure 
projects. A principle objective of the paper in that respect has been to describe the model 
structure and its results in a transparent way to facilitate a much needed academic debate about 
large scale and long-distance modelling.  

In the model, we apply a generation-attraction (GA) approach, in that we consider tours (trip 
chains) rather than single trips (see, e.g. Adler and Ben-Akiva 1979). We discuss this approach in 
more detail in Section 0. In the TRANSTOOLS II model, the mode and destination choice model 
is linked to a frequency model by a logsum measure to account for accessibility effects in the trip 
generation. However, in the present paper we only consider the mode and destination choice. 
The reason is that the demand sensitivity in the presented model then only represents 
substitution effects, which can be more easily compared to other findings. 

Next, in Section 1.1, the paper reviews literature on European long-distance travel demand 
modelling and identifies the contribution of the paper. Section 2 discusses data with emphasis on 
the DATELINE survey. In section 3, we discuss the model structure. Section 4 presents the 
estimation, while section 0 presents the elasticity results. Finally, in section 6 we offer a 
conclusion. 

1.1 Review of European long-distance demand modelling 

Most of the work on long-distance models is connected with the development of national models 
in Europe, state-wide models in the U.S., and intercity travel demand models. An overview of 
European national models is given in Lundqvist and Mattsson (2002). In terms of establishing a 
methodological reference point, the Dutch National model (HCG 1990) and the Swedish national 
model (Beser and Algers 2002) are among the best documented and most influential models.4  

The common approach for dealing with long-distance trips in most of these models has been to 
make separate models for these trips, i.e. exogenous stratification. The models are typically 
combinations of a trip frequency or trip generation model, a destination model, and a mode 
choice model with the inclusion of an air alternative. Another common stratification variable is 
trip purpose, although experiments with endogenous stratification have been considered in Beser 
(2003; Chapter 2) for the Swedish national model, SAMPERS. In terms of modelling, usually a 
nested logit approach has been used. The model structure with a frequency at the top of the 
choice hierarchy and a joint mode and destination model follows the recommendations in 
Department of Transport (2009) although for urban models in the UK, destination is usually 
above mode. This is the case in a recent paper by Rohr et al. (2010), where they find evidence that 
the nesting structure is opposite although the estimation suggest that destination is only slightly 

                                                        
3 Even though models like the Fehmarn Belt and Oresund models do include several countries we do not see 
these as multi-country models as their focus is to model a corridor between two countries.  
4 Attention should also be given to Fox et al. (2003) which gives an overview of the models developed by RAND 
Europe. 
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more sensitive compared to mode. In the SAMPERS long-distance model (Beser 2003; Chapter 4), 
the nesting structure has mode conditional on destination, which is identical to the structure 
found in the present paper. A case where both structures are present is presented in Börjesson 
(2010).  

Models representing several countries, i.e. multi-country models, are not often seen for passenger 
traffic. An example, however, is the TRANS-TOOLS I model as described in (TRANS-TOOLS 
2005). Although this model is the most recent and constitutes one of the more advanced models 
covering all of Europe, it is not very sophisticated in terms of its passenger demand model. The 
model, referred to as the VACLAV model, is trip-based and therefore not capable of consistently 
measuring the impacts of zone-based data (refer to Section 3 for a more elaborate discussion of 
trip-based versus tour-based modelling). Moreover, the choice of mode and the choice of 
destination are not estimated jointly. Another limitation is that the model is not stratified 
according to long- and short-distance trips. This is a problem considering the different nature of 
these trips (Hubert and Potier 2003). The STREAMS model (Williams 2002), STEMM (Gaudry 
2002), and SCENES (SCENES 1999) can all be seen as forerunners for the TRANS-TOOLS models 
and generally involve a less sophisticated approach in terms of demand modelling. SCENES, the 
most recent of the three (completed in 2001), resembles a classic 4-stage model.   

How to include journey distance is a general theme in long-distance modelling. In an analysis of 
mode choice of intercity passengers in Germany, Mandel et al. (1997) highlight the importance of 
functional form. More recently, Gaudry (2010) summarises findings with reference to non-linear 
responses due to high-speed rail supply. Daly (2008) opened the discussion from a theoretical 
point of view, with the main finding that the own-demand elasticity due to travel cost should 
increase with distance. In the paper all of these findings are supported in that non-linearities are 
confirmed and have large impact on demand response and model fit. 

The main contribution of the paper to the literature of applied transport modelling is that it fills a 
thematic gap by being one of very few models concerned with long-distance modelling. The 
model represents a multi-country tour-based model where trip frequencies are connected to a 
joint mode and destination choice model via logsums. To this end a variety of issues particularly 
relevant to long-distance modelling are discussed including functional form, the balance between 
access/egress time and transport time, plane and rail substitution and differences in preferences 
for different purposes. Moreover, as the model is used by the European Commission to decide on 
investments in the European infrastructure, it is important simply to expose the model structure 
and its demand responses to facilitate an academic discussion and to go against the “black-box” 
tendency in many European projects.     

2. Data 

The construction of a large-scale multi-country model demands several sources of input data, see 
Axhausen et al. (2003) for an elaborate discussion of data collection issues for long-distance trips.5 
Our data consist of three elements that we present next: travel survey data, level-of-service (LoS) 
variables, and zone data. 

2.1 The DATELINE survey 

The travel survey data used come from the DATELINE survey (DG-TREN 2000). DATELINE 
represents a “diary type” survey in the sense that individuals were asked to provide information 
about their past travel history. The past in this context differs by purpose and is summarised in 

                                                        
5 In this paper, trips above 100 km are considered as long-distance trips, i.e. tours above 200 km. 
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Table 1. The overall shares of trip purposes and modes among the 111,867 separate trips in 
DATELINE can be seen in Table 2.  

Table 1. Interview periods in the DATELINE data. 

Purpose Period of record 

Business 3 months 

Holiday 1 year 

Private 3 month 

Commuters 4 weeks 

Table 2. Distribution of one-way trips by purpose and by mode adjusted to a year base. 

Purpose Frequency Percentage Mode Frequency Percentage 

Business   43420 29.17% Air   22597 15.18% 

Holiday    73326 49.26% Bus   11900   7.99% 

Private   27221 18.29% Car6   97917 65.78% 

Commuters     4882   3.28% Train   16435 11.04% 

Sum of trips 148849   Sum of trips 148849   

 

A cross tabulation among trip purposes and modes (weighted according to Table 1) reveals that 
commuters are not represented in large numbers in the data. Accordingly, these have been 
pooled with business trips in the model. It also exposes the dominant position of car use for all 
purposes. Moreover, it is seen that the air alternative is more frequently used for business and 
holiday trips, whereas, for private trips, air trips only account for 2.4%.  

There are some specific issues concerning the DATELINE data that should be taken into 
consideration. Firstly, the data only cover EU27. Second, individual income data were not 
available. As a result, income effects are modelled by means of zone-specific gross domestic 
product (GDP). Thirdly, due to the revealed-preference (RP) nature of the DATELINE survey, 
there were problems in identifying in-vehicle-time and out-of-pocket-costs separately. As a 
result, we have applied country-wide value of time (VoT) measures, see section 2.3, to produce a 
generalised in-vehicle-cost measure.  

2.2 Level-of-service data 

The model is estimated for four modes: car as driver, bus, rail, and airplane. All of the modes are 
assigned on their respective network except for busses. The set of LoS variables across modes is 
shown in Table 3.  

Table 3. Variation of level-of-service variables across modes. 

LoS component Description Car/Bus Rail Air 

Out-of-pocket costs Monetary variable costs (fuel, tickets) X X X 
In-vehicle-time Time spend in vehicle/rail/plane X X X 
Congestion time The time cars are running in congestion X   
Ferry time Time used at ferry crossings X X  
Access-egress time Access-egress time for air and rail  X X 
Frequency Frequency of rail  X  
Headway time Headway (frequency proxy) for air   X 
Transfer time Transfer time for air   X 

                                                        
6 “Car” here includes interview persons travelling as passengers and car drivers. 
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The LoS variables for all modes are based on stochastic user equilibrium assignments.7 This 
includes fairly advanced assignments for air as well as rail. However, busses are not assigned but 
given a set of pre-fixed costs and travel time variables. The same is true for the cost component 
for rail. This information was not available prior to the modelling exercise and was estimated in a 
separate analysis on the basis of a sample for rail ticket costs.  

A detailed description of how the LoS data have been generated is beyond the scope of the paper 
as it involves; (i) a discussion of the Trans-European networks (for all involved modes), (ii) 
calibration of baseline matrices (adjusted according to network counts), (iii) congestion modelling 
and (iv) modelling of feeder-mode traffic in the air assignment to mention a few non-trivial 
issues. For additional details on this we refer to the background report (Rich et al. 2009). 

2.3 Value-of-time and zone data  

It has not been possible to properly estimate VoT measures based on the DATELINE survey. 
Moreover, even if it was possible, the weak coverage for large parts of Europe would force an 
external VoT estimate for these areas anyhow. As a result, it was decided to create a country-wise 
VoT table divided by trip purpose based on a sample of VoT studies. By combining a purchasing 
power parity index with this sample, a complete table was generated (Rich et al. 2009).  

In our study, the model area includes 1441 zones with great variation in geographical size, GDP, 
and population. The most detailed zone structure is for Germany and Benelux, whereas Russia, 
Belarus, Ukraine, Turkey, Sweden, and Norway are represented by very large zones. Iceland is 
also included. The zone data in the model include population, hotel capacity, jobs, and GDP. All 
variables are based on EUROSTAT, however, for countries not covered by EUROSTAT (i.e. 
Russia, Belarus, and Ukraine) national statistics were used. For zones not covered by EUROSTAT 
and national statistics, we calculated proxies (Rich et al. 2009).  

3. Model Specification 

3.1 Definition of tours and trips 

In the model, we apply a GA approach, in that we consider tours (trip chains) rather than single 
trips. This is an important improvement compared to models based on single open-ended trips 
such as the VACLAV model (TRANS-TOOLS 2005). This is especially true for long-distance 
tours, because individuals from different parts of Europe will be very heterogeneous. A trip-
based modelling approach will assume that attributes are always formed in the trip departure 
region, irrespectively that the trip is part of a journey and should be based on the departure 
region of the journey (e.g. the residential zone). Consider a Swedish person travelling to Albania. 
Although the person would be correctly represented as a Swedish person on the way out, he 
would be represented as an Albanian going to Sweden on the return trip. As there are great 
differences in income level, car ownership, GDP, and VoT, it makes quite a difference as regard 
the choice of mode to consider the complete journey compared to a single trip. 

Further reasons are that individuals do not make a destination choice when returning they 
usually return home and that individuals often use the same mode on both the out and 
homebound trip. In the model, we have assumed that journeys are converted into tours by 
attaching a main mode and a main destination. For private trips and holiday trips, we only allow 
home-based tours. For business journeys, however, we allow non-home based tours, with an 
attached main mode and main destination. For business trips there may be many trips in a chain, 
however, all sub-trips (not origin and final destination) are excluded. Therefore the model, 

                                                        
7 The LoS data as derived from the TRANSTOOLS II is based on all traffic including freight as well as long and 
short distance traffic for passengers.  
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contrary to a number of activity-based models, may not model dependence between sub tours 
and main purpose. Figure 1 below illustrates two typical examples of reduced trip chains.  

 

 

Figure 1. Illustration of how trip chains are converted to simple home-based tours.  
 

To the left in Figure 1, a typical holiday trip pattern is illustrated. It consists of a long journey (e.g. 
airplane to the Canary Island) and excursions departing from the main destination. In the model 
only the trip to the main destination is maintained, whereas trips to the secondary destinations 
are left out. 

To the right in Figure 1, a typical business or private trip pattern is shown. It may consist of a 
main destination and a number of sub-trips on the way to the main destination. However, all 
secondary destinations are considered as detours and excluded. As a result, only the trip from the 
home to the main destination is maintained. Compared to the illustration to the left, this trip 
chain reduction may well produce a new synthetic set of trips which was not in the original set of 
trips.  

The consequences of the trip chain reductions may seem more critical than they are. Firstly, since 
the majority of the excursions are below 100 km these trips would not be included in the long-
distance model anyhow. Secondly, it should be remembered that the objective of the model is to 
capture overall differences in preferences rather than precisely mimic the trip patterns of 
households. In other words, excluded trips will only have impact to the extent preferences differ. 
In terms of excluded mileage, the simplification of trip chains accounts for less than 7% and the 
impact on parameter estimates is considered to be negligible. 

The modelling is done at the individual level. Each journey is seen as decided by the individual. 
There could be many reasons to change this into a household-based decision. But given that the 
only socio-economic variable used in the modelling is household car ownership, the decision unit 
does not influence the model estimation in the present case. 

The group size is not modelled. However, it is measured indirectly in the car mode by 
substitution between passengers and car drivers.  
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3.2 Nested logit formulation 

The model is indexed by n  representing a specific tour, i.e. we treat the data as a cross section. 
The model is formulated as a nested logit model including choice of mode conditional on 
destination. The nesting structure with destination over mode was based on empirical testing.  

The nested logit choice probabilities for observation n  are given by 

 
( )
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∑
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where  ����|�� is the utility for mode m  conditional on destination d . The upper-level 
probability for the choice of destination is given by 
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The model is estimated by maximum likelihood estimation (MLE). This consists of maximising 
the log-likelihood function,  

 ( ) ( ) ( )( )∑=
mdn

nnmdn dmPdPyLL
,,

,, |logβ  (3) 

where mdny ,,  represents an indicator function for the choice of { }md ,  for tour n . 

3.3 Utility functions 

Generally, the utility functions are based on LoS variables that vary for all modes and 
destinations, the number of available cars, and a size variable measuring attractiveness of 
destinations. In the functional form, we have considered a distance-dependent parameter split 
(under/over 600 km Euclidian distance) and linear versus logarithmic specifications of the 
generalised travel cost (GTC) variable. The parameter split was applied to all models and to all 
time and cost components. This decision was based on an investigation of the air transport 
market share as a function of distance. There is very strong evidence that the hypothesis of equal 
parameters for long and short distances fails. The second issue regarding functional form has also 
turned out to be important. Utility functions have been specified as in equations (4)-(5) where q  

= 1(short), 2(long) represents the short/long indicator. 
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( )dIn  represents the usual logsum term that is defined as 
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We use µµ =d  for all d . This ensures that cross-substitution elasticities are symmetric and that 

monetary units in the model count equal in all nests. 
 
In equation (5) q  indicates whether the 

tour is short or long conditional on the destination. All ϕ -parameters are to be estimated. 

Variables are described as: 

Table 4. Description of the model variables. 

Variable name Description 

dSize  The attraction variable that varies over destinations. 

nAdj
 

A correction term for sampling of alternatives as defined in equation (4). 

mk  Mode-specific constants 

qdmAccEg ,|  Access-egress time. This variable is only valid for the rail and air mode. 

qdmFreq ,|  Rail frequencies. 

qdmFerryTime ,|  Gross ferry time including on-board ferry time and waiting time.  

qdmeHeadWayTim ,|  Headway time for the air mode. 

qdmmeTransferTi ,|  Transfer time for the air mode. 

nCarAv  Car availability based on the number of private cars in the household 

making tour n  (recorded from DATELINE). 

 

The definition of qdmGTC ,|  is as follows: 

 ( )qdmnqdmnmqdmqdm TimeCongestioneOnBoardTimCostGTC ,|,|,|,| κγ ++=  (7) 

where qdmGTC ,|  define generalised variable cost, nmγ  is a general VoT measure for countries and 

modes, and nκ  is a mark-up used to further scale congestion time (a value of κ = 1.5 has been 

used). It should be noted that congestion time is only calculated for the road network as rail and 
air transport is modelled without capacity constraint in the assignment.  

With respect to the functional form of qdmGTC ,| we tested all combinations of trip purpose, 

distance ( 2,1=q ), and ( )⋅f  = linear or ( )⋅f  = ln(). This involved 12 models with the 

unambiguous result in terms of goodness-of-fit as well as model validation (in terms of 
elasticities) that  
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 :1=q  ( ) 1,|1,| == = qdmqdm GTCGTCf   

:2=q  ( ) ( )2,|2,| log == = qdmqdm GTCGTCf  

(8) 

This specification means that, for longer distances, scale effects are avoided and there is 
proportionality between demand and travel costs. Generally, the distance effect is modelled 
through the GTC form and including a separate distance term would cause a multicollinearity 
problem and the model would not be identified. A gamma-form (linear and logarithmic included 
in a parallel way) was investigated but was not found to be properly identified.8 It may be argued 
(Gunn 1983) that rather than do modelling in the money space, modelling should be carried out 
in the time space. This would imply a formulation with generalised travel time (GTT) equal to 

 
nmqdmqdmnqdmqdm CostTimeCongestioneOnBoardTimGTT γκ /,|,|21,|,| ++= ∧=  (9) 

This formulation will tend to increase trip length relative to the current approach when 
forecasting as the VoT increases in real terms everything else equal. Econometrically, however, it 
makes no difference in the estimation process. Moreover, this only makes a difference in a linear-
variable specification and not for a log-transformed specification as applied in the current model 
for long trips over 600 KM.  

3.4 Destination attractiveness 

The destination alternatives introduce a non-trivial issue with the measurement of attractions. 
The form of attraction variables was estimated prior to the discrete choice model. For each trip 
purpose, we estimated a log-linear Poisson model by regressing explanatory variables onto the 
enumerated trips from the DATELINE survey. The resulting form of the size variable that enters 
the model is given by 

 

 ( ) ( ) ( )ddddd GDPCAPJOBPOPSize lnlnln 4321 θθθθ +++=  (10) 

 

where dPOP is the population of zone d , dJOB  is the number of jobs,  dCAP  represent a bed-

place capacity for visitors, and dGDP
 
is the gross domestic product. 

The logarithmic specification causes the model to be unaffected by changes to the zone system 
(Daly 1982). In the estimation, we fixed the size parameters to unity in order to force “demand” 
proportional to “size” in the model.9   

4. Estimation 

4.1 Sampling of alternatives 

As the model operates on a zone structure with 1441 zones, the set of destinations requires 
sampling of destination alternatives to reduce the computation time. An importance sampling 

                                                        
8 In this way, we have tested a Box-Cox representation heuristically. 
9 Estimating the size parameter will usually produce a parameter below unity, indicating a limited substitution 
pattern in a spatial sense. This can be verified by the theory of elemental alternatives (Ben-Akiva and Lerman 
1985).  
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strategy based on distance bands was applied. The correction term for sampling of alternatives, 

nAdj , depends on n  and the distance band )(nb  defined relatively to the origin of observation n  

 ( )( )nbnn pAdj ,log−=  (11) 

where ( )nbnp ,  is the selection probability (Ben-Akiva and Lerman 1985). The selection probability 

is defined as the ratio between the number of sampled zones and the total number of zones 
within each distance band (relative to the origin zone). As an example, assume that we had a trip 
above 600 km, then we sampled destinations in 3 bands. We sampled 5 out of 20 destinations in 
the sampled choice set from the distance band above 1800 km. Therefore these destinations have 

the correction term ( )20/5log−=nAdj .  

As consistency as well efficiency of the nested logit estimator is not guaranteed under importance 
sampling, several simulation tests of the parameter sensibility due to sampling of alternatives 
were carried out (Rich et al. 2009). It was evidenced that the sampling bias for 20 sampled 
destination alternatives was well below the standard error of the model parameters. 

4.2 Parameter estimates 

Model parameters are estimated by MLE using SAS software. In the following, all of the 
parameters and goodness-of-fit measures refer to the sampled version of the model as described 
in section 0. As a result, the standard errors will be biased compared to the un-sampled 
estimation and the goodness-of-fit will be (upward) biased and indicate that the model is actually 
better than it is. However, parameters will not be biased (at least only biased within a narrow 
band corresponding to approximately 0.5-1% of their value according to sampling simulation 
tests). If we were to calculate corrected standard-errors, we would either need to estimate a full-
scale model (which is not considered an option) or apply bootstrapping (many estimations each 
using repeated sampling of alternatives), which would also be very time consuming. The overall 
goodness-of-fit report is shown below in Table 5. For each purpose we report the null log-

likelihood (LL(0)), the final log-likelihood, LL(β), and the goodness-of-fit measure 
2ρ . In Table 5 

2ρ  is defined as 
( )

( )0

ˆ
12

l

l K−−= βρ with K  equal to the number of estimated parameters. 

Table 5. Overall goodness-of-fit measures. 

Trip purpose Number of 
observations 

LL(0) LL(β) 2ρ  

Business 6,280 -49,015 -24,089 0.509 
Private 15,141 -97,254 -56,154 0.423 
Holiday 36,358 -519,999 -165,337 0.682 

 

As seen in Error! Not a valid bookmark self-reference. all LoS parameters have the right sign. 
They are significant except for rail frequency for longer trips. Note that the model includes both a 
linear and a logarithmic specification for the generalised cost. Generally, for a few variables, e.g. 
car availability, the DATELINE survey did not allow these parameters to be estimated with 
sufficiently accuracy. In these cases, rather than apply uncertain parameters, we have applied 
parameters based on other sources to reflect elasticity levels found in the international literature. 
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For the business model, the car availability variables were insignificant.10 We have fixed these 
car-specific parameters to 0.3695 for use in the elasticity calculations in section 5. 

The logsum parameter is within the unit interval, i.e. it is consistent with random utility theory. 
Tests of the reverse nesting structure revealed approximately identical logsum parameters, 
however, with a weaker model fit. The results for private and holiday travel are found in Tables 7 
and 8. 

Although the holiday segment represents the most observations, not all LoS variables were 
properly identified. For access-egress and headway time, parameters have been calibrated from 
other data sources. The rail frequency parameters were insignificant and set to zero. Moreover, in 
the estimation of generalised cost parameters, we experienced identification problems. As a 

result, we estimated the model under one additional constraint, TCTC k ,2,1 ϕϕ = , where k  is found 

as a (combined) ratio between 1ϕ̂
 
and 2ϕ̂ parameters from the private and business segment.  

The problems experienced with the holiday segment are not particular surprising and arise 
(partly) from a weak definition of “size”. It is difficult to capture holiday attractiveness of a given 
destination by the variables included in equation (8). Eymann and Ronning (1997) analysed 
tourist destination choices and found that boundaries for preferred choices were determined by 
language borders, topographical characteristics, climate, and distance from home. In other words, 
the description of attractiveness in the present paper falls short of representing many of these 
dimensions. If attractions are weakly described, this tends to “dry out” many of the LoS effects 
because the travel resistance is not properly counteracted by travel attractiveness. A second 
reason may be that the degree of heterogeneity among holiday trips is larger than for business 
and private trips. An example of a source to hidden heterogeneity is the ownership of vacation 
homes, which is likely to be one of the most important determinants for destination choice 
(Hubert and Potier 2003). 

4. Elasticities  

In section 0, parameters were based on a sampled version of the model, elasticities presented in 
the following section are based on a full-scale simulation with all 1441 zones included. This 
avoids potential biased from the sampling as regard the evaluation of choice probabilities. In 
addition, car passengers (carP) have been included assuming identical LoS as for car driver 
(carD) but with zero monetary costs. Moreover, alternative-specific constants reflecting base-line 
market shares have been calibrated using the Manski-Lerman approach (Manski and Lerman 
1977). Elasticities have been based on a simulation of a 25% increase for all involved variables. 
The results are seen in Table 8-Table 10. 

It is seen that for CarD and CarP, GTC elasticities increase by distance in absolute value except 
for car drivers in the holiday segment. However, for the air and rail alternatives it is the other 
way round. This is because the size of the direct elasticity is always proportional to the term 

( )dm,Pr1−  which for these alternatives will actually decrease as a function of distance due to 

increasing market shares for longer trips. This tendency is similar for most other LoS attributes 
related to the air and rail alternatives. Moreover, as parameters for these other LoS variables are 
estimated using another functional form (only linear), this phenomenon seems to hold 
irrespectively of the functional form. Actually, the decrease in elasticities for access-egress time 
and rail frequencies for air and rail as a function of distance is very reasonable since these may be 
interpreted as “start-up” costs. The longer the trip the less relative impact of these components 
should be expected.  

                                                        
10 This could be due to the low variation of this variable in the data. 
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Table 6. Parameter estimates for the business model where q=1 refers 
to distances below 600 km and q=2 to distances above 600 km. 

Parameter q Estimate Std. error t Value   Pr > 
|t| 

Constant - car driver          -1.5735    0.0865   -18.20   <.0001 
Constant – bus  -3.5681    0.1070   -33.34   <.0001 
Constant - rail   -3.1708    0.1632   -19.43   <.0001 
Car availability - car driver   1,2 0.3695     0 . . 
GTC             1 -0.0026   0.0002  -16.90   <.0001 
LN(GTC)      2 -0.8455    0.0160   -52.94   <.0001 
Ferry time  1 -0.0023   0.0001   -16.62   <.0001 
Ferry time    2 -0.0013  0.0001   -19.33   <.0001 
Access-egress time 1 -0.0059   0.0002   -30.40   <.0001 
Access-egress time 2 -0.0027   0.0002   -17.16   <.0001 
Headway time    1 -0.0020   0.0004    -5.03 <.0001 
Headway time    2 -0.0023   0.0003    -7.94 <.0001 
Rail frequency   1 0.0208   0.0024     8.82 <.0001 
Rail frequency    2 0.0021   0.0033     0.64 0.5251 
Logsum            0.5620   0.0085    66.51 <.0001 

 

Table 7. Parameter estimates for the private model where q=1 refers 
to distances below 600 km and q=2 to distances above 600 km. 

Parameter q Estimate Std. 
error 

t 
Value   

Pr > |t| 

Constant - car driver         1.1585     0.1235     9.38 <.0001 
Constant - bus  0.3914    0.1230     3.18 <0.0015 
Constant - rail   -0.4388     0.1550    -2.83 <0.0047 
Car availability - car 
driver     

1 0.7383     0.0198    37.28 <.0001 

Car availability - car 
driver      

2 0.7344     0.0470    15.61 <.0001 

GTC            1 -0.0080   0.0001   -59.63 <.0001 
LN(GTC)     2  -1.7268     0.0249   -69.44 <.0001 
Ferry time  1 -0.0033  0.0002  -14.91 <.0001 
Ferry time   2 -0.0010  0.0001  -12.94 <.0001 
Access-egress time 1 -0.0031   0.0002  -19.54 <.0001 
Headway time    1 -0.0008   0.0004    -1.79 0.0739 
Headway time    2 -0.0002   0.0004    -0.59 0.5584 
Rail frequency   1 0.0108   0.0018     5.86 <.0001 
Rail frequency    2 0.0137   0.0027     5.02 <.0001 
Logsum            0.3748 0.0049    76.53 <.0001 

Table 8. Parameter estimates for the holiday model where q=1 refers 
to distances below 600 km and q=2 to distances above 600 km

Parameter q Estimate Std. error t Value   Pr > |t| 

Constant - car driver          -0.0965     0.0272     -3.55 0.0004 
Constant – bus  -1.1642     0.0248      -46.95  <.0001 
Constant - rail   -1.4419     0.0263   -54.83   <.0001 
 Car availability - car driver             1 0.7262     0.0172    42.11 <.0001 
 Car availability - car driver 2 0.8611     0.0168    51.24 <.0001 
 GTC        1 -0.0031  0.0000   -88.40   <.0001 
 LN(GTC)           2 -0.6402   0.0072  -88.40   <.0001 
 Ferry time         1 -0.0003  0.0000    -7.45 <.0001 
 Ferry time         2 -0.0016  0.0000   -53.54   <.0001 
 Access-egress time        1         -0.0019       0  . . 
 Access-egress time 2         -0.0006 0  . . 
 Headway time     1 -0.0024 0  . . 
 Headway time     2 -0.0010       0  . . 
 Logsum             0.3414   0.0028  120.71   <.0001 
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Table 8. Trip elasticities for the business model. 

Attribute Mode q 
Car 
driver 

Car 
passenger Bus Rail Air 

GTC car driver 1 -0.272 0.525 0.471 0.492 0.503 

   2 -0.294 0.466 0.316 0.323 0.308 

GTC 
car 
passenger 1 0.086 -0.383 0.081 0.084 0.090 

   2 0.113 -0.593 0.076 0.076 0.073 

GTC bus 1 0.054 0.058 -1.179 0.061 0.078 

   2 0.066 0.069 -0.548 0.141 0.139 

GTC  Rail 1 0.083 0.087 0.090 -0.804 0.128 

   2 0.058 0.060 0.108 -0.581 0.112 

GTC Air 1 0.026 0.029 0.034 0.038 -1.247 

   2 0.031 0.033 0.084 0.082 -0.574 

Access-egress time Rail 1 0.039 0.040 0.049 -0.385 0.051 

   2 0.031 0.032 0.073 -0.309 0.063 

Access-egress time Air 1 0.028 0.031 0.035 0.036 -1.210 

   2 0.039 0.041 0.110 0.104 -0.751 

Frequency Rail 1 -0.108 -0.110 -0.107 1.128 -0.159 

   2 -0.039 -0.040 -0.039 0.049 -0.052 

Ferry time car driver 1 -0.015 0.051 0.077 0.068 0.113 

   2 -0.223 0.108 0.175 0.166 0.167 

Ferry time 
car 
passenger 1 0.017 -0.076 0.037 0.030 0.057 

   2 0.037 -0.333 0.070 0.066 0.069 

Ferry time Rail 1 0.001 0.002 0.004 -0.014 0.009 

   2 0.002 0.003 0.009 -0.043 0.010 

Headway time air 1 0.013 0.015 0.019 0.016 -0.345 

   2 0.031 0.034 0.107 0.097 -0.713 

Transfer time air 1 0.003 0.004 0.005 0.004 -0.089 

   2 0.006 0.007 0.026 0.022 -0.165 

 

Table 9. Trip elasticities for the private model. 

Attribute Mode q 
Car 
driver 

Car 
passenger Bus Rail Air 

GTC car driver 1 -0.669 0.807 0.624 0.705 0.673 

   2 -0.861 0.570 0.449 0.403 0.418 

GTC 
car 
passenger 1 0.270 -0.474 0.232 0.278 0.436 

   2 0.526 -0.906 0.443 0.381 0.398 

GTC bus 1 0.139 0.146 -1.570 0.221 0.340 

   2 0.165 0.179 -1.076 0.309 0.303 

GTC  rail 1 0.053 0.059 0.069 -1.378 0.097 

   2 0.085 0.088 0.194 -1.076 0.262 

GTC air 1 0.002 0.003 0.004 0.004 -1.711 

   2 0.010 0.010 0.022 0.031 -1.245 
Access-egress 
time 

rail 
1 0.009 0.010 0.017 -0.280 0.021 

Access-egress 
time 

air 
1 0.001 0.001 0.001 0.001 -0.769 

Frequency rail 1 -0.022 -0.023 -0.027 0.534 -0.035 

   2 -0.040 -0.041 -0.086 0.532 -0.121 

Ferry time car driver 1 -0.016 0.023 0.024 0.033 0.078 

   2 -0.149 0.046 0.086 0.085 0.108 

Ferry time 
car 
passenger 1 0.022 -0.054 0.066 0.072 0.288 

   2 0.064 -0.177 0.154 0.156 0.196 

Ferry time rail 1 0.001 0.002 0.004 -0.029 0.013 

   2 0.004 0.004 0.013 -0.056 0.024 

Headway time air 1 0.000 0.000 0.000 0.000 -0.212 

   2 0.001 0.001 0.002 0.003 -0.118 

Transfer time air 1 0.000 0.000 0.000 0.000 -0.088 

   2 0.000 0.000 0.001 0.001 -0.037 
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Table 10. Trip elasticities for the holiday model. 

Attribute Mode q 
Car 
driver 

Car 
passenger Bus Rail Air 

GTC car driver 1 -0.479 0.131 0.117 0.123 0.130 

   2 -0.447 0.097 0.078 0.080 0.078 

GTC car passenger 1 0.065 -0.246 0.060 0.063 0.067 

   2 0.088 -0.455 0.070 0.072 0.069 

GTC bus 1 0.333 0.341 -0.725 0.332 0.336 

   2 0.211 0.212 -0.327 0.226 0.225 

GTC  rail 1 0.127 0.132 0.121 -0.645 0.134 

   2 0.091 0.091 0.095 -0.444 0.095 

GTC air 1 0.071 0.073 0.068 0.072 -0.753 

   2 0.085 0.085 0.093 0.093 -0.436 

Access-egress time rail 1 0.026 0.027 0.028 -0.144 0.024 

   2 0.017 0.017 0.021 -0.086 0.019 

Access-egress time air 1 0.046 0.047 0.044 0.046 -0.527 

   2 0.046 0.045 0.051 0.049 -0.225 

Ferry time rail 1 -0.005 0.004 0.004 0.004 0.005 

   2 -0.091 0.010 0.015 0.013 0.016 

Ferry time car passenger 1 0.004 -0.010 0.004 0.005 0.006 

   2 0.010 -0.097 0.016 0.014 0.018 

Ferry time rail 1 0.002 0.003 0.002 -0.006 0.002 

   2 0.003 0.003 0.010 -0.043 0.011 

Headway time air 1 0.045 0.047 0.044 0.046 -0.458 

   2 0.067 0.067 0.079 0.077 -0.363 

Transfer time air 1 0.012 0.013 0.011 0.012 -0.120 

   2 0.018 0.018 0.020 0.020 -0.095 

 

Another observation is that there are significant differences among the three trip purposes, not 
only with respect to the size of elasticities, but also with respect to the internal weighting of 
distance impacts.  

In-vehicle time and cost elasticities cannot be directly determined from the above tables. Let 

however GTCE  define the elasticity of the GTC, TimeE  the travel time elasticity, and CostE  the cost 

elasticity. It is then easy to show the two following identities: CostTimeGTC EEE +=  and 

Cost

Time

E

E

Cost

Time =⋅γ
, where γ  is the VoT. Clearly, if we combine these it can be found that 

 

Cost

Time
E

E GTC
Cost

γ+
=

1

 
(12) 
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Time

⋅
+
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This exposes some of the weaknesses of using a generalised travel cost approach, namely that the 

split between CostE  and TimeE  is strongly dependent on the VoT. If a general country-wise VoT is 

used for all modes, it means that for certain expensive modes (e.g. the air alternative) the cost 
share of the elasticity becomes dominating. Due to this problem, some scaling of the air VoT may 
be necessary in order to get a more reliable balancing of the demand responses.  

Table 11. Business trip elasticities for travel cost and time. 

Attribute Mode q 
Car  
driver 

Car 
passenger Bus Rail Air 

Cost car driver 1 -0.105 0.205 0.194 0.193 0.212 

   2 -0.141 0.203 0.138 0.139 0.135 

Cost bus 1 0.023 0.024 -0.46 0.024 0.027 

   2 0.026 0.027 -0.181 0.041 0.039 

Cost rail 1 0.056 0.058 0.056 -0.511 0.085 

   2 0.036 0.037 0.057 -0.306 0.063 

Cost air 1 0.023 0.026 0.03 0.033 -1.072 

   2 0.027 0.029 0.072 0.071 -0.474 

Travel time car driver 1 -0.168 0.317 0.277 0.298 0.292 

   2 -0.154 0.274 0.187 0.192 0.181 

Travel time car passenger 1 0.086 -0.383 0.081 0.084 0.09 

   2 0.113 -0.593 0.076 0.076 0.073 

Travel time Bus 1 0.035 0.039 -0.719 0.042 0.057 

   2 0.045 0.047 -0.367 0.107 0.108 

Travel time Rail 1 0.032 0.034 0.039 -0.293 0.05 

   2 0.026 0.027 0.058 -0.275 0.057 

Travel time Air 1 0.004 0.005 0.005 0.006 -0.175 

   2 0.005 0.006 0.016 0.015 -0.101 

 

Table 12. Trip elasticities of travel cost and time for the private model. 

Attribute Mode q 
Car 
driver 

Car 
passenger Bus Rail Air 

Cost car driver 1 -0.346 0.427 0.336 0.372 0.374 

   2 -0.489 0.332 0.260 0.229 0.236 

Cost Bus 1 0.076 0.077 -0.732 0.088 0.105 

   2 0.077 0.082 -0.427 0.100 0.103 

Cost Rail 1 0.040 0.044 0.043 -1.000 0.067 

   2 0.057 0.058 0.114 -0.623 0.170 

Cost Air 1 0.002 0.003 0.003 0.004 -1.441 

   2 0.008 0.009 0.019 0.026 -0.993 

Travel time car driver 1 -0.323 0.393 0.298 0.346 0.324 

   2 -0.372 0.273 0.219 0.201 0.209 

Travel time car passenger 1 0.270 -0.474 0.232 0.278 0.436 

   2 0.526 -0.906 0.443 0.381 0.398 

Travel time Bus 1 0.080 0.090 -0.838 0.155 0.267 

   2 0.107 0.117 -0.649 0.234 0.226 

Travel time Rail 1 0.018 0.021 0.031 -0.378 0.038 

   2 0.037 0.040 0.097 -0.453 0.112 

Travel time Air 1 0.000 0.001 0.001 0.001 -0.270 

   2 0.002 0.002 0.005 0.007 -0.252 
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Table 13. Trip elasticities of travel cost and time for the holiday model. 

Attribute Mode q 
Car 
driver 

Car 
passenger Bus Rail Air 

Cost car driver 1 -0.251 0.071 0.063 0.066 0.070 

   2 -0.236 0.054 0.044 0.045 0.044 

Cost Bus 1 0.176 0.177 -0.366 0.171 0.175 

   2 0.108 0.109 -0.146 0.105 0.104 

Cost Rail 1 0.094 0.096 0.088 -0.459 0.099 

   2 0.065 0.066 0.065 -0.289 0.066 

Cost Air 1 0.062 0.064 0.059 0.063 -0.656 

   2 0.073 0.073 0.080 0.080 -0.356 

Travel time car driver 1 -0.228 0.065 0.058 0.061 0.064 

   2 -0.211 0.049 0.039 0.040 0.039 

Travel time car passenger 1 0.065 -0.246 0.060 0.063 0.067 

   2 0.088 -0.455 0.070 0.072 0.069 

Travel time Bus 1 0.170 0.177 -0.359 0.174 0.175 

   2 0.116 0.115 -0.181 0.134 0.133 

Travel time Rail 1 0.038 0.040 0.037 -0.186 0.039 

   2 0.031 0.031 0.036 -0.155 0.035 

Travel time Air 1 0.011 0.011 0.010 0.011 -0.097 

   2 0.015 0.015 0.017 0.017 -0.080 

 

5.1 Results compared to the literature 

Compared to the literature, the size of the elasticities seems to be reasonable. However, the 
sample to compare with is small and caution should be taken when comparing studies with 
varying distance ranges. For instance, it may be argued that direct car cost elasticities around  -
0.489 for private trips are high compared to elasticities found in many urban studies, which are 
usually in the range of -0.2, -0.5. However, as shown by Daly (2008), elasticities for car will tend 

to increase by distance simply because the ( )dm,Pr1−  term increases. Elasticities obtained by the 

SAMPERS long-distance model (Beser 2003; Chapter 4) indicate a good correspondence, although 
with some exceptions. Firstly, due to the imbalance between time and cost discussed above, our 
travel time elasticities for the air alternative are on the low side. However, for ground mode 
alternatives, elasticities are much in line. In meta-studies by De Jong et al. (2004) and De Jong and 
Gunn (2001) European elasticities are reviewed. Elasticities for car costs between -0.05 and -0.35 
as reported by the Dutch model seem to be in line with our findings if the distance effect 
discussed by Daly (2008) is accounted for. In a meta-study on UK elasticities, Wardman and 
Grant-Muller (2011) largely confirm the findings for the continental models. The opposite 
direction of time elasticities for car drivers and passengers reflects the very simplified way car 
passengers are dealt with. 

We also find that, whereas elasticities for car drivers and passengers tend to increase by distance, 
it is the opposite for the rail and air alternatives. This, however, conforms well to a meta-study 
conducted by Brons et al. (2002). Their analysis considered air price elasticities for three distance 
intervals and found a strong indication of decreasing elasticities with median elasticity in the 
range of -1.2 to -0.75. In another more recent analysis (Airbus 2009), air fare elasticities are quoted 
within the range of -0.5 and -1 with -1 referring to domestic flights and -0.5 to longer flights 
including intercontinental trips. This fits well with the above findings where the average 
(weighted) short-distance elasticity for air fares (the cost attribute) is -0.90 for the short-distance 
segment and -0.54 for long distances. Two recent long distance studies are described in Börjesson 
(2010) in a Swedish study and in Rohr et al. (2010) in a study for UK.  Generally the level of 
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elasticities when measured as a combined cost and time elasticity are comparable. However, in 
these studies the elasticity with respect to in-vehicle-time for car driving is 4 to 10 times higher 
than the elasticity for fuel cost. This cannot be verified in the present study, which to some extent 
may be down to the generalised cost form as discussed above. 

The elasticities are lowest for holiday trips, highest for private trips, and with business trips in 
between. Empirically, the literature indicates that business trips will be less sensitive compared to 
private trips (De Jong and Gunn 2001) and Gaudry (2002), which however is in contradiction to 
the finding in Rohr et al. (2010). For holiday trips there is little empirical evidence that can be 
used as a benchmark.  

Finally, the model provides sensitivity analysis for a range of LoS variables not often considered 
in a long-distance modelling context. These include rail frequencies, access-egress time for rail 
and for air, headway time, as well as transfer time. It is found that rail demand is very sensitive 
to rail frequencies as well as to access-egress time. Air demand is found to be very sensitive to 
access-egress time and less sensitive to headway time and transfer time. Generally, short-distance 
trips are more sensitive to these LoS components, which is logical since they may be considered 
as start-up costs.  

6. Conclusion 

More than half of all motorised passenger kilometres in Europe arise from trips above 100 km. 
Moreover, due to a higher share of air transport, this transport segment is responsible for the 
majority of transport related CO2 emissions. The paper focuses on the long-distance transport 
segment. The model outlined has been developed as part of the TRANSTOOLS II model 
framework initiated by the European Commission and will enable assessment of European-wide 
transport policy. A principle objective of the paper in that respect has been to describe the model 
structure and its results in a transparent way to facilitate a much needed academic debate about 
large scale and long-distance modelling. 

The model is a long-distance demand model for the choice of mode and destination. It is the first 
tour-based passenger demand model for Europe. It models trips over 100 km for 42 countries 
divided into 1441 zones. The model is segmented into three trip purposes; business, private, and 
holiday, and five modes; car drivers, car passengers, bus, rail, and air.  A nested logit model is 
applied for the choice of mode conditional on destination. In the estimation, importance sampling 
has been used in order to reduce the choice set to a feasible size. At an upper level tour 
frequencies are modelled on the basis of logsum variables from the mode and destination choice 
model. 

In the utility function, a distance-dependent split was applied for all LoS variables. Moreover, we 
analysed all combinations of a logarithmic and linear specification combined with the short and 
long distance split. This was carried out for all purposes. It was found that a linear model for 
shorter trips (below 600 km) and a logarithmic model for longer trips were superior in terms of 
goodness-of-fit. Among these, preliminary tests of Box-Cox forms were carried out. However, for 
the long-distance segment the Box-Cox approached the logarithmic specification. 

The results from the model reveal several things. Firstly, the range of elasticities conforms well 
relative to other models and meta-studies. Secondly, elasticities with respect to in-vehicle cost 
and time (inherited in the generalised cost measure) for car drivers and passengers tend to 
increase with journey distance. This is consistent across all trip purposes. Thirdly, for the air and 
rail alternative the elasticity decreases with distance. This is consistent with empirical findings 
and is due to the fact that the market shares for these alternatives increase with distance. This 
finding is consistent for all trip purposes and holds for most other LoS variables related to the air 
alternative, i.e. access-egress time, transfer time, and headway time. This is very logical because 
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these LoS components can be considered as start-up costs. Finally, it was also found that holiday 
tours had the lowest elasticities, private the highest, and business in between. This pattern is in 
line with expectations. 

With increasing focus on climate effects, long-distance travel demand modelling is likely to be at 
the top of the applied research agenda for years to come. Although the present paper deals with 
some of the shortcomings of previous European multi-country models, several challenges 
remain: A detailed analysis of non-linearities with respect to distance, better measurement of 
destination attractions for holiday trips, and combined SP/RP surveys in order to better cope 
with identification problems in the estimation of VoT measures. 

6.1 Research perspectives and future work 

Recently it has been decided to upgrade the TRANSTOOLS II model to a version III. During the 
update the passenger model is to be updated. This includes a partly upgrade of the data 
foundation as well as methodological improvements. Issues to consider will be; 

• Segmentation into journey durations 

• A separate model for commuter trips 

• An improved study on non-linearities with the possibility of including Box-Cox forms 
explicitly 

• Party size should be considered to dealt with passengers more effectively   

At a more general level the study has revealed that there is a strong need for more research in 
long distance trip modelling as these types of trips are very different from daily trips.  
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