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Abstract 

The spatial evolution of a velocity - or 

density - modulated ion beam is calculated for 

stable and unstable ion beam plasma systems, 

using the linearized Vlasov - Poisson equations. 

The propagation properties are found to be 

strongly dependent on the form of modulation. In 

the case of velocity modulation, the perturbation 

grows initially and then shows a periodic.change 

of amplitude along the beam, while in the case of 

a density modulation only an instability causes 

growth. The findings are in agreement with exper

imental results obtained by Sato et al. (1977). 
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1. INTRODUCTION 

The propagation of waves in a plasma traversed by an ion 

bean has recently received Much attention because of its import

ance in connection with plasma instabilities and heating. Regions 

of instability for the ion-beam instability have been ca?culated 

by several authors,e.g., Harrison (1962), Stringer (1964), Pried 

and Hong (1966), and Michelsen and Prahm (1971). Several investi

gators have reported experiments on this instability in Q-machines, 

Baker (1972 and 1973), and Christoffersen and Prahm (1973), and in 

double-plasma devices, Grfsillon and Doveil (1975), Kiwamoto (1974), 

Taylor and Coroniti (1972), and Pujita et al. (1975). The propa

gation of both short pulses and continuous waves has been studied 

in such systems, and the system has been classified as unstable 

in cases where the pulse or the wave amplitude increased away 

from the exciter. In an experiment performed in an ion-beam 

plasma system generated in a double-plasma-operated Q-machine, 

Sato et al. (1975 and 1977) found spatial growth although 

the plasma was predicted to be stable according to theory. This 

growth was explained by linear theory for beam bunching, which 

occurs in the case of velocity modulation, both for the ballis

tic contribution as well as for the collective modes. Ion waves 

in double-plasma devices are normally excited by velocity modu

lation of an ion beam, but also grid excitation of waves in 

other machines often gives rise to perturbations in the ion 

velocity distribution,which may be characterized as velocity 

modulation, or as a combination of velocity and density modu

lation, Christoffersen (1971) and Grésillon (1971). 



- J -

Recently, we perforned calculations on pulse propagation in 

•n ion beam plasma system. Nicheisen et al. (1974). In the 

present paper we report on analytical and numerical calculations 

of wave propagation in stable and unstable ton beam plasma 

systems. The calculations, b**ed on the Vlasov-Poisson equation, 

were motivated by the interesting measurements of Sato et al. 

(1977). Therefore, to obtain tue best agreement with the experi

ment, the equations were solved as a boundary value problem. The 

theory is similar to that applied by Christoffersen et al. (1974), 

but the analysis is performed in a simpler way and also extended 

to include unstable systems. For the reasons mentioned above, 

we especially concentrated the calculations on pure velocity 

modulation and for comparison also included pure density modu

lation. 

The theory is summarized in Sec. 2, the numerical calcula

tions and results are given in Sec. 3, while Sec. 4 contains a 

discussion and conclusion. 

2. THEORY 

This section summarizes the theory used for the calculations. 

We describe the motion of the ions by their linearized Vlasov 

equation, and that of the electrons by a Massless isothermal 

fluid. Ions and electrons are coupled through the assumption of 

quasi-neutrality, i.e., we restrict our considerations to long 
2 

waves (kA_) << 1 (A. is the Debye length). We consider a one-

-dimenslonal situation. Thus, our basic equations are 

>*{x,v,t? »f(xfv,n m S J>»(*,t/ *
fo < v )

 (1J 

it »x M »x 5>r^ , l 1 
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Te ̂ ^ i ^ " no€ ^it^ l2i 

and 

nix,t) » I f(x.v.t) dv. O) 

where fQ(v> is the zero-order distribution function, f(x,v,t) is 

the perturbed distribution function, *(x,t) is the perturbed 

electrical potential, n is the zero-order density given by 

n = I f (v)dv, n(x,t) is the perturbed density, e is the 

charge, M is the mass of the ions and Tft is the electron tempera

ture in energy units. Equations (l)-(3) describe, for instance, 

wave propagation along the magnetic lines in a O-machine plasma 

(Jensen, 1976). 

As plasma-wave experiments are usually boundary-value 

problems, we studied the propagation of ion-acoustic waves 

excited at the boundary of a semi-infinite plasma. Thus equations 

(l)-(3) are solved as a boundary-valre problem with the follow

ing boundary values: 

t(x=o,v,t) = y(v)exp(-iwQt), 

n(x-o,t) * g(v)exp(-iu t)dv * nexp(-iw t). 

Additionally, we assume that fQ(v) and g(v) is zero for v - o, 

i.e., we need not specify the boundary values at x • •. To solve 

equations (l)-(J) we can then use a Laplace transform in 

space, (Nielben, 1969, Pecseli, 1974, and Christoffersen et al., 

1974) . 

by applying the Laplace transform in space and the 
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Fourier transfor« in tine, i.e.. 

f(k.w) - j" j" «i(ut-kx)f(x,t>dx dt. 

we obtain 

n(u,k) ij 2* «(«0-«) M(|) , 

where 

k J _v-w/k
av 

C2 ,m f 
- _? _ 
n J v-
o — °» 

M(=f> - = • n 14) 
- - *'0(v) 

ITk" dv 

and 

ce * <VM)%' 

The inverse transform is 

r— ia 1 f f xa 

n(x,t) * -=» I exp(-iwt) exp(ikx)n(k,u) dk du, 
4tr J — J — i a 

where a is a positive quantity assuring that the integration 

path in the k plane runs below all singularities in n(k,u). 

The u-integration gives immediately 

, r«>-io , u 
n(x,t) = ^exp(-iu.0t) j ~ M(j^)exp(ikx) dk, 

foo-io 

-•-ia 

o. The integrands in the v-integrations in M{j—) have poles for 
to o> 0 

v = j~. We obtain an analytic continuation of M<£-), termed 
w 

M. (j—), by prescribing that the v-integration path shall run 

below the pole. For a stable situation, the function MK^JT*) has 

no poles in the complex k plane with Imk < o. For an unstable 

situation, M^Jr—) has one pole k»k for Imk < 0. We note that 
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there are no singularities in the origin because we find from 

1 w« 
Eq. (4) that lim (^tK^j) > 0. Me can change the k-integration-

k-0 
contour to the real axis and s p l i t up the integration in to two 
cont r ibu t ions . 

n s ( x , t ) » j^exp{-u 0 t ) [J — Mb(|~)exp(ikx) dk 

* J Ik" "b<ir>«xptik*) <**]• <5> 

If the plasma is unstable, we must add the residue contribution 

from the unstable pole. To carry out the integration in (5) we 

change the contour of the k-integration into the complex k-plane 
« 

(Gould, 1964). That is we define a new function Ma(j-) as the 

analytical continuation of Mf^-), where, in contrast to Mb(£-), 

it is specified that the integration path in the v-integrations 

shall run above the poles. We thus have the following relation 

between the two functions 

MS U* ) = V0' 

where the a s t e r i sk denotes the complex conjugate. 

In consequence of the assumption tha t there a re no ions with 

negative ve loc i ty , i . e . f_(v) = g(v) = 0 for v < 0, we can 

replace M. by M in the f i r s t in tegra l in equation (5) , because 

M. and Mfl are equal on the rea l negative k -ax i s . As Mfl i s 

analyt ic for a s t ab le case in the upper imaginary k-hal f -p lane , 

we can change the in tegra t ion contour to run jus t above the 

posit ive real k-axis as shown in Fig. 1. Because the in tegra t ion 

along the h a l f - c i r c l e T i s zero, we can reduce equation (5) 

to one in tegra l running from 0 to ». If the plasma is unstable, 

we have to add the residue of the unstable pole in k , and the 
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residue of the function M.U) in k* (Fig. I K we then find that 
a P 

the total expression for the perturbed density, after having 

omitted the tine dependence, can be written: 

-iBtlt^j—nexpUkx) dk 

• Res{£ Ma(jp)exp(ikx»>!kmk» (•) 
P 

• w 
• Resl^ ̂ (j^>expCikx)}|kmk , 

P 

where ImU and ResO stand for the imaginary part and the residue 

of the quantity in the braces. Por a stable case, only the first 

term makes a contribution. n(x) in Eq. 6 is a complex quantity, 

where the modulus and the phase respectively give the amplitude 

and the phase of the perturbed density. 

In the calculation of n(x) use is made of a zero-order 

distribution function, which consists of a sum of two drifting 

Naxwellians: 

f = f • f. 
o i b 

= no T(ni ̂ 7 ̂ P ^ - C - ^ 2 1 + nb fccxpI-(-cT,2,)' (7) 

/n i i b b 

where the indices i and b refer to plasma ions and beam ions, 

respectively, n, . is the relative density (n^+n.«!)» c< K " 

i h k 

(—jj4—) is the thermal speed (beam and plasma ions are of the 

same kind), and v, . is the drift velocity. Using an f0(v) just 

described and a <j(v), which also consists of Maxwellians, the 

plasma dispersion function can be used in our calculations. Only 

an approximate solution can be obtained with these distributions, 



since flv)+o and g(v)fo for v - o. However* the approaiatetion 

is good tor Maxwellian* with drift velocities greater than 2 Cj. 

The ion distribution in a single-ended Q-Machine is approxl»etely 

described by a drifting Haxwellien, Andersen et al. (1971). 

1. NUMfcltlCAL RESULTS 

In this section the propagation properties of ion-acoustic 

waves in the beast plasaa sys test are studied by numerical calcu

lation of the density perturbation given in Eq. it) using the 

distribution function in (7), (Pig. 2a). Special attention is 

paid to the difference between the propagation of waves generated 

by a velocity Modulation and a density Modulation of the beam. 

Velocity Modulation of the beast is obtained by using a velocity 

distribution g(v) * fb(v*v)-f.(v), i.e., g(v) is the difference 

between two Naxwellians separated by v, Michelsen et al. (197t). 

In all the calculations v • 0.05 cfaj g(v) for this case is shown 

in Fi.j. 2(b). Density Modulation of the bean is realized by using 

a g(v) that is proportional to fjCv). In all our calculations 

the drift velocity of the background plasna v. is 2 c^ to satisfy 

the assumption used in Sec. II. The result of the calculations 

of the wave propagation is shown in Pigs. 3-6, where the perturbed 

density n(x) (solid lin4 is plotted versus the normalized distance 

xw/c.. The dashed line in the figures indicates the wave ampli

tude. The ordinate is in arbitrary units. 

Figure 3 shows the propagation properties of waves in the 

case of density modulation for decreasing values o( vd (= v.-v^). 

The parameters of the zero-order distribution function are T. • 

Ti' nb * ni a n d vd * 7 ci' *' l ci' *ci an<1 ici' r«»Pectiv«ly« 
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Further, T^ = S T4. which meam* that the collective hen* modes 

will dominate the free-streaming contrihetioe after a few wave

lengths, in Pies, ia and b the system is stable and the wave 

patterns show a periodical oscillation in the amplitude super

imposed by a »»notonic damping. The amplitude oscillation is 

interpreted as caused by the beating between the fast and the 

slow ion-bean node (Sato et al. 1977). The phase velocities of 

the fast and slow beam node, v f and vft respectively, are approxi

mate Ly given by 

vf,s " " b 1 " b % c e " • J W * • W » 

In accordance with this expression, the pitch length in the 

interference pattern decreases with decreasing v. . Since the 

slow node is nore strongly danped than the fast søde, the 

interference becomes weaker for increasing distance. This effect 

becones nore pronounced for decreasing vfa, because the differ

ence in the damping of the fast and slow node becomes larger. 

Close to the exciter, the waves have an "average" phase velocity 

close to vb, but far away the phase velocity approaches vf. 

Note, however, that thi phase of the wave shows abrupt changes 

where the amplitude has minis*. Pigures 3c and d show unstable 

situations. Nicheisen and Prahm (1971). Again we have the 

amplitude oscillations but after a few wavelengths the amplitude 

grows exponentially and here the phase velocity approaches the 

velocity of the unstable sode, i.e.: the velocity of the minimum 

in f0(v) (Jensen et al. 1974). 

Figure 4 shows the corresponding curves (sane parameters 

as in Fig. J) obtained with a velocity modulation of the beam. 

We notleu that the main difference between the curves in Pig. 3 



- 10 -

and those in Pie. 4 is that for a velocity Modulation the waves 

grow froa zero at the exciting point i hut after a few wavelengths 

no significant differences are seen between corresponding 

curves in Pigs. 3 and 4. 

Figures 5 and 4 show propagation properties of waves excited 

by velocity Modulation. The parameters of the distribution 

functions are chosen siMilar to those in the experiments of 

Sato et al.. 1977. In Tig. $ we show the wave pattern for varying 

velocities, v.. When an ion bean is accelerated to the 

velocity vb it is adiabatically cooled, and its temper•ture Tfe 

is determined by CSato et al-, 1977). 

b - * ci 

These estimated temperatures are not realistic, and Sato et al. 

(1977) found in experiments that the actual temperature is ap

proximately l.S - 2.S times larger. We chose an even larger 

factor (i5), because, with the very low beam temperature esti

mated by (9). the H-function (4) become« very narrow, and it is 

difficult to compute the integral in (•) sufficiently accurately. 

We note (Pig. S) that the tendency for the perturbed density to 

split up into a perfect interference pattern is weakened when 

v. decreases. For vfc • 3.5 ci the amplitude damps away monotoni-

cally without any oscillations. The wavelength A and the pitch 

length 1 of the periodic amplitude variation decrease as vfa 

decreases. In Fig. 6 the wave pattern is shown with nb as a 

parameter. As iw decreases. 1 increases (e.g. eq. S) and tha 

periodic change of tne amplitude gradually disappears. For 

small values of iw, the perturbations grow initially and then 

they damp away monotonically after reaching maximum. The phase 
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velocity is close to vf when the wave is strongly damped. A 

comparison between the measurements by Sato et al. (1977) and 

our corresponding calculations shows an excellent agreement. 

4. DISCUSSION AND CONCLUSION 

We have presented analytical and numerical calculations of 

the spatial evolution of density waves in an ion beam plasma 

system. The calculations are based on the linearized Vlasov 

equation, which is solved as a boundary value problem in semi-

infinite t-lapma. Motivated by the experiments of Sato et al. 

(1975 and 1977), we investigated the cases where the wave is 

excited both by a pure velocity and by a pure density modulation 

of the beam, in stable as well as in unstable systems. In the 

case of the velocity modulation, initial growth and subsequent 

amplitude oscillation are found for the stable situation (Fig. 

4) . This behaviour was also found in the experiment of Sato et 

al. (1977) where the waves were excited by modulating the vel

ocity of the ion beam in a DP-type plasma. By using the data 

from their experiment in our calculations, we found excellent 

agreement between our results (Figs. 5 and 6) and their measure

ments, except that in our case the damping is somewhat stronger. 

This is caused by the fact that we chose a higher value of the 

beam temperature (see Sec. 3). 

The amplitude oscillation is explained by the beating between 

the fast and the slow ion-beam-mode, so-called beam bunching. 

The same mechanism causes the amplitude oscillation in the case 

of density modulation of the beam for the stable situation (Figs. 

3a and b). However, there is an important difference: 
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in the case of velocity modulation of the beam the wave initially 

grows from zero amplitude at the exciting position, while in 

the case of density modulation there is only a very small initial 

growth (Fig. 3a). We attribute the small growth in the latter 

case to the influence of the background plasma, as no initial 

growth was found when only a beam was present. 

The phase velocity of the wave is close to the beam velocity 

as would be expected from Eq. (8). However, since the damping of 

the slow mode is stronger than that of the fast mode, a tendency 

that becomes clearer for decreasing vfa respectively rw, (Figs. 

4, 5 and 6), only the fast mode survives some distance from the 

exciter. The phase velocity then approaches that of the fast 

mode. From wave patterns like those shown above, we see that it 

will be very difficult to measure the exponential (Landau) damping 

of the waves, while the phase velocities of the two beating modes 

(deduced from the wavelength and the pitchlength) are in good 

agreement with those calculated from the linear dispersion re

lation. Calculations of the propagation of density pulses in a 

similar system also showed agreement with the linear dispersion 

relation, i.e., the initial pulse splits up into three pulses 

propagating with the speed of the background ion mode, the slow 

and the fast ion beam mode, respectively (Rasmussen, 1977) . 

It has often been claimed (e.g. Jensen, 1976) that the pro

pagation properties of ion waves depend strongly on the distri

bution function in the perturbation at the boundary (i.e., g(v)) 

when T@/Ti £ 3, and the ballistic contribution dominates the 

collective modes. In our case we also see that the shape of g(v) 

influences the wave propagation, even if Te/TA • 5, and the 

collective modes dominate after a few wavelengths. This result 

was demonstrated very clearly by investigating the propagation 
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cf density pulses (Michelsen et al., 1976). In this connection 

it is worth noting that a purely ballistic theory (i.e., 1 - 0) 

will also result in a wave with amplitude oscillations similar 

to those in Fig. 4a in the case of velocity modulation (Sato et 

al., 1977). We also found these oscillations by putting T = 0 

in cur calculations. A density modulation only gives a monotonic-

ally decaying amplitude (e.g., Jensen and Michelsen, 1972). 

In Pigs. 4 - 6 the first pitch is a little longer than the others, 

i.e., the phase velocity difference between the beating waves 

is smaller than for the other pitches. This is caused by the 

contribution from the free-streaming ions in g(v), which dominates 

in the vicinity of the exciter. Because of the two humps of g(v) 

(see Fig. 2b), this contribution resembles the interference 

pattern from two modes with a phase velocity difference determined 

by the velocity difference in the two humps of g(v), and this 

difference is smaller than v* - v . 

When the plasma is unstable with respect to the ion-ion 

instability (Fig. 3c, d, 4c and d), we still find the amplitude 

oscillations caused by the interference between the slow and the 

fast beam mode close to the exciter, before the unstable mode 

begins to dominate. Thereafter the amplitude grows exponentially, 

superimposed by a decaying oscillation. This behaviour is followed 

by a decrease in the phase velocity. Near the exciter,where the 

beating between slow and fast beam mode is dominant, the phase 

velocity (in the maxima) is close to the beam velocity, while 

in the region where the growth is significant, the phase velocity 

approaches the velocity of the unstable mode which is less than 

the beam velocity. (In the cases treated here this phase velocity 

is equal to the velocity of the minimum of fQ(v), i.e., (v^ + 

v.)/2). These properties of wave propagation in an unstable 
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ion-beam plasma system, with parameters comparable to those used 

here, were observed experimentally by Christoffersen and Prahm 

(1973). In a similar experiment by Baker (1973) no clear phase 

velocity change could be deduced from the wave patterns and only 

the unstable mode was observed. However, according to the para

meters given by Baker, his system is strongly unstable. Actually, 

in calculations with such parameters we also find that the 

unstable mode dominates after a few wavelengths. From Figs. 3c, 

d, 4c and d the shape of g(v) is seen to be unimportant for the 

unstable growth, which is also clear from (6). In the case of 

pulse propagation, however, the shape of g(v) can affect the 

form of the unstable pulse (Michelsen et al. 1976). Even if g(v) 

has no influence on the growth of the unstable mode, one can 

imagine that it will have some importance for the wavepattern 

in the unstable situation, which in fact is seen in Figs. 3c, d 

and 4c, d. Further, g(v) could be chosen (or in experiments prove 

to be) such that the one mode is preferentially excited, e.g., 

the fast beam mode, and this wil dominate for several wavelengths 

before the unstable mode starts to grow. Conversely, the unstable 

mode could be excited and then only the growing mode would be 

seen. Actually, Pecsell (1975) has shown that, for a given 

development of the density perturbation, a g(v) always can be 

prescribed (although this is not always physically possible). 

We only considered weakly unstable situations, and our 

results for the unstable mode are, of course, only valid until 

the instability reaches a nonlinear level. In experiments on the 

ion-ion instability (e.g. Baker, 1972, 1973; Christoffersen and 

Prahm, 1973; Gréllion and Doveil, 1975; Fujita et al. 1975), it 

has been found that the unstable wave grows initially, but is 

subsequently saturated due to nonlinear effects and damped; a 
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behaviour very similar to that which can be found in the case 

of a velocity modulation of the beam, e.g. Figs. 6c and d. It 

should be emphasized that the difference can be seen from the 

phase velocity. In the stable case with beam-bunching, the phase 

velocity tends to increase and approaches the velocity of the 

fast beam mode, i.e. larger than the beam velocity, with in

creasing distance from the exciter. In the unstable case, on the 

other hand, the phase velocity decreases and approaches the 

velocity of the unstable mode, i.e. smaller than the beam velocity, 

with increasing distance from the exciter. However, even if this 

clear difference makes it relatively simple to identify an unstable 

mode from a stable one, if the parameters of the distribution 

function are known accurately enough, which is certainly not always 

an easy matter, the initial appearance of the beating between 

the stable modes as seen in Figs. 3c, d, 4c and d can make it 

very difficult to measure an exact growth rate of the instability. 

The amplitude oscillations described above were caused by 

the beating between normal modes propagating in the same direc

tion, i.e. to produce these phenomena an ion beam with a velocity 

somewhat greater than the speed of sound is necessary. Such a 

situation is found not only in beam plasma systems (DP-type 

plasmas), but also in single-ended Q-machines under the "electron-

rich condition" where an ion beam, accelerated by the negative 

hot plate sheath, flows through the electrons and is absorbed 

by a negatively biased target. Ion acoustic waves in such a 

plasma are usually excited by grids, which often give rise to 

complicated, perturbed, distribution functions (Christoffersen, 

1971). However, these may frequently be described by a combination 

of density and velocity modulation (Grésillon, 1971). If the ion 

beam temperature is much lower than the electron temperature, 

which it must be in the low density case since the accelerating 
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electron sheath is rather large here, we should expect the ex

citation of both the fast and slow bean mode, and therefore 

amplitude oscillations. These were probably observed by 3uzsi 

(1974). 

Finally, we should like to point out that amplitude oscilla

tions of plasma waves have usually been interpreted as caused 

by nonlinear effects. Our calculations, on the other hand, show 

that the same behaviour may occur as a mere superposition 

of linear normal modes, in agreement with experimental obser

vations (e.g., Sato et al. 1975, 1977; Grésillon and Doveil, 

1975). 
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A I m ( k ) 

R«(k) 

Fig. 1. Integration contour, k is the unstable pole, and the dashed line is a branch cut. 



V/C| 

v/cå 

Fig. 2. (a) The zero-order ion velocity distribution function, 

(b) The perturbed distribution function at the boundary 

in the case of velocity modulation. 
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Fig. 3. Wave propagation for density modulation. T. • T., T « 

5 TA, ni « nfa/ v̂ ^ - 2c±, abscissa - 50x«/c. pr. division. 

Stable cases: (a) v. - 9c, and (b) v. • 6.1 c,. Unstable 

cases: (c) v. • 6.0 c, and (d) v. • 5 c,. 
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Fig. 4. Wave propagation fc - velocity modulation. All parameters 

as in Fig. 3. 
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Fig. 5. The wave propagation dependence of the drift velocity. 

Compare Sato et al. (1977) Pig. 4. ̂  • T0, nfe/ni « 0.47, 

v. » 2c,, abscissa • 250 xu/Cj pr. division, (a) vfe • 

8cA, T b - 0.09 TA, (b) vfc - 6cA, T b - 0.2 V ^ (c) vfi -
4.5c, T. - 0.4 T., and (d) v. 3.5Ci, Tb 0.8 T4. 
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Fig. 6. Th« wave propagation dependence of the relativ« beam 

density. Compare Sato et al. (1977) Fig. 8. Tfe - 0.1 7^ 

T * T., vfe « 1.3 c,, v. » 2c., abscissa • 250 xw/c. 

pr. division (a) n^/i^ - 0.47, (b) n ^ ^ - 0.11, (c) 

nb/n. • 0.064 and (d) n^/n^ • 0.01S. 


