
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Limit cycle behaviour of the bump-on-tail and ion-acoustic instability

Janssen, P.A.E.M.; Rasmussen, Jens Juul

Publication date:
1980

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Janssen, P. A. E. M., & Juul Rasmussen, J. (1980). Limit cycle behaviour of the bump-on-tail and ion-acoustic
instability.  (Risø-M; No. 2235).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13784046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/limit-cycle-behaviour-of-the-bumpontail-and-ionacoustic-instability(224b6822-110d-46fb-b161-5d99fead157b).html


RISØ-M-2235 

LIMIT CYCLE BEHAVIOUR OF THE BUMP-ON-TAIL AND 

ION-ACOUSTIC INSTABILITY 

Peter A.E.M. Janssenx 

Department of Electrical Engineering, Eindhoven University of 

Technology, Eindhoven, The Netherlands 

J. Juul Rasmussen 

Association Euratom - Risø National Laboratory, Roskilde, Denmark 

Abstract. The nonlinear dynamics of the bump-on-tail and current-

driven ion-acoustic instability is considered. The eigenmodes 

have discrete k because of finite periodic boundary conditions. 

Increasing a critical parameter (the number density and the elec­

tron drift velocity respectively) above its neutral stable value 

by a small fractional amount A2, one mode becomes unstable. The 

nonlinear dynamics of the unstable mode is determined by means 

of the multiple time scale method. Usually, limit cycle behaviour 

is found. A short comparison with quasi-linear theory is given, 

and the results are compared with experiment. 
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1. INTRODUCTION 

Recently, Simon and Rosenbluth have considered the problem of 

single mode saturation of the one-dimensional bump-on-tail 

instability (mobile and immobile ions). The final state of the 

plasma, which consists of a modified equilibrium plus a steady-

state oscillation and its higher harmonics, was determined by 
2 

means of time-asymptotic analysis which is a generalization of 

the methods of Bogoliuboff and co-workers . The authors of Ref. 

1 did however not prove that the system can indeed get from an 

initially linearly unstable state to this unique final steady 

state (limit cycle behavior). And indeed, there are examples 

for which there is no path in time between initial and final 

steady state, e.g. a) the m - 1 kink modes in a sharp boundary 

plasma pinch , and b) the g * B instability in a collisionless 

Finite Larmor Radius Plasma . In those examples the nonlinear 

dynamics of the system gives rise to a modulation in the ampli­

tude r of the linearly unstable mode, instead of limit cycle 

behavior. In this paper we show that the dynamical equation for 

the bump-on-tail instability is given by the well-known non­

linear Landau equation 

|̂  r « Yr-er|r|2, d) 

where r is the complex amplitude of the linearly unstable mode, 

and y and 6 are complex coefficients. Clearly, Eq. (1) exhibits 

limit cycle behavior. We note that the amplitude of the Van der 

Pol oscillator is determined by Eq. (1), and that the suppression 

of plasma oscillations in a beam-plasma system by an external 

oscillation is well described by the Van der Pol equation with 

6—9 a driving term . 
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Another reason for the interest of the dynamical behavior of 

instabilities is that accurate measurements of the growth rate 

can be performed by making explicit use of the particular 
o 

properties of the dynamics. For instance, Michelsen et al. 

determined the growth rate of the current-driven, ion-acoustic 

instability in a single-ended Q-machine by means of suppression 

of the instability by an external oscillation. The fluctuating 

density was assumed to be determined by a Van der Pol equation. 

For this reason the ion-acoustic instability is treated in this 

paper also. 

The plan of the paper is as follows: In Section II the linear 

theory of the bump-on-tail instability is presented. The eigen-

modes have discrete k because of periodic boundary conditions. 

The critical parameter in this problem is the (electron) number 

density. Increasing this number density above its neutral stable 

value by a small fractional amount A2, one mode moves up to the 

positive slope region. This mode has a small growth rate of the 

order A2. Thus, two time scales can be distinguished in the 

problem of the dynamical behavior of the bump-on-tail instability, 

and therefore this is an appropriate opportunity to solve this 

problem by means of the multiple time scale method. Only the 

quasi-linear approximation is considered, i.e. the effect of 

higher harmonics is neglected. The solution is shown to conserve 

particles, energy and momentum. The theoretical results are 

compared with experiments (Sect. Ill). In Section IV we outline 

the nonlinear theory of the current-driven, ion-acoustic in­

stability. A more natural critical parameter in this case is the 

electron drift velocity, at least in the limit of small wave-

numbers (i.e. k\Q << 1, where X_ is the electron Debye length). 
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Once again we find limit cycle behavior for the unstable mode, 

and the theoretical fluctuation level is compared with experiment. 

In Section V we discuss our results, especially regarding the 

bump-on-tail instability. Conservation of the "microscopic" 

entropy is proved, and a short comparison with the quasi-linear 

theory of Drummond and Pines is made (note: quasi-linear 

theory is not to be confused with the quasi-linear approximation). 

In addition, we compare two instabilities in a collisionless 

plasma: the bump-on-tail versus the g x B instability. The 

behavior of the dispersion relation near the threshold for in­

stability is especially investigated. We finally discuss the 

relation between the dynamics of the Van der Pol oscillator and 

the bump-on-tail as well as the ion-acoustic instability. In 

Section VI our conclusions are summarised. It should be noted 

that we shall not go into mathematical detail, since a large 

portion of the calculations is already presented in Ref. 1. For 

instance, Ref. 1 must be consulted for a procedure to deal with 

integrals in which products of generalized functions occur. 

II. LINEAR THEORY OP THE BUMP-ON-TAIL INSTABILITY 

Consider a one-dimensional collisionless plasma of electrons and 

immobile ions with a uniform density. The equations are the 

Vlasov-Poisson set: 



- 8 -

(le**fe*^fc*fc)«-». 
(2) 

i2 •"o f 

1 ^ • - ^ U - j dvf). 

where f is tKe electron distribution function, $ the electro­

static potential,-« the electron charge, m its mass, and UQ 

the ion number density. The plasma has a finite length L and 

periodic boundary conditions are imposed. It is clear that 

f « f (v), 6 * constant is a static solution if f (v)dv « 1, 

and let us assume this equilibrium to be of the bump-on-tail 

type (see Pig. 1). 

Linearizing Eq. (2) around this static equilibrium we obtain 

for normal modes the linear problem 

*»o 7 l3) 

^•l * ~ e J dv'fi(v'> • 

Here, the normal mode is of the form $. • (.» ) e x? i(wt+kx) and 

*re have dropped the hats in Eq. (3). Elimination of $, yields 

(4) 

an integral equation for f, 

OB 

(v-v)fx - - TUvjJdv'f^v'), 

where we have introduced the notations of Case: 

-1> ̂  " • # h v "J - rfe • (5) 
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As is veil known, the eigenvalue problem. (4) for v results in a 

real continuum (the Van Kampen modes) giving a potential • ,, 

which decays in time (Landau damping). In addition, there may 

be complex values of v. For such a value, Eq. (4) has the 

general solution 

fx - - n(v)/(v-v), (6) 

provided dvf, * 1 resulting in the dispersion relation 

1 + fdv v i ^ - « 0 (7) 

If a complex solution exists (this may be the case for a velocity 

distribution of the bump-on-tail type) its complex conjugate 

also exists thus insuring instability. 

In this note we are interested only in the dynamics of the 

growing mode(s) since the real continuum is Landau damped. A 

slightly unstable plasma is considered, i.e. a plasma in which 

only one mode is growing at a small growth rate. To this end we 

choose the number density 

No " N c ( 1 + Ll)' *' <K lf (8) 

where N is the critical value for which the last pair of c 

unstable modes has just reached the real axis. This critical 

value of N exists by virtue of the assumption of discrete k 

so that there is only a finite number of unstable modes. 

On application of the Plemelj formula to dispersion relation 

(7), it can easily be shown that for the critical number density 
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N the phase velocity v of the marginally stable mode equals the 

velocity corresponding to the bottom of the well in the distri­

bution function (see Fig. 1 ) , thus 

n(v) - 0. (9a) 

In addition, v has to satisfy 

1 + pjdVv^-O. (9b) 

The mode corresponding to this phase velocity is the class lc mode 

defined by Case . 

On increasing the number density above its critical value by a 

small fractional amount Az [see Eq. (8)], one mode with the 

smallest possible k moves up to the positive slope r«tjion, and 

this mode has a small growth rate of order A2; namely, from the 

dispersion relation we obtain 

w • « + A2w-» 

where 

wc - kv, (10) 

[- »fdv g ^ * irtn'Cv)] 
u»2 • k 

,ar_I,:s,2 ira[n*(v)]' + 

Here, the Roman superscript denotes differentiation with respect 

to v. Hence/ two time scales can be distinguished, namely the 
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inverse of the oscillation frequency M end the invert« of £*»* 

(containing both linear growth and linear frequency shift). 

Therefore, it is tempting to solve the probles of the evolution 

in tie* of the slightly unstable node by aeans of thu multiple 

tiae scale Method. This is done in the next section. 

III. NONLINEAR THEORY OF THE BC3IP-OM-TAIL INSTABILITY 

tie wish to obtain the nonlinear evolution in tiae of the slightly 

unstable aode of the bunp-on-tail instability. According to the 

previous section there is only one growing aode with snail growth 

rate if the number density 21 satisfies Eq. (8). Thus, the 

Vlasov-Poisson set then becomes 

(11) 

e». 

He solvs these equations by neans of the oultiple time seal« 

technique. To this end we replace the tiae derivative by a 

series in A2, 

since according to the analysis in the previous section T »t, 

t2»0(A
2t). We expand f and * in powers of A, 
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f « l L \ . 
4*0 * 

* l 
2=1 

(12b) 

a usual assumption in asymptotic theories. The coefficients of 

expansion f̂  and $t are functions of all T-^, except the 

equilibrium distribution function f , which is assumed to be 

independent of time. Of course,f4 (1^1) is also a function o? 

x and v, and $4 is also a function of x. Substitution of the 

expansions (i:a)-(12b) in Eqs (11) results in the hierarchy 

A1:**, S„, i»*»-3».»»» (13) 

where %. » (f,, $ £), and the linear operator & is of the form 

* 

3 3 -— + v —— 
at 3x m \3v o/ 3x 

eNc f eh1 
3x' 

(14) 

The source term S. contains only lower order $ with p <_ 1-1; 

I. will generate higher harmonics, and may also contain terms 
At 

which give rise to a secular behavior of $. within the time 

scale t . Since many time scales are assumed to be present, there 

is sufficient freedom to prevent these secular terms from 

occurring. 

In order to obtain a unique solution of the hierarchy (13) 

initial and boundary conditions have to be specified. At t • 0 

we assume that only the growing mode and its higher harmonics 

are excited. In addition we require periodic boundary conditions 
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in x-space, and that f. vanishes sufficiently rapidly for 

v •* t <*> so that all the velocity integrals exist. 

In the next few subsections the hierarchy of Eqs. (13} is solved 

order by order, subject to the initial and boundary conditions. 

At every stage secularities, if present, will be avoided giving 

an equation for the modification of the equilibrium, and an 

equation for the slow time-dependence of the amplitude of the 

slightly unstable mode. Only the quasilinear approximation Is 

given in detail. 

A. First Order Theory 

In first order the linear problem that has been investigated in 

Sec. II results, and because of the particular choice of the 

number density [cf. Eq. (8)], only the mode with the smallest 

possible k is unstable. In view of the initial conditions the 

solution reads 

*1 - - T v^T e x p i 9 + c'c- ' 

(15) 
eNc 

1 eo* 

where e » U>T0 + kx, r is a complex amplitude, which is still an 

unknown function of the time scales T-, T., ... The phase 

velocity v is the velocity corresponding to the bottom of the 

well in the equilibrium velocity distribution and satisfies 

Eq. (9b). 
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B. Second Order Theory 

In second order we obtain ^4>2 ™ S- = (s ) / where 

521 m 3x *1 3v £ 1 ' 
e 

s 2 2 - o. 

(16) 

The solution to the second order problem is given by 

f2 * f20^ v' T2 ) + f 2 2 ( v , T 2 , e x p 2i3 "*" c*c*' 

*2 " *20(t2) + *22 ( T2 , e x p 2i9 + c'c" 

(17) 

where the dependence on the time scales T., ... etc. has been 

suppressed. In the quasi-linear approximation the effect of 

higher harmonics is neglected. 

In second order the term giving modification of the equilibrium, 

f-Q, Is still undetermined but will be in fourth order. It 

should be noted that Simon and Rosenbluth determined f2Q in 

second order by making the phase velocity slightly complex; 

in the multiple time scale method this procedure is, however, 

not necessary as will be seen in Subsec. Ill 0. 
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C. Third Order Theory 

The third order problem reads ^iji3 - S^ - (s )# where 

S31 = " t \ h *1 3v" f2 + 3^ *2 37 fl) " 3TT fl ' 

e Nc f 

- e ldv £ i • 

e1 

eN_ 
S " -o 

(18) 

The source term S, gives rise to secularities in tfu. The 

requirement that secularity be absent is already formulated by 

Simon and Rosenbluth . In our case we obtain 

j d v *l(- 1*7 fl~ *? *1 lv f2o) " IdvX2Jdv P - H - °' <19) - 0 - 2 e -i- _̂ - o 

where x ~ (Xi/ X2) e xP ie is ttie solution of the adjoint problem 

^X=0: xx • P(v-v)"
1 + X6(v-v),x2=-iJt£0n(v)/eNc(v-U) . The 

integrals in (19) are taken along the Landau contour , since we 

are interested in the growing mode. At this stage it is not 

possible to evaluate Eq. (19) as f2Q is still unknown. To this 

end the third order problem is solved and the secularity 

condition in fourth order is considered. The reason for going 

to fourth order in A is that we need an equation involving 

r^-f2Q and this quantity is fourth order. 

The assumptions 

f3 " f30 + f31 ̂  + f33 e3i9 + c' c" 
(20) 

i9 319 
^3 * ̂ 30 + ^31 e + ^33 e * c , c " 

solve the third order problem, and we obtain, e.g. for f,. 
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f31 - (É jfj h - 2; *1 h f
2 0)[Å

 + W(v-v)]. (21) 

To determine f2Q we only need f.,.. 

D. Fourth Order Theory 

/S41\ In fourth order the source term S4 » f J is given by 

S41 TFT f2 i" V"3̂  *3 3v" fl + 3x *2 37 f2 + Ix^lSv^J, 

•"c r '"' 

The T - and x-independent part of S. is non-vanishing because 

there is a phase shift between *. and f31 [namely, through the 

term proportional to i r — f,, cf. Eq. (21)]. Hence, writing 

h * si0) • 2 < « . i e
 + etc. 4 4 4 

for the source tern ?4, we obtain 

c<0) . - -L. # - •- fi_ A* 1. * + 1 - 4 i-f *"i b41 3 T 2
 £20 ma Va« *1 3v

 r31 3x 91 3v E31 ) ' 

•SI 8« ' " J JdV f20 

2 *w me 
(23) 

The source term S ' leads to secularity; avoiding this we 

obtain an equation for the T,-dependence of f-«/ 

T7T £20 * «"(fe H h f31 + Ix h fv" f3l) * °' <24> 
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showing that the electron distribution function is iaodified 

because of interactions between particles and the unstable wave. 

Elimination of ^ and f31 gives 

& 'a. • (£)'{fe [ ( ^ + "'«') * ] r ^ - } - ° 
(25) 

From conservation of momentum (see below), \ is shown to be 

real. Then, Eq. (25) can be integrated at once, 

'2. - •«»' " (?)'^ k [ f e + »'">) 3#], »., 

where the arbitrary function g(v) is determined by the initial 

condition * 23
t T2* 0 ) = °' nence 

f20 - " (EE)2'lrlI-lr,0",,M(Å + W v - ) ) ^ ] - (2') 

The quantity X in Eq. (27) can be determined from the requirement 

that all solutions of the Vlasov equation must conserve momentum, 

in an analogous fashion as was done by Simon and Rosenbluth . 

In addition, it can be shown that particles and energy are 

conserved by the solution, i.e. 

§£ fdx dv f - 0, |^ Jdx dv(-§- v2f + j cQEz\ » 0. (28) 



- 18 -

E. Dynamics of the Unstable Mode 

As £-Q is now known the secularity condition (19) can be 

evaluated; dealing with the integrals in a like fashion as in 

Ref. 1, we obtain the nonlinear Landau equation for the complex 

amplitude F of the unstable mode: 

A — - r + Br + cr(|r|2 - |r(0)|a) = o, (29) 
3T2 

where the complex constants are given by 

A = AL + iA2 = i j_ ̂  - * d V ' 

B - BL + iB2= k W j * , 

C - Cl * 1C2- fc (jE) fdv 2 _ 

Again the integrals are taken along the Landau contour. It should 

be noted that the equation for the damped mode is found if the 

integrations are performed along the anti-Landau contours. Here 

we may emphasize that the result (29) is quite general; no 

restrictions are imposed on the form and position of the bump. 

Eq. (29) can be solved by assuming r - p exp icj, which results 

in an equation for the amplitude P and the phase a of the mode: 

a> 377 p + fAT T P + M T p ( p 2 " p 2 ( 0 ) ) " °' 

b> ^--A^ 1^-^-^ 2-^ 0^ 

where X • {h^, A2) / S » (Bx, B2) and C » (C^, C2) 

(30) 
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The nonlinear Landau equation (30a) can easily be solved, and, 

as is well known, exhibits limit cycle behavior. For large T 2,P
2 

saturates to the level p* » - A.B/A.C; the same expression is 

obtained in Ref. 1 by means of a time-asymptotic analysis (in 

the quasi-linear approximation). The results, as presented here, 

can easily be extended to the full nonlinear case (hence, the 

effect of second harmonics is included) but no purpose is served 

in reproducing calculations which for a large part can be found 

in Ref. 1. We note, however, that inclusion of second harmonics 

does not change the form of the equation for the unstable mode, 

it merely changes the coefficients in Eq. (29). 

For the special case of a small bump far out on the tail of the 

main distribution, Simon and Rosenbluth have given an analytic 

estimate of the saturation level lEq. (58a) of Ref. 1]. If i is 

the amplitude of the potential fluctuation their result can be 

written as 

§ - = A JS 4/6 , (31) 

where >c is the Boltzmann constant, T is the electron tempera-

ture, v » (icT /m ) , and we have used e$/<T » 2Ap /(<X_)2 

(Eq. 15). The main distribution function was assumed to be 

Maxwellian. Mote that Eq. (31) is valid only for v/v £ 10. 

F. Comparison with Experiments 

As an illustration of the present theory we consider the exper­

iments reported in Ref. 7 and 9. The authors investigated the 

problem of suppression of plasma oscillations by an external 
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wave in a beam-plasma system of the feedback type (i.e. an exper­

iment in which the beam is reflected at the end of the machine). 

The properties of the oscillation system were well described by 

the Van der Pol equation. As is well known, the amplitude of 

the Van der Pol oscillator is determined by the nonlinear Landau 

equation given in Eq. (29); thus there is qualitative agreement 

between these experiments and our theory (see also Sec. V) . In 

addition, only a single unstable mode seems to be present in 

these experiments. To be specific, we have plotted the exper­

imental velocity distribution of Ref. 9 in Fig. 1 and we have 

also drawn the possible phase velocities of the system: the 

oscillation frequency f was about 50 MHz and the length L of the 

system was about 17.5 cm. Clearly, only the mode with mode number 

£ * 5 is on the positive slope region, hence is unstable. 

Furthermore, a small growth rate (Y/U * 0.05) was found. There­

fore, the theory of this section seems applicable to this exper­

iment. In addition, we calculate the saturation level of the 
v. --v 

instability. From Fig. 1 we obtain å2 » -=^|— = 0.08, and 

v/v * 4 (T = 5 eV). Using the full expression for p* and 

assuming the distribution function to be Maxwellian, we obtain 

" 9 
e$ATe = 0.26 ($ * 1.3 V). Amemiya and Nakamura reported a 

fluctuation amplitude $ of around 1 V. In view of the idealized 

theory (e.g. no dissipative effects are included; a one-dimen­

sional plasma is considered) we believe that there is satis­

factory agreement between theory and experiment. 

It is interesting to note that if beam trapping was the dominant 

saturation effect the saturation level is given by (see e.g. 

Appendix B of Ref. 1) 
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KTe p 2/2 (kAD)^ 

which for the present experiment gives e$/KT ^ 0.01. This seems 

to indicate that the initial trapping regime has been overcome. 

The same conclusion seems to hold for the computer experiment of 

12 Armstrong and Montgomery where the saturated amplitude is 

e$/*T s 0.6 for the dominant mode, while the amplitude calculated 

from the above expression is = 0.01. 

Finally we emphasize that we are dealing with, the saturation of 

a single unstable mode. This situation is entirely different 

from that of the usual quasilinear theory , where many unstable 

modes are assumed to be present. This may be the case when the 

bump is sufficiently gentle and the system sufficiently long. A 

very good agreement with the predictions from quasilinear theory 

in such a system was found in the experiment by Roberson et al. . 

IV. THE ION-ACOUSTIC INSTABILITY 

The results presented in the previous section can easily be 

generalized to the case of mobile ions, as was already pointed 

14 out by Simon . Inclusion of mobile ions merely amounts to the 

replacement of e.g. n = - (w_./k)2f ' by n + r\,. The form of 

the equation for the unstable mode is however not changed so 

that for mobile ions limit cycle behavior may also be found. We 

should mention that the results thus obtained are fairly general, 

since no assumptions have been made regarding the form of the 
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ion and electron velocity distribution, except for the condition 

that there is a threshold for instability. Thus, the bump-on-tail, 

the ion-acoustic as well as the ion-ion beam instability can be 

treated on the same footing. Here, only the ion-acoustic 

instability is considered. 

To this end we assume a Maxwellian velocity distribution for the 

ions which are at rest, and the electrons which drift with a 

velocity v : 

1 v* „ 1 <™o>2 

x e 

where the ions and electrons have thermal velocity v and v 

respectively. The linear dispersion relation for the ion acoustic 

instability is given by Eq. (7) with n = n + TK, by using 

Eq. (32) it can be written as 

i e 

where Z' is the derivative of the plasma dispersion function , 
T 

and v » - |-. In the limit of =2 » 1 we get the approximate 

expressions for frequency, u, and growth rate, y: 

"kcs 
w * rn-(kx D ) ' i* a n d ( 3 4 a ) 

where c* - <^e
 + 3T,)/m, is the ion-acoustic speed, w . the 

ion plasma frequency, and n • n_ + n<• From (34) we see that the 

condition v. << v < v << v, can be met for T /T. >> 1 and we i o e e l 
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can thus write the growth rate in the following form: 

where T = T /T. and 6 = (m /m . ) * . 

Since in experimental situations kA_ << 1, we infer from 

Eq. (35) that the growth rate is only weakly dependent on the 

number density N. If one now uses the number density N as the 

critical parameter (as was done in the previous sections) very 

small growth rates will be obtained for N near its critical 

value. 

However, another critical parameter for the ion-acoustic 

instability is the drift velocity v . Its critical value v can 

be obtained from Eq. (35) by setting ^ * 0 for the mode with 

the smallest possible k = k . : 

where v_in corresponds the mode with the smallest possible wave 

number. 

For a plasma with a drift velocity slightly above the critical 

value, i.e. 

vo " V C
( 1 + A 2 ) ' A* <<: l ' <37) 

the growth rate of the unstable mode corresponding to k » *m\n 

becomes (Eq. 34b) 
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All other modes remain stable provided the fractional increase 

in v is not too large. As an example we take k . X_ » 10 , o rain D 

T = 7, 6 » -jTf. Then, the mode with k * 2 k ... becomes unstable 4u mxn 

if the fractional increase in v is more than 20%. Thus, o 2 

again we deal with an instability which may have a single mode 

with small growth rate. 

In complete analogy with what was done in Sec. Ill the dynamical 

equation for this unstable mode can be obtained by means of the 

multiple time scale formalism. As a result limit cycle behavior 

is found, expressed by an equation similar to (29), with the 

coefficients: 

A » i h&. 
n 1 

B - - vck 

giving the saturation level: 

12ve(^p|dv l L - Afdv $.) 

v-S 

where p has the same meaning as in the previous sect ion, 

ô 

\ • nj. (^n" " (=P)'nr * ( ^ f - - - - - * • 



In order to obtain Eq. (39) the affect of higher haraonics has 

bean neglected. Stabilization of the unstable node is achieved 

by local 'lattening of the ion as well as the electron velocity 

distribution function, which amy be inferred frost Eq. (27) with 

In the limit of large T we can expend the integrals in (39) and 

calculate the relative fluctuation level ea/cT^ (where • is 

the amplitude of the potential fluctuation; from (15): e+/icT# * 

2APo / ( kV 2 ) 

«jr - O.f a ^ 

this approximate expression for the fluctuation level is valid 

only for T > 58. Suet the latter conditioa cannot be mat 

mentally, we have calculated the saturation level directly from 

Eq. (39), using the plasma dispersion function where Z is 

determined from the dispersion relation (33). In Pig. 2 we 

plotted ef/icT A as a function of T for kX-. * 0 and •_/«! * 

1/1836. It should be noted that for kip < 0.2 there is hardly 

no dependence on kiQ. Tha order of magnitude of ^he saturation 

level is in agreement with experimental observations . That 

is, Kakamura at al. reported a peak-peak saturation amplitude 

6n/.io * e+/icTft * 0.2 for a temperature ratio of T * 10, while 

Schrittwieser found an amplitude in the ranga 0.2 < 6n/n < 0.3 

for a somewhat lower temperature ratio. In these experiments the 

single node structure was produced by the finite geometry giving 

rise to a standing wave. Another situation leading to single mode 

saturation is realized when a testwave is excited at the same 

boundary as that where the electron bean is injected, so that 
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the testwave has •*. large start over the unstable noise. This 

18 case is considered by e.g. Wong et al. ; their saturation level 

(etJi/KT = 0.1 (T = 15)) is also of the same order of magnitude 

as our results. Furthermore, they observe a clear flattening of 

the electron distribution function around the phase velocity of 

the wave as it saturates, in agreement with the predictions 

above. We emphazise, however, that the test wave case should be 

described by a boundary value problem, rather than the initial 

value problem considered above, and only qualitative agreement 

19 is expected. Finally, we note that Albright has calculated a 

18 
saturation level for the Wong et al. experiment considering 

electron trapping as the dominant mechanism, and finds e$/<T = 

0.01, thus here the conclusion of Sec. IIIF also holds. 

V. DISCUSSION OF THE RESULTS 

In this section our results are discussed. Although only the 

bump-c -tail instability is considered in detail, our conclusions 

hold for the ion-acoustic instability as well. 

We have already demonstrated that particles, momentum and energy 

are conserved by the solution. In addition, this solution can 

be shown to conserve the "microscopic" entropy S which, apart 

from a constant, is given by 

- I dx dv f lnf , (41) 
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By means of Eqs. (12a) and (12b), we obtain for |r S to fourth, 

order in A 

ft S - - W t o dV [i; I ^ fl + (1+ln fo) 3^20 ]' <42) 

Only the terms given in Eq. (42) survive the averaging activity 

of the integration over x. Then, using the expressions for f, 

[Eq. (15)] and 3f20/3x2 [Eq. (25)], conservation of S follows at 

once. 

As is well known, the Vlasov-Poisson set conserves the entropy S, 

and it is therefore quite obvious that the solution found in 

Sec. Ill conserves this entropy, since this solution contains 

the same essential information as the Vlasov-Poisson set. This 

contrasts with the quasi-linear theory as given by Drummond and 

Pines , and Bernstein and Engelmann . There one is interested 

in some average of the distribution function and the electric 

field. Because of averaging, information about specific details 

is lost and therefore the entropy, defined by means of the 

21 averaged distribution function, is not conserved . This is also 

evident from the equations for the modification of the equili­

brium. In the quasi-linear theories of Ref. 10 and 20 this 

equation is of the diffusion type, whereas in our case [Eq. (25)1 

this is certainly not true. 

It is of interest to compare the dynamics of these microscopic 

instabilities with a macroscopic one, namely the g * S instabi­

lity in a collisionless Finite Larmor Radius pl??ma . There, the 

gravity constant g is increased above its neutral stable value 

by the fractional amount A2 such that only one mode is unstable 
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with growth rate 0(A), instead of 6(A2) as found in the case of 

bump-on-tail. As a consequence, a different type of dynamics is 

to be expected for the g * B instability. And indeed, it was 

found in Ref. 5 that periodic modulation in the amplitude T of 

the unstable mode results, i.e. 32r/3x2 = yT + Br|r|2. This 

second order differential equation does not exhibit limit cycle 

behavior. In order to see the differences more clearly, let us 

consider the behavior of the modes near the critical point. The 

dispersion relation of the g x S instability in a collisionless 

Finite Larmor Radius plasma is quadratic in u: au>2 + bw + c = 0, 

with real a, b and c. Below the neutral stable value of the 

gravity constant g, all the modes are stable, slightly above 

this neutral stable value two modes become unstable, one which 

is damped and the other growing. We have shown this transition 

in Fig. 3. 

In case of the bump-on-tail instability the transition is quite 

different. Below the neutral stable value of the density, there 

is a real continuum of modes giving a potential 4>, which decays 

in time through phase mixing (Landau damping). Slightly above 

this neutral stable value, two modes become unstable, one which 

is damped and the other growing (see Fig. 1). The transition 

behavior in case of the bump-on-tail instability is typical for 

limit cycles in many respects, except that above the neutral 

stable value of the density there is both a damped and a growing 

mode. Then, if one reverses time the growing mode becomes the 

damped one, and vice versa. Therefore, the system is symmetrical 

with respect to the initial point of departure, in agreement 

with the invariance of the Vlasov-Poisson equations under the 

transformation t •*• -t, v •*• -v. 
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The properties of nonlinear oscillations in a beam plasma system 

have been found experimentally to be well described in terms of 

the Van der Pol Equation '22/ as mentioned in the previous 

sections. In Ref. 6-7 (dealing with the ion-acoustic and elec­

tron-beam instability, respectively), the Van der Pol equation 

was derived from the fluid equations including ionization and 

recombination terms. These source terms are necessary for giving 

the nonlinear terms in the Van der Pol equation. However, also 

in collisionless plasmas without source terms the Van der Pol 

equation has proven to be a good phenomenological model for the 

ion-acoustic instability . Noting that the amplitude of a Van 

der Pol oscillator is determined by a nonlinear Landau equation, 

(e.g. (30a)) we may take our results as justification of the use 

of the Van der Pol equation for the self-sustained, ion-acoustic 

instability as well as the self-sustained bump-on-tail instabi­

lity. To be more specific, consider the Van der Pol equation for 

the potential in the form: 

| ^ + (a + 002) || + «*• » 0. (43) 

23 
For a, 8 << a) Eq. (43) has the solution 

$ « •(tl)coi(» t - ait^)), 

where the slowly varying amplitude $ and phase a are determined 

by: 

|L + |; + | J» - 0, (44a) 

|f- » 0. (44b) 



- 30 -

We 3ee that Eq. (44a) takes the same form as Eq. (30a) and using 

$ * -2OKT /e(kA ) 2
f we can identify the coefficients <-. and 6 

in the Van der Pol equation in terms of A, B and C: 

a = 2 ̂ - , and 6 = 2 (kA.) * — ^ — ^ r ~ 
|A|2 ° OCT.)* |A|J 

where A, B and C must be determined for the problem at hand. On 

the other hand for the classical Van der Pol equation there is 

no phase shift up to third order (see Eq. (44b)), while it is 

evident from Eq. (30b) that in the present system, there is a 

phase shift. This could be introduced in the Van der Pol model by 

a nonlinear restoring force in addition to the nonlinear damping 

term. However, the Van der Pol equation has mainly been used to 

describe the suppression of an instability by an external oscil-

6-9 22 lation in the cited experiments ' , and for this purpose only 

the amplitude variation is of importance. 

The cited experiments are dealing with self-sustained oscil­

lations where the feed-back mechanism is reflections at the 

boundaries of the finite system. An alternative approach for 

describing the instability suppression in such a system has re-

24 cently been suggested by Kato et al. , who derived a linear 

Mathieu-type equation with an inhomogeneous term describing den­

sity oscillations in the cold beam plasma system. But while this 

equation explains the resonances of the system and the quenching 

of the unstable oscillations it can obviously not describe the 

nonlinear properties e.g. the amplitude dependence of the ap­

plied frequency, which is given by the van der Pol equation in 

good agreement with the experimental observations. In the case 

where the instability is not self-sustained, the suppression by 
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an externally excited wave is also observed. However, here the 

suppression is caused by a deformation of the electron beam di­

stribution function as clearly observed by e.g. Fukumasa and 
25 

Itatani . In this case the unstable oscillation is still in its 

linear regime when the external wave is applied and this might, 

having a sufficient amplitude, alter the dispersion relation and 

suppress the. instability. While in the case of a self-sustained 

oscillation, as we have been dealing with in the present work, 

the instability is already in the saturated state, when applying 

the external wave. It thus resembles a steady state oscillator 

and the suppression is brought about because the modes compete 

for the energy available. (For further discussion see Ref. 22 

which contains references to related work). 

Finally we mention that Walsh and Hagelin26 recently derived a 

nonlinear Landau equation describing the low density, cold beam 

plasma instability, by expanding the dispersion relation around 

ths most unstable root and the perturbed beam electron orbit, 

thus justifying the use of the Van der Pol equation in such a 

system. 

VI. CONCLUSION 

We have considered the nonlinear evolution in time of the bump-

on-tail and ion-acoustic instability where periodic boundary 

conditions allow only one mode to be unstable for a particular 

choice of a critical parameter. The growth rate of this mode is 
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of the order A2, where A2 equals the fractional increase in the 

critical parameter over its neutral stable value. Then, two time 

scales can be distinguished permitting the Vlasov-Poisson set to 

be solved by means of the multiple time scale method. As a re­

sult, limit cycle behavior is found, in agreement with experiment. 

In addition, the theoretical fluctuation level seems to agree 

with experimental results. 
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Pig, l. Velocity distribution in the Aaemiya-Nakamura experiment . 

Vertical lines indicate the phase velocities of the various modes: 

v- « 2|&, k » Y^-, % is the mode number. 

- i i i r i i t i i i i i i i i i i i i i i i i i 

Pig. 2. The saturation level of the ion-acoustic instability as 

function of the temperature ratio T /T. for JcA_ « 0 and m /m. « 

1/1836. 

u) - plane 
a) ! b) 

I 
Pig. 3. Transition between stable and unstable modes foe a) the 

bump-on-tail instabiblity and b) the g*I instability. 
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