

DTU Library

Structure and transport properties of double doped Mg1-x(Al0.5Li0.5)xB2 (poster)

Xu, G.-J.; Grivel, Jean-Claude; Abrahamsen, Asger Bech; Andersen, Niels Hessel

Published in: Superconductivity and magnetism: Materials properties and developments. Extended abstracts

Publication date: 2003

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Xu, G-J., Grivel, J-C., Abrahamsen, A. B., & Andersen, N. H. (2003). Structure and transport properties of double doped Mg1-x(Al0.5Li0.5)xB2 (poster). In N. H. Andersen, N. Bay, J-C. Grivel, P. Hedegård, D. McMorrow, S. Mørup, L. T. Kuhn, A. Larsen, B. Lebech, K. Lefmann, P-E. Lindelof, S. Linderoth, ... N. F. Pedersen (Eds.), Superconductivity and magnetism: Materials properties and developments. Extended abstracts (pp. 79-80). Roskilde: Risø National Laboratory.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

STRUCTURE AND TRANSPORT PROPERTIES OF DOUBLE DOPED Mg_{1-x}(Al_{0.5}Li_{0.5})_xB₂

G.-J. Xu, J.-C. Grivel, A. B. Abrahamsen, N. H. Andersen (Department of Materials Research, RisØ National Laboratory, 4000 Roskilde, Denmark)

A series of polycrystalline samples of $Mg_{1-x}(Al_{0.5}Li_{0.5})_xB_2$ ($0 \le x \le 0.6$) and $Mg_{1-x}Al_xB_2$ ($0 \le x \le 0.4$) were synthesized by the conventional solid state reaction method and their structure and superconductivity were investigated by means of x-ray diffraction (XRD), ac susceptibility and resistivity. The XRD patterns of $Mg_{1-x}(Al_{0.5}Li_{0.5})_xB_2$ ($0 \le x \le 0.6$) samples show that the predominant phase was of MgB_2 type and there was a minor amount of impurity phases for the $x \le 0.4$ samples. A marked increase in intensity of impurity phases can be clearly observed for the x = 0.6 sample. Similar to Al doping, the double doping leads to a decrease in both the lattice parameters *a* and *c* as shown in the inset of Fig. 1.

To obtain the superconducting transition temperature, both resistivity and ac susceptibility measurement were made. The T_c obtained from magnetic measurement is approximately consistent with that from ρ -T curves. Fig. 1 illustrates the variation of zero resistivity, T_c^0 , as a function of substitution level x for Mg_{1-x}(Al_{0.5}Li_{0.5})_xB₂ and

Mg_{1-x}Al_xB₂. The T_c s for the double-doped samples are systematically higher than that of the single Al doped samples. The difference of T_c^0 s between the two systems increases and it reaches about 10 K for the two x = 0.4 samples.

High-pressure experimental results indicated that MgB₂ remains strictly hexagonal until the high pressure [1]. The large value of critical temperature variation with small modification in the unit-cell volume demonstrates that Mg-B and B-B bonding distances crucial in the are superconductivity, which

Fig. 1. T_c^0 dependence of doping level *x* for $Mg_{1-x}(Al_{0.5}Li_{0.5})_xB_2$ and $Mg_{1-x}Al_xB_2$. The inset illustrates the lattice parameter *a* and *c* as a function of *x*.

can be used to understand our results, i.e., Al doping in $Mg_{1-x}Al_xB_2$ leads to a faster decrease in lattice parameters than the double doping with the same doping level, thus the decrease in T_c with Al doping is faster than that with double doping.

To clarify the factors that influence the superconducting transition temperature, we calculated the dependence of T_c on the unit-cell volume and plotted $T_c(V)$ in Figure 2.

The result from high-pressure experiment was also given in the figure for comparison. At low doping level, the volume dependence of T_c values are close for the three cases and the $T_{\rm c}s$ show a approximately linear volume dependence. With further decreasing $V_{\rm v}$ a deviation remarkable from linear $T_{\rm c}(V)$ behavior for the chemical substituted cases can clearly observed. be The structural transition for the Al doped MgB₂ system taking place as x0.1 may be a possible factor causing the deviation. However, the structural transition, as well as the 'pressure effect', cannot be used to account for the fact that

ig.2 T_c as a function of unit-cell volume for $Mg_{1-x}(Al_{0.5}Li_{0.5})_xB_2$ and $Mg_{1-x}Al_xB_2$ and MgB_2 .

with same unit-cell volume the double-doped system has lower T_c than Al doped system. Obviously the change of carrier concentration is not the main cause resulting in different $T_c(V)$ between the two systems. In fact, the effect of carrier concentration on T_c is a little different between MgB₂ and high T_c cuprates. Hall effect experimental results [2] showed that the charge carriers in MgB₂ are holes with a density of $1.7 - 2.8 \times 10^{23}$ holes cm⁻³ at 300 K, which is about two orders of magnitude higher than the charge carrier density for high Tc cuprates. This value corresponds to 2.5 - 4 holes per unit-cell in MgB₂. Therefore a little change in carrier concentration may not show significant influence on T_c in MgB₂ system, which is in contrast to that in high- T_c cuprates. From the variation of lattice parameters with doping one may find that in order to get same unit-cell volume, the doping level for the double doped system is always higher than the Al doped system, which means that the disorder for the former is higher than that for the latter with same unit-cell volume. The strong disorder or localized structural distortion may be the origin causing the different $T_c(V)$.

References

- 1. A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, Phys. Rev. B 64 (2001) 100509.
- 2. C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14 (2001) R115.