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Summary. It is demonstrated that the inertial terms in the dynamic equations of motion in a moving
frame take a simple universal form in terms of the classic mass matrix, when the traditional Lagrangian
approach with local velocities as time derivatives of position is replaced by a Hamiltonian approach, in
which absolute velocities and local positions are interpolated by identical shape functions. The resulting
equations take on a simple systematic form that lends itself naturally to conservative time integration
and permits a simple algorithmic damping scheme in terms of local motion.
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Introduction

Rotating structures are acted on by inertial forces generated by the rotation. If the local displace-
ment of the structure at a generic point is represented by shape functions and local velocities
are obtained by time differentiation of the interpolated displacements, the inertial effects from
rotation leads to mass matrices containing the angular velocity and acceleration of the rotating
frame of reference. While the inertial forces can be obtained via rearranging individual parts of
the original mass matrix – see e.g. [1] – the appearance of separate representations of the inertial
effects in the discretized system equations is computationally inconvenient and complicates the
development of conservative time integration algorithms for rotating structures. This problem
can be resolved by adopting a Hamiltonian view of mechanics, in which displacements and ve-
locities (momentum) appear as independent variables, and therefore are interpolated separately
from their nodal values. Hereby all inertial effects are represented by the classic mass matrix,
and the effects of rotational convection are represented by global operations via vector products
with the angular velocity of the rotating frame of reference.

The nodal displacements and velocities constitute a state-space representation of the local
motion. When the local displacements are combined with the absolute velocities the correspond-
ing hybrid state-space equations of motion take a particularly simple form without the angular
acceleration and with the angular velocity only in linear form. A conservative integration algo-
rithm for the hybrid state-space variables is obtained by using the mean value of the angular
velocity over the current integration interval. For changing angular velocity the conservative
integration format is different from the classic collocation format exemplified by the Newmark
scheme. A damping based on local motion can be introduced by a simple modification of the
coefficients of the state-space integration format.

Lagrange-Hamilton basics

Let a structure be described by a set of generalized coordinates q = [q1, q2, · · · ]
T with time

derivative q̇ = [q̇1, q̇2, · · · ]
T . The Lagrangian functional is then defined by

L =

∫ t2

t1

L(q , q̇ , t) dt (1)
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in terms of the Lagrangian density

L(q , q̇ , t) = T (q , q̇ , t) − V (q , t), (2)

where T (q , q̇ , t) is the kinetic energy, while V (q , t) is a potential. The equations of motion
follow from the variational condition δL = 0, whereby

d

dt

(∂L

∂q̇

)

−
∂L

∂q
= 0 . (3)

In the Lagrangian formulation the variables are the generalized displacements q , and the equa-
tions of motion are second order differential equations in these variables.

The Hamiltonian formulation starts by introducing the term in the parenthesis of (3) as the
independent momentum,

p =
∂L

∂q̇T
. (4)

The Hamiltonian H(q ,p, t) is then defined from the Lagrangian L(q , q̇ , t) by the Legendre
transform

H(q ,p, t) = q̇Tp − L(q , q̇ , t), (5)

where the displacements q and the momentum p are treated as independent variables. The
equations of motion then follow from stationarity in the classic form

dp

dt
= −

∂H

∂qT
,

dq

dt
=

∂H

∂pT
. (6)

The important observation in the present context is that by introducing the additional conjugate
variable p, the original set of second order differential equations are transformed into a set of
first order equations in q and p. The symmetric form of the Hamiltonian equations suggest
representation of these independent variables by identical interpolation schemes.

Rotating structures

A rotating structure is illustrated in Fig. 1. The position of the nodes are described by the
coordinates xn in a frame of reference rotating with angular velocity Ω . A generic point with
internal coordinate ξ is the given in the local frame in terms of the coordinates of the nodes as

x ξ = N (ξ)
︸ ︷︷ ︸

3×N

xn. (7)

The issue here is the representation of the corresponding velocity.

x1

x2

x3

Ω

Figure 1. Solid body in frame {x1, x2, x3} rotating with angular velocity Ω.
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Classic representation

The classic approach is Lagrangian in the sense that the local components of the global velocity
v ξ is obtained at the generic point x ξ as an absolute time derivative, combining the local velocity
and a convective velocity from the rotation of the frame of reference,

v ξ = Dtx ξ = (∂t + Ω̃)x ξ, (8)

where the notation Ω̃ = Ω× is used for the skew symmetric matrix representing the vector
product. The kinetic energy is given in terms of the absolute velocity as

T =

∫

V

1

2
ρ vT

ξ v ξ dVξ. (9)

The absolute velocity depends on the local nodal velocity ẋn and the local position xn and
substitution from (8) gives the discretized form

T = 1

2
[ẋT

n ,x
T
n ]

[
M 00 M 01

M 10 M 11

][
ẋn

xn

]

, (10)

where the block matrices M jk are defined by

M jk =

∫

V

ρN (ξ)T
(
Ω̃

T )j
Ω̃

k
N (ξ) dVξ . (11)

It is seen that the angular velocity Ω is imbedded inside the volume integral. For elements that
are not based on identical interpolation of all three displacement components – essentially all
non-isoparametric elements – moving the angular velocity vector outside the integral requires
some measure of restructuring of the mass matrix. In cases with time-dependent angular velocity
this formulation therefore involves reassembly of the inertial matrices containing Ω as well as
terms representing the time derivatives of these matrices.

Hamiltonian representation

In the Hamiltonian formulation the generalized displacement vector x is supplemented by the
corresponding momentum vector, defined via (4). The present paper is concerned with formu-
lations in which the mass matrix is constant. This class includes isoparametric elements and
elements that can be constructed using a definition of generalized strains as a quadratic function
of the generalized displacements. The latter group includes energy-consistent moderate-strain
formulations of e.g. beams, plates and shallow shells. When the mass matrix is constant the
momentum vector can be replaced by the nodal velocity vector. The absolute velocity at a
generic point ξ then follows from the interpolation format (7) as

v ξ = N (ξ)vn = N (ξ)Dtxn. (12)

In this format the velocity interpolates the nodal values obtained via the convected differential
operator Dt = ⌈∂t+ Ω̃⌋ = ∂t+ Ω̃D, now extended to global form by defining the block diagonal
matrix Ω̃D = ⌈Ω̃ , · · · , Ω̃⌋. This format gives the kinetic energy in terms of the mass matrix as

T = 1

2
[ẋT

n ,x
T
n ]

[
M MΩ̃D

Ω̃
T

DM Ω̃
T

DMΩ̃D

][
ẋn

xn

]

, (13)

and thus the inertial loads from convection are obtained from global operations on the assembled
mass matrix M .
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Equations of motion

The equations of motion can be expressed in several different forms. While the particular form
may be less important when discussing the exact continuous case, the choice of format is a
central issue in the development of discrete time integration algorithms. In the following only
the discretized form is used, represented in terms of the nodal values, and the subscript n is
therefore omitted.

Lagrangian form with classic interpolation

The equations of motion in the second-order Lagrange format (3) follow directly from differen-
tiation of the discretized kinetic energy (10) and a potential V (x ) giving external forces f and
internal forces g(x ). The result is the classic equation

M 00ẍ + (M 01 −M 10)ẋ − M 11x + Ṁ 01x + g(x ) = f . (14)

In the case of isoparametric elements the angular velocity may be applied to the assembled mass
matrix, and the equation takes the somewhat more intuitive form

Mẍ + (MΩ̃D + Ω̃DM )ẋ + Ω̃DMΩ̃Dx + M
˙̃
ΩD + g(x ) = f . (15)

The second term is the gyroscopic or Coriolis force, the third is the centrifugal force, and the
fourth term is the effect of angular acceleration. Even this special form, where the angular
velocity has been extracted to the global format, does not lend itself immediately to energy
conserving time integration because angular acceleration appears directly in the equation and
the angular velocity appears in quadratic as well as in linear form. This dynamic equation is
typically integrated by classic collocation schemes of collocation type, se e.g. [2].

Hybrid state-space format

The hybrid state-space format appears naturally, when observing that for the present problem
p = Mv , and thus a natural variable combination is the local displacement x and the global
velocity v . The hybrid state-space equations of motion then take the form, [3],

[

0 M

−M 0

][

u̇

v̇

]

+

[

g(u) + Ω̃DMv

MΩ̃
T

Du + Mv

]

=

[

f

−MΩ̃
T

Dx 0

]

. (16)

where the displacements have been introduced as the difference between the current and the
initial position, u = x − x 0. These equations appear as a simple generalization of the classic
state-space equations, e.g. [4], augmented by two linear terms in the angular velocity Ω . The
hybrid state-space equations lend themselves directly to energy conserving time integration
and permit a simple monotonic algorithmic damping scheme. This format is easily extended
to models in which rotations are represented in quadratic form in terms of the generalized
displacements, [5].

Conservative time integration

Conservative time integration algorithms are typically obtained from a time integral of the state-
space equations of motion – in the present case (16). For structures with constant mass matrix
the fist term changes directly into a similar term with the time increments of the state-space
variables, ∆u and ∆v . The issues to be resolved lie in the second term, which now represents
a ‘mean value’ over the time integration interval ∆t. It has been demonstrated in [3] that
conservation properties are attained when the angular velocity Ω is represented by its algebraic
mean value of the initial and final values of the integration interval Ω̄ . In most problems

4



involving rotating bodies or structures the stiffening effect from stresses due to the centrifugal

load play an essential role in balancing the direct centrifugal load term Ω̃
T

DMΩ̃D to a greater
or lesser extent, and geometric stiffness is therefore an important aspect of the problem. For
elements with a quadratic strain measure, as in the present case, the effect of the kinematic
non-linearity can be accounted for by the following simple result for the representative mean
value of the internal forces, [4],

g(u)∗ = g(u) − 1

4
∆Kg∆u, (17)

where ∆Kg is the increment of the geometric stiffness matrix over the time interval ∆t. In spite
of the fact that this term formally is a ‘higher order term’ it is important for consistency and
accuracy in problems depending on geometric stiffness.

When these two results are incorporated, the integrated form of the state-space equations of
motion take the form

[
1

4
∆t∆Kg M

−M 0

][

∆u

∆v

]

+ ∆t




g(u) + ¯̃

ΩDMv̄

M
¯̃
Ω

T

Dū + M v̄



 = ∆t

[
f
∗

−M
¯̃
Ω

T

Dx 0

]

. (18)

A local form of the energy balance can be obtained by expressing the absolute velocity v in
terms of the local velocity u̇ from (8). Multiplication of the hybrid state-space equations (18)
by [∆uT ,∆vT ] leads to the following energy increment equation, [5],

[
1

2
u̇TMu̇ − 1

2
xT (Ω̃

T

DMΩ̃D)x +G(u)
]n+1

n
+ vTM (∆Ω̃Dx ) = ∆uT f

∗
, (19)

where G(u) = ∆uTg(u) is the increment of the internal energy, and ∆uT f
∗
defines the work of

the external force. The mean value term gives a direct representation of the contribution from
angular acceleration within the time increment.

Local algorithmic damping

It is often desirable to introduce dissipation – partly to represent actual damping in the struc-
ture, and partly to dissipate high-frequency response components that are above the Nyquist
frequency limit for reproduction of a continuous signal by its time-discretized counterpart. A
convenient way of identifying a suitable format for algorithmic damping is to identify a desirable
form of its dissipative contribution D to the energy balance equation. It has been demonstrated
that for a stationary structure a suitable dissipation function is a quadratic form in the incre-
ments of the state-space variables, D = 1

2
(∆u̇TM∆u̇+∆uTK∆u), whereK is a representative

value of the stiffness matrix, [4]. In the present context it is desirable to formulate the dissipation
in terms of local velocity u̇ in order for a purely convective rotation to be undamped. Further-

more, as seen from the energy balance equation, the local stiffness is reduced by Ω̃
T

DMΩ̃D.
Thus, a suitable form of the dissipation potential in the present case is, [5],

D = 1

2
α
{

∆u̇TM∆u̇ +∆uT (K − ¯̃
Ω

T

DM
¯̃
ΩD)∆u

}

. (20)

The algorithm is formulated in terms of the absolute velocity v . The local velocity u̇ is therefore
eliminated in favor of the absolute velocity via the relation (8), whereby the dissipation potential
takes the simple matrix form

D = 1

2
α
[
∆uT ,∆vT

]

[

K
¯̃
ΩDM

M
¯̃
Ω

T

D M

][

∆u

∆v

]

(21)

When introducing −D on the right side of the total energy balance equation, it is seen that
the matrix including the factor 1

2
α should be included in the first matrix of the conservative
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equations of motion (18). Hereby the discretized hybrid state-space equations take the final
form

[
1

4
∆t∆Kg + 1

2
α∆tK (I + 1

2
α∆t

¯̃
ΩD)M

M (−I + 1

2
α∆t

¯̃
Ω

T

D)
1

2
α∆tM

][

∆u

∆v

]

+∆t

[

g(u)+ ¯̃
ΩDMv̄

M
¯̃
Ω

T

Dū +Mv̄

]

= ∆t

[
f
∗

−M
¯̃
Ω

T

Dx 0

]

.

(22)
It is noted that the the damping terms proportional to parameter α contribute in the form
of symmetric terms in the first matrix. The combination of terms in the upper left corner of
this matrix also indicates that the contribution 1

4
∆Kg has the form of a damping term. As

the increment of the geometric stiffness may change sign, omission of this term by a simplified
integration of the non-linear internal forces would lad to oscillations as illustrated in [4].

The non-dimensional damping parameter α appearing in the equations of motion can be
related asymptotically to the modal damping ratio ζk in the low-frequency regime, [6],

ζk ∼ 1

2
α (ωk∆t) (23)

Thus, for the lower modes algorithmic damping in terms of the scalar damping parameter α

leads to damping proportional to the modal frequency ωk.

Numerical solution

The numerical solution of the hybrid state-space equations (22) proceeds in a simple step-by-step
manner. First the equations are reformulated by using he second equation to express the current
velocity vn in terms of the current displacement un. This expression is used to eliminate the
current velocity vn from the first equation, which then takes the form of a modified non-linear
quasi-static static problem, for which standard solution procedures are available. When un has
been determined, the current velocity vn is determined from the relation used to eliminate this
variable in the first step. Convergence is usually good due to the presence of the inertial terms
that typically exercise a stabilizing effect for small time steps. Details and examples may be
found in [4], [3] and [5].
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