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Abstract

A successful mathematical description of the renal processes requires an
understanding of the mechanisms through which these pressures take place.
Part of the present thesis addresses the hypothesis that increased coupling
between neighboring nephrons and increased strength of the tubuloglomeru-
lar feedback process can explain the experimentally observed irregular oscil-
lations in the nephron pressures and flows. The hypothesis is put to test by
calculating Lyapunov exponents of a high level mechanism-based model of a
nephron and a similar model of two vascular coupled nephrons.

Synchronization between oscillating period-doubling systems is the topic
of the larger part of the study. Since synchronization is a fundamental phe-
nomenon in all sciences, it is treated from a general viewpoint by analyzing
one of the most simple dynamical systems, the Rössler system, both in an
externally forced version and in the form of two mutually coupled oscilla-
tors. The bifurcational mechanism to resonant dynamics and chaotic phase
synchronization is described in detail. The transition from synchronized to
non-synchronized dynamics is known to take place at a dense set of saddle-
node bifurcations that run along the edge of the resonance tongue and appear
also to be related to the formation of multilayered tori and torus-doubling
bifurcations. A cyclic behavior of sub- and supercriticality of the period
doublings in the neighborhood of the contact between period doubling and
saddle-node bifurcations cause a set of torus bifurcations that take place at
a very small range of parameters.

In coupled Rössler systems, the same torus bifurcations take a more global
role. While a complete, but now folded, period-doubling cascade evolves,
a cascade of torus bifurcations emerge from all the period doublings and
run along side with three (due to the folding of the period doubling) sets
of saddle-node bifurcations at the edge of the tongue. Through homoclinic
bifurcations of tori with different periodicity, a second mechanism to phase
synchronization is found to occur.

Similar bifurcation structures are shown to exist in an externally forced
nephron model and in a model of two vascular coupled nephrons, underlining
that the discussed phenomena are of a common nature to forced and coupled
period-doubling systems.
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Dansk resumé

En vellykket matematisk beskrivelse af nyrernes forskellige processer forud-
sætter en grundig forst̊aelse af de mekanismer, hvorigennem disse processer
finder sted. En del af denne afhandling undersøger en hypotese om at øget
kobling mellem nabo nefroner og øget styrke i den tubuloglomerulære feedback-
process kan forklare de eksperimentielt observerede kaotiske svingninger af
tryk og væske strømme i nefronet. Hypotesen testes ved beregne Lyapunov
eksponenter af en mekanisme-baseret nefron model samt en model best̊aende
af to vaskulært koblede nefroner.

Synkronisering mellem oscillerende periode-doblings systemer udgør den
største del af dette studium. Da synkroniseringen er et grundlæggende fænomen
i alle naturvidenskaber, er emnet behandlet ud fra et generelt synspunkt ved
at analysere en af de mest simple dynamiske systemer, Rössler systemet, b̊ade
i en eksternt tvunget version og i en udgave hvor to oscillatorer p̊avirker hin-
danden gensidigt. De bifurkationer der optræder ved overgangen til resonans
dynamik og kaotisk fase synkronisering er beskrevet i detaljer. Det er kendt,
at overgangen fra synkroniseret til ikke-synkroniseret dynamik finder sted
p̊a en tæt mængde af sadel-knude bifurkationer der løber langs kanten af
resonanstungen og synes ogs̊a at være relateret til dannelsen af resonans tori
organiseret i flere lag samt torus-doblings bifurkationer. En cyklisk opførsel
af sub- og superkritiske perioden-doblinger i nærheden af kontakt punktet
mellem periode-doblings og sadel-knude bifurkationer for̊arsager en række
torus bifurkationer, der finder sted p̊a et meget parametre omr̊ade.

I koblede Rössler systemer, har de samme torus bifurkationer en mere
global rolle. Mens en komplet, og nu foldet, periode-doblings kaskade ud-
vikler sig, dannes en kaskade af torus bifurkationer som skabes p̊a perioden-
fordoblingerne og udvikler sig side om side med tre (p̊a grund af foldning
af perioden-fordobling) sæt sadel-knude bifurkationer p̊a kanten af tungen.
I modsætning til det externt forcerede system finder overgangen til fase-
synkronisering ikke sted ved sadel-knude bifurkationerne men derimod gen-
nem homokline bifurkationer p̊a tori med forskellige periodiciteter.

I analogi med de abstrakte Rössler systemer undersøges nefron modellen i
en forceret og koblet udgave. Det vises at disse systemer har lignende bifurka-
tionsstrukturer og at de derfor kan formodes at være typiske for forcerede
og koblede periode-doublings systemer.
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CHAPTER 1

Introduction to the thesis

1.1 Motivation

During the past decades systems biology, including biosimulation, has be-
come a rapidly growing approach to biological, physiological and medical
research. A main characteristic of this approach is that it adopts a system’s
oriented view on the living organism rather than focusing on specific pa-
rameters or relations. In this way the approach introduces dynamics to the
description while at the same time trying to bridge across the different hier-
archical levels of the physiological system. Another characteristic feature of
biosimulation is that its success requires contribution from a large number
of different disciplines, including physics and complex systems theory.

Part of this research consist of experimental studies, that confirm results
from modelling and also direct attribution to new questions and problems
to be understood. The problem of understanding the dynamics of and mech-
anisms involved in blood flow autoregulation, which also include the under-
standing of how nephrons are coupled together and how the experimentally
observed synchronization between coupled nephron take place, was suggested
to me by Prof. Erik Mosekilde. On a longer term new knowledge of the phys-
iological mechanisms in the nephron and on the coupling among nephrons,
together with improved knowledge of the bifurcational mechanisms of the
models, may provide the basis for larger models describing the kidney rather
than the isolated nephron and its nearest surroundings. Let us also note that
synchronization is a very fundamental phenomenon appearing in practically
all kinds of natural sciences. This fact makes the phenomenon even more ap-
pealing as the research on synchronization between coupled nephrons may
lead to wider consequences in other sciences.
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Aims of the study 2

1.2 Aims of the study

This thesis aims at shedding light on the processes taking place in connec-
tion with the kidneys role in blood flow autoregulation. Four main topics are
addressed: 1) describing the dynamics of the single nephron, 2) establishing
a bifurcational description of synchronization mechanisms in general, 3) ex-
amining the dynamics and synchronization mechanisms in coupled nephrons,
and 4) confirming that irregular dynamics of coupled nephrons is related to
an increased degree of coupling.

These four different wide goals are more specifically

1. To perform a more detailed bifurcation analysis in view of providing an
overview of the transitions between different regions of mode-locking
between the TGF and myogenic oscillations.

2. The theory of synchronization between period-doubling oscillators is
not yet fully understood. We want to establish a precise description of
the bifurcations that take place on the route to resonant and chaotic
synchronization. This is expected to also give a better understanding of
the behavior of more complicated systems such as the coupled versions
of our nephron models.

3. The above more theoretical results will be shown to also be relevant to
a description of synchronization in single and coupled nephron systems.

4. A detailed nephron model is used to test the hypothesis that hyper-
tension is related to an increased strength of the tubuloglomerular
feedback and an increased inter-nephron coupling.



Main results 3

1.3 Main results

At the moment of writing, many of the obtained results are either already
published or they are in the review process. Below a list of all publications
and manuscripts (submitted or will be submitted) is found and in the back
of the thesis the full text is printed.

List of publications and manuscripts produced during the study:

M1 Laugesen, J. L., Mosekilde, E. and Zhusubaliyev, Zh.T., Bifurcation
structure of the C-type period-doubling transition, submitted to Phys-

ica D.

P1 Zhusubaliyev, Zh. T. and Laugesen, J. L. and Mosekilde, E., From
multi-layered resonance tori to period-doubled ergodic tori, Phys. Lett.

A 374, 25342538, 2010.

M2 Mosekilde, E., Laugesen, J. L. and Zhusubaliyev, Zh. T., The edge of
chaotic phase synchronization, submitted to Eu. Phys. Lett.

M3 Laugesen, J. L. Mosekilde, J. L., Bifurcation analysis of resource cou-
pled Rössler systems, J. Appl. Functional Analysis, accepted for pub-
lication.

M4 Laugesen, J. L., Mosekilde, E. and Holstein-Rathlou, N.-H., C-type
Period-Doubling Transition in Nephron Autoregulation, submitted to

Roy. Soc. Interface.

M5 Laugesen, J. L., Mosekilde, E., and Holstein-Rathlou, N.-H., Synchro-
nization of period-doubling oscillations in multi-dimensional systems,
submitted to Chaos.

P2 Laugesen, J. L.,Sosnovtseva, O. V., Mosekilde, E., Niels-Henrik Holstein-
Rathlou, N.-H. and Marsh, D. J., Coupling-induced complexity in nephron
models of renal blood flow regulation, Am. J. Physiol. Regul. Integr.

Comp. Physiol. 298, R997-R1006, 2010.

P3 Sosnovtseva, O., Laugesen, J. L., and Mosekilde, E., Biosimulation and
Computations in Systems Biology. Chapter 25 in: Handbook of Molec-

ular Biophysics: Methods and Applications, ed. H. G. Bohr, WILEY-
VCH, Weinheim, 2009.



Main results 4

The first part of the study was mainly devoted to understanding of the
single nephron and the possibility for chaotic dynamics in coupled nephrons.
In short these results are:

• We have obtained a detailed bifurcation diagram for the single nephron
model showing a number of separate period-doubling cascades each
with different TGF:myogenic ratio. The existence of such a cascade
broadens the working range of the model, since it has been shown that
juxtamedullary nephrons have smaller locking ratios due to the greater
length of Henle’s loop.
Described in: Manuscript M4 and section 3.2 in this thesis

• We have examined a spatially lumped version of Henle’s loop with in-
dividual compliances and resistances in the compartments and success-
fully demonstrated how modelling can be used to describe the damping
of pressures along the tubular system.
Described in: Publication P3

• Calculation of Lyapunov exponents from simulated time series of the
detailed nephron model support the hypothesis that hypertension is
related to the strength of coupling between nephrons. A practically ab-
sent ability to show chaotic dynamics for any TGF-gain factor is found
at zero inter-nephron coupling i.e., for a single uncoupled nephron. At
physiological realistic inter-nephron coupling, chaotic dynamics emerge
in a relative wide range of high TGF-gain values.
Described in: Publication P2

Our studies on periodically forced and mutually coupled Rössler systems
have resulted in a number of phenomena and generic bifurcation structures.
Similar structures have been observed in corresponding forced and coupled
nephron models

The main results of the study on forced systems are

• Detailed description for the formation of saddle-node bifurcations within
the resonance zone, that limit the various stable and unstable solutions
as a period-doubling cascade evolves inside the Arnol’d tongue.
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Described in: Manuscript M1 in publication P2

• Outside the resonance zone a torus-doubling cascade evolves as a con-
sequence the external forcing to the period-doubling cascade of the
unforced Rössler system.
Described in: Manuscript M1 and Manuscript M2

• We describe how multilayered tori are formed through period-doubling
bifurcations of the node and saddle transverse to the torus. We also
describe how these resonant tori are connected to the doubling of tori.
Described in: Publication P1 and Manuscript M1

• Cyclic behavior of the sequence of sub- and supercritical period dou-
blings at the edge of resonance, where the supercritical case leads to
a torus bifurcation to close a small gap between two resonant regions
not covered by a saddle-node bifurcation.
Described in: Manuscript M1

• Consequently, a cyclic behavior of the saddle-node bifurcation along
edge must exist. This leads to an accumulation of saddle-node bi-
furcations. The border between phase-synchronized chaos and non-
synchronous chaos is located at that accumulation curve.
Described in: Manuscript M2

Our study of coupled period-doubling systems extends the significance of
the above findings, as the same phenomena are observed. In addition we also
find that:

• The torus bifurcation takes a new and more global role, giving rise to
a cascade of alternating torus bifurcations along the edge of synchro-
nization together with the saddle-node bifurcation.
Described in: Manuscript M5

• From the above finding follows an alternative mechanism to desynchro-
nization of both the non-chaotic and chaotic resonance region, that take
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place through a homoclinic bifurcation on the tori born at the torus bi-
furcations inside the tongue. We suggest that a cascade of homoclinic
bifurcations exist as a consequence of Bogdanov-Takens bifurcations
on the torus bifurcations.
Described in: this thesis.

All the above findings have also been found to be present in forced and
coupled nephron models.



CHAPTER 2

Background: Introduction to the renal

physiology

Nephrology covers a very wide range of topics all having to do with the
functionality of the kidney. In this thesis emphasis is paid to the nephron’s
role in regulating its own incoming blood flow. Coupling between neighboring
nephrons is believed to play an important role for the kidneys regulation of
the blood flow and probably also other functions. To understand the nature
of both the regulating mechanisms and the coupling mechanisms some basic
knowledge of the anatomy and processes is required.

2.1 Anatomy, functionality of the kidney and its

nephrons

Due to evolution of all mammals from the same species (presumable sea
animals) we are largely alike regarding the organs. All mammals posses two
kidneys’, although the body only need one to function properly. Many differ-
ent processes take place in the kidney among which the most well known are
the kidneys 1) maintenance of the body’s water and salt balance, 2) filtration
and excretion of waste products through urine and 3) regulation of the blood
pressure. Several hormonal processes also take place, such as hormones that
control the body’s calcium balance, a ion that is also important in the kidney
itself.

The kidney is supplied with blood through the renal artery, which di-
vides into the smaller arcuate arteries, then interlobular arterioles and then
into afferent arterioles forming a tree like structure, see Fig. 2.1. Through
this division, about 1 million (for the human) small arterioles are formed in
each kidney. The number of branching levels are usually said to be about
6, hence the number of new vessels branching from one vessel is on average

7



Anatomy, functionality of the kidney and its nephrons 8

(106)1/6 = 10. At the end of the branching the blood flows into the nephron,
which is the functional unit of the kidney (at least regarding the regulation
of blood pressure). The nephrons are sustained or contained in the medullary
pyramids, that extend from the central part to the cortex of the kidney. In
the nephrons the filtration of the blood takes place and the waste products
flow with the redunant water via the ureter to the bladder. The functional

Figure 2.1 Anatomy of the kidney. The blood supply to the kidney starts at
the arcuate artery that branch into smaller arteries and arterioles.
Filtration takes place at the glomeruli, and the filtered blood is then
returned to the blood system through the veins. The filtrate passes a
tubular system in which part of the fluid is reabsorbed into the venous
system. The nephrons (of which only the glomeruli are visible) are
surrounded by tissue called medulla. Reabsorbed fluid first enters the
medulla and from there it is absorbed into capillary veins.

units of the kidney are the nephrons, see Fig. 2.2. When the blood reaches
the last level of the branching network, it flows from the afferent arteri-
ole into the glomerulus, which extracts water and various substance, except
blood cells and proteins. The extracted fluid flows further into the convo-
luted proximal tubulus. Nearby 70% of the glomerular filtrate is reabsorbed
from the proximal tubule into the capillary network and collected by the
outgoing venous system. This isosmotic process is controlled completely by
a hydrostatic pressure gradient. The residual fraction becomes important for
the feedback mechanism later in the filtration. The remaining 30% of the
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filtrate enters the thin descending loop of Henle where additionally 15% of
the water is reabsorbed giving rise to an increased concentration of NaCl as
the limb is impermeable to salts. On passing the ascending limb the filtrate

Figure 2.2 Sketch of the nephron with indication of the blood flow. The main
processes involve filtration in the glomerulus, water and salt regulation
along the loop of Henle, and feedback at the macula densa near the
end of the ascending limp.

is again diluted as Na+ and Cl− are reabsorbed, while the limb is largely
impermeable to water. At the end of Henle’s loop, the tubulus comes into
cellular contact with the afferent arteriole of the same nephron. At these
points special cells, the so-called macula densa (MD) cells, sense the Cl−

concentration. If the rate of glomerular filtration, due for instance to an el-
evated arterial blood pressure, is too high, the active reabsorption of NaCl
is not complete, and therefore the salt concentration at the macula densa is
too high. The macula densa cells then produce transmitter agents that ac-
tivates the smooth muscle cells in the arteriole causing a radial contraction
of the arteriole whereby the flow resistance is increased, hence lowering the
glomerular pressure and thereby reducing the filtration rate. This process is
called the tubuloglomerular feedback mechanism (TGF). The TGF mecha-
nism is seen as a way for the nephrons to protect their own function against
variations in the arterial pressure. From the moment where the fluid is fil-
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tered in glomerulus to moment where the afferent arteriole react 12-15 sec
have passed. Since the reactive contraction of the arteriole to an increased
flow is generally too high, there will be an opposite reaction (also too high)
12-15 sec later. This causes the TGF to be unstable and the oscillations
are therefore sustained with a period of 30-40 sec, where and extra delay
of approximately 5 sec has been include in order to account for the cellular
processes in the arteriole.

A second oscillating mechanism that contribute to the autoregulation is
the myogenic response of the afferent (and possibly the efferent) arteriole.
Basicly it is an active response that counteracts increases in arteriolar pres-
sure by increasing constriction of the vessel caused by the smooth muscle
cells in the arteriolar wall. Inside the smooth muscle cells, oscillations in cy-
toplasmic Ca+2 tend to synchronize and cause the arteriolar wall to contract
with a period of 4-6 sec. The two oscillatory modes are usually locked to a
specific ratio, typical values for cortical nephrons are 1:4, 1:5 and 1:6.



CHAPTER 3

Nephron models

Three closely related mechanism-based nephron models and one fairly
abstract but widely known model, the Rössler system, are analyzed in this
thesis. They differ in their degree of complexity and therefore also in the
amount of information they provide. In biology, all models are approximate,
because of the high complexity of biological materials and processes. Spatial
processes are often reduced to single compartment representations, whereby
spatial variations are averaged. For many purposes such approximations do
not change the qualitative behavior of the model. In order to get a little
deeper into the physiology of the nephron than the short verbal description
above, the processes is rephrased once again from a more physical point of
view.

Two of the models do intent to include a spatial description of the water
and salt balance. One of them, furthermore includes a representation of the
myogenic mechanism on a cellular level. The last model is the Rössler system,
that we will try to relate to the dynamics of the nephron. At the end of the
chapter a discussion of coupling mechanisms is given.

3.1 A simple mechanistic single nephron model

The simplest single nephron model based on well-known physiological mech-
anisms and processes treated here was developed by K. S. Jensen, E. Mosek-
ilde and N.-H. Holstein-Rathlou in 1986 [14, 13], but over the years several
improvements have been introduced [3]. Other early models with the pur-
pose of describing processes in the tubular segments only encompasses the
TGF mechanism and appear to be unable to show chaotic dynamics. Since
it is suspected, and well supported by experiments, that hypertension gives
rise to an irregular time evolution of tubular pressure, it is assumed that a
mathematical model represent this state by deterministic chaos.

11



A simple mechanistic single nephron model 12

The rate of change of the proximal tubular pressure Pt is given by the flow
of filtrated fluid at the glomerulus Ffilt substracted by the flow of reabsorbed
fluid Freab and the fluid flow continuing into the loop of Henle FHen, divided
by the compliance Ctub of the proximal tubule

dPt
dt

=
1

Ctub
(Ffilt − Freab − FHen). (3.1)

The reabsorption is assumed isosmotic with respect to water and salt, such
that the salt concentration remains unchanged. It is also assumed that the
reabsorption rate is constant, although it probably depends on the pressure.
On the other hand this is justified because a pressure dependent reabsorption
will only cause a damping of the pressure, and therefore corresponds to a
slightly higher compliance of the tubule, so the pressure dependence can be
said to be accounted for through Ctub.

By assuming that the pressure variations in the distal tubular pressure
are small, the flow into the loop of Henle is given by

FHen =
Pt − Pd
RHen

, (3.2)

where Pd is the distal tubular pressure and RHen is the total flow resistance
along the loop.

Blood consists of plasma (water, proteins, minerals etc.) and blood cells.
The blood cells occupy approximately 55% (the hematocrite) of the blood
volume. Since protein molecules are too large to be filtered through the
glomerular capillaries the amount of protein must remain constant, while
the concentration must increase as part of the remaining plasma enter the
capilaries. The plasma flow into the glomerulus is given by

Fa =
Pa − Pg
Ra

(1 −Ha), (3.3)

where Pa is the arterial blood pressure, Pg the glomerular pressure, Ra the
afferent flow resistance and Ha is the hematocrite. The glomerular filtration
rate is

Ffilt = Fa − Fe = Fa(1 − Ca
Ce

), (3.4)

where Ca and Ce are afferent and efferent protein concentrations. Note, that
the conservation of protein (CaFa = CeFe) has been applied. An expression
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Ce

Pe
Re

Ra

Pa

Ca

Pg

FfiltPt

(a) Glomerulus

π

Pafferent

efferent

∆

(b) Capillary pressures

Figure 3.1 Physical quantities and parameters involved in the glomerular filtra-
tion rate. a) Glomerulus with the afferent and efferent arterioles. b)
The evolution of colloid osmotic pressure π(Ce) and the assumed con-
stant hydrostatic pressure gradient ∆P = Pt−Pg. At the efferent end
pressure equilibrium is achieved.

for the glomerular pressure now follows from conservation of pressure and
flow (Fig. 3.1)(a)) and by assuming a constant efferent flow resistance

Pg = Pe +Re
(

F ′

a − Ffilt
)

, (3.5)

where F ′
a = (Pa − Pg)/Ra is the afferent blood flow.

In reality the protein content of the blood supply is time dependent, but
this variation depend on mechanisms outside the kidney, mainly food con-
sumption and physical activity. The beating of the heart is assumed to be
damped so much that oscillations in the arterial pressure Pa can be neglected
and the frequency (∼ 1Hz) is fast enough for the vasomotion to be unable
to react to such fast oscillations. Within the purpose of the model, which
is to study mechanisms taking place in the nephron, the afferent protein
concentration is defined to be constant. The efferent protein concentration,
depends on the behavior of the filtration mechanism, which is an essential
part of the functionality of the nephron, and therefore the mechanism behind
the variation of this concentration must be included in the model. As men-
tioned earlier the filtration takes place through an osmotic process where the
osmotic colloid pressure π(Ce) gradually approach the hydrostatic pressure
gradient ∆P = Pg−Pt across the capillaries, see Fig. 3.1(b). Based on exper-
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iments on rats, Deen et al. [5] have shown that a second order approximation

π(Ce) = aCe + bC2
e , (3.6)

to the colloid osmotic pressure π(Ce), is sufficient in the physiological range
of Ce. Parameters a and b are empirical determinants of the experimental
study of Deen [4]. An expression for the efferent protein concentration in
terms of Pg and Pt, which are explicitly stated above, follows directly from
Eq. (3.6), by assuming that pressure equilibrium is reached at the efferent
end (∆P = π(Ce)),

Ce =
1

2b

[

√

a2 − 4b(Pt − Pg) − a

]

. (3.7)

The processes taking place along the loop of Henle are not an issue for this
model. Likewise the many processes on cellular level from sensing the Cl−

concentration at macula densa to the release of renin and signalling to the
smooth muscle cells are left out from the mechanistic part of the modelling.
However, all these processes take time and a delay between the flow into the
loop of Henle to the response of the arteriole must be present. To take care
of this slow signal, a third order delay of the fluid flow is introduced,

dχ1

dt
= FHen −

3

∆T
χ1 (3.8)

dχ2

dt
=

3

∆T
(χ1 − χ2) (3.9)

dχ3

dt
=

3

∆T
(χ2 − χ3), (3.10)

where ∆T is the total delay time and χi are intermediate flows. An alter-
native approximation to the actual delay is to increase the order whereby
it approaches a discrete delay. However, a discrete delay corresponds to a
system without damping of the flow, and since we know that there the am-
plitudes are approximately halved at the end of the loop of Henle, the third
order delay is considered as a more reasonable approximation. To close the
tubuloglomerular feedback loop the activation of the arteriole must be de-
scribed in terms of the end flow χ3. The activation of the smooth muscle
cells is controlled by the Cl− concentration at the macula densa (MD). As
the flow through the tubular system is increased the NaCl concentration at
the Macula Densa is increased. This causes activation of the smooth muscle
cells, whereby the afferent arteriole is constricted, and the pressure and flow
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in the glomerulus is decreased. By means of open loop experiments Leyssac
et al. [21] have found that the salt concentration at macula densa to a high
extent depends only on the early distal flow rate and that the relationship
follows a sigmoidal curve of the form

ψ = ψmax −
ψmax − ψmin

1 + exp [α(3χ3/(∆TFHen,0) − S)]
, (3.11)

where S = 1−1/α log(
ψeq−ψmin

ψmax−ψeq
) is the displacement along the flow axis and

ψeq, ψmin and ψmax, determine the equilibrium value of ψ and the limits
of the curve. FHen,0 is a normalization parameter for the Henle flow. The
parameter α determine the slope of the curve at ψeq and may be interpreted
as the strength of the feedback. Since the afferent arteriole is most active at
the glomerular end, it is divided into a passive and an active part. The total
flow resistance is the sum of the individual resistances of the two parts

Ra = Ra,0(β + (1 − β)r−4), (3.12)

where β is the fraction of the arteriolar length is assumed passive with resis-
tance Ra,0, and the quartic term in the normalized arterial radius r follows
from Poiseuille’s law. The average transmural pressure (average over length,
not time) in the afferent arteriole is given by

Pav =
1

2

(

Pa + Pg − (Pa − Pg)β
Ra,0
Ra

)

. (3.13)

Aalkjær et al. [1] have experimentally shown that arterioles may display
self-sustained oscillations in their wall tension due to oscillations in arte-
riolar radius, when the tension exceeds a certain level. A permanent high
activation of the smooth muscle cells is assumed to be responsible for this
vasomotoric or myogenic response. Several mathematical models (e.g. [8, 9])
support Aalkjærs explanation for this phenomenon.

As a simple model for the myogenic oscillations of normalized arterio-
lar radius r, may be a damped oscillator with a nonlinear external term
representing the elastic and myogenic dependence on wall tension,

d2r

dt2
+ d

dr

dt
+ ω2

m

Peq − Pav
P0

= 0, (3.14)

where d is the damping factor, P0 is normalization pressure, ωm is the an-
gular frequency tuned to the myogenic frequency. The last term include the
response of the arteriolar wall to pressure variations.
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The equilibrium transmural pressure is the transmural pressure at which
the arteriolar wall would be in equilibrium at the present value of the radius
and muscular activation ψ. This pressure is composed by an elastic Pel and
an active part Pact,

Peq = Pel(r) + ψPact(r), (3.15)

where ψ is the activation level given by Eq. (3.11). The following transmural
pressure-radius relationships of both the elastic and active contribution was
derived by Feldberg et al. [7]. Note, that Eqs.(3.15) and (3.14) constitude
the connection between on one side the filtration and tubular mechanisms
and on the other side the arteriolar dynamics.

The elastic part is due to the mechanical properties of elastin and col-
lagen, which here are treated as one material. It behaves just like a rub-
ber band, at small strains a linear stress-strain relationship exist, while at
large strains the stress increase exponentially, σ ∝ eǫγ − 1. A transmu-
ral pressure-radius relationship can be obtained by applying Laplace law,
dP = σ(1 + ǫ)/rdr, where σ is circumferential stress to give

Pel(r) = P1

[

eα1(r−1) + b1(r − 1)
]

. (3.16)

Paul [25] suggest a piecewise linear, tent shaped relationship for the active
part of the arteriolar stress-strain relationship. The active contribution also
has a linear contribution to the total stress, however, when at some level of
distention the stress decrease and contribute to a further distention or at
least decreases the total stress, so that the reaction to the strain becomes
smaller. Numerical integration and fitting to an empirical pressure-radius
relation give the form:

ψPact(r) = ψP2

[

1

1 + eα2(0.4−r)
+ b2(r + 0.9)

]

. (3.17)

Regarding the nephron autoregulatory mechanism all the equations above
together form a minimum nephron model based on experimental observations
describing both the TGF and myogenic mechanisms. While at the same
time it is detailed enough to describe many of the characteristic features in
nephron autoregulation, it is still simple and and low-dimensional enough to
be analyzed with bifurcational methods such as continuation techniques.



Model parameter values 17

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40

α

∆T   (sec)

H

PD2
1:2

PD1
1:2

PD2  ,a
1:5

PD2  ,b
1:5

PD2
1:6

PD1
1:7

PD1
1:6PD1

1:5

PD1
1:4

Figure 3.2 Overview of main bifurcations in the single nephron model. Red curves
are period doublings, green are saddle-node bifurcations and the grey
curve is the Hopf bifurcation giving rise to the oscillations in the TGF.
Blue curves are soft transitions between regions of various locking
ratios between TGF and the myogenic oscillations.

3.2 Model parameter values

Figure 3.2 shows a detailed two-dimensional bifurcation diagram of the above
model, with the delay ∆T and TGF-gain α as bifurcation parameters and
with all other parameters fixed according to Tab. 3.1. The parameter range
especially of our interest is from ∆T = 12 sec to ∆T = 18 sec, since the model
here oscillates with a period of the order 30 − 40 sec, corresponding to the
periods found in experiments. A value of ∆T = 12 − 18 sec also agrees well
with the experimentally observed phase shift between the proximal tubular
pressure oscillations and the distal tubular NaCl concentration oscillations
[10]. For normotensive rats typical experimental values for the gain parame-
ter α in Eq. (3.11) are α = 11.4± 2.2, while spontaneously hypertensive rats
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have α = 16.8±12 [11]. Above the Hopf bifurcation different regions of mode-
lockings are observed, limited by the dashed blue curves. Each mode-locking
region is associated with a period-doubling cascade, and saddle-node bifur-
cations (green curves) cause pairs of period-doubling cascades to co-exist.
Note, that a bifurcation is labelled with a subscript indicating the periodic-
ity of the cycle that bifurcates. This label convention is used throughout the
thesis. Within the first period doublings, PD1:4

1 and PD1:5
1 , two individual

period doublings are found for the 1:5 region these are PD1:5
2,a and PD1:5

2,b ,
each leading to chaos through cascades of period doublings. For increasing
∆T the same period-doubling structure repeats for mode-locking pairs (1:6,
1:7), (1:8, 1:9) etc., but located at larger increasingly larger values of α.

Since the 1:4 and 1:5 mode-lockings are the most typical observed modes
observed in experiments, we fix the delay ∆T to 16 sec, unless stated oth-
erwise. Most of the parameters in Tab. 3.1 are experimentally determined.
However, it is usual in modelling to adjust parameters to obtain a behav-
ior of the model that resemble with experimental findings. Adjustments are
justified by noting that many processes of the nephron are ignored in the
model, giving rise to a displacement of bifurcations. In particular we con-
sider one- and two-nephron models rather than the 30.000 nephron system
by which the experimental data are produced. Other reasons to adjust pa-
rameters slightly is that experiments rather provide a parameter range, than
a precise value mainly due to variations from animal to animal. This is the
background for examining the system for values of the TGF gain factor α
somewhat above the experimentally observed values.

3.3 Other nephron models

The degree of detail, level of scale and mechanisms included in a nephron
model must be chosen to meet the individual aims of specific studies. For
instance it is preferred to exclude mechanisms that are involved in salt and
water balance if there is no need to know these quantities. On the other hand,
such mechanisms must of course be included, and possible other mechanisms
that are indirectly relevant, must be included in some studies. The single
nephron model presented above does not involve the variation in salt con-
centration along the loop of Henle, although the TGF mechanism dependent
on this concentration. Instead, an effective and experimentally determined
relationship between the fluid flow and TGF-gain is applied.
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Parameter Explanation

Ctub = 3.0 nl/kPa Proximal tubule elastic compliance (inverse
stiffness).

Ca = 54 g/L Afferent plasma protein concentration.
Ha = 0.5 Arterial hematocrite (the fraction of the total

blood volume that consist of blood cells).
Pa = 13.3 kPa Afferent arterial blood pressure.
Pv = 1.3 kPa Venous (efferent) blood pressure.
Pd = 0.6 kPa Distal tubule pressure.
FHen,0 = 0.2 nl/s Equilibrium flow in the loop of Henle.
Freab = 0.3 nl/s Proximal tubule reabsorption.
RHen = 5.3 kPa (s/nl) Flow resistance in the loop of Henle.

Ra,0 = 2.4 kPa (s/nl) Equilibrium flow resistance of afferent arteri-
ole.

P0 = 20 kPa Normalization pressure.
ωm = 1 s−1 Mass-to-elasticity ratio for the arteriolar wall.
d = 0.04 s−1 Damping parameter in arteriolar oscillation.
q = 1 Muscle activation amplification.
β = 0.67 Fraction of afferent arteriole with fixed radius.

P1 = 0.0439575 kPa Elastic equilibrium pressure for the afferent ar-
teriole (AA).

α1 = 10 Parameter in non-linear elastic model for AA.
b1 = 36.39877 Parameter in non-linear elastic model for AA.

P2 = 4.7 kPa Active equilibrium pressure for AA.
α2 = 13 Parameter in non-linear active model for AA.
b2 = 1.5319149 Parameter in non-linear active model for AA.

Re = 1.9 kPa (s/nl) Flow resistance of efferent arteriole.
a = 21.7×10−3 kPa (l/g) Protein concentration parameter.
b = 0.39×10−3 kPa (l/g)2 do.

Ψmin = 0.20 Lower limit in activation function.
Ψmax = 0.44 Upper limit in activation function.
Ψeq = 0.38 Equilibrium in activation function.

α = control par. The strength of the arteriolar response, i.e. de-
termines the slope of the regulation curve ψ.

∆T = control par. TGF delay parameter.

Table 3.1 Parameter values used in all calculation with the simple nephron model
presented in section 3.1.
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Figure 3.3 Flowdiagram illustrating the flow of water and salt in the descend-
ing and ascending limbs. Squares represents compartments and valves
represent flows.

Two other mechanistic models have been studied in Publication P2 and
Publication P3, both take into account the dynamics of the concentration and
one of them, furthermore, take into account the calcium dynamics behind
the myogenic mechanism.

3.3.1 Lumped tubular system

An extension of the nephron model with the purpose of estimating the water
and salt amounts at positions along the loop of Henle is presented in Pub-

lication P3. The idea is to divide the loop into a number of compartments
and establish the equations for pressure, water and salt amount in each com-
partment. A schematic representation of the model consisting of two and
three compartments for the descending and ascending limbs, respectively,
are shown in Fig. 3.3. The supply of water and salt from the proximal tubu-
lus is represented by the left valve and the first pair of boxes represent the
amounts of water and salt in the beginning of the descending limb (the first
compartment). The change in the rate of water and salt amounts are primary
controlled by the local values of flow resistance, compliance, the pressure in
the neighboring compartment and the reabsorption rate. The next three
compartments represent the ascending limp, where an active reabsorption of
salt takes place. The process on cellular level are very complicated and not
the topic of this model. Here it is modelled by Michaelis-Menten kinetics as
an averaged or effective process.

Up- and down concentration in the two parts of the limbs are visualized
by valves on the water compartments in the descending compartments and
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on the salt compartments in the ascending limb. At the other end of the
sketch the final salt concentration is the input to the TGF-transfer function
Eq. (3.11) modified to

ψ = ψmax −
ψmax − ψmin

1 + exp [α(Cmd/Ceq − S)]
, (3.18)

where Cmd is the salt concentration at the end of the loop (i.e. at macula
densa) and where Ceq is the NaCl concentration at half the span of Cmd

and S = 1 − 1
α log

(

ψeq−ψmin

ψmax−ψeq

)

is a parameter used to guarantee that the

inflection point is found at the point (ψeq, Ceq).

In principle any number of compartments can be made and in the limit
of infinitely many, the tubular model effectively approach three partial dif-
ferential equations, one for each quantity. In that sense this model is of in-
termediate complexity, compared to the simplified nephron model presented
earlier and the detailed model to be mentioned in the next section.

3.3.2 Detailed single nephron model

An attempt to include most of the known mechanisms involved in nephron
blood flow autoregulation into one comprehensive model has been made by
Marsh et al. [22]. This is a quite ambitious task as the individual processes
and interplays are not yet fully understood.

In this model the tubular delay of the simple nephron model or the com-
partments of the lumped nephron model are replaced by three partial differ-
ential equations (PDE) that each models the pressure, salt concentration and
flow along the loop. Furthermore, the second order differential equation that
represents the myogenic mechanism is replaced by a model for the calcium
dynamics and phosphorylization of smooth muscle consisting of 6 ordinary
differential equations. Since the arteriole display gradually increasing activity
at the glomerular end, the arteriole is divided into three segments, one pas-
sive and two active segments. A total of 12 ordinary differential equations is
therefore need to describe one arteriole. To simplify the processes described
by the model a causal loop diagram is shown in Fig. 3.4. The right part of the
diagram describe the processes involved in the TGF mechanism, while the
left part represent the myogenic cellular processes. The model description
of glomerular filtration is similar to the simpler nephron mode described in
section 3.1. In the diagram, the tubular system encompasses the part from
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Figure 3.4 Causal loop diagram of the processes included in the detailed nephron
model.

the “proximal tubular pressure” and until “macula densa [NaCl]”. As men-
tioned above this part is represented by PDEs in pressure, salt concentration
and fluid flow. A distinction between the equations for the descending and
ascending segments is included to take care of the impermeability of wa-
ter and active salt reabsorption in the ascending limb. Reabsorption of salt
is again modelled by Michaelis-Menten kinetics. The salt concentration at
macula densa follows directly from the PDE that describe salt concentration.
The salt concentration then determine a muscular activation value from Eq.
(3.18). This activation is the link to the myogenic mechanism and is estab-
lished through the conductances of the arteriolar segments through

gCa,tot = (1 + ζψ)gCa (3.19)

where gCa is the native calcium conductance, ζ the coupling parameter and
gCa,tot the resulting calcium conductance. Basicly, the myogenic model de-
scribe the origin of the oscillations on a chemical level. The oscillations
emerge due to an instability in the interaction between Ca+2 and K+ currents
in the membrane of the smooth muscle cells. In the lower left part of Fig. 3.4
the interaction between membrane potential, ion-currents and conductances
is shown. An increase in Ca-conductance caused by an increased Cl− concen-
tration at macula densa, will give rise to an increased Ca-current that builds
up a membrane potential that in turn reduce the Ca-current. The increased
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membrane potential further increases the Ca-conductance (increasing num-
ber of open Ca-channels), hence, this calcium dynamic is described by a
positive feedback loop. The dynamics in potassium work oppositely on the
membrane potential, but still in such a way that both conductances increase
at increased membrane voltage. Since an increase in Ca-conductance gives
rise to an increased inward Ca-current it also causes an increase in the cy-
toplasmic free calcium concentration. Inside the cell various calcium buffers
reside that, together with the extrusion of calcium, contribute to maintain
an oscillatory and restricted cytoplasmic calcium concentration. Removal of
calcium from cytostol and the effect of the buffers is modelled by assuming
a constant extrusion rate and assuming that the reaction between free un-
bound and bounded calcium is at equilibrium. As an increasing cytoplasmic
free calcium concentration build up the chemical process of phosphorylation
of the myosin light chains is enhanced. This process causes the formation of
crossbridges between actin filaments (part of the smooth muscle cells) that
create a stress and ultimately a contraction.

Note, that this explanation both covers the contractions caused by TGF
and the self-sustained myogenic oscillations. Contractions due to TGF is trig-
gered through the signal from macula densa, while the myogenic oscillations
are due to the internal dynamics of the smooth muscle. Further information
on this model may be found in the work by Marsh et al. [22] and Publication

P2.

3.3.3 A very simple model

Having presented the main ideas of three nephron models of increasing com-
plexity, the last model follows a completely opposite strategy. The model
is simply the very well-known Rössler system, which is one of the simplest
non-linear systems that may display chaotic dynamics. Of course this model
is strongly limited in its ability to account for the many complicated mecha-
nisms taking place in the nephron, and the purpose for studying this model
is not to make any direct comparisons with the time course or phase-locking
modes of nephron dynamics.

Otto Rössler [29] stated the system on the form

ẋ = −y − z (3.20)

ẏ = x+ ay (3.21)

ż = b+ z(x− c), (3.22)
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with the equilibrium points x∗± = (c ±
√
c2 − 4ab)/2, y∗± = −x∗±/a and

z∗± = x∗±/a. For c2 < 4ab there are no equilibrium points. At c2 = 4ab a
saddle-node bifurcation gives rise to a stable and an unstable equilibrium
point, of which the stable equilibrium (x∗−, y

∗
−, z

∗
−) is located closer to origo.

In the x−y-plane the parameter a controls the amplification of the excursions
for an orbit emanating from the unstable equilibrium, and the parameter c
controls the distance from the equilibrium point at which the orbit is re-
injected close to the equilibrium, this means that large c generally cause a
larger number oscillations in the x− y-plane for each re-injection.

Despite its simplicity and immediate lack of relationship with the nephron,
it is possible to draw some links with the dynamics of the nephron. Like the
physiological more realistic nephron models, the Rössler system has a fast
mode (in the x − y-plane) that can be interpreted as the vascular oscilla-
tions and a slow mode (the re-injection) representing the TGF oscillations.
The terms z and y in the first equation represent the TGF mediating and
the vasomotoric feedback coupling, respectively. So, x and y are “vascular
variables”, that could represent the arteriolar radius and the rate of change
of that radius, respectively. Variable z is associated with the slow dynamics,
so that must be a “TGF variable”, of which a possible choice could be the
salt concentration at macula densa.

One of the clearest distinctions between this simple model and the more
realistic models is that here there is only one oscillator, because the two
modes are not independent, in the sense that they can not exist individually.
But that does not really matter, because we are only using the Rössler system
as a prototype for a period-doubling system. In that respect the nephron
models and the Rössler system are comparable.

3.4 Coupling mechanisms between nephrons

Coupling is an interaction between two individual units. For instance, the
periodically forced Rössler system can be considered as a Rössler system
being distorted by a periodical change in surroundings (the forcing). The
interaction is in this case a one way interaction, because the Rössler system
does not influence the nature of the external forcing. Mutual coupling is very
typical in biological systems. The coupling between TGF and vasomotion is
an example of mutual coupling of two distinct systems.
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In the present thesis coupling between neighboring nephrons in a nephron
tree is central. Regarding regulation of blood flow, nephrons are mainly cou-
pled through

• Hemodynamic coupling and

• Electrical (or vascular) coupling

Hemodynamic coupling arises when the radius of the afferent arteriole
contracts in one of the neighboring nephrons. The flow resistance for that
arteriole will increase and give rise to a decreased blood flow. During this
process a surplus of blood become available for the neighbor nephron and
if the arteriole is in a distended state the blood flow to this nephron in-
crease. The distended arteriole start to react in response to the increased
flow and gradually increasing pressure by initiating a contraction and affect
the neighbor nephron in a similar way, and out-of-phase oscillations of the ar-
terial flow, pressure and TGF contraction is established. For a larger system
of many coupled nephrons, however, it is hard to think of a pattern of true
anti-phase dynamics between all nephrons, because of the many different
distances between even the closest nephrons.

In-phase synchronized variations in blood pressure of neighboring nephrons
have been observed experimentally and it is actually more common than the
out-of-phase synchronized situation. Holstein-Rathlou et al. [12] suggest that
the domination in-phase dynamics arise in combination of the hemodynamic
and vascular coupling.

Vascular coupling is due to the propagation of the electrical signal that
activate the smooth muscle cells and cause the contraction along the afferent
arteriole of one nephron to the neighboring nephrons. Since, the amplitude
of the propagating signal decay exponentially, the strength of the coupling
depends on the lengths of afferent arterioles. Typically a fraction of about 5%
percent of the initial amplitude reach the afferent arteriole of the neighbor.
Compared to the time scale of both TGF and myogenic oscillations electrical
signals propagate quite fast. Therefore, vascular coupling typically induces
in-phase variations of blood pressure. Due to the exponetial decay of the
electrical signal, there is a spatial limit for the range where vascular coupling
is in play and clustering of in-phase synchronized nephrons may for instance
be due to a distribution of few nephrons with long arterioles among nephrons
with shorter ones.
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In the simple model treated in section 3.1, vascular coupling is modelled
by letting the individual activation levels for each nephron depend on each
other

ψ1,tot = (ψ1 + γψ2) (3.23)

ψ2,tot = (ψ2 + γψ1), (3.24)

where γ is the coupling parameter. However, the physiology behind the cou-
pling take place at a much lower level. The electrical Ca-signal travels along
the network of smooth muscle cells whereby changing the conditions for each
cell.

In the detailed nephron model (section 3.3.2) the average effect of all
smooth muscle cells within each arteriolar segment are modelled on the cel-
lular level. The two-nephron model consists of two versions of the single
nephron model, each solved separately, but with the arteriolar segments far-
ther from the glomerulus coupled electrically [24]. These arteriolar segments
were coupled to each other through an electrical node in the wall of the artery
supplying the two nephrons with blood. Applying Kirchoff’s law, balance of
currents for all segments of both nephrons then allows for establishing the
coupling between nephrons. Additional parameters needed for the coupled
nephron model are the conductance coupling the two nephrons through the
electrical node, and a conductance of the node to ground. Physically the
strength of the coupling is controled by the lengths of the arterioles and a
lot of properties of the arteriole. Effectively, the coupling is modelled by a
coupling conductance. In this study, cortical nephrons were simulated, and
both nephrons of the pair were assigned the same length with identical prop-
erties, i.e. both artioles have the same conductance.



CHAPTER 4

Numerical methods

Analysis of nonlinear dynamical systems may itself be a technical chal-
lenge. Development of integration routines, methods for detecting unstable
solutions and detection of bifurcations, calculation of various characteristic
measures such as phase and Lyapunov exponents and visualization of large
multi-dimensional data are at a stage where relative complicated tasks can
be approached. Many numerical methods exist, some are well suited for small
and others are better for large systems. However, typically a more detailed
analysis can be obtained for smaller than larger systems. In this thesis the
models range from the simplest models to relative large, and therefore a
broad range of numerical methods has been applied.

A short and mainly verbal description of the principles for continuing
stable as well as unstable cyclic solutions and bifurcations on these solutions
is presented in the first part of this chapter. In the second part the standard
method for determining Lyapunov exponents of ordinary differential equa-
tions and estimation of the largest exponent of time series are presented.

4.1 Continuation method

Continuation is the theory of bifurcations put into numerics and computer
language. Several books on the topic exist, and one of the most comprehen-
sive description of the technique is due to Yuri Kuznetsov [20]. The main
force of this method is that unstable solutions are obtained as easy as the
stable ones, because it is based on the Newton-Raphson method for finding
roots of a function. This is a great advantage as many bifurcational mecha-
nisms of the stable solutions involve bifurcations taking place on the unstable
solutions, and therefore knowledge of both highly improve the understanding
of how and why the system change its behavior.

Let us here try to phrase the most important parts in a continuation step

27
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of a limit cycle of the general system

ẋ = f(x). (4.1)

For numerical reasons it is convenient to rewrite the problem as a boundary
value problem

ẋ = T0f(x), (4.2)

where T0 is the period of the limit cycle and time is normalized t → t/T0.
The periodic boundary and phase conditions are

x(0) = x(1), and

∫ 1

0
x(t)ẋk−1(t)dt = 0, (4.3)

where xk−1(t) is a reference solution of period T0. In a continuation step
xk−1(t) may be considered as the solution of the previous parameter value.
Assume that the solution of Eq. (4.2) is a period-K limit cycle denoted by
x(t) = φt(x0, t0), where x0 and t0 are initial conditions located on the cycle.

Most continuation programs make use of several Poincaré sections
∑

n

(multiple shooting) distributed around the cycle, where the number of sec-
tions determines partly the accuracy and convergence of the Newton-Raphson
iterations. Figure 4.1(a) illustrate the distribution of four Poincaré sections
along a period-1 cycle. The intersections of the cycle with the surfaces are
the only points that at this point is known numerically. In time the mesh of
sections, are located at

0 = t0 < t1 < t2 < t3 = 1. (4.4)

The parts between sections are then approximated by a piecewise- differ-
entiable function, to be more precise, Legendre polynomials of degree m with
appropriate coefficients such that the polynomia in each interval to within
some small error are solutions to the problem Eq. (4.2) at m collocation
points

t0 = ζ0 < ζ1 < ζ2 < ζ3 < ζ4 = t1, (4.5)

where m = 5 in order to be in accordance with the figure. All this take place
for a fixed parameter values.

Since the description follows the continuation of cycles it is necessary to
define the map

F (x, α) = PK(x, α) − x, (4.6)
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(a) (b)

Figure 4.1 Continuation of limit cycles. a) The shooting method for a limit cycles
with 4 Poincaré sections and 5 collocation points. b) Principle of the
pseudo-arclength method.

where P is a Poincaré map and x is the fixed point of the K’th iterate.

Now we want to find the solution for some increment of one parameter. To
make a first approximation the pseudo-arclength method is used. Consider
the exact solution M(x(t0), α), where α is a parameter of the system. Assume
that we know the cycle φt for the parameter value α0. Then the tangent
vector of some specified length will point in the correct direction, but deviate
from from the exact solution. Actually, the tangent vector is one step of an
Euler integration, which is rarely a useful integration method for nonlinear
system. However, the error is corrected by a number of Newton-Raphson
steps in a plane normal to the tangent vector. Mathematically, the Euler
step is expressed as

x̃k+1 = xk + hV (xk) (4.7)

α̃k+1 = αk + h, (4.8)

where subscripts refer to the current and incremented solutions and V (xk) =
∇F (xk, αk) is the gradient in a Poincaré section, h is the step length by which
α is incremented. The correction to the Euler step then take place through
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the Newton-Raphson iterations

[

xi+1
k+1

αi+1
k+1

]

=

[

xik+1

αik+1

]

+

[

δxik+1

δαik+1

]

, (4.9)

where the (δxik+1, δα
i
k+1) is determined from

[

DxF (xik+1, α
i
k+1)

DαF (xik+1, α
i
k+1)

][

δxik+1

δαik+1

]

= −F (xik+1, α
i
k+1), (4.10)

where DxF and DαF are variable and parameter Jacobians. Since the prob-
lem is underspecified an extra condition is needed. The pseudo-arclength
method impose the constraint

[dxk dαk]
T

[

δxik+1

δαik+1

]

= 0, (4.11)

that ensure orthogonality of the iteration procedure. Step size control can
be implemented by a requirement that the euclidean length of the correction
must not exceed a certain length. If the length is too large or no convergence
was found then above process must be repeated with a smaller step length
h.

Since periodic solutions correspond to fixed points of a Poincaré map,
stability and bifurcations are determined from the Floquet multipliers of
the Poincaré map, either by direct inspection of the multipliers or by so-
called test functions, which is a generalized formulation of the bifurcations
dependence of multipliers. Each bifurcation type is attributed a test function,
and usually it is defined so that it becomes zero at the bifurcation.

Two-parameter continuation of codimension 1 bifurcations follow the
same principle as the one-parameter description. There are only two small
differences: 1) the scalar α, is now a vector of two parameters, α = (α1, α2)
and 2) the underspecified equation (Eq. (4.10)) is subject to the additional
constraint that the corresponding test function must be zero.

The amount of memory and time consumption for a computer to solve
this kind of problem is largely proportional to the dimension of the system,
number of mesh intervals and number of collocation points. Also the accuracy
of the bifurcation curves play a large role, though this mainly concern the
time consumption and not the memory. Typically, the number of mesh points
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must be doubled when switching from a cycle to a period-doubled cycle,
therefore the mesh should be kept as small as possible, while still being able
to detect bifurcation with a reasonable accuracy.

All continuation problems in this thesis was calculated by use of AUTO-
07p [6].

4.2 Lyapunov exponents

Contrary to periodic dynamics, chaos differ by being sensitive to initial con-
ditions, meaning that two arbitrary close initial conditions diverge in time.
It may sometimes be difficult to judge whether a time evolution is chaotic,
very high order periodic or quasiperiodic. To find out with great certainty
Lyapunov exponents can be calculated. Lyapunov exponents is roughly a
measure of the average divergence during a time serie, that is long enough
for obtaining a converged average. For ordinary differential equations where
the equations and Jacobian is accessible the exponents can be calculated
directly during integration of the system. Assume the general system

ẋ = f(x, t), x(t0) = x0, (4.12)

with the solution φt(x0, t0) and the variational equation

Φ̇t(x0, t0) = Dxf(φt(x0, t0), t)Φt(x0, t0), Φt0(x0, t0) = I. (4.13)

The variational equation is the linearization of the vector field along the
solution φt(x0, t0). During iteration with for instance a Runge-Kutta method
the variational equation can be evaluated to yield the vector field at any
wanted moment of time. In Fig. 4.2 the vector field around the solution
φt is visualized at two instances t = 0 and t = Tg, where Tg is different
from, but still of the order of the fundamental period of the system. For each
integrated time interval Tg, the normalized length of the vector fields are
logarithmically accumulated

λn =
1

KTg

K
∑

k=1

log(||vkn||), (4.14)

where K is time integrated in units of Tg and vn is the vector fields, i.e.
column vectors of Φt=Tg

φt. As time progress the vectors start to become
very large, and since the vector field usually is composed of expanding and
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Figure 4.2 The rates of change of perturbations to the solution φt. The circle
represent the initial perturbation of the orbit and the ellipsoid is the
distorted after some time. The expansion due to λ1 represent a posi-
tive Lyapunov exponent and the contracting direction λ2 is a negative
exponent.

contracting directions there is a tendency for the vectors to align, giving
rise to inaccurate calculations. To avoid this problem the Gram-Schmidt
orthonormalization procedure should be used at each time interval. From
Eq. (4.14) it is easy to estimate the largest Lyapunov exponent because if
the length of vn typically is larger than one (expansion), then log(vn) is on
average positive giving a positive exponent. This means a general expansion
of the dynamics and hence sensitivity on initial conditions.

Estimation of the Lyapunov exponent of time series obtained from for
instance experiment or from integration of a system where the equations are
not directly accessible is possible, if a reconstruction [30] of the attractor is
possible. In the present work this method is used on the detailed nephron
model, because the equations and their implementations are to complicated
for a Jacobian to be evaluated.

The idea is to reconstruct the phase space attractor from the time evolu-
tion of just a single variable of the full system. Let us try to use the x-variable
of the Rössler system as an example. Because variable x depend on y, which
again depend on z, this variable must also contain information from both the
y and z variables. To reconstruct the attractor we need a way to estimate
how much the time course of x is due to the other two variables. Consider
the time serie

{x1, x2, x3, ..., xk, xk+1, ...}, (4.15)
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Figure 4.3 Reconstruction of phase space and the largest Lyapunov exponent a)
Chaotic Rössler attractor. b) Reconstructed chaotic Rössler attractor
from variable x with a time lag τ = 100. c) Principle of determining
the largest Lyapunov exponent from the reconstructed attractor.

and define the estimate of x, y and z in terms of delayed coordinates to be

X =
{

x1, x1+τ , x1+2τ , ..., x1+(n−1)τ

}

(4.16)

Y =
{

x2, x2+τ , x2+2τ , ..., x2+(n−1)τ

}

(4.17)

Z =
{

x3, x3+τ , x3+2τ , ..., x3+(n−1)τ

}

, (4.18)

For some values of τ the phase space resample that of the Rössler attractor.
A good choice of τ is typically to select a value such that the auto-correlation
function between two reconstructed variables is zero. Figures 4.3(a)-(b) show
the original chaotic attractor and reconstructed attractor for τ = 100.

Lyapunov exponents can then be obtained by searching for the nearest
neighbor to a point B(ti) = (X(ti), Y (ti), Z(ti))

L(ti) = min
j=1..N

(||B(tj) −B((ti)||), (4.19)

with the constraint |tj− ti| > T/2, and where L(ti) is the Euclidean distance
and N is the number of sampling points during the average period T . At a
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later time t1 this length has changed to L′(t1). If the length has increased,
this particular step contribute to an expansion of the system. Then the pro-
cess is repeated from a new point in the sequence and each of the step is
accumulated like for the analytical case

λ =
1

tM − t0

M−1
∑

i=1

log
L′(ti)

L(ti + 1)
, (4.20)

to cover the whole time serie in M steps. Note, that this procedure only
supply the largest Lyapunov exponent.



CHAPTER 5

Chaos in a physiologically detailed model

of coupled nephrons

The title of this chapter should not be interpreted as a proof for “chaos in
the kidney“. One thing is a model of a biological system, another thing is the
real biological system. Of course it is the real system that is of most interest.
So how can a model be used to indicate that a system behave chaotically
under certain conditions.

Assume that the only mechanism that control the nephron’s autoregula-
tion of the blood flow are TGF and the myogenic mechanism. Then the real
system behave solely according to these rules, and fluctuations not driven
by the two mechanisms are completely due to noise from the outside. This
means that if a mathematical model of the kidney is correct in the sense that
it includes the mechanisms responsible for the behavior of the real kidney,
then it should qualitatively reproduce its behavior. If under some distorted
condition the kidney starts to behave chaotically, then the cause may be due
to either a change in the surroundings (could be increased noise or some
change in an other organ), a change in the a property within the kidney or
both. When conditions outside the kidney cause the incoming blood pres-
sure to be chaotic, it is not the kidney that induce the chaos, rather the
dynamics of the kidney is a superposition of the kidneys regular dynamics
and the irregular input. Thus, only if a internal parameter trigger the chaotic
behavior, one can say the kidney is responsible.

5.1 Lyapunov exponents of coupled nephron mod-

els

In our Publication P2 an attempt is made to give an indication of the pres-
ence of chaos in a system of two vascular coupled nephron. As described in
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(a) (b)

Figure 5.1 Two vascular coupled nephrons. a) Bifurcation diagram of the coupled
nephrons with with TGF-myogenic coupling parameter ζ as bifurca-
tion parameter and constant coupling between the two nephrons. b)
Corresponding Lyapunov exponents.

the paper and section 3.3.2 the model is quite detailed and contains both
the TGF and myogenic mechanisms which are accepted to be determinants
for the oscillations in blood flow and regulatory processes of the blood pres-
sure. Calculation of bifurcation diagrams and Lyapunov exponents with the
TGF-myogenic coupling parameter as bifurcation parameter for both the
uncoupled system show that the single nephron primary exhibits 1:5 mode-
locking. There is a tendency for the single system to show chaotic behavior
at increased TGF-myogenic coupling, but not very pronounced.

Figure 5.1(a) shows the bifurcation diagram for two vascular coupled
nephrons. At low coupling, only the native myogenic oscillations are present,
while the TGF system is at a stationary state. As the coupling is increased,
the TGF mechanism is destabilized in a torus bifurcation, giving rise to
quasiperiodic dynamics, followed by a 1:5 mode-locking between the two
TGF and myogenic oscillations. A 1:5 locking is the most common behavior
of cortical nephrons in the normotensive rat. Hence, the parameter range of
the 1:5 mode-locking region may be considered as a normal coupling range
for a normotensive rat. A very abrupt transition to chaos takes place at about
ζ3=0.31 and continues until ζ4=0.35. Increased coupling have, together with
irregular or chaotic dynamics, been shown experimentally to be character-
istic for hypertension [31]. The Lyapunov exponents plotted in Fig. 5.1(b)
guarantee that there actually is sensitivity on initial conditions in the chaotic
range.

To conclude, the complexity increases in the more realistic case of coupled
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nephron compared to the single nephron. Additional complexity of both the
single and especially the coupled model, is induced as the TGF-myogenic
coupling is increased.

As far as this detailed model concerns two interacting nephrons do behave
chaotically at high coupling. If the model is correct and actually does include
the responsible mechanisms, we can say that the model is a strong indicium
for the kidney to behave chaotically under hypertensive conditions. It must
be noted, that we actually only have made the calculation for two nephrons.
Larger systems comprising a nephron tree or the to, be extreme, the whole
kidney may, in principle, change the picture. But to this we can note that
if a subset consisting of two nephrons show chaos, then the larger system
of many pairs of chaotically oscillating systems most likely maintain the
chaotic dynamics, or at least maintain the possibility for chaotic dynamics
to reappear at slightly different parameter values.

Earlier studies by Marsh et al. [23], of 22 hemodynamically and vascularly
coupled nephrons organized in a nephron tree also show that the complex
chaotic dynamics depend on the vascular coupling. The individual nephron
in this study was modelled by the simpler model described in section 3.1.
The tendency is that increased vascular coupling leads to chaotic dynamics.



CHAPTER 6

Periodically forced spiral type system

This chapter is devoted to the study of periodically forced Rössler sys-
tems and the periodically forced nephron model. The motivation for study-
ing a forced Rössler system is partly associated with a series of papers by
Kuznetsov et al. [16, 19, 17]. Kuznetsov demonstrated that deviations from
the usual Feigenbaum scaling of period-doubling cascades arise in quadratic
maps and low-dimensional time-continuous systems. This deviation takes
place at the border of a resonance tongue. The so called cyclic type (or
C-type) criticality, is for instance found in the forced Rössler system. To
understand the origin of this deviation and how it is connected to the tran-
sition between phase synchronized chaos and the desynchronization at the
edge a number of studies was performed. Several results from these studies
are either already published (or submitted for publication) in Publication P1

and Manuscripts M1 and M2. In this chapter the main results from these
manuscripts are reviewed.

6.1 Periodically forced Rössler system

The synchronization region of an externally forced nonlinear system, is boun-
ded by saddle-node bifurcations. If the system in its unforced version display
period-doubling cascades under variation of a parameter it will also display
period-doubling bifurcations within the Arnol’d tongue. In Fig. 6.1 a sketch
of the typical structure of the strong 1:1 resonant Arnol’d tongue is shown
together with its largest neighbor tongues 2:1 and 1:2. In the following studies
a different cut in parameter space is considered for a fixed forcing amplitude
or coupling.

The higher order resonant solutions produced in the period-doubling bi-
furcations must also be limited by a saddle-node bifurcation at the border
of the resonance zone. However, these can not be the same as those limiting
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Figure 6.1 Arnol’d tongues in the forcing frequency and amplitude plane.
Tongues are limited by saddle-node bifurcations on either side of the
tongues. Within a tongue period-doubling bifurcations may take place
taking the dynamics to higher order resonances. A resonant solution
is located on a torus as shown in Fig. 6.2. Outside the tongues ergodic
tori exist (quasi-periodicity). In the lower part of the figure the time
evolutions corresponding to various phase-locked are depicted.

the 1:1 resonant solution, because 1:1 solution is limited by a saddle-node bi-
furcations taking place only on the 1:1 solution [2]. Thus, there must be one
saddle-node bifurcation for each periodic solution and the question is from
where they arise. Detailed bifurcation analyses in the form of continuation of
both the stable resonant node and the corresponding resonant saddle solu-
tion is very powerful in explaining the origin and structure of such apparently
hidden bifurcations.

Figure 6.3(a) show the 1:1 Arnol’d tongue for the forced Rössler system.
Inside the tongue at low c values a stable period-1 node (N1) is located on
a torus. A co-existing unstable saddle S1 is located on the same torus, see
the sketch in Fig. 6.2.

As the angular frequency ω of the periodic forcing is increased or de-
creased the saddle and node approach each other and at some precise value
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F

1

S1
N

Figure 6.2 Period-1 cycles on a torus. One cycle is a stable node N1 and the other
is a saddle S1. The torus is originally born in a torus bifurcation from
the unstable focus point F .

of ω they collide in a saddle-node bifurcation. When this happens both the
node and the saddle cease to exist. The torus, however, still exist and what
is left is ergodic dynamics on this torus. For increasing values of c a period-
doubling bifurcation take place, first on the stable node (PDS

1 ) and, at larger
values of c, also on the saddle solution (PDU

1 ). The 1:1 resonant solutions
still exist but now as a saddle and doubly unstable saddle. Close to the point
where the two branches of period doublings meet at the left edge and are
tangential to the saddle-node bifurcation a new saddle-node bifurcation SNL

2

is born in the point Q2 on the unstable branch of the period-doubling bifur-
cation PDU

1 . It is this saddle-node bifurcation that becomes the border for
both the stable node and unstable saddle on the 2:2 resonant torus. Since it
is a topological violation to define a saddle-node-saddle-node bifurcation of
co-dimension 2, i.e. birth of a saddle-node bifurcation on an existing saddle-
node bifurcation, the new saddle-node bifurcation SNL

2 must be born on
the period-doubling bifurcation, either on the stable branch, PDS

1 or the
unstable branch PDU

1 . These two possibilities give rise to two topologically
different cases, which are generally present in an alternating way in periodi-
cally forced period-doubling systems. Figure 6.3(b) show the enlargement at
the region of tangency at the left edge. As mentioned above the saddle-node
bifurcation for the next level emerge from the unstable branch PDU

1 . This
leaves a gap where the 2:2 resonant torus is not limited by a saddle-node
bifurcation. Therefore a bifurcation is needed to close the gap or rather give
birth to the ergodic torus that exist in the grey region. It must be a bi-
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furcation that can bridge between a period doubling and a saddle-node in
order to fully close the gap. To our knowledge, the only local bifurcation,
that meet these conditions is a torus bifurcation. In this particular case the
torus bifurcation is subcritical and the ergodic torus torus is destroyed at a
torus-fold bifurcation G2.

(a)

(b)

(c)

Figure 6.3 Bifurcation structure of the 1:1 Arnol’d tongue in the periodically
forced Rössler system. a) Overview with the first four period doublings
and saddle-node bifurcations. Only the first two sets of saddle-node
bifurcations are distinguishable from the next levels at this scale. b)
Enlargement of the region around the supercritical PD1 and SNL

1
.

The gap between the tangent point and birth of SNL
2

is closed by the
subcritical torus bifurcation T2. c) Enlargement of the region around
PD1 and SNR

1
. Here the period doubling is subcritical and SNR

2
is

born on the stable branch PDS
1
.
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The other situation where the saddle-node emerge from the stable branch
PDS

1 , i.e. below the point of tangency is found at the opposite edge, see Fig.
6.3(c). In this case the birth of SNR

2 leaves no gap between resonant and
ergodic dynamics. This can easily be checked by trying to find a path from
the 2:2 resonant region to ergodicity without passing SNR

2 . Hence, there is no
additional bifurcation reguired. However, the period doubling that run from
the point where SNR

2 is born to the point of tangency must change its nature
in order to include the part of SNR

2 that exist below PDS
1 . To do this it

becomes subcritical. Consequently, SNR
2 must cross SNR

1 and at least locally
run along the right side of SNR

1 . Similar bifurcation structures take place
at the points of tangency at the next period-doubling bifurcation, except
that here the subcritical case is found at the left edge and the supercritical
(with implication of an additional torus bifurcation) appear at right edge.
Actually, it appears that the two cases continue to shift, as sketched i Fig. 6.4,
and has been confirmed numerically by Kuznetsov et al. [19] up to period-
256 and upto period-128 in our own studies in Manuscript M2. Although
the torus bifurcation is a minor phenomenon taking place only over a very
small parameter range, its existence is highly intersting because for coupled
almost identical systems this bifurcation assume a new, important role for the
transition between phase synchronized and desynchronized dynamics. There
is no bifurcational requirements for this alternation, since one could draw a
bifurcation structure where all cases are either super- or subcritical at both
edges and still maintain a structurally correct phase space. A possible cause
of the alternation may be the lack of symmetry between the oscillations of
the Rössler system and the perfectly harmonic forcing.

Kuznetsov et al. [19, 17, 18] have used renormalization group theory to
study the scaling properties of forced period-doublings systems, and shown
that the scaling properties along the edge of the resonance tongue deviate
from the usual Feigenbaum scaling in quadratic maps and low dimensional
time-continuous period-doubling systems. It is the alternating (or cyclic)
behavior of the bifurcation structure near the edge that causes this deviation.

Transition between chaotic phase synchronization and desynchronization
essentially takes place in the same way as the transition between the phase
synchronized periodic (resonant) behavior and desynchronized quasiperiodic
(ergodic) behavior. Since the period-doubling cascade is infinite, there must
also be a infinite set of saddle-node bifurcations, all born on the infinitely
many period doublings. In Manuscript M2 we explain in high detail how the
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Figure 6.4 Sketch of the cyclic type criticality bifurcation structure found in the
forced Rössler system. At the left edge start from the supercritical
case that also involve a torus bifurcation, while at the right edge it
starts from the subcritical case.

Figure 6.5 Sketch illustrating the accumulation of period doublings and
saddle-node bifurcations that form the transition between phase-
synchronized chaos to the right of SN∞. The curve ETD denote the
border between ergodic and non-synchronized chaos.
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infinite set of saddle-node bifurcation is arranged. Especially it is interesting
that the cyclic behavior of subcriticality and supercriticality give rise to
a dense set of bifurcations. This means that the saddle-node bifurcation
accumulate or converge to a single curve, much in the same way as the
period-doubling cascade accumulate to a curve where the transition to chaos
take place. Figure 6.5 illustrate the arrangement of period doubling and
saddle-node bifurcations at the edge of a resonance tongue. Accumulation
bifurcations PD∞ and SN∞ are displayed with thick curves. Note, that at
some point the curves must join, in order to fulfill the condition that both
cascade must converge and the saddle-node bifurcation must be born on
the period doubling. In analogy with the resonant and ergodic situation the
edge of synchronization is found at the accumulation curve for the alternating
saddle-node bifurcation cascade.

Outside the resonance tongue and for small values of c an ergodic torus
reside. Imagine for a moment the unforced Rössler system (or simply put
A = 0) in a situation where it display a stable limit cycle, e.g. at c = 2.
If we increase c a complete period-doubling cascade evolves, as shown with
green (stable orbits) and red (unstable orbits) curves in Fig. 6.6(b). At zero
amplitude a torus bifurcation takes place and an ergodic torus arises with
a cross-section diameter depending on the amplitude and the now unsta-
ble limit cycle appear as the axis of evolution of the torus. In some sense
the trajectory on the torus can be considered as the previously stable limit
cycle modulated by the external forcing. In the same way a period-2 cycle
of the unforced Rössler system should show a period-2 cycle modulated by
the external forcing to create a period-2 torus, and if the diameter of the
torus is small enough this appears as a two-band quasiperiodic attractor.
This means that one can expect a torus doubling close to the parameter
values where the unforced system undergoes period-doubling bifurcations.
A possible method to detect a torus-doubling bifurcation is to locate the
point where one of the negative Lyapunov exponents become zero and turn
negative and immediately after turn negative. In Fig. 6.6(a) the third largest
Lyapunov exponent region to the left of the resonance zone is visualized. The
grey region is where the largest exponent is positive and the horizontal dark
red stripes show where the exponent become zero. The region close to the ac-
cumulation of period-doubling bifurcations suggest seems to chaotic before
the accumulation. However, with a higher resolution and more accurately
calculated exponents more torus-doublings emerge to the left of these period
doublings. Note, that the torus-doublings in Fig. 6.6(b) take place after the
period doublings. This means that the forcing has some stabilizing effect on
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the torus. Figures 6.6(c)-(d) shows the three largest exponents correspond-
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Figure 6.6 Lyapunov exponents and torus-doubling bifurcation at the edge be-
tween synchrony and ergodicity and the emergence of a torus doubling
at a momentary zero Lyapunov exponent. a) Colored region show the
second largest Lyapunov exponent and the grey region is where the
largest exponent become positive. To the right the bifurcation struc-
ture at the left edge is superposed. b) Brute-force diagram showing
the doubling and separation of the period-1 and period-2 ergodic tori
as function of c and fixed ω=1.055. c) Lyapunov exponents along the
scan in b). d) Enlargement of c). e) The exponents calculated on the
left side of the left edge.

ing to Fig. 6.6(b). At this particular scan two successive torus doublings are
detected, whereafter a transition to chaos take place. Some discussion has
been conducted in the literature on whether such a torus-doubling cascade
can be infinite in the same way as the period-doubling cascade is infinite.
This appears to depend on the amplitude and on distance to the saddle-node
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bifurcations of the resonance tongue. In the unforced Rössler system a homo-
clinic bifurcation takes place at the points where an unstable cycle touch the
stable attractor. Possibly, the termination of the torus cascade is due to the
same mechanism. The torus doublings create stable doubled tori and leave
the original tori as unstable undoubled tori. Since the diameter of the unsta-
ble tori is larger than zero and depend on the forcing amplitude it is possible
that this collision take place much earlier, so that the torus-doubling cascade
fail to complete before the transition to chaos. This proposition is supported
by numerical experiments showing that for large forcing amplitude fewer
torus-doublings is observed, while smaller amplitudes reveal additional torus
doublings. Figure 6.6(e) show the exponents at the left side of the left edge.
Clearly, at least one more event of zero Lyapunov exponent take place before
chaotic dynamics set in; supporting the hypothesis that an infinite cascade
is possible. To find the next torus-doublings it is necessary to increase the
accuracy of both the edge and the time over which exponents are calculated.

While doubled tori is related to the dynamics outside the resonance zone,
multilayered tori is a term used for resonant tori, where the layers has arised
through bifurcations transverse to the invariant cycle [32]. In our Manuscript

M1 and Publication P1 we describe how a multilayered-torus is formed
trough transverse period doublings of the node and saddle existing inside
the tongue. At the edge of the tongue these cycles destroy in saddle-node
bifurcations that form the edge and create a stable doubled ergodic torus
and an unstable undoubled ergodic torus. In the intermediate state, where
only one of the resonant states has terminated, an unstable ergodic torus ex-
ist together with a resonant solution, for which the stability depends on the
sequence in which the saddle-node bifurcations take place. In order to clarify
the numerical results presented in the publication a sketch of the mechanism
for the creation multilayered tori is shown in Fig. 6.7. The situation corre-
sponds to that of the right edge at the first period doubling in the cascade,
Fig. 6.7(a). Following the circular direction around the point of tangency,
five structurally different situations exist. At point b, we find the period-1
resonant node and saddle located on a torus. Trajectories escaping from the
unstable focus point are attracted to the node. Point c illustrates the trans-
verse period doubling of the node, creating a period-2 node and leaving a
saddle. On crossing the period doubling of the saddle solution (PDU

1 ) the
point d is reached, the period-2 saddle is created and the period-1 saddle turn
into an doubly unstable saddle. At point e, the first saddle-node bifurcation
has destroyed the resonant period-1 solution, whereby an unstable ergodic
torus is formed. The manifolds of the period-2 solution must be related to
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Figure 6.7 Sketch of the bifurcations that form a resonant multilayered torus
(inside the tongue) and a doubled torus (outside the tongue) through
transverse period doublings. Sub-figures (b)-(f) correspond to the
points in (a).

the period-1 dynamics of the unstable torus, so the manifolds are asymp-
totically connected to the torus. At point f the saddle-node bifurcation of
the period-2 resonance has destroyed as well. This leaves a stable period-2
torus surrounding the unstable torus. At the same time all manifolds are
destroyed, and have become asymptotic trajectories between the two tori. If
we follow the circle to the point g the torus-doubling is crossed, whereby the
double-layered ergodic torus merges into a single layer ergodic torus.

6.2 Periodically forced nephron model

Realistic nephron models are obviously much more complex than the simple
case of the forced Rössler system discussed in the previous section. Never-
theless, the periodically forced nephron model posses a bifurcation struc-
ture almost topologically identical to that of the Rössler system with re-
spect to the evolution of a period-doubling cascade, formation of a dense set
of saddle-node bifurcations and torus-doubling bifurcations residing in the
non-resonant region. However, a few differences are present, regarding the
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period-doubling structure and the birth of the saddle-node bifurcations. In
the following a discussion of the main results from a study of the nephron
model with a periodically oscillating arterial blood pressure is imposed to
the model.

More specific, the intention in this study is to reproduce the simple situ-
ation of a nephron’s response to an oscillation in the arterial blood pressure.
This situation is an extension and improvement of the autoregulatory mecha-
nism of the nephron. Without the external forcing the model corresponds to a
nephron’s autoregulation of pressure variations produced within the nephron
it self. While the forced version correspond to response of the autoregulation
to an externally generated periodic variation in the arterial pressure.

The nephron is fixed to work at a delay time equal to 16 sec, correspond-
ing to a TGF period of 40 sec and a TGF gain of the value α=24, where the
single nephron operate close to the border of 1:4 and 1:5 relationship between
the TGF and myogenic oscillations. The TGF gain may appear unrealistic
large compared to experimental values of a normotensive rat (and maybe
even for a hypertensive rat), however, this is justified with reference to the
fact that we only consider a single nephron. The simultaneous pressure of
other nephrons is likely to shift the bifurcations in the individual nephron
to lower values of α.

Consider the nephron model presented in section 3.1, with an externally
applied variation in the blood pressure of the form

Pa(t) = Pa,0(1 +A sin(ωt)), (6.1)

where Pa,0=13.3 kPa is the average blood pressure, A = 0.0075 is the relative
amplitude, and ω is the angular frequency. By letting the nephron oscillate at
a fixed period of 40 sec, the corresponding angular frequency takes a value
in some range around ω = 0.155 s−1, the model is studied as function of
ω and a second control parameter, which is chosen to be the afferent flow
resistance in its unconstrained state.

In Manuscript M4 and Manuscript M5 we first demonstrate that period-
doubling bifurcations is a phenomenon that take place in the nephron of a
normotensive living kidney and not just a mathematical phenomenon. How-
ever, the period-doubled time trace of the tubular pressure is only preserved
for limited time, because the conditions of the nephron change constantly.
We also show that a nephron in a hypertensive kidney display irregular time
traces of the tubular pressure, with a power spectrum displaying several sub-
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(a)

Figure 6.8 Main result from bifurcation analysis of the forced nephron system. a)
Overview showing the regions of 1:5 (at center) and 1:4 (at bottom-
right) mode-locking. Hatched region is desynchronized quasiperiodic
(light grey) and chaotic (dark grey) dynamics. Note, that period dou-
blings here share the same saddle-node bifurcation. b) Close up of
the lower period-doubling structure, showing the alternation between
super- and subcritical period doublings. c) Enlargement of the bifur-
cations at level 4 and 8.

harmonics of the TGF frequency. In this case the TGF frequency is not very
well defined since there are also a faster mode with a frequency 1.5 of the
TGF frequency, indicating that the irregular dynamics not only is in the
amplitude but also in the phase.

The mathematical model that approach the experimental setup is subject
to a detailed analysis in Manuscript M4. This analysis reveal practically all
the same phenomena as found in the forced Rössler system:

• A complete period-doubling cascade of both the node and saddle res-
onant solutions.

• A cascade of saddle-node bifurcations emerging from points on the
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period doublings that limit the resonance region.

• A torus bifurcation is in place to close the gap arising due to the
supercritical period doublings.

• A cyclic behavior of super- and subcritical period doublings at the
edges of the tongue.

• A torus-doubling bifurcation in the desynchronized regions. However,
so far subsequent torus-doublings has not been observed.

Except from the torus-doubling, these findings are all presented in Fig.
6.8(a). Note, that the limit between phase-synchronized chaos and desyn-
chronized chaos appear close to, but not exactly at the accumulation of
saddle-node bifurcations. So, far there is no explanation to that. However,
the coupled oscillators discussed in the next chapter may in future be part
of the answer.

One difference compared to the overall structure of period doubling and
saddle-node bifurcations is that period doublings are winded and twisted
such that they share the same saddle-node bifurcation, and the twisting
cause the unstable period doubling to appear before the stable one at the
upper edge. From that it is reasonable to conjecture that in the more classi-
cal parameter plane for an Arnol’d tongue (frequency-amplitude plane) and
other parameter planes, the saddle-node bifurcations of the left and right
edge are related and possibly even connected. If they are not connected then
there must be some bifurcation taking place on the smooth transformation
from the (ω,Ra,0) plane to the (ω,A)-plane, that cause a splitting of the
saddle-node bifurcation curves.

A generic property of the bifurcations in this class of systems, is the al-
ternation between super- and subcriticality of the period doublings. A con-
firmation of that is not clearly presented in our Manuscript M4. However, it
is clearly demonstrated in Figs. 6.8(b)-(c) that at the lower edge this prop-
erty actually is present. Also, not treated in the paper, is the possibilities of
in-phase and out-of-phase synchronization. We just shortly mention that the
chaotic region enclosed in the 1:5 regime is largely in-phase dynamics, while
the quasiperiodic dynamics born at T 1:4

1 and chaotic area (further above T 1:4
1 )

in the 1:4 region, display out-of-phase synchronized between the externally
oscillating pressure and the tubular pressure Pt(t).



CHAPTER 7

Coupled almost identical systems

Having presented the main results from the study of two externally pe-
riodically forced period-doubling systems, this chapter extends the analysis
to mutually coupled almost identical systems. Compared to unidirectional
coupled systems (e.g. the externally forced systems), mutually coupled sys-
tems are often more appealing to biological problems, because a system that
is influenced by an other similar system, would need some extra mechanism
to prevent a similar coupling to that other system.

7.1 Coupled Rössler systems

7.1.1 Resource coupling

Two different coupling types for the Rössler system have been examined. The
first version represents an attempt to make the coupling more physiological
sound as a model for two coupled nephrons, with respect to the hemodynamic
mechanism. Recall the variables of the Rössler system from section 3.3.3 and
consider the coupling term

aey1 = a[1 + α1(x2 − c)]y1, (7.1)

where α1 is the coupling parameter, x2 is the afferent arteriolar radius of
nephron 2 and y1 is the rate by which the arteriolar radius of nephron 1
changes. When x2 is small (x2 << c) the radius x1 increases, corresponding
to a rising blood pressure in the shared arteriole. Thus, this mechanism
conforms well with the hemodynamic coupling type.

In Manuscript M3 an overview of the bifurcation structure is presented.
The main purpose with this study was to obtain an idea of what to expect
from studies of other almost identical systems and to see if the special type

51
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of coupling may give some additional phenomena, that possibly could be
generic and especially characteristic to such systems.

Our analysis clearly demonstrates that there is some changes in the bi-
furcational behavior compared to the more simple forced systems. Most re-
markable is the existence of a phase-synchronized torus inside the resonant
region. This quasiperiodic regime involve a pitchfork bifurcation giving rise
to co-existing periodic attractors, that each undergoes period-doubling cas-
cades to form co-existing chaotic attractors.

An interesting result from this analysis is that the internal torus gives
rise to a pair of saddle-node bifurcations that run along with the saddle-node
bifurcations that form the border between resonant and ergodic dynamics.
Let us take a look at the bifurcations of the 1:1 resonant solution. Figure 7.1
(ignore the blue curves for a moment) shows the Arnol’d tongue in the more
traditional projection with ω on the x-axis and coupling parameter α on the
y-axis. The 1:1 resonant solution is found in the lower region of the tongue.
At at coupling value of approximately 0.14 bifurcations of the 1:1 solutions
set in. Closer to the edges a period doubling PD1 take place, first on the
stable node (point a) leaving a saddle solution, which at point b also period
doubles and leaves a doubly unstable saddle. The original 1:1 saddle also
bifurcates twice, first at point c and later at point d, whereafter the original
1:1 saddle solution is a triply unstable saddle.

In the figure a blue curve is drawn (by hand). This curve is a represen-
tation of the period-2 resonant solution and must not be confused with the
bifurcation curves. The solid curve emanating from point h represent the 2:2
resonant stable node. It co-exist with another stable node that emanate from
point k. Following either of the stable solutions horizontally, they turn back
into the tongue at the saddle-node bifurcations. Starting as stable nodes they
turn into saddles (dashed) and then doubly unstable saddles (dotted) at the
opposite edge, from where they start to gain in stability until they finally
connect. Note, that the solution drawn is a period-2 solution and there-
fore should not bifurcate at SN1. There is another saddle-node bifurcation
emanating from the second point of tangency (point M) that is practically
coinciding with SN1 and it is this bifurcation that is involved in the above
description.

The fact that there are co-existing solutions that are connected through
saddle-node bifurcations suggest that the co-existency is born in a pitchfork
bifurcation. It takes place just a the point where the two SN2 intersect (point
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Figure 7.1 Resonance tongue in the frequency and coupling parameter plane for
a pair of resource coupled Rössler oscillators. Black curves are saddle-
node bifurcations, the green curve is a period doubling and the red
curve is a torus bifurcation of the stable 1:1 node. Note, that the blue
curves are projections of one-dimensional bifurcations curves, please
see text for details.

P ). In this parameter cut it appears as a point because the symmetry of the
system is broken due to detuning of frequencies. To imagine the birth of
two co-existing period-2 solutions, we now follow the original 1:1 saddle that
comes from the saddle-node bifurcation SN1 of the stable period-1 node. As
this curve cross T1 nothing happens, because it is only a bifurcation on the
stable 1:1 node. As the point P is crossed the pitchfork bifurcation occurs,
whereby the doubly unstable period-1 solution and two co-existing single
unstable period-2 saddles are born. These are the dotted blue curve and the
two dashed blue curves. The stable versions of the period-2 dynamics arise
straight forward in the saddle-node bifurcations at the edge.

We also want to find out what happens further up in the Arnold tongue.
However, the analysis of this simplified system appears to be much more
complicated than one could expect. Since one of the purposes of studying
Rössler systems is to keep things as simple as possible, before extending to
the physiological model versions, there is a need to reconsider the coupling
mechanism.

An alternative and simpler coupling is the diffusive or linear coupling. To
keep the analogy with the physiology of the nephron we couple the system
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through the z variable that correspond to the salt concentration at macula
densa, so that a high salt concentrations at nephron 1 cause the beginning
of a decreasing salt concentration of nephron 2. Note, that the diffusion does
not directly involve any transfer of salt between the nephron, it is rather the
effect of the existence of a salt concentration that is exchanged. As will be
clear in the next section, the change of coupling is a good choice, because a
much simpler behavior, without loss of phenomena, appear in this system.

7.1.2 Linear coupling

Rössler systems coupled through a linear relationship between a variable of
each system, is one of the most studied system classes in the field of nonlin-
ear dynamics and bifurcation theory. Nevertheless, it is still possible to find
new and interesting phenomena and this underlines the enormous wealth of
complex phenomena in nonlinear dynamics. With a coupling term previously
studied by Rasmussen et al. [28], the system is studied in the (a1, ω) param-
eter plane, where a1 is the usual amplification parameter of system 1, and ω
is the detuning parameter controlling the fundamental frequency of system
2. Note, that the choice of this plane deviates from earlier studies in this
thesis.

In Manuscript M5 it is demonstrated that the left and right edge of
the resonance tongue behave differently. At the right edge the transition
between resonant and quasiperiodic dynamics follow the same bifurcation
structure with saddle-node bifurcation emerging from the period doublings,
as was found in the forced Rössler system. This is also the case for the left
edge, however, there is more to be added, before the description is complete.
Firstly, the torus bifurcation, that also appeared in the resource coupled
Rössler system inside the resonance zone, is terminated by saddle-node bi-
furcations and they both run along the left edge, such that there in total are
three saddle-node bifurcations at that edge. These cause the period-doubling
bifurcation to make an extra turn before running further into the resonance
zone as the period doubling of the saddle cycle. Close to all of the three
turning points three new saddle-node bifurcations are born, and therefore
the next period doubling in the cascade take the same folded shape. As
an infinite period-doubling cascade evolves, three dense sets of saddle-node
bifurcations are formed. The transition from resonant to non-resonant dy-
namics is mainly associated with the inner saddle-node bifurcations, while
the outer set limit a co-existing phase-synchronized quasiperiodic solution.
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So far this behavior, except from the existence of three sets of saddle-
node bifurcations, was to be expected. A phenomenon not observed in the
previous models is that a second torus bifurcation of the period-2 node is
present at the left edge giving rise to an additional degree of complexity close
to the border of the tongue. It is suspected to be born on one of the three
saddle-node bifurcations of the same period-2 node. However, at the moment
of writing this has not been confirmed. As the torus bifurcation runs along
the inner side of the left edge it intersects with the next period-doubling
bifurcation and a torus bifurcation on the period-4 solution.
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Figure 7.2 Left: Bifurcation structure with a torus bifurcation (with doubled
periodicity) emerging from the intersection between a period doubling
and torus bifurcation of the same periodicity. Right: Solutions and
bifurcations along the circle C.

In the following we will present what can be concluded from the event of
an intersecting period doubling and torus bifurcation of the same solution.
For the numerically obtained bifurcation curves the reader is referred to
figure 3 in Manuscript M5, however, here the following detailed explanation
of the bifurcation structure. Figure 7.2 show a schematical representation
of the situation at hand. To simplify, the extra turn of the period doubling
is ignored and the first period doubling of an eventually infinite cascade is
considered. The saddle-node bifurcation that limit the resonant 1:1 node and
saddle is labelled SN1, the period doublings of the node and saddle cycles
are PDS

1 and PDU
1 , respectively, and SN2 is the saddle-node bifurcation

that limit the period-doubled node and saddle cycle. The dotted part of
the period-doubling curve represents a period doubling of a doubly unstable
saddle cycle. The red curve (T1) marks the torus bifurcation taking place on
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the period-1 node and runs from the 1:1 resonant region. From below, T1

intersects with PDU
1 , but that does not change anything, because the torus

bifurcation take place on the node, while the PDU
1 is a period doubling of

the saddle solution. Next, the torus bifurcation T1 intersect PDS
1 , thus, at

that point both a torus and a period doubling take place at the same time.
From the point of intersection a new torus bifurcation T2 of the period-2
node emerge.

The question is now: how does the solutions organize in the phase space?
To demonstrate that, a circle around the point of intersection is drawn,
and to the right of the figure a sketch of the solutions and bifurcations
taking place along that circle is shown. Beginning from the point 0, where a
stable period-1 node exist, and following the circle counter clockwise, the first
intersection is at point 1, where the period of the node is doubled and the
node become a period-1 saddle. Then a torus bifurcation take place on the
period-2 node (point 2) giving birth to a period-2 torus, whereby the period-
2 become a doubly unstable saddle. The initial solution, now a saddle, then
undergo a torus bifurcation at point 3, further destabilizing the period-1 to
be triply unstable. To simplify the description, we now turn the direction to
go clockwise from the end of the arrow, where we have the stable period-1
node. The first bifurcation we meet on this path is T1 (point 5) giving rise
to a period-1 torus, and a period-1 unstable focus (two unstable directions)
that undergo a period doubling at point 4. The solutions emerging from
point 4 and 5 must conform with the solutions born at points 2 and 3. For
the cycles it is straight forward to connect the solutions at the point where
we turned direction, because stabilities of the period-1 and period-2 cycles
match perfectly. The torus must follow the cycles, such that it surround a
focus point. Therefore it must separate into a double torus at the point where
the focus undergoes a period-doubling bifurcation.

One could now wonder, if the birth of T2 must take place exactly in the
point of intersection between PDS

1 and T1. To illustrate that it actually must
be the case, the situation where they do not coincide is draw in Fig. 7.3(a).
Two different routes are inserted, one around each of the two intersection
points, and Fig. 7.3(b) illustrate the attempt to make the solutions match
when following route A and B. As far as the period-1 solution is concerned
stabilities along both route A and B fit well, while the period-2 along route
B fail to conform both routes. This means that some extra bifurcations must
be present to account for the lack of stabilization required to make the solu-
tions conform. Thus, it can be concluded that, unless a pair of saddle-node
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bifurcations taking the role of the torus bifurcation, the torus bifurcation
must start from the point of intersection between SN1 and T1.
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Figure 7.3 Incorrect sketches of the bifurcation structures. a) An incorrect sketch
in the two dimensional parameter plane, where the next torus bifur-
cation do not emerge from the intersection between PD1 and T1. b)
sketches showing a mismatch (at the question marks) in stability on
the period-2 and period-1 solution for route A and B, respectively.

Some very interesting consequences follow from this description. Suppose
the period-doubling cascade is a complete Feigenbaum cascade and that the
torus bifurcations all run along parallel with the evolution of the Feigenbaum
cascade, then we can conclude that an infinite torus bifurcation cascade takes
place as well. Actually, the numerical simulations published in Manuscript

M5 also indicate that the birth of torus bifurcations take place in an alternat-
ing way around the sequence of PD-T intersection points and, therefore, the
torus bifurcations must converge to a dense set of curves. Furthermore, this
also support that an infinite torus-doubling cascade can evolve along the
edge. Here, an enlargement of the bifurcation structure with saddle-node,
torus-, and period doublings up to period-32 is shown in Fig. 7.4, where the
accumulation curves have been estimated.

It is usually said that the transition from phase-synchronized to desyn-
chronized dynamics take place at the saddle-node bifurcations associated
with the resonant nodes and saddles. In chapter 6 we demonstrated in all de-
tails that this is the responsible mechanism for the externally forced Rössler
system. However, there is at least one alternative bifurcational mechanism
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Figure 7.4 Evolution of period doubling (green), saddle-node (black) and torus
(red) bifurcation cascades at the left edge. The first level of bifurca-
tions, SNa

2
, SN b

2
, SN c

2
, PD2 and T2, are located at the lower right.

Note, that the synchronization border is here indicated to be at the
torus bifurcations, although the border actually is at homoclinic bi-
furcations close to the torus bifurcations.

that might be caused by the existence of multistability in the system. This
second possibility takes place through a homoclinic bifurcation of tori. Ex-
istence of this desynchronization mechanism has previously been reported
by Postnov et al. in a system of diffusively coupled modified van der Pol
oscillators [26] and a externally forced predator-prey model [27].

Here only one example of the homoclinic transition is presented. From
calculation of the phase in the two dimensional parameter plane it is known
that a transition takes place close to the torus bifurcations. Figure 7.5 shows
the stable attractors along the direction K in Fig. 7.4. The direction is just
above PD4 and cross the torus bifurcation and saddle-node bifurcations of
the period-8 solution. The parameter range of Fig. 7.4 extends into both
the resonant periodic and resonant chaotic region to the right and into the
phase desynchronized (ergodic) region outside the tongue to the left. At the
torus bifurcation T8 the 8:8 resonant node bifurcates to a period-8 torus.
This torus remains phase synchronized as it grows in size with decreasing
ω. The apparent jump in size shortly after T8 is due to the projection, it
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Figure 7.5 Transition to desynchronized chaos through a homoclinic bifurcation
along direction K in Fig. 7.4. Brute-force bifurcation diagram show-
ing the period-doubling cascade leading to phase synchronized chaos
at increasing ω. For decreasing ω we first meet the torus bifurcation
T8 leading to a phase-synchronized torus, that desynchronizes at the
homoclinic bifurcation H8. The green curve show the phase between
the two systems, where zeros phase means a drifting phase, i.e. asyn-
chronous dynamics.

continues to grow in other variables. The jump at H8, on the other hand is a
true abrupt change in attractor size, caused by a homoclinic bifurcation. At
this point the torus touches the homoclinic orbit of a saddle point located
outside the torus and destroys while at the same time a larger torus is born.

7.2 Vascular coupled nephron models

The corresponding physiological case to the more abstract coupled Rössler
system is a system of vascular coupled nephrons. In the externally forced
nephron discussed in chapter 6 we found that the period-doubling bifurcation
structure folded to meet at the same edge of the resonance tongue, such
that the saddle-node bifurcation that limit the individual resonances are
connected. We also found that the transition to phase desynchronized chaos
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take place before the accumulation of saddle-node bifurcations, but we did
not propose a reason for that. Here, we may find a possible answer to this
problem, however, for the time being it is left as an open problem.

Figure 7.6 Overview of the stable attractors in the coupled nephron model. Blue
regions represent 1:4 and 1:5 mode-locking and the brown regions
represent quasiperiodic and chaotic dynamics. White curves are the
first two period doublings. Black and red are the first pair of saddle-
node and torus bifurcations, respectively.

The degree of interaction for vascular coupled of nephrons mainly depends
on the distance between glomeruli, because the electric signal decrease ex-
ponentially with distance from where it is generated. Here, the coupling is a
fixed relative small value, corresponding to a normotensive state. The pur-
pose of this study is to see how the bifurcation structure change compared to
the forced version of the model. In that respect it must be noted, that while
the forced version was perturbed on the arterial pressure, the coupled version
concerns the degree to which the TGF-regulation of one nephron affects the
neighboring nephron. So, the intention is not to try to attribute the changes
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to a perturbation of a specific variable or parameter. The purposes should
rather be taken to be individual for each study. However, regarding the bi-
furcational changes comparisons can be made because the overall structure
usually change mainly due extensions, for instance through couplings.
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Figure 7.7 Bifurcation diagram of the coupled nephron model, showing the cas-
cades of saddle-node, torus, and period-doubling bifurcations.

In Fig. 7.6 an overview of the stable attractors is displayed, with the
first period doubling, saddle-node and torus bifurcation overlayed. The blue
regions in the lower and upper parts are period-1 solutions in mode-locking
ratios of 1:5 and 1:4 between the TGF and myogenic oscillations. The brown
tongues dividing these regions into a right and left part are bordered by torus
bifurcations. The brown regions at either side represent ergodic tori and
chaotic dynamics. In the middle of the figure a yellow regions, with period-3
dynamics is found on which a period-doubling cascade leads to chaos to the
right of the period-3 region. Light blue and green represent period-2 and
period-4 solutions, respectively. The right half of the scan displays another
period-doubling structure such that the first two period doubling are shared
with the cascade in the left part, and the following period doublings are
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then individual for each cascade. Clearly, there are many similarities with
the corresponding bifurcation diagram for the forced nephron (see Fig. 3.2).
Especially the folding of the period doubling, that makes them return to
the same edge and the formation of the saddle-node bifurcations also on the
same edge.

A main result from the analysis is the emergence of a more or less similar
bifurcation structure as we found for the forced nephron model. Let us focus
on the region where the period doublings are tangent to the corresponding
saddle-node bifurcations at the lower part of the left edge. This region is
shown in more detail in Fig. 7.7.

In the previous section we discussed the emergence of torus bifurcations
from the period-doubling bifurcation and demonstrated the transition to
phase-synchronization through a homoclinic bifurcation near these torus bi-
furcations. But, we did not attribute the birth of these bifurcations at the
other end of the curve in the two-parameter plane, because the torus bifurca-
tion seemed just to continue along with saddle-node bifurcations. In Fig. 7.7
the folded period-doubling structure limit the parameter region, such that
the curves are more confined. This enables us to see that the torus bifur-
cations actually terminate on saddle-node bifurcations in Bogdanov-Takens
(BT) bifurcations. It has been shown by Knudsen et al. [15] that BT bifur-
cation imply the existence of a homoclinic bifurcation emanating from that
bifurcation point. This tell us that together with all the other cascades also a
cascade of homoclinic bifurcations must exist. Recall that we were unable to
determine the end point of the torus bifurcations in the bifurcation structure
of the coupled Rössler system. The above finding support the idea that they
are born on one of the three sets of saddle-node bifurcations.



CHAPTER 8

Conclusion

The first part of the study was devoted to the analysis of a detailed
nephron model, that describe the spatial variation of flow, pressure and salt
concentration in the tubular system, and model the myogenic process on a
cellular level. By calculating the Lyapunov exponents from simulated time
series of the model in versions representing a single nephron and two vascular
coupled nephrons we have shown that increased TGF-myogenic coupling
and increased vascular inter-nephron coupling induce chaotic behavior of the
tubular flows. From that we can conclude that increased TGF-myogenic and
inter-nephron couplings are possible reasons for the experimentally observed
irregular blood pressures in hypertensive rats.

The remaining part of the study may be seen as two parallel directions.
One of them intend to search for bifurcational phenomena in externally
forced and mutually coupled simple models. The other direction intend to
make similar studies of the physiological, mechanism based, and more com-
plicated models. These models posses bifurcation structures that are much
more complicated and messy. By using the knowledge from the simpler cases,
parts of the complicated bifurcation structures can be filtered away whereby
only the important parts, that explain the main bifurcations remain.

In the study of the periodically forced Rössler system, we demonstrated
how the period-doubling cascade unfold in the resonant region and how the
saddle-node bifurcations that is born on the period-doubling bifurcation close
to the point where the two bifurcations are tangent to each other. These
saddle-node bifurcations form the edges of the resonance zone is formed
through the cyclic behavior of sub- and supercritical period-doubling bifur-
cations at the edges, where the supercritical case in general involve a torus
bifurcation in order to close a gap which is not bordered by a saddle-node
bifurcation. We also showed that the cyclic behavior cause the formation of a
dense set of saddle-node bifurcations as the period-doubling cascade leads to
chaos and that the accumulation curve of the saddle-node bifurcations form
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the edge between phase-synchronized and desynchronized chaos. Finally, we
explained how multilayered tori inside the resonance tongue is formed and
how they are related to the torus-doubling bifurcations outside the resonance
zone.

The forced nephron model was analyzed with the forcing frequency and
resting value of the afferent flow resistance as parameters. We showed that in
this parameter plane the period doublings fold, such that they share the same
saddle-node bifurcations. This system also showed the cyclic behavior of the
period-doubling bifurcations. However, the edge between phase synchronized
and desynchronized dynamics against our expectations did not involve the
saddle-node bifurcations. A conclusion on this problem remain for the time
being.

To a large extend we found the same phenomena in the mutually coupled
Rössler system. In the resource coupled version the existence of an internal
torus bifurcation was found. The quasiperiodic and phase synchronized dy-
namics born in this bifurcation, terminate in saddle-node bifurcations that
imply a pitchfork bifurcation giving rise to co-existing solutions, whos exis-
tence are symmetrical in the parameter plane considered. The linear coupled
Rössler systems was studied in a different parameter plane. Still we found a
structurally similar bifurcation structure compared to the resource coupled
systems. Due to the folding of the period-doubling bifurcations at the left
edge three dense sets of saddle-node bifurcations form. Unique for the mutu-
ally coupled system is the formation of a torus bifurcation cascade. We have
described how the torus bifurcation cascade must emerge due to the intersec-
tion of torus bifurcations with the period-doubling cascade. The transition
from phase synchronized dynamics to non-synchronous dynamics was show
to take place through a homoclinic bifurcation on a torus.

Our study on vascular coupled nephron models coincided very well with
the study on coupled Rössler systems and the forced nephron model. We
found a similar folded period-doubling and saddle-node structure as in the
forced nephron model. From the emergence of additional cascades of torus
and homoclinic bifurcations we can suggest that these phenomena may be
very common for coupled period-doubling systems. An interesting finding
was that both ends of the torus bifurcations was located, one end starting
from the period-doubling bifurcation, just like it was found in the Rössler
system, the other end was found to connect to the saddle-node bifurcations
(Bogdanov-Takens bifurcation) emerging from the same period doubling. We
concluded that if the torus bifurcation cascade continue then the formation
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of homoclinic bifurcations should also continue. A finding that we could not
conclude from the Rössler, but it is natural to conjecture that homoclinic
bifurcations in the Rössler system also evolve due to existence of Bogdanov-
Takens bifurcations.

Our findings so far is of high relevance for future studies on larger systems
of coupled nephrons. The next steps in the process is to study how the
nephrons in a nephron tree behave and how nephron trees coupled through
arcuate arteries behave. Such large systems are almost impossible to study
by continuation techniques. Our studies can give some ideas of how such
large systems can behave and how they can synchronize. For instance it is
likely for large systems to show multistability. Therefore we might to a first
guess expect torus bifurcation structures and homoclinic bifurcations to be
involved in these kinds of studies.
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effects of anaesthetics. Pflügers Archive, 413:267–272, 1989.



REFERENCES 68

[22] D. J. Marsh, O. V. Sosnovtseva, Ki. H. Chon, and N.-H. Holstein-
Rathlou. Nonlinear interactions in renal blood flow regulation. Ameri-

can Journal of Physiology - Regulatory Integrative Comparative Physi-

ology, 57(5):R1143, 2005.

[23] D. J. Marsh, O. V. Sosnovtseva, E. Mosekilde, and N.-H. Holstein-
Rathlou. Vascular coupling induces synchronization, quasiperiodicity,
and chaos in a nephron tree. Chaos, 17(1):15114–1–10, 2007.

[24] D. J. Marsh, I. Toma, O. V. Sosnovtseva, J. Peti-Peterdi, and N.-H.
Holstein-Rathlou. Electrotonic vascular signal conduction and nephron
synchronization. Am.J.Physiol.Renal.Physiol, 296:F751–F761, 2009.

[25] R. J. Paul. Physiology in Gastrointestinal Tract, chapter Smooth muscle
mechanochemical energy conversion relations between metabolism and
contractility, pages 269–288. Raven, NY, 1981.

[26] D. Postnov, S. K. Han, and H. Kook. Synchronization of diffusively
coupled oscillators near the homoclinic bifurcation. Physical Review E,
60(3):2799–2807, 1999.

[27] D. E. Postnov, A. G. Balanov, N. B. Janson, and E. Mosekilde. Ho-
moclinic bifurcation as a mechanism of chaotic phase synchronization.
Physical Review Letters, 83(10):1942–1945, 1999.

[28] J. Rasmussen, E. Mosekilde, and C. Reick. Bifurcations in two cou-
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Abstract

The period-doubling transition to chaos along the edge of an Arnold tongue is known
to display unusual organization and scaling behavior [Kuznetsov et al., 2005]. It is
also known that forced period-doubling systems may be associated with the ap-
pearance of so-called period-doubled tori [Arneodo et al., 1983]. Using the Rössler
system as an example, we present a detailed analysis of the bifurcation structure
associated the forcing of a three-dimensional period-doubling system. We explain
how this structure is related to the recently discovered phenomenon of multi-layered
tori and discuss a sequence of bifurcations that transform a resonance torus into a
period-2 ergodic torus. A similar bifurcation structure has recently been observed in
a biologically relevant model of kidney blood flow regulation in response to arterial
pressure fluctuations.
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1. Introduction

It is well-known that deviations from classical Feigenbaum scaling are observed
in one-dimensional maps that display a non-quadratic extremum [1]. A related sit-
uation arises if an essentially one-dimensional system operates in the neighborhood
of a point in parameter space where two quadratic extrema are mapped one into the
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other by a so-called doubly superstable orbit [2]. This situation, which occurs for in-
stance for the classic sine-circle map [3], underlies the formation of the characteristic
crossroad (or swallow tail) structure that has been used to describe the substructure
of the resonance tongues for a variety of different low dimensional systems [4, 5, 6].

Deviations from classical Feigenbaum scaling also occur in a number of situations
that involve specific symmetries [7]. However, a more generic and apparently less
studied phenomenon, denoted cyclic (or C-type) criticality [7, 8], takes place when
a period-doubling transition to chaos unfolds along the edge of a resonance tongue.
The scaling relations that apply to this situation have been worked out by Kuznetsov
et al. [8, 9] who considered both a periodically forced Rössler system and a two-
dimensional map constructed originally to illustrate the different ways in which
a periodic orbit can be destabilized. However, the associated bifurcation structure,
particularly the formation of multi-layered resonance tori through cascades of period-
doubling bifurcations of the stable and unstable resonance cycles transversally to the
torus manifold, was not considered. A similar structure, involving interconnected
cascades of period-doubling bifurcations for symmetric and antisymmetric orbits, has
been described for two coupled Rössler systems [10]. However, again, the observed
bifurcations were not related to the formation of multi-layered resonance tori.

The purpose of the present paper is to develop a more complete description
of the bifurcation structure associated with the cyclic (or C-type) period-doubling
transition in multi-dimensional, time-continuous systems. We first demonstrate how
the 1 : 1 resonant node and saddle cycles in the periodically forced Rössler system
undergo interconnected cascades of period-doubling bifurcations. Near the edges of
the Arnold tongue, node and saddle cycles with the same periodicity approach one
another, and at the very edge their period-doubling bifurcations occur simultane-
ously. Away from the tongue edges, however, the node solution in the forced Rössler
system tends to bifurcate first, i.e. for lower values of the parameter that controls
the nonlinearity in the system.

Each pair of period-doubling bifurcations gives rise to a new set of saddle-node
bifurcation curves along the sides of the resonance tongue. As the period-doubling
cascade unfolds, the edges of the resonance tongue thus accumulate more and more
almost parallel saddle-node bifurcation curves, each defining the boundaries for the
resonance zone at a particular level of the period-doubling cascade. For low values of
the forcing amplitude, the new saddle-node bifurcation curves are generally formed
away from the existing edges of the tongue, and additional bifurcations are required
to complete the boundary of the resonance zone. This involves the interplay of a
couple of local and global bifurcations that transform a multi-layered resonance torus
into a stable period-doubled ergodic torus. We have recently observed that a similar
bifurcation structure arises in a biologically relevant model of the kidney blood flow
regulation in response to variations in the arterial pressure [11, 12] and suggest
that this structure is generic for a class of multi-dimensional, forced period-doubling
systems.

Outside the resonance region, the ergodic period-2 torus disappears in an inverse
torus doubling bifurcation, i.e., a transition in which the period-2 torus transforms
into an ordinary (period-1) ergodic torus. For higher values of the forcing amplitude,
the gap between the saddle-node bifurcation curves at the edge of the resonance
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domain tends to disappear, and the transition from multi-layered resonance torus to
period-doubled ergodic torus now occurs through the saddle-node bifurcation along
the edge of the resonance tongue [13].

Torus doubling was first described by Arneodo et al. [14] and by by Kaneko [15]
who examined the phenomenon both for multi-dimensional maps and for time-
continuous systems. These authors observed, for instance, how a finite sequence of
torus doubling bifurcations can lead to chaotic dynamics. More recently, Sekikawa
et al. [16] have demonstrated the transition to chaos through a series of successive
torus doubling bifurcations in an electronic circuit and Sekikawa et al. [17] have
shown how coupled logistic or sine-circle maps can produce a sequence of torus-
doubling bifurcations. To our knowledge, however, a more detailed explanation of
the phenomenon of torus doubling has never been provided. Kuznetsov et al. [18]
have determined the scaling relations at the terminal points of the torus doubling
bifurcation curve where the regimes of torus and doubled torus dynamics meet with
regions of strange-non-chaotic behavior and chaos, and Kuznetsov [19] has examined
the effects of noise on the dynamics of the torus doubling termination point.

The present paper provides a detailed analysis of the transitions that occur near
the edge of the resonance zone. We show how the recently discovered phenomenon of
multi-layered resonance tori is linked with the phenomenon of ergodic torus doubling
and demonstrate how a multi-layered resonance torus can be transformed into a
period-doubled ergodic torus through a sequence of bifurcations.

We have previously described the formation of multi-layered closed invariant
curves (referred to as tori) both for a number of two-dimensional maps [20, 21] and
for a model of a pulse modulated power electronic DC/DC converter [22]. For a sys-
tem of two symmetrically coupled logistic maps, for instance, we have demonstrated
how a three-layered torus can arise from an ordinary (i.e., single-layered) resonance
torus either through a period-doubling or a pitchfork bifurcation of the saddle cycle
transverse to the torus manifold. The phenomena considered in the present paper
are somewhat different in that they involve interconnected cascades of transverse
period-doubling bifurcations of both the resonant node and saddle cycles and thus
produce tori with a continuously increasing number of layers.

2. Main bifurcation structure for the periodically forced Rössler system

Let us consider the periodically forced Rössler system:

ẋ = −y − z + A sin(ωt); ẏ = x + ay; (1)

ż = b + z(x − c),

where x, y and z are the dynamical variables of the Rössler oscillator and A sin(ωt)
represents the externally applied forcing. The parameters a and b and the forcing
amplitude A are assumed to remain constant and attain the values a = 0.2, b = 0.2
and A = 0.1. The nonlinearity parameter c and the forcing frequency ω are used
as bifurcation parameters, and a few calculations will also be performed with other
values of the forcing amplitude. The unforced Rössler system (A = 0) undergoes
a Hopf bifurcation at c = 0.4 and for increasing values of c, the system hereafter
exhibits a Feigenbaum cascade of period-doubling bifurcations to chaos. On the
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Figure 1: Overview of the main bifurcation curves associated with the first four period-doubling
bifurcations in the forced Rössler system. At the edges of the tongue, defined by the saddle-node
bifurcation curves, period doubling of corresponding node and saddle cycles occurs simultaneously.
Away from the zone boundary, period doubling of the stable cycles occurs before period doubling
of the saddle cycles. Each pair of period-doubling bifurcations generates a new pair of saddle-node
bifurcation curves to delineate the resonance zone for the cycles at the next level in the cascade
(for detail see Fig. 3).

other hand, as long as we consider the regime of periodic oscillations, the forced
system might be expected to display quasiperiodic dynamics on a two-dimensional
torus, interrupted by an infinite set of resonance zones in which the internal dynamics
of the Rössler system synchronizes with the external forcing signal. The purpose
of the present section is to examine the main structures arising from the interplay
between these two processes in multi-dimensional systems. Details of this structure
and the involved bifurcations will be described in the following sections.

Figure 1 provides an overview of the main bifurcations associated with the first
four period-doubling transitions. Below the first period-doubling curve PD1, the
1 : 1 resonance zone is delineated to the left and right by the saddle-node bifurcation
curves SNL

1
and SNR

1
, respectively. In this area, the system displays a stable node

and a saddle solution, both situated on the closed invariant curve that represents our
two-dimensional torus. The period-doubling curve PD1 has two branches. Along the
lower branch, the 1 : 1 node solution undergoes its first period-doubling bifurcation,
while the corresponding saddle solution doubles its period along the upper branch.
At the edge of the tongue, the two solutions coincide and the system displays both an
eigenvalue (Floquet multiplier) of +1 and an eigenvalue of −1. The two eigenvalues
correspond to different directions in phase space. Hence, we conclude that the period
doubling bifurcation involves a direction transverse to the invariant curve.

A pair of new saddle-node bifurcation curves, SNL

2
and SNR

2
, emanate from

the period-doubling curve close to the two edges of the tongue. They delineate the
synchronization region for the stable and unstable 2 : 2 solutions and are, therefore,
tangents to the next period-doubling curve PD2. Like PD1, PD2 has two branches
such that the stable 2 : 2 solution undergoes a second period doubling along the lower
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Figure 2: Interconnected period-doubling cascades in the 1:1 resonance tongue for ω = 1.08.
Full curves represent stable node solutions, dashed curves are saddle solutions and dotted curves
are doubly unstable saddle solutions. The period-doubling cascade for the stable node cycles
accumulates in a transition to chaos approximately at c∞ = 3.95381. Note that these period-
doubling bifurcations take place in a direction transverse to the original torus manifold.

branch and the saddle 2 : 2 solution period doubles along the upper branch. These
period doublings again take place in a direction transverse to the closed invariant
curve, and again a pair of new saddle-node bifurcation curves is born to delineate
the synchronization range for the 4 : 4 solutions (see Fig. 3).

As the value of parameter c increases, the same process is found to repeat itself
until the system undergoes a transition to chaos. Close to the tongue edges, corre-
sponding node and saddle solutions period double almost simultaneously. However,
as we move deeper into the resonance zone, the period-doubling of the node cycles
occurs earlier and earlier in comparison with the period doubling of the correspond-
ing saddle cycles. For this reason, the accumulation points for the two cascades are
different, and the structure of the multi-layered tori produced in the transition will
depend on the forcing frequency ω [13]. For ω = 1.08, the two interconnected period-
doubling cascades are illustrated in Fig. 2. Starting with the first period-doubling
bifurcation of the 1 : 1 node cycle near c = 2.70551, the cascade of period-doubling
bifurcations for the node cycles accumulates approximately at c∞ = 3.95381.

Figure 3 provides a blow-up of the bifurcation structure along the left tongue
edge. The two-dimensional bifurcation diagram to the left in the figure presents the
actual structure, and the sketch to the right shows a somewhat distorted version
of the same structure, drawn with the intention of clarifying the formation of new
saddle node bifurcation curves in connection with each pair of period-doubling bi-
furcations. Note how the new saddle-node bifurcation curves are born in points of
the period-doubling curves slightly away from the existing tongue edge, how they
proceed in a manner that is not strictly parallel to this edge, and how they become
tangent to the next period-doubling bifurcation curve. As a result of this process,
an increasing number of nearly parallel saddle-node bifurcation curves accumulate
along the tongue edges, each curve representing the border of the resonance zone for
a specific pair of node and saddle cycles in the bifurcation cascade. This structure is
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Figure 3: Left: Main structure of the first five period-doubling bifurcations close to the left edge
of the 1 : 1 resonance tongue. The figure illustrates how new saddle-node bifurcation curves are
born close to the points where the period-doubling curves are tangent to the existing tongue edges.
Right: Sketch of the bifurcation structure showing how the newly born saddle-node bifurcation
curves define the edges of the resonance tongue until the next period-doubling occurs. The curve
TD1 represents the torus doubling bifurcation. Superscripts L on the saddle-node curves have
been omitted.

obviously required to avoid that any of the cycles generated in the period-doubling
cascades escapes the resonance domain.

3. Details of the bifurcation structure for the forced Rössler system

Let us consider the above bifurcation structure in a little more detail, focusing
particularly on the formation of new saddle-node bifurcation curves in connection
with each pair of period-doubling bifurcations. Figure 3 shows how the saddle-node
bifurcation curve SNL

2
emanates from a point Q2 to the right of the point where

PD1 is tangent to the tongue edge. This seems to leave a hole in the boundary
of the resonance zone. However, as illustrated in the blow-up of the region around
the formation of SNL

2
shown in Fig. 4, additional local and global bifurcations are

in place to ensure that the 2 : 2 cycles do not escape the resonance area through
the gap between the two saddle-node bifurcation curves. Inspecting this figure, we
immediately locate the two branches of the period-doubling curve PD1, the saddle-
node bifurcation curves SNL

1
and SNL

2
, and the point Q2 where SNL

2
is born. At T2

the 2 : 2 stable node cycle produced at the lower branch of the period-doubling curve
PD1 (and now transformed into a stable focus) loses its stability in a subcritical
torus bifurcation. G2 represents a sequence of closely situated local and global
bifurcations that give birth to the large period-2 ergodic torus observed in Fig. 5, and
TD1 represents the torus doubling curve at which the period-2 torus is transformed
into an ordinary (period-1) ergodic torus that exists outside the resonance tongue
and below TD1. The sequence of bifurcations in which the period-2 torus is born
will be discussed in significant detail in Sec. 4.
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Figure 4: Magnification of part of the bifurcation diagram near the edge of the resonance tongue.
PD1 is the period-doubling bifurcation curve and Q2 denotes the point in which the saddle-node
bifurcation curve SNL

2
starts. G2 represents the sequence of bifurcations that give rise to the large

period-2 ergodic torus seen in Fig. 5, and TD1 is the torus doubling bifurcation in which this
torus is transformed into an ordinary period-1 ergodic torus. Note that some of the substructure
disappears when the forcing amplitude becomes sufficiently large.

In the presence of these additional bifurcations, the brute force bifurcation di-
agram calculated along the elliptic curve denoted Ca in Fig. 4 takes the form il-
lustrated in Fig. 5. In both ends of this diagram we observe the ergodic period 1
torus that exists below TD1 and to the left of the resonance zone. As we follow the
transitions from left to right in the intermediate range we first meet the saddle node
bifurcation SNL

1
at the edge of the resonance tongue where the 1 : 1 node cycle is

born. This is followed by the period-doubling bifurcation in which the 1 : 1 node is
transformed into a 1 : 1 saddle cycle while producing a stable 2 : 2 cycle transverse
to the torus surface. Hereafter follows the sequence G2 of closely situated local and
global bifurcations that give birth to both the large period-2 torus that dominates
most of the right hand side of the diagram and to an unstable two-branch torus
around the 2:2 focus cycle. The unstable two-branch torus again disappears in the
subcritical Hopf bifurcation T2 while the large period-2 torus continues to exist un-
til it undergoes the aforementioned reverse torus doubling bifurcation at the point
TD1. As shown in Fig. 4, this last transition takes place outside of the resonance
tongue.

The sketches in Fig. 6 give a clearer account of the structure of local bifurcations
observed in the region around the birth of the saddle node bifurcation curve SNL

2
.

The curves along which these bifurcation diagrams are thought to be drawn are
indicated in Fig. 4 by the letters Ca, Cb, and Cc. Starting from the bottom, panel
(a) first shows the saddle-node bifurcation through which the 1 : 1 node and saddle
cycles are born as the system enters the resonance domain. Hereafter follows the
period-doubling bifurcation PD1 on the 1 : 1 node. At T2, the 2 : 2 cycle generated
in this bifurcation (now a stable focus) undergoes a subcritical torus bifurcation and
turns into an unstable focus. In accordance with the brute force diagram in Fig. 5,
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Figure 5: Brute force bifurcation diagram calculated along the elliptic curve Ca in Fig. 4. θ is a
measure of the position along Ca with 0 (and 2π) representing the outmost right point and π the
outmost left point. For increasing values of θ the diagram first shows the saddle-node bifurcation
SNL

1
that occurs when the system enters the 1 : 1 resonance zone. Hereafter follows the period-

doubling PD1 that produces the stable 2 : 2 resonant node and the subcritical torus bifurcation
T2 in which the 2 : 2 cycle loses its stability. G2 represents the sequence of bifurcations that give
birth to the large ergodic period-2 torus and TD1 denotes the torus doubling bifurcation in which
this torus transforms into an ordinary period-1 ergodic torus.

the unstable two-branch torus produced in this bifurcation disappears in a global
bifurcation close to the point G2. As we continue the scan, the unstable 2 : 2 focus
cycle (now a doubly unstable saddle) undergoes a reverse period doubling bifurcation
in PD1 while the 1 : 1 saddle destabilizes into a doubly unstable cycle. This latter
cycle finally disappears in a saddle node bifurcation at the tongue edge SNL

1
.

If we denote the period-doubling bifurcation that ends the life of the 2 : 2 cycle in
panel (a) as subcritical, the corresponding period-doubling bifurcation in panel (b)
has become supercritical as the saddle node bifurcation curve SNL

2
has transformed

the doubly unstable 2 : 2 saddle into a 2 : 2 saddle cycle with a single unstable di-
rection. In this way the torus bifurcation T2 serves to degrade the stability of the
stable 2 : 2 cycle so that it can annihilate with the 2 : 2 saddle cycle at the upper
branch of the period doubling curve. Finally, in panel (c) the torus bifurcation on
the 2 : 2 cycle no longer occurs, and the SNL

2
saddle node bifurcation has overtaken

the full role of delineating the edge of the resonance tongue for the 2 : 2 cycles.
In order to provide a clear impression of the structure of the period-2 torus and

of the torus doubling bifurcation that occurs along TD1, Fig. 7 presents a series of
Poincaré sections of the ergodic torus observed in the one-dimensional brute force
bifurcation diagram. As defined in the caption to Fig. 5, the parameter θ is the angle
along the curve Ca in Fig. 4. For θ = 3.8, the Poincaré section shows an ordinary
(i.e. period-1) ergodic torus. Note, however, that there is an uneven distribution of
points along the periphery, indicating a ’hesitation’ of the system near the top of
the section. This is the well-known sign that the system is approaching a resonance
zone, in this case the 1 : 1 resonance.
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Figure 6: Bifurcation diagrams drawn along parts of the curves Ca, Cb, and Cc in Fig. 4 and
extended in both ends to the saddle-node bifurcation curve SNL

1
. Note how the 2 : 2 cycles in

all cases are captured before they can escape from the resonance zone. Full lines represent stable
node or focus solutions, dashed lines saddle solutions, and dotted lines doubly unstable node or
unstable focus solutions. The transformations that occur at the point G2 will be discussed in detail
in Sec. 4.

Figure 7: Illustration of the transition that occurs as the forced Rössler system crosses the torus
doubling bifurcation curve TD1 in the direction indicated by the arrow A in Fig. 4. The figure
presents a series of Poincaré sections of the ergodic torus for different positions along the curve Ca.
Compare with the bifurcation diagram in Fig. 5.
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(a) (b)

Figure 8: (a) Phase portrait after the period-doubling bifurcation transversal to the 1 : 1 resonance
torus. (b) The structure after the period-2 node N2 has turned into a stable period-2 focus F2.
Note that two different projections have been used to draw these figures.

As θ is reduced one can observe how the invariant curve starts to split into two
different windings, as the quasiperiodic oscillator alternatively chooses one route
over the other. This is another indication of the fact that the resonance mode
from which the torus originates has undergone a period-doubling transition in the
direction transverse to the periphery of the closed invariant curve. As θ is further
reduced, the separation between the two windings is seen to continue to grow and
for larger values of the parameter c, one can observe how the two windings of the
period-2 torus move completely apart.

4. From 1 : 1 resonance torus to ergodic period-2 torus

After the above discussion of the main bifurcation structures in the periodically
forced Rössler oscillator (1) let us turn the attention towards the processes by which
the 1 : 1 resonance torus is transformed into a period-2 ergodic torus.

Let us start in a point in the middle of the resonance tongue in Fig. 1 and well
below the period-doubling curve PD1. Here, the system displays an ordinary reso-
nance torus with a stable 1 : 1 node and corresponding saddle cycle. As the system
crosses the lower branch of the bifurcation curve PD1, the 1 : 1 node undergoes a
period-doubling bifurcation. As illustrated by the phase portrait in Fig. 8(a), this
period-doubling takes place in a direction transverse to the torus manifold. This
implies that whereas the original saddle cycle S is stable transversely to the torus
manifold and unstable along this manifold, the saddle S1, arising in the period-
doubling bifurcation is stable in the direction along the torus manifold and unstable
in the transverse direction. N2 denotes the points of the 2 : 2 resonance node.

As we more upwards in the resonance tongue and closer to the left edge, the two
saddle cycles approach one another. At the same time, the 2 : 2 node turns into a
stable 2 : 2 focus cycle as two of its eigenvalues become complex conjugate. This
situation is illustrated in Fig. 8(b) which also shows how the 2 : 2 focus cycle moves
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(a) (b)

(c)

Figure 9: (a) Phase portrait after the torus fold bifurcation that occurs when the system crosses the
curve G2. In this bifurcation a stable period-2 ergodic torus T2 appears together with an unstable
period-2 torus of a similar shape. (b) resonance torus with the stable period-2 focus cycle F2. (c)
period-2 ergodic torus. The stable period-2 ergodic torus T2 now coexists with the stable period-2
cycle F2. The basins of attractions of these states are separated by the repelling period-2 torus.
All figures are drawn for the same parameters.
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(a) (b)

(c)

Figure 10: Phase portrait after the heteroclinic bifurcation. (a) Existing structures. The focus
cycle F2 is still stable, but is now isolated from the saddle cycles by a double-branched unstable
torus. (b) Magnified part of the phase portrait that is outlined by the rectangle in (a). (c) Ergodic
period-2 torus T2. The curves that follow T2 closely are the unstable manifolds of the saddle cycles
S and S1.
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(a) (b)

Figure 11: Situation after the period-2 focus F2 has lost its stability in the subcritical torus
bifurcation. (a) Existing structures. F2 is now a repelling focus period-2 cycle. (b) Ergodic
period-2 torus. This torus is the only remaining attracting state.

towards the saddle cycle S. Note that two different projections have been used to
illustrate the situations in (a) and (b).

When the system crosses the curve G2 for increasing values of the nonlinearity
parameter c, a stable period-2 ergodic torus arises together with a repelling period-2
torus in a torus fold bifurcation. As illustrated in Fig. 9, both the 1 : 1 resonance
torus and the stable period-2 focus cycle continue to exist. Figure 9(b) shows the
structure of the 1 : 1 resonance torus together with the two saddle cycles S and S1

and with the stable period-2 focus cycle F2. Figure 9(c) illustrates the stable period-
2 ergodic torus, and Fig. 9(a) shows a superposition of (b) and (c) to illustrate the
overall structure. The unstable period-2 ergodic torus produced in the torus fold
bifurcation (but not shown in the figure) delineates the basin boundary for the
coexisting attracting states: F2 and T2.

With further increase of c, one can observe a couple of global bifurcations that
lead to the disappearance of the unstable period-2 ergodic torus and to the formation
of a two-branched unstable torus around the stable focus cycle F2. In this way
the focus cycle is isolated from the saddle cycles S and S1, and the unstable two-
branched torus becomes the basin boundary between the regions of attraction to the
focus cycle F2 and to the ergodic period-2 torus T2. This situation is illustrated in
Figs. 10(a) and (b). We note how the unstable manifold from the saddle cycle S1

no longer connects to the period-2 focus cycle F2.
Finally, with further increase c, the period-2 focus cycle F2 loses its stability in

a subcritical Hopf bifurcation. This is illustrated in Fig. 11. Figure 11(a) shows
the position of the 1 : 1 and 2 : 2 resonance cycles. However, none of these cycles
an attracting, and the ergodic period-2 torus shown in (b) is the only remaining
attracting structure.
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5. Bifurcation structure in the period-3 window

Let us complete our study of the forced Rössler system by demonstrating that
similar bifurcation phenomena take place in the periodic windows that exist in the
chaotic regime. Figure 12 shows the main bifurcation structure of the period-3
window. Here, SNB

3
denotes the saddle-node bifurcation in which the 3 : 3 resonant

node and saddle cycles are born. This curve continues up along the two sides of
the resonance tongue, now denoted SNL

3
and SNR

3
, respectively. The closed curve

PD3 represents the first period-doubling bifurcation. The resonant 3 : 3 node cycle
period doubles along the lower branch of this curve, and the 3 : 3 saddle cycle doubles
its period along the upper branch. Similarly, the closed curve PD6 represents the
second period doubling with the node cycle period doubling at the lower branch
and the saddle cycle at the upper branch. With its pronounced cusp structure,
the bifurcation curve SNC

3
represents a couple of saddle-node bifurcations in which

the 3 : 3 saddle cycle generated in the period doubling bifurcation PD3 first loses
and subsequently regains stability in a secondary direction. Finally, T3 is a torus
bifurcation curve that serves a purpose similar to that of the torus bifurcation curve
T2 in Fig. 4. This curve closes a hole in the edge of the resonance tongue between
SNL

3
and the saddle node bifurcation curve that delineates the sides of the resonance

zone for the 6 : 6 cycles.
In close accordance with the bifurcation structure observed for the 1 : 1 resonance

regime, examination of the bifurcation structure in the 3 : 3 region confirms that:
(i) The period-doubling cascades for the node and saddle solutions are inter-

connected. At the edge of the synchronization tongue, the two bifurcations are
simultaneous, but away from the tongue edge the node solution bifurcates before
the saddle solution.

(ii) Each pair of period-doubling bifurcations generates a new pair of saddle
node bifurcations that define the edges of the resonance zone at the next level in the
cascade.

(iii) Additional torus and global bifurcations serve to close the gap between the
new and the previous boarders of the resonance zone.

6. Conclusions

Periodically forced Rössler systems of the form (1) have previously been exam-
ined by a large number of authors [23, 24], mostly with the aim of studying the
synchronization of the internally generated chaotic dynamics by the external peri-
odic forcing. In the chaotic regime, the power spectrum of the Rössler oscillator
displays a clearly distinguishable maximum around an angular frequency of 1.0 and,
depending on the parameter values considered, the external forcing will lock the
internal dynamics into a 1 : 1 ratio over a smaller or larger interval of ω. Vadivasova
et al. [25] have provided a relatively detailed chart of the distribution of stable
modes in the two-dimensional parameter plane around the 1 : 1 resonance tongue.
This diagram clearly shows the unusual structure of period-doubling bifurcations
that emanate directly from the edges of the resonance tongue. This distinguishes
the structure from the commonly observed swallow tail structure that describes the
substructure of the resonance tongues for low-dimensional systems [5]. Vadivasova
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Figure 12: Main bifurcation structure in the period-3 window. The lower saddle-node bifurcation
curve marks the onset of the period-3 resonance solutions. For increasing values of the nonlinearity
parameter c, the same saddle-node curve extends up along both tongue edges. PD3 and PD6

represent the first and second period doubling with the node solution bifurcating at the lower
branch and the saddle solution at the upper branch.

et al. [25] also delineated the regions of existence for a couple of period doubled
ergodic tori. However, the unusual period-doubling structure was not examined in
detail.

The swallow tail structure involves a complex interplay between period-doubling
and saddle-node bifurcations. However, the presence of a superstable 1 : 1 cycle that
extends all the way to infinity along the tongue edges [5] ensures that none of these
bifurcations can connect to the edges of the resonance zone. The one-dimensional
sine-circle map [3], which explains the organization of the swallow tail structure,
only deals with the phase (and periodicity) of the resonance modes. Hence it follows
that the period-doubling bifurcations in the swallow tail structure take place along
the invariant closed curve described by the map and that no bifurcation can occur
in the direction transverse to this curve. Moreover, a saddle cycle on the closed
invariant curve cannot undergo a period-doubling bifurcation.

Using the periodically forced Rössler system as an example the present paper
reported on the results of a detailed study of the bifurcation phenomena that can
arise in multi-dimensional systems through the interaction of a period-doubling pro-
cess with the mechanisms of synchronization. We showed how this interaction can
give rise to interconnected cascades of period-doubling bifurcations for the node and
saddle cycles on the original 1 : 1 resonance torus. By contrast to the phenomena de-
scribed by the swallow tail structure [4, 5], however, these bifurcations took place in
a direction transversal to the original resonance torus, hence creating resonance tori
with an increasing number of layers of interconnected manifolds. Multi-layered reso-
nance tori of this type have recently been observed in variety of map systems [20, 21],
but have not previously been described for time-continuous systems.

Each pair of period-doubling bifurcations of corresponding node and saddle cy-
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cles was found to produce a new set of saddle-node bifurcation curves to delineate
the resonance tongues. For high forcing amplitudes, these new saddle-node bifur-
cation curves initiate from points at the existing zone edge. However, for lower
values of the forcing amplitude a gap tends to arise between the existing edge of
the resonance zone and the new saddle-node bifurcation curves. Hence, a couple of
additional bifurcations are called upon to complete the edge of the resonance tongue.
These bifurcations include a subcritical Hopf bifurcation in which a period-doubled
focus cycle loses its stability. However, the bifurcations also include a heteroclinic
bifurcation capable of transforming the structure of the resonance torus into a so-
called period-doubled ergodic torus. Period-doubled ergodic tori have been known
since the early 1980’s [15, 14], but they appear never to have been examined in
much detail. The heteroclinic bifurcation we have described represents a general
mechanism that can relate multi-layered resonance tori to period-doubled ergodic
tori.

In order to examine the generic nature of the observed mechanisms we showed
that a similar bifurcation structure arises in the period-3 window that exists in the
chaotic regime. In parallel with the present study we have also examined both a two
dimensional nonlinear map subjected to a periodic forcing and a model of kidney
blood flow regulation. The map system has the advantage of being significantly
simpler to handle computationally. The biological model represents an attempt to
describe how the individual functional units in the kidney regulate the incoming
blood flow to compensate for variations in the arterial blood pressure [11, 12].
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1. Introduction

The periodically forced Rössler system has been investigated
by many authors, in recent years often with the aim of study-
ing synchronization of the internally generated chaotic dynamics
with the external forcing [1–5]. In the chaotic regime, the power
spectrum of the Rössler oscillator displays a clearly distinguishable
maximum and, depending on the parameters of the Rössler system
and the forcing amplitude, chaotic phase synchronization may be
achieved over a smaller or larger range of forcing frequencies.

Vadivasova et al. [6] have obtained a relatively detailed chart
of the distribution of stable modes in the two-dimensional pa-
rameter plane spanned by the forcing frequency and one of the
parameters of the Rössler system. An interesting aspect of this
chart is the unusual structure of period-doubling bifurcation curves
that are observed to emanate directly from the edges of the res-
onance tongue. This clearly distinguishes the structure from the
classic swallow-tail structure [7,8] that can be used to describe the
substructure of the resonance tongues for many low-dimensional
systems. Vadivasova et al. [6] also determined a couple of bifurca-
tion curves in which the ergodic torus that exists outside of the
resonance tongue doubles its period.

Observing the same unusual bifurcation structure both in a
two-dimensional map and in the forced Rössler system, Kuznetsov

* Corresponding author.
E-mail addresses: zhanybai@hotmail.com (Z.T. Zhusubaliyev),

Laugesen@fysik.dtu.dk (J.L. Laugesen), Erik.Mosekilde@fysik.dtu.dk (E. Mosekilde).

et al. [9,10] determined the scaling properties that characterize
a period-doubling cascade that unfolds along the edge of a res-
onance tongue (denoted as cyclic or C-type criticality). More re-
cently, Kuznetsov et al. [11] have determined the scaling relations
for the terminal points of the torus doubling bifurcation curves
for a related problem in which a low-dimensional period-doubling
system is driven by quasiperiodic forcing.

The purpose of the present Letter is to examine the bifurcation
structure associated with the interaction between the processes of
period-doubling and synchronization in greater detail. In particu-
lar we show how complex structures of multi-layered resonance
tori arise through period-doubling bifurcations of resonant node
and saddle cycles in a direction transverse to the torus mani-
fold. We also show how these multi-layered tori transform into
period-doubled ergodic tori through a set of saddle–node bifurca-
tions delineating the edge of the synchronization regime.

Torus doubling was first investigated by Arneodo et al. [12] and
by Kaneko [13] who described the phenomenon both for three-
and four-dimensional maps and for time-continuous systems. More
recently, Sekikawa et al. [14] have demonstrated the formation of
period-doubled tori in an electronic oscillator system and Postnov
et al. [15] have used a double Poincaré-section technique to illus-
trate torus doubling in a van der Pol oscillator driven by a strong
chaotic forcing. However, to our knowledge, a description of how
these ergodic tori interact with the resonance structure in the syn-
chronization tongues has not been presented.

We have previously observed the formation of multi-layered
tori both for a variety of two-dimensional maps [16,17] and
for a model of a pulse modulated power electronic DC/DC con-

0375-9601/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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verter [18]. In a recent Letter [19] we have described the transition
from double-layered resonance torus to period-doubled ergodic
torus through a series of local and global bifurcations that occur
at relatively low forcing amplitudes. The present Letter presents a
more generic mechanism that involves sets of saddle–node bifur-
cations.

2. Main bifurcation structure for the periodically forced Rössler
system

Let us consider the periodically forced Rössler system:

ẋ = −y − z + A sin(ωt); ẏ = x + ay;
ż = b + z(x − c), (1)

where x, y and z are the dynamical variables of the Rössler oscil-
lator and A sin(ωt) represents the externally applied forcing. The
nonlinearity parameter c and the forcing frequency ω are used as
bifurcation parameters while the parameters a and b and the forc-
ing amplitude A are kept constant at the values a = 0.2, b = 0.2
and A = 0.1. The unforced Rössler system (A = 0) undergoes a
Hopf bifurcation at c = 0.4 and for increasing values of c, the sys-
tem hereafter exhibits a Feigenbaum cascade of period-doubling
bifurcations to chaos. When an external forcing is applied in the
regime of periodic oscillations, the Rössler system displays regions
of quasiperiodic dynamics interrupted by an infinite set of reso-
nance zones where the internally generated periodic oscillations
synchronize with the external forcing. Our aim is to examine the
structures that arise from the interplay between these two pro-
cesses in multi-dimensional systems.

Fig. 1 provides an overview of the main bifurcations associ-
ated with the first four period-doubling transitions. Below the first
period-doubling curve PDS

1 , the 1 : 1 resonance zone is delineated
to the left and right by the saddle–node bifurcation curves SNL

1
and SNR

1 , respectively. In this area, the system displays a stable
node and a saddle solution, both situated on the closed invariant
curve that represents the two-dimensional resonance torus. Along
the lower curve PDS

1 , the 1 : 1 node solution undergoes its first
period-doubling bifurcation, while the corresponding saddle solu-
tion doubles its period along the upper curve PDU

1 . At the edge
of the tongue, the two solutions merge and, as our calculations
show, the system displays both an eigenvalue (Floquet multiplier)
of +1 and an eigenvalue of −1. The two eigenvalues correspond
to different directions in phase space. Hence, we conclude that the
period-doubling bifurcation occurs in a direction transverse to the
torus manifold.

A pair of new saddle–node bifurcation curves, SNL
2 and SNR

2 ,
emanate from the period-doubling curve close to the two edges
of the tongue. They delineate the synchronization region for the
stable and unstable 2 : 2 solutions and are, therefore, tangents to
the next period-doubling curve. The stable 2 : 2 solution undergoes
a second period doubling along the lower branch PDS

2 and the sad-
dle 2 : 2 solution period doubles along the upper PDU

2 . These period
doublings again take place in a direction transverse to the closed
invariant curve, and again a pair of new saddle–node bifurcation
curves is born to delineate the synchronization range for the 4 : 4
solutions.

As the value of parameter c increases, the same process is
found to repeat itself until the system undergoes a transition to
chaos. Close to the tongue edges, corresponding node and sad-
dle solutions period double almost simultaneously. However, as
we move deeper into the resonance zone, the period-doubling
of the node cycles occurs earlier and earlier in comparison with
the period doubling of the corresponding saddle cycles. For this
reason, the accumulation points for the two cascades are differ-
ent and the structure of the multi-layered tori produced in the

Fig. 1. Bifurcation structure associated with the first four period-doubling bifurca-
tions of the 1 : 1 resonance cycles in the periodically forced Rössler oscillator. At
the edges of the resonance tongue, defined by the saddle–node bifurcation curves
SNL

i and SNR
i , i = 1,2, period doubling of corresponding node and saddle cycles oc-

curs simultaneously. Inside the zone, the stable cycles are found to period double at
lower values of c than the saddle cycles. Note that each period-doubling gives rise
to a new pair of saddle–node bifurcation curves to delineate the resonance zone for
the period-doubled cycles. Arrows A, B , C and D denote scanning directions to be
examined in the following figures.

Fig. 2. One-dimensional bifurcation diagram along the direction A in Fig. 1. Full
curves represent stable node solutions, dashed curves are saddle solutions, and
dotted curves are doubly unstable saddle solutions. The period-doubling cascade
for the stable node cycles accumulates in a transition to chaos approximately at
c∞ = 3.95381.

transition will depend on the forcing frequency ω. A similar bi-
furcation structure, involving interconnected cascades of period-
doubling bifurcations for symmetric and antisymmetric orbits, has
been discussed for two coupled Rössler systems [20]. However, the
observed bifurcations were not related to the formation of multi-
layered tori.

Fig. 2 shows a one-dimensional bifurcation diagram along the
line A in Fig. 1. Here, ω = 1.08. Full curves represent stable node
solutions, dashed curves are saddle solutions, and dotted curves
are doubly unstable saddle solutions. In accordance with the nota-
tion used in Fig. 1, a superscript S denotes a bifurcation of a stable
node, and a superscript U indicates that the bifurcation occurs for
a saddle cycle. Subscripts 1, 2, 4, etc., denote period-doubling bi-
furcations of period-1, period-2, etc., solutions. For the stable node
cycles the transition to chaos occurs at c ≈ 3.95381.
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Fig. 3. Phase portraits of the resonance torus along the scan line A in Fig. 1. (a) Orig-
inal 1 : 1 resonance torus with its node N and saddle cycle S . (b) The node cycle
has undergone a period-doubling bifurcation transversely to the torus manifold.
(c) Formation of a double-layered torus after the saddle cycle has also undergone
a transverse period doubling transition. (d) Multi-layered chaotic structure after the
saddle cycle has undergone a second period doubling and the original node cycle
a complete transverse period-doubling cascade to chaos.

3. Formation of double-layered resonance tori and torus
doubling

Below the period-doubling curve PDS
1 the system displays an or-

dinary 1 : 1 resonance torus with a stable period-1 node N and cor-
responding saddle cycle S (see Fig. 3(a)). As the system crosses the
bifurcation curve PDS

1 , the 1 : 1 node undergoes a period-doubling
bifurcation. As illustrated by the phase portrait in Fig. 3(b), this
period-doubling takes place in a direction transverse to the torus
manifold. This implies that whereas the original saddle cycle S is
stable transversely to the torus manifold and unstable along this
manifold, the saddle S1, arising in the period-doubling bifurcation,
is stable in the direction along the torus manifold and unstable
in the transverse direction. N2 denotes the points of the 2 : 2 reso-
nance node. As c is further increased, the saddle cycle S undergoes
a first period-doubling bifurcation when the system crosses the bi-
furcation curve PDU

1 . As the result, a multi-layered torus structure
softly arises from the 1 : 1 resonance torus. Note how the now re-
pelling 1 : 1 resonance torus is surrounded by the stable period-2
resonance torus (Fig. 3(c)).

As illustrated in Fig. 2, with further increase of the value of
parameter c, one can observe a cascade of period-doubling bifur-
cations transverse to the 2 : 2 resonance torus, leading finally to
a transition to chaos. Starting with the first period-doubling bi-
furcation of the 1 : 1 node cycle near c = 2.70551, the cascade of
period-doubling bifurcations for the node cycles accumulates ap-
proximately at c∞ = 3.95381. Fig. 3(d) shows the phase portrait in
the region of chaotic dynamics for the original node cycle and after
the second period-doubling bifurcation of the saddle cycle S2.

Let us now examine the transition that occurs as we move out
of the resonance tongue in the direction B (see Fig. 1), i.e., as we
increase the parameter c from 2.4 to 4.3 while maintaining the
forcing frequency constant at ω = 1.1. This transition is shown in
Fig. 4.

Fig. 4. One-dimensional bifurcation diagrams along the scan B in Fig. 1. After the
period-doubling transitions at PDS

1 and PDU
1 , the 1 : 1 node and saddle cycles disap-

pear in a saddle–node bifurcation on SNR
1 . The 2 : 2 node and saddle cycles undergo

new period doublings at PDS
2 and PDU

2 , respectively, and then disappear in the
saddle–node bifurcation SNR

2 . Finally, the 4 : 4 node and saddle cycles disappear in a
saddle–node bifurcation at SNR

4 . Note how each level in the period-doubling cascade
requires a saddle–node bifurcation of its own to demarcate the resonance zone.

Fig. 5. Transition from double-layered resonance torus to period-doubled ergodic
torus. (a) Phase portrait after the period-doubling bifurcation of the stable node
transversely to the 1 : 1 resonance torus. As the parameter c is increased the saddle
period-1 cycle S undergoes a period-doubling bifurcation. This leads to the forma-
tion of the period-2 resonance torus with a double-layered structure (b). (c) Phase
portrait after the saddle–node bifurcation in which the saddle cycles S and S1

merge and disappear. (d) Period-2 ergodic torus that arises when we leave the res-
onance tongue along the direction C in Fig. 1.

At the starting point the system displays a period-1 resonance
torus. As the value of parameter c is increased, the stable node N
undergoes a period-doubling bifurcation transverse the 1 : 1 reso-
nance torus when the system crosses the curve PDS

1 . This is illus-
trated in the phase portrait in Fig. 5(a). When the system crosses
the bifurcation curve PDU

1 the saddle period-1 cycle S undergoes
a period-doubling bifurcation. As a result, a double-layered torus
structure softly arises from the original resonance torus. Fig. 5(b)
presents the phase portrait for the double-layered torus. As illus-
trated in Figs. 1 and 4, with further increase of the parameter c
the saddle cycles S and S1 merge and disappear in a saddle–node
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Fig. 6. Transition from a period-4 resonance torus to period-4 ergodic torus.
(a) Period-doubling bifurcation of the stable period-2 cycle transversely to the 2:2
resonance torus. (b) Period-4 resonance torus after the period-doubling bifurca-
tion of the saddle period-2 cycle S2. S4 and N4 are the points of the period-4
saddle and stable cycles, respectively. (c) Period-4 ergodic torus. This torus ap-
pears when the system leaves the resonance tongue along the direction D in
Fig. 1.

Fig. 7. (a) Folded structure for the period-4 ergodic torus. (b) Phase portrait for the
chaotic dynamics.

bifurcation on the bifurcation curve SNR
1 , and the repelling layer

of the original period-1 resonance torus disappears (Fig. 5(c)). Fi-
nally, when we leave the resonance tongue through the second
saddle–node bifurcation curve SNR

2 along the direction C in Fig. 1,
the period-2 resonance torus transforms into the period-2 ergodic
torus through a saddle–node bifurcation. Fig. 5(d) shows the phase
portrait for the period-2 ergodic torus after the saddle–node bifur-
cation.

When crossing the period-doubling bifurcation curves PDS
2 and

PDU
2 with increasing parameter c along the direction B (see Figs. 1

and 4), we again observe the doubling of the resonance torus.
Fig. 6(a) presents the phase portrait of system (1) after the second
period-doubling bifurcation for the stable period-2 node N2 trans-
verse to the period-2 resonance torus. Fig. 6(b) shows the phase
portrait of the system (1) after the second period-doubling bifur-
cation of the saddle period-2 cycle S2 in which the double-layered

period-4 resonance torus appears. When we leave the resonance
tongue along the direction D in Fig. 1, the period-4 resonance
torus transforms into a period-4 ergodic torus in a similar man-
ner (Fig. 6(c)).

With further increase the value of the c, the invariant set of
the ergodic period-4 torus first starts to fold. Further change of
the parameter c leads to the appearance of the chaotic oscillations.
This transition is illustrated for ω = 1.105 in the Fig. 7.

4. Conclusions

The Letter established a more complete picture of the bifur-
cation phenomena that occur when a multi-dimensional period-
doubling system is subjected to an external forcing and showed
how the recently discovered phenomena of multi-layered reso-
nance tori is linked to the phenomenon of period-doubled ergodic
tori.

We first demonstrated how multi-layered resonance tori are
formed through cascades of period doubling bifurcations of the
resonant saddle and node cycles transversely to the torus manifold.
Close to the edge of synchronization zone, where the bifurcations
occur more and less simultaneously for the node and saddle cycles,
one can follow a relatively high number of interconnected period
doublings. In the interior of the resonance zone, where period dou-
bling of the node cycle proceeds faster then period doubling of the
saddle cycle, one can observe multi-layered chaotic structures pro-
duced through a complete period-doubling cascade of the original
node cycle.

Each pair of period-doubling bifurcations generates a new set
of saddle–node bifurcation curves along the sides of resonance
tongue. As the period-doubling process proceeds, the edges of
the tongue, therefore, accumulate more and more saddle–node
bifurcation curves, each delineating the boundaries for the reso-
nance modes at a particular level of the period-doubling cascade.
Similarly to what one observes in the case of phase multista-
bility [21] it appears that there is no specific ordering of the
saddle–node bifurcation curves, and the ordering differs between
the two sides of the tongue. This ordering influences the de-
tailed transition by which a resonance torus is transformed into
an ergodic torus. At low forcing amplitudes, one can observe that
additional local and global bifurcation are involved in this transi-
tion [19].
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Abstract. - The edge of chaotic phase synchronization is known to consist of a dense set of
saddle-node bifurcation curves. By following the synchronization transition through the cascade
of period-doubling bifurcations in a forced Rössler system, this Letter describes how these saddle-
node bifurcations arise and explains how they are organized. We identify the cycles that are
involved in the saddle-node bifurcations and describe how the transitions that take place at the
edge of the synchronization domain are related to the torus doubling bifurcations that occur
outside this domain.

Chaotic phase synchronization [1–4] denotes an inter-
esting form of synchronization in which a chaotic oscilla-
tor adjusts the frequencies of its internal dynamics to the
rhythm of an external forcing, or to the dynamics of an-
other chaotic oscillator, while the amplitudes continue to
vary in an irregular fashion. In a numerical experiment
one can observe [1–4] how the average frequency of a pe-
riodically driven chaotic oscillator varies with a control
parameter until the system enters a region of synchroniza-
tion where the average frequency remains constant and
equal to the forcing frequency. The width of the mode-
locking interval typically increases with the forcing ampli-
tude and, as the system leaves this interval, its average
frequency again starts to change.

Chaotic phase synchronization has been observed in a
broad range of different physical, technical and biological
systems, including a plasma discharge tube paced with a
low amplitude wave generator [5], an array of coupled elec-
tronic oscillators [6], and a system of interacting functional
units of the kidney [7]. The transition between phase-
locked and un-locked states represents a significant change
in behavior, and we have previously suggested that transi-
tions between different synchronization states among the
functional units of the kidney may be an important com-
ponent in the normal physiological regulation of the blood
flow to this organ [7].

Over the years, chaotic phase synchronization has been
the focus of considerable theoretical interest [1–4, 8–10],
and concepts and methods developed through this work

have been used to interpret mode-locking phenomena in
data from many different sources.

Along with changes in the variation of the average fre-
quency, the transition between phase-locked and un-locked
chaos is also reflected in a specific variation of the Lya-
punov exponents, in characteristic changes of the spec-
trum of the forced chaotic oscillator, and through changes
in the shape and size of the Poincaré section [11,12]. It is
generally established that the edge of the synchronization
domain is made up by a dense set of saddle-node bifur-
cations [1–4, 8–12]. However, the details of how this set
arises, how it is organized, and how the transition to the
ergodic torus that exists outside the resonance zone take
place appear not yet to have been worked out.

We have recently illustrated the detailed scaling theory
developed by Kuznetsov et al. [13] by showing how the bi-
furcation structure of the periodically forced Rössler sys-
tem develops through continued period-doubling bifurca-
tions of both the node and the saddle cycles in a direction
transverse to the original resonance torus, thus produc-
ing a system of so-called multi-layered resonance tori [14].
By following the synchronization transition for the forced
Rössler system from the region where the oscillator dis-
plays simple periodic dynamics and all the way up through
the cascades of period-doubling bifurcations to the regime
of chaos, the present Letter describes how the saddle-node
bifurcations arise and how they are arranged. We explain
how the bifurcating modes are organized and determine
at which of the many saddle-node bifurcation curves, the

p-1



E. Mosekilde et al.

ergodic torus that exists outside the resonance domain is
born. This leads to a discussion of how the torus doubling
bifurcations that take place outside of the resonance zone
are related to the transitions that occur in the synchro-
nization domain.

Let us consider the periodically forced Rössler system

ẋ = −y−z+A sin(ωt); ẏ = x+ay; ż = b+z(x−c) (1)

that has also formed the basis for many earlier investiga-
tions of chaotic phase synchronization [3,4,12]. Here x, y
and z are the dynamical variables of the unforced oscilla-
tor and A sin(ωt) represents the externally applied forcing.
The parameters a and b and the forcing amplitude A are
kept constant at the values a = b = 0.2 and A = 0.1 while
the nonlinearity parameter c and the forcing frequency ω
are used as bifurcation parameters. With the above pa-
rameter values, the unforced Rössler system undergoes a
Hopf bifurcation at c = 0.4 and for increasing values of
c, the system hereafter exhibits a Feigenbaum cascade of
period-doubling bifurcations. When an external periodic
forcing is applied in the regime of periodic oscillations,
the Rössler system displays regions of quasiperiodic (two-
mode) dynamics interrupted by a dense set of resonance
zones where the internally generated periodic oscillations
synchronize with the external forcing. The 1:1 resonance
domain is by far the most prominent, and the purpose of
the present Letter is to examine the structures that arise
in and near this tongue as a result of the interplay between
synchronization and period doubling.

Figure 1 provides an overview of the first four period-
doubling bifurcations in the 1:1 resonance tongue. Be-
low the first period-doubling bifurcation PDS

1 , the reso-
nance zone is delineated to the left and the right by the
saddle-node bifurcation curves SNL

1 and SNR
1 , respec-

tively. In this region the system displays a stable, synchro-
nized period-1 cycle and a corresponding saddle solution,
both situated on the closed invariant curve that represents
the resonance torus. Along the lower curve PDS

1 , the
stable period-1 cycle undergoes its first period-doubling
bifurcation, while the saddle solution period doubles at
the curve PDU

1 . At the edge of the resonance zone the
two solutions merge, and period doubling occurs simul-
taneously. We notice, however, that the period-doubling
transitions take place in a direction transverse to the in-
variant curve [14]. The repeated period-doubling process
of both the node and saddle resonant cycles in this way
gives rise to the formation of multi-layered resonance tori,
i.e., nested structures of interconnected resonance tori [15].

Above the curve PDU
1 , the system displays a pair of

period-1 saddle and doubly unstable node cycles together
with a pair of period-2 saddle and stable node cycles.
The region of synchronization for the period-2 cycles is
not identical to that of the period-1 cycles. Hence, while
the saddle-node bifurcation curves SNL

1 and SNR
1 con-

tinue up along the tongue edge to delineate the region
of resonant period-1 dynamics, a new set of saddle-node

Fig. 1: Two-dimensional bifurcation diagram for the 1:1 res-
onance zone of the periodically forced Rössler oscillator (1).
PDS and PDU denote period-doubling bifurcation curves for
stable (node) and unstable (saddle) cycles, respectively. SN
denotes saddle-node bifurcation curves, and TD torus doubling
bifurcations. The arrows A, B and C define scan lines to be
examined below.

bifurcation curves SNL
2 and SNR

2 are born to delineate
the range of synchronized period-2 dynamics. These new
saddle-node bifurcation curves originate from the period-
doubling curve in which the corresponding mode is born,
typically from a point close to where the period-doubling
curve is tangent to the former set of saddle-node bifurca-
tion curves. However, there is generally a gap between the
two saddle-node bifurcation curves, and a number of local
and global bifurcations are in place to close the hole and
complete the border of the resonance zone [16].

The saddle-node bifurcation curves SNL
2 and SNR

2

are tangent to the next pair of period doubling curves.
The stable period-2 solution undergoes a second period-
doubling at PDS

2 , and the saddle period-2 solution period
doubles at PDU

2 . As the value of c continues to increase,
the same process repeats itself until the system under-
goes a transition to phase synchronized chaos. This ex-
plains the build-up of a dense set of saddle-node bifurca-
tion curves along the edges of the synchronization domain:
A new pair of saddle-node bifurcation curves is generated
for each pair of period-doubling bifurcations in order to
delineate the region of existence for the newborn cycles.
After the next pair of period-doubling bifurcations, the
saddle-node bifurcation curves become curves at which the
produced saddle and doubly unstable node cycles merge
and disappear.

As first observed by Arnéodo et al. [17], the ergodic
torus undergoes a series of torus-doubling bifurcations
along the edge of the resonance zone [1,18]. Moreover, as
illustrated in Fig. 1, where the first two torus-doubling bi-
furcations are denoted TD1 and TD2, the torus-doubling
bifurcations are coupled directly to the period-doubling
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Fig. 2: Transition from double-layered resonance torus to period-doubled ergodic torus along the scan A in Fig. 1 (c = −51ω+58).
(a) Phase portrait after the period-doubling bifurcation of the stable node transversely to the 1:1 resonance torus. Here S1

and S are resonant period-1 saddle solutions with multipliers ρ1 = −0.8827, ρ2 = 1.1055, ρ3 = −2.95 · 10−7 and ρ1 = 0.899,
ρ2 = −1.1598, ρ3 = −3.12 · 10−7, respectively. N2 is a stable period-2 node cycle. (b) Double-layered structure that arises
through a period-doubling bifurcation of the original period-1 saddle cycle S1. Here S0 is a doubly unstable period-1 cycle with
multipliers ρ1 = −1.015, ρ2 = 1.089, ρ3 = −7.61 · 10−8 . (c) Period-2 ergodic torus that arises when the system leaves the
resonance tongue along the direction A in Fig. 1.

Fig. 3: One-dimensional scan along the direction A in Fig.1.
The pair of saddle and doubly unstable 1:1 resonance cycles
merge and disappear in SNL

1 . The pair of saddle and stable
2:2 cycles merge in SNL

2 , leading to a period-doubled ergodic
torus. The ergodic torus undergoes a new period-doubling at
TDL

2 .

bifurcations in the resonance zone. Hence, the ergodic
torus always displays the same periodicity as the resonance
torus it couples to across the synchronization edge. Below
the first period-doubling bifurcation, the period-1 ergodic
torus ends in a bifurcation (SNL

1 or SNR
1 ) that creates

by a pair of period-1 node and saddle cycles. Between
the first and the second period-doubling bifurcation, the
period-2 ergodic torus ends in by a pair of period-2 node
and saddle cycles along SNL

2 (or SNR
2 ).

As an illustration to this point, Fig. 2 shows the transi-
tion through which the period-doubled ergodic torus arises
if the parameters are scanned along the direction A in
Fig. 1. Starting at a point after the first period-doubling
curve PDS

1 , Fig. 2(a) shows how the originally stable 1:1
resonance cycle has undergone a period-doubling bifurca-

Fig. 4: One-dimensional scan along the direction B in Fig. 1.
As the forcing frequency ω is reduced, the resonant period-4
torus ends in a saddle-node bifurcation that gives birth to a
period-4 ergodic torus. At the point ETD, this ergodic torus
is destroyed, and to the left of ETD the system displays non-
synchronous chaos.

tion in a direction transverse to the synchronization mani-
fold, i.e., the unstable manifold of the 1:1 resonance saddle
S1. While giving birth to the stable 2:2 resonance cycle
N2, the period-doubling bifurcation has left the original
1:1 node as a saddle cycle with its unstable direction trans-
verse to the synchronization manifold. When crossing
the period-doubling bifurcation curve PDU

1 , the original
1:1 resonance saddle also undergoes a transverse period-
doubling bifurcation, leading to the 2:2 resonance saddle
S2 and the doubly unstable resonance cycle S0 (Fig. 2(b)).
This latter transition gives birth to a so-called double-
layered torus [14–16], i.e. a structure of interconnected
layers of stable and unstable tori. As the scan continues
through the saddle-node bifurcation curves SNL

2 and SNL
1

we observe first how the 2:2 saddle and stable node cycles
merge and disappear through the birth of a period-doubled
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ergodic torus at SNL
2 and, thereafter, how the pair of 1:1

saddle and doubly unstable node cycles merge and disap-
pear in the saddle-node bifurcation SNL

1 (Fig. 2(c)).
If the scan is continued one can observe how the er-

godic torus undergoes a second torus doubling at the bi-
furcation curve TDL

2 in Fig. 1. This is illustrated in the
one-dimensional bifurcation diagram of Fig. 3 which again
shows the transitions that take place along the direction
A. Full curves represent stable periodic cycles, dashed
curves saddle cycles, and dotted curves doubly unstable
node solutions. Notice how the stable 1:1 solution that
exists in the upper right corner of the figure undergoes a
period-doubling at PDS

1 while the corresponding 1:1 sad-
dle solution suffers its first period doubling at PDU

1 . From
here we can follow the two solutions (now as a saddle cy-
cle and a doubly unstable node) to the saddle-node bi-
furcation SNL

1 to the left in the figure. This saddle-node
bifurcation defines the zone edge for the period-1 cycles.
The saddle and stable node 2:2 resonance cycles merge at
SNL

2 to give birth to a period-doubled ergodic torus. Fi-
nally, when crossing the torus doubling bifurcation point
TDL

2 , the ergodic torus undergoes a new period-doubling
transition.

Fig. 4 shows a similar one-dimensional bifurcation dia-
gram for the direction B in Fig. 1. After the first period-
doubling bifurcations for the 1:1 resonance node and sad-
dle cycles at PDS

1 and PDU
1 , the interconnected period-

doubling processes continue to the left in the figure. Here
we can locate the period-doubling bifurcation PDS

2 for the
stable period-2 cycle and the bifurcation PDU

2 for the cor-
responding saddle cycle. Each pair of saddle and doubly
unstable node cycles born in these bifurcations can sub-
sequently be followed to the saddle-node bifurcation that
demarcates their synchronization zone.

In Fig. 4, the boundary of the resonance zone con-
sists of saddle-node bifurcations for the period-1, period-2,
and period-4 cycles, but only the period-4 node is stable.
Hence, we observe that the period-4 resonance torus ends
in a saddle-node bifurcation in which an ergodic period-
4 torus is born. The repelling period-1 resonance torus
continues to exist into the region of the stable period-4
ergodic torus. As the system moves further away from
the resonance zone, the ergodic torus starts to fold and
it finally undergoes torus destruction at the point ETD
where its different layers begin to mix.

Figs. 5 (a) and (b) provide an illustration to the er-
godic torus destruction process. Here we have plotted a
Poincaré section of the period-4 ergodic torus that exists
to the right of the point ETD in Fig. 4 together with
a similar section and of the non-synchronized chaotic at-
tractor that arises when threshold of torus destruction is
crossed. The transition from ergodic torus dynamics to
non-synchronous chaos is accompanied by one of the Lya-
punov exponents turning positive.

Figure 6 shows a one-dimensional bifurcation diagram
along the scan line C in Fig. 1. Here, c = −51ω + 58.75,
and the scan takes the system from the region of period-1

resonance all the way through the regime of phase chaos
and out across the edge of the resonance zone. With
decreasing values of ω, the state of phase-synchronized
chaos is reached when the stable resonance cycles have
completed their period-doubling cascade. In Fig. 6 this
region is indicated by means of dots as obtained in a nor-
mal brute-force bifurcation scan. In this way we can also
illustrate the appearance of periodic windows in the re-
gion of phase-synchronized chaos. With further decrease
of ω, the doubly unstable modes arising through period-
doubling of the saddle cycles also start to contribute to
the chaotic state. Finally, a transition to non-synchronous
chaos occurs at SNL

∞. This transition is associated with
the abrupt change of one of the Lyapunov exponents from
being negative to becoming zero, hence resembling a nor-
mal saddle-node bifurcation between a resonant and an
ergodic torus.

After this description we are left with one main ques-
tion: Is there a specific organization of the saddle-node
bifurcation curves along the edge of the resonance zone?

The sketch in Fig. 7 addresses this question and also
illustrates some of the results of the above discussion.
Here, we have plotted the saddle-node bifurcations that
occur along the left hand side of the resonance tongue.
While distorting the scales, this sketch strictly maintains
the systematic of the variation. The curves denoted 1,
2, 4, 8, etc., represent the saddle-node bifurcation curves
SNL

1 , SNL
2 , SNL

4 , etc. As mentioned above, each saddle-
node bifurcation curve is tangent to the period-doubling
curve at the next level of the period-doubling cascade. The
following saddle-node bifurcation curve is then born at a
point of this period-doubling curve close to the point of
tangency but not in that point. Hence, there is a small gap
between the saddle-node bifurcation curves where other
(local and global) bifurcations are in place [16]. This gap
is not of direct significance to the present discussion, and
in the figure the gap is neglected.

Inspection of Fig. 7 shows that while the first few saddle-
node bifurcation curves follow individual courses, a sys-
tematic arrangement is gradually established in which the
saddle-node bifurcation curves alternate between the two
sides of what at the end becomes the accumulation curve
SN∞ for the saddle-node bifurcation curves. In the peri-
odic region, i.e., the region below the transition to chaos,
the ergodic torus is found to penetrate the cascade of
saddle-node bifurcations along the edge of the resonance
zone until it meets a stable periodic cycle. As illustrated
in Fig. 7, where the region of non-synchronized dynam-
ics to the left of the resonance domain is hatched, this
implies that the transition from non-resonant to resonant
dynamics at a given value of c always occurs along the
saddle-node bifurcation curve that produces cycles with
the highest periodicity.

Alternation of the saddle-node bifurcation curves de-
lineating the ranges of existence for different levels of a
period-doubling cascade has also been observed in a sys-
tem of coupled Rössler oscillators [20]. Closer examination
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The edge of chaotic phase synchronization

Fig. 5: The process of ergodic torus destruction. (a) Cross section of the period-4 ergodic torus that exists to the right of the
threshold ETD in Fig. 4. (b) Non-synchronous chaotic attractor to the left of ETD.

Fig. 6: Bifurcation diagram along the scan line C in Fig. 1.
Each pair of saddle and doubly unstable node cycles generated
in the period-doubling bifurcations merges in a specific saddle-
node bifurcation along the edge of the resonance zone. The fig-
ure also illustrates the transition from phase-locked chaos (dot-
ted) to non-synchronous chaos (hatched) at the point SNL

∞.

shows that the emergence of a new saddle-node bifurca-
tion curve along a given zone boundary tends to alternate
between points on the stable and on the unstable branch
of the period-doubling curve. Moreover, if the saddle-node
bifurcation curve along one zone boundary emerges from
the stable branch of the period-doubling bifurcation curve,
then the saddle-node bifurcation along the other boundary
will emerge from the unstable branch.

Based on a detailed analysis of the bifurcation structure
for the periodically forced Rössler system, the Letter has
established a coherent picture of the many different phe-
nomena and processes associated with chaotic phase syn-
chronization for systems with spiral-type chaos. In par-
ticular, we have demonstrated how period-doubling bifur-
cations develop in a direction transverse to the synchro-
nization manifold, how the period-doubling processes in
the resonant and non-resonant regimes work together, and
how the saddle-node bifurcations along the zone bound-
ary produce an alternating structure that finally accumu-
lates in a well-defined curve. The transition from phase-

Fig. 7: Sketch to illustrate the cascade of saddle-node bifurca-
tion curves along the edge of the resonance zone. The curves
denoted 1, 2 ,4, etc., represent the saddle-node bifurcation
curves SNL

1 , SNL
2 , SNL

4 , etc. Note how the curves after an
initial lack of organization begin to converge in an alternat-
ing fashion towards the final accumulation curve SN∞. The
hatched area represents the region of non-synchronous dynam-
ics outside the resonance zone. PD∞ represents the accumu-
lation curve for the period-doubling cascade and ETD is the
curve of ergodic torus destruction.

locked chaos to non-synchronous chaos takes place along
the curve SN∞ which at one and the same time is the
accumulation curve for the saddle-node bifurcations and
threshold for the ergodic torus destruction ETD. Let us
finally note that deviations from the above picture may
arise for chaotic systems that display a broader distri-
bution of their internal frequencies such as, for instance
the Lorenz attractor where the presence of an equilibrium
point of saddle type allows the return times to diverge [19].
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Abstract

Nephrons in the kidney interact via different mechanisms that in-
volve mutual readjustments in the distribution of the blood flow. At
the same time, the flow of blood controls the dynamics of the indi-
vidual nephron, including its ability to produce complex nonlinear
oscillations, synchronization of various internal modes, and deter-
ministic chaos. In order to better understand a variety of phenomena
that are specific to this type of coupling we have studied a system of
two interacting Rössler oscillators with a coupling that reproduces
essential aspects of the biological mechanism. We have performed
detailed one- and two-dimensional bifurcation analyses of the 1:1
resonance tongue in this system. These analyses have disclosed an
unusual substructure with cascades of period-doubling bifurcations
unfolding along the edges of the tongue. This structure is typical of
interacting period-doubling systems. However, while associated with
the so-called C-type critical behavior, it appears that the bifurcation
structure has not previously been examined in detail.

Keywords: Nephron, resource coupling, Rössler system, resonance, synchroniza-
tion, bifurcation analysis.

1 Introduction

The human kidney contains approximately 1.2 million functional units, called
nephrons. Each of these units possesses a certain ability to protect its own func-
tion against fluctuations in the arterial blood pressure by regulating the flow
resistance of the incoming arteriole. As experiments on anesthetized rats have
shown [2, 1], this regulation tends to be unstable and produce interacting os-
cillatory modes, period-doubling bifurcations, and other complicated dynamic
phenomena in the tubular pressures and flows. The nephrons interact with one
another through different mechanisms of which the so-called vascular propagated
coupling involves waves of muscular contractions that travel along the common
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structure of blood vessels. This coupling tends to produce in-phase synchro-
nization among the interacting nephrons. An alternative mechanism, denoted
hemodynamic coupling, arises from the simple fact that as one nephron reduces
its incoming blood flow, more blood will flow to its neighbors. This mecha-
nism generally causes the interacting nephrons to show out-of-phase oscillations
in their pressures and flows. Both in-phase and anti-phase synchronization of
neighboring nephrons have been observed experimentally [3].

Figure 1 shows a sketch of two nephrons with their afferent arterioles branch-
ing off from a common larger arteriole. Under the control of a variety of regula-
tory feedback mechanisms, water and salt filtered out from the capillary system
in the glomerulus is processed as the fluid flows through the tubular system.
As mentioned above, interaction between the nephrons arises from the influence
that contraction of the afferent arteriole of one nephron has on the blood flow
to neighboring nephrons.

Despite its simplicity, the hemodynamic coupling is of significant interest
both from a theoretical point of view and in view of its relevance to a range
of other systems, including coupled electronic oscillators [12] and coupled pop-
ulation dynamic systems [13]. The peculiar aspect of this interaction is that it
is mediated directly through variations in the supply (or distribution) of those
resources that cause the individual subsystem to oscillate or, in other words, the
coupling takes place through a main bifurcation parameter rather than through
the system variables as for the more commonly studied diffusive coupling.

The purpose of the present paper is to examine some of the bifurcation phe-
nomena that are characteristic for the resource distributed type of coupling.
The hemodynamic interaction between neighboring nephrons is almost imme-
diate such that the, displacement of the blood flow away from one nephron
immediately leads to an increasing blood flow to its neighbors. Besides involv-
ing regulation of a main bifurcation parameter, the coupling between our two
Rössler oscillators should therefore be designed such that growing oscillations
in one system leads to declining amplitudes in the other.

To better understand the generic aspects of this type of coupling, we have
performed detailed one-and two-dimensional bifurcation analyses of a pair of
coupled Rössler systems with resource mediated coupling. These analyses have
revealed an unusual structure with cascades of period-doubling bifurcations that
unfold along the edges of the resonance tongues. This structure is related to the
so-called C-type criticality [5, 6]. It appears, however, that a detailed bifurcation
analysis of the structures has not previously been performed [8].

2 Coupled Rössler systems

Detailed mechanism-based modeling is often possible for physiological systems,
and over the years we have developed increasingly advanced models of the blood
flow regulation for the individual nephron [1, 7]. We have used these models to
study both the synchronization of neighboring nephrons [3] and the interaction
of a large number of nephrons in a so-called nephron tree [10]. This physiology-
based modeling approach has the advantage of providing significant insight into
the biological processes and their mutual interaction. However to shed light on
some of the more generic phenomena it is obviously preferable to choose a sim-
pler system, even if it has no direct physiological interpretation. Hence we shall
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X1
Branching of arteriole into
smaller afferent arterioles

Tubulo−Glomerular−
Feedback oscillator

Tubulo−Glomerular−
Feedback oscillator

X2

Blood flow

VasomotorVasomotor

System I System II

Figure 1: Sketch of two interaction nephrons with their afferent arterioles
branching off from a common larger arteriole. Coupling between the nephrons
arises from phenomena that play out via the vascular system that connect them.
At the same time this system provides the individual nephron with the flow of
blood it needs to maintain its complicated dynamics.

consider a system of two coupled Rössler oscillators where the coupling is in-
troduced via the parameter a that can be considered as a main control of the
dissipation of the individual oscillator. To a certain extent the Rössler system
displays a dynamics similar to the dynamics of our more detailed physiological
models: For part of the time the Rössler system exhibits a relatively fast ex-
panding oscillatory dynamics close to the (x, y)-plane. This may be interpreted
as representing the relatively fast so-called myogenic oscillations that arise in
the blood flow regulation from periodic contractions of the smooth muscle cells
surrounding the afferent arteriole. When the amplitude of these oscillations be-
comes sufficiently large, the trajectories are folded back towards the unstable
equilibrium point to start a new outwards spiral. This may be interpreted as
representing the slower component of nephron oscillations that arise through a
feedback from variations in the sodium concentration in the tubular fluid [9, 2].
Our system thus takes the form:

I :

 ẋ1 = −y1 − z1

ẏ1 = x1 + a[1− α(x2 − x1 − c)]y1

ż1 = b + z1(x1 − c)
(1)

II :

 ẋ2 = −ωy2 − z2

ẏ2 = ωx2 + a[1− α(x1 − x2 − c)]y2

ż2 = b + z2(x2 − c)
(2)

where the parameter values throughout this paper are taken to be a = 0.057258,
b = 0.2 and c = 5.7. ω is a bifurcation parameter that controls the frequency
of system II. The value of a is defined as the mean value between the Hopf
bifurcation point and the first period-doubling. As described above the coupling
takes place via the variable y, and the coupling term for system I take the form

aeffy1 = a[1− α(x2 − x1 − c)]y1, (3)
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Figure 2: The period-doubling cascade to chaos in two coupled Rössler systems
together with the fraction of time spent at different values of aeff and the time
evolution of aeff at two different situations: (ω, α) = (1.001, 0.2) (gray) and
(ω, α) = (1.2, 0.2) (black).

where α is a coupling parameter and aeff may be considered as an effective,
time-dependent value of parameter a. When ∆x = x2−x1 > c the effective a in
system I reduces linearly and thus the rate of change in y due to the coupling
change non-linearly by aeffy1. In accordance with our previous comments, this
type of coupling may be called a resource mediated coupling [11], since param-
eter a may be considered to describe the flow of resources that maintain the
dynamics of the system. The system may be interpreted as a single Rössler sys-
tem, where a is oscillating over the period-doubling cascade and eventually into
the chaotic region. This is illustrated in Figure 2. The top panel of this figure
shows a one-dimensional bifurcation diagram for the single Rössler system with
a as parameter. The middle panel shows two examples of the fraction of time
that the effective a on average spend at specific values for a period two orbit
at (ω, α) = (1.001, 0.2) and for an ergodic torus at (ω, α) = (1.2, 0.2). Note,
that the period two orbit shows four spikes, two at the maxima and two at the
minima, where the rate of change of aeff is slow. The lower panel shows the
time evolution of aeff for the two cases.

3 Bifurcation analysis

Continuation methods represent a unique tool to follow bifurcations and thus to
understand how the two systems interact. We have applied this method to study
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the resonnance and synchronization mechanisms in the 1:1 Arnold’ tongue. Fig-
ure 3 shows the main bifurcations with the coupling parameter α and the forcing
frequency ω as bifurcation parameters. For low values of α the system is in a 1:1
resonant state and saddle-node bifurcation (labelled SNL

1 and SNR
1 ) form the

borders of the tongue. As α increases two different bifurcations occur, depending
on ω. At the borders of the resonance zone, period-doubling bifurcations take
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Figure 3: Main Arnold’ tongue (1:1) with part of the bifurcation structure. The
torus bifurcation inside the tongue give rise to quasi-periodic dynamics. It is
terminated by saddle node bifurcations (SNT

2 ) of a period-2 cycle, which exist
only in the region above SN2,T . Period-doubling bifurcations are drawn with
thick lines.

place, while around the center a torus bifurcation (T1) leads to the formation
of an ergodic torus. The torus is later destroyed by the birth of a period-2 cycle
in the saddle-node bifurcations (SNL

2,T and SNR
2,T ). The saddle-node bifurca-

tions extend towards the borders of the resonant region and become the new
borders for the 2:2 resonant region. At the point of contact between PD1 and
SNL

1 a new saddle-node bifurcation is born, which becomes the border for the
period-2 cycle that co-exist with the period-2 cycle emerging at SN2,T . Figure
4 shows the bifurcations along the dashed line at ω = 0.9955. Starting from the
period-1 cycle a period-doubling bifurcation (PD1) takes place, and the period-2
subsequently undergoes a second period-doubling at (PD2). The period-4 then
suffers a cusp bifurcation (SN4) and leaves the cascade to follow a second period-
doubling cascade (labelled with superscript 2). The new attractor undergoes a
full period-doubling cascade to chaos (not shown). A third attractor co-exist
in the range α > 0.19. This is the cycle that terminated the torus mentioned
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Figure 4: Bifurcations on the stable branch of the 1:1 resonance cycle along the
dashed line at ω = 0.9955 in Figure 3.
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Figure 5: Bifurcations on the unstable branch of the 1:1 resonance cycle along
the dashed line at ω = 0.9955 in Figure 3. Note, that in this figure saddles
are drawn with solid lines, doubly unstable nodes are dashed lines and triply
unstable nodes are dotted lines.
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above. It is born as a period-2 cycle. The first period-doubling (PD3
2) taking

place on this 2-cycle behaves in an unusual way, but this is likely to be due the
Poincaré section chosen, i.e. the projection of the orbit. The further evolution
shows a period-doubling cascade to chaos.

The looping of the period-doubling PD1 is typical for systems, where a
parameter is replace by a variable that span over a period-doubling cascade
and similar loops of other higher period-doublings exist. As we follow the stable
period-1 cycle it undergoes a period-doubling at (a) and turns into a saddle.
The saddle then undergoes a period-doubling at (b) and turns into an unstable
node. The remaining two intersections with PD1 take place on the unstable
branch of the period-1 cycle. Figure 5 shows the bifurcations on the unstable
branch. Similar, as for the stable branch, the 1-cycle undergoes two succesive
period-doublings at (c) and (d).

4 Conclusion

The coupling used here is a first attemp to approach the mechanisms involved
in the coupling between nephrons. Although the study is preliminary it has
brought valuable information on the bifurcation structure. This may be useful
in interpreting a larger study of a complete nephron tree with physiologically
more correct models. The dynamics of the two Rössler systems with the special
resource coupling are out of phase for all parameter ranges explored, because of
the symmetry of the coupling. The bifurcation structure show a termination of
a period-doubling cascade followed by a second period-doubling cascade, due to
a cusp bifurcation. A co-existing period-doubling structure was also found.
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The functional units of the kidney, called nephrons, utilize mechanisms that allow the
individual nephron to regulate the incoming blood flow in response to fluctuations in
the arterial pressure. This regulation tends to be unstable and to generate self-sustained oscil-
lations, period-doubling bifurcations, mode-locking and other nonlinear dynamic phenomena
in the tubular pressures and flows. Using a simplified nephron model, the paper examines how
the regulatory mechanisms react to an external periodic variation in arterial pressure near a
region of resonance with one of the internally generated mode-locked cycles. We show how the
stable and unstable resonance cycles generated in this response undergo interconnected
cascades of period-doubling bifurcations and how each period doubling leads to the formation
of a new pair of saddle-node bifurcation curves along the edges of the resonance zone. We also
show how period doubling of the resonance cycles is accompanied by a torus-doubling process
in the quasiperiodic regime that exists outside of the resonance zone.

Keywords: nephron autoregulation; multi-mode dynamics; forced period-
doubling system; C-type criticality; bifurcation analysis; torus doubling

1. INTRODUCTION

Living organisms operate under far-from-equilibrium
conditions [1]. This implies that many of the feedback
regulations that control the biological processes at
different time and space scales are unstable and produce
self-sustained oscillations and other complex nonlinear
dynamic phenomena.

The regulation of the incoming blood flow to the
individual functional unit of the kidney, for instance,
involves at least two different mechanisms that tend
to produce oscillatory dynamics [2,3]. The tubulo-
glomerular feedback (TGF) mechanism produces self-
sustained oscillations in the 40 mHz regime because of
a delay associated with the flow of fluid through the
loop of Henle, and the myogenic mechanism produces
vasomotoric oscillations in the 200 mHz regime in con-
nection with the synchronized activation of the smooth
muscle cells in the arteriolar wall in response to increas-
ing transmural pressures. Detailed statistical analyses
[4,5] have clearly shown how the oscillatory mechanisms
interact to produce different forms of synchronization
between the two modes. Similar analyses have revealed
episodes of period-doubling dynamics in nearly
50 per cent of the available time series for normotensive
rats. In rats with 2-kidney, 1-clip Goldblatt hyper-
tension and in spontaneously hypertensive rats, one

observes chaotic dynamics caused, presumably, by the
combination of an increased sensitivity in the myogenic
response and a stronger feedback gain for the TGF
mechanism.

We have recently examined the bifurcation structure
associated with the C-type period-doubling transition to
chaos in a periodically forced Rössler oscillator [6,7]. This
transition is characteristic of multi-dimensional systems
where the period-doubling bifurcations take place in the
presence of transitions between states of synchronized
and non-synchronized dynamics. We have demonstrated
how the stable (node) and unstable (saddle) cycles in the
forced Rössler system undergo interconnected cascades of
period-doubling bifurcations. Near the edge of the syn-
chronization zone, node and saddle cycles with the
same periodicity approach one another and at the very
edge, the period-doubling bifurcations occur simul-
taneously. Away from the edge of synchronization, the
node solution in the forced Rössler system tends to bifur-
cate first, i.e. for lower values of the parameter that
controls the nonlinearity of the system. More impor-
tantly, however, these period doublings take place in a
direction transverse to the unstable manifold of the
saddle cycle that connects the resonance modes, and
period-doubling transitions of the periodic modes are
accompanied by a torus-doubling process in the
quasiperiodic region outside the resonance zone.

Each pair of period-doubling bifurcations gives rise
to a new set of saddle-node bifurcation curves along
the sides of the resonance zone. As the period-doubling
cascade unfolds, the edges of the resonance zone thus
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accumulate more and more of almost parallel saddle-
node bifurcation curves, each defining the boundaries
of the resonance zone for a particular level of the
interconnected period-doubling cascades. The new
saddle-node bifurcation curves are supported by the
corresponding period-doubling curves, but are formed
a little away from the existing zone edge. This produces
a gap between the saddle-node bifurcation curves, and
additional local and global bifurcations are required to
complete the zone boundary [7]. We have also demon-
strated how the saddle-node bifurcations along the
edge of the resonance zone accumulate and, in an
alternating manner, approach a well-defined threshold
curve for the transition between phase-synchronized
chaos and non-synchronous chaos.

The purpose of the present paper is to demonstrate
how a similar structure arises in a model of the physio-
logical mechanisms by which the individual functional
unit (nephron) of the kidney regulates the incoming
blood flow to compensate for variations in arterial
pressure arising, for instance, from changing levels of
physical activity. As mentioned above, the individual
nephron generates two different and clearly recogniz-
able internal modes of oscillation. Interaction between
these modes leads to a variety of additional nonlinear
dynamic phenomena, including mode-locking, multi-
stability, period doubling and transitions to deterministic
chaos. Over the years, these phenomena have been
extensively studied both in experiments on anaesthe-
tized rats [2,8] and through model simulations [9,10].
In the frequency regime of interest for the present dis-
cussion, the nephron autoregulation functions as a
mechanical high-pass filter: rapid fluctuations in arter-
ial pressure are allowed to propagate into the tubular
system, but the delicate regulatory processes that
take place in the distal tubule are protected from
more lasting variations.

After a short introduction to the considered nephron
model [10,11] and a discussion of a few of the underlying
experiments, the paper first presents a two-dimensional
bifurcation diagram in order to clarify the organization
of the internal modes in the physiologically relevant
regime. We then apply an external periodic forcing
and determine the resulting bifurcation structure as a
function of the afferent arteriolar resistance and the fre-
quency of the applied forcing. Although the details of
the organization are somewhat different, we rediscover
many of the characteristic features associated with the
C-type criticality in the forced Rössler system: the
interconnected cascades of period-doubling bifurcations
for the resonant node and saddle cycles, the
accumulation of saddle-node bifurcation curves along
the edges of the resonance tongue, the gaps that open
up between the saddle-node bifurcation curves and
the torus-doubling process that takes place outside of
the resonance zone.

2. NEPHRON PRESSURE AND
FLOW REGULATION

It is well known that the kidneys function as a filter to
remove metabolic end products and regulate the

excretion of water and salts so as to maintain a
proper volume and osmolality of the blood and appro-
priate conditions for the cells in general. The kidneys
also play a part in the regulation of the blood pressure,
both directly by controlling the extracellular fluid
volume and through the production of hormones that,
together with hormones from other organs, regulate
the peripheral flow resistance of the vascular system.
At the same time, to protect their own function, the
individual nephrons in the kidney utilize two different
mechanisms that can compensate for variations in
the arterial blood pressure and maintain a relatively
constant filtration rate.

The myogenic mechanism depends on the inherent
propensity of the smooth muscle cells in the afferent
arteriolar wall to contract in response to an increasing
pressure difference across the arteriolar wall [3,12].
This contraction causes the flow resistance to increase
and, hence, leads to lower glomerular pressure and
reduced filtration. The TGF mechanism, on the other
hand, depends on a signal from specialized cells (the
macula densa cells) near the end of the loop of Henle.
These cells respond to changes in the salt concentration
in the fluid leaving the loop of Henle. A high rate of
glomerular filtration will lead to a faster flow through
the loop of Henle, to incomplete reabsorption of salt
from the tubular fluid, and to increasing concentrations
of salt at the macula densa. This produces a signal to
the smooth muscle cells in the arteriolar wall to
contract, thus causing the filtration to go down.

As mentioned above, experiments on rats [2,8] have
demonstrated that the TGF mechanism is unstable
and produces clearly detectable self-sustained oscil-
lations in the tubular pressures and flows with periods
in the 30–40 s range. This relatively long periodicity
is directly related to the time of approximately 15 s
that it takes for the tubular fluid to flow through
the loop of Henle. The myogenic (or vasomotoric)
mechanism is also capable of producing self-sustained
oscillations through synchronization of the cytoplasmic
Ca2þ dynamics among the smooth muscle cells in the
arteriolar wall as the muscular activation increases
[3,13]. As the entire signalling pathway for the myo-
genic mechanism is present with the individual
smooth muscle cell, its response time is faster than
that of the TGF mechanism. As a consequence, the cor-
responding myogenic oscillations have a period of only
5–10 s [14,15]. The two oscillatory modes both work
through activation of the smooth muscle cells in the
arteriolar wall. This allows the oscillations to interact
and to produce mode-locking and other nonlinear
dynamic phenomena [4,5]. The frequency ratios most
commonly observed between the two modes are 1 :4,
1 : 5 and 1 : 6 [16].

The autoregulatory system involves a number of non-
linear relations. A main nonlinearity acting to constrain
the amplitudes of the oscillatory modes is associated
with the limited dynamic range for the arteriolar con-
traction. This range, which differs between
normotensive and spontaneously hypertensive rats
[14,15], can be determined through open-loop exper-
iments where the rate of glomerular filtration is
measured as a function of the rate of infusion of
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artificial tubular fluid into the loop of Henle, while pre-
venting flow through the proximal tubule by means of a
wax seal [14,17]. The slope of this relation determines
the feedback gain factor a for the TGF mode. This
gain factor is typically 30–50% larger for spontaneously
hypertensive rats than for rats with normal blood
pressure [14,15]. Interaction between the two regulatory
mechanisms is also found to be significantly stronger in
hypertensive than in normotensive rats [5,18].

Figure 1 shows a typical example of the pressure
oscillations observed in the proximal tubule of a normo-
tensive rat. The mean tubular pressure in this
experiment is about 7 mmHg. However, this pressure
is modulated by relatively slow TGF-mediated oscil-
lations with amplitudes of the order of 1–2 mmHg.
The faster myogenic oscillations reveal themselves as a
ripple on top of the TGF oscillations. Wavelet analysis
clearly confirms their existence and can also detect how
their amplitudes and frequencies are modified by
the amplitude of the TGF oscillations [5]. Closer inspec-
tion of the time trace in figure 1a reveals an episode of
period-2 dynamics, extending approximately from time
200 s to 500 s, where the tubular pressure alternates
between shallow and deep minima. This part of the
time trace is magnified in figure 1b. The spectral distri-
bution shown in figure 1c also provides clear evidence
for the presence of subharmonic components corre-
sponding to half the frequency (or twice the period) of
the TGF signal. Approximately 50 per cent of our

time series for normotensive rats show evidence of
period doubling.

The tubular pressure variations in hypertensive rats
are much more irregular, even though the amplitudes
are often smaller. This is illustrated for a spontaneously
hypertensive rat in figure 2. The differences between the
two types of dynamics can probably not be related to a
single factor. We have already indicated that both the
feedback gain and the interaction between the two
regulatory modes are higher for hypertensive than
for normotensive rats. It is also likely that the higher
arterial pressure has shifted the working point on the
TGF feedback curve and enhanced the sensitivity of
the myogenic response. The main conclusions that can
be drawn from the time series for hypertensive rats
are that the myogenic component plays a stronger
role, that synchronization between the two modes is
less common, and that the experimentally observed
pressure variations for most practical purposes can be
considered as chaotic [18,19]. The spectral distribution
in figure 2c demonstrates the presence of three to four
subharmonic components to the TGF-mediated
oscillation.

Over the years, a range of different experiments have
been performed to determine the precise mechanisms
underlying the two modes of oscillation [8,15,17] and
to explicitly measure the different parameters and non-
linear relations. The proximal and distal tubule of
superficial nephrons can be detected on the surface of
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Figure 1. Experimental time series for the proximal tubular pressure in a normotensive rat. (a) Large amplitude oscillations
caused by an instability in the tubuloglomerular feedback (TGF). (b) Alternating deep and shallow minima signalling that a
period doubling has occurred. (c) Besides a strong peak at 40 mHz associated with the TGF frequency, the power spectrum
also demonstrates the presence of a pronounced subharmonic component at 20 mHz.
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the kidney and the tubular pressures can be measured
by means of a small glass pipette [2]. It is also possible
to examine the effect of a perturbation to the system by
infusing artificial tubular fluid into the loop of Henle at
rates of 5–10 nl min21. Besides open-loop experiments
to measure the feedback relation, experiments have
been performed to determine the tubular flow resist-
ance, the damping of the pressure oscillations along
the loop of Henle and the delay in the fluid flow [20].
Experiments have also been made to determine the
amplitude and phase of the NaCl concentration oscil-
lations near the macula densa and to determine the
degree of cross-talk between neighbouring nephrons [21].

The ability of the renal autoregulation to handle
external pressure fluctuations can be tested by applying
a forcing signal to the arterial pressure while simul-
taneously recording the spectral distributions of the
variations observed in this pressure and in the renal
blood flow. In practice, the experiment can be performed
[15] by connecting a computer-operated pump that gen-
erates broadband fluctuations at the distal end of the
abdominal aorta through a blood-filled cannula.

Figure 3 shows an example of the frequency charac-
teristics observed in such an experiment and covering
the range from 1 mHz to 1 Hz. This characteristic
clearly shows the damping of the pressure oscillations
in the nephron blood flow at frequencies lower than
30 mHz. Also revealed are the resonances characteristic
of the autoregulatory system: the relatively slow TGF

mode at about 40 mHz and the faster myogenic mode
around 200 mHz. We conclude that the nephron auto-
regulation functions as a high-pass filter that protects
the nephron against more long-term variations in the
arterial pressure. Fluctuations above the range of the
myogenic oscillations are likely to be damped out by
the dissipative processes associated with the fluid flow
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Figure 2. Experimental time series for the proximal tubular pressure in a spontaneously hypertensive rat. (a) The fast myogenic
oscillations are strongly excited. (b) Magnified continuation of the time series in (a). Synchronization between the fast myogenic
and slow TGF-mediated oscillations often does not occur. (c) The power spectrum shows a cascade of subharmonic components.
Similar results are obtained for 2-kidney, 1-clip Goldblatt hypertensive rats [15,16].
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through the loop of Henle. The TGF mechanism is
unique to the nephrons. By virtue of the enormous
blood flow that the kidneys have to handle, the TGF
mechanism is required as a reinforcement of the myo-
genic mechanism. The frequency response of the TGF
mechanism is restricted, though, by the delay in the
Henle flow and, while reduced in amplitude by a
factor of the order of two, the TGF oscillations are
still present in the distal tubular pressure and salt con-
centration. By allowing the feedback to be oscillatory,
the system presumably achieves the fastest possible
reaction with the given delay.

3. SIMPLIFIED SINGLE NEPHRON MODEL

Together with the experimental work we have
constructed a number of different models of the auto-
regulatory system [10,14,19,22]. These models each
emphasize particular aspects of the problem such as,
for instance, the absorption processes in the loop of
Henle [2] or the mechanisms involved in the feedback
from the macula densa cells to the smooth muscle
cells in the arteriolar wall [22]. In the present paper,
we shall use the simplified model described by
Mosekilde et al. [11]. This model is particularly useful
for more detailed bifurcation studies. The model inte-
grates the most essential aspects of nephron
autoregulation into a consistent picture and, over the
years, it has been able to predict several phenomena
that have subsequently been detected in the experimen-
tal data. The model has also been used to examine
different types of nephron–nephron interaction
[23–25].

The first component in the model is a simple conser-
vation equation that relates changes in the proximal
tubular pressure to the rate of glomerular filtration,
the absorption in the proximal tubule and the flow
into the loop of Henle. This is combined with a
number of algebraic equations that determine the rate
of glomerular filtration in terms of the arterial pressure
and the afferent arteriolar resistance and determine the
rate of flow into the loop of Henle in terms of the prox-
imal tubular pressure, the distal pressure and the
tubular flow resistance. Calculation of the rate of glo-
merular filtration also involves an equation that
relates the protein osmotic pressure to the protein con-
centration in the arteriolar blood. The TGF-mediated
variation in the afferent arteriolar resistance is deter-
mined from the measured open-loop feedback relation,
but also includes a smooth delay to represent the time
it takes for the fluid to pass the loop of Henle. Finally,
we have applied a couple of first-order differential
equations to simulate the myogenic mechanism that
generates the fast oscillatory component. In the form
we use the model here, these equations describe a
damped oscillator, but the myogenic oscillations are
continuously excited through the variation in the
arteriolar resistance caused by the TGF mechanism.

Figure 4 shows a two-dimensional bifurcation dia-
gram for the unforced nephron model in a parameter
plane spanned by the delay time T in the loop
of Henle and the gain factor a for the TGF mechanism.

Normal values for the feedback delay are about T ¼ 15 s
and, as defined in the model, the feedback gain factor
is typically a ¼ 10–15 for normotensive rats and some
30–50% larger for spontaneously hypertensive rats.
However, as explained above, other parameters also
differ between the two strains of rats and it is, therefore,
of interest to consider higher values of a where excitation
of the myogenic oscillations becomes stronger.

The horizontal curve H at a � 10 represents the
Hopf bifurcation at which the onset of the TGF-
mediated oscillations takes place. Below this curve,
the nephron autoregulation displays a stable equili-
brium point, and TGF-mediated oscillations do not
occur. Experimentally, nephrons in normotensive rats
are found to operate above, but relatively close to this
threshold in most cases. As previously mentioned, the
myogenic oscillations are assumed to be damped, but
to be continuously excited by the TGF-mediated oscil-
lations. The regions delineated by the dotted curves and
denoted as 1 : 1, 1 : 2, 1 : 3, 1 : 4 and 1 : 5 represent the
different regions of synchronization between the myo-
genic and the TGF-mediated oscillations. For small
values of a, the myogenic oscillations lock directly
into a 1 : 1 mode as one expects for a periodically
driven oscillator at low amplitudes. As the gain factor
increases, the excitation of the myogenic oscillator
becomes stronger, and a shift to higher and higher exci-
tation frequencies occurs. Double-wavelet analysis of
the experimental data has confirmed that the most
common frequency ratios under realistic conditions are
1 : 4 and 1 : 5 [4], i.e. the myogenic mode completes
four or five oscillations each time the slower
TGF-mediated mode completes one full period.
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Figure 4. Two-dimensional bifurcation diagram for the
unforced nephron model. The control parameters are the
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lations. Fully drawn curves are period-doubling bifurcation
curves and dashed curves are saddle-node bifurcation curves.
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point of operation considered in the following numerical
study.
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The fully drawn curves represent period-doubling
bifurcations. In the middle of the figure, for instance,
we observe two cascades of period-doubling bifurcations
denoted PD1

1:5, PD2a
1:5, PD2b

1:5, etc., for the 1 : 5 mode-
locked solution. In a period-doubling bifurcation, an
existing stable periodic motion loses its stability and is
replaced by a stable motion that oscillates alternatingly
between two different amplitudes (see, e.g. the exper-
imental pressure trace in figure 1). At the curve
PD1

1:5, for instance, the synchronized 1 : 5 mode is
replaced by a 2 : 10 mode in which the oscillation
repeats itself only after two full TGF oscillations and
10 myogenic oscillations. This type of transition is
common for nonlinear dynamic systems and often
leads to a complete cascade of period-doubling bifur-
cations to deterministic chaos. We notice that mode-
locking is maintained between the two oscillatory com-
ponents during the period-doubling process.

A little to the left, the 1 : 4 mode-locked solution is
found to undergo similar cascades of period-doubling
bifurcations. The dashed curve denoted SN1

4–5 is a
saddle-node (or fold) bifurcation curve that delineates
the region of coexistence between the 1 : 4 and 1 : 5
mode-locked solutions. In this region, depending on the
initial conditions, the model will approach a dynamics
with either four myogenic oscillations per TGF oscil-
lation or five myogenic oscillations per full cycle of the
TGF oscillation. A saddle-node bifurcation in general
denotes a transition in which a stable periodic motion
(the node) appears or disappears through collision with
an unstable cycle (the saddle) of the same periodicity.
In the present case, the region of 1 : 5 dynamics extends
all the way to the left-hand branch of SN1

4–5, where the
stable 1 : 5 cycle collides with an unstable 1 : 5 cycle.
Similarly, the region of 1 : 4 dynamics extends all the
way to the right-hand branch of SN1

4–5.

4. PERIODICALLY FORCED NEPHRON

Let us now start to examine the response of the
single nephron model to an externally applied periodic
variation in the arterial pressure of the form

PaðtÞ ¼ Pa;0ð1þ A sinðvtÞÞ; ð4:1Þ

where Pa,0 ¼ 13.3 kPa is the average arterial pressure.
A ¼ 0.0075 is the relative amplitude of the sinusoidal
pressure variation and v the angular frequency. This
frequency is chosen to be close to the TGF frequency
of the unforced system.

To be specific, we have chosen a point of operation
O corresponding to a delay T ¼ 16 s for the Henle
flow and a gain factor a ¼ 24 in the TGF feedback
(figure 4). With these parameters, the TGF-mediated
oscillation has a period of about 40 s, corresponding
to an angular frequency v0 ¼ 0.155 s21. Moreover, the
model operates in a regime where the 1 : 5 mode-locked
solution for the two internally generated oscillations
coexists with the 2 : 8 solution (i.e. with the 1:4 solution
after its first period doubling). The forcing amplitudes
that we can apply must, obviously, be fairly small both
to avoid breaking up the mode-locking between the

internally generated modes and to reduce the effect of
mixing between the coexisting modes.

Figure 5 provides an overview of the two-dimensional
bifurcation diagram for the forced nephron model using
the angular forcing frequency v and the equilibrium
value of the afferent arteriolar resistance Ra,0 as control
parameters. We recall that the instantaneous value of
the afferent resistance is the variable through which
both the myogenic and the TGF-mediated regulations
are effectuated.

The first thing to notice when inspecting figure 5 is
the different shading we have applied to distinguish
among different types of dynamics. White denotes syn-
chronized periodic dynamics, i.e. in the white regions
the internally generated mode-locked solutions synchro-
nize with the externally applied forcing signal. This
synchronization involves either the internally generated
1 : 5 periodic solution (in the middle of the figure) or
the internally generated 1 : 4 solution (in the lower
right corner of the figure). Hatched light grey areas
are regions with ergodic two-mode dynamics (quasi-
periodicity), while the light grey regions represent
phase-synchronized chaos. In the region of ergodic
two-mode dynamics (quasiperiodicity), the internally
generated 1 : 4 (or 1 : 5) mode fails to synchronize with
the external forcing signal. The result is a type of
motion that never repeats itself but gradually fills out
a two-dimensional torus surface in phase space. In the
region of phase-synchronized chaos, the system displays
dense sets of unstable periodic solutions, but in such a
manner that all of these solutions are synchronized
with the external forcing [11,26,27]. Finally, the dark
grey areas to both sides of the 1 : 5 synchronization
zone represent non-synchronous chaos. The curves
denoted T are torus bifurcation curves where the
periodic solution loses stability as two complex conju-
gated eigenvalues cross out of the unit circle, and
quasiperiodic dynamics results.

2.4

0.145 0.150 0.155 0.160 0.165

2.5
3:15

1:5

1:5

1:4

2.6

A

B

2.7

2.8

SN1

SN1

SN1
1:4

T1
1:4

PD1

SN2 T2

SN4

SN1

PDU
1

PDS
1

PDS
2

w (s–1)

R
a,

0 
(k

Pa
 (n

l s
–1

)–1
)

U,1:4

PD1
S,1:4

Figure 5. Two-dimensional bifurcation diagram for the
forced nephron. Control parameters are the angular frequency
v of the forcing signal and the equilibrium value of the
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The following discussion will focus on the bifur-
cations observed for the internally synchronized 1 : 5
mode. Hence, we have dropped the superscript 1 : 5 on
the bifurcation curves that relate to this mode and
retained only the subscripts 1, 2, 4, etc., to denote the
periodicity of the bifurcating mode relative to the
forcing signal. For the period-doubling curves, super-
script S denotes a period doubling of a stable cycle
(node) and superscript U denotes period doubling of
an unstable cycle (saddle).

Before we leave the 1 : 4 mode, let us note that the
region in figure 5 where this mode synchronizes with
the external forcing continues to exist in the part of
the region of resonance with the 1 : 5 mode. We also
notice that the torus arising in the torus bifurcation
T1

1:4 destroys almost immediately and gives rise to syn-
chronized chaotic dynamics. Besides, by this torus
bifurcation, the visible part of the 1 : 4 synchronization
regime is primarily delineated by the saddle-node bifur-
cation curve SN1

1:4. At this saddle-node bifurcation, a
pair of 1 : 4 saddle and stable node cycles is born. The
saddle cycle undergoes a period-doubling bifurcation
at PD1

U,1:4, and the node doubles its period when cross-
ing the curve PD1

S,1:4 in the downward direction.
Together, these two curves form a closed period-
doubling curve that is tangent to the edge of the
resonance zone on both sides. Below PD1

S,1:4, period
doubling of the 1 : 4 stable node and saddle solution
continues (not shown) in a manner similar to the
development described below for the 1 : 5 modes.

To better understand the bifurcation structure for
the region in parameter space where the internally gen-
erated 1 : 5 mode-locked solution synchronizes with the
external forcing, we have drawn the simplified bifur-
cation diagrams reproduced as figure 6a,b. Along its
left-, respectively, right-hand side, the 1 : 5 synchroniza-
tion regime is primarily delineated by the two branches
SN1

L and SN1
R of the saddle-node bifurcation curve

SN1. In the projection shown in the figure, this curve
displays an extra fold structure, causing some added
complexity to the variation of the stability of the 1 : 5
synchronized mode.

At the boundary of the resonance zone, a pair of
saddle and stable node 1 : 5 mode-locked solutions
arises. If we follow the development along the main
diagonal starting in the upper right corner, the stable
1 : 5 solution undergoes its first period doubling at the
curve PD1

S, and the saddle solution doubles its period
at PD1

U. The two branches of the period-doubling
curve meet at the points a1 and b1, where the curve is
tangent to the saddle-node bifurcation curve SN1

L.
Close to the saddle-node bifurcation curve, the 1 : 5
node and saddle cycles approach one another, and at
the very edge of the synchronization regime, the
period-doubling bifurcations of the node and saddle sol-
utions occur simultaneously. The points denoted a1 and
b1 (open circles) are thus so-called codimension-2 points
in which two Floquet multipliers simultaneously cross
the unit circle, one through þ1 and one through 21.
(The Floquet multipliers measure the rates at which
neighbouring trajectories approach or move away from
a given periodic orbit. A Floquet multipler that exceeds
1 in numerical value signals instability. A Floquet
multipler of þ1 indicates a saddle-node bifurcation
and a multiplier of 21 indicates a period-doubling
bifurcation.)

To the left of the period-doubling curves PD1
S and

PD1
U, the system, besides a saddle and a doubly

unstable 1 : 5 node solution, displays a pair of saddle
and stable node 2 : 10 solutions. The region of existence
for the 1 : 5 cycles continues to be delineated by SN1

L

and SN1
R. To bound the range of existence for the two

2 : 10 cycles, a new saddle-node bifurcation curve SN2
L

is born. This saddle-node bifurcation curve is supported
by the period-doubling curves PD2

S and PD2
U in points

(full circles) close to, but not coinciding with a1

and b1. We shall return to the detailed bifurcation
structure around these points in §5.

Closer inspection of figure 6a shows that the period-
doubling curves PD1

S and PD1
U together have four

additional points of tangency with the saddle-node
bifurcation curve SN1, denoted c1, d1, e1 and f1. The
presence of these points gives rise to further complexity
in the bifurcation structure. However, this complexity is
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not directly in the focus of the present study. Hence, we
shall not discuss the bifurcations here, but only mention
that the full analysis includes various torus birth bifur-
cations in which the number of unstable directions for
the involved cycles is adjusted up or down by two.
These processes are similar in several respects to the
processes we shall discuss in §5.

As illustrated in figure 6b, the stable 2 : 10 cycle
undergoes a new period doubling at PD2

S, and
the 2 : 10 saddle solution period doubles at PD2

U.
The two branches of the second period-doubling curve
meet at the points a2 and b2 on the saddle-node bifur-
cation curve SN2

L, where the node and saddle 2 : 10
cycles simultaneously period-double, merge and disap-
pear. We can hereafter follow the repetition of the
same process through a complete period-doubling
cascade and via a region of phase-synchronized
chaos (figure 5) to the large period-3 window (denoted
3 : 15) in the middle of the figure. Each time a pair of
saddle and stable node cycles period-double, a new
saddle-node bifurcation curve arises to delineate the
range of existence for the period-doubled cycles.

To illustrate the results of the above discussion,
figure 7a,b shows a couple of one-dimensional bifur-
cation diagrams obtained by scanning across the 1 : 5
synchronization regime along the lines A and B in
figure 5. Following the transitions observed in
figure 7a from right to left, we first observe the for-
mation of a pair of saddle (dashed curve) and stable
node (solid curve) 1 : 5 cycles from the ergodic torus
that exists to the right of the saddle-node bifurcation
curve SN1

R. At PD1
S, the stable node cycle undergoes a

period-doubling bifurcation, and at PD1
U, the 1 : 5

saddle cycle suffers a similar bifurcation. At SN1
L, the

two 1 : 5 modes (now a saddle and a doubly unstable
node) merge and disappear. The 2 : 10 saddle and
stable node cycles continue to the saddle-node bifur-
cation SN2

L where they merge and disappear. It is
interesting to note that the ergodic torus formed in

this process is a period-doubled torus [28,29]. As dis-
cussed below, we generally expect the merger and
disappearance of a pair of period-2n (n ¼ 0,1,2 . . .)
saddle and stable node cycles to produce an ergodic
torus that has the same periodicity. In many cases,
the range of existence for these period-doubled tori is
very narrow. They tend to disintegrate into non-
synchronous chaos a little away from the resonance zone.

The processes observed along scan line B in figure 7b
initially follow the same pattern as those along scan line
A. After period doubling of the stable 1 : 5 node at PD1

S,
there is a small interval with ergodic torus dynamics
(quasiperiodicity) before the stable period 2 : 10 node
proceeds through a complete period-doubling cascade
to phase-synchronized chaos. The resonant 1 : 5 saddle
cycle undergoes its first period doubling at PD1

U and
thereafter completes a period-doubling cascade leading
to a dense set of doubly unstable nodes. In the mean
time, the doubly unstable 1 : 5 node and the 1 : 5
saddle cycle produced in the period-doubling processes
PD1

U and PD1
S merge and disappear in the saddle-

node bifurcation SN1
L, and the doubly unstable 2 : 10

node and the 2 : 10 saddle cycle produced in PD2
U and

PD2
S have merged and disappeared in the saddle-node

bifurcation SN2
L. Similarly, as we approach the left

edge of the synchronization regime, many of the other
solutions produced in the interconnected period-
doubling cascades gradually merge and disappear,
leading the system into a state of non-synchronous chaos.

Figure 8 illustrates the phenomenon of torus dou-
bling [28,29]. Here we have plotted simultaneous
values of the Henle flow and the proximal tubular
pressure as determined from a sequence of Poincaré sec-
tions of the ergodic torus that exists along the outside
edge of the resonance zone a little to the left of the
point b1 where the first period-doubling curve PD1 is
tangent to the saddle-node bifurcation curve SN1

L.
The equilibrium value of the afferent arteriolar flow
resistance Ra,0 is used as a bifurcation parameter, and
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Figure 7. One-dimensional bifurcation scans along the directions A and B shown in figure 5a. (a) Direction A: the node and saddle
1 : 5 resonance cycles arising in SN1

R undergo period-doubling bifurcations at PD1
S and PD1

U, respectively, to subsequently disap-
pear in the saddle-node bifurcation SN1

L. The 2 : 10 resonance cycles produced in the period-doubling bifurcations disappear in the
saddle-node bifurcation SN2

L, producing a period-2 ergodic torus. (b) Direction B: both cycles undergo a complete period-doubling
cascade first leading to phase-synchronized chaos and subsequently to non-synchronous chaos. Only the first three period-
doubling bifurcations of the infinite cascades are shown.
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the angular frequency of the forcing signal is kept con-
stant at v ¼ 0.1505 s21. To the left in the figure, i.e.
for Ra,0 , 2.44 kPa (nl s21)21, we observe the cross-
section of a normal ergodic torus with points
distributed along a closed invariant curve. As we
increase the arterial resistance Ra,0, the return points
of the trajectory alternatingly follow two different
loops of a period-doubled invariant curve.

5. DETAILS OF THE BIFURCATION
STRUCTURE

The bifurcation diagram in figure 5 includes a consider-
able number of additional details, some of which are
generic for the C-type period-doubling transition
while others are specific for the considered model.
Among the generic aspect is the fact that the new
saddle-node bifurcation curves that emerge after a
period-doubling bifurcation of a pair of saddle and
stable node cycles emanate in points of the period-
doubling curves close to, but not in the points of
tangency with the previous saddle-node bifurcation
curves. To illustrate this, figure 9 shows an enlargement
of a part of the bifurcation diagram around the point b2

in figure 6b. We notice how the saddle-node bifurcation
curve SN4

L emerges from a point Q on the unstable
branch of the period-doubling curve PD2 different from
the point of tangency b2 with SN2

L. A little above Q we
observe another point (closed circle). This is the point
in which the torus bifurcation curve T4 that bridges
between SN2

L and SN4
L is supported by SN4

L.
As described above, the saddle-node bifurcation

curve SN2
L delineates the range of existence for cycles

with 2:10 mode-locking. Below b2, a pair of 2:10
saddle and stable node cycles are born as the system
crosses through SN2

L from left to right. Above b2, the
pair of 2:10 saddle and doubly unstable node cycles aris-
ing from the period-doubling bifurcations PD2

S and PD2
U

merge and disappear as the system passes through SN2
L

from right to left. SN4
L similarly delineates the range of

existence for solutions with 4:20 mode-locking. The gap
between the two saddle-node bifurcation curves would
allow 4:20 mode-locked solutions to escape from the

synchronization regime had it not been for the presence
of the supercritical torus bifurcation curve T4. At
this curve, the stable 4 : 20 cycle (now of focus type)
looses its stability as two complex conjugated eigen-
values cross out of the unit circle and a period-4
ergodic torus is formed. The doubly unstable 4 : 20
cycle (now again a node) subsequently undergoes a
reverse period-doubling bifurcation at PD2

U, and the
doubly unstable 2 : 10 node produced disappears in
the saddle-node bifurcation SN2

L.
Similar phenomena take place in the neighbourhood

of other codimension-2 points. In some cases, the torus
bifurcation is subcritical and accompanied by a torus
fold bifurcation. The saddle-node bifurcation curve
SN4 that delineates the region of stable period-4
dynamics arises from a point on the stable branch of
PD2. The saddle-node bifurcation curve SN8 hereafter
emerges from a point on the unstable branch of PD4,
and the saddle-node bifurcation curve SN16 emerges
from a point on the stable branch of PD8. In general,
we find that the point of emergence for a new saddle-
node bifurcation curve tends to alternate through the
period-doubling cascade between the stable and
unstable branches of the period-doubling curves. More-
over, if the saddle-node bifurcation curve in one side of
the period-doubling curves emanates from the stable
branch, the saddle-node bifurcation curve at the other
side emanates from the unstable branch. As the cascade
of period-doubling bifurcations unfold, more and more
saddle-node bifurcation curves accumulate along the
edge of the resonance zone. Except for the first few
saddle-node bifurcation curves, this accumulation
process takes place in an alternating manner and leads
to a limiting curve that delineates the existence of
phase-synchronized chaos.

6. DISCUSSION

The formulation of dynamic and mechanism-based
descriptions of living systems represent an enormous
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challenge, not only to the biological sciences, but also to
mathematics, physics and computer science. Part of this
challenge arises from the fantastic number of different
processes and feedback mechanisms involved in the
regulation of the biological functions and the extraordi-
nary ranges of time and space over which this regulation
is maintained. Another contribution derives from the
heterogeneity of biological tissues and structures. In
the years to come, the biological sciences are likely to
become an important test bed for the development of
new advanced concepts and approaches in mathematics
as well as in physics.

However, as emphasized in §1, an additional source
of complexity derives from the fact that living systems
operate under far-from-equilibrium conditions. This
implies that many feedback regulations are unstable
and produce self-sustained oscillatory dynamics. Non-
linearity in the feedback and interaction between the
oscillatory processes give rise to even more complicated
dynamics in the form, for instance, of period-doubling
transitions or transitions between different forms of
resonance dynamics. The cells and organs make use
of these complex phenomena both to regulate their
internal processes and as a means to communicate
with other cells and organs.

Nephron autoregulation can be viewed as a set of
mechanisms that serve to protect the delicate processes
in the distal tubule from fluctuations in the arterial
pressure. Experimental studies applying broadband
random perturbations to the arterial pressure have
shown [15] that the regulation works as a high-pass
filter that provides damping for arterial pressure vari-
ations slower than the response time of the TGF
regulation. However, experimental studies also show
that the two mechanisms involved in nephron autoregu-
lation—the myogenic and the TGF mechanism—both
produce oscillatory dynamics and that coupling
between these oscillations and nonlinearity in the sys-
tems produce both mode-locking and period-doubling
transitions.

Recent theoretical analyses have shown that the
period-doubling transition to chaos along the edge of
a resonance zone displays an unusual organization and
scaling behaviour, denoted as cyclic or C-type critical-
ity [30]. It is also known that forced period-doubling
systems may be associated with the appearance of
period-doubled ergodic tori along the outside edge of
the resonance zone. This phenomenon was first
observed by Arnéodo et al. [28] and by Kaneko [29]
who found torus doubling both for multi-dimensional
maps and for time-continuous systems and described,
for instance, how a finite number of torus-doubling
bifurcations can lead to chaotic dynamics. More
recently, Sekikawa et al. [31] have demonstrated the
transition to chaos through a series of subsequent
torus-doubling bifurcations in an electronic circuit,
and Sekikawa et al. [32] have illustrated the occurrence
of torus-doubling bifurcations in coupled logistic and
sine-circle maps.

Kuznetsov and co-workers [30,33,34] determined the
scaling relations for the period-doubling process along
the edge of an Arnold tongue, and Kuznetsov [35]
examined a number of related problems, including the

effect of noise on the dynamics near the torus-doubling
terminal point for a quadratic map subjected to
quasiperiodic forcing. To our knowledge, however, no
realistic example of this type of behaviour has so far
been described, and the associated bifurcation structure
still remains largely unexplored.

Using a simplified nephron model, we have per-
formed a detailed analysis of the response of the
regulatory system to variations of the arterial pressure
with periods close to the period of the TGF-mediated
oscillations. To our knowledge, this analysis also rep-
resents the first study of a C-type period-doubling
transition in a realistic system. This transition, which
is generic for forced period-doubling systems [30], is
characterized both by a particular bifurcation structure
and by specific scaling relations.

The bifurcation structure involves a cascade of simul-
taneously occurring saddle-node and period-doubling
bifurcations on the edge of the synchronization zone.
At the same time, one can observe the process of
torus doubling along the outside boundary of this
zone. Each pair of period-doubling bifurcations of the
resonant saddle and stable node solutions leads to the
formation of a new pair of saddle-node bifurcations
along the zone edge. These saddle-node bifurcation
curves arise from points on the period-doubling curves
away from the points of tangency with the previously
formed saddle-node bifurcation curves. This leaves a
gap in the zone edge, a gap that is closed by either a
sub- or a supercritical torus bifurcation curve. In the
case of a subcritical torus bifurcation, this will in
general be accompanied by a global (torus fold) bifur-
cation. In this way, the stable resonance node and the
corresponding saddle cycle always communicate with
an ergodic torus of the same periodicity across the
edge of the resonance zone.

As the period-doubling cascade unfolds, more and
more saddle-node bifurcations accumulate along the
zone boundary. In accordance with the scaling theory
[30], our detailed simulations indicate that this accumu-
lation takes place in an alternating manner and in the
limit leads to a well-defined curve that delineates the
region of phase-synchronized chaos from that of non-
synchronous chaos.

The presence of noise in the biological system will
obviously wash out some of the finer details in the bifur-
cation structure. However, double-wavelet analysis and
other effective statistical methods have allowed us to
clearly demonstrate the existence both of episodes of
period-doubling behaviour and of intra-nephron syn-
chronization in the temporal variation of the proximal
tubular pressure [5]. Transitions between different
states of dynamics may represent elements in the
normal physiological regulation or they may signal the
development of a disease. Some types of hypertensive
rats, for instance, are clearly distinct in their tubular
pressure dynamics as well as in their intra- and inter-
nephron synchronization behaviours.

We thank A. N. Pavlov for performing the wavelet analyses of
the tubular pressure variations. The project was sponsored by
the European Union through the Network of Excellence
BioSim (contract no. LSHB-CT-2004-005137).
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The mechanisms by which the individual functional unit (nephron) of the kidney regulates the incoming
blood flow give rise to a number of nonlinear dynamic phenomena, including period-doubling bifurcations
and intra-nephron synchronization between two different oscillatory modes. Interaction between the nephrons
produces complicated and time-dependent inter-nephron synchronization patterns. In order to understand the
processes by which a pair of vascular coupled nephrons synchronize we have performed a detailed analysis of
the bifurcations that occur at the threshold of synchronization. We have shown that these transitions involve
infinite cascades of mutually connected saddle-node, torus and homoclinic bifurcations. To demonstrate the
universality of this bifurcation structure for coupled period-doubling systems we have shown that the same
structure arises in a system of two coupled Rössler oscillators.
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RESUME

Besides their system’s nature, by which we refer to
the enormous number of interacting feedback regulations
that control the biological processes, living organisms are
characterized by their sustained and self-generated activ-
ity. This activity, ranging from genetic clocks over the
complex bursting of spiking dynamics by which the cells
organize their internal processes and communicate with
their neighbors, to the pacemaker activities and rythms
of the brain, arises through instabilities and nonlinear
dynamic phenomena.
Regulation of the blood flow to the individual func-

tional unit (nephron) of the kidney likewise involves
mechanisms that produce self-sustained oscillations, syn-
chronization of different oscillatory modes in the individ-
ual nephron and period-doubling transitions. Moreover,
adjacent nephrons interact with one another through sig-
nals that propagate along their connecting blood vessels.
This interaction causes the nephrons to synchronize their
blood flow regulation in a complex spatial pattern that
reflects the underlying structure of blood vessels but also
show temporal variations, indicating that they play an
integrated part in overall kidney regulation.
The purpose of the present paper is to examine the

processes involved in the synchronization and desynchro-
nization of neighboring nephrons. We show that these
transitions involve an interesting new structure of inter-
connected bifurcations. More precisely, we find that the
transition from non-synchronized chaos to synchronized
periodic dynamics besides a saddle-node bifurcation in-
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b)Electronic mail: erik.mosekilde@fysik.dtu.dk
c)Electronic mail: nhhr@sund.ku.dk

volves the combination of a torus bifurcation and a homo-
clinic bifurcation. Moreover, these bifurcations are orga-
nized in a characteristic structure such that a new sets of
bifurcation curves arise for each period-doubling bifurca-
tion of the individual nephron. We show that this struc-
ture is common to a class of interacting period-doubling
systems by demonstrating its occurence in a pair of cou-
pled Rössler systems.

I. INTRODUCTION

Synchronization and other nonlinear dynamic phenom-
ena play an essential role in the regulation of normal
physiological systems1. Activation of a tissue of smooth
muscle cells, for instance, typically involves the gradual
recruitment of the cells into a state of synchronization
where incoherent cytoplasmic calcium fluctuations in the
individual cells interact to produce an overall oscillatory
dynamics2. In other cases, such as Parkinson’s tremor,
the development of the disease may be ascribed to the
transition of a cluster of brain cells from a state of rela-
tively independent spiking into a state of strong synchro-
nization. Patients who cannot be treated through medi-
cation may often be helped by deep brain electrical stim-
ulation designed to de-synchronize the cellular dynamics3

or through selective modulation of brain rhythms by
means of multi-electrode arrays4.

As part of an effort to understand the relation between
hypertension and kidney function we have long been en-
gaged with a study of nephron autoregulation, i.e., of
the mechanisms by which the individual functional unit
of the kidney regulates the incoming blood flow in re-
sponse to variations in the arterial pressure5–7. This reg-
ulation involves two different mechanisms: A myogenic
mechanism that reacts directly to changes in the arte-
rial pressure, and a so-called tubuloglomerular feedback



2

(TGF) mechanism that responds to signals from special-
ized cells (the macula densa cells) near the terminal part
of the loop of Henle.

The myogenic mechanism depends on an inherent
propensity of the smooth muscle cells in the arteriolar
wall to contract in response to an increasing pressure
difference across the vascular wall8,9. This contraction
causes the flow resistance to increase and, thereby, leads
to a lower glomerular pressure and a reduced rate of
filtration. The TGF mechanism, on the other hand,
depends on a response from the macula densa cells to
changes in the salt concentration of the tubular fluid. A
high rate of glomerular filtration leads to a faster flow
through the loop of Henle, to incomplete reabsorption of
salt from the tubular fluid, rising salt concentrations at
the macula densa, and a signal to the smooth muscle cells
in the arteriolar wall to contract, thus causing the rate
of filtration to decline.

The TGF mechanism is a negative feedback. However,
as demonstrated in experiments on rats5,6, this mecha-
nism tends to be unstable and to produce large ampli-
tude self-sustained oscillations in the tubular pressures
and flows with periods in the 30-40 sec range. The insta-
bility in the feedback regulation and the relatively long
periodicity of the oscillations are directly related to the
time of 12-15 sec that it takes for the tubular fluid to
pass the loop of Henle10.

The myogenic (or vasomotoric) mechanism also pro-
duces oscillations in the afferent arteriolar resistance as
the muscular activation increases. In this case, the tran-
sition to self-sustained oscillations takes place through
synchronization of the cytoplasmic Ca+2 waves in the in-
dividual cells as discussed above2,8. The period of the
vasomotoric oscillations in the afferent arterioles of the
kidney is typically 6-8 sec, or approximately a factor 5
shorter than the period of the TGF oscillations.

The two regulatory mechanisms both work through
activation of the smooth muscle cells in the arteriolar
wall. This allows the modes to interact and to produce
frequency-locking with typical locking ratios of 1:4, 1:5
and 1:611,12. Nephron pressure and flow regulation in-
volves a number of additional nonlinear relations, includ-
ing the nonlinear feedback characteristic for the TGF
mechanism13, the nonlinear static strain-stress relation
for the arteriolar wall14, and the nonlinear relation be-
tween the concentration and osmotic pressure of protein
in the efferent blood. As a result, episodes of period-2
dynamics can be observed in about 50% of the experi-
mental time traces for the proximal tubular pressure in
normotensive rats15.

Figure 1 shows an example of such a time series. The
mean tubular pressure in this experiment is about 7
mmHg. But this pressure is strongly modulated by rela-
tively slow TGF-mediated oscillations with an amplitude
of about 1-2 mmHg. The faster myogenic oscillations
manifest themselves as a ripple on top of the TGF oscil-
lations. Closer examination of the time trace in Fig. 1(a)
reveals an episode of period-2 dynamics lasting approxi-
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FIG. 1. Experimentally observed time series for the proximal
tubular pressure in a normotensive rat. (a) Large amplitude
oscillations produced by instability in the tubuloglomerular
feedback (TGF). (b) Alternating deep and shallow minima
signaling period-2 dynamics. (c) Power spectrum showing
the main TGF peak at 40 mHz together with a subharmonic
component at 20 mHz. For hypertensive rats, the tubular
pressure oscillations are chaotic.

mately from time 200 sec to time 500 sec. This part of
the time trace is amplified in Fig. 1(b) where the tubular
pressure oscillation is seen to alternate between shallow
and deep minima. The corresponding power spectrum,
shown in Fig. 1(c), also provides evidence for the presence
of subharmonic components in the pressure variation.

The nephrons are organized in a tree structure around
a common blood supply18. This allows the functional
units to interact with one another6 both via a simple
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displacement of blood from one nephron to its neigh-
bors as the first nephron reduces its incoming blood flow
(hemodynamic coupling) and via signals of muscular ac-
tivation that travel from nephron to nephron along the
blood vessels (vascular propagated coupling)19. These
two mechanisms tend to synchronize the pressure oscil-
lations of the interacting nephrons, typically such that
the hemodynamic coupling favors anti-phase synchro-
nization, and the vascular propagated mechanism causes
in-phase synchronization20,21.
The purpose of the present paper is to examine the

transitions in and out of synchrony that occur through
interaction between neighboring nephrons. It is well-
known that a period-doubling cascade that unfolds along
the edge of a resonance zone may display an unusual or-
ganization and a specific scaling behavior, referred to as
cyclic (or C-type) criticality22,23. In such systems, one
observes that the stable and unstable resonance cycles
generated at the edge of the synchronization regime un-
dergo interconnected cascades of period-doubling bifur-
cations and that each period doubling leads to the for-
mation of a new pair of saddle-node bifurcation curves
along the edges of the resonance zone. Moreover, these
saddle-node bifurcations accumulate to finally define the
transition between phase synchronized chaos and non-
synchronous chaos. Our analysis shows that a different
structure arises in connection with the synchronization
of two vascular coupled nephrons. In particular we find
that the transition from synchronized periodic dynamics
to asynchronous chaotic dynamics involves the combina-
tion of a torus and a homoclinic bifurcation. To illustrate
the universal character of this transition we shall use the
last section to demonstrate that the same structure arises
in a system of two coupled Rössler oscillators.

II. MODEL STRUCTURE

Over the years we have developed a number of differ-
ent models of the regulation of the afferent blood flow to
the individual nephron24–26, each emphasizing a specific
aspect of the problem such as the absorption of water
and salts along the loop of Henle24 or the interaction
between the macula densa cells and the smooth muscle
cells in the arteriolar wall26. In the present paper we
will use the model developed by Barfred et al.25. This
model integrates the most essential aspects of nephron
autoregulation into a consistent picture and is, due to
its relatively simple structure, particularly useful for de-
tailed bifurcation studies. The same model has been ap-
plied in a number of earlier studies of nephron-nephron
interaction20,27.
The first component in the model is a conservation

equation

dPt

dt
=

1

Ctub
[Ffilt − Freab − FHen] (1)

that relates the changes in the proximal tubular pres-

sure Pt to the rate of glomerular filtration Ffilt, the ab-
sorption that takes place in the proximal tubule Freab,
and the flow into the loop of Henle FHen. Ctub denotes
the elastic compliance of the proximal tubule. This equa-
tion is supported by a number of algebraic equations that
determine first the rate of glomerular filtration

Ffilt = (1−Ha)

(
1− Ca

Ce

)(
Pa − Pg

Ra

)
(2)

in terms of the arterial pressure Pa, the glomerular pres-
sure Pg and the flow resistance Ra of the afferent arteri-
ole, and secondly the flow into the loop of Henle

FHen =
Pt − Pd

RHen
(3)

in terms of the distal tubular pressure Pd and the tubular
resistance RHen. Here, Ha is the afferent hematocrit
(i.e. the fraction of the blood volume that the blood cells
occupy), and Ca and Ce are the concentrations of protein
in the afferent and the efferent blood, respectively. The
factor involving the two protein concentrations expresses
the fact that protein is retained in the blood and does
not filter out in the glomerulus.

To determine the efferent protein concentration Ce we
make use of the assumption that before the blood leaves
the glomerulus its protein osmotic pressure balances the
hydrostatic pressure difference (Pg − Pt) between the
glomerulus and the proximal tubule. This gives

Ce =
1

2b
[
√
a2 + 4b(Pg − Pt)− a] (4)

where a and b are experimentally determined parameters
that relate protein osmotic pressure Posm and concentra-
tion C

Posm = aC + bC2. (5)

The TGF mediated modulation of the glomerular fil-
tration rate is modeled in terms of the experimentally
determined open-loop feedback characteristic

Ffilt,open = Ffilt{FHen,inf} (6)

i.e. the relation between the rate of filtration Ffilt,open

and the artificially infused flow of tubular fluid FHen,inf

into the loop of Henle in an experiment where the feed-
back has been opened by inserting a wax seal into the
proximal tubule28. In the dynamic model we replace
FHen,inf in the feedback characteristic by a delayed ver-
sion X3 of the Henle flow (3) as obtained by the delay
equations

dX1

dt
= FHen − 3

T
X1

dX2

dt
=

3

T
(X1 −X2) (7)

dX3

dt
=

3

T
(X2 −X3).
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T is the delay time.
Finally, the myogenic modulation of the afferent arte-

riolar resistance is modelled by a form of Poisson’s equa-
tion

Ra = (β + (1− β)r−4)Ra,0 (8)

in combination with a second order differential equation

d2r

dr2
+ d

dr

dt
+Ω(Pav − Peq) = 0 (9)

to describe the dynamics of the normalized arteriolar ra-
dius r. Here, (1−β) represents the fraction of the arterial
length that is modulated by the myogenic activity, Ra,0 is
the equilibrium value of the afferent arteriolar resistance,
d is the damping constant for the myogenic oscillations,
and Ω determines the frequency of these oscillations. Pav

is the average arteriolar pressure and Peq is the pressure
at which the arteriolar radius would be at equilibrium
with the existing level of muscular activation. The re-
lation between Peq and the muscular activation repre-
sents the static stress-strain relationship for the arterio-
lar radius14. The second order differential equation (9)
allows for an oscillatory myogenic response. In the form
we use the equation here, the myogenic oscillations are
damped (d > 0) but they are continuously excited by the
TGF activity.

III. BIFURCATION STRUCTURE FOR VASCULAR
COUPLED NEPHRONS

The regulatory mechanisms of the individual nephron
act as a mechanical high-pass filter to protect the delicate
processes that take place in the distal tubule from more
lasting variations in the arterial blood pressure. While
the myogenic mechanism is active in most tissues, the
TGF mechanism is an additional mechanism required for
the nephrons to handle the enormous blood flow that the
kidneys receive. The response time of the TGF mecha-
nism is restricted by the time it takes the tubular fluid to
flow through the loop of Henle, and the system presum-
ably achieves the fastest possible response by adopting an
oscillatory mode of regulation. As described in the previ-
ous section, interaction between adjacent nephrons leads
to synchronization of their pressure oscillations. One typ-
ically observes that the tubular pressures in a pair of
neighboring nephrons oscillate in synchrony for a period
of 20-40 min, lose synchrony for a while and then syn-
chronize again.
In order to describe the transitions that occur as

a couple of nephrons move in and out of synchrony
we shall make use of standard continuation methods.
Continuation29 is a numerical technique developed to
locate and follow periodic solutions as a parameter is
changed, to determine bifurcation points and to follow
bifurcation curves in phase space under variation of one

(or more) parameters. In this way one can obtain a com-
plete survey of the dynamics of a given system, the bifur-
cations it undergoes as a parameter is changed, and the
overall structure of interconnected bifurcations. In this
study we have applied the free software available from
Doedel et al.30.

As described above, the vascular propagated mecha-
nism makes use of signals that travel from one nephron
to its neighbors along the smooth muscle cells in the vas-
cular wall. The amplitude of these signals decay more or
less exponentially with distance, but their rate of prop-
agation is quite fast as compared with the distance be-
tween the nephrons in terms of the period of the TGF
oscillations. The vascular propagated coupling there-
fore tends to produce in-phase synchronization among
the interacting nephrons. The relative contribution of
this coupling depends on the structure of the connect-
ing vascular system, primarily the involved distances and
flow resistances20,27. In the model to be examined here,
the coupling is considered to be symmetric, and it is as-
sumed that 5% of the muscular activation of one arteriole
reaches the active region of the other nephron.

As determined by the continuation approach, Fig. 2
provides a survey of the regions of existence for different
behavioral modes in and around the main 1:1 synchro-
nization zone. Parameters of the phase diagram are the
delay T (2) in the loop of Henle for nephron-2 and the af-

ferent arteriolar resistance R
(1)
a,0 for nephron-1. Base case

values for these parameters are T = 16 sec and Ra,0 = 2.4
kPa·s/nl. Other parameter values may be found in the
above cited literature25.

Different shades of blue and green are used to designate
the regions of existence of stable low periodic orbits as-
sociated with the initial steps in the period-doubling cas-
cade. Dark blue denotes regions of synchronized period-
1 TGF oscillations. Light blue denotes regions of syn-
chronized period-2 TGF oscillations, i.e., in these regions
both nephrons have undergone a period-doubling bifurca-
tion, but remain synchronized. Green denotes regions of
synchronized period-4. The yellow area to the left in the
diagram is a regions of synchronized period-3 dynamics.
In the orange region we observe synchronized period-6
dynamics, and the red regions to the right in the synchro-
nization zone are regions with synchronized period-5 dy-
namics. Finally, brown denotes regions with synchronous
or non-synchronous quasiperiodic and chaotic dynamics.

The resonance zone is bounded to the left by black
curves representing saddle-node bifurcations. The yel-
low closed curves (parts of which delinates the transi-
tion between the dark and light blue regions) are period-
doubling curves where the stable (node) and unsta-
ble (saddle) period-1 cycles undergo their first period-
doubling bifurcation. At the left hand edge of the res-
onance zone (at T (2) ≈ 14 sec), the two branches of
the period-doubling curves approach one another, and at
the zone boundary the stable and unstable period-1 cy-
cles undergo simultaneous period-doubling bifurcations.
The white closed curves similary represents the period-
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FIG. 2. Survey of the bifurcation structure in the main syn-
chronization regime for a model of two coupled nephrons. Pa-
rameters in the figure are the resting value of the afferent arte-
riolar flow resistance for one of the nephrons and the delay of
the fluid flow through the loop of Henle for the other nephron.
The color code refers to the periodicity of the various cycles.
The yellow region represents the region of period-3 dynam-

ics. Reference values for the two parameters are R
(2)
a,0 = 2.4

kPa·s/nl and T (1) = 16.0 sec.

doubling curves at which the transition to period-4 dy-
namics take place for the stable and unstable period-2
cycles.

Inspection of the figure allows us to identify a main
period-doubling structure connecting as a horseshoe from
top to bottom in the resonance zone and accumulating in
a (brown) region of the phase synchronized chaos around
the large yellow window of synchronized period-3 dynam-
ics. This is the structure we shall be concerned with in
the present analysis. Our aim is to understand how the
breakdown of the synchronization between two nephrons
takes place as the system crosses out of the resonance re-
gion and into the large brown area of non-synchronized
dynamics to the left in the figure. In the region of chaotic
phase synchronization mentioned above, both nephrons
display chaotic dynamics but their phases move in near
synchrony31,32

In the upper part of the diagram the period-doubling
cascade follows the typical transition associated with C-
type criticality33. However, the structure associated with
the lower side of the same cascade is somewhat more com-
plicated in that each pair of period-doubling bifurcations
generates not only a new saddle-node bifurcation curve
to delineate the range of existence of the period-doubled
modes, but also a torus bifurcation curve that continues
up along the edge of the synchronization regime. More-
over, it appears that these torus bifurcation curves play
an important role in delineating the range of synchro-
nized periodic dynamics from that of quasiperiodicity
and non-synchronous chaos.
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FIG. 3. Blow-up of the bifurcation structure in the lower left
corner of Fig. 2. Saddle-node bifurcation curves are black,
period-doubling curves green, and torus bifurcation curves
red. Note the torus bifurcation curves that accumulate along
the edge of the resonance tongue. This process displays a
structure in which new torus bifurcation curves are formed
alternatingly to the right and the left of the former torus
bifurcation curve.

Figure 3 shows a more detailed representation of the
unusual bifurcation structure in the lower left corner of
the bifurcation diagram in Fig. 2. Here, torus bifurca-
tion curves are red, period-doubling curves are green,
and saddle-node bifurcation curves are black. We imme-
diately identify the saddle-node bifurcation curve SN1 to
the left in the figure. SN1 is tangent to the first period-
doubling curve PD1 at the point D1, and this saddle-
node bifurcation serves to delineate the range of existence
of period-1 resonant cycles. However, when the point of
operation crosses the saddle-node bifurcation curve into
the resonance region below the point D1 it is found to
give birth to a pair of doubly and a triply unstable sad-
dle solutions rather than, as expected, to a saddle and
a stable node cycle. A second saddle-node bifurcation
curve SN2, delineating the range of existence for period-
2 resonance cycles, emerges from the point E2 on the
unstable branch of the first period-doubling bifurcation
curve. And again, a pair of doubly and triply unsta-
ble period-2 saddle cycles is produced when the point of
operation crosses this saddle-node bifurcation. As well
as we can follow the structure, the same picture repeats
itself all the way up along the bifurcation cascade.

The first torus bifurcation curve T1 is supported by
the point F1 on the saddle-node bifurcation curve SN1.
From here it proceeds down along the saddle-node bifur-
cation curve, performs a couple of turns and returns to
the upper part of the bifurcation diagram. At the point
where T1 intersects the stable branch PDS

1 of the first
period-doubling curve, a new torus bifurcation curve T2

emerges, and at the point where this torus bifurcation
curve intersects the stable branch PDS

2 of the second
period-doubling curve a third torus bifurcation curve T4
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FIG. 4. (a) One-dimensional scan through the boundary of

the resonance zone for R
(1)
a,0 = 2.39 kPa·s/nl illustrates the

transition from stable periodic dynamics to non-synchronized
chaos through a pair of torus and homoclinic bifurcation. (b),
(c) and (d) show phase portraits of the stable period-2 so-
lution, the period-2 torus, and the non-synchronous chaotic
attractor, respectively.

arises. In accordance with our numerical calculations,
this cascade of torus bifurcations continues along with
the cascade of period-doubling transitions, and all the
torus bifurcation curves attach to points on the saddle-
node bifurcations that accumulate along the edge of the
resonance zone.

Figure 4(a) shows a scan through the boundary of the

synchronization regime in Fig. 3 for R
(1)
a,0 = 2.39 kPa·s/nl.

If we read the scan from right to left we start in a situ-
ation where the coupled nephrons displays a stable (and
a singly unstable) synchronized period-2 solution. These
solutions correspond to the resonance modes one would
normally expect to find in the synchronization region.
However, as we move to the left, rather than undergoing
a saddle-node bifurcation at the edge of synchronization,
the stable period-2 cycle undergoes a torus bifurcation at
T2, producing a synchronized period-2 torus and a doubly
unstable period-2 cycle. As the point of operation moves
further to the left, the period-doubled torus undergoes a
homoclinic bifurcation at H2, and the synchronization is
lost. Figures 4(b),(c) and (d) show phase portraits of the
stable period-2 solution, the synchronized period-2 torus
and the non-synchronous chaotic attractor, respectively.
The saddle-node bifurcation SN2 falls far to the left of
the scan and is not directly involved in the transition
from synchronous periodic dynamics to non-synchronous
chaos.

IV. COUPLED, NON-IDENTICAL RÖSSLER
OSCILLATORS

Systems of two interacting period-doubling oscillators
have been investigated by a significant number of au-
thors, often with a focus on the stability problems asso-
ciated with chaos-chaos synchronization and the applica-
tion of chaotic oscillators for secure communication34,35.
Rasmussen et al.36 have performed a detailed bifurca-
tion analysis for a system of two identical and symmet-
rically coupled Rössler oscillators. They have demon-
strated the appearance of a cascade of new saddle-node
bifurcation curves along the edge of the synchronization
zone. Kuznetsov et al.37 have considered the synchro-
nization of a pair of bi-modal oscillators constructed by
driving a Duffing oscillator by a Van der Pol oscillator.
Particular emphasis was given to the transition between
mode-locked and unlocked chaos, but the authors also
demonstrated the presence of separate synchronization
regimes for the fast and the slow dynamics. Finally, Post-
nov et al.38 have studied the process of synchronization
for a Van der Pol oscillator driven by the chaotic forcing
from a Rössler system. They have identified the under-
lying mechanisms as a set of inverse torus bifurcations
of saddle orbits embedded in the synchronized chaotic
state.

Multi-dimensional systems that display period-
doubling cascades along the edge of a synchronization
tongue typically exhibit the special scaling behavior
known as C-type criticality22,23. The bifurcation struc-
ture observed for such systems differs essentially from
the structures we know from low-dimensional systems.
Until now, however, few examples of this transition, if
any, have been worked out for realistic systems. We
have recently studied the C-type transition for a single-
nephron model subjected to a periodic variation of the
arterial pressure39. This has confirmed the theoretical
predictions for this kind of system, but has also lead
to a more detailed picture of the involved bifurcation
structure. However, the structure we observed in the
coupled nephron model is different in that the transition
to synchronization occurs through the combination of a
homoclinic and a torus bifurcation.

In order to examine the generic character of these re-
sults and establish the role of the different bifurcations,
let us consider the much simpler system of two coupled,
non-identical Rössler oscillators:

ẋ1 = −y1 − z1 (10)

ẏ1 = x1 + a1y1 (11)

ż1 = b+ z1(x1 − c1) + d(z2 − z1) (12)

ẋ2 = −ωy2 − z2 (13)

ẏ2 = ωx2 + a2y2 (14)

ż2 = b+ z2(x2 − c2) + d(z1 − z2), (15)

where a2 = 0.345, b = 2, c1 = 4, c2 = 3.9, and the
coupling parameter d = 0.1. The value of a2 is chosen
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FIG. 5. Overview of the bifurcation structure of the 1:1 res-
onance zone for a pair of coupled, non-identical Rössler os-
cillators. Blue and green denote low-periodic cycles in the
period-doubling cascade, yellow represents period-3 dynam-
ics, and brown represents quasiperiodic or chaotic dynamics.
Note the large number of saddle-node bifurcation curves that
accumulate along the left hand side of the resonance region.

such that the second oscillator in the uncoupled state
operates near the point of its first period-doubling. The
gain parameter a1 of the first oscillator and the mistuning
(relative frequency) ω are used as control parameters.

Figure 5 provides a survey of the region of existence
of different stable modes in and around the main reso-
nance zone for the coupled Rössler oscillators. Different
shades of blue and green are again used to distinguish the
low-periodic stable cycles that arise in the initial steps of
the period-doubling cascade. Brown denotes chaotic or
quasiperiodic dynamics, and yellow identifies the region
of existence for the period-3 mode. Black curves rep-
resent saddle-node bifurcations, red curves denote torus
bifurcations, and white curves are curves where a period-
doubling bifurcation takes place. Several of the period-
doubling bifurcations relate to transitions that involve
unstable cycles. In that case there is no change in the sta-
ble mode, and the color of the chart remains unchanged.

The first period-doubling bifurcation is a little unusual
in that it is connected with a triangular region of torus
dynamics within the resonance zone36. However, like the
subsequent period-doubling bifurcations along the right
hand side of the resonance regime it follows the general
structure for C-type criticality. In particular, we note the
formation of a new saddle-node bifurcation curve along
the edge of the resonance zone to delineate the regime in
which saddle and stable node period-2 cycles exist.

Similar saddle-node bifurcation curves are generated at
each level in the period-doubling cascade. As previously
noted they serve to delineate the ranges of existence for
the saddle and node cycles born in the period-doubling
bifurcations. Previously generated saddle-node bifurca-

tion curves continue to exist to delineate the range of ex-
istence for the now unstable resonance cycles of lower pe-
riodicity. The new saddle-node bifurcation curves emerge
from a point on the corresponding period-doubling curve
a little away from the point at which the former saddle-
node bifurcation curve is tangent to the period-doubling
curve, and a torus bifurcation or a subcritical period-
doubling bifurcation is generally in place to complete the
zone boundary.

From the triangular region of torus dynamics associ-
ated with the first period-doubling transition two extra
saddle-node bifurcation curves emerge and proceed all
the way to the left hand edge of the resonance tongue.
This phenomenon is accompanied by the generation of
three saddle-node bifurcation curves for each pair of
period-doubling bifurcations in the left hand side of the
resonance zone.

More interesting, however, is the observation that each
pair of period-doubling bifurcations give rise to the gen-
eration of a torus bifurcation curve that extends along
the boundary of the resonance zone. In this way, the
bifurcation structure for the the right hand side of the
coupled Rössler systems corresponds to that of the up-
per part of the resonance zone for our coupled nephron
model, and the bifurcation structure of the left hand side
of the resonance zone for the coupled Rössler systems
corresponds to the structure observed in the lower part
of the resonance zone for the coupled nephrons.

To pursue this observation a little further, Fig. 6(a)
shows a more detailed bifurcation diagram for the first
pair of interconnected period-doubling bifurcations near
the left hand side of the resonance zone. The period-
doubling curves are green, the saddle-node bifurcation
curves black, and the torus bifurcation curves red. For
the period-doubling curves we distinguish between fully
drawn curves, dashed curves and dotted curves depend-
ing on whether a stable node cycle, respectively a saddle
cycle with one or two unstable directions is involved in
the period-doubling transition.

When inspecting Fig. 6(a), we can follow the period-
doubling curve PDS

2 for the stable period-2 cycle from
the right hand side of the figure to the point C2 where
the torus bifurcation curve T2 intersects with PDS

2 and
the next torus bifurcation T4 is born. From this point
PD2 continues as a curve of period-doubling for doubly-
unstable period-2 saddles until it reaches the intermedi-
ate saddle-node bifurcation curve SN b

2 . From here the
curve continues first to the innermost saddle-node bifur-
cation curve SN c

2 as a period-doubling curve for singly
unstable saddle cycles and thereafter to the outmost
saddle-node bifurcation curve SNa

2 as a period-doubling
curve for stable node period-2 resonant cycles.

Below the point of tangency with the period-doubling
bifurcation curve, the outermost saddle-node bifurcation
curve in this way limits the range of existence for a pair
of saddle and stable node period-2 solutions. The in-
nermost saddle-node bifurcation curve serves a similar
purpose, whereas the intermediate saddle-node bifurca-
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FIG. 6. Detail of the bifurcation diagram in Fig. 5 illustrat-
ing the bifurcations that take place close to the lower left
zone boundary. (a) Bifurcation structure for the period-2 cy-
cles. (b) Bifurcation structure for the period-2 and period-4
cycles. Note the birth of three new saddle-node bifurcation
curves and one new torus bifurcation curve for each level in
the period-doubling cascade.

tion curve delineates the range of existence for a pair of
saddle and doubly-unstable saddle period-2 cycles below
the period-doubling point and for a pair of doubly and
triply unstable saddle solutions above this point. The
torus bifurcation curve T2 is required to close the hole
between the point C2 and the innermost saddle-node bi-
furcation curve SN c

2 . Below C2 and to the right of T2, a
stable period-2 node loses its stability in two dimensions
at the supercritical torus bifurcation T2.
The period-4 cycles produced at the period-doubling

curves require their own system of saddle-node and torus
bifurcation curves to restrict their ranges of existence.
Hence, close to (but not in) each of the points where the
period-doubling bifurcation curve is tangent to one of the
saddle-node bifurcation curves SNa

2 , SN
b
2 and SN c

2 de-
lineating the ranges of existence for the various resonant
period-2 cycles, new saddle-node bifurcation curves are
born to delineate the range of existence for the period-4
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=
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4 PDU
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2
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2 SNb

2
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(b)

FIG. 7. (a) One-dimensional bifurcation diagram along the
direction A in Fig. 6(b). Note the period-doubling of the
ergodic torus in the left hand side of the figure. (b) Close-up
on the upper branch of (a). The stable resonant mode arises
in an reverse torus bifurcation rather than in a saddle-node
bifurcation.

node, saddle, and doubly-unstable saddle cycles. Simi-
larly, at the point C2 where the period-doubling curve
PDS

2 intersects the torus bifurcation curve T2, a new
torus bifurcation curve T4 is born.

As shown in Fig. 6(b), precisely the same picture ap-
plies to the period-doubling curves for the period-4 cycles
and to the following curves in the period-doubling tran-
sitions as well. We conclude that the system generates a
set of three saddle-node bifurcation curves for each pair
of period-doublings along the edge of the resonant do-
main. More importantly, the system at the same time
gives birth to a new torus bifurcation curve and, as our
preliminary investigation shows, this set of torus bifur-
cation curves accumulate in an alternating manner along
the boundary of the resonance zone.

To provide a clearer picture of the different steps in
the transition from ergodic (quasiperiodic) dynamics to
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synchronous periodic dynamics, Fig. 7(a) shows a one-
dimensional bifurcation diagram obtained along the di-
rection A in Fig. 6(b). To the left in this diagram we
observe the ergodic torus that exists outside of the res-
onance zone. As this torus approaches the resonance
zone, it first undergoes a torus doubling bifurcation16,17.
The close-up of the upper branch of the torus displayed
in Fig. 7(b) shows that the saddle-node bifurcations at
SNa

2 , SN
b
2 , and SN c

2 all take place in the regime of the
torus dynamics. We conclude that the saddle-node bifur-
cations are not directly involved in the transition from
ergodic to stable periodic dynamics.
At T2, a stable, phase-synchronized period-2 torus un-

dergoes a reverse torus bifurcation and produces a stable
period-2 (focus) cycle. Finally, to the right in the bifurca-
tion diagram we can follow how the stable period-2 cycle
together with a saddle period-2 cycle originating in the
above saddle-node bifurcations undergo interconnected
cascades of period-doubling bifurcations. The transition
from quasiperiodicity to synchronized periodic dynamics
thus takes place via a torus bifurcation.

V. CONCLUSIONS

We have examined the mechanisms involved in the
transition of a pair of interacting nephrons between states
of synchronized and non-synchronized behavior. This
problem is of interest in connection with the description
of larger systems of interacting nephrons in the form, for
instance, of a nephron tree, i.e., a group of 15-20 nephrons
organized around a common blood vessel18. We are also
involved in the study of synchronized patterns generated
by larger populations of superficial nephrons observed si-
multaneously by means of laser speckle microscopy.
The classical theory of synchronization of nonlinear os-

cillators leads to the concept of an Arnol’d tongue of
synchronized states delineated by a set of saddle-node
bifurcations. This description applies to systems that
are essentially one-dimensional.
The bifurcation structure associated with the synchro-

nization of a period-doubling system in the presence
of an external periodic forcing proceeds in a different
manner33. Here, one can observe that each pair of period-
doubling bifurcations of the node and saddle resonance
cycles leads to the formations of a new pair of saddle-
node bifurcation curves to delineate the range of exis-
tence for the period-doubled cycles. The saddle-node bi-
furcations are found to be supported by points on the
period-doubling curves close to but a little away from
the points of tangency between the period-doubling curve
and the last pair of saddle-node bifurcation curve.
However, our investigation of two interacting nephrons

has lead to a number of new phenomena. First of all we
observe that a cascade of torus bifurcation curves are gen-
erated along the border of the resonance zone. Moreover,
these torus bifurcation curves control the transition from
synchronized periodic dynamics to quasiperiodic dynam-

3Path C

5

2SN

7

T2

T1

H2

H1

C
0
1

2

6

6

3

541

2

0 7

4
S

1PDU

1SN

PD1

FIG. 8. Sketch illustrating the observed bifurcation struc-
ture for the transition from synchronized periodic dynamics
to non-synchronous chaotic dynamics. At each level of the
period-doubling cascade this involves a new set of saddle-
node, torus and homoclinic bifurcations. The inset illustrates
the bifurcations that occur along the circular path C.

ics. We also observe the formation of a cascade of homo-
clinic bifurcations, with each homoclinic bifurcation sup-
ported by the point in which the torus bifurcation curve
attach to the corresponding saddle-node curve. The ho-
moclinic bifurcations are responsible for the transition
from synchronized torus dynamics to non-synchronous
behavior.

Figure 8 illustrates the basic elements of the proposed
bifurcation structure. We note how the saddle-node bi-
furcation curve SN1 is tangent to the period-doubling
curve PD1. However, the stable period-1 cycle that ex-
ists below PDS

1 does not proceed all the way out to the
saddle-node bifurcation curve. Instead this cycle under-
goes a torus bifurcation at T1 (red curve) followed by
a homoclinic bifurcation at H1 (blue curve). The torus
bifurcation produces quasiperiodic dynamics while non-
synchronous chaotic dynamics takes over after the ho-
moclinic bifurcation. We note that the torus bifurcation
curve T1 and the homoclinic bifurcation curve H1 both
arise from the same point on the saddle-node bifurcation
curve SN1.

A new saddle-node bifurcation curve SN2 emerges
from a point on the period-doubling curve PDS

1 . More-
over, at the point where the torus bifurcation curve T1 in-
tersects PDS

1 , a new torus bifurcation T2 is born together
with the corresponding homoclinic bifurcation curve H2.
These bifurcation curves again connect to a common
point on the saddle-node bifurcation curve SN2. It is
interesting to note that, at least for the models we have
considered in the present paper, the homoclinic bifurca-
tion curve H1 also connects to the point on PDS

1 , where
H2 and T2 originate.

At the next period-doubling curve PDS
2 (not shown)

almost the same picture repeats. A new torus bifurcation
T4 is born at the intersection between T2 and PDS

2 , and
T4 runs along the edge of synchronization and attaches to
SN4. However, the homoclinic bifurcation born in this
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point does not connect to the intersection point of T2

and PDS
2 . Instead, it connects to the next intersection

in the cascade, i.e. the intersection between T4 and PDS
4 .

In this way only every second intersection point between
period-doubling and torus bifurcation curves involves ho-
moclinic bifurcations.

The insert in Fig. 8 describes the bifurcations that oc-
cur along the circular path C, thus supporting the con-
sistency of the above description. Starting at point 0
the system displays a stable period-1 cycle. As we move
around C, this cycle undergoes a period-doubling bifur-
cation at 1. At point 2 the stable period-2 cycle under-
goes a torus bifurcation. This leaves us with a singly
unstable period-1 cycle and a doubly unstable period-2
cycle. In 4 the period-1 cycle undergoes a torus bifur-
cation, producing a triply unstable cycle. In point 5,
this cycle undergoes a inverse period-doubling bifurca-
tion with the doubly unstable period-2 and, finally, at
point 7 the now doubly unstable period-1 undergoes an
inverse torus bifurcation, re-establishing its position as a
stable node. At points 3 and 6 the torus undergo homo-
clinic bifurcationsH2 andH1, respectively, leading to the
birth and subsequent disasppearance of non-synchronous
chaotic dynamics.

We conclude that the two examined systems of coupled
period-doubling oscillators display the same bifurcation
structure. This illustrates the universal character of the
proposed structure.
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Tubular pressure and nephron blood flow time series display two
interacting oscillations in rats with normal blood pressure. Tubulo-
glomerular feedback (TGF) senses NaCl concentration in tubular fluid
at the macula densa, adjusts vascular resistance of the nephron’s
afferent arteriole, and generates the slower, larger-amplitude oscilla-
tions (0.02–0.04 Hz). The faster smaller oscillations (0.1–0.2 Hz)
result from spontaneous contractions of vascular smooth muscle
triggered by cyclic variations in membrane electrical potential. The
two mechanisms interact in each nephron and combine to act as a
high-pass filter, adjusting diameter of the afferent arteriole to limit
changes of glomerular pressure caused by fluctuations of blood
pressure. The oscillations become irregular in animals with chronic
high blood pressure. TGF feedback gain is increased in hypertensive
rats, leading to a stronger interaction between the two mechanisms.
With a mathematical model that simulates tubular and arteriolar
dynamics, we tested whether an increase in the interaction between
TGF and the myogenic mechanism can cause the transition from
periodic to irregular dynamics. A one-dimensional bifurcation analy-
sis, using the coefficient that couples TGF and the myogenic mech-
anism as a bifurcation parameter, shows some regions with chaotic
dynamics. With two nephrons coupled electrotonically, the chaotic
regions become larger. The results support the hypothesis that in-
creased oscillator interactions contribute to the transition to irregular
fluctuations, especially when neighboring nephrons are coupled,
which is the case in vivo.

renal autoregulation; nonlinear dynamics; tubuloglomerular feedback;
myogenic mechanism; chaos

TWO MECHANISMS, TUBULOGLOMERULAR feedback (TGF) and the
myogenic mechanism, operate in each nephron of mammalian
kidneys to regulate blood flow when arterial blood pressure
changes (14–16, 22, 44). Each mechanism is potentially un-
stable and operates in a nonlinear regime: TGF oscillates at
0.02–0.04 Hz and the myogenic mechanism at 0.1–0.2 Hz.
The TGF oscillation is the more pronounced. These mecha-
nisms interact because they operate simultaneously on the
contractile machinery of vascular smooth muscle cells. The
interaction leads to modulation of the amplitude and frequency
of the myogenic oscillation by TGF, a finding predicted by a
mathematical model (26) and confirmed in experimental mea-
surements (28).

The dynamics of the TGF-myogenic ensemble undergo a
transition in rats with either a genetic or a renovascular form of
hypertension to a state with characteristics of deterministic
chaos (51). Lyapunov exponents are positive; the phase space
attractor constructed from the data is low dimensional and has
a noninteger correlation dimension (51); surrogate data analy-
sis confirms the nonlinearity of the system (52).

The question at issue is the cause of the transition. Dilley
and Arendshorst (8) and Leyssac and Holstein-Rathlou (23)
reported that the feedback gain of TGF, a component of the
coupling of TGF to the inherent dynamics of the afferent
arteriole, is greater in hypertensive rats than in rats with normal
blood pressure. In our model, an increase in TGF gain or in the
parameter expressing the coupling, or both, will increase the
strength of the interaction. In this study, we test the hypothesis
that the strength of the TGF-myogenic interaction functions as
a bifurcation parameter and, when increased, can cause a
bifurcation to chaos. For the test, we use a mathematical model
of a single nephron and its afferent arterioles (26), and of two
such nephrons coupled by electrotonic vascular signal conduc-
tion (29). With an increase in the strength of the interaction, the
single nephron model succeeds in predicting transitions to
chaotic dynamics, but the regions with these dynamics in a
one-dimensional parameter scan appear to be small and there-
fore inadequate to account for the experimental observations.
The simulation of two nephrons coupled electrically, which is
closer to the natural state than is the single nephron model,
generates larger domains of chaos than the model of one
nephron alone. The results obtained with the coupled nephron
model therefore support the hypothesis that increased coupling
between TGF and the myogenic mechanism can cause a
change in the dynamics of nephron blood flow regulation
similar to that found in rats with chronic high blood pressure.

METHODS

Model

The essential elements and mechanisms of the model are summa-
rized in the causal loop diagram in Fig. 1. Signs at the arrowhead
indicate the direction of change of a given variable in response to a
change in the variable at the arrow’s tail. The elements of the feedback
loop that generate TGF and its oscillation comprise glomerular filtra-
tion (GFR), the axial mass transport of NaCl and water, and the
epithelial transport of NaCl and water in various tubular segments.
These elements are shown in Fig. 1, right. Epithelial transport of NaCl
is dependent on axial flow rate in several of these segments, so that the
concentration of NaCl in tubular fluid at the macula densa is strongly
dependent on the axial flow rate of tubular fluid. The apical mem-
branes of macula densa cells have transporters sensitive to ionic
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concentrations, chiefly Cl�. The signal from the macula densa pro-
duced in response to variation of the NaCl concentration in tubular
fluid propagates through a number of cells and finally affects the Ca2�

conductance of vascular smooth muscle cells. The change in Ca2�

conductance alters intracellular Ca2� and modifies the length of the contrac-
tile mechanism, altering the arteriolar vascular resistance. The change
in vascular resistance affects GFR, closing the loop and providing
negative feedback.

The myogenic mechanism is represented by the loops in Fig. 1, left.
The period of the oscillation is determined by instability in membrane
potential caused by an interaction between Ca2� and K� currents. The
magnitude of the oscillation in vascular diameter is determined by the
level of intracellular Ca2�. TGF affects the membrane Ca2� conduc-
tance that is part of the myogenic mechanism in the model, allowing
TGF to modulate both the amplitude and frequency of the myogenic
mechanism. The magnitude of the TGF stimulus decreases with
distance from the glomerulus, proceeding along the afferent arteriole
toward the nearest branch point of the artery supplying blood to the
nephron. A two-point approximation to this continuous decline gives
the arteriolar model two distinct segments, each modeled separately
and the one closer to the glomerulus receiving the greater TGF input.
The arteriolar segments are coupled electrically. Details of the math-
ematical model of a single nephron and of a nephron pair were
presented in previous work (26, 28). We used the same models in this
study.

In the first of these papers, tubular pressure, flow, and NaCl
concentration were modeled as functions of time and distance in a
single nephron with a compliant epithelial wall that reabsorbs water
and NaCl. The nephron consisted of a proximal tubule, a descending
limb of Henle’s loop, a thick ascending limb of Henle’s loop, and an
early distal tubule. Appropriate parameters were used for each tubular
segment. The boundary conditions were GFR as the initial flow rate,
a nonlinear expression for pressure at the end of the early distal tubule,
reflecting the compliance of later segments of the tubule (24), and
NaCl concentration in the glomerular ultrafiltrate. NaCl is the only
tubular solute represented in the model, and its concentration is
assumed to remain unchanged in the proximal tubule.

Each of two segments of the afferent arteriole was modeled with
six ordinary differential equations whose dependent variables were
membrane K� conductance, intracellular Ca2� concentration, mem-
brane electrical potential difference, myosin light chain phosphoryla-
tion, length of the contractile mechanism, and length of two different
sets of elastic elements, one in series with the contractile mechanism
forming an ensemble, which is in parallel with the second elastic
component. The length of the parallel elastic element was equal to the

sum of the lengths of the series element and of the contractile
mechanism; the circumference of the vascular lumen was calculated
from this length. This cellular model of arteriolar dynamics is based
on the work of Gonzalez-Fernandez and Ermentrout (9) which was
designed to simulate vasomotion in cerebral arterioles.

The TGF signal was calculated from the tubular NaCl concentra-
tion at the end of the thick ascending limb with a logistic equation in
a form used to fit experimental data; TGF output was used to modify
membrane Ca2� conductance to cause changes in smooth muscle
contraction and to simulate the interaction between TGF and the
myogenic mechanism. Both segments of the afferent arteriole gener-
ated spontaneous self-sustained oscillations because of the interaction
between voltage-gated Ca2� channels and Ca2�- and voltage-depen-
dent K� channels. TGF stimulation of the arteriole produces maximal
contraction at the point closest to the glomerulus; the vasoconstriction
declines with distance from the glomerulus (29, 47); the fractional
decrease data can be fitted with a single exponential. Two arteriolar
segments were used as a two-point approximation to this decline; the
TGF effect was greater in the segment close to the glomerulus and
smaller in the farther segment. The two segments were coupled
electrically with an ohmic conductance.

The interaction between TGF and the myogenic mechanism was
expressed as: gCa,j,c � (1 � �j·�j)·gCa, where gCa is the native Ca2�

conductance, gCa,j,c is the Ca2� conductance of the jth arteriolar
segment when coupled to TGF, �j is TGF input to the jth arteriolar
segment, and � is the parameter coupling the two mechanisms. We
varied � to change the strength of the connection between TGF and the
myogenic mechanism to test the hypothesis that � can act as a
bifurcation parameter and explain the different dynamics observed in
normal and hypertensive rats.

The two-nephron model consists of two versions of the single
nephron model, each solved separately, but with the arteriolar seg-
ments farther from the glomerulus coupled electrically (29). These
arteriolar segments were coupled to each other through an electrical
node in the wall of the artery supplying the two nephrons with blood.
In this study, cortical nephrons were simulated, and both nephrons of
the pair were assigned the same length. Additional parameters needed
for the two-nephron model were the conductance coupling the two
nephrons through an electrical node, and a conductance of the node to
ground. The model was otherwise used unmodified from the single
nephron form.

Numerical methods. The partial differential equations describing
pressure, flow, and NaCl concentration in each renal tubule were
solved using centered difference approximations and are second-order
correct (40). The spatial step was 0.125 mm and the time step 1 ms.

Fig. 1. Causal loop diagram representing the
model of a single nephron. Signs in paren-
theses denote negative feedback loops. In-
creases in the Ca2� current and the K� cur-
rent produce changes in membrane potential
difference of opposite sign because the dif-
ference between their reversal potentials, VK

and VCa, respectively, and the membrane
potential have opposite signs. MLC, myosin
light chain; DLH, descending limb of Henle’s
loop; ALH, ascending limb of Henle’s loop.
Brackets denote concentration.
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Reducing either the spatial step or the time step by a factor of 10 had
no effect on the values of � required to produce bifurcations in the
model results. The auxiliary equations, including the boundary con-
ditions, were solved with the Newton Raphson method. All calcula-
tions were performed in double precision.

The solutions of the ordinary differential equations were obtained
with Gear’s variable step size method, using backward differentiation
and numerically generated Jacobians. Because the solution of the
partial differential equations required iterations at each time step, the
time steps for the solution of the ordinary differential equations were
synchronized with those used for the partial differential equations.

For each time step, the glomerular model was solved by using the
afferent resistance and the tubular inlet pressure from the preceding
time step as initial estimates. With the use of the calculated value for
GFR for the inflow rate to the tubular system, the pressure, flow, and
NaCl equations were solved iteratively at each time step of the whole
system. Convergence was assumed when the fractional change of the
Euclidian norm of the combined pressure and flow vectors was �10�3

and �10�5 for the NaCl concentration vector. The new calculated
value for the NaCl concentration at the macula densa was applied to
estimate the afferent arteriolar resistance. The procedure was re-
peated, using the new value for the afferent resistance and the tubular
inlet pressure, until the system of equations converged. Convergence
was assumed when the change in the Euclidean norm of the afferent
resistance was �10�6 in successive iterations. Three or four iterations
were typically needed to achieve convergence.

Analytic approach. The model generates time series corresponding
to solutions for tubular pressure, volume flow rate, and NaCl concen-
tration at each spatial and time step and for each of the 12 ordinary
differential equations used to simulate the afferent arteriole. We will
present only nephron plasma flow rate, NaCl concentration in tubular
fluid at the macula densa, and intracellular Ca2� concentration in
afferent arteriolar smooth muscle cells. These variables were chosen
because, when combined, they form a phase space attractor with one
variable, NaCl concentration at the macula densa, showing primarily
TGF dynamics; a second, intracellular Ca2� concentration in smooth
muscle cells, representing dynamics mainly of the myogenic mecha-
nism; and a third, nephron plasma flow rate, with the dynamics of both
mechanisms.

The results of our simulations show limit cycle oscillations, qua-
siperiodicity, and chaos for different values of �, the parameter that
couples TGF with the myogenic mechanism in the nephron model. In
the phase space, each of these kinds of dynamics represents a specific
type of attractor, i.e., invariant (steady) state for the system. A
bifurcation diagram provides an overview of the different kinds of
dynamics generated in the system. In such a diagram, the coordinates
of the intersection between the trajectory of the system and a plane (a
Poincaré section) in the space of state variables is mapped on the y-axis
as a function of a parameter, in this case �.

The bifurcation diagrams are calculated by the following proce-
dure. 1) A Poincaré section is defined, which in our case is chosen to
be IK � 0.1 � 0, dIK/dt � 0, where IK is the K� current in the
vascular smooth muscle cell. 2) Starting with a value of � � 0.18, the
state variables are initialized. 3) The system is simulated for 3,000 s
to allow the solution of the system to converge to a stationary state. 4)
During an extension of the simulation by 3,000 s, the intersections
with the Poincaré section are calculated by using a linear interpolation
between the states just before and after the intersection. 5) The
parameter � is increased by 1.8 � 10�4, and the state variables are
maintained at their current state (adiabatic initial conditions). 6) The
procedure is repeated from step 3 until � reaches its final value of 0.4.

The model generated four main types of dynamics as � changed: a
state in which only the myogenic oscillation is present in the blood
flow time series and states with periodic, quasiperiodic, or chaotic
dynamics. Chaotic systems have the property that they are sensitive to
initial conditions of the state variables. This means that the evolution
in time of two sets of initial conditions, differing initially by an

arbitrarily small amount, on average diverge exponentially. For non-
linear periodic systems, in contrast, the orbits will approach and relax
onto a single limit cycle. A system in a quasiperiodic state is
nonperiodic but does not show sensitivity to initial conditions. In fact,
the two orbits remain different by a value that at most grows
proportionally with time, and not exponentially.

Lyapunov exponents are often used to classify dynamics. In the
present case, however, the system is too complicated to calculate a
complete spectrum of exponents by the first principle approach.
Instead, we used the method that calculates the largest exponent from
a time series (48). This method is based on the idea of attractor
reconstruction by embedding the time series together with past ver-
sions of the same time series into a multidimensional space. Relative
divergence of nearby points on the trajectory is averaged along the
trajectory. The embedding dimension may be chosen arbitrarily large,
since the estimated exponent will converge to a fixed value. However,
the drawback is that the larger the embedding dimension the slower
the convergence. For the present case, the time series is represented by
nephron plasma flow, and embedding dimension was set to 12. The
time series was 1,500 s long. A positive Lyapunov exponent is an
indication of the sensitivity to initial conditions, which is a funda-
mental characteristic of chaotic dynamics, whereas periodic and
quasiperiodic dynamics show a negative and zero-valued exponent,
respectively.

RESULTS

We wish to test whether systematic variation in � causes
changes in the dynamics of the nephron. No changes were
made in other parameters, or in the arterial pressure, which was
100 mmHg in all simulations reported here.

For different values of �, the model developed one of four
different kinds of time-dependent behavior. At very low val-
ues, there was no TGF oscillation, and only the myogenic
oscillation remained active. The three other patterns are shown
in Fig. 2. At relatively low values of �, there was quasiperiodic
behavior, which is characterized by the presence of two or
more noncommensurate frequencies. Quasiperiodic motion has
marginal stability, as indicated by the vanishing of the first two
Lyapunov exponents. Figure 2, top, with � � 0.24, shows
quasiperiodicity. The two oscillations synchronize at higher
values of �, shown in Fig. 2, middle, for which � � 0.275. The
larger oscillations are because of TGF. For each TGF cycle,
there are five smaller peaks, each resulting from the self-
sustained oscillation of the myogenic mechanism. The five
peaks are not equally spaced, nor are they of equal magnitude
in each TGF cycle. These variations among the myogenic
peaks are the result of frequency and amplitude modulation
(26, 28). The fluctuation pattern becomes irregular at higher
values of �, shown in Fig. 2, bottom, which was generated
using � � 0.35. The TGF fluctuations persist, but the magni-
tude varies from cycle to cycle and in no apparent order. There
were three to five myogenic peaks for each TGF cycle, and the
number of myogenic peaks per TGF cycle varied in no appar-
ent order in successive cycles. The time series in Fig. 2 are
taken from the output of one of the nephrons in the two-
nephron model. The two nephrons in that model had identical
properties and parameters, and the time series of the two were
identical. The time series from the one-nephron model showed
minimal differences from those shown in Fig. 2 and are
therefore not shown here.

Each type of motion shown in Fig. 2 forms a characteristic
attractor in phase space. A later analysis of the results makes
use of a Poincaré section, which is the intersection of a phase
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space trajectory with a plane in phase space, and the phase
space diagrams of the model results are therefore shown in Fig. 3.
In each case, the phase space diagram is formed from the
simulation results shown in the corresponding panels of Fig. 2,
using the predicted time series of single nephron blood flow
rate, NaCl concentration in tubular fluid at the macula densa,
and intracellular Ca2� in an arteriolar smooth muscle cell.
Figure 3, top, shows the results with � � 0.24. The pattern is
that of a two-dimensional torus, with the large motion resulting
from TGF and the smaller motions attributable to the myogenic
oscillation dispersed around the TGF trajectory. If simulated to
infinity, the orbit will densely fill the torus, without repeating
itself. The quasiperiodic behavior may appear periodic in Fig. 2,

Fig. 3. Phase space diagrams generated by one nephron of the two-nephron
model, using 1 of 3 different values for �. Each diagram was constructed from
the time series of nephron plasma flow rate, NaCl concentration in tubular fluid
from the macula densa, and intracellular Ca2� concentration in an arteriolar
smooth muscle cell. Each diagram used time series of 600 s duration. The
scales differ among the 3 panels.

Fig. 2. Time series of renal plasma flow rate generated by one nephron of the
two-nephron model, using 1 of 3 different values for the coupling parameter �.
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top, but the phase space attractor in Fig. 3 shows that the orbit
runs on a torus. A closer look at the time series in Fig. 2, top,
also confirms the aperiodic nature of the dynamics.

Figure 3, middle, shows the trajectory formed by a system
with a stable oscillation. This tracing represents 600 s of
simulated time, the same as in Fig. 3, top and bottom. The
combined motion of the two oscillations retraces itself more
than 14 times during this simulation without change from one
repetition to the next, which is typical of phase-locked limit-
cycle oscillations. Such oscillations are specific modes on the
torus surface in which there is a rational ratio of the two
periodicities. In our case, five myogenic oscillations are com-
pleted during each TGF cycle. The ability to synchronize
different oscillatory modes is a characteristic feature of non-
linear systems. The myogenic trajectories are not equally
spaced around the TGF loop because of frequency modulation
by TGF, and they are not of equal amplitude because of
amplitude modulation by TGF (26, 45).

Figure 3, bottom, shows the phase space diagram formed by
the system at a higher value of �. The attractor no longer lies
on the surface of a torus, and it does not retrace itself during the
600-s duration of the simulation. A chaotic attractor cannot run
on a two-dimensional torus because two-dimensional dynamics
are insufficient for chaos to occur and its attractor is therefore
more complicated. The myogenic oscillations appear to differ
in magnitude at different locations in phase space, suggesting
that amplitude modulation persists in this chaos-like state. The
time series in Fig. 2, bottom, also shows amplitude modulation
of the myogenic oscillation by TGF.

To provide a quantitative description of the bifurcations
shown by the model, we calculated one-dimensional bifurca-
tion diagrams, which show the bifurcations through which
chaos-like dynamics are developed as � is increased. The
bifurcations taking place on the route from limit cycle to
chaos-like behavior involve a torus bifurcation followed by
saddle-node and homoclinic bifurcations. A torus birth bifur-
cation is a transition in which a periodic orbit loses its stability
as two complex eigenvalues (called Floquet multipliers) cross
out of the unit circle in the complex plane. In the present case,
this happens when the newly born cycle (TGF in this case)
modulates the existing cycle (from the myogenic mechanism)
to form a torus in phase space. A saddle-node bifurcation is
characterized by the collision of a stable and an unstable limit
cycle during which both limit cycles cease to exist and the
system seeks other attractors in the phase space. Bifurcations
of this type are involved in the transitions between quasiperi-
odic and phase-locked periodic dynamics on the surface of the
torus.

Homoclinic bifurcations, on the other hand, are involved in
the destruction of the torus and the transition to chaos as the
interaction between the two modes becomes too strong (1). A
homoclinic bifurcation occurs, for instance, when a periodic
orbit expands to touch the unstable manifold of an unstable
equilibrium point. After the bifurcation, the periodic orbit no
longer exists.

At low � values, only the myogenic mechanism oscillates. In
the bifurcation diagram for the single nephron model (Fig. 4A),
this mode is represented by a single curve. The TGF mecha-
nism does not oscillate at this value of � because the signal
from the macula densa is too weak. At �1 � 0.221, destabili-
zation of the myogenic limit cycle takes place through a torus

birth bifurcation. Oscillations are now present in both mecha-
nisms.

In the region after �1, there is an infinitely dense sequence of
intervals, called windows or resonance tongues, with various
mode lockings between the TGF and myogenic oscillations.
Windows are terminated on both sides by saddle-node bifur-
cations and the transition to quasiperiodic dynamics. At �2 �
0.267, a wide window with 5:1 mode locking is born through
a saddle-node bifurcation. The 5:1 mode locking is represented
as five simultaneous curves, since the orbit makes five wind-
ings (myogenic oscillations) for each TGF cycle. This mode is
present in the normotensive state. It is terminated at �3 � 0.309
through another saddle-node bifurcation, where the regular
dynamics transform into chaos-like dynamics. For increasing �
from this point, alternating regions show chaos-like and 5:1
and 4:1 dynamics.

The bifurcations in the two-nephron model (Fig. 4B) take
place in much the same way as the single nephron model, but at
different values of �. The torus bifurcations take place at �1 �
0.221, which as before leads to narrow windows with mode
lockings and quasiperiodicity. The saddle-node bifurcation at
�2 leading to 5:1 mode locking takes place at � � 0.249, a
lower value than for the single nephron model, and is termi-
nated at higher values, yielding a broader region with 5:1
dynamics. Most of the periodic windows that appear at larger

Fig. 4. One-dimensional bifurcation diagrams from the single and two-nephron
models.
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� in the single nephron model are absent, and the chaos-like
motion is present over the interval � � [0.31, 0.355]. At �4 �
0.355, a homoclinic bifurcation cause the emergence of 4:1
mode locking, which at higher � bifurcates to 5:1 mode locking
through homoclinic bifurcations.

Figure 5 shows the Lyapunov exponent as a function of �.
With the single nephron results (Fig. 5A), the exponent has
negative values at the mode-locked regions and negative or
almost zero exponents at � values where quasiperiodic dynam-
ics occur. The narrow regions with positive exponents are
chaotic. The values of the Lyapunov exponent with the two-
nephron model (Fig. 5B) present a similar pattern but reflect
the different values of � at which bifurcations occur.

DISCUSSION

Arterial blood pressure, the major input to the systems
regulating renal blood flow, fluctuates irregularly (13, 25). The
pattern of fluctuations in the ultradian frequency band is 1/f,
signifying that the logarithm of the spectral power varies
inversely with the logarithm of the frequency; small fluctua-
tions are more frequent and large ones less so. The fluctuations
are large enough to alter distal tubule flow rate, and therefore
to disturb the epithelial transport mechanisms responsible for
regulation of the composition and volume of body fluids. Renal
autoregulation serves as a filter to reduce the impact of pressure
fluctuations at frequencies �100 mHz (21, 41). Because the
blood pressure is not steady, analysis of the time-dependent

behavior of autoregulation is essential; steady-state constructs
cannot, in principle, produce an adequate understanding of how
autoregulation protects flow-dependent transport processes so
that they can respond appropriately to hormonal control im-
portant for regulation of the body fluids. Moreover, the kidney
develops in an environment with time varying arterial pressure,
hormones, and other factors that affect it. The organization of
renal structure and function must therefore reflect a response to
these ongoing challenges, responses that cannot be understood
with knowledge only of steady-state function. Oscillations,
modulation effects, nephron synchronization, and bifurcations
to chaos, all of which have been observed experimentally, arise
out of time-dependent processes.

The delayed negative feedback control associated with TGF
is responsible for periodic oscillations of tubular flow rate,
GFR, and of tubular fluid NaCl concentration at the macula
densa in time series of tubular pressure from rats with normal
blood pressure (16). The arterioles supplying blood to these
nephrons undergo periodic vasomotion and cause another,
higher-frequency oscillation in tubular pressure and nephron
blood flow (50). The periodic oscillations become irregular in
rats with chronic high blood pressure, and the time series have
properties of chaos (15, 51).

In this study, we tested whether changes in the strength of
coupling between the TGF and myogenic mechanisms change
the dynamics of blood flow control. We used a spatially
extended model of tubular pressure, tubular flow rate, and
tubular NaCl concentration in a compliant tubule to address the
question. Boundary conditions for the system equations were
GFR as the initial flow rate, the tubular pressure at the furthest
extent of the distal tubule we simulated, and the concentration
of NaCl in the glomerular filtrate. Because NaCl is the only
solute whose epithelial transport is simulated in the model, its
concentration is assumed invariant through the proximal tu-
bule. The differential equation describing the change in NaCl
concentration is therefore solved only from the transition
between these tubular segments to the end of the model’s
tubular system.

GFR is heavily dependent on hydrostatic pressure in glo-
merular capillaries, and this pressure is dependent on the
vascular resistance of the afferent arteriole that supplies blood
to the glomerulus. The vascular resistance is affected by
several factors: the length dependence of the contractile mech-
anism, the operation of a self-sustained oscillation in arteriolar
radius caused by an instability in membrane electrical potential
difference, input from TGF, and interactions among these
factors. These components of the system act to maintain GFR
constant over the range of arterial blood pressures occurring
during a day (13, 25), and they have nonlinear properties.
Finally, both the simulated tubule segments and those beyond
the simulation show a significant mechanical compliance in
response to changes in the tubular pressure (24). Hydraulic
resistance to fluid outflow from the tubule therefore declines as
flow increases. These boundary conditions provide nonlineari-
ties to the system that contribute to the bifurcations we have
simulated.

The model succeeds in simulating a number of measures of
renal blood flow performance (26). Time-averaged results of
GFR, of filtration fraction, of tubular flow rate, of tubular
hydrostatic pressure, and of NaCl concentration in tubular fluid
at the macula densa correspond to those found in experimental

Fig. 5. Estimated first Lyapunov exponents from the one-nephron and coupled
two-nephron models.
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measurements. The model also autoregulates GFR and renal
plasma flow in response to changes in mean arterial pressure at
flow rates characteristic of experimental responses (26). The
dynamic predictions of the model include the presence of two
oscillations at measured amplitudes and frequencies, sustained
oscillations over a large range of arterial blood pressures and
consistent with experimental studies of renal blood flow regu-
lation, and modulation of the amplitude and frequency of the
myogenic mechanism by TGF (26). Nonlinear interactions are
found in measurements of whole kidney blood flow (6) and
tubular pressure (28) and predicted in simulations with this
model (26).

In this study, both the single nephron and two-nephron
simulations undergo torus, saddle-node, and homoclinic bifur-
cations as the value of the coupling coefficient � is increased.
This result is consistent with experimental findings (14, 15,
51). For the single nephron model, chaotic dynamics appear
only for a small set of discontinuous values of the coupling
parameter, whereas the two-nephron model behaves chaoti-
cally over a larger and more connected region. Nephrons are
normally coupled to each other because of electrotonic signal
propagation over the wall of the afferent arteriole (12, 29, 45),
and the behavior of the two-nephron model is therefore more
relevant to the kidney in vivo. The model also predicts that the
bifurcation from quasiperiodicity to the 1:5 resonant oscillation
in TGF occurs at lower values of � in the two-nephron model.
Nephron coupling therefore increases the range of values over
which both limit cycle oscillations and chaotic dynamics op-
erate. Previously, we showed that nephron coupling improves
the stability of the model with respect to the range of a
parameter used to maintain the myogenic-to-TGF frequency
ratio at 5:1 (29). Beach et al. (4) concluded that the TGF
oscillation is more stable if nephrons interact than it is in single
nephrons. The renal vascular structure is an example of a
resource distribution network that can be a source of complex
dynamics from both signaling and cardiovascular sources (27,
38, 39).

The model results suggest that an increased interaction
between the TGF and myogenic oscillators can cause the
bifurcation to the chaotic state. When the TGF oscillation is a
limit cycle oscillator, there is synchronization between the two
mechanisms at a 5:1 ratio, both in experimental results (45) and
in the model. Increasing the value of � to produce chaos
interferes with the synchronization between the mechanisms.
We have shown previously that the interaction leads to syn-
chronization and modulation effects (28). Clamping TGF input
at a fixed value eliminated the time-varying modulation and
allowed the myogenic mechanism to oscillate at a single
frequency (26).

Using a simple nephron model lacking a representation of
the myogenic mechanism (3), we have modeled transitions to
chaos (18, 44). These earlier results showed period-doubling
cascades as the bifurcation pathway from limit cycle oscillation
to chaos. In this study, the pathway was through torus bifur-
cations. Period-doubling cascades have not been observed
experimentally; tubules in the kidney are either oscillating or in
a chaotic mode (15, 45, 49). The transition between the two
states in vivo is therefore likely to be abrupt, which is charac-
teristic of torus bifurcations. Abrupt transitions between dy-
namic states were found consistently in this study, as seen in
Fig. 4. This distinction reinforces the conclusion that increased

interaction between TGF and the myogenic mechanism can
cause the bifurcation to chaos that occurs in animals with
chronic hypertension.

TGF gain is increased in spontaneously hypertensive rats (8,
14). In our model, the gain is the product of the TGF output and
the coupling parameter �. The coupling is assumed to act
through the voltage-dependent Ca2� conductance in the mem-
brane of arteriolar smooth muscle cells. Strong experimental
evidence suggests that the myogenic mechanism acts though
membrane depolarization followed by Ca2� influx through
voltage-activated channels (7). Substantial evidence has ac-
crued that TGF acts through activation of adenosine-sensitive
A1 receptors (43, 46). The adenosine appears to be derived
from interstitial dephosphorylation of ATP released from the
macula densa cells (42). The exact localization of the adeno-
sine A1 receptors mediating the TGF response is not known,
but recent data suggest that adenosine receptors on vascular
smooth muscle cells are critical for the TGF response (35).
Activation of adenosine A1 receptors on the vascular smooth
muscle cells of afferent arterioles activates phospholipase C,
leading to increased inositol trisphosphate production with
subsequent release of intracellular Ca2� (10). The major effect
of this initial and transient increase in intracellular Ca2� seems
to be an activation of a Ca2�-dependent Cl� channel that
results in membrane depolarization followed by influx of
extracellular Ca2� through the voltage-activated Ca2� chan-
nels, causing contraction of the smooth muscle cells (11). The
central role of voltage-activated Ca2� channels is further em-
phasized by the fact that the TGF response, the myogenic
response, and autoregulation of renal blood flow all are abol-
ished by blockers of voltage-activated Ca2� channels (7, 30,
33, 34). Because entry of extracellular Ca2� through voltage-
activated Ca2� channels seems to be a shared mechanism in
both TGF and the myogenic mechanism, we chose to model
the effect of TGF as a direct activation of voltage-activated
Ca2� channels. We used a single parameter to represent the
entirety of the signaling process from the macula densa to the
vascular smooth muscle cells. This is in effect equivalent to
linearizing it, which appears to be justified because a more
detailed description introduces a level of complexity inconsis-
tent with all other aspects of the model, and also because no
dynamic data are available to justify anything more.

The effects of TGF output and coupling parameter cannot be
separated in our model because they multiply each other. One
may therefore imagine that the predicted action of TGF repre-
sents signaling from the macula densa to receptors on smooth
muscle cells, whereas the coupling coefficient expresses the
sensitivity of intracellular coupling mechanisms to input to
those receptors.

We have earlier used a form of the spatially extended model
with a linear coupling of TGF to the diameter of the afferent
arteriole rather than an explicit representation of the myogenic
mechanism (17). This simplified model simulates the TGF
oscillation but could not be made to bifurcate to chaos over a
larger range of TGF gain values than has been observed
experimentally, a finding consistent with the idea that interac-
tions between the two oscillators are required in single nephron
simulations.

We have also observed that nephrons communicate with
each other using vascular signals initiated by TGF (29). The
strength of this coupling is increased in hypertension (5, 47).
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We simulated a group of nephrons of different lengths, coupled
by vascular signals (27). The nephron model (3) was much
simpler than any we have used in this study and lacked a
myogenic mechanism. Using parameter values that support a
limit cycle oscillation with a single nephron version of this
model, we found that many of the nephrons in this multi-
nephron model operated in a chaos-like mode even at normal
blood pressures. Increasing the coupling between nephrons
increased the number of nephrons behaving chaotically. Lay-
ton et al. (20) and Pitman et al. (37), using their nephron model
as the basis for a two-nephron configuration, found a range of
values for a coupling term that generated chaos-like activity.
Layton et al. (19) subsequently studied the effects of coupling
two nephrons of different lengths on system dynamics, using
their model of the thick ascending limb and TGF; nephron
models were coupled linearly. They found that the two-
nephron model exhibited limit cycle oscillations but could
produce more complex dynamics under some combinations of
nephron lengths. This result is quite similar to our finding with
a multinephron model using a simpler nephron model than the
one in this paper (27). Each of the simpler nephron models had
a linear representation of vascular coupling between the mac-
ula densa and the afferent arteriole. The results of the current
study show that the bifurcations of interest can also be caused
in a single nephron model by an increase in value of the
coefficient coupling TGF and the myogenic mechanism. All
nephrons in this study were of identical lengths, a condition
that, by itself, could not cause any of the bifurcations. The
effects of the interplay between intranephron synchronization
of TGF and the myogenic mechanisms, and internephron
synchronization, remain to be studied.

Experimental results in two forms of experimental hyper-
tension show irregular fluctuations in tubular and vascular
dynamics (14, 15, 23, 51). The phase space attractor has been
found to be low dimensional and to have a noninteger value,
and the first Lyapunov exponent was positive (51). These are
characteristics of datasets from chaotic systems. Surrogate data
analysis confirmed the nonlinearity of the attractor (52). The
ability to detect and measure chaos with these measures may be
reduced when they are applied to experimental data. The
principal reason for this uncertainty is that time series from real
systems are affected by random processes, making it impossi-
ble to eliminate system and measurement noise. The animals
used in those studies constitute complex systems from which it
is technically impossible to eliminate all variation. Thus the
experimental results can only be regarded as suggestive of
chaos, and not a definitive demonstration.

An alternative to defining the dynamics generated by an
experimental system is to simulate it, so that all sources of
noise are eliminated and the results are strictly deterministic,
the approach we used in this study. The models necessarily
contain a number of approximations to the live kidney, how-
ever, and we know of no way to validate them completely.
Moreover, the classic work on chaotic systems in the physics
and mathematics literature generally uses third-order systems,
whereas our models are much higher order, and the real kidney
still higher. These considerations make it unlikely that a
completely convincing case can be made that the observations
of this study are due to chaos as rigorously defined.

The value of the approach we have followed, however, lies
in the fact that chaotic systems have characteristic behaviors

that differ from those of limit cycle oscillators, and in partic-
ular from those of linear systems, and these behaviors provide
the basis for predictions about the performance of the real
kidney. The task at hand then becomes one of predicting
effects of nonlinear behavior in the kidney, and mapping these
effects on to problems of physiological interest. The TGF and
myogenic oscillations occur because those systems are nonlin-
ear, at least second order, and contain dissipative terms, which
are necessary conditions for a self-sustained oscillation to
occur (2, 31, 32, 36). Whether systems with such properties
oscillate is a matter of parameter values, and it would appear
that the parameters in the kidney support these oscillatory
dynamics. Because both TGF and the myogenic mechanism
converge on a single contractile mechanism in arteriolar
smooth muscle cells, an interaction is inevitable and synchro-
nization is a likely outcome of that interaction.

Nephron synchronization is another effect of nonlinear in-
teractions. This effect is well established in experimental
measurements (12, 45, 49) and has been simulated with the
same two-nephron model as used in this study (29) and with
other simpler nephron models (4, 27, 37).

Nephron synchronization is impaired in hypertension (45).
This effect may be a consequence of the bifurcation to the
chaos-like state we have simulated in this study, or it may be
a result of increased vascular signal coupling (5, 47), as we
have also suggested (27), or both, and one change may be a
response to the other.

Perspectives and Significance

We simulated tubular pressure, flow, and NaCl concen-
tration in spatially extended mathematical models of one
and two nephrons. Each nephron model included an active
myogenic mechanism and an interaction between TGF and
the myogenic mechanism operating at the Ca2� conductance
of afferent arteriolar smooth muscle cells. Nephrons were
coupled electrotonically in the two-nephron simulation. The
tubular variables and nephron blood flow oscillate in nor-
motensive rats but are irregular in hypertensive animals, in
which TGF gain is increased. We varied the strength of
coupling between TGF and the myogenic mechanism to test
whether an increase in this parameter could cause the
change in the dynamics, and whether the experimental
results represented deterministic chaos. Solutions of both
one- and two-nephron models developed the irregularity at
higher coupling strengths, but the range of coupling
strengths that could cause the irregularity was larger in the
two-nephron model.

These results confirm that the observed increase in coupling
between TGF and the myogenic mechanism can cause the
irregularities seen in experimental data from hypertensive rats
and that the change in dynamics represents a bifurcation to
deterministic chaos. Nephrons are normally coupled electron-
ically to their neighbor nephrons, so the two-nephron result is
more likely to represent the system dynamics in vivo.

The oscillations in normotensive animals show extensive
synchronization, but this phenomenon is decreased in hyper-
tensive animals, reflecting the operation of a chaotic system.
The presence of periodic oscillations is likely to lead to the
formation of ensembles of synchronized nephrons, and the
absence of these oscillations in hypertensive animals can be
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expected to reduce the size of such ensembles, and to reduce or
eliminate the functional advantages such aggregation is likely
to produce.

The strength of internephron coupling is also increased in
hypertension, a change that models suggest can produce a
bifurcation to chaos by itself. How the interaction between
TGF and the myogenic mechanism affects the interaction
between nephrons, and the effect of changes in both coupling
strengths, remain to be studied.
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Biosimulation and Computations in Systems Biology
Olga Sosnovtseva1, Jakob L. Laugesen, and Erik Mosekilde

1.1
Aiming to explain

Functioning of the human organism depends on regulatory processes that

span an enormous range of spatial scales, from the nanometer scale of molecu-

lar conformation changes to the transmission of nerve signals over distances of

the order of a meter. The fundamental elements of biochemical networks are

nucleic acids (gene regulatory network), biomolecules (signaling networks)

or small organic compounds (metabolic networks). The human genome may

only have about 25000 genes, but these genes are used to make over 100000

proteins, many of which serve more than one function. Although some are

more likely than others, the number of conceivable interactions between all

the human genes and their protein products is completely incomprehensive.

At the cellular level, biomolecular signaling networks implement a new set

of functions, including signal transduction, rhythm generation, and intercel-

lular signaling. Tissues and organs, the next level of biological organization,

again display completely new properties. Communication among the cells

lead them to function in a coordinated manner that can be very different from

the isolated behavior of the cells that constitute the tissue. Biological com-

plexity cuts across time as well as space. At the molecular level time scales

of 10−9 seconds, characteristic of Brownian motion, are important, whereas

aging processes and the development of diseases such as cancer and diabetes

may involve time scales of the order of a human lifetime or 109 seconds.

Within this area of multi-disciplinary research, Systems Biology and Biosim-

ulation are characterized by [17, 33, 34]:

• Global rather than local analysis, or holistic rather than reductionistic

perspective. This refers to the attempt of System Biology to capture and

analyze many interconnected aspects of a biological system simultane-

ously. This is in contrast to the reductionistic approach where one or a

few aspects are studied at a time;

1) Corresponding author.



4 1 Biosimulation and Computations in Systems Biology

• The simultaneous study of different levels of biological organization, of-

ten with the aim of describing how new properties and functions arise

through the coordinated interaction of many units;

• The investigation of biological reaction cascades and feedback networks,

including gene regulatory, protein interaction as well as signaling and

metabolic networks;

• The explicit incorporation of time in order to capture and analyze dy-

namical behaviors and stimuli-response patterns of biological systems

and processes;

• The use of concepts and tools from engineering and control theory to

examine the role of particular feedback regulations and to determine the

significance and stability of such regulations;

• The direct involvement of concepts from non-linear dynamics and non-

equilibrium thermodynamics to explain and describe observed tempo-

ral patterns, synchronization phenomena, and nonlinear wave propaga-

tion;

• The use of computational means to capture, model and simulate biolog-

ical processes and systems.

Biosimulation, as we define it, is the application of Systems Biology to solve

concrete problems in the pharmaceutical industry or the health sector at large

[18]. Successful work in this area clearly requires close collaboration between

pharmacists, medical doctors and modelers with a good understanding for

feedback control, stability criteria, and nonlinear dynamics.

1.2
Approaches to a Systems Description

Computationally oriented biology involves two distinct approaches: (i) pat-

tern recognition or data-mining that aims at extracting the hidden informa-

tion from huge quantities of experimental data, in order to discover new phe-

nomena, quantify their significance and formulate hypotheses about the in-

volved processes [19] and (ii) simulation-based analysis (or hypothesis-driven

research) that aims at establishing a dynamic model that captures the key fea-

tures of a system and is consistent with all available experimental informa-

tion [18].

Knowledge discovery and pattern recognition are used extensively within

bioinformatics for such tasks as the prediction of exon-intron position and

protein structure from a given sequence or the inference of gene regulatory
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Fig. 1.1 Illustration of some of the main aspects of mechanism-based
modeling as outlined in the main text. Note in particular the important
role of problem definition. It is through this process that we can sep-
arate different time scales and decide what is important and what is
not.

networks from expression profiles [19, 20]. These methods typically use pre-

dictions based on statistical discriminators that often involve sophisticated ap-

proaches (such as hidden Markov models) or other algorithms. In contrast, the

simulation approach attempts to predict the dynamics of a system so that the

validity of the underlying causal structures can be tested.

Although bioinformatics has long been used for genome analysis, protein

structure determination and drug-likelyhood predictions, simulation-based

approaches have so far received less attention. This now appears to change.

Convincing results obtained with the systems approach have lead to a signif-

icant boost in interest, and combined with substantial advances in software

and computational power this has enabled the creation and analysis of rea-

sonably realistic, yet intricate biological models, such as the full-heart model

developed by the universities in Oxford and Auckland [21, 22].

Mechanism-based modeling stems from engineering and other fields of sci-

ence that have strong theoretical traditions. Computer simulation allows en-

gineers to test the function of a new construction and compare it with other
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possible constructions long before the first prototype is made. The results are

enormous savings in time and money. Direct application of the same approach

to biomedical problems is primarily restricted by the overwhelming complex-

ity of living systems. From physics we have inherited the idea that one can

separate processes and phenomena based on their temporal and spatial scales.

This is obviously much more difficult for biological systems with their many

and strongly coupled processes at overlapping time and space scales. More-

over, some of the most interesting problems are precisely to explain the co-

ordination of processes that occur over separate time scales or to explain the

properties of a tissue or the function of an organ in terms of the processes and

interactions of the constituting cells or functional units.

A mechanism-based model is validated through its ability to generate be-

haviors with amplitudes, periodicities, phase relationships, response dynam-

ics, damping characteristics, and stability properties in accordance with the

experimentally observed dynamics [51]. At the end of the day, the model is

validated by its ability to predict phenomena not previously experienced.

Two different paradigms can be recognized in the approach to model con-

struction. In a bottom-up approach the individual base elements of the system

are first described in great detail. These elements are then linked together to

form larger subsystems, which in turn are linked, sometimes in many lev-

els, until a complete model is developed at the top level. This strategy often

resembles a "seed" model, where the beginning is small, but the model even-

tually grows in both complexity and coverage.

The theory of complex systems suggests that the rules by which parts of a

system interact may be more important than the functioning of the individual

parts. In a top-down approach an overview of the system is first formulated,

specifying but not detailing relevant first-level subsystems. Each subsystem

is then refined in yet greater detail, sometimes in many additional levels of

subsystems, until the entire specification is reduced to basic elements. The

top-down approach is most appropriate in a professional simulation environ-

ment that aims at developing a large, lasting and flawless model. The bottom-

up approach is generally used in research environments where the goal is to

test hypotheses and gain understanding. A judicious combination of the two,

sometimes referred to as a "middle-out" approach, may turn out to be the most

effective solution in some situations [18].

The purpose of the present chapter is to illustrate the use of mechanism

based modeling and Biosimulation. We’ll first demonstrate some of the ba-

sic aspects of the model building process by means of a strongly simplified

description of the processes involved in regulation of the male sex hormone.

Testosterone is found to be released in pulses with approximately two hour

intervals, and we want to illustrate the possible role of feedback regulation in

generating such ultradian oscillations. The second example provides a much



1.3 Biological Rhythms and the Role of Feedback Regulation 7

more detailed description of the mechanisms by which the individual nephron

of the kidney regulates its afferent blood flow to compensate, for instance, for

variations in the arterial blood pressure. Also this regulation is found to lead

to self-sustained oscillatory dynamics.

1.3
Biological Rhythms and the Role of Feedback Regulation

Investigations performed during the last decades have revealed a great va-

riety of rhythms of significance for the regulation and function of normal

physiological systems. Hormonal secretion provides several illustrative ex-

amples with the release of luteinizing hormone [14], growth hormone [36],

and insulin [37] displaying pronounced ultradian oscillations with 2-3 h pe-

riods. The release of insulin also displays a faster rhythm with a period of

9-15 min [38]. These rapid oscillations are likely to be of significance for the

metabolic control processes in the liver, and there are a number of examples to

support the idea that rhythmic administration of a hormone can be more ef-

fective than constant administration at the same average rate. It is also known

that disruption of certain biological rhythms can lead to a state of disease [39]

while, in other cases, synchronization of ultradian release processes can cause

abnormal biological conditions such as, for instance, hot flashes [40].

Many hormonal secretion processes also exhibit strong 24 h or circadian

components. This is true, for instance, for cortisol, antidiuretic hormone, and

growth hormone. The secretion of growth hormone is markedly increased

during the early periods of sleep, and the secretion of antidiuretic hormone

also reflects the sleep-wake cycle. The stress hormone cortisol, on the other

hand, shows a higher release rate during the last stages of sleep and in the

early morning. This serves as a sort of wake-up call, and insulin secretion is

similarly increased around the wakening hours in order to activate the body’s

muscular processes. The mechanisms underlying these oscillations can often

be traced back to cyclical variations in the activity of the central nervous sys-

tem [23, 24]. At the same time, the circadian rhythm modulates the above

mentioned ultradian oscillations.

Feedback regulation is an important feature of all biological systems [25]. If

a process has an effect on other processes and these processes again have an

effect on the first process, then a "circular" relationship or "loop" exists. This

generally helps a system to maintain stability. Regulation of the blood glucose

concentration may serve as an example. Increasing concentration of glucose

in the blood after a meal stimulates the pancreas to produce more insulin.

The insulin is carried with the blood around in the body and diffuses through

the capillary walls into the interstitial space, causing the cells to increase their
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uptake of glucose. This in turn reduces the amount of glucose in the blood,

thus bringing the system back towards its initial state.

The insulin-glucose feedback is said to be a negative feedback in that an

initial increase in blood glucose concentration is counteracted by the release

of insulin. Negative feedback regulations are generally considered as stabiliz-

ing to the system’s dynamics. At the same time they reduce the significance

of parameter variations, i.e., two individuals can have different values for the

cellular sensitivity to insulin and yet function more or less in the same way.

Positive feedback, on the other hand is destabilizing and leads to run-away

phenomena. A typical example is the growth of cancer cells which often oc-

curs in a nearly exponential fashion. Positive feedback regulation is not com-

mon in physiological systems. However, one can find examples where a tem-

porary positive feedback helps to stimulate a fast activation. Peptides in the

stomach, for instance, stimulate the release of chloric acid that breaks down

proteins and thereby generate even more peptides. Similarly, during the re-

lease of an ovum from the ovary there is a phase in which some of the sex

hormones enter into a positive feedback.

However, a negative feedback regulation is stabilizing only as long as the

feedback is fast enough, i.e., the variables in the system must not change much

before the change is registrated and corrections applied to the variables. If

there is a delay in the feedback, the regulation may become unstable, and the

system will start to oscillate. This is the situation in both of the two examples

we are going to discuss in the present chapter. The presence of a delay is also

the mechanism through which many other rhythmic phenomena arise in bio-

logical systems. We say that the system has undergone a Hopf bifurcation in

which the original equilibrium point has become unstable (an unstable focus),

and a self-sustained oscillation (or limit cycle) has taken over the role as the

stationary solution [29].

1.4
Instabilities and Far-From-Equilibrium Conditions

From a physical point of view, the rhythmic phenomena are related to the fact

that biological systems are maintained under far-from-equilibrium conditions

through a continuous dissipation of energy [26]. However, non-equilibrium

conditions can give rise to even more complicated behaviors. Chaotic dynam-

ics, for instance, can arise either as a regular rhythmic process is destabilized

and develops through a cascade of period-doubling bifurcations [41], by torus

destruction in connection with the interaction of two or more rhythms with

incommensurate periods [28], or via different types of intermittency [27].
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Deterministic chaos is characterized by the facts that (i) the trajectory never

repeats itself, but continues to find new ways to go, and that (ii) the dynam-

ics is sensitive to small changes in the initial conditions [27]. Deterministic

chaos may resemble random noise, and it can be difficult to distinguish the

two. However, while a noisy system always responds in the same way to an

external perturbation, the response of a chaotic system can vary significantly

over the phases of its trajectory. In relation, for instance, to the medical treat-

ment of a patient, this implies that while in a linear system the effect of a

drug will always be the same, the precise timing of the administration may

be significant for a rhythmic (or chaotic system). During certain phases of the

oscillation, even a major dose may have little effect while a smaller dose may

be highly effective (or perhaps even toxic) during other phases. Attempts to

take advantage of this phenomenon are made, for instance, in experiments

with chronotherapy of cancer and other diseases [47].

Synchronization is another universal phenomenon in nonlinear dynamical

systems [30], a phenomena by which two (or more) rhythmic processes tend to

adjust their dynamics relative to one another so as to attain a state where they

are completely entrained or, alternatively, a state in which there is a rational

relation between their periods. The synchronization of our circadian rhythm

to the local time and the afore mentioned role of hormonal entrainment in the

generation of hot flashes are typical examples. It is also well-known that the

beating of the heart may synchronize with the respiration, typically with 1:3

or 1:4 relations between the two periods. By forcing an oscillating system with

an external periodic signal and detecting the various synchronization regions,

one can obtain information about the nonlinearities at play in the system. An

example of this type of work is the investigation by Sturis et al. [42] of how

the endogenous insulin secretion can synchronize with an externally forced

periodic glucose infusion.

The significance of nonlinear dynamic phenomena seems to be even more

pronounced at the cellular level. Coupling between the cells takes place via a

variety of different mechanisms, including the short-range diffusive exchange

of ions and small molecules through gap junction and the response of the indi-

vidual cell to variations in the intercellular Ca2+-concentration produced by

the bursting activity of adjacent cells [43]. Hence, one can observe synchro-

nization of the bursting activity between neighboring cells as well as waves of

cytoplasmic calcium propagating across larger groups of pancreatic cells [45].

The above mentioned rapid oscillations in the secretion of insulin may be as-

sociated with a modulation of the bursting activity of the individual cells that

arises from such intercellular interactions.

Synchronization of cellular activity is known from many other types of tis-

sue, and transitions between different types of synchronization and between

smaller and larger clusters of synchronized units may represent an impor-
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tant component in the overall regulation of a physiological system. In their

inactive state, smooth muscle cells, for instance, are found to exhibit inco-

herent waves of cytoplasmic Ca2+ produced by an instability associated with

calcium-induced calcium release. When activated, however, the cells synchro-

nize in a regular oscillatory pattern [46]. On the other hand, several cases are

known where a similar transition is related to the development of a state of

disease. It has long been recognized, for instance, that the onset of Parkin-

sonian tremor is associated with a synchronization of the firing activity for a

group of cells in the brain [44].

1.5
Luteinizing Hormone

In this section we’ll use a simple example of hormonal regulation to illustrate

the basic principles of Systems Biology and feedback control. By means of

a System Dynamics flow diagram [31] we build a model of the control of the

production of the most important male sex hormone, testosterone, and we use

this model to discus some of the aspects of the physiological mechanisms that

cause the pulsatile behavior of the system.

System Dynamics [31] makes use of flow diagrams to illustrate the structure

of interacting mechanisms that produces the dynamic phenomena we observe

in managerial and economic systems. However, the same approach is appli-

cable to biomedical systems. Flow diagrams can be considered as a language

following a set of principles that must be used, in order to avoid ambiguous

interpretations. In System Dynamics a system is described by a set of state

variables, rates of change of these variables, auxiliary variables, exogenous

variables and delays, each represented by a specific symbol in the flow dia-

grams.

1.5.1
Model of the pulsatile release of luteinizing hormone

In humans (and other mammals) the secretion of sex hormones, testosterone

for males and estradiol and progesterone for females, are controlled by the

production of luteinizing hormone, which again is controlled by the produc-

tion of a releasing hormone called gonadotropin releasing hormone (GnRH).

In turn the production of GnRH appears to be controlled by the amount of

circulating testosterone [32].

A particular interesting aspect of the GnRH-LH-T system is that the hor-

mone secretion takes the form of pulses. A GnRH-pulse is followed a few

minutes later by an LH-pulse, while it takes approximately 30 minutes for LH

to stimulate the production of T to its maximum. A pulsatile release of GnRH
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is crucial for the system to function normally. It was shown by Knobil [12], that

constant replacement of GnRH production fails to establish normal LH con-

centrations. On the other hand, various diseases, such as hypothalamic amen-

orrhea and hypogonadotropic hypogonadism, have been treated successfully

with pulses of GnRH [13].

System Dynamics makes a clear distinction between amounts and concen-

trations with respect to their function in the models. The amounts of different

hormones in their respective distribution volumes and their rates of change

through production, degradation, transfer to other distribution volumes, etc.,

are the elements of the material conservation equations for the system, and

they constitute the backbone of the models. Concentrations do not satisfy

similar conservation equations, and use of concentrations as basic variables

can only cause confusion in models with different or time-varying distribu-

tion volumes. On the other hand, biological effects are controlled by con-

centrations, and the concentration of various hormones therefore enter the

model’s causal relations. Concentrations are, of course, calculated from the

corresponding amounts by division by the relevant distribution volume. In

this way, causal relations will always start at a level (or state) variable and end

at a rate variable.

When the concentration of GnRH increases it stimulates an increasing pro-

duction of LH and, as long as the production of LH exceeds its rate of degrada-

tion in the organism, this leads to increasing amounts of LH. This first step in

constructing a model is described by the flow diagram in Fig. 1.2, where the

valves indicate the rates of production and decay. Rate related parameters,

for instance hormone lifetimes, are indicated by dashed curves pointing into

the valve. The boxes represent material accumulations of a given hormone.

The solid straight arrows indicate flow direction and dashed curves indicate

causal dependences. The rate of degradation depends both on the lifetime and

on the amount of hormone, since the more hormone is present the more hor-

mone will degrade per unit time. The rate of hormone production depends

on the current concentration of the stimulating hormone through a non-linear

relationship, which typically follows an S-shaped function. This implies that

very little LH is produced at low concentrations of the stimulating hormone.

Then follows a range of concentrations where the production of LH increases

rapidly before it finally levels off at a maximum production rate.

In a similar way, stimulation of testosterone production in dependence of

LH follows an S-shaped curve, such that increasing amount of LH stimu-

lates an increasing production of T. An increase in T, on the other hand, is

assumed to have an inhibitory effect on the production of GnRH. The system

thus constitutes a negative feedback loop. A flow diagram of the described

hormonal feedback system is shown in Fig. 1.4. Note, that material flows

are expressed by fully drawn straight arrows and causal dependences, i.e.,
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Fig. 1.2 Flow diagram of a production/degradation process. LH de-
notes the amount of hormone, and the arrows indicate flow directions
with valves to illustrate that the flow is controlled by other variables or
constants.

physical and chemical laws or biological control mechanisms, are described

by dashed curves. Dashed curves always emanate from a state variable and

end at a rate.

These three inter-hormonal dependences have been experimentally studied

[35] and to a first approximation they follow the S-shaped curves shown in

Fig. 1.3.
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Fig. 1.3 S-shaped functions used to control the production of hor-
mone in dependence on the concentration of the stimulating hormone.
a) and b) are the functions controlling production of LH and T in de-
pendence on GnRH and LH, respectively, while the negative sloped
function in c) controls the suppression of GnRH production at high
concentrations of T.

From a biological point of view the most appropriate functional relationship

for the S-shaped curves are Hill-functions of the form

S(x) =
Vxn

Kn + xn

where V is a saturation production rate, K is a constant that determines the

position of the equilibrium point, and n a parameter that determines the slope

of S at the equilibrium concentration x0, which is also the turning point of the

curve. Note, that the value of n is negative for SR(T).
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Fig. 1.4 Flow diagram describing the production of the releasing hor-
mone (GnRH), luteinizing hormone (LH) and testosterone (T) and their
mutual stimulatory effects are modeled by S-functions. The effect of T
on GnRH is suppressing, and this makes the overall feedback nega-
tive.

The corresonding equations for the production of the three hormones are

dR

dt
= SR(T) − R/τR

dL

dt
= SL(R) − L/τL

dT

dt
= ST(L) − T/τT ,

where the parameters τR, τL and τT are hormonal lifetimes and S(·) are appro-

priately scaled S-shaped functions. Variables and indicies R, L and T refers to

GnRH, LH and T. The equilibrium point of this system is found by requiring

the flows vanish, whereby we find the equilibrium point
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R0 = KR

L0 = KL

T0 = KT

The stability of the equilibrium is found by evaluating of the Jacobian matrix

J at the equilibrium point

J =





−1/τR 0 nRVR/(4KR)
nLVL/(4KL) −1/τL 0

0 nTVT/(4KT) −1/τT





and taking the determinant to obtain the characteristic polynomium. For a

third order system, the polynomium is also of third order P(λ) = λ3 + Aλ2 +
Bλ + C, and for the present model the coefficients are

A =
1

τR
+

1

τL
+

1

τT

B =
1

τRτL
+

1

τLτT
+

1

τTτR

C =
1

τRτLτT
−

nRnLnT

64

VLVRVT

KLKRKT
.

The Routh-Hurwitz stability criterion [15] for a third order system states

that the coefficients of the characteristic polynomium must fulfill the condi-

tions

A > 0, B > 0, C > 0 and AB − C > 0.

The first three conditions are clearly fulfilled for all physical relevant values

of the delays constants τR, τL and τT . A more complete analysis of the system

identifies the critical point, where AB − C = 0, as a Hopf bifurcation. The last

equality can be explicitly written as

(τT + τL)(τT + τR)(τR + τL)

(τRτLτT)2
>

nLnRnT

64

VLVRVT

KLKRKT
.

With experimentally measured lifetimes of τR=3 min, τL=40 min and τT=40

min [16] and equilibrium values of R0 =5 pg/ml, L0 =25 pg/ml and T0 =12

pg/ml [14] we obtain the saturation values VR =3.3 pg/(ml s), VL =3.75

pg/(ml s) and VT =1.2 pg/(ml s). The equilibrium point is stable for Hill

exponents fulfilling the condition

|nRnLnT | > 41.5.
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By means of this inequality we can decide the values of the slopes such that

the hormonal release over time shows an oscillating behavior. It is assumed

that the response of L to R is fast since the hypothalamus and pituitary gland is

located relative closely to the hypothalamus in the brain, while the response

of T to L is slow since L must be transported over a significant distance to

the testes where the production of T takes place. Realistic values would be

nR = −6, nL = 6 and nT = 6. The time evolution of the simulated hormone

concentration with these values is shown in Fig. 1.5. Clearly, the behavior is

oscillatory, however, the period is only approximately 50 minutes, which is

more than a factor 2 too fast as compared with experimental findings. The

parameters that most directly control the period are the lifetimes of the hor-

mones. However, since the values have been measured experimentally there

appears only to be one solution to the problem, namely to amend the pro-

duction rate functions. The parameter V also influence the period, but this

parameter have a strong influence on the amplitudes, and it is therefore not

possible by varying this parameter to obtain both the amplitudes and the pe-

riod correct at the same time. An alternative solution could be to examine

the effect of delays that may be involved in the hormonal production. The

presence of such delays could at one and and the same time provide a longer

period and a more pulsatile dynamics.
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Fig. 1.5 Simulated time evolution for releasing hormone (GnRH),
luteinizing hormone (LH) and testosterone (T). The parameters used
in this simulation yield a period of 58 min between the bursts of LH
secretion. In reality the period is closer to 2 h.
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One possible way of increasing the period is to insert an extra delay in order

to account for the time it takes to activate the cells to change their hormonal

production.

A significant set of functions may fit the experimentally observed S-shaped

hormone production response. However, few of them have a physiological in-

terpretation in terms biochemical processes. For instance the logistic function,

V/(1 + exp{K(x − x0)}), could fit the relationship between hormone concen-

tration and production rate quite well. But, it is not possible to relate the ex-

ponential function to the mechanisms that control the receptor dynamics. Hill

functions, on the other hand, are accepted as a mechanistic model of receptor

dynamics, since there is some correspondence between the parameters of the

function with the chemical constants of the biological process.

Finally, we note that there might also be an inhibitory interaction between

LH and GnRH, such that high concentrations of LH may slow down the pro-

duction of GnRH, whereby the full development of a cycle is retarded.

1.6
Nephron Pressure and Flow Regulation

As an example of a more detailed application of the mechanism-based ap-

proach we’ll consider a model that combines a description of nephron blood

flow regulation with a description of the reabsorption of water and salts in

the loop of Henle. A model of nephron autoregulation has previously been

presented [5]. The purpose of that model was to examine the processes un-

derlying the observed rhythmic and chaotic variations in pressures and flows

observed for normotensive and hypertensive rats, respectively. Reabsorption

of water and salts in the loop of Henle has been described in [8], but in a

spatially extended model that is too complicated to allow detailed bifurcation

analysis. The idea of the present study is to combine the two processes into a

lumped model that retains sufficient simplicity to permit us to perform a more

detailed bifurcation analysis.

1.6.1
Physiological background

By regulation the excretion of salts, water and metabolic end products, the

kidneys play an important role in maintaining a suitable environment for the

cells of the body. In particular, the kidneys control the plasma osmolality, the

proportion of various blood solutes, the extracellular fluid volume, and the

blood pressure. To protect their own function and secure a relatively constant

blood flow, the kidneys also dispose of mechanisms that can compensate for

variations in arterial blood pressure. It has long been recognized that this abil-
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ity partly rests with controls in the individual nephron primarily the so-called

tubuloglomerular feedback (TGF) [1]. This is a negative feedback that regu-

lates the diameter of the afferent arteriole, and hence the incoming blood flow,

in dependence of the chloride or sodium concentration of pre-urine leaving

the loop of Henle.

The nephron may be considered as the functional unit of the kidney. The

human kidney contains about 1 million nephrons, while the rat kidney con-

tains some 30 thousand nephrons. However, the structural features, the main

physiological processes, and the qualitative behavior appear to be similar to

those of the human kidney. The differences are almost completely associated

with the parameter values. The model we present here is a model of a single

nephron initially formulated by Jensen et al. [6] and later studied in greater

detail by Barfred et al. [7]. The intricacies of the nephron-nephron coupling,

discussed in a number of recent studies [48], are neglected here.

Fig. 1.6 Sketch of a nephron with its main components. The incoming
blood from the afferent arteriole is filtered in the glomerulus. In the
proximal tubulus a large part of the filtered fluid is reabsorbed and
further reabsorption of water takes place in the descending limb of
Henle, while salt reabsorption takes place in the ascending limb. At the
point of contact between the distal tubulus and the glomerulus macula
densa cells measure the salt concentration and send transmitters to
the smooth muscle cells, which cause a constriction of the afferent
arteriole at large salt concentrations.

Figure 1.6 shows the tubular structure of a nephron. The inset to the

nephron from the body’s vascular system is the afferent arteriole, originat-
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ing from sequential branching of arteries. The blood enters the the glomeru-

lus, which extracts water and various substance, except blood cells and pro-

teins. The extracted fluid flows further into the convoluted proximal tubulus.

Nearby 70% of the glomerular filtrate is reabsorbed from the proximal tubule

into the capillary network and collected by the outgoing venous system. This

isosmotic process is controlled completely by a hydrostatic pressure gradient.

The residual fraction becomes important for the feedback mechanism later in

the filtration. The remaining 30% of the filtrate enters the thin descending loop

of Henle where additionally 15% of the water is reabsorbed giving rise to an

increased concentration of NaCl as the limb is impermeable to salts. On pass-

ing the ascending limb the filtrate is again diluted as Na+ and Cl− are reab-

sorbed, while the limb is largely impermeable to water. At the end of Henle’s

loop, the tubulus comes into cellular contact with the afferent arteriole of the

same nephron. At these points special cells, the so-called macula densa (MD)

cells, sense the Na+ concentration. If the rate of glomerular filtration, due for

instance to an elevated arterial blood pressure, is too high, the active reabsorp-

tion of NaCl is not complete, and the salt concentration at the macula densa is

too high. The macula densa cells then produce transmitter agents that cause

the flow resistance of the afferent arteriole to increase by radial contraction,

hence lowering the glomerular pressure and thereby reducing the filtration

rate. A second mechanism that contribute to the autoregulation is the myo-

genic response of the afferent (and possibly the efferent) arteriole. Basicly it

is an active response that counteracts increases in arteriolar pressure by in-

creasing constriction/tension of the vessel caused by the smooth muscle cells

in the arteriolar wall. The detailed chemical mechanics of the myogenic re-

sponse are still not fully understood. In the present model a semi-empirical

macro-physiological description of this process is adoted.

While most tissues in the organism dispose of a myogenic mechanism that

allows them to control the incoming blood flow in relation to their metabolic

and other needs, the TGF mechanism is specific to the nephrons of the kid-

ney. This mechanism is seen as a way for the nephrons to protect their own

function against variations in the arterial pressure. The causal loop diagram

in Fig. 1.7 illustrates the main elements of the TGF mechanism as described

above. The feedback is negative in that increasing arterial pressures lead to

higher filtration rates which result in higher NaCl concentrations at the mac-

ula densa leading to arteriolar contraction and reduced filtration rates. How-

ever, the feedback involves a delay of approximately 12 s associated with the

time it takes the filtrate to flow through the loop of Henle.

Early experiments by Leyssac and Baumbach [2] and by Holstein-Rathlou

and Leyssac [3] demonstrated that the feedback regulation could become un-

stable and generate self-sustained oscillations in the proximal intratubular

pressure with characteristic periods of 30-40 s. While for normotensive rats
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Fig. 1.7 Causal loops for TGF. Minus indicates a negative influence
and plus indicates a positive influence in the arrow direction. Alto-
gether the loop represents a negative feedback. However, due to the
delay associated primarily with the fluid flow through the loop of Henle,
and because of a relatively high gain factor the regulation tends to be-
come unstable and produce self-sustained oscillatory dynamics.

the oscillations had the typical appearance of a limit cycle, highly irregular os-

cillations were found for spontaneously hypertensive rats (SHR). Oscillations

were observed for 50-80% of the investigated nephrons. For non-oscillatory

nephrons, self-sustained oscillations could be elicited by microperfusion with

artificial tubular fluid, i.e., by artificially increasing the rate of flow through

the loop of Henle. It has subsequently been observed that similar irregular

oscillations can develop for normal rats, if the arterial pressure is increased by

ligating the blood supply to the other kidney.

1.7
Single Nephron Model

In this section we construct the model step by step and collect the all the sub-

systems into one coherent description of the tubular and arteriolar system. We

have already presented the fluid flow through the nephron above. In the fol-

lowing the total function of the nephron is grouped into specific submodels

representing glomerular filtration rate (GFR), flow through the loop of Henle,

the arteriolar resistance, and a macroscopic model of the smooth muscle cells

in the afferent arteriole. This description will follow the structure of the corre-

sponding flow diagram as depicted in Fig. 1.8.
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Fig. 1.8 Flow diagram for the single nephron model. The are four
main flows in the diagram: 1) The blood flow through the glomerular
capillaries, 2) the glomerular filtration, 3) the flow through the loop of
Henle and 4) the rate of change of arterial radius and its second order
rate of change. The feedback on the arterial blood flow is realized by
the dependence of the arterial resistance on the arterial response
to pressure. Description of the processes that take place in the loop
of Henle is here reduced to a single flow rate and a delay. A lumped
representation is shown in greater detail in Fig. 1.9.

To the left in the diagram we follow the flow of blood from the arterial sys-

tem through the afferent arteriole, the glomerular capillaries, and the efferent

arteriole to the venous system. The two arterioles are represented by their

flow resistances of which the efferent resistance is assumed to be constant.

The afferent flow resistance varies as part of the pressure and flow regula-

tion. The blood flow through the glomerular capillaries is determined by the

pressure difference between the arterial and venous sides and the two flow

resistances. The glomerular capillaries are represented as a (small) compliant

blood volume. The glomerular filtration rate depends on the difference be-

tween the glomerular pressure and the proximal tubular pressure accounting,

of course, for the difference in protein osmotic pressure across the capillary
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wall. It is assumed that the blood reaches pressure equilibrium before it leaves

the glomerular capillaries. The equation for the proximal pressure is derived

from the in- and outflows to the tubule

dPt

dt
=

(

Ff ilt − Freab − FH

) 1

Ct
,

where Ff ilt denotes the flow of filtrated fluid, Freab the reabsorption, FH the

flow from the proximal tubule in the loop of Henle, and Ct is the proximal

tubular compliance. The large reabsorption of both water and salt in this

early tubule is represented in the flow diagram by the arrow pointing from

the tubular fluid volume to the venous system. The salt concentration remains

approximately constant in the proximal tubule as the tubular wall is equally

permeable to water and salts.

The loop of Henle is modeled as a tube divided into a number of consecu-

tive compartments, each with their specific physiological properties. In order

to account for the mechanistic differences between water and salt reabsorp-

tion, the amounts of water and salt must be considered separately as shown

in Fig. 1.9, where the upper part of the chain is the water volumes and flows

between the compartments and the lower part represents the amounts of salt

in the various compartments along the chain. Again, we model this system

by the mass conservation of the filtrate for each compartment and apply our

knowledge about the physical properties of the tube and fluid, which for in-

stance are the compliance and resistance of the tube and the transit times be-

tween the compartments. The flow rate of water entering the first compart-

ment of the thin descending limb from the proximal tubules is the inset to the

flow diagram. This flow rate depends on the compliance and resistance of this

compartment and on a delay time representing the time needed for the fluid

to move from the proximal tubulus to the first compartment. Reabsorption of

water into the the capillary system takes place through the interstitium, how-

ever this process is considered to fall outside the boundaries of the model,

since it only has little influence on the TGF mechanism. Reabsorption of wa-

ter is osmotic and therefore depends on the concentration difference across the

tubular wall and on the permeability of the wall.

In Fig. 1.9 the lumped loop model is depicted with two descending compart-

ments, each with reabsorption of water. The ascending limb is represented by

three compartments. While there is no reabsorption of water in the ascending

limb, reabsorption of salt takes place according to usual Michaelis-Menten ki-

netics. However, there is also an osmotic backleak of salt from the interstitium

into the tubule. This backleak has only little influence on the dynamics of the

model when operated in the normal working regime. However, if the flow

through the loop becomes very small, the reabsorption of water will decrease,

while the active salt reabsorption remains almost unchanged, giving rise to an

increased salt gradient across the ascending limb. The backleak mechanism
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seeks to re-establish the normal salt balance by allowing paracellular diffu-

sion. At the end of the loop in Fig. 1.9 the amounts of both water and salt
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Fig. 1.9 Flow diagram with two descending and three ascending com-
partments in the loop of Henle. The incoming flows come from the
proximal tubule and the outgoing flows enter the distal tubule close to
the point where the macula densa cells are located. Reabsorption is
symbolized by the rates between water/salt amounts and interstitial
volume, which here is assumed to be an infinite sink.

yields a salt concentration which passes the macula densa cells at the intersect

of the distal and juxta-glomerular apparatus, permitting the arteriolar model

to respond to the NaCl concentration through the TGF transfer function.

Several experiments have shown that the radius of arterioles may perform

spontaneous or self-sustained oscillations [9, 10], i.e. independent of the pres-

sure variation due to TGF. According to Poiseuille’s law the resistance of the

arteriole is inversely proportional to the fourth power its radius. Hence, con-

strictions of the arteriolar radius cause a reduction in blood flow into the

glomerulus. This mechanism is modeled by a second order differential equa-

tion of the form

d2r

dt2
+ d

dr

dt
= ω2 Ptrans

P0

where r is the normalized radius. d is a damping coefficient, Ptrans the trans-

mural pressure, ω a characteristic the angular frequency, and P0 a normal-

ization pressure. The transmural pressure is a quite complicated variable to

describe for this system. It is expressed as the difference between the aver-

age pressure Pav of the fluid in the vessel and the equilibrium pressure Peq for

which the arteriole is in equilibrium with this pressure at its present radius

and muscular tone.

Ptrans = Pav − Peq

On top of the elastic reaction of the arteriolar wall Pel , activation of the smooth

muscle cells in this wall gives rise to an additional contribution ψPac to the
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equilibrium pressure that the wall can sustain at a given radius, i.e.

Peq = Pel + ψ([NaCl])Pac

Here, ψ([NaCl]) is the the strength by which the active constriction takes place.

If the salt concentration at the macula densa, [NaCl] is low, then ψ is also low,

thus reducing the contraction of the afferent arteriole and, hence, increases the

glomerular filtration. The dynamics of the active contribution, better known

as the myogenic response, is shortly discussed below. The corresponding

equations are represented in the flow diagram of Fig. 1.8 by two rates labeled

d2r/dt2 and dr/dt with corresponding state variables.

The myogenic response is a process that is best understood on the cellular

level. It is often observed that models on some space- and time level need to

include processes on other levels. We have already seen one example of this:

the Michaelis-Menten transport of salt in the ascending loop of Henle. This

process can also be described on the chemical level, but the thermodynamic

averages causes a macroscopic relationship to be a sufficient description of

the process. By using a similar approach Feldberg et al. [11] have derived

a macroscopic relationship between the constriction of arterioles and blood

pressure, that includes the effect of the smooth muscle cells. The model is

based on the assumption of nonlinear elastic stress-strain relationship and a

linear relationship between the muscle tone and the stress.

The degree to which the afferent arterial resistance is changed due to an in-

creased glomerular filtration is called the TGF transfer function (or loop gain).

As mentioned above the values returned by the function is called the muscular

tone. Actually, the TGF transfer function can be defined as a function of any

variable along the loop of Henle, however, it is mechanistically most obvious

to let it be a function of salt concentration at the site of the macula densa cells,

since this is the terminal of the tubular system relevant for the autoregulation

mechanism. The function is an S-shaped function with lower and upper lim-

its, turning point and a slope at the turning point which can be determined by

microperfusion experiments [5]. Especially the slope and upper limit of the

function show characteristic differences between normotensive and hyperten-

sive rats.

1.8
Simulation and Analysis

The model we have discussed in the preceding sections can be formulated

mathematically as a set of ordinary differential equations. For the model with

two descending and three ascending compartments of the loop of Henle 18

equations are required. Two of the equations describe the oscillations of the

arterial wall and one describes the pressure in the proximal tubulus. Each
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compartment, whether descending or ascending, is described by three equa-

tions representing fluid volume, amount of salt, and the delay of the fluid

transport between the compartments. Computer simulations of the equations

show a great variety in the dynamical behavior.

The TGF transfer function has been experimentally recorded by inserting

a plug of wax in the middle of the proximal tubulus of the rat, so that the

flow in the tubular system is blocked. On the other side of the wax plug a

micropipette is inserted and artificial tubular fluid is infused at a constant

rate. With time the system approaches a steady state and the pressure in the

early proximal tubule is recorded.

With our mathematical model simulations of the microperfusion experi-

ments can be made, by setting the glomerular filtration rate to zero and setting

the flow into the loop of Henle to a constant rate, representing the externally

forced infusion.

Complete bifurcation analyses are hard to perform on systems of the size

of the present model. However, biological system are often infected by noise

making it very difficult, if not impossible, to experimentally observe, for in-

stance, a second period-doubling bifurcation after the first period-doubling

has occurred. For the present model observations of a steady-state, a cycle,

a cycle of double period and chaos, allow us to limit the analysis to bifurca-

tions leading to these dynamical behaviors. Figure 1.10 shows a bifurcation

analysis with the total delay time T and strength α of the TGF transfer func-

tion as the parameter. For small α values the system is in equilibrium with no

time-dependent variations. As α is increased, the equilibrium point becomes

unstable in a Hopf bifurcation, and a limit cycle is born. As it is clear from

the figure a further increase of α may give rise to a cycle of double period

followed by a period-doubling cascade leading to chaotic dynamics. The exis-

tence of all four types of behaviors is important for the validity of the model.

But additional validation is required in order to claim that the model and pa-

rameters used are correct. As mentioned earlier, the period of the oscillations

has been measured to be in the range of 30 to 40 seconds. The period of the

simulated oscillations depends mainly on the delay time T. For delays in the

range from 9 to 13 s the period resembles those measured experimentally, a

range that partly covers the region with all of the four types of dynamics, see

Fig. 1.10. The scan through the diagram at constant T =12.5 s is displayed

Fig. 1.11 shows the dynamical behavior in more detail. The period doubling

at α = 14 is followed by a cascade of period doubling transitions leading to

deterministic chaos. At larger α a reverse period doubling cascade terminate

the chaotic region, a new cascade is initiated, and new regions with chaos ap-

pear. At α = 12.5 and α = 17 the periodic and chaotic attractors are shown, (A

and B) of Fig. 1.11.
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Fig. 1.10 Two-parameter bifurcation diagram for the extended nephron
model showing the Hopf bifurcation at α ≈ 4, two tongues delineated
by period-doubling bifurcations, and the regions dominated by chaotic
dynamics.

Fast oscillations of the proximal pressure and arterial wall arise as a con-

sequence of the pulsatile contractions of the smooth muscle cells when the

arterial pressure is high. For the period-1 cycle shown in Fig. 1.11 the fast

oscillations are clearly visible, as the orbit makes 5 fast cycles for each of the

slow TGF-mediated oscillations. The number of fast oscillations per cycle of

the slow oscillations depends on the parameters of the model, and as we in-

crease the value of α (or T) we move from a region with 5:1 dynamics into a

region with six oscillations for each slow oscillation.

The idea of creating a lumped model of the loop of Henle is to model the salt

concentration along the loop. With the chosen number of compartments we

obtain average concentrations within each compartment, and parameters spe-

cific to the tubules wall anatomy are either integrated over the compartment

length if originally specified as a value per length or divided by the number of

compartments if originally given as an effective parameter for the whole loop.

The temporal evolution of the tubular pressures along the loop is shown in

Fig. 1.12 for a delay of T = 12.5s and a TGF feedback gain of α = 10. For this

value of the total delay the period is 38 s, and we also see that there is a phase

shift of 11.5 s between the proximal pressure and the distal NaCl concentra-
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Fig. 1.11 Diagram showing the bifurcations and solutions as the TGF
gain α is varied while the delay is kept constant at T =12.5 s. At low
α the solution is oscillatory with a period of 38 s. As α increase a pe-
riod doubling take place at α ≈ 14. Thereafter a cascade of period
doublings lead to chaotic dynamics interrupted by periodic windows.

tion. The phase shift depends on the tubular compliances along the loop, since

a highly compliant tubular segment can accommodate fluid at high pressure

and release it as the pressure decreases. Also the decreasing amplitude of the

pressure is accounted for by the relative large compliance in connection with

the flow resistance.

Variation in time of the salt concentration along the loop is shown in

Fig. 1.13. In the proximal tubule the concentration is defined constant equal

to 150 mM in accordance with experimental knowledge. With appropriate ab-

sorption rates the concentration increases in the descending limb to 350 mM in

the second compartment corresponding to the bend of the loop. In the subse-

quent compartments, that represent the ascending limb the Michaelis-Menten

reabsorption of NaCl accounts for the decrease towards a concentration of 30

mM at the end of the loop.

Both this phase shift and the presence of period doubling and chaos depend

on the compliance of the loop of Henle. For increasing compliance the phase

shift increases and the period doubling and chaotic regions appear at larger

values of α. Compliances measured in vitro [8] have indicated that the Henle
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Fig. 1.12 Tubular pressures. Left: Time evolution of the pressures
along the loop beginning with the proximal pressure (labeled Pt). Os-
cillations have a period of approximately 38 s. Note, how the amplitude
of the oscillations is increasingly damped. Right: Time average of the
pressures along the loop.
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Fig. 1.13 NaCl concentrations. Left: The time evolution of the NaCl
concentration along the loop, with the proximal concentration defined
constant equal to 150 mM. Along the loop a phase shift evolves and
at the distal tubulus the phase shift between the proximal pressure
and the distal salt concentration is 11.5 s. Right: Time average of the
concentrations. Clearly, the concentration increases in the descending
limb (0-2) and decreases in the ascending limb (3-5).

compliance may be approximately 20 times larger than the proximal compli-

ance. However, simulations with these larger values completely destroy the

picture of the above findings. This seems to demonstrate that, when living

tissue is taken out of its natural environment, the properties may change dras-
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tically. One should also not forget that the tubular system of the nephron is

surrounded by the tissue of the interstitium, which may have a large effect of

the dynamical properties.

In the present chapter we have described a lumped model of a single

nephron in the kidney. This model combines a description of the interacting

myogenic and TGF-mediated mechanisms of nephron autoregulation with a

description of the reabsorption of water and salts in the loop of Henle. The

key features of nephron autoregulation we have aimed to reproduce are

• Four types of qualitative different dynamical behaviors: equilibrium

state, oscillatory, oscillatory with double period and chaotic.

• A phase shift in the oscillation between the proximal pressure and distal

NaCl concentration of 10-15 seconds.

• TGF transfer functions obtained by microperfusion experiments on

normo- and hypertensive rats.

• Increasing NaCl concentration along the descending limb and decreas-

ing NaCl concentration along the ascending limb of Henle’s loop.

• Slow and fast oscillations of periods 30-40 s and 5-6 s, respectively, the

fast oscillations being caused by the model for the afferent arteriole.

Other aspects of the nephronic system are described in our recent publica-

tions [49, 50].

1.9
The Promise of Systems Biology

Understanding the complex dynamic phenomena of the living world is one

of the main scientific challenges of the coming decades. The way to acquire

such understanding must necessarily involve a more direct and effective in-

tegration of experimental and computational research. Hypothesis-driven, or

mechanism-based modeling is an approach in which the physiological, patho-

logical and pharmacological processes of relevance to a given problem are

represented as directly as possible. This approach allows us (i) to test whether

assumed hypotheses are consistent with observed behavior, (ii) to examine

the sensitivity of a system to parameter variation, (iii) to learn about processes

not directly amenable to experimentation, and (iv) to predict system behavior

under conditions not previously experienced. By virtue of the direct physi-

ological interpretation of the involved parameters, mechanism based model-

ing provides a tool for translation between species and interpolation among
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groups. This implies, for instance, that the pharmaceutical industry to a cer-

tain extent can predict human responses to a new drug from animal experi-

ments by replacing the physiological parameters with parameters relevant to

man.

Systems Biology is a scientific approach that seeks to understand how all

the individual components of a biological system interact in time and space to

determine the functioning of the system. This involves description of

• The structure of a biological system, i.e. the significant physiological

components and their structural relationships at the appropriate spatial

scale;

• The dynamical behavior of the system under different conditions and

external perturbations;

• The mechanisms that control the states and behavior of the system;

• The causes of system changes in connection with various diseases and

the methods by which such changes can be counteracted or compen-

sated.

A model of a biological system can only be expected to reproduce experi-

mentally observed features, if the mechanisms responsible for these features

are implemented in the model. Therefore, a model can never be expected to

reproduce all experimental findings. However, a model is usually build with

the intension to model specific phenomena and behaviors. If some of these

key features fail to be produced, a revision of the model is required.
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