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Abstract Markov chain Monte Carlo methods such as the
Gibbs sampler and the Metropolis algorithm can be used to
sample solutions to non-linear inverse problems. In princi-
ple these methods allow incorporation of prior information
of arbitrary complexity. If an analytical closed form descrip-
tion of the prior is available, which is the case when the prior
can be described by a multidimensional Gaussian distribu-
tion, such prior information can easily be considered. In re-
ality, prior information is often more complex than can be
described by the Gaussian model, and no closed form ex-
pression of the prior can be given. We propose an algorithm,
called sequential Gibbs sampling, allowing the Metropolis
algorithm to efficiently incorporate complex priors into the
solution of an inverse problem, also for the case where no
closed form description of the prior exists. First we lay out
the theoretical background for applying the sequential Gibbs
sampler and illustrate how it works. Through two case stud-
ies we demonstrate the application of the method to a linear
image restoration problem and to a non linear cross borehole
inversion problem. We demonstrate how prior information
can reduce the complexity of an inverse problem, and that a
prior with little information leads to a hard inverse problem,
practically unsolvable except when the number of model pa-
rameters is very small. Considering more complex and real-
istic prior information thus not only makes realizations from
the posterior look more realistic, it can also reduce the com-
putation time for the inversion dramatically. The method
works for any statistical model for which sequential simu-
lation can be used to generate realizations. This applies to
most algorithms developed in the geostatistical community.
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1 Introduction

Consider a forward problem

d = f(m) 6]

where a function f relates a subsurface model m to observa-
tional data d. Inverse problem theory deals with the problem
of inferring properties of m from a specific data set d, using
equation (1) and possibly some prior information on m.

Tarantola and Valette [47] formulated a probabilistic ap-
proach to solving inverse problems where all available states
of information is described by probability density functions
(pdfs). The solution to the inverse problem is the probabil-
ity distribution obtained combining all the known states of
information. In a typical inverse problem the states of in-
formation can be described by the prior pdf and the like-
lihood function. The prior pdf, pv(m), describes the data-
independent prior knowledge of the model parameters. The
likelihood function, L(m), is a probabilistic measure of how
well the data associated to a given model match a given
model of data uncertainty. The solution to such an inverse
problem is then the posterior pdf, which is proportional to
the product of the prior and the likelihood:

om(m) =k py(m) L(m) , 2)

where k is a normalization factor. The posterior pdf describes
all models consistent with both prior information and data.
For some inverse problems the complete posterior pdf can
be obtained analytically (such as for example linear inverse
Gaussian problems). For other inverse problems the only
way to characterize the posterior pdf is by sampling it [33].
A sample of the posterior is a set of models (realizations of
the posterior) where each model occurs with a frequency
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proportional to its posterior likelihood. The frequency by
which a particular feature of a model appears in the posterior
sample is a measure of the probability of that feature exist-
ing, according to prior information and data. Sampling the
posterior thus allows relatively sophisticated analysis of the
posterior pdf [32]. The movie strategy, advocated by Taran-
tola [46], propose to visualize samples from the prior and the
posterior as movies. The ’prior movie’ will make it apparent
what prior choices have been made. The difference between
the prior and the posterior movie will highlight the effect of
using data.

In principle prior information of arbitrary complexity
can be included in the solution of the probabilistically framed
inverse problem of Eq. 2. In practice though, the application
of inverse problems with for example geologically realistic
prior information have been limited, Tarantola [46] page 52.
There may be several reasons for this.

One reason is that the use of prior information itself has
been the source of a heated debate [22,34,41]. Some au-
thors suggest that the use of prior information may bias the
solution of an inverse problem in an unwanted way. Others
adopt the probabilistic viewpoint of Tarantola and Valette
[47], but propose to keep prior information to a minimum in
order to solve the problem without biasing the inversion re-
sult, see e.g. Buland and Omre [5] and Khan and Mosegaard
[27]. This corresponds to the idea of using a 'noninforma-
tive’ prior model [3,42]. Jaynes and Bretthorst [23] advocate
using a prior based on maximum entropy, which contains the
least information consistent with prior constraints.

In this paper we will stress and exemplify one important
aspect of this discussion: When prior information py(m)
is consistent with information contained in the data, that is,
when regions of significant probability/likelihood of py(m)
and L(m) clearly overlap, the hardness of the inverse prob-
lem tends to decrease. On the other hand, the use of in-
consistent prior information may render an otherwise easy
inverse problem hard, and in practice unsolvable.

Another reason for the use of relatively simple prior mod-
els, is that, until recently, algorithms have not been available
to efficiently and accurately quantify complex prior informa-
tion, such as for example geologically realistical patterns, in
a probabilistic form. An exception is the case where both
the prior and the model of data noise can be described by
Gaussian statistics, and the inverse problem is linear (or lin-
earizable). In this case the posterior pdf can be described by
a Gaussian pdf fully characterized by a mean model and a
covariance. A sample from the posterior pdf (and the a prior
pdf as well), can be generated using for example Cholesky
decomposition, or sequential simulation, Hansen et al. [17].
Thus for the linear inverse Gaussian case, the movie strat-
egy is today practically feasible. See for example Buland
and Omre [5] for an example of probabilistic based linear
Gaussian inversion.

The linear and Gaussian assumptions are convenient as
they lead to computationally feasible inversion algorithms.
In reality though, most geophysical inverse problems are
non-linear, and the prior choice of Gaussian statistics to de-
scribe both the noise model and the prior model distribution
is extremely limited.

Sampling methods such as the Metropolis Algorithm [20,
31] can be use to sample any probability density function,
hence also the posterior pdf. In its original form the Metropo-
lis algorithm can be implemented in the following way in
order to the sample the posterior:

The Metropolis algorithm

If we have a way of evaluating the values of both L(m)
and py(m) at any point m in model space .#, and an
algorithm A (a proposal generator) that is able to sample
A at random, the following algorithm will sample the
posterior (Eq. 2):
— Starting in the current model m,, perform one step
with the uniform sampler A.
— Accept the new point m; only with probability
Paccepr = min (1, (L(my)ppa(m,)) / (L(m) oyt (m,))).(3)
— If my is rejected, re-use m, in the next step.
— In case my is accepted, let m, = my in the next step.

This classical Metropolis sampler require that both (L(m)
and pyp(m) can be evaluated. While this algorithm in prin-
ciple is easy to implement it may not be trivial to com-
pute pp(m) from complex prior models. The Metropolis
algorithm may also be computationally demanding when the
prior model is far from a uniform.

Mosegaard and Tarantola [37] propose a Markov chain
algorithm based on the Metropolis Algorithm [20,31], that
we will refer to as the extended Metropolis algorithm, that
can be implemented in the following way:

Extended Metropolis algorithm

If we have a way of evaluating the values of L(m) and
an algorithm B (a prior generator) that is able to sample
pm(m) directly (without necessarily evaluating py(m)
anywhere), the following algorithm will sample the pos-
terior (Eq. 2):
— Starting in the current model m,, perform one step
with the prior sampler B.
— Accept the new point m; only with probability
Paccepr = min(1,L(m;)/L(m,). 4
— If my is rejected here, re-use m, in the next step.
— In case my is accepted, let m, = my in the next step.

The extended Metropolis sampler allows sampling the pos-
terior pdf for non-linear inverse problems in presence of
an arbitrarily complex prior model considering any noise
model for the data.

Algorithms based on the classical Metropolis sampler
are the easiest to implement because it is simple to sample
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# uniformly, and because it is simple to evaluate py(m)
when a formula for py is available. In contrast to this, al-
gorithms based on the extended Metropolis sampler may be
more difficult to implement, because knowledge of py(m)
must be built directly into the sampler B [36]. However, be-
cause knowledge of py(m) is built directly into the sampler
B, algorithms based on the extended Metropolis sampler can
be dramatically more computationally efficient than algo-
rithms based on the classical Metropolis algorithm [37]

The extended Metropolis algorithm is, in principle, sim-
ple to use and its versatility appealing. Yet it has mostly been
applied to sample the posterior of non-linear inverse prob-
lem with relatively simple prior models. One reason could
be that until recently few methods have existed allowing
sampling of complex prior models. Khan and Mosegaard
[27] and Voss et al. [49] use the extended Metropolis algo-
rithm using uniform Gaussian priors, with no spatial correla-
tion between model parameters. Bosch [2] consider a Gaus-
sian prior model with spatially correlated model parameters.

More complex priors based on Markov random fields
have been developed for Bayesian image analysis, see e.g.
Besag [1] and Tjelmeland and Besag [48]. These algorithms
tend to be iterative and relatively computationally demand-
ing.

One of the most promising ways of using the extended
Metropolis Algorithms will undoubtedly be to incorporate
geostatistical information into the solution of geophysical
inverse problems.

Geostatistics is a an application of random function the-
ory to characterize natural phenomena, Journel and Huijbregts
[26] page 1. For several decades the geostatistical commu-
nity has been developing algorithms and methods that are
able to model increasingly complex geological features. Most
of these methods are based on random function theory [14,

16,25,8,43-45,38], and most are available through the SGeMS

software package, Remy et al. [40]. These methods can all
in principle be used to quantify prior beliefs of the spatial
variability of the subsurface in a statistical sound manner
in form of probability densities. Realizations of the various
models can be generated using sequential simulation [14].

Hansen et al. [19] suggest a simple algorithm that allows
using any random function model, that can be sampled using
sequential simulation, to quantify the prior information. We
shall show that it can be used with the extended Metropolis
algorithm.

Here we will develop the theory behind the algorithm
and show that it can be seen as an application of a combina-
tion of the Gibbs sampler and sequential simulation. Hence
we propose to refer to the algorithm as ’sequential Gibbs
sampling’.

We will lay out the theoretical background for apply-
ing the sequential Gibbs sampler, proving that it will sample
the random function model intended, and illustrate how it

works, as part of the extended Metropolis sampler. Through
two case studies we demonstrate the application of the method
to a linear image restoration problem and to a non linear
cross borehole inversion problem.

2 Quantifying prior information using geostatistics

Geostatistical random function models can be divided into
two groups based on 2-point statistics and multiple-point
statistics. Traditional geostatistical random function models
rely on 2-point statistics, where spatial variability is only de-
scribed between pairs of two data locations, typically quanti-
fied by a covariance model. The simplest 2-point based geo-
statistical model is the Gaussian model which can be com-
pletely described by a mean and a covariance model, with
an implicit assumption of a Gaussian distribution of model
parameters. Realizations of such a Gaussian model can be
generated using sequential Gaussian simulation [14]. Real-
izations from random function models based on a 2-point
statistical model defined by a mean and a covariance, but
with an arbitrary distribution of model parameters, can be
obtained using direct sequential simulation [8,25,43].

While somewhat complex structures can be quantified
using the 2-point based simulation algorithms, geological
realistically features such as channels cannot. To model more
complex features higher order statistical moments must be
considered [24]. Such higher order statistical models are typ-
ically referred to as models based on multiple-point statis-
tics. Guardiano and Srivastava [16] propose an algorithm
that can simulate spatial features consistent with a higher
order statistical model inferred from a training image. The
algorithm was however not computationally feasible, and it
was not until Strebelle [44,45] proposed the single normal
equation simulation algorithm (SNESIM) that the method
became practical to use. Lately Mustpapha and Dimitrakopou-
los [38] proposed a multiple-point based algorithm allowing
reproducing a number of higher order camulants as observed
from data, or from a training image.

All these methods can in principle be used to quantify
prior beliefs of the spatial variability of the subsurface in a
statistical sound manner in form of probability densities, and
realizations of the various models can be generated using
sequential simulation.

2.1 Sequential simulation

&)

Consider an image of the subsurface, consisting of N pix-
els (voxels), each characterized by a physical or geologi-
cal parameter m;. A joint probability density fys(m; ...my)
defines a random field describing the correlations between
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parameters. A realization from the random field can be sim-
ulated using a technique knows as ’sequential simulation’ as
follows: In N steps, visit each parameter (pixel) sequentially.
In step i, visit parameter m; and generate a realization of m;
from the conditional probability density function

fu(mi|lmy .. .mi_y), (6)

That the above procedure will actually generate a realization
from fys(my...my) follows from the identity f(s|t)f(¢) =
f(s,1), which (in the general multivariate case) yields

Su(mupr..omylmy..omy) = fu(myeq|my . ..my)

fM(mn+2|m1 .. .mn+1)

fM(mN|m1...mN,1). (7)

When all locations have been visited one realization is gen-
erated. Thus to apply sequential simulation one must a) build
a local conditional pdf (conditional to the previously simu-
lated data), and b) draw a realization of this local pdf.

More detailed descriptions of the theory and applica-
tion of sequential simulation can be found in e.g. Gémez-
Hernandez and Journel [14] and Goovaerts, chapter 8.2 [15].

Considerable effort have been made in the geostatisti-
cal community to efficiently compute conditional probabil-
ity density functions, as in Eq. 6, based on 2-point [14,39,
43] and multiple-point stochastic models [40,45,50].

2.2 Gibbs sampling

Consider a known realization m of the random field de-
scribed by the probability distribution fs(m; ...my). If we
randomly select a model parameter, m; = m(u;), compute
the local conditional pdf

pM(mi|m17m25"'7mi—17mi+17"'amN)' (8)

and draw a value from it, we get a new realization of the
random field defined by fjs(m; ...my). If this is repeated it-
eratively, it will be an application of the Gibbs sampler [13],
and thus allow sampling from fjs(m; ...my). Note that the
Gibbs sampler only requires that a sample from py can be
generated. The full conditional pdf of Eq. 8 need not be com-
puted.

2.3 Sequential Gibbs sampling

The cost of using the Gibbs sampler is that one must be able
to generate a realization of the local conditional pdf, Eq. 8,
which can be done very effectively using methods developed
for sequential simulation, eqn. 6-7. We therefore suggest to
combine sequential simulation and Gibbs sampling, and re-
fer to this combination as Sequential Gibbs Sampling. Using

the sequential Gibbs sampler we will be able to sample real-
izations of the probability distribution fy;(m; ...my).

The sequential Gibbs sampler can be used as a prior
sampler for the extended Metropolis algorithm (Mosegaard
and Tarantola, 1995). However, in order to control the com-
putational efficiency the algorithm, some flexibility in the
degree of perturbation (the ’step-length’) is needed. A step
length leading to a frequency of acceptance rates of about
25% to 50% is considered to provide a computational effi-
cient Metropolis sampler [11,33]. We suggest considering
not just one model parameter at each step of the Gibbs sam-
pler, but a subset U of all model parameters. Assuming that
m;cy contains the selected parameters to be perturbed, and
that m;¢y; contains the remaining parameters, we now draw a
realization of mjey from pm(mjey [mygy ). In Appendix A
it is demonstrated that this procedure, if applied iteratively,
will sample the distribution py(m).

To draw a realization from py(m;ey [m;gy ) we could
compute Py (m;ey | Mgy ) of micy explicitly. This is, how-
ever, extremely inefficient, and fortunately not necessary, as

we only need to be able to generate a realization of pv(mjey |mygy )

not the full conditional pdf itself. Instead, we can use the se-
quential simulation approach of Eq. 6, which involves com-
puting only the conditional probability density function for
each model parameter in U in random order. In this way we
have designed an efficient Gibbs sampler that is able to in-
corporate complex prior information and, at the same time
allows us to control the ’step length’, and hence the effi-
ciency, of the sampling.

2.4 An algorithm for sequential Gibbs sampling

Implementing the sequential Gibbs sampler amounts to im-
plementing a Gibbs sampler which, in each iteration, cal-
culates a realization of the conditional probability density
function associated to a specific subset of model parameters
using sequential simulation:

1. Select a subset of the model parameters, U, and regard
these as unknowns. The rest of the model parameters are
considered known (and fixed).

2. Perform sequential simulation of the unknown parame-
ters conditioned to the known parameters. This gener-
ates a new model, which is also a realization of the prior
model. This step is identical to drawing a value from the
conditional probability density function in Eq. 6.

3. Use the new model as the starting model and go to (i).

As already mentioned, the number of model parameters (size
of U) to be resimulated (in step 1. in the sequence above) can
be used to control the ’step length’ of the sequential Gibbs
sampler, which is essential to computational efficiency if
the method is used as part of a Metropolis sampling algo-
rithm. Resimulating only a single model parameter results
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in a model m;; that is highly related to the original model
m;. On the other hand, resimulating all model parameters
leads to an m; | that is statistically independent of m;.

Figure 2 illustrates 3 examples of using a random walk to
generate realizations of a prior model defined by the spatial
statistics of the training images in Figure 1. We make use
of the SNESIM algorithm to compute a realization of the
conditional distribution Eq. (8) [45].

Figures 2a and 2b make use of the channel based training
image of Figure la, using a resimulation area, U, of 12x12
and 4x4 cells respectively. Note that U does not need to take
any specific shape. Any subset of model parameters can be
considered. Figures 2c is based on the prior model associ-
ated with to the training image in Figure 1b. Progress of the
sequential Gibbs sampling is from left to right, where the
initial realization is to the left. The area in gray colors indi-
cate the model parameters that is to be resimulated. In the
following realization (to the right) the data within the grey
area have been resimulated and new area is selected for con-
ditional resimulation. The final realization after 6 iterations
of the sequential Gibbs sampler is the model to the right.

The training images of Figure 2 are but two examples of
a categorical 2-facies training image. For numerous exam-
ples of algorithms and associated training images see Remy
et al. [40].

A crucial step for applying simulation based on training
images, and hence the use of the sequential Gibbs sampling,
is the existence of realistic training images. For geophysi-
cal inverse problems prior information is often available as
a conceptual geological model. See for example Zhang [52]
for an example on how to quantify such a geological concep-
tual model by training images. Using a different approach
Zhang et al. [53] demonstrate how a 3D training image of
sandstone can be computed from 2D sections.

[Fig. 1 about here.]

[Fig. 2 about here.]

Related work

As mentioned earlier the 'resampling’ algorithm presented
above was originally proposed by Hansen et al. [19], and
subsequently an almost identical method was proposed by
Mariethoz et al. [30]. Neither of these works present a the-
oretical background for using the method, and provide no
proof that the resulting algorithm samples an equilibrium
distribution, nor that such an equilibrium distribution would
in fact be the requested prior model.

Mariethoz et al. [30] essentially describes an optimiza-
tion application of the resampling technique used together
with a version of the Metropolis sampler, where only mod-
els that increase the likelihood are accepted.

Fu and Gémez-Hernandez [9, 10] propose a “blocking’
Markov chain Monte Carlo method, related to multi-Gaussian
conditional simulation. In each step of the Metropolis algo-
rithm a ’block’ of coherent model parameters is selected.
Model parameters at the edge of the chosen block, is re-
tained as conditioning data, and the the rest of the data in
the block is simulated conditional to the edge data.

Without describing it in detail, Bosch [2] also seem to
have made use of a technique similar to re-simulation of one
data point at a time as given in Eq. 6 for a Gaussian proba-
bility distribution. Irving and Singha [21] make use of res-
imulation to sample the prior using the sequential indicator
simulation algorithm.

Here we have provided the formal proof that such an ap-
proach is valid for any probability distribution that can be
sampled using sequential simulation. We shall further inves-
tigate how the use (and lack of) prior information affect the
computational complexity of inverse problems.

3 Application examples

Sequential Gibbs sampling has the potential to allow the
Metropolis algorithm to sample solutions to inverse prob-
lems with relatively complex prior models. We will demon-
strate the applicability of the method using two classical in-
verse problems: image de-blurring and tomography.

3.1 Image de-blurring

Consider the 41x41 pixel gray-scale image of Figure 3 as a
reference image. It has been generated using single normal
equation simulation (Strebelle, 2002) using the training im-
age in Figure 1a. A Gaussian kernel with a horizontal range
of 15 grid cells and a vertical range of 6 grid cells, see Fig-
ure 3b, is used as a smoothing kernel to obtain a smoothed
version of the reference gray scale image in Figure 3a, as
seen in Figure 3c. Then uncorrelated Gaussian noise with a
standard deviation of 0.045 (reflecting a signal to noise ra-
tio of 0.1) is added to the data, Figure 3d. We now consider
the 5x5 pixels indicated by circles in Figure 3d as observed
data.

[Fig. 3 about here.]

Reconstructing the 41x41 gray scale image, Figure 3a,
from the 5x5 pixel data, can now be seen as a simple linear
inverse problem, where the forward problem is described by

d =Gm )

where G describes the smoothing kernel. A model of the
noise can be described by a data covariance, Cp, which is
the matrix with a constant value of 0.045 in the diagonal.
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We consider three choices of prior models of the spatial dis-
tribution of the model parameters, pl:l,;l, Py, and pyf"”
defined as

- il
The statistical model described by the reference training
image, Figure 1a. This may be the ideal choice of prior
model to use, as we know that the reference image we
try to reconstruct, is a realization of p;l/;l.

—_ pK/flCOrr — N(m()?Cmumlorr)
A Gaussian prior model with no spatial correlations. From
the reference model we compute the mean value for all
pixels as mp=0.28. As no spatial correlation is assumed
the model covariance matrix can be described by the
identity matrix times the variance of the original pixel
data, Cppuncorr = 1 0.452.

— " = N(my, Cueor)
From the reference image of Figure 3a, we estimate an

apparent covariance model, Cpcorr, as an anisotropic spher-

ical covariance model with a horizontal range of 18 pix-
els and a vertical range of 6 pixels. The prior mean is as
for pgi ™", mp=0.28.

All three considered prior models are consistent with the
spatial statistics of the reference image up to a certain order.
Py’ is the least informed prior model, reflecting only the

lower order mean and variance, while py{™" also reflect the

correct covariance. pI;I,[‘I is the most informed prior model,
reflecting higher order spatial statistical features, such as the
channels observed in the training image.

Note that using the training image based prior model im-
plies a prior assumption that the pixel values can only attain
the values 0 and 1. Assuming Gaussian type prior models
implies a prior assumption that the pixel values are contin-
uous values and normally distributed according to the prior
covariance model.

3.1.1 Linear least squares inversion

For Gaussian type prior models, the inverse problem can be
directly solved using least squares inversion. As the forward
problem is linear and both data and model covariance is
given by Gaussian statistics, the full posterior distribution is
a Gaussian probability density function, fully characterised
by the posterior mean and covariance, N( (~3M ) (from Taran-
tola, 2005):

m —=
Cu =

my+CpG' (G Cy G' + Cp) ' (dg—Gmyg) (10)
Crv—CuG' (GCy G + Cp) 'GCy 11

To obtain actual realizations of the posterior we use Cholesky
decomposition of Cu. In this way four independent realiza-
tions have been generated, using the prior models of pyf'“"”"
and py{"" respectively as seen on Figure 4a and 4b.

Perhaps not surprisingly the prior assumption of no spa-
tial correlation results in posterior realizations with very lit-
tle spatial structure, and certainly no channel like structures.
Assuming the spatially correlated covariance model, which
is in fact consistent with the 2-point statistical properties of
the reference training image, some channel like structures
appear, but the apparent look of the realizations is far from
the channel like structures of the reference image and the
training image. This is probably related to the fact that Gaus-
sian simulation is a maximum entropy algorithm, that will
lead to maximum disorder for higher order moments. There-
fore Gaussian simulation should not be expected to repro-
duce spatial features that can only be described by higher
order statistical moments [24].

3.1.2 Non-Gaussian prior information
Considering now the prior model defined by the training
image, p;g , least squares inversion cannot be used, as the
model covariance cannot be described by Gaussian statis-
tics. Instead we use the extended Metropolis algorithm to
sample the posterior probability distribution. The sequential
Gibbs sampler, as described previously, is used to sample
the prior model.

As a starting model we use the smoothed noisy gray
scale image of Figure 3d where all pixel values below .28
is set to 0, and all pixel values above .28 is set to 1. This
provides a starting model consistent with the prior choice of
only ones and zeros, but where the spatial distribution is not
a realization consistent with the higher order statistics from
the training image, see Figure 4c, first model.

The extended Metropolis algorithm is run for 10000 it-
erations producing approximately 100 independent realiza-
tions of the posterior probability distribution. Three of these
is shown in Figure 4c. Note how all these realizations con-
tain channel like structures, with channel thicknesses as ex-
pected from the prior model. It is evident comparing the pos-
terior realizations in Figure 4a-c, that realizations based on
the training image are superior to the realizations based on
Gaussian statistics in terms of reproducing the structures of
the reference image, Figure 3a.

3.1.3 Posterior probability of a channel

An alternative to showing realizations of the posterior is to
show for example the average of all possible models, which
in the least squares case coincide with the model of maxi-
mum posterior probability, m. For the Gaussian based prior
models Figures 5a-b show this model with maximum pos-
terior probability. Compared to the reference image of Fig-
ure 3a, it is clear that using the spatially correlated prior co-
variance model results in a mean estimate model identifying
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the location of the channel structures, although the channels
themselves have been blurred.

For the posterior realizations based on the training-image-
based prior model, pl\T,II , we can compute for example the
probability that a channel exists in each pixel, Figure 5c. Co-
incidentally this is the same as computing the point-wise av-
erage of all realizations from the posterior. This is however
only the case because the prior model allows for only 0 and
1 values. Note from Figure 5c how the location of the chan-
nel is relatively sharply outlined, even though it is based on
averaging all 100 posterior realizations. Thus, not only is it
possible to produce realizations of the posterior with spatial
features that are consistent with a relatively complex prior
model, it is also clear that adding consistent prior informa-
tion for this case provides significantly sharper de-blurred
images.

[Fig. 4 about here.]
[Fig. 5 about here.]

Typical application of the Metropolis algorithm for im-
age reconstruction have been based on the classical Metropo-

of the posterior probability distribution, given the observed
data and an assumed noise model. The likelihood of a given
model, with associated estimated travel time data, t,, (m), is
computed as

L(m) = exP(_%(test (m) — tobS)/CBI (tess (M) —typ)) (12)

where the diagonal of Cp is the variance of the noise added
to the synthetic computed data.

[Fig. 6 about here.]

We consider 7 different prior models based on both 2-
point and multiple-point random models. All prior models
are assumed to have the correct mean and variance, as ob-
tained from the training image in Figure 1a. Thus, all consid-
ered prior models are consistent with this lower order statis-
tics of the training image.

The first 5 prior models are based on 2-point random
models. A pure nugget model assumes no spatial correla-
tion, and thus all model parameters are a-priori considered

uncorrelated, py;**“. Two models, pﬁa‘” and pﬁ“”g , are based

lis algorithms [1,48]. This example show that extended Metropo-on a Gaussian covariance model with an isotropic range of

lis algorithm can be a computationally efficient used for im-
age reconstruction using complex prior information, as quan-
tified by the sequential Gibbs sampler. One, of many related
applications, could be in PET scanning where the scanning
image for a slice in the brain (the result of tomographic in-
version) may be relatively smooth. A the same time one usu-
ally has a prior knowledge of how a brain might look. The
method proposed has the potential to sharpen such blurred
tomographic images consistent with a complex prior model.

3.2 Cross borehole tomography

We now consider a typical geophysical inverse problem in
form of a non-linear cross borehole inverse problem.

Using the training image in Figure 1a, an unconditional
realization, Figure 6a, is generated using the single normal
equation simulation algorithm, SNESIM [45]. We consider
this the reference velocity model for a synthetic cross bore-
hole inversion problem.

An electromagnetic wave is emitted at the 20 sources
located to the left in Figure 6a, and the corresponding arrival
times are measured at the 40 receivers located to the right.
This way 800 travel time data are recorded. 3% Gaussian
noise is added to the synthetic travel-time data, Figure 6b,
and used as observed data, t,,;. To compute the observed
travel times we use a finite difference solution to the eikonal
equation [51]. There is thus a non-linear relation between
data (travel time delay) and model parameters (velocities).

We now consider solving the inverse problem of infer-
ring information about the subsurface velocity model, us-
ing the extended Metropolis algorithm to generate samples

Im and 8m respectively. The pK/IgSim prior is based on a co-

variance model inferred from the training image in Figure
la, as an exponential covariance model with a horizontal
range of 6.6m, and a vertical range of 2.2m. pff,f“’" is the
same as PyS*™", except that the correct binary distribution
from the training image is assumed , such that pixel values
can only be white or black, with a prior probability of a black
pixel (indicating a channel) of 0.3, and hence a prior prob-
ability of a white pixel of 0.7. pl\T,II is based on the multiple-
point statistical model inferred from the training image in
Figure la. The last prior, pl\T/II"O, is based on the multiple-
point statistical model inferred from the training image ro-
tated 90 degrees clockwise. The 4 prior models, py; **', pas*""
pissim and pll reflect increasing order of statistics consis-
tent with the training image from which the reference model
was generated. The other considered prior models are, to a
different extent, in conflict with the actual statistical model
that was used to generate the reference model.

Figures 7-8 shows 4 unconditional realizations, i.e. a
sample, of the 7 considered prior models. For each of these
prior models an extended Metropolis algorithm is run for
35000 iterations. The VISIM [18] and SNESIM [45] pro-
grams have been used to perform sequential simulation, needed
for applying the sequential Gibbs sampler, for 2-point and
multiple-point based prior models respectively. Figure 9 shows
the corresponding negative log-likelihood of all considered
models as a function of iteration number. Figure 10-11 show
the current model at iteration 20000, 25000, 30000, and 35000.

[Fig. 7 about here.]

[Fig. 8 about here.]



Thomas Mejer Hansen et al.

The initial phase of running the extended Metropolis al-
gorithm is called the *burn-in’ phase. This involves a random
search for a location in the model parameter space where the
forward responses of the models fit data within their uncer-
tainty. One can locate the end of the burn-in process from
Figure 9 as the iteration number where the log-likelihood
curve flattens out. The average negative log-likelihood of re-
alizations of the Gaussian noise model is -N/2=-400, where
N=800 is the number of data. Thus, if allowed by the prior
model, the log-likelihood curve should flatten out around a
value of -400, indicating that sampled models fit data within
their uncertainty. When the burn-in phase has been com-
pleted the algorithm has converged, and starts sampling the
posterior probability distribution. Methods for determining
when a Metropolis algorithm has converged can be found in
e.g. [12][7][4]

[Fig. 9 about here.]
[Fig. 10 about here.]
[Fig. 11 about here.]

It is clear from Figure 9 that the burn-in phase has not
been completed in the considered 35000 iterations, when us-
ing the py;**“ prior. The corresponding log-likelihood curve
never flattens out, nor does it reach a level that indicates that
the data are fitted within their uncertainty. Using pl\(/’}aul the
burn-in phase seems to be completed after around 20000
iterations. Note however that the associated log-likelihood
level indicates that the data are relatively poorly matched. In
any case, using a prior model with just a little spatial cor-
relation, as when considering pﬁ“"‘, results in a sampling
algorithm that is much more efficient than when consider-
ing no spatial correlation.

As the information content of the prior is increased, con-
sidering ppi's8®!, p38™  pdssim and pTl the burn-in phase is
completed increasingly faster, namely at iteration number
oo, 4000, 3800, and 1000 respectively. This indicates that
the computational complexity of finishing the burn-in phase,
and hence sampling the posterior probability density, is also
affected by the information content of the chosen prior. An
analysis of the sampling efficiency of the extended Metropo-
lis algorithm reveals that, on average, 1500_0, 6000, and 2500
iterations are needed, considering the py; ", pis™, and p{l
priors respectively, in order to obtain an independent real-
ization of the posterior probability distribution. This means
that using the pl\T,II prior results in a sampling algorithm that
is 6 times more computational efficient than when using the
Py prior, and about a factor of 2 more efficient than when
using the pd#si™ prior. For this example, all three prior mod-
els with spatial constraints, pﬁf‘yim, pissim and pL!, perform
up to infinitely more efficient that when using the py**“

prior.

All the prior models inconsistent with the true model (
pggo, pﬁ”"‘ and pﬁaus) perform worse that when using the
pl\ﬂl prior. Yet, they also all perform much better than when
considering the py**“ prior.

Figures 7d and 10d illustrates that the use of the movie
strategy, as discussed previously [46], is clearly possible us-
ing complex priors such as ones based on training images.
Figure 7d shows 4 independent realizations of the . It is thus
a visualization of the prior assumptions inherent in pJ;/. Fig-
ure 10d shows a corresponding sample, in form of 4 inde-
pendent realizations, of the posterior pdf, or;, and is thus
a graphical representation of the state of information of the
model parameters obtained by merging the states of infor-
mation as given by the prior and the likelihood, Eq. 2. The
differences between Figures 7d-10d can be explained by data.

Of the seven considered prior models, it is only using the
pICI’ prior model that result in an actual sample in Figures
10-11. All other sets of models are either statistically depen-
dent, or reflect a model at a timestep where the Metropolis
algorithm has not yet converged.

This simple example suggests that an otherwise rela-
tively easy inverse problem, such as the inversion of first
arrival time data, becomes virtually unsolvable using a non-
informative prior such as py;**. It however also shows that
any consistent prior information will lead, not only to sam-
ples of the posterior probability distribution that are more
geologically realistic, but also to a much more efficient sam-
pling algorithm.

4 Sequential Gibbs sampling used for optimization

Simulated annealing [28] is an optimization method closely
related to the Metropolis algorithm. Therefore it might seem
appealing to use the sequential Gibbs sampler in combina-
tion with simulated annealing in order to locate the model
with maximum posterior probability, consistent with both
the prior and the data likelihood. This is, however, not read-
ily possible.

One feature of the extended Metropolis algorithm is that
an actual measure of the prior probability for a given model,
pm(m), need not be explicitly computed. It is sufficient that
a black box algorithm exists that perform a random walk
according to the prior, which we here propose to do using
sequential Gibbs sampling.

When using the simulated annealing algorithm, one must
evaluate the posterior probability of a given model in each
iteration. This can be done for simple Gaussian prior mod-
els [29], but there is presently no way of evaluating the prior
likelihood of more complex prior models based on training
images. As the prior likelihood cannot be computed, neither
can the posterior probability.

If the sequential Gibbs sampler is used as part of a sim-
ulated annealing algorithm for proposing models, and the
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likelihood, L(m) used to evaluate each model, then such
an algorithm would not end up in the model with maxi-
mum posterior probability. It would end up in the model
with maximum data likelihood, of all possible prior mod-
els. Say the prior is given by a Gaussian model. Then all
models will have non-zero prior probability. Using the simu-
lated annealing method as described above, will then simply,
in infinite time with infinite slow cooling, locate the model
with maximum data likelihood, and not the maximum pos-
terior model. The prior will in this way have no effect of
the final optimization result. For a prior based on multiple
point statistics, some models will have a prior probability of
zero, and hence not all models will be acceptable a priori. In
such a case the model located using optimization as consid-
ered above, will not necessarily be the maximum likelihood
model, nor the model with maximum posterior probability,
but the one model of all prior acceptable models with maxi-
mum likelihood.

Thus, using the sequential Gibbs sampler is not suited to
solve optimization problems, as part of for example simu-
lated annealing, or optimization of the posterior pdf in gen-
eral, because the actual prior probability of a given model
cannot be computed, which makes it imposible to locate
the model with maximum posterior probability. Note that
the same conclusions can be made using optimization based
on the gradual deformation method [29] and the probabil-
ity perturbation method [6], which are two methods that
can be used to gradually change a realization of a random
function based on 2-point and multiple-point geostatistics
respectively. Likewise the optimization method proposed by
Mariethoz et al. [30], based on a prior sampler resembling
the sequential Gibbs sampler, will not locate the model with
maximum posterior probability.

5 Conclusion

We have proposed an algorithm, sequential Gibbs sampling,
that can be used to randomly sample a prior model described
by any statistical model for which conditional realizations
can be generated using sequential simulation. No analyti-
cal closed form expression of the prior pdf is needed. We
have laid out the theoretical background for applying the al-
gorithm, and shown that it is guaranteed to sample, using
arbitrarily large or small step lengths, any random function
that can be sampled using sequential simulation.

These properties make it ideal to use as a way to sample
complex prior models as part of the extended Metropolis al-
gorithm, allowing sampling of the posterior probability den-
sity function of non-linear inverse problems using realistic
prior information.

Through two case studies we have demonstrated how
samples from the posterior probability density function can

honor both data and a relatively complex prior. The variabil-
ity of realizations of the posterior pdf decreases as the level
of consistent prior information is increased.

We have also demonstrated that the choice of a noninfor-
mative prior, such as the uniform prior, while not in conflict
with the true subsurface, may cause the inverse problem to
become practically unsolvable as the number of model pa-
rameters increase. In practice we have demonstrated how the
inclusion of prior information increases the computational
efficiency of the Metropolis sampling algorithm. As con-
sistent prior information increases, the computational de-
mands for generating unconditional realizations of the pos-
terior pdf decreases. Likewise, inconsistent prior informa-
tion tends to increase the computational demands for run-
ning the Metropolis sampling algorithm.

This suggest that if at all possible, an effort should be
made to obtain a prior model consistent with the problem at
hand. This can be achieved through for example geological
expert knowledge, information from outcrops, or from other
independent experiments.

State of the art geostatistical algorithms, based on se-
quential simulation, can already today produce realizations
of quite complex random models, reflecting for example re-
alistic geological features. There is no sign that this devel-
opment will stop, and therefore the future will probably al-
low even more complex patterns and realistic models to be
simulated. Such progress will have an immediate impact on
solving inverse problems using sequential Gibbs sampling
as we have discussed here.
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A The Gibbs Sampler with multiple parameter
perturbations

Consider a Gibbs Sampler with multiple parameter perturbations, per-
turbing in iteration k all parameters belonging to re-simulation area Uj.
Its transition probability P,(m;m;), the probability that the algorithm
in iteration k jumps to model m;, given that it came from mj;, is given
by:
5y i € A
Pk(m,-|mj) = mkE,/‘r}!" (13)
0 otherwise

where J@k is the set of all points that are identical to m; in parameters
not belonging to the re-simulation area Uy, and p(m) is the desired
sampling distribution.

If m; € Jl?k, we can show the following symmetry property for
P(m;|m;):

m;
Pk(mi|m_,-)p(m_,-)dm,~dmj = L) p(mj)dm,-dmj

Y p(my)

mke,/i'}k
= 7p(mj) (m;)dm;dm;
"X plmy PN

mkeﬂ{k

= Pk (m/ \m,)p(m,)dm,dml

where we have used that /V]" = Ji{k. This property, called detailed
balance, expresses that the probability of the transition m; — m; equals
the probability of the reverse transition m; — m; in iteration k. De-
tailed balance guarantees that once the algorithm is sampling p(m), it
will continue to sample p(m). This means that p(m) is an equilibrium
sampling distribution for the algorithm [35].

It can be shown (see, e.g., Mosegaard and Sambridge [35]) that if
our transition probability distribution P(x;|X;), satisfies two particular
conditions (in addition to detailed balance), then p(x) will be the only
equilibrium distribution, and so the algorithm will converge towards
p(x) regardless of the starting distribution. The two conditions are:

1. Aperiodicity. The probability that an iteration of the algorithm re-
sults in the trivial move m; — m; is non-zero. This is clearly
satisfied by our algorithm.

2. Irreducibility. It is possible to go from any point m; to any other
point m; in ./, given a sufficient number of iterations. This re-
quirement is satisfied by our algorithm if, in K iterations, there is
non-zero probability that any model parameter is perturbed.
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Fig. 1 Two different training images, reflecting a prior model based on higher order spatial moments. a) Channel based training image from Strebelle
(2001). b) Pattern, used with permission from Ian Lynam.
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Fig. 2 Sequential Gibbs sampling using different areas of resimulation. a) 12x12 cell resimulation using the training image in Figure la. b) 4x4 cell
resimulation using the training image in Figure 1a. c) 4x4 cell resimulation using the training image in Figure 1b. The left column is the starting model. The
right column is the realization of the prior model after 6 iterations using the sequential Gibbs sampler.



16 FIGURES

Va

40

o o o
p 4 . ~/

10 20 30 40 10 20 3

o

Fig. 3 a) Reference image. b) Gaussian smoothing kernel. ¢) Smoothed reference image. d) Smoothed reference image with noise. The 25 pixel values in
the circles are used as data in the image reconstruction inversion.
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covariance model with a horizontal range of 15 pixels, and a vertical range of 6 pixels). c) initial model (leftmost) and 3 posterior realizations using the

training image in Figure la as prior model (pI\T,[I ).
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Fig. 5 posterior statistics. a) posterior mean estimate using the uncorrelated Gaussian prior model, pyf“”"". b) posterior mean estimate using the correlated

Gaussian prior model, py{"". c) Probability of a channel structure given the use of the training image based prior model, p&’ .
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Fig. 6 a) Reference velocity model and location of sources (*) and receivers (o). Black channel structures have a velocity of 0.09 m/ns. The background
velocity (white) has a velocity of 0.13 m/ns. b) Calculated first arrival travel time for waves traveling between sources and receivers. 3% normally distributed
noise was added to the travel times.
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Fig. 7 4 realizations of the prior model of type a) ppi, b) pi&*™ ¢) pdssim _and d) p{! prior models.
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Fig. 8 4 realizations of the prior model of type a) p{,ll"’o, b) pﬁa“‘ , and ¢) pﬁaué‘.
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Fig. 9 Negative log-likelihood as a function of iteration number for different choices of prior model
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Fig. 10 Current model at iteration number 20000, 25000, 30000 and 35000 using the a) p

nugget
M

D) p

sgsim
M

,€) pf\i,[”"m, and d) pl{/ prior models.




24

FIGURES

15 15

20 d 20

o5 25

30 30
5 10 15 20

Fig. 11 Current model at iteration number 20000, 25000, 30000 and 35000 using the a) pl\T,II"O, b) p
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,and ¢) pﬁaug prior models.



