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Long-term home are shedulingM. Gamst⋆ and T. Sejr Jensen�
⋆DTU Management Engineering, gamst�man.dtu.dk

�University of Southern Denmark, thomassejr�gmail.omSeptember 28, 2011AbstratIn several ountries, home are is provided for ertain itizens living at home. Homeare o�ers leaning, groery shopping, helping with personal hygiene and mediine, helpingitizens to get in and out of bed, et. The long-term home are sheduling problem is togenerate work plans suh that a high quality of servie is maintained, the work hours ofthe employees are respeted, and the overall ost is kept as low as possible. The problemovers several days of home are sheduling. A solution provides detailed information onvisits and visit times, for eah employee on eah day.We propose a branh-and-prie algorithm for the long-term home are shedulingproblem. The priing problem generates a one-day plan for an employee, and the masterproblem merges the plans with respet to regularity onstraints. The method is apable ofgenerating plans with up to 99 visits during one week. This truly illustrates the omplexityof the problem.
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1 IntrodutionIn many ountries a large number of itizens who live in their homes but are not able to doso without help, reeive regular servies from so-alled home are entres. The itizens mayreeive a substantial number of visits during the week. There are many types of suh visits:some are simple tasks like leaning, bringing out food, doing the laundry et., while othersinvolve personal hygiene, mediation, getting out of and into bed et.The goal of the home are enter is to plan all these visits suh that the pereived qualityof servie is high without overloading the individual home are personnel. The overall ostof performing this servie must be kept as low as possible. This is highly nontrivial as thepereived quality of servie is often in diret on�it with the ost of performing the servie.In pratie, a two-level approah is used for planning home health are. The �rst phaseis a master-plan whih is a long-term plan. The seond phase is daily planning whih usesthe master-plan as a starting point but inorporates last minute hanges suh as employeesalling in sik, ad ho visits, and other unforeseen events. This paper fouses on onstrutionof the master-plan. The master-plan spei�es when itizens are visited and the employees thatondut eah visit.Every visit in the master-plan is repeated regularly, as spei�ed by its period. A visit withperiod p is repeated after p time, e.g., a period of one day means that the visit is ondutedevery day. Sine every visit in the master-plan is repeated inde�nitely, the same goes for theentire master-plan. In this sense the master-plan is periodi, whih means that eah week inthe master-plan is rolled out to an in�nite number of atual alendar weeks. If for examplethe length of the master-plan is four weeks, every fourth alendar week will be idential (untilthe master-plan is updated due to addition or removal of visits).Quality of servie partly onsists of regularity, i.e., that a visit is always onduted at thesame time of the day and that a itizen is visited by the same (small group of) employee(s).Espeially the latter is of high importane to many itizens who feel safer when being serviedby persons they are familiar with.The other aspet of quality of servie is skill set requirements, i.e., assigning suitableemployees to a visit. How suitable an employee is for a visit depends on the employee'sprofessional skills and personality features of the employee and itizen.E�ieny is quanti�ed by the total time spent traveling between visits for all employees.Clearly, the total travel time should be as low as possible.The long-term home are sheduling problem isNP-hard and di�ers from previous work onhome are sheduling by alulating detailed work plans for a longer period without having pre-�xed visits to spei� days, and with taking quality of servie into aount. The latter aspetauses inter-dependent onstraints between the daily work plans. It is thus not possible toalulate the daily plans independently from one another, even if all visits are �xed to spei�days. We propose at branh-and-prie algorithm for solving the problem to optimality. Thepriing problem generates a plan for an employee on a given day, and the master problemmerges the plans into an overall solution.The proposed solution method has been tested on real-life data provided by Papirgården,whih is a home are provider loated on Funen, Denmark. It has about 25 employees andserves itizens spread over a diameter of about 3.5 kilometers. This means that all employees2



travel by biyle and an employee an, under normal irumstanes, drive between any pair ofitizens in less than 15 minutes. Computational results show that while outperforming CPLEXused for solving a basi formulation of the problem, the branh-and-prie algorithm is unableto alulate large plans due to time and spae usage. Instead the algorithm is well-suited forbenhmarking heuristis. This truly illustrates the omplexity of the problem.This paper is organized as follows. First, a review of related work from the literature ispresented in Setion 2. In Setion 3, the problem is formally de�ned and formulated mathe-matially. Setion 4 ontains the proposed branh-and-prie solution method. The method isomputationally evaluated in Setion 5, and �nal onlusions are given in Setion 6.2 Related workIn this setion, an overview is given on work from the literature on home are sheduling andrelated problems.An early appliation of operations researh methods to home health are was desribed byBegur et al. in [1℄. The daily planning problem was modeled as a site dependent VRPTW,i.e., a VRPTW where a ustomer an only be visited by a subset of the vehiles. The problemwas solved using the sequential savings heuristi developed by Clarke and Wright [4℄.Eveborn et al. developed a deision support system for solving daily planning. The systemis alled Laps Care, and the reent paper [8℄ douments its suess in real-life use. Laps Caremodeled daily planning as a VRP whih was solved heuristially. The heuristi onsisted ofiteratively ombining paths using generalized mathing, and splitting paths into single visitswhih are then ombined with the remaining paths. In another paper about Laps Care [7℄,the authors assumed the existene of a base master-plan on whih the daily plan was based,but they did not onsider how to onstrut and maintain the master-plan.The master's theses of Thomsen [17℄, Lessel [11℄, and Godskesen [9℄ also dealt with dailyplanning, and they all used heuristi solution methods. Thomsen and Godskesen modeled theproblem as a so alled rih VRP, i.e., a VRP with many real-life onstraints and objetiveswhih leads to ompliated models, see e.g. [18℄.Nikolajsen [13℄ onsidered a routing problem spanning several days, but eah visit wasonduted only one and therefore dependenies between individual days were not introdued.The work is related to the Periodi VRP (PVRP), where the planning horizon spans severaldays and eah ustomer must be visited on a spei�ed number of these days. The spei�ednumber of days for eah ustomer is denoted its shedule: if every ustomer must be visitedevery day, PVRP redues to VRP sine the same path an be used every day. The shedulesmake PVRP di�er from the long-term home are sheduling problem; in the latter visits at aitizen an be onduted on any (unspei�ed) day. PVRP was introdued by Russell and Igo[15℄ and de�ned formally by Christo�des and Beasley [3℄. A reent survey fousing on PVRPmentioned many real-life appliations of PVRP, none of whih was home health are [16℄.Dohn et al. [10℄ modeled daily planning and solved the problem using branh-and-prie.The master problem was a set partitioning model, where eah olumn orresponded to a pathfor an employee. The priing problem was the NP-hard elementary shortest path problemwith resoure onstraints and was solved using a labeling algorithm.Bredström and Rönnqvist [2℄ introdued a mixed-integer mathematial formulation for theombined vehile routing and sheduling problem with time windows and temporal onstraints.They showed how the formulation is appliable on the daily planning problem.3



3 Formal Problem De�nitionThis setion introdues notation for planning home health are. Employees are introdued inSetion 3.1, the planning horizon in Setion 3.2, visits in Setion 3.3, ativities in Setion 3.4,and �nally the objetives of the problem in Setion 3.5. The entities are gathered in a mathe-matial formulation of the long-term home are sheduling problem in Setion 3.6. Note thatthe long-term home are sheduling problem and thus all entities desribed in the followingoperate in a disrete time spae.3.1 EmployeesLet E denote the set of employees. Let Hj denote the work hours for employee j in a givenperiod of k days. An interval [ajh, bjh] ∈ Hj means that employee j is on duty from time ajhto time bjh on day h ∈ {1, . . . , k}.3.2 Planning horizonThe master-plan overs a period of time with length L ∈ N, given as a number of disrete timesteps. In order to inlude all visits properly, L should be set to the least ommon multiple ofthe visit periods. For example, if the plan inludes visits, whih are repeated every 2nd and7th day, then L is 14 days. If the plan inludes visits, whih are repeated every 3rd and 7thday, then L is 21 days.Some visits, for example those that are repeated infrequently, ause a large L and onse-quently a larger problem instane. This an be remedied in two ways. One way is to exludesuh visits from the master-plan and only handle them during daily planning. Another wayis to redue the visit's period by dividing it by an integer k whih divides evenly into theoriginal period. This implies that the visit is repeated too often in the master-plan, so onlyevery k'th repetition is inluded in daily planning. If, for example, a visit has a period of 21days, dividing by 3 redues the period to 7 days and only every 3rd repetition is inluded indaily planning.3.3 VisitsThe set of visits is denoted V . Eah visit i ∈ V is repeated at regular intervals, e.g., one perday or one per week, as indiated by its period whih is denoted pi. The travel time betweentwo visits i, j ∈ V is denoted cij ∈ N and is measured in time steps. The duration of visit i is
di ≥ 0, and its time window of feasible visiting times is [ai, bi]Not all employees are equally suited for onduting a ertain visit i, and some are not evenallowed to do so. Therefore, pri is a vetor of non-negative osts of letting eah employeeondut i. If an employee is unsuited for onduting the visit, then the orresponding ost isin�nite.Finally, let C denote the set of all itizens reeiving servie and Vc the set of all visits foritizen c ∈ C.3.4 AtivitiesVisit j with period pj is repeated L/pj times in the planning horizon of length L, and theserepetitions are sheduled independently of eah other. Therefore, visit j is rolled out to L/pj4



ativities, and these ativities are sheduled instead of j itself. Let A denote the set of allativities. The set of ativities for visit j ∈ V is denoted by Aj . Two onseutive ativities iand k are denoted (i, k) : i, k ∈ Aj .Every ativity i ∈ Aj inherits most data from visit j ∈ V , so the duration of i is di = dj ,the time window is Wi = Wj , i.e., [ai, bi] = [aj , bj ], and the ost vetor of letting employeesondut the ativity is pri. The travel time between two ativities i ∈ Aj and k ∈ Aj′ is
cik = cjj′ .In addition to the ativities in A there is a speial ativity 0 representing the depot, whihis the loation where employees start and end their work days. The duration of the depotativity is zero, and it an be performed at all times.A solution spei�es start time and assigned employees for eah ativity. Let si ∈ N denotethe start time of ativity i ∈ A, let ei denote the employee assigned to ativity i ∈ A, andlet Ec ⊆ E denote the set of employees whih are assigned to itizen c ∈ C. In the formalproblem de�nition, we denote the daily shedule for an employee a path. A path onsists of alist of ativities with orresponding start visit times. The master-plan thus onsists of pathsfor all employees on all days overing all ativities.3.5 Objetive funtionsThis setion de�nes the objetive funtions, i.e., the aspets of quality of servie, how busythe home are employees are, and travel time. We hoose to aggregate the objetives eventhough this is not trivial due to the relatively large number of objetives and the di�erentunits of measurement. How to weigh the objetives is not disussed any further here but isinstead onsidered in Setion 5.3.5.1 Travel timeLet A(h) ⊆ A denote the set of ativities onduted in work shift h ∈ Hj of employee j ∈ E.Let σi ∈ A(h) denote the suessor of ativity i. The total travel time is omputed as:

fTT (S) =
∑

j∈E

∑

h∈Hj

∑

i∈A(h)

ciσi
(1)Sine the start and end depots are onsidered as ativities in A(h), we de�ne the suessor ofthe end depot to also be the end depot and we let the orresponding travel time be zero.3.5.2 Employee priorityAn ativity i ∈ A should be onduted by the most suitable employees, as spei�ed by thenon-negative ost vetor pri. Let pri(j) ≥ 0 denote the ost of employee j ∈ E ondutingativity i ∈ A. If employee j ∈ E does not have the required skill set for onduting theativity, then pri(j) =∞. The employee priority objetive is de�ned as:

fEP (S) =
∑

i∈A

∑

j∈E

pri(j). (2)
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3.5.3 BusynessAn employee is said to be busy if the time period in the shedule violates onstraints on timewindows and/or travel time. Spei�ally, busyness appears in the following ases:1. The start times at two ativities are too lose, i. e., sσi
− (si+ di+ ciσi

) < 0⇔ si+ di >
sσi
− ciσi2. The start time at an ativity is too late, i.e., let bjh be the end time window of employee

j performing ativity i on day h then si + di > bjh.In both ases, busyness is penalized in the objetive funtion. There are two reasons fortreating busyness as an objetive rather than a hard onstraint in the master-plan. First ofall, it re�ets how the plan is onstruted manually. Seond, it introdues slak in the modelsuh that onstraints onerning time windows for visits and overtime for employees an beenfored without onstraining the solution spae to the point where no feasible solution exists.The busyness objetive is omputed as:
fB(S) =

∑

j∈E

∑

h∈Hj

∑

i∈A(h)

max(0, si + di −min{sσi
− ciσi

, bjh}}If a work shift is empty, its busyness is zero by de�nition. Any busyness in the master-plan istaken are of during daily planning, whih spreads out ativities or assign some ativities toanother employee.3.5.4 Employee regularityThe employee regularity objetive ounts the number of di�erent employees visiting eahitizen:
fER(S) =

∑

c∈C

|Ec|. (3)3.5.5 Visit periodsReall that visits are rolled out to ativities suh that the latter are sheduled independently,allowing more �exibility in the master-plan. Let (i, k) : i, k ∈ Aj be two onseutive ativitiesfor visit j ∈ V . If the time period between si and sk di�ers from the given time period of thevisit, pj , then the objetive is penalized:
fV P (S) =

∑

j∈V

∑

(i,k): i,k∈Aj

|si + pj − sk| (4)3.6 Mathematial FormulationThe long-term home are sheduling problem an now be de�ned mathematially. Reall thenotation introdued previously. Furthermore, de�ne:
[ahij , b

h
ij ] = [max{ai, ajh},min{bi − di, bjh}]As mentioned in Setion 3.5 we optimize an aggregated objetive funtion, where eah partis weighed appropriately. Let w be a non-negative vetor of suh weights, where wTT ≥ 0 is6



the weight for travel times, wEP ≥ 0 is for employee priority, wB ≥ 0 is for busyness, wER ≥ 0is for employee regularity, and wV P ≥ 0 is the weight vetor for visit periods. Also, let M besome large number.In addition to start time variables si ≥ 0, the variables are as follows. Let xjhik ∈ {0, 1}equal one i� employee j ∈ E travels from ativity i to k on day h. Let uik ≥ 0 denote thedi�erene in the start times between two onseutive ativities (i, k) : i, k ∈ Aj for visit
j ∈ V . Let zij ≥ 0 denote the busyness of employee j ∈ E aused by ativity i ∈ A. Finally,let yjc ∈ {0, 1} equal one i� employee j ∈ E visits itizen c ∈ C.The long-term home are sheduling problem is formulated as:

min
∑

j∈E

∑

h∈Hj

∑

i∈A

∑

k∈A

(

wTT cik + wEP pri(j)
)

xjhik +
∑

i∈A

∑

j∈E

wB zij +
∑

c∈C

∑

j∈E

wER yjc

+
∑

j∈V

∑

(i,k): i,k∈Aj

wV P uik (5)s. t. ∑

k∈A

∑

j∈E

∑

h∈Hj

xjhik = 1 ∀i ∈ A\{0} (6)
∑

k∈A

xjhik −
∑

k∈A

xjhki = 0 ∀i ∈ A\{0}, ∀j ∈ E, ∀h ∈ Hj (7)
∑

k∈A

xjh0k =
∑

k∈A

xjhk0 = 1 ∀j ∈ E, ∀j ∈ Hj (8)
si + di + cik −M(1 − xjhik ) ≤ sk + zkj ∀i, k ∈ A,∀j ∈ E, ∀h ∈ Hj (9)

si ≥ ahij −M(1−
∑

k∈A

xjhik ) ∀i ∈ A,∀j ∈ E,∀h ∈ Hj (10)
si ≤ bhij +M(1−

∑

k∈A

xjhik ) ∀i ∈ A,∀j ∈ E,∀h ∈ Hj (11)
si + pj − sk ≤ uik ∀(i, k) : i, k ∈ Aj ,∀j ∈ V (12)
sk − (si + pj) ≤ uik ∀(i, k) : i, k ∈ Aj ,∀j ∈ V (13)
∑

h∈Hj

∑

k∈A

xjhik ≤ yjc ∀c ∈ C,∀v ∈ Vc,∀i ∈ Av,∀j ∈ E (14)
si +M(1−

∑

j∈E

∑

h∈Hj

xjhik ) ≤ sk ∀i, k ∈ A (15)
xjhik ∈ {0, 1} ∀i, k ∈ A, ∀j ∈ E, ∀h ∈ Hj (16)

si ≥ 0 ∀i ∈ A (17)
zij ≥ 0 ∀i ∈ A, ∀j ∈ E (18)
uik ≥ 0 ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (19)

yjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ E (20)The objetive funtion (5) minimizes a weighted sum of the objetives desribed in Se-tion 3.5. First part of the objetive funtion onsists of travel times and employee priority. If
xjhik = 1 for ativities i, k ∈ A, employee j ∈ E and day h ∈ Hj , then the objetive must paythe travel time from i to k and the ost of letting employee j ondut ativity i. Next, theobjetive funtion onsists of three parts: busyness, employee regularity and visit periods.7



Constraints (6) ensure that all ativities are onduted. Constraints (7) ensure that a pathof an employee is onneted, and onstraints (8) fore paths to start and end in the depot.Constraints (9) measure busyness: if a visit at ativity k starts too late, then busyness isadded to the variable zkj ≥ 0. Furthermore, onstraints (9) eliminate subtours. Constraints(10) and (11) say that any variable sk must satisfy the time windows of ativity k ∈ A andemployee j ∈ E.Constraints (12) and (13) measure the amount of time di�erene between two onseutivevisits (i, k) : i, k ∈ Aj , j ∈ V . If the gap between the start times at i and k di�ers from pj ,then the variable uik is set to the absolute time deviation.Constraints (14) ount the number of employees visiting a itizen: if employee j ∈ E visitsativity i ∈ Av, v ∈ Vc, c ∈ C, then the variable yjc is set to one. Constraints (15) limitthe amount of allowed busyness suh that visit times on a path are non-dereasing. Finally,bounds (16) - (20) fore variables to take on feasible values.4 Exat Solution ApproahA branh-and-prie algorithm for solving the long-term home are sheduling problem is pre-sented in this setion. The mathematial formulation (5) - (20) is Dantzig-Wolfe deomposed[5℄. The priing problem generates a path for a given employee on a given day, and the masterproblem merges the paths into an overall feasible solution.Let p be a path and P the set of all generated paths. The master problem ontains threetypes of variables. Variable xp ∈ {0, 1} denotes whether or not path p is part of the solution.Variables uik ≥ 0 and yjc ∈ {0, 1} are as de�ned for the original formulation (5) - (20).Eah path p has a number of onstants attahed. Constant δip is set to one, if path p ∈ Pvisits ativity i ∈ A, otherwise δip is zero. Let onstant δijbp ≥ 0 denote the amount of busynessin path p ∈ P for employee j ∈ E and ativity i ∈ A. Let δisp denote the start time of path
p ∈ P at ativity i ∈ A, and let δisp be unde�ned if δip = 0. Let δijp be set to one, if path p ∈ Pis generated for employee j ∈ E and visits ativity i ∈ A, otherwise δijp is zero. Constant δjhpis set to one, if path p ∈ P is generated for employee j ∈ E on day h ∈ Hj , otherwise δjhp iszero. Finally, let cp ≥ 0 denote the total travel time in plan p.
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The master problem is formulated as:
min

∑

p∈P

wTT cpxp +
∑

i∈A

∑

j∈E

∑

p∈P

wEP pri(j) δ
ij
p xp +

∑

i∈A

∑

j∈E

∑

p∈P

wB δijbp xp +

∑

c∈C

∑

j∈E

wER yjc +
∑

j∈V

∑

(i,k): i,k∈Aj

wV P uik (21)s. t. ∑

p∈P

δipxp = 1 ∀i ∈ A (22)
∑

p∈P

δispxp + pj −
∑

p∈P

δkspxp ≤ uik ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (23)
∑

p∈P

δkspxp − (
∑

p∈P

δispxp + pj) ≤ uik ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (24)
∑

p∈P

δijp xp ≤ yjc ∀c ∈ C,∀v ∈ Vc,∀i ∈ Av,∀j ∈ E (25)
∑

p∈P

δjhp xp ≤ 1 ∀j ∈ E, ∀h ∈ Hj (26)
xp ∈ {0, 1} ∀p ∈ P (27)
uik ≥ 0 ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (28)

yjc ∈ {0, 1} ∀c ∈ C,∀j ∈ E (29)The objetive funtion (21) orresponds to the objetive in the original formulation (5),only with variables xp instead of xjhik . The objetive funtion onsists of the weighted sum oftravel times, employee priorities, busyness, employee regularity and visit periods.Constraints (22) ensure that every ativity is visited. Constraints (23) and (24) measuretime deviation similar to onstraints (12) and (13) in the original formulation. Constraints(25) measure employee regularity. Constraints (26) ensure that at most one path per employeeper day is part of a solution (note that the original formulation fores every employee to leavethe depot every day, but it is feasible for an employee to travel from the depot ativity bakto the depot ativity, see onstraints (7) and (8). This orresponds to not assigning a path toan employee in onstraint (26)).The number of olumns in the master problem is redued by �xing ertain ativities toertain days. Spei�ally, if a visit must be repeated every day, then the orresponding sevenativities are �xed to Monday, Tuesday, Wednesday, et., respetively. The priing problemonly allows suh ativities to be part of paths on appropriate days.4.1 Priing problemAssoiate the dual variables π(22)
i ∈ R with onstraints (22), π(23)

ik ≤ 0 with onstraints (23),
π
(24)
ik ≤ 0 with onstraints (24), π(25)

icj ≤ 0 with onstraints (25), and π
(26)
jh ≤ 0 with onstraints(26).The priing problem tries to generate a path with negative redued ost for a given em-
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ployee j ∈ E on a given day h ∈ Hj . The redued ost is de�ned as:
c̄jh =

∑

i,k∈A

wTT cik +
∑

i∈A

wEP pri(j) +
∑

i∈A

wB zij

−
∑

i∈A

π
(22)
i −

∑

v∈V

∑

(i,k): i,k∈Av

(

(si − sk)π
(23)
ik + (sk − si)π

(24)
ik

)

−
∑

c∈C

∑

v∈Vc

∑

i∈Av

π
(25)
icj − π

(26)
jh ≤ 0 (30)where zij ≥ 0 denotes the amount of busyness for employee j ∈ E at ativity i ∈ A, and

si ≥ 0 denotes the start time at ativity i. The following notation is introdued to simplifyInequality (30). Let:̄
ci0 =

{

si(π
(23)
ik − π

(24)
ik ) ∃k : (i, k) : i, k ∈ Av, v ∈ V

0 otherwiseand:
c̄i1 =

{

si(π
(24)
ki − π

(23)
ki ) ∃k : (k, i) : i, k ∈ Av, v ∈ V

0 otherwiseThe redued ost for visiting an ativity i ∈ Av, v ∈ Vc, c ∈ C an now be expressed as:
c̄ijh = wEP pri(j)− π

(22)
i − π

(25)
icj − c̄i0 − c̄i1A master-plan makes sure that an ativity i ∈ A is visited exatly one, hene we know thatexatly one employee leaves ativity i ∈ A exatly one on exatly one day. For that reason,it is feasible to de�ne the redued ost between any two ativities i, k ∈ A as:

c̄ikjh = wTT cik + c̄ijhNow, the redued ost (30) is rewritten as:
c̄jh =

∑

i∈A

∑

k∈A

c̄ikjh + wB
∑

i∈A

zij ≤ π
(26)
jh (31)The priing problem is solved for eah employee j ∈ E on day h ∈ Hj , hene π(26)

jh is a onstantand isolated on the right-hand side. If the priing problem generates a path where c̄jh < π
(26)
jh ,then the path has negative redued ost and the orresponding olumn may be added to themaster problem.Now, using onstraints similar to the original formulation (5) - (20), the priing problemfor employee j ∈ E on day h ∈ Hj is formulated as:

10



min
∑

i∈A

∑

k∈A

c̄ikjhxik + wB
∑

i∈A

zij (32)s. t. ∑

k∈A

xik −
∑

k∈A

xki = 0 ∀i ∈ A\{0} (33)
∑

k∈A

x0k =
∑

k∈A

xk0 = 1 (34)
si + di + cik −M(1− xik) ≤ sk + zkj ∀i, k ∈ A (35)

si ≥ ahij −M(1−
∑

k∈A

xik) ∀i ∈ A (36)
si ≤ bhij +M(1−

∑

k∈A

xik) ∀i ∈ A (37)
si +M(1− xik) ≤ sk ∀i, k ∈ A (38)

xik ∈ {0, 1} ∀i, k ∈ A (39)
si ≥ 0 ∀i ∈ A (40)
zij ≥ 0 ∀i ∈ A (41)The objetive funtion (32) minimizes the redued ost as de�ned in (31). Constraints (33)and (34) ensure path onnetivity and that the path starts and ends in the depot. Constraints(35) - (37) make sure that the start time si at ativity i ∈ A is set appropriately, that anybusyness is added to the variable zij and that subtours are eliminated. Constraints (38) limitthe amount of allowed busyness by ensuring that start times on the path are non-dereasing.Finally, the bounds (39) - (41) fore variables to take on feasible values.The priing problem is reognized as a shortest path problem with time onstraints andpotentially negative edge weights de�ned by (32). This is also denoted the Elementary ShortestPath Problem with Resoure Constrained (ESPPRC). An instane of ESPPRC onsists of anumber of resoures and a weighted graph whose edges and verties onsume resoures andhave a lower and upper bound on total onsumption of eah resoure. The task is to �nd ashortest simple path from node s to node t. The resoure onsumption at every node andevery edge on this path must be within the spei�ed bounds. In this appliation of ESPPRC, anode orresponds to an ativity, an edge travels between two ativities, edges have no resourebounds, and the resoure bounds on verties are time windows of the ativities and employees.The weight of an edge is determined by (32).Beause ESPPRC is NP-hard, see Dror [6℄, we �rst try to solve the priing problemheuristially. If the heuristi annot �nd any path with negative redued ost for any employeeon any day, then the priing problem is solved to optimality.Labeling algorithmBoth the heuristi and exat solution approahes for the priing problem use a labeling al-gorithm. The approah assoiates a set of labels with eah ativity. A label for ativity irepresents a path from the (soure) depot ativity s to i. Assoiated with a label ℓ are thefollowing attributes:

• The last visited ativity v(ℓ) 11



• The start time t(ℓ) of the last visited ativity v(ℓ)

• The set of ativities, whih ℓ an be extended to, denoted extendables(ℓ)
• The redued ost of the label redued_ost(ℓ)A label an be extended to ativities, whih have not yet been onduted, and whose timewindow is still open. The redued ost of a label is de�ned in (32) and is based on the pathleading up to v(ℓ).Algorithm 1 is a generi label-setting algorithm that �nds a shortest paths with negativeredued ost from node s to t. A buket is in this ontext a set of labels, and we use onebuket for eah ativity.Algorithm 1 Generi labeling algorithm whih omputes a set P ontaining up to k resoureonstrained shortest paths with negative redued ost from node s to t. The set of all buketsis denoted by B.1: P ← ∅2: ℓinit ← initialize_label(s)3: B(s)← B(s) ∪ {ℓinit}4: while a non-empty buket in B exists and |P| < k do5: L← dequeued non-empty buket from B6: for all ℓ ∈ L do7: for all ativity i ∈ extendables(ℓ) do8: for all feasible start times si of i do9: ℓ′ ← reate_label(i, si)10: if i = t then11: if redued_ost(ℓ′) < π

(26)
jh then12: p← get_path(ℓ)13: if keep_path(p) then14: P ← P ∪ {p}15: end if16: end if17: else18: B(i)← B(i) ∪ {ℓ}19: remove_dominated(B(i), ℓ)20: end if21: end for22: end for23: end for24: end whileIn the �rst three lines of the Algorithm, an empty set of solutions is initialized along witha label in the (soure) depot ativity. The latter is added to the buket of labels in the depotativity. The algorithm then extrats some non-empty buket in Line (5). In Line (6)-(9) thealgorithm extends the path of eah label in the buket with feasible ativities and start times,whih results in new labels. If a path has reahed the (target) depot ativity t, the reduedost is negative, and we wish to save the path, then it is added to the set of solutions, see Line(10)-(14). 12



We wish to save a path p if:
• No more than 100 paths are already saved. The number �100� is reahed through pa-rameter tuning, or
• More than 100 paths are saved and the new path has smaller redued ost than anothersaved pathIf the (target) depot ativity t has not been reahed in Line (10), then the label is added tothe appropriate buket. Finally, in Line (19) the algorithm heks if the new label ℓ dominatesany labels in the buket or if it is dominated by any labels in the buket.A label ℓ dominates another label ℓ′ if the following onditions hold:
• The labels ℓ and ℓ′ end at the same ativity: v(ℓ) = v(ℓ′)

• The redued ost of ℓ is no greater than that of ℓ′: redued_ost(ℓ) ≤ redued_ost(ℓ′)
• The path of ℓ ends no later than that of ℓ′: t(ℓ) ≤ t(ℓ′)

• Label ℓ an at least extend to the same ativities as ℓ′These riteria ensure that if at least one path with negative redued ost exists, then thelabeling algorithm is guaranteed to �nd it.When using Algorithm 1 as a heuristi, only the �rst label added to every buket isproessed. Keeping only one label in eah buket speeds up the priing algorithm signi�antlyand it is still apable of �nding olumns with negative redued ost in the �rst iterations ofthe branh-and-prie algorithm.4.2 Branhing strategyBranhing is neessary when the optimal solution in a branh node is frational. Frationalsolutions our in the following situations:Frational itizen visits: That is 0 < yjc < 1 for some itizen c ∈ C and employee j ∈ E.In this ase two branhing hildren are generated with added ut:
yjc = 0 resp. yjc = 1.This does not hange the priing problem, beause the ut is not on the xp-variables.An ativity is visited by several employees or on several days: That is, 0 < xp, xp′ <

1 for paths p, p′ ∈ P , onstants δip = δip′ = 1 for some ativity i ∈ A, and onstants
δjhp = δj

′h′

p′ = 1 for some employee(s) j, j′ ∈ J and day(s) h, h′ ∈ Hj with either j 6= j′or h 6= h′.In this ase two branhing hildren are generated with the following rules:
∑

p∈P

δjhp xp = 0 resp. ∑

p∈P

δj
′h′

p xp = 0The branhing rule is maintained in the priing problem, whih ensures that employee
j (resp. j′) never visits ativity i on day h (resp. h′). The branhing rule does notompliate the struture of the priing problem.13



An employee travels on an edge on a given day a frational number of times: Thatis, 0 < xp, xp′ < 1 for paths p, p′ ∈ P , and onstants δjhp = δjhp′ = 1 for some employee
j ∈ J and day h ∈ Hj . Let i be the �rst ativity from whih the paths p and p′ di�er.Let i, k, k′ ∈ A , suh that p travels from i to k at time sik and suh that p′ travels from
i to k′ at time sik′ . Furthermore, let k 6= k′, or sik 6= sik′.Two branhing hildren are generated with the following rules:

∑

p∈P

δjhp δsikp xp = 0 resp. ∑

p∈P

δjhp δ
sik′
p xp = 0where onstant δsikp (resp. δ

sik′
p ) is set to one, if path p travels from i to k at time

sik (resp. from i to k′ at time sik′), otherwise it is set to zero. The branhing rule ismaintained by the priing problem, whih ensures that employee j never travels from ito k (resp. k′) at time sik (resp. sik′) on day h. The branhing rule does not ompliatethe struture of the priing problem.Together the three branhing strategies are �nite and eventually ensure an integer solution.The strategy generates branhing hildren in the order given above, and best �rst is used assearh strategy in the branh-and-bound tree. Strong branhing is applied: for eah branhingandidate, a lower bound on its LP relaxation of eah of the hildren is obtained. The andidatethat leads to hildren with the lowest bounds is seleted.4.3 InumbentBefore the branh-and-prie proess an begin, an initial solution to the long-term home aresheduling problem must be generated. The solution, also denoted the inumbent, is used for�nding initial values for the dual variables.Algorithm 2 tries to assign ativities to the �rst employee on the �rst day, with respetto time windows and �xed days. If unable to assign an ativity to this employee and day,the algorithm tries to assign it to the employee on the next day. Eventually, the algorithmtries to assign the ativity to the next employee on the �rst day, et. An ativity is assignedto an employee in a feasible way and suh that busyness is avoided when possible, see Line(8) and (14), i.e., the algorithm only allows busyness to our when having reahed the lastemployee on the last day of the instane. Lines (13) - (15) measure travel time and busynessfor returning to the depot.The algorithm always �nds a feasible solution if one suh exists. The reasons for thisare that ativities are sorted aording to their end times in non-dereasing order, and thatbusyness is allowed.5 Computational ResultsThe exat solution method is tested on a number of real-life benhmark instanes. In thissetion, the benhmark instanes are �rst introdued. This is followed by omputationalresults for the branh-and-prie algorithm.5.1 Real-life test instaneThe proposed solution method is tested on real-life data provided by Papirgården, a homeare enter in Funen, Denmark. The real-life instanes onsist of up to 99 ativities to be14



Algorithm 2 Constrution heuristi used in the branh-and-prie algorithm to generate aninitial solution.1: for all employees j ∈ E do2: for all days h ∈ Hj do3: t← ajh (start of work shift)4: i← 0 (the depot)5: sort ativities in non-desending order of bi (end of time window)6: for all ativities k ∈ A do7: if k is unsheduled and an be sheduled on day h then8: Update t aording to cik and bhkj9: start k at time t and assign employee j10: i← k11: end if12: end for13: k ← 0 (the depot)14: Update t aording to cik and bhkj15: start k at time t and assign employee j16: end for17: end foronduted in 7 days by at most 2 employees. The time window of an ativity is set to either7.30�9.00, 9.00�11.00, 11.30�13.00, or 13.00�15.00. Employees work from 7.00 � 13.00, 7.00 �14.00 or 7.00 � 15.00. Time is disretized into either 5 or 10 minute time steps.The distanes between itizens are found with the Google Maps API, whih means thatthe atual distane is used in the master-plan rather than straight line distanes. Whenomputing travel times, we assume that an employee travels at 15 kilometers per hour (allemployees travel by biyle). Unless two ativities are at the same itizen, two minutes areadded to the travel time between them to aount for the time it takes to enter and leave aresidene. All travel times are eiled to nearest integer.Weights must be set for the aggregated objetive funtion. Papirgården has reommendedthe following priorities: highest priority is given to minimizing busyness and employee reg-ularity, followed by minimizing travel times. Visit regularity has fourth priority, and em-ployee skill requirements are of no importane for Papirgården, beause its employees havesimilar skill sets. Visit regularity is given low priority, beause the time window of an a-tivity is relatively small and beause high priority is given to redue busyness. Inludingthe priorities in the objetive funtion is done by assigning large numbers to the weights, i.e.,
wTT = 500, wB = 750, wEP = 0 ·5/τ, wER = 750 ·5/τ and wV R = 50, where τ is the numberof minutes per time step. The travel time, busyness, and visit regularity objetives depend onthe time disretization, while this is not the ase for employee priority and employee regularity.The weights of the latter two are thus multiplied with a time step dependent fator.5.2 ResultsThe branh-and-prie algorithm has been implemented using the COIN Bp framework, seeLougee-Heimer [12℄, and is tested on an Intel 2.13GHz Xeon CPU with 4 ores and 8 GBRAM. Note that all results stem from using one ore. CPLEX 12.1 was used as standard MIP15



solver for both solving the original formulation (5)-(20) and for solving the master problem inthe branh-and-prie algorithm.CPLEX is unable to solve the original formulation (5)-(20) for instanes with more than11 ativities and is thus not evaluated further. For an instane with 12 ativities, CPLEX wasstopped after 75 000 seonds. It had generated a searh tree with 4 057 600 nodes, but onlyredued the gap between the upper and lower bound from an initial 14.8% to 8.25%. ApplyingCPLEX on the original formulation is not a suessful strategy, hene the rest of this setiononentrates on the branh-and-prie algorithm.Test results are summarized in Table 1 and 2. The �rst table displays results for the optimalbranh-and-prie algorithm, while the seond table displays results for the branh-and-priealgorithm with only heuristially generated olumns.An instane is named � |E| − |A| − τ �, where τ is the number of minutes per time step,i.e., either 5 or 10 minutes. All instanes have a planning horizon of 7 days. A time limit of30 minutes has been imposed on the runs, and an �*� in the last olumn indiates that anprovably optimal solution was not found within these 30 minutes (some runs exeeded thislimit slightly beause elapsed time is not heked everywhere in the program).As an be seen in Table 1, only four instanes with 5 minute time steps an be solvedto optimality within half an hour. A oarser disretization helps, but the branh-and-priealgorithm still su�ers from a large time usage.An interesting observation for instanes with 10 minutes time steps is that the instaneswith 30 ativities time out, whereas the instanes with 33 and 40 ativities are solved tooptimality. This is due to the fat that the instanes with 30 ativities ontain many visitswith a period of one week, whih an be sheduled on any day. The other instanes have morevisits with a period of one day whose ativities are thus �xed to spei� days.The number of olumns is large for several instanes, whih is aused partly by large timewindows and partly by busyness, i.e., that time windows may be violated. The tree grows largefor many instanes not solved to optimality, hene branhing also onstitutes a bottlenek.As an be seen in Table 2, the branh-and-prie algorithm is generally faster when onlygenerating olumns heuristially. Note that the gap in this table denotes the gap betweenthe heuristi upper and lower bound, and not between the heuristi upper and optimal lowerbound. Some instanes still su�er from large tree sizes and many olumns, but the far majorityof instanes are solved in seonds. The objetive values generally su�er from the heuristiapproah. Comparing the two tables shows that the heuristi solutions are between 4% and85% solution. The average gap between provably optimal and heuristi solutions is 47%. Eventhough solving the priing problem heuristially redues the overall running time signi�antly,the branh-and-prie approah is still unable to solve the instane with a 10 minute time step,2 employees and 99 instanes.Considering the omplexity of the master-plan problem, it is no surprise that the exatbranh-and-prie algorithm an solve only limited sized instanes. The results truly illustratethe omplexity of the problem.6 ConlusionIn this paper, we presented a branh-and-prie algorithm for the long-term home are shedul-ing problem. The priing problem onsisted of alulating a work plan on a given day for a16



Instane Cols. Rows Tree size Tree depth Gap Value Time1-20-5 6 327 199 1 0 0.00 27 000.0 3.971-25-5 8 671 250 4 687 59 0.03 29 750.0 1 801.33*1-30-5 12 883 295 2 079 71 0.04 38 000.0 1 801.97*1-33-5 11 447 328 1 615 75 0.00 38 800.0 1 655.351-40-5 28 365 397 171 51 0.00 43 000.0 812.941-44-5 40 445 433 179 89 0.01 97 100.0 1 802.57*1-50-5 31 480 493 27 13 0.07 87 000.0 1 803.35*1-55-5 37 944 544 159 28 0.00 57 000.0 1 804.30*1-58-5 39 997 571 9 4 0.08 156 200.0 1 807.19*1-80-5 8 737 787 1 0 No LB 259 250.0 1 906.50*2-20-5 8 917 346 5 2 0.00 27 000.0 8.582-25-5 10 089 432 2 405 69 0.03 29 750.0 1 803.39*2-30-5 16 383 512 695 66 0.05 38 400.0 1 803.29*2-33-5 18 316 566 701 90 0.03 39 300.0 1 803.90*2-40-5 23 921 684 455 70 0.05 42 100.0 1 801.46*2-44-5 34 527 748 125 62 0.08 84 600.0 1 835.07*2-50-5 30 642 850 71 35 0.07 85 000.0 1 806.21*2-55-5 34 414 936 89 32 0.03 51 500.0 1 817.40*2-58-5 30 582 984 17 8 0.02 143 700.0 2 174.36*2-80-5 8 261 1 354 1 0 No LB 237 500.0 1 908.73*1-20-10 4 877 199 59 28 0.00 17 250.0 6.371-25-10 5 507 250 277 51 0.00 18 125.0 27.361-30-10 10 934 295 2 449 101 0.01 25 300.0 1 801.07*1-33-10 10 688 328 43 21 0.00 23 875.0 42.041-40-10 14 037 397 63 31 0.00 27 750.0 90.161-44-10 27 925 433 567 98 0.03 33 750.0 1 803.50*1-50-10 19 907 493 3 1 0.00 36 500.0 337.041-55-10 19 912 544 3 1 0.00 60 375.0 123.641-58-10 40 434 571 111 55 0.00 64 450.0 1 803.82*1-80-10 19 711 787 1 0 No LB 161 100.0 1 847.78*2-20-10 5 913 346 39 19 0.00 17 250.0 9.192-25-10 6 594 432 81 40 0.00 18 125.0 16.302-30-10 10 109 512 1 245 56 0.00 25 200.0 1 802.52*2-33-10 14 485 566 89 44 0.00 23 750.0 146.032-40-10 15 937 684 77 36 0.00 27 250.0 162.932-44-10 27 208 748 271 101 0.01 33 400.0 1 805.10*2-50-10 25 457 850 21 10 0.00 35 750.0 654.532-55-10 29 331 936 49 24 0.01 80 625.0 1 841.08*2-58-10 21 593 984 31 15 0.01 96 750.0 1 826.54*2-80-10 22 136 1 354 3 1 0.02 149 750.0 2 475.74*Table 1: Results for instanes with either 1 or 2 employees and either 5 or 10 minutes per timestep when using the optimal branh-and-prie algorithm. The Table shows total number ofgenerated olumns and total number of onstraints in the master problem, number of nodes inthe branh-and-bound tree, depth of the tree, gap between lower and upper bound, objetivevalue of best found solution, and running time in seonds. An �*� in the running time indiatesthat the algorithm timed out. 17



Instane Cols. Rows Tree size Tree depth Gap Value Time1-20-5 1 794 199 1 0 0.00 38 750.0 0.751-25-5 608 250 1 0 0.00 44 500.0 0.181-30-5 2 852 295 1 0 0.00 86 000.0 1.451-33-5 848 328 1 0 0.00 59 750.0 0.451-40-5 903 397 1 0 0.00 67 500.0 0.551-44-5 1 710 433 1 0 0.00 97 100.0 1.951-50-5 1 235 493 1 0 0.00 97 500.0 1.451-55-5 1 599 544 1 0 0.00 112 000.0 1.201-58-5 2 919 571 1 0 0.00 156 200.0 4.761-80-5 2 954 787 1 0 0.00 259 250.0 10.961-99-5 2 449 970 1 0 0.00 328 800.0 22.102-20-5 1 917 346 1 0 0.00 31 750.0 0.662-25-5 1 416 432 3 1 0.00 34 750.0 0.272-30-5 5 637 512 481 25 0.00 73 500.0 117.372-33-5 4 171 566 7 3 0.00 41 750.0 1.492-40-5 4 252 684 7 3 0.00 49 500.0 1.982-44-5 7 236 748 481 28 0.00 84 600.0 242.352-50-5 8 629 850 101 23 0.00 85 000.0 48.852-55-5 7 660 936 35 17 0.00 99 500.0 18.332-58-5 8 770 984 123 29 0.00 143 700.0 116.472-80-5 12 677 1 354 185 35 0.00 237 500.0 388.092-99-5 15 601 1 670 159 30 0.00 285 750.0 1 232.101-20-10 1 286 199 1 0 0.00 24 750.0 0.291-25-10 324 250 1 0 0.00 29 625.0 0.111-30-10 1 845 295 1 0 0.00 54 250.0 0.711-33-10 433 328 1 0 0.00 36 125.0 0.271-40-10 733 397 1 0 0.00 48 750.0 0.321-44-10 1 473 433 1 0 0.00 61 400.0 1.611-50-10 1 002 493 1 0 0.00 67 500.0 0.711-55-10 1 409 544 1 0 0.00 86 875.0 0.691-58-10 2 270 571 1 0 0.00 106 650.0 1.891-80-10 2 255 787 1 0 0.00 161 100.0 4.441-99-10 3 076 970 1 0 0.00 215 425.0 16.132-20-10 1 770 346 1 0 0.00 20 750.0 0.432-25-10 714 432 3 1 0.00 23 125.0 0.152-30-10 4 585 512 751 25 0.00 48 000.0 115.492-33-10 2 717 566 7 3 0.00 24 875.0 0.662-40-10 3 267 684 7 3 0.00 37 500.0 1.002-44-10 5 338 748 713 30 0.00 55 150.0 220.102-50-10 6 914 850 191 26 0.00 61 250.0 58.382-55-10 6 090 936 67 23 0.00 80 625.0 21.942-58-10 7 242 984 143 25 0.00 96 750.0 76.812-80-10 8 552 1 354 221 36 0.00 149 500.0 265.502-99-10 11 410 1 670 557 58 0.01 195 250.0 1 802.64*Table 2: Results for instanes with either 1 or 2 employees and either 5 or 10 minutes pertime step when only generating olumns heuristially in the branh-and-prie algorithm. Thetable shows total number of generated olumns and total number of onstraints in the masterproblem, number of nodes in the branh-and-bound tree, depth of the tree, gap between theheuristi lower and upper bound, objetive value of best found solution, and running time inseonds. An �*� in the running time indiates that the algorithm timed out.18



given employee. The master problem merged plans into an overall optimal solution. Thepriing problem was NP-hard and solved through a labeling algorithm. Initially, the pri-ing problem was solved heuristially by only onsidering a small subset of labels. When thisapproah was unsuessful, the labeling algorithm solved the priing problem to optimality.The branh-and-prie algorithm was implemented and tested on a number of real-life in-stanes provided by the Papirgården home are servie in Funen, Denmark. The branh-and-prie algorithm outperformed applying CPLEX to the original formulation. The algorithm,however, showed performane di�ulties for larger instanes due to the large number of om-binations of visits, visit times and employees.Improving the branh-and-prie approah would require methods for reduing the numberof olumns and limiting the searh tree size. The authors attempted stabilizing the valueof dual variables using the interior point method of Rousseau et al. [14℄, but with no avail.Other stabilization methods ould be investigated, as better values for the dual variables ouldredue the number of generated olumns. Di�erent primal and inumbent heuristis have beenimplemented and tested without improving the bounds or pruning larger parts of the searhtree. Future work should fous on �nding better bounds, through primal and inumbentheuristis and through the branhing strategy.A di�erent approah ould also be taken to the Dantzig-Wolfe deomposition. If the masterproblem was to deide the time of visits, then the number of olumns would be reduedsigni�antly. This, however, would ome at a prie, beause the omplexity of the masterproblem would be a�eted negatively.AknowledgementsWe would like to thank Papirgåden for sharing knowledge on home are sheduling and pro-viding real-life data. Furthermore, we thank the Villum-Kann-Rasmussen foundation for theirsupport of this work.Referenes[1℄ S. V. Begur, D. M. Miller, and J. R. Weaver. An integrated spatial DSS for shedulingand routing home-health-are nurses. Interfaes, 27(4):35 � 48, 1997.[2℄ D. Bredström and M. Rönnqvist. Combined vehile routing and sheduling with temporalpreedene and synhronization onstraints. European Journal of Operational Researh,191(1):19�31, 2008.[3℄ N. Christo�des and J. E. Beasley. The period routing problem. Networks, 14(2):237 �256, 1984.[4℄ G. Clarke and J. W. Wright. Sheduling of vehiles from a entral depot to a number ofdelivery points. Operations Researh, 12(4):568 � 581, 1964.[5℄ G. B. Dantzig and P. Wolfe. Deomposition priniple for linear programs. OperationsResearh, 8:101�111, 1960.[6℄ M. Dror. Note on the omplexity of the shortest path models for olumn generation inVRPTW. Operational Researh, 42(5):977 � 978, 1994.19
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In several countries, home care is provided for certain citizens living
at home. The long-term home care scheduling problem is to generate work
plans spanning several days such that a high quality of service is
maintained and the overall cost is kept as low as possible.  A solution
to the problem provides detailed information on visits and visit times
for each employee on each of the covered days.
We propose a branch-and-price algorithm for the long-term home care
scheduling problem. The pricing problem generates one-day plans for an
employee, and the master problem merges the plans with respect to
regularity constraints. The method solves instances with up to 99 visits
during one week. This truly illustrates the complexity of the problem.
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