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Long-term home 
are s
hedulingM. Gamst⋆ and T. Sejr Jensen�
⋆DTU Management Engineering, gamst�man.dtu.dk

�University of Southern Denmark, thomassejr�gmail.
omSeptember 28, 2011Abstra
tIn several 
ountries, home 
are is provided for 
ertain 
itizens living at home. Home
are o�ers 
leaning, gro
ery shopping, helping with personal hygiene and medi
ine, helping
itizens to get in and out of bed, et
. The long-term home 
are s
heduling problem is togenerate work plans su
h that a high quality of servi
e is maintained, the work hours ofthe employees are respe
ted, and the overall 
ost is kept as low as possible. The problem
overs several days of home 
are s
heduling. A solution provides detailed information onvisits and visit times, for ea
h employee on ea
h day.We propose a bran
h-and-pri
e algorithm for the long-term home 
are s
hedulingproblem. The pri
ing problem generates a one-day plan for an employee, and the masterproblem merges the plans with respe
t to regularity 
onstraints. The method is 
apable ofgenerating plans with up to 99 visits during one week. This truly illustrates the 
omplexityof the problem.
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1 Introdu
tionIn many 
ountries a large number of 
itizens who live in their homes but are not able to doso without help, re
eive regular servi
es from so-
alled home 
are 
entres. The 
itizens mayre
eive a substantial number of visits during the week. There are many types of su
h visits:some are simple tasks like 
leaning, bringing out food, doing the laundry et
., while othersinvolve personal hygiene, medi
ation, getting out of and into bed et
.The goal of the home 
are 
enter is to plan all these visits su
h that the per
eived qualityof servi
e is high without overloading the individual home 
are personnel. The overall 
ostof performing this servi
e must be kept as low as possible. This is highly nontrivial as theper
eived quality of servi
e is often in dire
t 
on�i
t with the 
ost of performing the servi
e.In pra
ti
e, a two-level approa
h is used for planning home health 
are. The �rst phaseis a master-plan whi
h is a long-term plan. The se
ond phase is daily planning whi
h usesthe master-plan as a starting point but in
orporates last minute 
hanges su
h as employees
alling in si
k, ad ho
 visits, and other unforeseen events. This paper fo
uses on 
onstru
tionof the master-plan. The master-plan spe
i�es when 
itizens are visited and the employees that
ondu
t ea
h visit.Every visit in the master-plan is repeated regularly, as spe
i�ed by its period. A visit withperiod p is repeated after p time, e.g., a period of one day means that the visit is 
ondu
tedevery day. Sin
e every visit in the master-plan is repeated inde�nitely, the same goes for theentire master-plan. In this sense the master-plan is periodi
, whi
h means that ea
h week inthe master-plan is rolled out to an in�nite number of a
tual 
alendar weeks. If for examplethe length of the master-plan is four weeks, every fourth 
alendar week will be identi
al (untilthe master-plan is updated due to addition or removal of visits).Quality of servi
e partly 
onsists of regularity, i.e., that a visit is always 
ondu
ted at thesame time of the day and that a 
itizen is visited by the same (small group of) employee(s).Espe
ially the latter is of high importan
e to many 
itizens who feel safer when being servi
edby persons they are familiar with.The other aspe
t of quality of servi
e is skill set requirements, i.e., assigning suitableemployees to a visit. How suitable an employee is for a visit depends on the employee'sprofessional skills and personality features of the employee and 
itizen.E�
ien
y is quanti�ed by the total time spent traveling between visits for all employees.Clearly, the total travel time should be as low as possible.The long-term home 
are s
heduling problem isNP-hard and di�ers from previous work onhome 
are s
heduling by 
al
ulating detailed work plans for a longer period without having pre-�xed visits to spe
i�
 days, and with taking quality of servi
e into a

ount. The latter aspe
t
auses inter-dependent 
onstraints between the daily work plans. It is thus not possible to
al
ulate the daily plans independently from one another, even if all visits are �xed to spe
i�
days. We propose at bran
h-and-pri
e algorithm for solving the problem to optimality. Thepri
ing problem generates a plan for an employee on a given day, and the master problemmerges the plans into an overall solution.The proposed solution method has been tested on real-life data provided by Papirgården,whi
h is a home 
are provider lo
ated on Funen, Denmark. It has about 25 employees andserves 
itizens spread over a diameter of about 3.5 kilometers. This means that all employees2



travel by bi
y
le and an employee 
an, under normal 
ir
umstan
es, drive between any pair of
itizens in less than 15 minutes. Computational results show that while outperforming CPLEXused for solving a basi
 formulation of the problem, the bran
h-and-pri
e algorithm is unableto 
al
ulate large plans due to time and spa
e usage. Instead the algorithm is well-suited forben
hmarking heuristi
s. This truly illustrates the 
omplexity of the problem.This paper is organized as follows. First, a review of related work from the literature ispresented in Se
tion 2. In Se
tion 3, the problem is formally de�ned and formulated mathe-mati
ally. Se
tion 4 
ontains the proposed bran
h-and-pri
e solution method. The method is
omputationally evaluated in Se
tion 5, and �nal 
on
lusions are given in Se
tion 6.2 Related workIn this se
tion, an overview is given on work from the literature on home 
are s
heduling andrelated problems.An early appli
ation of operations resear
h methods to home health 
are was des
ribed byBegur et al. in [1℄. The daily planning problem was modeled as a site dependent VRPTW,i.e., a VRPTW where a 
ustomer 
an only be visited by a subset of the vehi
les. The problemwas solved using the sequential savings heuristi
 developed by Clarke and Wright [4℄.Eveborn et al. developed a de
ision support system for solving daily planning. The systemis 
alled Laps Care, and the re
ent paper [8℄ do
uments its su

ess in real-life use. Laps Caremodeled daily planning as a VRP whi
h was solved heuristi
ally. The heuristi
 
onsisted ofiteratively 
ombining paths using generalized mat
hing, and splitting paths into single visitswhi
h are then 
ombined with the remaining paths. In another paper about Laps Care [7℄,the authors assumed the existen
e of a base master-plan on whi
h the daily plan was based,but they did not 
onsider how to 
onstru
t and maintain the master-plan.The master's theses of Thomsen [17℄, Lessel [11℄, and Godskesen [9℄ also dealt with dailyplanning, and they all used heuristi
 solution methods. Thomsen and Godskesen modeled theproblem as a so 
alled ri
h VRP, i.e., a VRP with many real-life 
onstraints and obje
tiveswhi
h leads to 
ompli
ated models, see e.g. [18℄.Nikolajsen [13℄ 
onsidered a routing problem spanning several days, but ea
h visit was
ondu
ted only on
e and therefore dependen
ies between individual days were not introdu
ed.The work is related to the Periodi
 VRP (PVRP), where the planning horizon spans severaldays and ea
h 
ustomer must be visited on a spe
i�ed number of these days. The spe
i�ednumber of days for ea
h 
ustomer is denoted its s
hedule: if every 
ustomer must be visitedevery day, PVRP redu
es to VRP sin
e the same path 
an be used every day. The s
hedulesmake PVRP di�er from the long-term home 
are s
heduling problem; in the latter visits at a
itizen 
an be 
ondu
ted on any (unspe
i�ed) day. PVRP was introdu
ed by Russell and Igo[15℄ and de�ned formally by Christo�des and Beasley [3℄. A re
ent survey fo
using on PVRPmentioned many real-life appli
ations of PVRP, none of whi
h was home health 
are [16℄.Dohn et al. [10℄ modeled daily planning and solved the problem using bran
h-and-pri
e.The master problem was a set partitioning model, where ea
h 
olumn 
orresponded to a pathfor an employee. The pri
ing problem was the NP-hard elementary shortest path problemwith resour
e 
onstraints and was solved using a labeling algorithm.Bredström and Rönnqvist [2℄ introdu
ed a mixed-integer mathemati
al formulation for the
ombined vehi
le routing and s
heduling problem with time windows and temporal 
onstraints.They showed how the formulation is appli
able on the daily planning problem.3



3 Formal Problem De�nitionThis se
tion introdu
es notation for planning home health 
are. Employees are introdu
ed inSe
tion 3.1, the planning horizon in Se
tion 3.2, visits in Se
tion 3.3, a
tivities in Se
tion 3.4,and �nally the obje
tives of the problem in Se
tion 3.5. The entities are gathered in a mathe-mati
al formulation of the long-term home 
are s
heduling problem in Se
tion 3.6. Note thatthe long-term home 
are s
heduling problem and thus all entities des
ribed in the followingoperate in a dis
rete time spa
e.3.1 EmployeesLet E denote the set of employees. Let Hj denote the work hours for employee j in a givenperiod of k days. An interval [ajh, bjh] ∈ Hj means that employee j is on duty from time ajhto time bjh on day h ∈ {1, . . . , k}.3.2 Planning horizonThe master-plan 
overs a period of time with length L ∈ N, given as a number of dis
rete timesteps. In order to in
lude all visits properly, L should be set to the least 
ommon multiple ofthe visit periods. For example, if the plan in
ludes visits, whi
h are repeated every 2nd and7th day, then L is 14 days. If the plan in
ludes visits, whi
h are repeated every 3rd and 7thday, then L is 21 days.Some visits, for example those that are repeated infrequently, 
ause a large L and 
onse-quently a larger problem instan
e. This 
an be remedied in two ways. One way is to ex
ludesu
h visits from the master-plan and only handle them during daily planning. Another wayis to redu
e the visit's period by dividing it by an integer k whi
h divides evenly into theoriginal period. This implies that the visit is repeated too often in the master-plan, so onlyevery k'th repetition is in
luded in daily planning. If, for example, a visit has a period of 21days, dividing by 3 redu
es the period to 7 days and only every 3rd repetition is in
luded indaily planning.3.3 VisitsThe set of visits is denoted V . Ea
h visit i ∈ V is repeated at regular intervals, e.g., on
e perday or on
e per week, as indi
ated by its period whi
h is denoted pi. The travel time betweentwo visits i, j ∈ V is denoted cij ∈ N and is measured in time steps. The duration of visit i is
di ≥ 0, and its time window of feasible visiting times is [ai, bi]Not all employees are equally suited for 
ondu
ting a 
ertain visit i, and some are not evenallowed to do so. Therefore, pri is a ve
tor of non-negative 
osts of letting ea
h employee
ondu
t i. If an employee is unsuited for 
ondu
ting the visit, then the 
orresponding 
ost isin�nite.Finally, let C denote the set of all 
itizens re
eiving servi
e and Vc the set of all visits for
itizen c ∈ C.3.4 A
tivitiesVisit j with period pj is repeated L/pj times in the planning horizon of length L, and theserepetitions are s
heduled independently of ea
h other. Therefore, visit j is rolled out to L/pj4



a
tivities, and these a
tivities are s
heduled instead of j itself. Let A denote the set of alla
tivities. The set of a
tivities for visit j ∈ V is denoted by Aj . Two 
onse
utive a
tivities iand k are denoted (i, k) : i, k ∈ Aj .Every a
tivity i ∈ Aj inherits most data from visit j ∈ V , so the duration of i is di = dj ,the time window is Wi = Wj , i.e., [ai, bi] = [aj , bj ], and the 
ost ve
tor of letting employees
ondu
t the a
tivity is pri. The travel time between two a
tivities i ∈ Aj and k ∈ Aj′ is
cik = cjj′ .In addition to the a
tivities in A there is a spe
ial a
tivity 0 representing the depot, whi
his the lo
ation where employees start and end their work days. The duration of the depota
tivity is zero, and it 
an be performed at all times.A solution spe
i�es start time and assigned employees for ea
h a
tivity. Let si ∈ N denotethe start time of a
tivity i ∈ A, let ei denote the employee assigned to a
tivity i ∈ A, andlet Ec ⊆ E denote the set of employees whi
h are assigned to 
itizen c ∈ C. In the formalproblem de�nition, we denote the daily s
hedule for an employee a path. A path 
onsists of alist of a
tivities with 
orresponding start visit times. The master-plan thus 
onsists of pathsfor all employees on all days 
overing all a
tivities.3.5 Obje
tive fun
tionsThis se
tion de�nes the obje
tive fun
tions, i.e., the aspe
ts of quality of servi
e, how busythe home 
are employees are, and travel time. We 
hoose to aggregate the obje
tives eventhough this is not trivial due to the relatively large number of obje
tives and the di�erentunits of measurement. How to weigh the obje
tives is not dis
ussed any further here but isinstead 
onsidered in Se
tion 5.3.5.1 Travel timeLet A(h) ⊆ A denote the set of a
tivities 
ondu
ted in work shift h ∈ Hj of employee j ∈ E.Let σi ∈ A(h) denote the su

essor of a
tivity i. The total travel time is 
omputed as:

fTT (S) =
∑

j∈E

∑

h∈Hj

∑

i∈A(h)

ciσi
(1)Sin
e the start and end depots are 
onsidered as a
tivities in A(h), we de�ne the su

essor ofthe end depot to also be the end depot and we let the 
orresponding travel time be zero.3.5.2 Employee priorityAn a
tivity i ∈ A should be 
ondu
ted by the most suitable employees, as spe
i�ed by thenon-negative 
ost ve
tor pri. Let pri(j) ≥ 0 denote the 
ost of employee j ∈ E 
ondu
tinga
tivity i ∈ A. If employee j ∈ E does not have the required skill set for 
ondu
ting thea
tivity, then pri(j) =∞. The employee priority obje
tive is de�ned as:

fEP (S) =
∑

i∈A

∑

j∈E

pri(j). (2)
5



3.5.3 BusynessAn employee is said to be busy if the time period in the s
hedule violates 
onstraints on timewindows and/or travel time. Spe
i�
ally, busyness appears in the following 
ases:1. The start times at two a
tivities are too 
lose, i. e., sσi
− (si+ di+ ciσi

) < 0⇔ si+ di >
sσi
− ciσi2. The start time at an a
tivity is too late, i.e., let bjh be the end time window of employee

j performing a
tivity i on day h then si + di > bjh.In both 
ases, busyness is penalized in the obje
tive fun
tion. There are two reasons fortreating busyness as an obje
tive rather than a hard 
onstraint in the master-plan. First ofall, it re�e
ts how the plan is 
onstru
ted manually. Se
ond, it introdu
es sla
k in the modelsu
h that 
onstraints 
on
erning time windows for visits and overtime for employees 
an beenfor
ed without 
onstraining the solution spa
e to the point where no feasible solution exists.The busyness obje
tive is 
omputed as:
fB(S) =

∑

j∈E

∑

h∈Hj

∑

i∈A(h)

max(0, si + di −min{sσi
− ciσi

, bjh}}If a work shift is empty, its busyness is zero by de�nition. Any busyness in the master-plan istaken 
are of during daily planning, whi
h spreads out a
tivities or assign some a
tivities toanother employee.3.5.4 Employee regularityThe employee regularity obje
tive 
ounts the number of di�erent employees visiting ea
h
itizen:
fER(S) =

∑

c∈C

|Ec|. (3)3.5.5 Visit periodsRe
all that visits are rolled out to a
tivities su
h that the latter are s
heduled independently,allowing more �exibility in the master-plan. Let (i, k) : i, k ∈ Aj be two 
onse
utive a
tivitiesfor visit j ∈ V . If the time period between si and sk di�ers from the given time period of thevisit, pj , then the obje
tive is penalized:
fV P (S) =

∑

j∈V

∑

(i,k): i,k∈Aj

|si + pj − sk| (4)3.6 Mathemati
al FormulationThe long-term home 
are s
heduling problem 
an now be de�ned mathemati
ally. Re
all thenotation introdu
ed previously. Furthermore, de�ne:
[ahij , b

h
ij ] = [max{ai, ajh},min{bi − di, bjh}]As mentioned in Se
tion 3.5 we optimize an aggregated obje
tive fun
tion, where ea
h partis weighed appropriately. Let w be a non-negative ve
tor of su
h weights, where wTT ≥ 0 is6



the weight for travel times, wEP ≥ 0 is for employee priority, wB ≥ 0 is for busyness, wER ≥ 0is for employee regularity, and wV P ≥ 0 is the weight ve
tor for visit periods. Also, let M besome large number.In addition to start time variables si ≥ 0, the variables are as follows. Let xjhik ∈ {0, 1}equal one i� employee j ∈ E travels from a
tivity i to k on day h. Let uik ≥ 0 denote thedi�eren
e in the start times between two 
onse
utive a
tivities (i, k) : i, k ∈ Aj for visit
j ∈ V . Let zij ≥ 0 denote the busyness of employee j ∈ E 
aused by a
tivity i ∈ A. Finally,let yjc ∈ {0, 1} equal one i� employee j ∈ E visits 
itizen c ∈ C.The long-term home 
are s
heduling problem is formulated as:

min
∑

j∈E

∑

h∈Hj

∑

i∈A

∑

k∈A

(

wTT cik + wEP pri(j)
)

xjhik +
∑

i∈A

∑

j∈E

wB zij +
∑

c∈C

∑

j∈E

wER yjc

+
∑

j∈V

∑

(i,k): i,k∈Aj

wV P uik (5)s. t. ∑

k∈A

∑

j∈E

∑

h∈Hj

xjhik = 1 ∀i ∈ A\{0} (6)
∑

k∈A

xjhik −
∑

k∈A

xjhki = 0 ∀i ∈ A\{0}, ∀j ∈ E, ∀h ∈ Hj (7)
∑

k∈A

xjh0k =
∑

k∈A

xjhk0 = 1 ∀j ∈ E, ∀j ∈ Hj (8)
si + di + cik −M(1 − xjhik ) ≤ sk + zkj ∀i, k ∈ A,∀j ∈ E, ∀h ∈ Hj (9)

si ≥ ahij −M(1−
∑

k∈A

xjhik ) ∀i ∈ A,∀j ∈ E,∀h ∈ Hj (10)
si ≤ bhij +M(1−

∑

k∈A

xjhik ) ∀i ∈ A,∀j ∈ E,∀h ∈ Hj (11)
si + pj − sk ≤ uik ∀(i, k) : i, k ∈ Aj ,∀j ∈ V (12)
sk − (si + pj) ≤ uik ∀(i, k) : i, k ∈ Aj ,∀j ∈ V (13)
∑

h∈Hj

∑

k∈A

xjhik ≤ yjc ∀c ∈ C,∀v ∈ Vc,∀i ∈ Av,∀j ∈ E (14)
si +M(1−

∑

j∈E

∑

h∈Hj

xjhik ) ≤ sk ∀i, k ∈ A (15)
xjhik ∈ {0, 1} ∀i, k ∈ A, ∀j ∈ E, ∀h ∈ Hj (16)

si ≥ 0 ∀i ∈ A (17)
zij ≥ 0 ∀i ∈ A, ∀j ∈ E (18)
uik ≥ 0 ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (19)

yjc ∈ {0, 1} ∀c ∈ C, ∀j ∈ E (20)The obje
tive fun
tion (5) minimizes a weighted sum of the obje
tives des
ribed in Se
-tion 3.5. First part of the obje
tive fun
tion 
onsists of travel times and employee priority. If
xjhik = 1 for a
tivities i, k ∈ A, employee j ∈ E and day h ∈ Hj , then the obje
tive must paythe travel time from i to k and the 
ost of letting employee j 
ondu
t a
tivity i. Next, theobje
tive fun
tion 
onsists of three parts: busyness, employee regularity and visit periods.7



Constraints (6) ensure that all a
tivities are 
ondu
ted. Constraints (7) ensure that a pathof an employee is 
onne
ted, and 
onstraints (8) for
e paths to start and end in the depot.Constraints (9) measure busyness: if a visit at a
tivity k starts too late, then busyness isadded to the variable zkj ≥ 0. Furthermore, 
onstraints (9) eliminate subtours. Constraints(10) and (11) say that any variable sk must satisfy the time windows of a
tivity k ∈ A andemployee j ∈ E.Constraints (12) and (13) measure the amount of time di�eren
e between two 
onse
utivevisits (i, k) : i, k ∈ Aj , j ∈ V . If the gap between the start times at i and k di�ers from pj ,then the variable uik is set to the absolute time deviation.Constraints (14) 
ount the number of employees visiting a 
itizen: if employee j ∈ E visitsa
tivity i ∈ Av, v ∈ Vc, c ∈ C, then the variable yjc is set to one. Constraints (15) limitthe amount of allowed busyness su
h that visit times on a path are non-de
reasing. Finally,bounds (16) - (20) for
e variables to take on feasible values.4 Exa
t Solution Approa
hA bran
h-and-pri
e algorithm for solving the long-term home 
are s
heduling problem is pre-sented in this se
tion. The mathemati
al formulation (5) - (20) is Dantzig-Wolfe de
omposed[5℄. The pri
ing problem generates a path for a given employee on a given day, and the masterproblem merges the paths into an overall feasible solution.Let p be a path and P the set of all generated paths. The master problem 
ontains threetypes of variables. Variable xp ∈ {0, 1} denotes whether or not path p is part of the solution.Variables uik ≥ 0 and yjc ∈ {0, 1} are as de�ned for the original formulation (5) - (20).Ea
h path p has a number of 
onstants atta
hed. Constant δip is set to one, if path p ∈ Pvisits a
tivity i ∈ A, otherwise δip is zero. Let 
onstant δijbp ≥ 0 denote the amount of busynessin path p ∈ P for employee j ∈ E and a
tivity i ∈ A. Let δisp denote the start time of path
p ∈ P at a
tivity i ∈ A, and let δisp be unde�ned if δip = 0. Let δijp be set to one, if path p ∈ Pis generated for employee j ∈ E and visits a
tivity i ∈ A, otherwise δijp is zero. Constant δjhpis set to one, if path p ∈ P is generated for employee j ∈ E on day h ∈ Hj , otherwise δjhp iszero. Finally, let cp ≥ 0 denote the total travel time in plan p.

8



The master problem is formulated as:
min

∑

p∈P

wTT cpxp +
∑

i∈A

∑

j∈E

∑

p∈P

wEP pri(j) δ
ij
p xp +

∑

i∈A

∑

j∈E

∑

p∈P

wB δijbp xp +

∑

c∈C

∑

j∈E

wER yjc +
∑

j∈V

∑

(i,k): i,k∈Aj

wV P uik (21)s. t. ∑

p∈P

δipxp = 1 ∀i ∈ A (22)
∑

p∈P

δispxp + pj −
∑

p∈P

δkspxp ≤ uik ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (23)
∑

p∈P

δkspxp − (
∑

p∈P

δispxp + pj) ≤ uik ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (24)
∑

p∈P

δijp xp ≤ yjc ∀c ∈ C,∀v ∈ Vc,∀i ∈ Av,∀j ∈ E (25)
∑

p∈P

δjhp xp ≤ 1 ∀j ∈ E, ∀h ∈ Hj (26)
xp ∈ {0, 1} ∀p ∈ P (27)
uik ≥ 0 ∀(i, k) : i, k ∈ Aj , ∀j ∈ V (28)

yjc ∈ {0, 1} ∀c ∈ C,∀j ∈ E (29)The obje
tive fun
tion (21) 
orresponds to the obje
tive in the original formulation (5),only with variables xp instead of xjhik . The obje
tive fun
tion 
onsists of the weighted sum oftravel times, employee priorities, busyness, employee regularity and visit periods.Constraints (22) ensure that every a
tivity is visited. Constraints (23) and (24) measuretime deviation similar to 
onstraints (12) and (13) in the original formulation. Constraints(25) measure employee regularity. Constraints (26) ensure that at most one path per employeeper day is part of a solution (note that the original formulation for
es every employee to leavethe depot every day, but it is feasible for an employee to travel from the depot a
tivity ba
kto the depot a
tivity, see 
onstraints (7) and (8). This 
orresponds to not assigning a path toan employee in 
onstraint (26)).The number of 
olumns in the master problem is redu
ed by �xing 
ertain a
tivities to
ertain days. Spe
i�
ally, if a visit must be repeated every day, then the 
orresponding sevena
tivities are �xed to Monday, Tuesday, Wednesday, et
., respe
tively. The pri
ing problemonly allows su
h a
tivities to be part of paths on appropriate days.4.1 Pri
ing problemAsso
iate the dual variables π(22)
i ∈ R with 
onstraints (22), π(23)

ik ≤ 0 with 
onstraints (23),
π
(24)
ik ≤ 0 with 
onstraints (24), π(25)

icj ≤ 0 with 
onstraints (25), and π
(26)
jh ≤ 0 with 
onstraints(26).The pri
ing problem tries to generate a path with negative redu
ed 
ost for a given em-

9



ployee j ∈ E on a given day h ∈ Hj . The redu
ed 
ost is de�ned as:
c̄jh =

∑

i,k∈A

wTT cik +
∑

i∈A

wEP pri(j) +
∑

i∈A

wB zij

−
∑

i∈A

π
(22)
i −

∑

v∈V

∑

(i,k): i,k∈Av

(

(si − sk)π
(23)
ik + (sk − si)π

(24)
ik

)

−
∑

c∈C

∑

v∈Vc

∑

i∈Av

π
(25)
icj − π

(26)
jh ≤ 0 (30)where zij ≥ 0 denotes the amount of busyness for employee j ∈ E at a
tivity i ∈ A, and

si ≥ 0 denotes the start time at a
tivity i. The following notation is introdu
ed to simplifyInequality (30). Let:̄
ci0 =

{

si(π
(23)
ik − π

(24)
ik ) ∃k : (i, k) : i, k ∈ Av, v ∈ V

0 otherwiseand:
c̄i1 =

{

si(π
(24)
ki − π

(23)
ki ) ∃k : (k, i) : i, k ∈ Av, v ∈ V

0 otherwiseThe redu
ed 
ost for visiting an a
tivity i ∈ Av, v ∈ Vc, c ∈ C 
an now be expressed as:
c̄ijh = wEP pri(j)− π

(22)
i − π

(25)
icj − c̄i0 − c̄i1A master-plan makes sure that an a
tivity i ∈ A is visited exa
tly on
e, hen
e we know thatexa
tly one employee leaves a
tivity i ∈ A exa
tly on
e on exa
tly one day. For that reason,it is feasible to de�ne the redu
ed 
ost between any two a
tivities i, k ∈ A as:

c̄ikjh = wTT cik + c̄ijhNow, the redu
ed 
ost (30) is rewritten as:
c̄jh =

∑

i∈A

∑

k∈A

c̄ikjh + wB
∑

i∈A

zij ≤ π
(26)
jh (31)The pri
ing problem is solved for ea
h employee j ∈ E on day h ∈ Hj , hen
e π(26)

jh is a 
onstantand isolated on the right-hand side. If the pri
ing problem generates a path where c̄jh < π
(26)
jh ,then the path has negative redu
ed 
ost and the 
orresponding 
olumn may be added to themaster problem.Now, using 
onstraints similar to the original formulation (5) - (20), the pri
ing problemfor employee j ∈ E on day h ∈ Hj is formulated as:

10



min
∑

i∈A

∑

k∈A

c̄ikjhxik + wB
∑

i∈A

zij (32)s. t. ∑

k∈A

xik −
∑

k∈A

xki = 0 ∀i ∈ A\{0} (33)
∑

k∈A

x0k =
∑

k∈A

xk0 = 1 (34)
si + di + cik −M(1− xik) ≤ sk + zkj ∀i, k ∈ A (35)

si ≥ ahij −M(1−
∑

k∈A

xik) ∀i ∈ A (36)
si ≤ bhij +M(1−

∑

k∈A

xik) ∀i ∈ A (37)
si +M(1− xik) ≤ sk ∀i, k ∈ A (38)

xik ∈ {0, 1} ∀i, k ∈ A (39)
si ≥ 0 ∀i ∈ A (40)
zij ≥ 0 ∀i ∈ A (41)The obje
tive fun
tion (32) minimizes the redu
ed 
ost as de�ned in (31). Constraints (33)and (34) ensure path 
onne
tivity and that the path starts and ends in the depot. Constraints(35) - (37) make sure that the start time si at a
tivity i ∈ A is set appropriately, that anybusyness is added to the variable zij and that subtours are eliminated. Constraints (38) limitthe amount of allowed busyness by ensuring that start times on the path are non-de
reasing.Finally, the bounds (39) - (41) for
e variables to take on feasible values.The pri
ing problem is re
ognized as a shortest path problem with time 
onstraints andpotentially negative edge weights de�ned by (32). This is also denoted the Elementary ShortestPath Problem with Resour
e Constrained (ESPPRC). An instan
e of ESPPRC 
onsists of anumber of resour
es and a weighted graph whose edges and verti
es 
onsume resour
es andhave a lower and upper bound on total 
onsumption of ea
h resour
e. The task is to �nd ashortest simple path from node s to node t. The resour
e 
onsumption at every node andevery edge on this path must be within the spe
i�ed bounds. In this appli
ation of ESPPRC, anode 
orresponds to an a
tivity, an edge travels between two a
tivities, edges have no resour
ebounds, and the resour
e bounds on verti
es are time windows of the a
tivities and employees.The weight of an edge is determined by (32).Be
ause ESPPRC is NP-hard, see Dror [6℄, we �rst try to solve the pri
ing problemheuristi
ally. If the heuristi
 
annot �nd any path with negative redu
ed 
ost for any employeeon any day, then the pri
ing problem is solved to optimality.Labeling algorithmBoth the heuristi
 and exa
t solution approa
hes for the pri
ing problem use a labeling al-gorithm. The approa
h asso
iates a set of labels with ea
h a
tivity. A label for a
tivity irepresents a path from the (sour
e) depot a
tivity s to i. Asso
iated with a label ℓ are thefollowing attributes:

• The last visited a
tivity v(ℓ) 11



• The start time t(ℓ) of the last visited a
tivity v(ℓ)

• The set of a
tivities, whi
h ℓ 
an be extended to, denoted extendables(ℓ)
• The redu
ed 
ost of the label redu
ed_
ost(ℓ)A label 
an be extended to a
tivities, whi
h have not yet been 
ondu
ted, and whose timewindow is still open. The redu
ed 
ost of a label is de�ned in (32) and is based on the pathleading up to v(ℓ).Algorithm 1 is a generi
 label-setting algorithm that �nds a shortest paths with negativeredu
ed 
ost from node s to t. A bu
ket is in this 
ontext a set of labels, and we use onebu
ket for ea
h a
tivity.Algorithm 1 Generi
 labeling algorithm whi
h 
omputes a set P 
ontaining up to k resour
e
onstrained shortest paths with negative redu
ed 
ost from node s to t. The set of all bu
ketsis denoted by B.1: P ← ∅2: ℓinit ← initialize_label(s)3: B(s)← B(s) ∪ {ℓinit}4: while a non-empty bu
ket in B exists and |P| < k do5: L← dequeued non-empty bu
ket from B6: for all ℓ ∈ L do7: for all a
tivity i ∈ extendables(ℓ) do8: for all feasible start times si of i do9: ℓ′ ← 
reate_label(i, si)10: if i = t then11: if redu
ed_
ost(ℓ′) < π

(26)
jh then12: p← get_path(ℓ)13: if keep_path(p) then14: P ← P ∪ {p}15: end if16: end if17: else18: B(i)← B(i) ∪ {ℓ}19: remove_dominated(B(i), ℓ)20: end if21: end for22: end for23: end for24: end whileIn the �rst three lines of the Algorithm, an empty set of solutions is initialized along witha label in the (sour
e) depot a
tivity. The latter is added to the bu
ket of labels in the depota
tivity. The algorithm then extra
ts some non-empty bu
ket in Line (5). In Line (6)-(9) thealgorithm extends the path of ea
h label in the bu
ket with feasible a
tivities and start times,whi
h results in new labels. If a path has rea
hed the (target) depot a
tivity t, the redu
ed
ost is negative, and we wish to save the path, then it is added to the set of solutions, see Line(10)-(14). 12



We wish to save a path p if:
• No more than 100 paths are already saved. The number �100� is rea
hed through pa-rameter tuning, or
• More than 100 paths are saved and the new path has smaller redu
ed 
ost than anothersaved pathIf the (target) depot a
tivity t has not been rea
hed in Line (10), then the label is added tothe appropriate bu
ket. Finally, in Line (19) the algorithm 
he
ks if the new label ℓ dominatesany labels in the bu
ket or if it is dominated by any labels in the bu
ket.A label ℓ dominates another label ℓ′ if the following 
onditions hold:
• The labels ℓ and ℓ′ end at the same a
tivity: v(ℓ) = v(ℓ′)

• The redu
ed 
ost of ℓ is no greater than that of ℓ′: redu
ed_
ost(ℓ) ≤ redu
ed_
ost(ℓ′)
• The path of ℓ ends no later than that of ℓ′: t(ℓ) ≤ t(ℓ′)

• Label ℓ 
an at least extend to the same a
tivities as ℓ′These 
riteria ensure that if at least one path with negative redu
ed 
ost exists, then thelabeling algorithm is guaranteed to �nd it.When using Algorithm 1 as a heuristi
, only the �rst label added to every bu
ket ispro
essed. Keeping only one label in ea
h bu
ket speeds up the pri
ing algorithm signi�
antlyand it is still 
apable of �nding 
olumns with negative redu
ed 
ost in the �rst iterations ofthe bran
h-and-pri
e algorithm.4.2 Bran
hing strategyBran
hing is ne
essary when the optimal solution in a bran
h node is fra
tional. Fra
tionalsolutions o

ur in the following situations:Fra
tional 
itizen visits: That is 0 < yjc < 1 for some 
itizen c ∈ C and employee j ∈ E.In this 
ase two bran
hing 
hildren are generated with added 
ut:
yjc = 0 resp. yjc = 1.This does not 
hange the pri
ing problem, be
ause the 
ut is not on the xp-variables.An a
tivity is visited by several employees or on several days: That is, 0 < xp, xp′ <

1 for paths p, p′ ∈ P , 
onstants δip = δip′ = 1 for some a
tivity i ∈ A, and 
onstants
δjhp = δj

′h′

p′ = 1 for some employee(s) j, j′ ∈ J and day(s) h, h′ ∈ Hj with either j 6= j′or h 6= h′.In this 
ase two bran
hing 
hildren are generated with the following rules:
∑

p∈P

δjhp xp = 0 resp. ∑

p∈P

δj
′h′

p xp = 0The bran
hing rule is maintained in the pri
ing problem, whi
h ensures that employee
j (resp. j′) never visits a
tivity i on day h (resp. h′). The bran
hing rule does not
ompli
ate the stru
ture of the pri
ing problem.13



An employee travels on an edge on a given day a fra
tional number of times: Thatis, 0 < xp, xp′ < 1 for paths p, p′ ∈ P , and 
onstants δjhp = δjhp′ = 1 for some employee
j ∈ J and day h ∈ Hj . Let i be the �rst a
tivity from whi
h the paths p and p′ di�er.Let i, k, k′ ∈ A , su
h that p travels from i to k at time sik and su
h that p′ travels from
i to k′ at time sik′ . Furthermore, let k 6= k′, or sik 6= sik′.Two bran
hing 
hildren are generated with the following rules:

∑

p∈P

δjhp δsikp xp = 0 resp. ∑

p∈P

δjhp δ
sik′
p xp = 0where 
onstant δsikp (resp. δ

sik′
p ) is set to one, if path p travels from i to k at time

sik (resp. from i to k′ at time sik′), otherwise it is set to zero. The bran
hing rule ismaintained by the pri
ing problem, whi
h ensures that employee j never travels from ito k (resp. k′) at time sik (resp. sik′) on day h. The bran
hing rule does not 
ompli
atethe stru
ture of the pri
ing problem.Together the three bran
hing strategies are �nite and eventually ensure an integer solution.The strategy generates bran
hing 
hildren in the order given above, and best �rst is used assear
h strategy in the bran
h-and-bound tree. Strong bran
hing is applied: for ea
h bran
hing
andidate, a lower bound on its LP relaxation of ea
h of the 
hildren is obtained. The 
andidatethat leads to 
hildren with the lowest bounds is sele
ted.4.3 In
umbentBefore the bran
h-and-pri
e pro
ess 
an begin, an initial solution to the long-term home 
ares
heduling problem must be generated. The solution, also denoted the in
umbent, is used for�nding initial values for the dual variables.Algorithm 2 tries to assign a
tivities to the �rst employee on the �rst day, with respe
tto time windows and �xed days. If unable to assign an a
tivity to this employee and day,the algorithm tries to assign it to the employee on the next day. Eventually, the algorithmtries to assign the a
tivity to the next employee on the �rst day, et
. An a
tivity is assignedto an employee in a feasible way and su
h that busyness is avoided when possible, see Line(8) and (14), i.e., the algorithm only allows busyness to o

ur when having rea
hed the lastemployee on the last day of the instan
e. Lines (13) - (15) measure travel time and busynessfor returning to the depot.The algorithm always �nds a feasible solution if one su
h exists. The reasons for thisare that a
tivities are sorted a

ording to their end times in non-de
reasing order, and thatbusyness is allowed.5 Computational ResultsThe exa
t solution method is tested on a number of real-life ben
hmark instan
es. In thisse
tion, the ben
hmark instan
es are �rst introdu
ed. This is followed by 
omputationalresults for the bran
h-and-pri
e algorithm.5.1 Real-life test instan
eThe proposed solution method is tested on real-life data provided by Papirgården, a home
are 
enter in Funen, Denmark. The real-life instan
es 
onsist of up to 99 a
tivities to be14



Algorithm 2 Constru
tion heuristi
 used in the bran
h-and-pri
e algorithm to generate aninitial solution.1: for all employees j ∈ E do2: for all days h ∈ Hj do3: t← ajh (start of work shift)4: i← 0 (the depot)5: sort a
tivities in non-des
ending order of bi (end of time window)6: for all a
tivities k ∈ A do7: if k is uns
heduled and 
an be s
heduled on day h then8: Update t a

ording to cik and bhkj9: start k at time t and assign employee j10: i← k11: end if12: end for13: k ← 0 (the depot)14: Update t a

ording to cik and bhkj15: start k at time t and assign employee j16: end for17: end for
ondu
ted in 7 days by at most 2 employees. The time window of an a
tivity is set to either7.30�9.00, 9.00�11.00, 11.30�13.00, or 13.00�15.00. Employees work from 7.00 � 13.00, 7.00 �14.00 or 7.00 � 15.00. Time is dis
retized into either 5 or 10 minute time steps.The distan
es between 
itizens are found with the Google Maps API, whi
h means thatthe a
tual distan
e is used in the master-plan rather than straight line distan
es. When
omputing travel times, we assume that an employee travels at 15 kilometers per hour (allemployees travel by bi
y
le). Unless two a
tivities are at the same 
itizen, two minutes areadded to the travel time between them to a

ount for the time it takes to enter and leave aresiden
e. All travel times are 
eiled to nearest integer.Weights must be set for the aggregated obje
tive fun
tion. Papirgården has re
ommendedthe following priorities: highest priority is given to minimizing busyness and employee reg-ularity, followed by minimizing travel times. Visit regularity has fourth priority, and em-ployee skill requirements are of no importan
e for Papirgården, be
ause its employees havesimilar skill sets. Visit regularity is given low priority, be
ause the time window of an a
-tivity is relatively small and be
ause high priority is given to redu
e busyness. In
ludingthe priorities in the obje
tive fun
tion is done by assigning large numbers to the weights, i.e.,
wTT = 500, wB = 750, wEP = 0 ·5/τ, wER = 750 ·5/τ and wV R = 50, where τ is the numberof minutes per time step. The travel time, busyness, and visit regularity obje
tives depend onthe time dis
retization, while this is not the 
ase for employee priority and employee regularity.The weights of the latter two are thus multiplied with a time step dependent fa
tor.5.2 ResultsThe bran
h-and-pri
e algorithm has been implemented using the COIN B
p framework, seeLougee-Heimer [12℄, and is tested on an Intel 2.13GHz Xeon CPU with 4 
ores and 8 GBRAM. Note that all results stem from using one 
ore. CPLEX 12.1 was used as standard MIP15



solver for both solving the original formulation (5)-(20) and for solving the master problem inthe bran
h-and-pri
e algorithm.CPLEX is unable to solve the original formulation (5)-(20) for instan
es with more than11 a
tivities and is thus not evaluated further. For an instan
e with 12 a
tivities, CPLEX wasstopped after 75 000 se
onds. It had generated a sear
h tree with 4 057 600 nodes, but onlyredu
ed the gap between the upper and lower bound from an initial 14.8% to 8.25%. ApplyingCPLEX on the original formulation is not a su

essful strategy, hen
e the rest of this se
tion
on
entrates on the bran
h-and-pri
e algorithm.Test results are summarized in Table 1 and 2. The �rst table displays results for the optimalbran
h-and-pri
e algorithm, while the se
ond table displays results for the bran
h-and-pri
ealgorithm with only heuristi
ally generated 
olumns.An instan
e is named � |E| − |A| − τ �, where τ is the number of minutes per time step,i.e., either 5 or 10 minutes. All instan
es have a planning horizon of 7 days. A time limit of30 minutes has been imposed on the runs, and an �*� in the last 
olumn indi
ates that anprovably optimal solution was not found within these 30 minutes (some runs ex
eeded thislimit slightly be
ause elapsed time is not 
he
ked everywhere in the program).As 
an be seen in Table 1, only four instan
es with 5 minute time steps 
an be solvedto optimality within half an hour. A 
oarser dis
retization helps, but the bran
h-and-pri
ealgorithm still su�ers from a large time usage.An interesting observation for instan
es with 10 minutes time steps is that the instan
eswith 30 a
tivities time out, whereas the instan
es with 33 and 40 a
tivities are solved tooptimality. This is due to the fa
t that the instan
es with 30 a
tivities 
ontain many visitswith a period of one week, whi
h 
an be s
heduled on any day. The other instan
es have morevisits with a period of one day whose a
tivities are thus �xed to spe
i�
 days.The number of 
olumns is large for several instan
es, whi
h is 
aused partly by large timewindows and partly by busyness, i.e., that time windows may be violated. The tree grows largefor many instan
es not solved to optimality, hen
e bran
hing also 
onstitutes a bottlene
k.As 
an be seen in Table 2, the bran
h-and-pri
e algorithm is generally faster when onlygenerating 
olumns heuristi
ally. Note that the gap in this table denotes the gap betweenthe heuristi
 upper and lower bound, and not between the heuristi
 upper and optimal lowerbound. Some instan
es still su�er from large tree sizes and many 
olumns, but the far majorityof instan
es are solved in se
onds. The obje
tive values generally su�er from the heuristi
approa
h. Comparing the two tables shows that the heuristi
 solutions are between 4% and85% solution. The average gap between provably optimal and heuristi
 solutions is 47%. Eventhough solving the pri
ing problem heuristi
ally redu
es the overall running time signi�
antly,the bran
h-and-pri
e approa
h is still unable to solve the instan
e with a 10 minute time step,2 employees and 99 instan
es.Considering the 
omplexity of the master-plan problem, it is no surprise that the exa
tbran
h-and-pri
e algorithm 
an solve only limited sized instan
es. The results truly illustratethe 
omplexity of the problem.6 Con
lusionIn this paper, we presented a bran
h-and-pri
e algorithm for the long-term home 
are s
hedul-ing problem. The pri
ing problem 
onsisted of 
al
ulating a work plan on a given day for a16



Instan
e Cols. Rows Tree size Tree depth Gap Value Time1-20-5 6 327 199 1 0 0.00 27 000.0 3.971-25-5 8 671 250 4 687 59 0.03 29 750.0 1 801.33*1-30-5 12 883 295 2 079 71 0.04 38 000.0 1 801.97*1-33-5 11 447 328 1 615 75 0.00 38 800.0 1 655.351-40-5 28 365 397 171 51 0.00 43 000.0 812.941-44-5 40 445 433 179 89 0.01 97 100.0 1 802.57*1-50-5 31 480 493 27 13 0.07 87 000.0 1 803.35*1-55-5 37 944 544 159 28 0.00 57 000.0 1 804.30*1-58-5 39 997 571 9 4 0.08 156 200.0 1 807.19*1-80-5 8 737 787 1 0 No LB 259 250.0 1 906.50*2-20-5 8 917 346 5 2 0.00 27 000.0 8.582-25-5 10 089 432 2 405 69 0.03 29 750.0 1 803.39*2-30-5 16 383 512 695 66 0.05 38 400.0 1 803.29*2-33-5 18 316 566 701 90 0.03 39 300.0 1 803.90*2-40-5 23 921 684 455 70 0.05 42 100.0 1 801.46*2-44-5 34 527 748 125 62 0.08 84 600.0 1 835.07*2-50-5 30 642 850 71 35 0.07 85 000.0 1 806.21*2-55-5 34 414 936 89 32 0.03 51 500.0 1 817.40*2-58-5 30 582 984 17 8 0.02 143 700.0 2 174.36*2-80-5 8 261 1 354 1 0 No LB 237 500.0 1 908.73*1-20-10 4 877 199 59 28 0.00 17 250.0 6.371-25-10 5 507 250 277 51 0.00 18 125.0 27.361-30-10 10 934 295 2 449 101 0.01 25 300.0 1 801.07*1-33-10 10 688 328 43 21 0.00 23 875.0 42.041-40-10 14 037 397 63 31 0.00 27 750.0 90.161-44-10 27 925 433 567 98 0.03 33 750.0 1 803.50*1-50-10 19 907 493 3 1 0.00 36 500.0 337.041-55-10 19 912 544 3 1 0.00 60 375.0 123.641-58-10 40 434 571 111 55 0.00 64 450.0 1 803.82*1-80-10 19 711 787 1 0 No LB 161 100.0 1 847.78*2-20-10 5 913 346 39 19 0.00 17 250.0 9.192-25-10 6 594 432 81 40 0.00 18 125.0 16.302-30-10 10 109 512 1 245 56 0.00 25 200.0 1 802.52*2-33-10 14 485 566 89 44 0.00 23 750.0 146.032-40-10 15 937 684 77 36 0.00 27 250.0 162.932-44-10 27 208 748 271 101 0.01 33 400.0 1 805.10*2-50-10 25 457 850 21 10 0.00 35 750.0 654.532-55-10 29 331 936 49 24 0.01 80 625.0 1 841.08*2-58-10 21 593 984 31 15 0.01 96 750.0 1 826.54*2-80-10 22 136 1 354 3 1 0.02 149 750.0 2 475.74*Table 1: Results for instan
es with either 1 or 2 employees and either 5 or 10 minutes per timestep when using the optimal bran
h-and-pri
e algorithm. The Table shows total number ofgenerated 
olumns and total number of 
onstraints in the master problem, number of nodes inthe bran
h-and-bound tree, depth of the tree, gap between lower and upper bound, obje
tivevalue of best found solution, and running time in se
onds. An �*� in the running time indi
atesthat the algorithm timed out. 17



Instan
e Cols. Rows Tree size Tree depth Gap Value Time1-20-5 1 794 199 1 0 0.00 38 750.0 0.751-25-5 608 250 1 0 0.00 44 500.0 0.181-30-5 2 852 295 1 0 0.00 86 000.0 1.451-33-5 848 328 1 0 0.00 59 750.0 0.451-40-5 903 397 1 0 0.00 67 500.0 0.551-44-5 1 710 433 1 0 0.00 97 100.0 1.951-50-5 1 235 493 1 0 0.00 97 500.0 1.451-55-5 1 599 544 1 0 0.00 112 000.0 1.201-58-5 2 919 571 1 0 0.00 156 200.0 4.761-80-5 2 954 787 1 0 0.00 259 250.0 10.961-99-5 2 449 970 1 0 0.00 328 800.0 22.102-20-5 1 917 346 1 0 0.00 31 750.0 0.662-25-5 1 416 432 3 1 0.00 34 750.0 0.272-30-5 5 637 512 481 25 0.00 73 500.0 117.372-33-5 4 171 566 7 3 0.00 41 750.0 1.492-40-5 4 252 684 7 3 0.00 49 500.0 1.982-44-5 7 236 748 481 28 0.00 84 600.0 242.352-50-5 8 629 850 101 23 0.00 85 000.0 48.852-55-5 7 660 936 35 17 0.00 99 500.0 18.332-58-5 8 770 984 123 29 0.00 143 700.0 116.472-80-5 12 677 1 354 185 35 0.00 237 500.0 388.092-99-5 15 601 1 670 159 30 0.00 285 750.0 1 232.101-20-10 1 286 199 1 0 0.00 24 750.0 0.291-25-10 324 250 1 0 0.00 29 625.0 0.111-30-10 1 845 295 1 0 0.00 54 250.0 0.711-33-10 433 328 1 0 0.00 36 125.0 0.271-40-10 733 397 1 0 0.00 48 750.0 0.321-44-10 1 473 433 1 0 0.00 61 400.0 1.611-50-10 1 002 493 1 0 0.00 67 500.0 0.711-55-10 1 409 544 1 0 0.00 86 875.0 0.691-58-10 2 270 571 1 0 0.00 106 650.0 1.891-80-10 2 255 787 1 0 0.00 161 100.0 4.441-99-10 3 076 970 1 0 0.00 215 425.0 16.132-20-10 1 770 346 1 0 0.00 20 750.0 0.432-25-10 714 432 3 1 0.00 23 125.0 0.152-30-10 4 585 512 751 25 0.00 48 000.0 115.492-33-10 2 717 566 7 3 0.00 24 875.0 0.662-40-10 3 267 684 7 3 0.00 37 500.0 1.002-44-10 5 338 748 713 30 0.00 55 150.0 220.102-50-10 6 914 850 191 26 0.00 61 250.0 58.382-55-10 6 090 936 67 23 0.00 80 625.0 21.942-58-10 7 242 984 143 25 0.00 96 750.0 76.812-80-10 8 552 1 354 221 36 0.00 149 500.0 265.502-99-10 11 410 1 670 557 58 0.01 195 250.0 1 802.64*Table 2: Results for instan
es with either 1 or 2 employees and either 5 or 10 minutes pertime step when only generating 
olumns heuristi
ally in the bran
h-and-pri
e algorithm. Thetable shows total number of generated 
olumns and total number of 
onstraints in the masterproblem, number of nodes in the bran
h-and-bound tree, depth of the tree, gap between theheuristi
 lower and upper bound, obje
tive value of best found solution, and running time inse
onds. An �*� in the running time indi
ates that the algorithm timed out.18



given employee. The master problem merged plans into an overall optimal solution. Thepri
ing problem was NP-hard and solved through a labeling algorithm. Initially, the pri
-ing problem was solved heuristi
ally by only 
onsidering a small subset of labels. When thisapproa
h was unsu

essful, the labeling algorithm solved the pri
ing problem to optimality.The bran
h-and-pri
e algorithm was implemented and tested on a number of real-life in-stan
es provided by the Papirgården home 
are servi
e in Funen, Denmark. The bran
h-and-pri
e algorithm outperformed applying CPLEX to the original formulation. The algorithm,however, showed performan
e di�
ulties for larger instan
es due to the large number of 
om-binations of visits, visit times and employees.Improving the bran
h-and-pri
e approa
h would require methods for redu
ing the numberof 
olumns and limiting the sear
h tree size. The authors attempted stabilizing the valueof dual variables using the interior point method of Rousseau et al. [14℄, but with no avail.Other stabilization methods 
ould be investigated, as better values for the dual variables 
ouldredu
e the number of generated 
olumns. Di�erent primal and in
umbent heuristi
s have beenimplemented and tested without improving the bounds or pruning larger parts of the sear
htree. Future work should fo
us on �nding better bounds, through primal and in
umbentheuristi
s and through the bran
hing strategy.A di�erent approa
h 
ould also be taken to the Dantzig-Wolfe de
omposition. If the masterproblem was to de
ide the time of visits, then the number of 
olumns would be redu
edsigni�
antly. This, however, would 
ome at a pri
e, be
ause the 
omplexity of the masterproblem would be a�e
ted negatively.A
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In several countries, home care is provided for certain citizens living
at home. The long-term home care scheduling problem is to generate work
plans spanning several days such that a high quality of service is
maintained and the overall cost is kept as low as possible.  A solution
to the problem provides detailed information on visits and visit times
for each employee on each of the covered days.
We propose a branch-and-price algorithm for the long-term home care
scheduling problem. The pricing problem generates one-day plans for an
employee, and the master problem merges the plans with respect to
regularity constraints. The method solves instances with up to 99 visits
during one week. This truly illustrates the complexity of the problem.
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