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Abstract

In several countries, home care is provided for certain citizens living at home. Home
care offers cleaning, grocery shopping, helping with personal hygiene and medicine, helping
citizens to get in and out of bed, etc. The long-term home care scheduling problem is to
generate work plans such that a high quality of service is maintained, the work hours of
the employees are respected, and the overall cost is kept as low as possible. The problem
covers several days of home care scheduling. A solution provides detailed information on
visits and visit times, for each employee on each day.

We propose a branch-and-price algorithm for the long-term home care scheduling
problem. The pricing problem generates a one-day plan for an employee, and the master
problem merges the plans with respect to regularity constraints. The method is capable of
generating plans with up to 99 visits during one week. This truly illustrates the complexity
of the problem.



1 Introduction

In many countries a large number of citizens who live in their homes but are not able to do
so without help, receive regular services from so-called home care centres. The citizens may
receive a substantial number of visits during the week. There are many types of such visits:
some are simple tasks like cleaning, bringing out food, doing the laundry etc., while others
involve personal hygiene, medication, getting out of and into bed etc.

The goal of the home care center is to plan all these visits such that the perceived quality
of service is high without overloading the individual home care personnel. The overall cost
of performing this service must be kept as low as possible. This is highly nontrivial as the
perceived quality of service is often in direct conflict with the cost of performing the service.

In practice, a two-level approach is used for planning home health care. The first phase
is a master-plan which is a long-term plan. The second phase is daily planning which uses
the master-plan as a starting point but incorporates last minute changes such as employees
calling in sick, ad hoc visits, and other unforeseen events. This paper focuses on construction
of the master-plan. The master-plan specifies when citizens are visited and the employees that
conduct each visit.

Every visit in the master-plan is repeated regularly, as specified by its period. A visit with
period p is repeated after p time, e.g., a period of one day means that the visit is conducted
every day. Since every visit in the master-plan is repeated indefinitely, the same goes for the
entire master-plan. In this sense the master-plan is periodic, which means that each week in
the master-plan is rolled out to an infinite number of actual calendar weeks. If for example
the length of the master-plan is four weeks, every fourth calendar week will be identical (until
the master-plan is updated due to addition or removal of visits).

Quality of service partly consists of regularity, i.e., that a visit is always conducted at the
same time of the day and that a citizen is visited by the same (small group of) employee(s).
Especially the latter is of high importance to many citizens who feel safer when being serviced
by persons they are familiar with.

The other aspect of quality of service is skill set requirements, i.e., assigning suitable
employees to a visit. How suitable an employee is for a visit depends on the employee’s
professional skills and personality features of the employee and citizen.

Efficiency is quantified by the total time spent traveling between visits for all employees.
Clearly, the total travel time should be as low as possible.

The long-term home care scheduling problem is N'P-hard and differs from previous work on
home care scheduling by calculating detailed work plans for a longer period without having pre-
fixed visits to specific days, and with taking quality of service into account. The latter aspect
causes inter-dependent constraints between the daily work plans. It is thus not possible to
calculate the daily plans independently from one another, even if all visits are fixed to specific
days. We propose at branch-and-price algorithm for solving the problem to optimality. The
pricing problem generates a plan for an employee on a given day, and the master problem
merges the plans into an overall solution.

The proposed solution method has been tested on real-life data provided by Papirgérden,
which is a home care provider located on Funen, Denmark. It has about 25 employees and
serves citizens spread over a diameter of about 3.5 kilometers. This means that all employees



travel by bicycle and an employee can, under normal circumstances, drive between any pair of
citizens in less than 15 minutes. Computational results show that while outperforming CPLEX
used for solving a basic formulation of the problem, the branch-and-price algorithm is unable
to calculate large plans due to time and space usage. Instead the algorithm is well-suited for
benchmarking heuristics. This truly illustrates the complexity of the problem.

This paper is organized as follows. First, a review of related work from the literature is
presented in Section 2. In Section 3, the problem is formally defined and formulated mathe-
matically. Section 4 contains the proposed branch-and-price solution method. The method is
computationally evaluated in Section 5, and final conclusions are given in Section 6.

2 Related work

In this section, an overview is given on work from the literature on home care scheduling and
related problems.

An early application of operations research methods to home health care was described by
Begur et al. in [1]. The daily planning problem was modeled as a site dependent VRPTW,
i.e., a VRPTW where a customer can only be visited by a subset of the vehicles. The problem
was solved using the sequential savings heuristic developed by Clarke and Wright [4].

Eveborn et al. developed a decision support system for solving daily planning. The system
is called Laps Care, and the recent paper [8] documents its success in real-life use. Laps Care
modeled daily planning as a VRP which was solved heuristically. The heuristic consisted of
iteratively combining paths using generalized matching, and splitting paths into single visits
which are then combined with the remaining paths. In another paper about Laps Care [7],
the authors assumed the existence of a base master-plan on which the daily plan was based,
but they did not consider how to construct and maintain the master-plan.

The master’s theses of Thomsen [17], Lessel [11], and Godskesen [9] also dealt with daily
planning, and they all used heuristic solution methods. Thomsen and Godskesen modeled the
problem as a so called rich VRP, i.e., a VRP with many real-life constraints and objectives
which leads to complicated models, see e.g. [18].

Nikolajsen [13] considered a routing problem spanning several days, but each visit was
conducted only once and therefore dependencies between individual days were not introduced.
The work is related to the Periodic VRP (PVRP), where the planning horizon spans several
days and each customer must be visited on a specified number of these days. The specified
number of days for each customer is denoted its schedule: if every customer must be visited
every day, PVRP reduces to VRP since the same path can be used every day. The schedules
make PVRP differ from the long-term home care scheduling problem; in the latter visits at a
citizen can be conducted on any (unspecified) day. PVRP was introduced by Russell and Igo
[15] and defined formally by Christofides and Beasley [3]. A recent survey focusing on PVRP
mentioned many real-life applications of PVRP, none of which was home health care [16].

Dohn et al. [10] modeled daily planning and solved the problem using branch-and-price.
The master problem was a set partitioning model, where each column corresponded to a path
for an employee. The pricing problem was the AN'P-hard elementary shortest path problem
with resource constraints and was solved using a labeling algorithm.

Bredstrom and Rénngvist [2] introduced a mixed-integer mathematical formulation for the
combined vehicle routing and scheduling problem with time windows and temporal constraints.
They showed how the formulation is applicable on the daily planning problem.



3 Formal Problem Definition

This section introduces notation for planning home health care. Employees are introduced in
Section 3.1, the planning horizon in Section 3.2, visits in Section 3.3, activities in Section 3.4,
and finally the objectives of the problem in Section 3.5. The entities are gathered in a mathe-
matical formulation of the long-term home care scheduling problem in Section 3.6. Note that
the long-term home care scheduling problem and thus all entities described in the following
operate in a discrete time space.

3.1 Employees

Let E denote the set of employees. Let H; denote the work hours for employee j in a given
period of k days. An interval [a;p, bj,] € H; means that employee j is on duty from time ajj,
to time b;, on day h € {1,...,k}.

3.2 Planning horizon

The master-plan covers a period of time with length L € N, given as a number of discrete time
steps. In order to include all visits properly, L should be set to the least common multiple of
the visit periods. For example, if the plan includes visits, which are repeated every 2nd and
7th day, then L is 14 days. If the plan includes visits, which are repeated every 3rd and 7th
day, then L is 21 days.

Some visits, for example those that are repeated infrequently, cause a large L and conse-
quently a larger problem instance. This can be remedied in two ways. One way is to exclude
such visits from the master-plan and only handle them during daily planning. Another way
is to reduce the visit’s period by dividing it by an integer k£ which divides evenly into the
original period. This implies that the visit is repeated too often in the master-plan, so only
every k’th repetition is included in daily planning. If, for example, a visit has a period of 21
days, dividing by 3 reduces the period to 7 days and only every 3rd repetition is included in
daily planning.

3.3 Visits

The set of visits is denoted V. Each visit ¢ € V is repeated at regular intervals, e.g., once per
day or once per week, as indicated by its period which is denoted p;. The travel time between
two visits 4, j € V is denoted ¢;; € N and is measured in time steps. The duration of visit ¢ is
d; > 0, and its time window of feasible visiting times is [a;, b;]

Not all employees are equally suited for conducting a certain visit 4, and some are not even
allowed to do so. Therefore, pr; is a vector of non-negative costs of letting each employee
conduct ¢. If an employee is unsuited for conducting the visit, then the corresponding cost is
infinite.

Finally, let C denote the set of all citizens receiving service and V. the set of all visits for
citizen ¢ € C.

3.4 Activities

Visit j with period p; is repeated L/p; times in the planning horizon of length L, and these
repetitions are scheduled independently of each other. Therefore, visit j is rolled out to L/p;



activities, and these activities are scheduled instead of j itself. Let A denote the set of all
activities. The set of activities for visit j € V is denoted by A;. Two consecutive activities 7
and k are denoted (i,k) : i,k € A;.

Every activity ¢ € A; inherits most data from visit j € V/, so the duration of i is d; = dj,
the time window is W; = Wj, i.e., [a;,b;] = [a;,b;], and the cost vector of letting employees
conduct the activity is prj. The travel time between two activities i € A; and k € Ay is
Cik. = Cjj/-

In addition to the activities in A there is a special activity 0 representing the depot, which
is the location where employees start and end their work days. The duration of the depot
activity is zero, and it can be performed at all times.

A solution specifies start time and assigned employees for each activity. Let s; € N denote
the start time of activity ¢ € A, let e; denote the employee assigned to activity i € A, and
let E. C E denote the set of employees which are assigned to citizen ¢ € C. In the formal
problem definition, we denote the daily schedule for an employee a path. A path consists of a
list of activities with corresponding start visit times. The master-plan thus consists of paths
for all employees on all days covering all activities.

3.5 Objective functions

This section defines the objective functions, i.e., the aspects of quality of service, how busy
the home care employees are, and travel time. We choose to aggregate the objectives even
though this is not trivial due to the relatively large number of objectives and the different
units of measurement. How to weigh the objectives is not discussed any further here but is
instead considered in Section 5.

3.5.1 Travel time

Let A(h) C A denote the set of activities conducted in work shift » € H; of employee j € E.
Let o; € A(h) denote the successor of activity 7. The total travel time is computed as:

fro(8)=>">" > o (1)

JEE heH; icA(h)

Since the start and end depots are considered as activities in A(h), we define the successor of
the end depot to also be the end depot and we let the corresponding travel time be zero.

3.5.2 Employee priority

An activity ¢ € A should be conducted by the most suitable employees, as specified by the
non-negative cost vector prj. Let pr;(j) > 0 denote the cost of employee j € E conducting
activity ¢ € A. If employee j € E does not have the required skill set for conducting the
activity, then pr;(j) = oco. The employee priority objective is defined as:

fep(8) =Y pri(h). (2)

1€EA jEE



3.5.3 Busyness

An employee is said to be busy if the time period in the schedule violates constraints on time
windows and/or travel time. Specifically, busyness appears in the following cases:

1. The start times at two activities are too close, i. e., 5, — ($; +di + Cip;) <0< s;+d; >

30'1' - Ciai

2. The start time at an activity is too late, i.e., let b;;, be the end time window of employee
J performing activity i on day h then s; + d; > bjp,.

In both cases, busyness is penalized in the objective function. There are two reasons for
treating busyness as an objective rather than a hard constraint in the master-plan. First of
all, it reflects how the plan is constructed manually. Second, it introduces slack in the model
such that constraints concerning time windows for visits and overtime for employees can be
enforced without constraining the solution space to the point where no feasible solution exists.
The busyness objective is computed as:

fB(S) = Z Z Z max(0, s; + d; — min{s,, — Cig;, bjn}}

JEE heH; ic A(h)

If a work shift is empty, its busyness is zero by definition. Any busyness in the master-plan is
taken care of during daily planning, which spreads out activities or assign some activities to
another employee.

3.5.4 Employee regularity

The employee regularity objective counts the number of different employees visiting each

citizen:
fER(S) =) |E|. (3)

ceC

3.5.5 Visit periods

Recall that visits are rolled out to activities such that the latter are scheduled independently,
allowing more flexibility in the master-plan. Let (i,k) : i,k € A; be two consecutive activities
for visit j € V. If the time period between s; and sj differs from the given time period of the
visit, p;, then the objective is penalized:

fop(S)=>" > lsi+pj— sl (4)

JEV (ik): i,kE€A;

3.6 Mathematical Formulation

The long-term home care scheduling problem can now be defined mathematically. Recall the
notation introduced previously. Furthermore, define:

lag;, bi;] = [max{a;, ajp}, min{b; — d;, bjn}]

As mentioned in Section 3.5 we optimize an aggregated objective function, where each part
is weighed appropriately. Let w be a non-negative vector of such weights, where w?? > 0 is



the weight for travel times, w®? > 0 is for employee priority, w? > 0 is for busyness, w®% > 0
is for employee regularity, and w"? > 0 is the weight vector for visit periods. Also, let M be
some large number.

In addition to start time variables s; > 0, the variables are as follows. Let xi,? € {0,1}
equal one iff employee j € E travels from activity ¢ to k on day h. Let u;z > 0 denote the
difference in the start times between two consecutive activities (i,k) : i,k € A; for visit
Jj € V. Let z;; > 0 denote the busyness of employee j € E caused by activity i € A. Finally,
let yg € {0,1} equal one iff employee j € F visits citizen ¢ € C.

The long-term home care scheduling problem is formulated as:

min ZZZZ(MTTCik—FwEPsz 51? +ZZU) ZZJ+ZZMER

JEEheH; icAkeA 1€EA jEE ceC jek

+ Z Z w”F gy, (5)

JEV (ik): i,kE€A;

5. t. SN =1 Vi e A\{0} (6)

keAjeE heH;
doali =l =0 Vie A\{0}, Vj e E, Yhe H; (7
keA keA
Soajr=> alp=1 Vj € E, Vj € H; (8)
keA keA
sitdi e —MA—al) <s,+zy; Vi ke AVjeE, Yhe H, (9)
si>aly = ML= al) Vi e A,Yj € E,Vh € H, (10)
keA
si < bl + M(1 Zx Vi€ A,Vj € E,Yh € H; (11)
keA
si+pj — sk < U V(i k): i ke AjNjeV (12)
Sk—(Si—}—pj) <uz~k V(i k) : Z',kJEAj,VjEV (13)
SN el < Vee C,Vo €V, Vi € A, Vj € E (14)
heH; ke A
s+ MA=Y" Y ) <s Vi,k € A (15)
JjEE heH;
o e {0,1} Vi,ke A, Vje E, YVhe H;  (16)
Zij >0 Vie A, VjeE (18)
Ui > 0 V(i,k): i,keAj, VjeV (19)
yl € {0,1} VeeC,VjeE (20)

The objective function (5) minimizes a weighted sum of the objectives described in Sec-
tlon 3.5. First part of the objective function consists of travel times and employee priority. If
zk = 1 for activities i,k € A, employee j € E and day h € H;, then the objective must pay
the travel time from ¢ to k£ and the cost of letting employee j conduct activity ¢. Next, the
objective function consists of three parts: busyness, employee regularity and visit periods.



Constraints (6) ensure that all activities are conducted. Constraints (7) ensure that a path
of an employee is connected, and constraints (8) force paths to start and end in the depot.

Constraints (9) measure busyness: if a visit at activity k starts too late, then busyness is
added to the variable z;; > 0. Furthermore, constraints (9) eliminate subtours. Constraints
(10) and (11) say that any variable s, must satisfy the time windows of activity k¥ € A and
employee j € E.

Constraints (12) and (13) measure the amount of time difference between two consecutive
visits (i,k) : i,k € Aj, j € V. If the gap between the start times at ¢ and £ differs from p;,
then the variable u;;. is set to the absolute time deviation.

Constraints (14) count the number of employees visiting a citizen: if employee j € E visits
activity i € A,, v € V,,c¢ € C, then the variable 32 is set to one. Constraints (15) limit
the amount of allowed busyness such that visit times on a path are non-decreasing. Finally,
bounds (16) - (20) force variables to take on feasible values.

4 Exact Solution Approach

A branch-and-price algorithm for solving the long-term home care scheduling problem is pre-
sented in this section. The mathematical formulation (5) - (20) is Dantzig-Wolfe decomposed
[5]. The pricing problem generates a path for a given employee on a given day, and the master
problem merges the paths into an overall feasible solution.

Let p be a path and P the set of all generated paths. The master problem contains three
types of variables. Variable z, € {0,1} denotes whether or not path p is part of the solution.
Variables u;, > 0 and 37 € {0,1} are as defined for the original formulation (5) - (20).

Each path p has a number of constants attached. Constant 5; is set to one, if path p € P
visits activity i € A, otherwise 5}, is zero. Let constant 62{) > 0 denote the amount of busyness
in path p € P for employee j € FE and activity ¢ € A. Let 5§p denote the start time of path
p € P at activity i € A, and let 5ép be undefined if 5;; =0. Let 5}? be set to one, if path p € P
is generated for employee j € E and visits activity ¢ € A, otherwise 5;? is zero. Constant 5{;"
is set to one, if path p € P is generated for employee j € F on day h € H;, otherwise 51];]1 is
zero. Finally, let ¢, > 0 denote the total travel time in plan p.



The master problem is formulated as:

min ZwTTcpﬂ:p+ZZZwEP pri(J) 5;?% +ZZZU)B 5&% Tp +

peP i€A jEE peP i€A jEE peP
D2 wtyl), Y v (21)
ceC jek JEV (i,k): i,k€A;
5. t. > ohap=1 Vie A (22)
peP
> byt — Y ohm, <u V(i,k): i,keAj, VjeV (23)
spTp T Pj sptp = Wik ) s s V]
peEP peP
> ok — (O 0wy +py) < ui V(i,k): ik € Aj, VjeEV (24)
pEP peEP
> iz, <yl Ve e C,Yv € V,,Vi € A,,Vj € E (25)
peP
> 6, <1 Vj € E, Yh € H; (26)
peEP
xp € {0,1} Vpe P (27)
wip >0 V(i k): i,k€Aj, VjeV (28)
yl € {0,1} Vee C\Vj € E (29)

The objective function (21) corresponds to the objective in the original formulation (5),
only with variables z, instead of xf,? . The objective function consists of the weighted sum of
travel times, employee priorities, busyness, employee regularity and visit periods.

Constraints (22) ensure that every activity is visited. Constraints (23) and (24) measure
time deviation similar to constraints (12) and (13) in the original formulation. Constraints
(25) measure employee regularity. Constraints (26) ensure that at most one path per employee
per day is part of a solution (note that the original formulation forces every employee to leave
the depot every day, but it is feasible for an employee to travel from the depot activity back
to the depot activity, see constraints (7) and (8). This corresponds to not assigning a path to
an employee in constraint (26)).

The number of columns in the master problem is reduced by fixing certain activities to
certain days. Specifically, if a visit must be repeated every day, then the corresponding seven
activities are fixed to Monday, Tuesday, Wednesday, etc., respectively. The pricing problem
only allows such activities to be part of paths on appropriate days.

4.1 Pricing problem

Associate the dual variables w£22) € R with constraints (22), 771(:3) < 0 with constraints (23),

7r§,34) < 0 with constraints (24), 771(3;) < 0 with constraints (25), and W](.iﬁ) < 0 with constraints
(26).

The pricing problem tries to generate a path with negative reduced cost for a given em-



ployee j € E on a given day h € H;. The reduced cost is defined as:

Cjh = Z w™ ey, + Z wP pri(j) + Z w? 2

i,kEA icA icA

B IS DD DN (CRPALCRUMETS)

icA VeV (i,k): i,kEA,

YN A A <o (30)

ceCveV, i€A,

where z;; > 0 denotes the amount of busyness for employee j € E at activity ¢ € A, and
s; > 0 denotes the start time at activity ¢. The following notation is introduced to simplify
Inequality (30). Let:

i si(ﬂ'%g) - 772(24)) 3k :(i,k): i,ke€ Ay, veV
0 otherwise

and:

otherwise

{ si(m2Y — 2Py 3k (ki) ke Ay, veEV
0

The reduced cost for visiting an activity ¢ € A,, v € V., ¢ € C can now be expressed as:

. 22 25 ; ;
Cip = whF pri(j) — 771( )~ 771(@]') -G~

A master-plan makes sure that an activity i € A is visited exactly once, hence we know that
exactly one employee leaves activity ¢ € A exactly once on exactly one day. For that reason,
it is feasible to define the reduced cost between any two activities 7,k € A as:

Sk . TT ;
Cip = w' ' ocigp+ ézjh

Now, the reduced cost (30) is rewritten as:

_ _ik 26
Cin = ZZC;-,L—i—wBZZij gwj(.h) (31)
i€A k€A i€A

(26)

The pricing problem is solved for each employee j € E on day h € Hj, hence 7 ih is a constant

(26)

and isolated on the right-hand side. If the pricing problem generates a path where ¢;;, < 77].2 ,
then the path has negative reduced cost and the corresponding column may be added to the
master problem.

Now, using constraints similar to the original formulation (5) - (20), the pricing problem
for employee j € E on day h € H; is formulated as:

10



min Z Z Eﬁxlk + w? Z Zij (32)

i€A keA i€A
5. t. > wiw— > ki =0 Vi e A\{0} (33)
keA keA
Z Tok = Z Tpo =1 (34)
keA keA
Si+di+0ik—M(1—$ik)§5k+2k]‘ Vi,k € A (35)
siza?j—M(l—ink) Vie A (36)
keA
si <O+ M1 = ) Vie A (37)
keA
si+ M1 —xy) < sp Vi,k € A (38)
xi € {0,1} Vi,k € A (39)
$; >0 Vie A (40)
Zij >0 Vie A (41)

The objective function (32) minimizes the reduced cost as defined in (31). Constraints (33)
and (34) ensure path connectivity and that the path starts and ends in the depot. Constraints
(35) - (37) make sure that the start time s; at activity ¢ € A is set appropriately, that any
busyness is added to the variable z;; and that subtours are eliminated. Constraints (38) limit
the amount of allowed busyness by ensuring that start times on the path are non-decreasing.
Finally, the bounds (39) - (41) force variables to take on feasible values.

The pricing problem is recognized as a shortest path problem with time constraints and
potentially negative edge weights defined by (32). This is also denoted the Elementary Shortest
Path Problem with Resource Constrained (ESPPRC). An instance of ESPPRC consists of a
number of resources and a weighted graph whose edges and vertices consume resources and
have a lower and upper bound on total consumption of each resource. The task is to find a
shortest simple path from node s to node t. The resource consumption at every node and
every edge on this path must be within the specified bounds. In this application of ESPPRC, a
node corresponds to an activity, an edge travels between two activities, edges have no resource
bounds, and the resource bounds on vertices are time windows of the activities and employees.
The weight of an edge is determined by (32).

Because ESPPRC is N'P-hard, see Dror [6], we first try to solve the pricing problem
heuristically. If the heuristic cannot find any path with negative reduced cost for any employee
on any day, then the pricing problem is solved to optimality.

Labeling algorithm

Both the heuristic and exact solution approaches for the pricing problem use a labeling al-
gorithm. The approach associates a set of labels with each activity. A label for activity i
represents a path from the (source) depot activity s to i. Associated with a label ¢ are the
following attributes:

e The last visited activity v(¢)

11



e The start time ¢(¢) of the last visited activity v(¥)
e The set of activities, which ¢ can be extended to, denoted eztendables(?)
e The reduced cost of the label reduced_ cost(¥)

A label can be extended to activities, which have not yet been conducted, and whose time
window is still open. The reduced cost of a label is defined in (32) and is based on the path
leading up to v(¥).

Algorithm 1 is a generic label-setting algorithm that finds a shortest paths with negative
reduced cost from node s to t. A bucket is in this context a set of labels, and we use one
bucket for each activity.

Algorithm 1 Generic labeling algorithm which computes a set P containing up to k resource
constrained shortest paths with negative reduced cost from node s to ¢t. The set of all buckets
is denoted by B.

1: P+ @

2: linit < initialize label(s)

3: B(S) — B(S) @] {&mt}

4: while a non-empty bucket in B exists and |P| < k do

5. L < dequeued non-empty bucket from B
6: forall/e L do

7: for all activity i € extendables(?) do
8: for all feasible start times s; of 7 do
9: V' < create_label(i, s;)

10: if i =t then

11: if reduced_cost(l') < 77%6) then
12: p < get_path(f)

13: if keep path(p) then

14: P« PU{p}

15: end if

16: end if

17: else

18: B(i) < B(i) U {¢}

19: remove_ dominated(B(i), {)

20: end if

21: end for

22: end for

23:  end for
24: end while

In the first three lines of the Algorithm, an empty set of solutions is initialized along with
a label in the (source) depot activity. The latter is added to the bucket of labels in the depot
activity. The algorithm then extracts some non-empty bucket in Line (5). In Line (6)-(9) the
algorithm extends the path of each label in the bucket with feasible activities and start times,
which results in new labels. If a path has reached the (target) depot activity ¢, the reduced
cost is negative, and we wish to save the path, then it is added to the set of solutions, see Line
(10)-(14).
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We wish to save a path p if:

e No more than 100 paths are already saved. The number “100” is reached through pa-
rameter tuning, or

e More than 100 paths are saved and the new path has smaller reduced cost than another
saved path

If the (target) depot activity ¢ has not been reached in Line (10), then the label is added to
the appropriate bucket. Finally, in Line (19) the algorithm checks if the new label ¢ dominates
any labels in the bucket or if it is dominated by any labels in the bucket.

A label ¢ dominates another label ¢ if the following conditions hold:

e The labels £ and ¢ end at the same activity: v(£) = v(¢)

e The reduced cost of ¢ is no greater than that of ¢': reduced_ cost(¢) < reduced_ cost(¢")

e The path of £ ends no later than that of ¢': t(¢) < ¢(¢)

e Label ¢ can at least extend to the same activities as ¢

These criteria ensure that if at least one path with negative reduced cost exists, then the
labeling algorithm is guaranteed to find it.

When using Algorithm 1 as a heuristic, only the first label added to every bucket is
processed. Keeping only one label in each bucket speeds up the pricing algorithm significantly
and it is still capable of finding columns with negative reduced cost in the first iterations of
the branch-and-price algorithm.

4.2 Branching strategy

Branching is necessary when the optimal solution in a branch node is fractional. Fractional
solutions occur in the following situations:

Fractional citizen visits: That is 0 < yg < 1 for some citizen ¢ € C and employee j € E.
In this case two branching children are generated with added cut:

yg =0 resp. yl=1.
This does not change the pricing problem, because the cut is not on the x,-variables.
An activity is visited by several employees or on several days: Thatis, 0 < z,, 7, <

1 for paths p, p’ € P, constants 6; = 5;, = 1 for some activity ¢ € A, and constants
51];]1 = 51];:]1/ = 1 for some employee(s) 7,7’ € J and day(s) h,h’ € H; with either j # j/
or h #N.

In this case two branching children are generated with the following rules:

Z 5g;hxp =0 resp. Z 51{;%,% =0

peP peP

The branching rule is maintained in the pricing problem, which ensures that employee
j (resp. j') never visits activity ¢ on day h (resp. h’). The branching rule does not
complicate the structure of the pricing problem.
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An employee travels on an edge on a given day a fractional number of times: That
is, 0 < zp, x,y < 1 for paths p, p’ € P, and constants s = 6;7 = 1 for some employee
j € Jand day h € Hj. Let i be the first activity from which the paths p and p’ differ.
Let i, k, k' € A, such that p travels from 7 to k at time s;; and such that p’ travels from
i to k' at time s;,,. Furthermore, let k # k', or s;, # s
Two branching children are generated with the following rules:

_]h Sik _ _]h Sik! —
g 6" 0,k xy, =0 resp. E 63" 0p™ xp =0
peP pEP

where constant 4, (resp. 5;“') is set to one, if path p travels from i to k£ at time
sir. (resp. from i to k' at time s;/), otherwise it is set to zero. The branching rule is
maintained by the pricing problem, which ensures that employee j never travels from i
to k (resp. k) at time s;;, (resp. s;r) on day h. The branching rule does not complicate
the structure of the pricing problem.

Together the three branching strategies are finite and eventually ensure an integer solution.
The strategy generates branching children in the order given above, and best first is used as
search strategy in the branch-and-bound tree. Strong branching is applied: for each branching
candidate, a lower bound on its LP relaxation of each of the children is obtained. The candidate
that leads to children with the lowest bounds is selected.

4.3 Incumbent

Before the branch-and-price process can begin, an initial solution to the long-term home care
scheduling problem must be generated. The solution, also denoted the incumbent, is used for
finding initial values for the dual variables.

Algorithm 2 tries to assign activities to the first employee on the first day, with respect
to time windows and fixed days. If unable to assign an activity to this employee and day,
the algorithm tries to assign it to the employee on the next day. Eventually, the algorithm
tries to assign the activity to the next employee on the first day, etc. An activity is assigned
to an employee in a feasible way and such that busyness is avoided when possible, see Line
(8) and (14), i.e., the algorithm only allows busyness to occur when having reached the last
employee on the last day of the instance. Lines (13) - (15) measure travel time and busyness
for returning to the depot.

The algorithm always finds a feasible solution if one such exists. The reasons for this
are that activities are sorted according to their end times in non-decreasing order, and that
busyness is allowed.

5 Computational Results

The exact solution method is tested on a number of real-life benchmark instances. In this
section, the benchmark instances are first introduced. This is followed by computational
results for the branch-and-price algorithm.

5.1 Real-life test instance

The proposed solution method is tested on real-life data provided by Papirgarden, a home
care center in Funen, Denmark. The real-life instances consist of up to 99 activities to be
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Algorithm 2 Construction heuristic used in the branch-and-price algorithm to generate an

initial solution.
1: for all employees j € E do

for all days h € H; do

3 t < ajp, (start of work shift)

4 i < 0 (the depot)

5 sort activities in non-descending order of b; (end of time window)
6: for all activities k € A do
7

8

9

»

if £ is unscheduled and can be scheduled on day h then
Update t according to c;; and sz
: start k at time ¢ and assign employee j
10: 1k

11: end if

12: end for

13: k < 0 (the depot)

14: Update t according to ¢;; and b’,g g

15: start k at time ¢ and assign employee j
16: end for

17: end for

conducted in 7 days by at most 2 employees. The time window of an activity is set to either
7.30-9.00, 9.00-11.00, 11.30-13.00, or 13.00-15.00. Employees work from 7.00 — 13.00, 7.00 —
14.00 or 7.00 — 15.00. Time is discretized into either 5 or 10 minute time steps.

The distances between citizens are found with the Google Maps API, which means that
the actual distance is used in the master-plan rather than straight line distances. When
computing travel times, we assume that an employee travels at 15 kilometers per hour (all
employees travel by bicycle). Unless two activities are at the same citizen, two minutes are
added to the travel time between them to account for the time it takes to enter and leave a
residence. All travel times are ceiled to nearest integer.

Weights must be set for the aggregated objective function. Papirgarden has recommended
the following priorities: highest priority is given to minimizing busyness and employee reg-
ularity, followed by minimizing travel times. Visit regularity has fourth priority, and em-
ployee skill requirements are of no importance for Papirgarden, because its employees have
similar skill sets. Visit regularity is given low priority, because the time window of an ac-
tivity is relatively small and because high priority is given to reduce busyness. Including
the priorities in the objective function is done by assigning large numbers to the weights, i.e.,
w™ =500, w? = 750, wF’ =0-5/7, wF? = 750-5/7 and w"® = 50, where 7 is the number
of minutes per time step. The travel time, busyness, and visit regularity objectives depend on
the time discretization, while this is not the case for employee priority and employee regularity.
The weights of the latter two are thus multiplied with a time step dependent factor.

5.2 Results

The branch-and-price algorithm has been implemented using the COIN Bcp framework, see
Lougee-Heimer [12], and is tested on an Intel 2.13GHz Xeon CPU with 4 cores and 8 GB
RAM. Note that all results stem from using one core. CPLEX 12.1 was used as standard MIP
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solver for both solving the original formulation (5)-(20) and for solving the master problem in
the branch-and-price algorithm.

CPLEX is unable to solve the original formulation (5)-(20) for instances with more than
11 activities and is thus not evaluated further. For an instance with 12 activities, CPLEX was
stopped after 75000 seconds. It had generated a search tree with 4057600 nodes, but only
reduced the gap between the upper and lower bound from an initial 14.8% to 8.25%. Applying
CPLEX on the original formulation is not a successful strategy, hence the rest of this section
concentrates on the branch-and-price algorithm.

Test results are summarized in Table 1 and 2. The first table displays results for the optimal
branch-and-price algorithm, while the second table displays results for the branch-and-price
algorithm with only heuristically generated columns.

An instance is named “|E| — |A| — 77, where 7 is the number of minutes per time step,
i.e., either 5 or 10 minutes. All instances have a planning horizon of 7 days. A time limit of
30 minutes has been imposed on the runs, and an “*” in the last column indicates that an
provably optimal solution was not found within these 30 minutes (some runs exceeded this
limit slightly because elapsed time is not checked everywhere in the program).

As can be seen in Table 1, only four instances with 5 minute time steps can be solved
to optimality within half an hour. A coarser discretization helps, but the branch-and-price
algorithm still suffers from a large time usage.

An interesting observation for instances with 10 minutes time steps is that the instances
with 30 activities time out, whereas the instances with 33 and 40 activities are solved to
optimality. This is due to the fact that the instances with 30 activities contain many visits
with a period of one week, which can be scheduled on any day. The other instances have more
visits with a period of one day whose activities are thus fixed to specific days.

The number of columns is large for several instances, which is caused partly by large time
windows and partly by busyness, i.e., that time windows may be violated. The tree grows large
for many instances not solved to optimality, hence branching also constitutes a bottleneck.

As can be seen in Table 2, the branch-and-price algorithm is generally faster when only
generating columns heuristically. Note that the gap in this table denotes the gap between
the heuristic upper and lower bound, and not between the heuristic upper and optimal lower
bound. Some instances still suffer from large tree sizes and many columns, but the far majority
of instances are solved in seconds. The objective values generally suffer from the heuristic
approach. Comparing the two tables shows that the heuristic solutions are between 4% and
85% solution. The average gap between provably optimal and heuristic solutions is 47%. Even
though solving the pricing problem heuristically reduces the overall running time significantly,
the branch-and-price approach is still unable to solve the instance with a 10 minute time step,
2 employees and 99 instances.

Considering the complexity of the master-plan problem, it is no surprise that the exact
branch-and-price algorithm can solve only limited sized instances. The results truly illustrate
the complexity of the problem.

6 Conclusion

In this paper, we presented a branch-and-price algorithm for the long-term home care schedul-
ing problem. The pricing problem consisted of calculating a work plan on a given day for a
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Instance  Cols. Rows Tree size Tree depth Gap Value Time

1-20-5 6327 199 1 0 0.00  27000.0 3.97
1-25-5 8671 250 4687 59 0.03 29750.0 1801.33*
1-30-5 12883 295 2079 71 0.04  38000.0 1801.97*
1-33-5 11447 328 1615 75 0.00  38800.0 1655.35
1-40-5 28 365 397 171 51 0.00  43000.0 812.94
1-44-5 40 445 433 179 89 0.01  97100.0 1802.57*
1-50-5 31480 493 27 13 0.07  87000.0 1803.35%
1-55-5 37944 544 159 28 0.00  57000.0 1804.30*
1-58-5 39997 571 9 4 0.08 156200.0 1807.19*
1-80-5 8737 787 1 0 NoLB 259250.0 1906.50*
2-20-5 8917 346 5 2 0.00  27000.0 8.58
2-25-5 10089 432 2405 69 0.03 29750.0 1803.39*
2-30-5 16 383 512 695 66 0.05  38400.0 1803.29*
2-33-5 18 316 566 701 90 0.03  39300.0 1803.90*
2-40-5 23921 684 455 70 0.05  42100.0 1801.46*
2-44-5 34527 748 125 62 0.08 84600.0 1835.07*
2-50-5 30642 850 71 35 0.07  85000.0 1806.21*
2-55-5 34414 936 89 32 0.03  51500.0 1817.40*
2-58-5 30582 984 17 8 0.02 143700.0 2174.36*
2-80-5 8261 1354 1 0 NoLB 237500.0 1908.73*
1-20-10 4877 199 59 28 0.00  17250.0 6.37
1-25-10 5507 250 277 51 0.00 18125.0 27.36
1-30-10 10934 295 2449 101 0.01  25300.0 1801.07*
1-33-10 10688 328 43 21 0.00  23875.0 42.04
1-40-10 14037 397 63 31 0.00  27750.0 90.16
1-44-10 27925 433 567 98 0.03  33750.0 1803.50*
1-50-10 19907 493 3 1 0.00  36500.0 337.04
1-55-10 19912 544 3 1 0.00  60375.0 123.64
1-58-10 40434 571 111 55 0.00 64450.0 1803.82*
1-80-10 19711 787 1 0 NoLB 161100.0 1847.78*
2-20-10 5913 346 39 19 0.00  17250.0 9.19
2-25-10 6 594 432 81 40 0.00 18125.0 16.30
2-30-10 10109 512 1245 56 0.00  25200.0 1802.52*
2-33-10 14485 566 89 44 0.00  23750.0 146.03
2-40-10 15937 684 7 36 0.00  27250.0 162.93
2-44-10 27208 748 271 101 0.01  33400.0 1805.10*
2-50-10 25457 850 21 10 0.00  35750.0 654.53
2-55-10 29331 936 49 24 0.01 80625.0 1841.08*
2-58-10 21593 984 31 15 0.01  96750.0 1826.54*
2-80-10 22136 1354 3 1 0.02 149750.0 2475.74*

Table 1: Results for instances with either 1 or 2 employees and either 5 or 10 minutes per time
step when using the optimal branch-and-price algorithm. The Table shows total number of
generated columns and total number of constraints in the master problem, number of nodes in
the branch-and-bound tree, depth of the tree, gap between lower and upper bound, objective
value of best found solution, and running time in seconds. An “*” in the running time indicates
that the algorithm timed out.
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Instance  Cols. Rows Tree size Tree depth Gap Value Time

1-20-5 1794 199 1 0 0.00 38750.0 0.75
1-25-5 608 250 1 0 0.00 44500.0 0.18
1-30-5 2852 295 1 0 0.00 86000.0 1.45
1-33-5 848 328 1 0 0.00 59750.0 0.45
1-40-5 903 397 1 0 0.00 67500.0 0.55
1-44-5 1710 433 1 0 0.00 97100.0 1.95
1-50-5 1235 493 1 0 0.00 97500.0 1.45
1-55-5 1599 544 1 0 0.00 112000.0 1.20
1-58-5 2919 571 1 0 0.00 156200.0 4.76
1-80-5 2954 787 1 0 0.00 259250.0 10.96
1-99-5 2449 970 1 0 0.00 328800.0 22.10
2-20-5 1917 346 1 0 0.00 31750.0 0.66
2-25-5 1416 432 3 1 0.00 34750.0 0.27
2-30-5 5637 512 481 25 0.00 73500.0 117.37
2-33-5 4171 566 7 3 0.00 41750.0 1.49
2-40-5 4252 684 7 3 0.00 49500.0 1.98
2-44-5 7236 748 481 28 0.00  84600.0 242.35
2-50-5 8629 850 101 23 0.00  85000.0 48.85
2-55-5 7660 936 35 17 0.00 99500.0 18.33
2-58-5 8770 984 123 29 0.00 143700.0 116.47
2-80-5 12677 1354 185 35 0.00 237500.0 388.09
2-99-5 15601 1670 159 30 0.00 285750.0 1232.10
1-20-10 1286 199 1 0 0.00 24750.0 0.29
1-25-10 324 250 1 0 0.00 29625.0 0.11
1-30-10 1845 295 1 0 0.00 54250.0 0.71
1-33-10 433 328 1 0 0.00 36125.0 0.27
1-40-10 733 397 1 0 0.00 48750.0 0.32
1-44-10 1473 433 1 0 0.00 61400.0 1.61
1-50-10 1002 493 1 0 0.00 67500.0 0.71
1-55-10 1409 544 1 0 0.00 86875.0 0.69
1-58-10 2270 571 1 0 0.00 106650.0 1.89
1-80-10 2255 787 1 0 0.00 161100.0 4.44
1-99-10 3076 970 1 0 0.00 215425.0 16.13
2-20-10 1770 346 1 0 0.00 20750.0 0.43
2-25-10 714 432 3 1 0.00 23125.0 0.15
2-30-10 4585 512 751 25 0.00  48000.0 115.49
2-33-10 2717 566 7 3 0.00 24875.0 0.66
2-40-10 3267 684 7 3 0.00 37500.0 1.00
2-44-10 5338 748 713 30 0.00 55150.0 220.10
2-50-10 6914 850 191 26 0.00 61250.0 58.38
2-55-10 6090 936 67 23 0.00 80625.0 21.94
2-58-10 7242 984 143 25 0.00 96750.0 76.81
2-80-10 8552 1354 221 36 0.00 149500.0 265.50
2-99-10 11410 1670 957 58 0.01 195250.0 1802.64*

Table 2: Results for instances with either 1 or 2 employees and either 5 or 10 minutes per
time step when only generating columns heuristically in the branch-and-price algorithm. The
table shows total number of generated columns and total number of constraints in the master
problem, number of nodes in the branch-and-bound tree, depth of the tree, gap between the
heuristic lower and upper bound, objective value of best found solution, and running time in
seconds. An “*” in the running time indicates that the algorithm timed out.
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given employee. The master problem merged plans into an overall optimal solution. The
pricing problem was NP-hard and solved through a labeling algorithm. Initially, the pric-
ing problem was solved heuristically by only considering a small subset of labels. When this
approach was unsuccessful, the labeling algorithm solved the pricing problem to optimality.

The branch-and-price algorithm was implemented and tested on a number of real-life in-
stances provided by the Papirgarden home care service in Funen, Denmark. The branch-and-
price algorithm outperformed applying CPLEX to the original formulation. The algorithm,
however, showed performance difficulties for larger instances due to the large number of com-
binations of visits, visit times and employees.

Improving the branch-and-price approach would require methods for reducing the number
of columns and limiting the search tree size. The authors attempted stabilizing the value
of dual variables using the interior point method of Rousseau et al. [14], but with no avail.
Other stabilization methods could be investigated, as better values for the dual variables could
reduce the number of generated columns. Different primal and incumbent heuristics have been
implemented and tested without improving the bounds or pruning larger parts of the search
tree. Future work should focus on finding better bounds, through primal and incumbent
heuristics and through the branching strategy.

A different approach could also be taken to the Dantzig-Wolfe decomposition. If the master
problem was to decide the time of visits, then the number of columns would be reduced
significantly. This, however, would come at a price, because the complexity of the master
problem would be affected negatively.
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In several countries, home care is provided for certain citizens living

at home. The long-term home care scheduling problem is to generate work
plans spanning several days such that a high quality of service is
maintained and the overall cost is kept as low as possible. A solution

to the problem provides detailed information on visits and visit times
for each employee on each of the covered days.

We propose a branch-and-price algorithm for the long-term home care
scheduling problem. The pricing problem generates one-day plans for an
employee, and the master problem merges the plans with respect to
regularity constraints. The method solves instances with up to 99 visits
during one week. This truly illustrates the complexity of the problem.
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