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Abstract

We consider the application of Dantzig-Wolfe decomposition to stochastic inte-
ger programming problems arising in the capacity planning of electricity trans-
mission networks that have some switchable transmission elements. The de-
composition enables a column-generation algorithm to be applied, which allows
the solution of large problem instances. The methodology is illustrated by its
application to a problem of determining the optimal investment in switching
equipment and transmission capacity for an existing network. Computational
tests on IEEE test networks with 73 nodes and 118 nodes confirm the efficiency
of the approach.

Keywords: Stochastic programming, Electricity capacity planning,
Transmission switching, Column generation, Branch and price

1. Introduction

In this paper we consider economic dispatch models for wholesale electricity
supply through an AC transmission network as discussed in e.g. [1]. These
models typically make use of a DC-load flow assumption in which reactive power
is ignored, line resistance is assumed to be small in comparison to reactance,
and voltage magnitudes are treated as constant thoughout the system. In such
models, Kirchhoff’s laws are used to determine the flow on each line. The voltage
law states that power flow on a transmission line is proportional to the difference
in voltage phase angles at each endpoint, and the current law states that the
total power flowing from the network into any location matches the demand
minus supply at this point. Thus, given the optimal dispatch and demand for
a tree network, the power flow is uniquely determined by the current law. The
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voltage phase angles that generate this flow can be uniquely determined up to
an additive constant by applying the voltage law.

Most electricity transmission networks are designed as meshed networks
(with cycles) for security reasons, so that if any line fails, the power can still
flow from source to destination by alternative paths. When the network con-
tains cycles, the voltage law and current law must be applied simultaneously to
determine the line flows and voltage angles from the dispatch of flow and gen-
eration. The presence of cycles places additional constraints on the line flows
that are absent in tree networks. In particular, for each cycle in a network
the sum of voltage angle differences (with respect to the direction) around the
cycle must equal zero. Hence, each cycle in the network gives rise to one ad-
ditional constraint on the line flows. This leads to a paradox (see e.g. [2]) in
which adding a new line to a transmission network might increase the cost of
supplying electricity, even if the cost of the line itself is zero.

Based on these observations, it is easy to see that it may be beneficial in
mesh networks to take some lines out of operation — to either decrease system
cost or increase reliability [3, 4]. The process of taking out lines and bringing
them back in is done by opening (respectively closing) a switch at the end of
the line and is referred to as switching.

Recent interest in renewable intermittent energy sources and the call for
intelligent transmission networks or smart grids have spurred a renewed interest
in switching problems. Fisher et. al. presents in [5] the problem of optimal
switching of transmission elements in an electricity transmission network to
minimize the delivered cost of energy. They propose a mixed-integer program
to solve the DC-loadflow economic dispatch model with switching decisions in
a single time period. They note that the problem is NP-hard. Results are
provided for a 118-node network with 186 transmission lines. Hedman et. al. [6]
extends the model to consider reliability of the network. Reliability constraints
are added to the problem to ensure that any line failure will not lead to an
infeasible dispatch of generation. They note that in some cases adding reliability
constraints increases the value of switching.

In [7] Hedman et. al. discuss a decomposition algorithm to solve the trans-
mission switching problem with unit commitment decisions made heuristically
over 24 time periods. It is noted that adding transmission switching may yield a
cheaper unit commitment plan than what could be achieved without switching.
In this model, it is assumed that a technology is available that makes it possible
to switch lines instantaneously. That is, a line may be switched automatically
from one moment to the next without delay. In this case, switching out lines will
(in theory) not affect system security (disregarding failures on switching equip-
ment), since all lines may be switched back in immediately, in case of any failure
in the system. Khodaei and Shahidehpour [8] describe a Benders decomposition
of the security constrained unit commitment problem with transmission switch-
ing that outperforms an integrated MIP-model, and Khodaei et. al. [9] provide
a Benders decomposition approach for solving capacity expansion problems in
electricity networks with active transmission switching.

The solution of the large-scale mixed-integer programming problems that
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arise when switching is considered remains a challenging obstacle to their im-
plementation in practice. Most of the literature in this area has focused on
demonstrating the savings in cost that can be made by transmission switching,
while acknowledging that there are still computational hurdles to be overcome
when solving large real-life instances. Fisher et. al. [5] were unable to prove
optimality of transmission switching in the IEEE 118-bus network with a sin-
gle scenario and unrestricted number of open lines. The heuristic approach
presented by Hedman et. al. [7] for the transmission switching and unit com-
mitment problem with security constraints is unable to prove optimality for the
IEEE 73-bus network over 24 time periods — even with extensive computer
resources. Khodaei and Shahidehpour [8] limits the space of switchable lines
to find solutions to the security constrained unit commitment problem with
transmission switching using Benders decomposition. Even when the single-
scenario problems are restricted to allowing a small number of switches, these
are sufficiently hard to make a multi-period or multi-scenario model intractable.

Making it possible to switch lines instantaneously often requires that some
hardware is installed in the network. Firstly, a switch needs to be installed at the
line. Secondly, communications equipment between the switch and operating
control center is required to ensure automatic remote operation of the switch.
Moreover, the ability to profitably switch lines out might be enhanced by adding
new transmission lines to the network to absorb increases in flow.This leads to
a two-stage stochastic integer programming problem of determining an optimal
capital provisioning plan that will satisfy demand almost surely at least expected
cost. Note, that even though the fixed cost of enabling a line to be switched
instantaneously may be small (e.g. if the switch is already present and only
communication equipment needs to be installed) it may not be worthwhile to
enable switching on all lines (unless this cost is 0 for all lines), since some lines
may never be switched.

In this paper we show how one can attack the stochastic capital provision-
ing problem using Dantzig-Wolfe decomposition [10] and column generation to
give provably optimal or close to optimal solutions. Our approach is based on
the approach of Singh et al [11] for determining optimal discrete investments in
the capacity of production facilities. They proposed a split-variable formulation
and Dantzig-Wolfe reformulation resulting in a sub-problem for each node in
the scenario tree, and showed how this could enable the solution of previously
intractable instances of capacity planning problems for electricity distribution
networks. Our contribution in this paper is to show how this methodology ap-
plies to a transmission switching model, to enable their solution in settings where
there are many scenarios representing future uncertainty. With a limitation on
the number of switches used in each scenario, the decomposition approach en-
ables us to solve IEEE test problems with up to 256 scenarios, which appears
to be well beyond the capapility of competing methods.

We begin the paper by recalling a mixed-integer programming formulation
for transmission switching based on the model in [5]. In section 3, we address
the problem of the planning of transmission networks under uncertainty consid-
ering both installation of switches and line capacity expansions. In particular,
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we consider a two-stage stochastic program in which the first-stage decisions
concern the investments in switch equipment and line capacity, while the sec-
ond stage models operational decisions in different scenarios. The model is
reformulated using Dantzig-Wolfe decomposition, and solved using column gen-
eration. In section 4 we study the structure of the master problem in order to
provide some insights into the strength of the decomposition. We show that the
master problem has naturally integer optimal solutions in some circumstances,
and provide counter examples where this is not true. Computational results of
the method applied to two standard test problems (the IEEE 73-bus network
and the IEEE 118-bus network) are presented in section 5. We then draw some
general conclusions about the effectiveness of the approach.

2. Optimal Transmission Switching

We model the electricity transmission system as a network where N denotes
the set of nodes (or busses) and A denotes a set of arcs representing transmission
lines (and transformers) connecting the nodes. Let T (i) denote the set of arcs
incident with node i where i is the head of the incident arc, and let F(i) denote
the set of arcs incident with node i, where i is the tail of the incident arcs. So an
arc in F(i) ∩ T (j) is directed from node i to node j. Since power flow can flow
in both directions in a transmission line we allow these flows to take negative
values, indicating power flow in the opposite direction from the arc direction.

Many transmission systems consist of alternating current circuits, interlinked
by high voltage direct current links. We shall ignore these interconnections in
this paper, and assume that all lines carry alternating current. The methodolo-
gies can easily be adapted to treat direct current lines as special cases. Note,
that even though we assume all lines to be alternating current lines, the models
presented are based on the linear direct current optimal power flow approxima-
tion as discussed in the introduction.

Let G be the set of all generating units, where G(i) is the set of generating
units located in (and supplying electricity to) node i. For simplicity, we assume
that each unit g ∈ G offers its entire electricity capacity ug to the system at its
marginal cost cg. (A model in which each unit offers a step supply curve is a
straightforward extension.) We denote by qg the dispatch of power of unit g.

At each node i the demand di must be met. Load shedding at node i may
be modelled by introducing a dummy generator at each node offering di at a
penalty price.

Each transmission line a ∈ A is characterised by its reactance Xa and ther-
mal capacity Ka. The flow on line a is denoted Pa, which can be negative in
order to model power flows in the direction opposite to the orientation of a.

A subset of lines S ⊆ A are considered to be switchable. Lines that are
switchable may be taken out of operation in any given period of time. For each
line a ∈ S, za = 1 denotes that the line has been switched out (opened), while
za = 0 denotes that the switch is closed.
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The economic dispatch problem of finding the minimum cost optimal DC-
load flow may now be formulated as

EDP: minimize
∑

g∈G

cgqg (1)

s.t. 0 ≤ qg ≤ ug, g ∈ G (2)

za = 0 ⇒ XaPa − θi + θj = 0, a = (i, j) ∈ A (3)
∑

g∈G(i)

qg −
∑

a∈F(i)

Pa +
∑

a∈T (i)

Pa = di, i ∈ N (4)

−Ka(1− za) ≤ Pa ≤ Ka(1 − za), a ∈ A (5)
∑

a∈A

za ≤ k, (6)

za = 0, a ∈ A \ S
(7)

za ∈ {0, 1}, a ∈ S. (8)

The objective (1) minimizes the total generation costs respecting generation
capacities (2), flow conservation (4), and thermal line capacity (5). For lines
that are not switched out, Kirchhoff’s voltage law must be respected (3). Fur-
thermore, we only allow k lines to be switched simultaneously (6) and only lines
in S are switchable (7). Finally switching decisions are binary (8).

Note, that constraint (3) may be linearised using a big-M construction

−Mza ≤ XaPa − θi + θj ≤ Mza, a = (i, j) ∈ A (9)

where M is some sufficiently large number. To give a strong linear programming
relaxation, lower values of M are better. The choice of an appropriate value of
M is discussed in [12], who observe that the difference in voltage angles between
any two nodes i and j is bounded by

Mij = max{
∑

a∈R

XaKa | R is a path of edges joining i and j}

and so choosing M =maxi,jMij will give the smallest value in general. This
poses some difficulty in practice, since the computation of Mij is a hard prob-
lem, and so its use is restricted to small networks where it can be found by
enumeration (see [12]). The approach taken in [7] imposes a uniform bound on
the magnitude of the voltage phase angle of 0.6 radians. This constraint allows
a value of M = 1.2 to be chosen.

3. Switch and transmission provision under uncertainty

We now consider the problem of installing switches and new lines in an elec-
tricity transmission network to minimize the capital cost and expected operating
cost averaged over a number of scenarios denoted ω ∈ Ω. In each scenario ω
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we have a realization of demand d(ω) and generation cost c(ω) and genera-
tion capacity u(ω). This enables us to vary parameters according to climatic
conditions (e.g. high costs could model shortage of water in hydro stations,
and low capacity model low wind outcomes for wind farms). We assume that
transmission switching and economic dispatch is carried out after these random
outcomes are realized. In each scenario ω we have the switching and dispatch
problem:

EDP(ω): minimize
∑

g∈G

cg(ω)qg (10)

s.t. 0 ≤ qg ≤ ug(ω), g ∈ G (11)

XaPa − θi + θj +Mza ≥ 0, a = (i, j) ∈ A

(12)

XaPa − θi + θj −Mza ≤ 0, a = (i, j) ∈ A

(13)
∑

g∈G(i)

qg −
∑

a∈F(i)

Pa +
∑

a∈T (i)

Pa = di(ω), i ∈ N (14)

−Ka(1− za) ≤ Pa ≤ Ka(1− za), a ∈ A (15)
∑

a∈A

za ≤ k, (16)

za = 0, a ∈ A \ S (17)

za ∈ {0, 1}, a ∈ S. (18)

We now consider the problem of installing switches and new transmission
lines prior to the realization of ω. We assume that a fixed cost is associated
with installing switching equipment at each line and that this cost covers all the
actual costs of making it possible to perform instantaneous switching of that
particular line. Furthermore, we assume a fixed cost of installing new lines from
a fixed set of possible line expansions.

This gives a two-stage stochastic model, where the first-stage decisions in-
volve investments in switching equipment yS and line capacity yL, while the
second-stage problem EDP(ω) models operational decisions (q, P, θ, z) for dis-
patch and switching in each scenario ω occuring with probability p(ω). For each
scenario ω ∈ Ω, let

Q(ω) = {(q, P, θ, z) | (11-18)}.

The model may now be formulated as

min f⊤
S yS + f⊤

L yL +
∑

ω∈Ω

p(ω)c(ω)⊤q(ω) (19)
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s.t. yL − yS + z(ω) ≤ 1, ω ∈ Ω (20)

yL + z(ω) ≥ 1, ω ∈ Ω (21)

(q(ω), P (ω), θ(ω), z(ω)) ∈ Q(ω), ω ∈ Ω (22)

yL, yS ∈ {0, 1}|A|. (23)

The capital costs fS and fL are amortized to give a per period capital charge
that is traded off against the expected economic dispatch cost per period, as
expressed by objective (19). We set e⊤a yL = 1 and e⊤a fL = 0 for existing lines.
The constraints (20) ensure that switching of installed lines is only possible if
a switch is also installed. Constraints (21) allow lines to be switched in only
if they have non-zero capacity. Note, that not installing a line corresponds to
having the line switched out (i.e. z(ω) = 1) in all scenarios ω ∈ Ω.

We can decompose (19)-(23) following the approach in [11]. The idea is
to decompose the stochastic problem into a master problem and a number of
subproblems — one for each scenario. We let the binary vector z(ω) define a
feasible switching plan (FSP) for scenario ω if there exists q(ω), P (ω), θ(ω) such
that (q(ω), P (ω), θ(ω), z(ω)) ∈ Q(ω). Now, let Z(ω) = {ẑj(ω)|j ∈ J(ω)} be the
set of all FSP’s for scenario ω, where J(ω) is the index set for Z(ω). We can
write any element in Z(ω) as

z(ω) =
∑

j∈J(ω)

ϕj(ω)ẑj(ω)

∑

j∈J(ω)

ϕj(ω) = 1, ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω).

Assume that for each feasible switching plan ẑj(ω) the corresponding optimal
dispatch of generation and load shedding is given by q̂j(ω). The master problem
can now be written in terms of ẑ and q̂ as

MP: min f⊤
L yL + f⊤

S yS +
∑

ω∈Ω

∑

j∈Jω

p(ω)c(ω)⊤q̂j(ω)ϕj(ω) (24)

s.t. yL − yS +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≤ 1, [π(ω)] , ω ∈ Ω (25)

yL +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≥ 1, [ρ(ω)] , ω ∈ Ω (26)

∑

j∈J(ω)

ϕj(ω) = 1, [µ(ω)] , ω ∈ Ω (27)

ϕj(ω) ∈ {0, 1}, j ∈ J(ω) (28)

yL, yS ∈ {0, 1}|A| (29)

where µ(ω), π(ω) and ρ(ω) denote the dual prices associated with the respective
constraints.
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The master problem MP is a two-stage stochastic integer program with
integer variables in both stages. Although in general these are difficult to solve,
the structure of MP is such that integer extreme point solutions are common.
To help understand the reasons for this we examine some special cases of MP
in the following section.

4. The structure of MP

In this section we investigate the structure of MP. We first assume that we
do not install new lines, so that e⊤a yL = 1, a ∈ A. This simplifies MP since
the constraints (26) can be removed from the formulation. The constraints (25)
become

−yS +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≤ 0.

Suppose now that there is at most one switch allowed in each scenario. The
master problem matrix with |S| possible locations for switches takes the form

A =





























−I I

−I I
...

. . .

−I I

e⊤ 1
e⊤ 1

. . .
. . .

e⊤ 1





























where I is the |S| × |S| identity matrix and e ∈ {0, 1}|S| is a vector of 1’s, and
there is a copy of −I and I for each scenario ω ∈ Ω. If switches are permitted
only on a small subset of lines then we are guaranteed an integer optimal solution
to MP.

Proposition 4.1. If |S| ≤ 2 then A is totally unimodular.

Proof 4.1. If |S| = 1, then A⊤ (after multiplying its last |Ω| rows by -1) is a
node-arc incidence matrix which is totally unimodular. For the case |S| = 2, we

use the fact that the total unimodularity of
[

L M
]

implies that

[

L M

0 I

]

is

totally unimodular. It suffices to show that the transpose of the first 2 (|Ω|+ 1)
columns of A is totally unimodular. This matrix is

B =















−I −I . . . −I

I e

I e

. . .
. . .

I e















8



which can be transformed into a node-arc incidence matrix by multiplying the
first row of B by -1, and then multiplying by -1 each row of B corresponding to
the first row in each occurrence of I.

For larger values of |S|, we cannot guarantee that A is totally unimodular,
even if only at most one switch is allowed in each scenario.

Example 1

Consider the network in Figure 1.

1

2

4

3

1

4

2

3

Figure 1: Network for Example 1, showing node and line indices. We seek optimal switch
investments on lines 1, 2, and 3

Suppose that all lines have equal reactance and lines 1, 2, and 3 have capacity
5 while line 4 has capacity 1. Suppose that there are three scenarios ω = 1, 2, 3.
In scenario ω, zero cost power of 5 units is available at node ω and there is a
demand of 5 and unlimited power at cost 2 at node ω + 1 (one could imagine
these being different wind scenarios). We consider installing switches on lines
1, 2, and 3, each with a cost of 1.

In scenario 1, without any switches we can only send 4 units from 1 to 2
through the network (3 directly from 1 to 2 and 1 unit from 1 to 4 to 3 to 2).
Given the extra unit of generation required at node 2, this has cost 2, which is
more expensive than switching out either lines 2 or 3 in this scenario, enabling
5 units to be sent directly from 1 to 2 at zero cost. If we switch out line 1, then
we can send only one unit and the cost of generating the shortfall is 8.

The other scenarios are essentially the same. In scenario 2, we can switch
out lines 1 or 3 to get a zero cost dispatch, and in scenario 3, we can switch
out lines 1 or 2 to get a zero cost dispatch. Note that line 4 is unable to be
switched.

If we consider the single switch options in each scenario, then we get a master
problem constraint matrix of the following form:
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A =









































−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
1 1 1 1

1 1 1 1
1 1 1 1









































This is not totally unimodular. Moreover MP has a fractional solution given by

yS =
[

1
2

1
2

1
2

]⊤

ϕ(1) =
[

0 1
2

1
2

]⊤

ϕ(2) =
[

1
2 0 1

2

]⊤

ϕ(3) =
[

1
2

1
2 0

]⊤

This corresponds to installing half a switch on each of lines 1,2, and 3, giving a
total cost of 3

2 . The optimal integer solution will place a switch on any two of
the lines to give total cost of 2.

We now look at the case where we have only two scenarios but more than
one binary decision variable in MP. This means that we now allow more than
one switch to occur in each scenario.

Example 2

Consider the following two-stage two-scenario switch investment problem
with two investment options, that may be chosen in the first stage only. As in
Example 1, we also consider investment only in switches. That is we assume
e⊤a yL = 1 for all arcs a in A as before. If we enumerate all the possible switching
plans, these make up our columns of switch requests that may be chosen for each
scenario. The corresponding constraint matrix is as follows:

A =

















−1 1 1
−1 1 1

−1 1 1
−1 1 1

1 1 1 1
1 1 1 1

















where the first four rows correspond to the capacity constraints (25) and the
last two rows corresponds to the convexity constraints (27). Columns 3 to 6
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(respectively 7 to 10) represent feasible switching patterns in scenario 1 (respec-
tively 2). Note that the submatrix consisting of the first five rows and columns
1, 2, 4, 5, and 7 has determinant 2. Assume, that the vector of cost coefficients
is represented by c = (3, 3, 10, 0.9, 1, 10, 1.5, 10, 10, 7.3) Then the optimal integer

solution minimizing c

(

yS
ϕ

)

is

(

y⊤S , ϕ
⊤
)∗

IP
=

[

1 1 0 1 0 0 1 0 0 0
]

yielding a cost of 8.4, while the optimal LP relaxed solution

(

y⊤S , ϕ
⊤
)∗

LP
=

[

1
2

1
2 0 1

2
1
2 0 1

2 0 0 1
2

]

yields the (slightly) lower value of 8.35.
The third column in A represents a request for switching capacity on both

lines in scenario 1 incurring an operational cost of 10. So, in our example,
switching both lines would incur a high operational cost in scenario 1, but a very
low cost in scenario 2. Also, in scenario 1, switching exactly one line incurs a
much smaller cost. The result is that the solution to the relaxed master problem
saves enough by installing only half a switch on each line to compensate for the
extra operating cost that is incurred by only admitting half the operational
benefits of switching to accrue. This results in a fractional optimal solution.

Although the examples above show how fractional optimal solutions to the
master problem might arise, in practice we obtain fractional solutions to MP
very rarely. We conjecture that this is because it is unlikely with realistic elec-
tricity network data that the symmetrical situations as in the examples above
will generate subproblem solutions with the specific cost structure needed to
give fractions at optimality.

Fractional solutions are also prevented by the fact that MP has inequality
constraints rather than equations. Observe in our model that every possible
line expansion involves a switch as well. This means that the use of the line in
any dispatch scenario is optional. As we have observed above, the mandatory
use of an additional line might increase the dispatch cost in some scenarios. If
such a situation occurs then a fractional expansion, that trades off good and
bad dispatch outcomes, might become more likely.

If this does occur then we need to apply a branch-and-price procedure. This
is easy to implement owing to the following result.

Proposition 4.2. If yL and yS are chosen to be fixed vectors of binary integers,
then the linear programming relaxation of MP has integer extreme points.

Proof 4.2. When yL and yS are fixed, the constraints of the linear programming
relaxation of MP decouple by scenario to give
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∑

j∈J

ϕj = 1, (30)

yL − yS +
∑

j∈J

ẑjϕj ≤ 1, (31)

yL +
∑

j∈J

ẑjϕj ≥ 1, (32)

ϕj ≥ 0, (33)

where we suppress the dependence on ω for notational simplicity. Let

I0 = {i | e⊤i yL = 0},

I1 = {i | e⊤i yL = e⊤i yS = 1},

I2 = {i | e⊤i yL = 1, e⊤i yS = 0}.

This gives constraints

−e⊤i yS + e⊤i

∑

j∈J

ẑjϕj ≤ 1, i ∈ I0 (34)

e⊤i

∑

j∈J

ẑjϕj ≥ 1, i ∈ I0 (35)

e⊤i

∑

j∈J

ẑjϕj ≤ 1, i ∈ I1 (36)

e⊤i

∑

j∈J

ẑjϕj ≥ 0, i ∈ I1 (37)

e⊤i

∑

j∈J

ẑjϕj ≤ 0, i ∈ I2 (38)

e⊤i

∑

j∈J

ẑjϕj ≥ 0, i ∈ I2 (39)

∑

j∈J

ϕj = 1, (40)

ϕj ≥ 0, (41)

Constraints (34) and (36) are dominated by (40) and can be removed. Similarly
constraints (37) and (39) are redundant.

Constraint (35) must be satisfied as an equation and subtracting from (40)
implies that ϕj = 0 for all columns j with e⊤i ẑ

j = 0, for some i ∈ I0. Similarly
constraint (38) implies ϕj = 0 for all columns j with e⊤i ẑ

j = 1, for some i ∈ I2.
Let

Z = {j ∈ J | e⊤i ẑ
j = 0 for some i ∈ I0, or e⊤i ẑ

j = 1, for some i ∈ I2}.
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Then ϕj = 0 for all columns j ∈ Z, which may be removed. This results in the
system

e⊤i

∑

j∈J\Z

1ϕj = 1, i ∈ I0,

e⊤i

∑

j∈J\Z

0ϕj ≤ 0, i ∈ I2,

∑

j∈J\Z

ϕj = 1,

ϕj ≥ 0,

which clearly has integer extreme points.

This means that any branch-and-price scheme may branch in the master
problem simply by imposing constraints on the variables yL and yS . In other
words to solve this problem, we do not need to construct a specific constraint-
branching methodology, where columns generated on each side of the branch
are constrained to meet certain conditions (see e.g. [13]).

It is convenient to consider only a subset Z(ω)′ ⊆ Z(ω) of feasible switching
plans for each scenario ω in the master problem. We define this restricted
master problem (RMP) by (24) - (29) with J(ω) replaced by J(ω)′ the index set
of Z(ω)′. A column generation algorithm is applied to dynamically add feasible
switching plans to the linear relaxation of the master problem. The algorithm
is initialised by letting Z(ω)′ = {ẑ0(ω)} = {0}, for all scenarios ω ∈ Ω. That
is, initially no line may be switched out in either scenario. The corresponding
operational costs c(ω)T q̂0(ω) can easily be found by solving a linear program for
each scenario. In each iteration of the algorithm, the linear relaxation (RMP-
LP) of RMP is solved yielding the dual prices µ, π, and ρ. A new column
(p(ω)c(ω)⊤q̂j(ω), 1, ẑj(ω)) may improve the solution of RMP-LP if and only if
the associated reduced cost c̄(ω) = p(ω)c(ω)⊤q̂j(ω)+π(ω)⊤ẑj(ω)−ρ(ω)⊤ẑj(ω)−
µ(ω) is negative.

A column for scenario ω may therefore be constructed by solving the sub-
problem:

min p(ω)c(ω)⊤q + π(ω)⊤z − ρ(ω)⊤z − µ(ω)
s.t. (q, P, θ, z) ∈ Q(ω),

where π(ω), ρ(ω), and µ(ω) are the dual prices returned from RMP-LP.
Any feasible solution (q, P, θ, z) ∈ Q(ω) with negative objective function

gives rise to a potential candidate column for RMP-LP. If no columns with
negative reduced cost exist then we have solved the relaxed master problem
(MP-LP) to optimality. Furthermore, if the solution (ϕ∗, y∗) to MP-LP is in-
tegral then (ϕ∗, y∗) is an optimal solution to the master problem (24) - (29)
and y∗ is the optimal line and switch investment strategy. Otherwise, we may
resort to a branch-and-price framework for finding optimal integral solutions.
Note that a fractional solution will always have at least one fractional y-value
(see Proposition 4.2). Hence, we branch on one of the fractional y-variables and
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hope that this will resolve the fractionality. If not one may continue branching
on y-variables until the fractionality is resolved.

5. Computational Results

In this section we apply the column generation technique to the problem
of investing in switching equipment to minimize total investment and expected
generation cost over a number of scenarios with varying demand and supply.
Computational experiments are performed on two different IEEE electricity
transmission networks — the IEEE 73-bus network and the IEEE 118-bus net-
work. The computational results are compared to solving the original formula-
tion with a commercial MIP-solver (CPLEX).

The IEEE 73-bus network is based on the three area reliability test system
1996 [14]. Data for this network can be found in [15]. The transmission network
was modified as described in [7] The resulting network has 117 lines, 99 gener-
ators, total generation capacity of 8998 MW, and total peak demand of 8550
MW. The IEEE 118-bus network is described in [16]. This network has 185
lines, 20 generators, total peak load of 4519 MW, and a total thermal generator
capacity of 5859 MW. These networks were modified to accommodate varying
supply and demand scenarios.

For the IEEE 118-node network a 1600 MW intermittent wind-power gen-
erator with varying supply capacity is located at node 91 supplying power at
marginal generation cost 0. Nodal demands were scaled uniformly in the inter-
val 0.535 to 1.0. In each instance half the scenarios had no wind power while
the other half had full wind-power capacity.

The original IEEE 73-bus network has 18 hydro units (six in each area) each
with capacity 50 MW and marignal cost 0. In our model, four of the hydro
units in nodes 222 and 322 (area 2 and 3) were modified to represent wind
generators with marginal generation cost 0 and varying generation capacity over
the scenarios. Similarly, all six hydro units in node 122 (area 1) were modified
to have varying marginal cost but constant generation capacity of 50 MW over
the scenarios. Nodal demands were scaled uniformly by a factor in the interval
0.5 to 1.0. Table 1 gives a summary of the values of the stochastic parameters
used in the different instances of the problem. For both networks the stochastic
parameters are all assumed to be independent of each other and scenarios are
assumed to be equally likely to occur.

First stage decisions include only investment decisions in switching equip-
ment. That is, we assume e⊤a yL = 1 for all arcs a in A. The fixed amortized
switch investment costs are set to $5/h for each switch.

Computational experiments were performed on a 2.26 GHz Core 2 Duo com-
puter with 4 GB RAM.

5.1. Experiments with branch and price

In order to solve large instances, the Dantzig-Wolfe reformulation described
above was implemented in a branch-and-price framework using the DIP software
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|Ω| = 16

|Ω| = 81

stochastic parameter |Ω| = 256

demand factor 1 0.67 0.5 0.84
wind capacity factor, node 222 1 0 0.33 0.67
wind capacity factor, node 322 1 0 0.67 0.33
hydro price factor, node 122 0 30 5 15

Table 1: Summary of stochastic demand, generation capacity, and marginal cost factors.

framework [17]. DIP (Decomposition for Integer Programming) is a general open
source framework developed under COIN-OR for solving discrete optimization
problems using various decomposition algorithms. DIP allows the user to for-
mulate mixed integer programs in the original space and to provide the problem
structure needed for decomposition. DIP then handles the reformulation and
provides methods for solving the problem using decomposition algorithms. The
code is implemented in C++ and is designed and maintained by Matthew Galati
and Ted Ralphs at Lehigh University [18].

Instances with the IEEE 118-bus network and the IEEE 73-bus network
and different number of scenarios and values of k are constructed. These are
solved using DIP’s branch and price algorithm with default parameters, except
that each node is solved to optimality before branching (TailOffPercent = 0),
compression of columns are turned off (CompressColumns = 0), and the master
problems are solved to optimality (MasterGapLimit = 0) using interior point
method (CPLEX 12.2 barrier). Sub-problems are solved using the CPLEX 12.2
MIP-solver. For comparison the instances are also solved using the CPLEX
12.2 branch-and-bound solver with default settings. Computational results are
shown in Table 2, while Table 3 and Table 5 shows the objective function values
and number of installed switches in the optimal solution of the corresponding
instances for the IEEE 118-bus network and the IEEE 73 bus network.

Results show that the CPLEX MIP solver performs well on instances with
a small number of scenarios. With more scenarios, however, the CPLEX solver
exhausts the memory, while DIP solves to optimality in reasonable time. DIP
outperforms CPLEX for 11 out of the 15 instances investigated. In general, it
seems that DIP scales well with the number of scenarios, while CPLEX handles
large k-values better.

For branch and price all instances except the 118-node, 32-scenario instance
are solved to integer optimality in the root node and hence no branching is
needed. For the 32-scenario instance a fractional solution is returned in the root
node. However, integrality is obtained by branching only once. (The fractional
solution has a strictly lower value than the optimal integer solution obtained.)

The decomposition relies on solving a large number of sub-problems with
feasible set Q(ω). For large k the computational complexity of the sub-problems
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Branch and price Branch and bound

Instance time (s) price- no. of time (s) gap lower

|N | |Ω| k total master passes nodes bound

118 2 3 96 0 10 1 547 0.00 1351.22
118 2 5 1427 1 20 1 330 0.00 1338.55
118 4 3 257 4 16 1 2310 0.00 1036.93
118 4 5 3172 6 38 1 7133 0.00 1033.95
118 4 10 22444 30 98 1 3055 0.00 1009.60
118 8 3 978 8 26 1 2070 † 2.26 846.17
118 16 3 3213 11 36 1 3722 † 0.00 775.01
118 32 3 25477 279 129 3 4968 † 9.68 690.81
118 64 3 11126 72 38 1 8589 † 28.84 678.44

73 4 1 12 1 6 1 401 0.00 65297.22
73 16 1 53 2 9 1 5013 † 2.05 66270.18
73 81 1 2037 36 18 1 14414 ‡ 6.07 52884.46
73 4 3 972 3 35 1 42 0.00 65266.08
73 16 3 3888 17 69 1 490 0.00 66266.34
73 81 3 36793 163 93 1 6732 † 0.08 52885.56

Table 2: Results for the switch investment problem on the IEEE 118-bus network and IEEE
73-bus network. Solve times and gaps are reported for the branch-and-price algorithm (DIP)
and standard branch-and-bound (CPLEX) for problem instances with at most k open switches
and |Ω| scenarios. All instances was solved to optimality using branch-and-price. Branch-and-
bound was terminated with the CPLEX default optimality tolerance except for ‡ which was
terminated manually after 14400 s. For branch-and-price the total solve time for the master
problems, number of pricepasses, and the number of nodes in the branching tree are also
reported. For branch-and-bound the lower bound is reported. Gaps reported are absolute
gap to best known solution. For the branch-and-bound the best lower bound is also reported.
The fastest solution time is highlighted in bold face. † denotes that the optimization was
terminated due to lack of memory.

is high and solving them to optimality is hard. This can be seen from Table
2 that shows that only a small fraction of the time is spent solving the master
problems, while the majority of time is spent solving the sub-problems. This
makes the branch-and-price algorithm perform less well on instances with large
k. Hence, further research is needed to strengthen the sub-problems in order
to solve instances with large k. On the other hand, as shown in section 4,
the master problem matrices have some nice properties resulting in shallow
branching trees.

5.2. Experiments with column generation for the 73 node network

In this subsection we consider the column-generation algorithm without
branching. The motivation for this study comes from the need to solve stochastic
models with many scenarios. To investigate how the decomposition algorithm
scales with scenarios, we restrict attention to the smaller IEEE 73-bus network.
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Instance Optimal solution

|Ω| k obj. function value no. of switches

2 3 1351.36 5
2 5 1338.68 7
4 3 1037.03 5
4 5 1034.06 6
4 10 1009.70 9
8 3 898.48 7
16 3 871.10 3
32 3 734.04 3
64 3 763.97 3

Table 3: Objective function value and number of switches installed in the optimal solution for
instances of the switch investment problem for the IEEE 118-bus network.

The decomposition and models in the following results are formulated using the
AMPL modelling language and all master problems and subproblems are solved
with CPLEX 12.2. The relaxed master problems are solved using CPLEX bar-
rier algorithm without crossover, while the subproblems are solved using the
CPLEX standard branch-and-bound algorithm. For the branch-and-bound al-
gorithm CPLEX 12.2 was applied with default parameters.

Computational results are shown in Table 4, while Table 5 shows the ob-
jective function values and number of switches installed in the corresponding
optimal solutions. These results show that the time taken to solve the Dantzig-
Wolfe reformulation is approximately proportional to the number of scenarios,
and we are able to solve up to 256 scenarios in reasonable time. Note that all
instances are solved to optimality in the root node of the branch and bound tree
and hence no branching is necessary. For k = 1 solving the compact formulation
using CPLEX is much more time consuming than solving the Dantzig-Wolfe re-
formulation. However, for k = 3 solving the compact formulation is faster for
a small number of scenarios, but performs worse with an increasing number of
scenarios.

The computational results presented in this section show that solving the
Dantzig-Wolfe reformulation by column generation is faster for small values of
k compared to solving the original formulation in CPLEX. When k is small,
column generation scales well with the number of scenarios. For large values of
k, however, the subproblems become intractable. The master problem — except
for one instance — always yields an optimal integer solution in the root node.

6. Conclusion

In this paper we consider decomposition methods for stochastic investment
problems involving transmission switching in electricity networks. In particular,

17



Column Generation Branch-and-bound

Instance price- no. of lower

|N | |Ω| k time (s) passes nodes time (s) gap bound

73 4 1 16 4 1 401 0.00 65297.22
73 16 1 54 6 1 5013 † 2.05 66270.18
73 81 1 286 8 1 14414 ‡ 6.07 52884.46
73 256 1 1518 12 1 48373 † 8.15 54648.50
73 4 3 1153 31 1 42 0.00 65266.08
73 16 3 1326 30 1 490 0.00 66266.34
73 81 3 25056 52 1 6732 † 0.08 52885.56
73 256 3 30880 39 1 68670 ‡ 4.72 54647.76

Table 4: Computational results for the switch investment problem on the IEEE73-bus net-
work. All instances was solved to optimality using column generation. Branch-and-bound was
terminated with the CPLEX default optimality tolerance. Gaps reported are absolute gap to
the optimal solution. For the branch-and-bound the best lower bound is also reported. † de-
notes that the optimization was terminated due to lack of memory. The fastest solution time
is highlighted in bold face. ‡ denotes that CPLEX was manually terminated before reaching
optmimum.

we look at determining optimal switch investment and line capacity expansion
strategies and we propose a Dantzig-Wolfe reformulation of a two-stage stochas-
tic mixed integer program.

A column-generation approach is outlined to solve the Dantzig-Wolfe refor-
mulation. The approach is tested on two IEEE test networks. When the number
of allowed switching actions is small, the proposed algorithm turns out to be
significantly more efficient than solving the compact formulation directly, and
it enables us to solve instances with up to 256 scenarios.

In general, the linear programming relaxation of the reformulation does not
have integer extreme points, but in practice this often happens to be the case.
In the rare instances where the relaxed master problem has fractional solutions,
our formulation admits a simple branch-and-price scheme that can be used to
resolve these with very few iterations.

The approach is limited by the complexity of the subproblems. Solving
large-scale problems requires a strong formulation of the subproblem, especially
when many switching actions are allowed. In our experiments, we attempted to
apply some strengthening to the subproblems by adding the constraint

∑

a∈P

za ≤ 1

for any path P in which all nodes except the first and last nodes are two-
connected, and setting za = 0 for any arc a such that the network (N,A \
{a}) is not connected. These provided some improvement on subproblems in
sparse networks and/or with larger values of k, but gave no improvement in
computation time for the instances discussed in this paper. This indicates that

18



Instance Optimal solution

|Ω| k obj. function value no. of switches

4 1 65303.75 1
16 1 66301.56 1
81 1 52905.05 1
256 1 54668.09 1
4 3 65270.02 2
16 3 66272.91 2
81 3 52890.74 2
256 3 54656.02 2

Table 5: Objective function value and number of switches installed in the optimal solution for
instances of the switch investment problem for the IEEE 73-bus network.

further research should be directed at providing stronger formulations and more
efficient solution methods for the subproblems in order to improve efficiency of
the algorithm.

The methodology described in this paper can be applied to other stochastic
programming problems in which switching is allowed. For example, one might
construct a multi-stage plan for investing in switches and transmission line ex-
pansions using the approach explored in [11] for distribution networks (in which
switching to a radial structure is required in each scenario and stage). The
approach can also be used to investigate the optimal investment in switches
to ensure the N − 1 reliability of an existing network. In this setting the sce-
narios represent failures of single lines or units. This approach is explored for
distribution networks in [19], and described for transmission networks in [20].
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We consider the application of Dantzig-Wolfe decomposition to stochastic integer programming 
problems arising in the capacity planning of electricity transmission networks that have some 
switchable transmission elements. The decomposition enables a column-generation algorithm to be 
applied, which allows the solution of large problem instances. The methodology is illustrated by its 
application to a problem of determining the optimal investment in switching equipment and trans-
mission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes 
and 118 nodes confirm the efficiency of the approach.
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