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Modelling Zonal Pricing Design under Uncertainty in
Electricity Markets

J. C. Villumsen®*

%Dept. of Management Engineering, Technical University of Denmark, Produktionstorvet
bldg. 424, 2800 Kgs. Lyngby, Denmark

Abstract

In deregulated electricity markets with zonal pricing the market is partitioned
into a number of zones, each of which is assigned a market price to which
market participants react at any given point in time . We discuss the problem of
designing such zones for a market subject to uncertainty. A two-stage stochastic
program is presented and its complexity is discussed. In particular, we show
that, when the stochastic parameters are independently distributed, the problem
is #P-hard. Furthermore, the stochastic program contains integer variables.
Hence, the problem is potentially difficult to solve. This motivates a Dantzig-
Wolfe reformulation of the problem based on scenario decomposition, as we
conjecture that for large instances decomposing the problem will lead to more
efficient solution procedures. Finally, we present a formulation ensuring spatially
contiguous zones.

Keywords: Zonal pricing, Electricity market design, Transmission networks,
Dantzig-Wolfe reformulation, #P-hardness

JEL Classification: C61, L11, L94

1. Introduction

Deregulated electricity markets may employ different transmission pricing
mechanisms. Nodal pricing refers to a system with individual market prices
for each physical node in the network, whereas in zonal pricing the network
is partitioned into zones and a market price is assigned to each zone. The
partitioning of the network may be based on physical characteristics of the
network (e.g. capacity constraints) as well as political (national borders) and
organisational divisions. In this paper we shall not delve into the discussion
on nodal versus zonal pricing (see e.g. [1] for a discussion), but rather assume
that a zonal pricing regime is chosen exogenously. However, we may note that

*Corresponding author
Email address: jcvieman.dtu.dk (J. C. Villumsen )

Preprint submitted to Energy Economics December 9, 2011



while nodal pricing may be optimal in a perfect market, zonal pricing may offer
greater transparency to market participants and a greater sense of fairness.

We refer to the problem of determining optimal price zones as the zonal
design problem. This involves allocating each node in the tranmsission network
to a particular zone. We will here assume that the number of zones is fixed.
The zonal design problem for a single period with linear marginal generation
cost and demand curves has been treated in [2].

In general, the resulting zonal design must be static in the short to medium
term, but may be changed in the medium to long term. Johnsen et. al. [3] report
in 1999 that the Norwegian zonal system may be changed on a weekly basis.
The nordic market pool operator, NordPool, announced that Sweden will change
from a single zone to four zones (to better reflect bottlenecks in the transmission
network) in 2011 following a 17 months notice [4]. Figure 1 illustrates the
current (September 2011) zonal design of the Nord Pool Spot electricity market
[5]. The stochastic nature of electricity systems means that a particular zonal
design must accommodate a variety of supply and load conditions in the network
as well as potential line failures. This leads us to propose a stochastic version
of the zonal design problem, that maximises the expected social welfare of the
system. That is, the total generation cost (and potential transmission cost)
except total consumer benefits is minimised.

=
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Figure 1: Schematic outline of the 10 price zones in the Nord Pool Spot market area comprising
Norway (NO), Sweden (SE), Finland (FI), Estonia (EE), and Denmark (DK) as of September
2011.

Another attribute of price zones is contiguity. Often price zones are required
to be spatially contiguous. That is, two nodes in the same zone must be con-
nected by at least one path, that does not go through any other zone. When
requiring that zones are contiguous with respect to the transmission network,
the resulting problem is a graph clustering problem with an underlying equi-



librium dispatch of electricity generation and network flow. Graph clustering
problems have been studied within various applications for many years. For ex-
ample, Augustson and Minker [6] explores clustering techniques for information
retrieval systems.

The contribution of this paper is three-fold. Firstly, we present a linear
mixed integer formulation of the deterministic zonal design problem. Secondly,
a two-stage stochastic formulation based on scenario decomposition using a split
variable approach (see e.g. [7]) is presented and we show that the stochastic
problem is #P-hard when the stochastic parameters are independent. Thirdly,
we provide a formulation that ensures spatially contiguous zones based on a
minimum spanning forest formulation suggested by Martin [8] and show that
this may lead to higher total generation cost.

We begin the paper by introducing the deterministic zonal design problem in
section 2 and motivate the need for considering uncertainty. Subsequently, we
state the stochastic version of the problem in section 3 and discuss its complexity.
A Dantzig-Wolfe reformulation [9] and column generation framework for solving
the stochastic problem more efficiently is suggested. In section 4 we provide
a formulation ensuring spatially contiguous zones. Finally, some concluding
remarks are given in section 5.

2. Model Formulation

We assume a linear direct current approximation of the optimal alternating
current power flow (see e.g. [10, 11]) with linear generation costs and no line
losses.

Consider the directed graph G = (N, .A) with a source/sink node s. For
each arc a € A, the cost, lower-, and upper bound on power flows, as well as
reactance coefficients are given by cg, 4, uq, and r,, respectively. The flow on
each arc a € A is denoted by z,, while w; denotes the voltage phase angle
for each node i € N. Let the set of arcs F(i), respectively, 7 (i) denote the
set of arcs with tail, resp. , head 7. Let the set of supply and demand arcs
S =F(s)UT(s) C A be defined by having s as the tail, respectively, head. Let
the set of transmission arcs be denoted by R = A\ S.

The economic dispatch of generation, consumption, and flows in the network,
at any given time, may be found by solving the following linear program,

min Z Cala (1)

acA

subject to



Ty > —Uq (Ma) Va e A (2)

Taq > la (Ma) Va e A (3)

Z Lo — Z Zq =0 (i) Vie N (4)
a€F (i) a€T (1)

TeZq +wj —w; =0 (Ya) Va = (i,7) € A\ S (5)

where symbols in parenthesis denotes dual prices and in particular 7 is a
vector of nodal prices. The objective (2) maximises total social welfare. Con-
straints (2) and (3) provides upper, respectively, lower bounds on the arc flows,
constraints (4) ensures conservation of energy, and constraints (5) is Kirchhoff’s
voltage constraints.

We now introduce a set of zones K and we wish to restrict the market prices
so that the price in two nodes belonging to the same zone is equal. Let p € RV
denote the vector of market prices. In a nodal pricing regime we have p = 7.

A vector z € {0,1}(IWI=DIXI of binary variables denotes the allocation of
nodes to zones, such that z;; = 1 if and only if node ¢ belongs to zone k. That
is,

Zik = zjk = 1= pi —p; =0 VigjeN\{shkek (6)
> zip=1 Vie N\ {s} (7)
ke

zir € {0,1} Vie N\ {s},ke K (8)

Introducing some sufficiently large number M, we can rewrite (6) in a linear
form as,

—M(2 =z — zjk) < pi—p; < M2 —zip —zjx) Vi#jeN\{sh,kek
9)

We may without loss of generality allocate the first transmission node to the
first zone.

For the market dispatch of generation (and consumption) to be feasible, we
must ensure that if generation (consumption) is at the lower bound, then the
cost is at least the price difference beween the end nodes (and profit is non-
positive). Similarly, if generation (consumption) is at capacity, then the cost is
at most the price difference and the corresponding profit is non-negative. Also,
we must ensure that for a generator (demand segment) producing (consuming)
strictly in the interval ]l,, u,[ the price difference must equal the cost. Otherwise
the generator (demand segment) would either increase or decrease generation
(consumption). That is,



To = lg = Ca > pj— Pi Va = (i,j) € S
lg < xq < Uq = Ca = pPj — Pi Va = (i,j) €S
Taq = Uq = Ca < pj — pi Va=(i,j) €S

We can write this using the shadow prices A\, and u, as,

Co — Ao+ Ha = Pj — Pi Va=(i,j) €S (10)

and complementarity constraints,

0< XA Lug—24>0 Va €S (11)
0<iptg Lag—1,>0 Va €S (12)

In a nodal pricing scheme, constraint set (10) corresponds to the set of dual
constraints associated with the flow variables x on supply and demand arcs with
p = m. For simplicity, we may without loss of generality assume that ps = 0.

The complementarity conditions (11) - (12) may be linearised (due to Fortuny-
Amat [12]) by introducing new auxillary binary variables v and v, for each a
in S and a sufficiently large constant M. That is, we can replace (11) - (12) by

Ug — Tq < Mu) Va €S (13)
Ao < M(1—v)) VaeS (14)
Tg — lo < Mo, Va €S (15)
e < M1 —wv,) VYa e S (16)
Aoy o > 0 VaesS (17)
vl v, €{0,1} VaeS (18)

Now we can formulate the problem of finding optimal zones by minimising
Y wc.a Caa subject to the constraints (2) — (5), (6) — (8), (10) — (12) or as the
equivalent mixed integer linear program

min Y _ cazq st (1) = (5),(7) = (9), (10), (13) — (18)

acA

. . . . v
For notational convenience define the vector of binary variables v = o+ ) .

We will now look at a tiny instance with four transmission nodes, two genera-
tors, and two demands. The parameters are shown in Figure 2. All transmission
arcs have reactance coefficient 1, zero cost and infinite capacities except for the
arc from node 2 to 4, that has capacity 5. Figure 3 shows the optimal flow and
prices in a nodal pricing scheme, while Figure 4 shows the flows and price for



supply  demand

node | 1 2 | 2 4
c 51 2 | -50 -90
U ‘ 20 10 ‘ 5 15

Figure 2: Small instance with four transmission nodes, two supply arcs, and two demand
arcs. Arc labels u = —I indicate capacities of the transmission arcs. All transmission cost and
reactance coefficients are 0 respectively 1.

51 50
supply  demand supply demand
node | 1 2|2 4 node | 1 2 | 2 4
z |25 10[5 75 x |0 10 | 333 6.67
Figure 3: Optimal flow with nodal pricing Figure 4: Optimal flow with two price zones
(four zones). Arc labels indicate flows, while consisting of the nodes 1,2,3 respectively
node labels indicate prices. Solution value is node 4. Arc labels indicate flows, while node
-777.50. labels indicate prices. Solution value is -
746.67.

zonal pricing scheme with only one zone. Having a single price zone reduces the
total social surplus of the system as well as the consumption in node 2.

Usually, the zonal design is static in the short to medium term, while costs
and capacities may vary over time. For instance, the capacity of a wind power
generator varies from hour to hour with the wind velocity etc., while the cost
of generation from a natural gas turbine varies with the market price on nat-
ural gas. Also, thermal transmission line capacities may vary over the year
due to temperature differences. Hence, a good zonal design must be robust to
such changes. The following two-period example illustrates the problem. The
parameters of the example are shown in Figure 5. The transmission network
consists of four nodes and four lines.

An optimal solution with two zones for each of the two periods is depicted
in Figure 6. However, these solutions dictates a dynamic zonal allocation, since
the low price zone consists of node 2 and 3 in period 1, while in period 2 it



supply  demand supply demand

node | 1 2 | 2 4 node | 1 2 3 1 2 4
c 51 2 | -50 -90 c 2 2 51|-50 -50 -90
u 20 10| 5 15 u 5 10 5 3 5 15

(@) (b)

Figure 5: Small instance with two scenarios (a) and (b) and four transmission nodes. Arc
labels show transmission capacities u = —[. All transmission reactance coefficients are 1. The
tables show supply and demand arc coefficients. Lower bound on supply and demand is 0.

consists of node 1 and 2. Also, imposing the optimal zonal design obtained for
period 1 will yield a suboptimal flow for period 2.

51
supply  demand supply demand
node|1 2|2 4 node|123|12 4
z |25 105 75 z |5 9 4]3 5 10

(a) (b)

Figure 6: Resulting flows and prices when the scenarios are optimised separately with 3 price
zones. Arc labels indicate transmission flows, while node labels indicate prices. Scenario (a)
has an optimal cost of -777.50, while scenario (b) has optimal cost -1068.00.

When we require the zonal allocation to be identical in the two scenarios,
the total surplus decreases in scenario (a), while it remains the same in scenario
(b). This is due to a reduction of consumption in node 2 and 4 and a reduction
of generation in node 1. The result is shown in Figure 7

Based on these observations the optimal design of zones is not obvious. In the
following section, we propose a two-stage stochastic programming formulation
for the zonal design problem minimising the total expected cost over a number
of scenarios.



-110 51

supply demand supply demand
node|1 2 | 2 4 node|1 2 3|1 2 4
z |0 10]333 6.67 z |5 9 4]3 5 10

(a) (b)

Figure 7: Resulting flows and prices when the scenarios are co-optimised with 3 price zones.
Arc labels indicate transmission flows, while node labels indicate prices. Scenario (a) has an
optimal cost of -746.67, while scenario (b) has optimal cost -1068.00.

3. A Two-Stage Stochastic Model

Now, we extend the problem of identifying optimal zones to a stochastic
setting in which costs and capacities are not constant.

Let z;,(w) denote a request for node ¢ to belong to zone k in scenario w.

Consider a two-stage stochastic model, where the first stage decisions de-
termine the zonal design, while the second stage models operational decisions
(z,w, z,v) of dispatch and zonal allocation requests in a number of scenarios
w € Q, each occurring with probability p(w). For each scenario w € Q let

Qw) ={(z(w), w(w), 2(w), v(w)) |
(2) = (5),(7) = (9), (10), (13) — (18)} (19)

be the set of feasible dispatch (and zonal design) solutions for a particular
scenario w.

The problem of identifying an optimal zonal design may now be formulated
as

SZDP: min Z p(w)e(w) " z(w) (20)
weN

s.t. z(w) =y Yw € Q (21)

(z(w),w(w), z(w),v(w)) € Q(w) Yw € Q (22)

The objective (20) minimises the expected operational costs, while (21) en-
sures that zone allocation is static (over all scenarios).

3.1. Complezity

Two-stage stochastic programs are in general #P-hard even when efficient
algorithms exist for solving the single scenario problem. This is shown by Dyer



and Stougie by reduction from the graph reliability problem for discrete prob-
ability distributions and by reduction from the volume of a knapsack polytope
problem for continuous probability distributions [13].

In the following we show that the stochastic zonal design problem is also
#P-hard, which motivates the decomposition of the problem presented in the
succeeding section. The proof relies on the stochastic parameters being inde-
pendently distributed, which will lead to an exponential number of scenarios.

In many practical cases this may not hold. E.g. if the stochastic parameters
represent capacity of wind turbines or level of water in hydro reservoirs across
the network, these are likely to be highly correlated.

Define the graph G’ = (N’,R), where N' = N '\ {s}. Consider the problem
of finding a path from ¢ to j in G’ following a random event which renders
each arc in R unusable with probability 1/2 corresponding to the failure of a
transmission arc. Furthermore, assume that arc failures are independently and
identically distributed.

This corresponds to the following two-stage stochastic program SP with 2
scenarios, where each scenario w in {2 corresponds to an outcome of the random
event occuring with equal probabilities p(w) = (1/2)I%I.

IR|

SP:  max Z = Z p(w)xe (W) (23)
weN

s.t. 0<zi(w) <uglw) YweQaeceAd (24)
Z Tq(w) — Z Ta(w) =0 VieN,weQ (25)

SP is obtained from SZDP by setting the number of zones to the number
of transmission nodes || = |N’| so that each transmission node constitutes
its own price zone. This makes the zonal pricing constraints (7) - (9), and the
equilibrium constraints (10), (13) - (18) redundant. Furthermore, we let the
reactance coefficients r, = 0 for all transmission arcs a in R. This eliminates
the constraints (5), as the flows are decoupled from the voltage phase angles. For
each scenario w € Q, we set the lower bound on arc flows to l,(w) = 0. Finally,
the objective function is defined by a negative unit cost on supply ¢, (w) = —1,
and ¢,(w) =0forall a #a’ € A and w € Q.

The graph reliability problem is defined as follows [13],

Definition 3.1. Given a directed graph G and a pair of vertices (i,7). Rij(G)
s an instance of the graph reliability problem defined by the problem of finding
the probability that i and j are connected, if each arc fails independently with
probability 1/2.

Proposition 3.1. SP is equivalent to the graph reliability problem.

Proof. Take any instance R;;(G’) of the graph reliability problem on the graph
G = (N',R). Add to G’ the node s and the arcs @’ = (s,i) and a” = (j, s)



and assign to them the fixed capacities u,s = uq,r = 1. For all arcs a in R
assign random capacities u,, that are independent and identically distributed
with discrete probability distribution p(u, = 0) = p(u, = 1) = 1/2. Define a
set of scenarios €2, such that each scenario w in € corresponds to an outcome
of the random vector u occurring with probability p(w) = (1/2)Rl. Let u(w)
denote the realisation of arc capacities u in scenario w.

Suppose, that for a realisation of arc failures in the graph reliability instance
corresponding to the scenario w, there exist a path P from ¢ to j. The corre-
sponding partial solution z(w) to SP is constructed by letting z, (w) = 24 (w) =
1 and 24(w) = 1 for all a in the path P and z,(w) = 0 for all remaining arcs
a in R\ P. Similarly, if for a realisation of arc failures in the graph reliability
instance corresponding to the scenario w, there does not exist a path P from 14
to 7, the corresponding partial solution z(w) is constructed by letting x,(w) = 0
for all ¢ in RU{a’, a”}. The combined solution for all realisations of arc failures
yields the optimal solution z* with value Z* being the realibility of the graph
reliability instance R;;(G’).

Conversely, an optimal solution x* to SP will have for each scenario w in €2,
corresponding to some realisation of arc failures in the graph reliability problem,
xq (w) = 1if and only if the graph G’ contains a path from i to j and x4 (w) = 0,
otherwise. Hence, the optimal value Z* is the realiability of the graph G'. =

It follows from Proposition 3.1 and the fact that the graph reliability problem
is #P-hard [14], that SP is also #P-hard. Hence, SZDP is #P-hard.

3.2. Dantzig- Wolfe reformulation

We have shown in section 3.1 that the stochastic zonal design problem is
#P-hard, and hence potentially hard to solve. In the following, we provide a
Dantzig-Wolfe reformulation of the problem, that allows us to decompose the
problem based on scenarios and solve it using column generation and branch-
and-price. We conjecture that for large instances a decomposition of the problem
will lead to more efficient solution procedures.

The Dantzig-Wolfe reformulation follows in the line of [15]. Let the binary
vector z(w) define a feasible zonal design (FZD) for scenario w if there exists
z(w), w(w),v(w) such that (z(w),w(w),z(w),v(w)) € Q(w). Now, let Z(w) =
{29(w)|j € J(w)} be the set of all FZD’s for scenario w, where J(w) is the index
set for Z(w). We can write any element in Z(w) as

N
—
&
~
I

Y P w)

JEJ(w)
Yo dw) = 1, Pw) e{0,1}, VjeJ(w).

JEJ(w)

Assume that for each feasible zonal design 27(w) the corresponding optimal
dispatch is given by 27 (w). The master problem can now be written in terms of
z and T as

10



MP: min Zp(w) Z c(w) "2 (w)¢? (w) (26)

weN Jj€Ju
s.t. ez](: )@j (w)=1 [V(w)], Yw e Q (27)
Y- ‘Z jzj (w)¢’ (w) =0 [p(w)], Yw € Q (28)
o ¢’ (W) € {0,1}, jedw)  (29)
y € {0,134 (30)

where v(w) and p(w) denote the dual prices associated with the respective con-
straints.

The master problem MP is a two-stage stochastic integer program with
integer variables in both stages.

Proposition 3.2. Ify is chosen to be a fixzed vector of binary integers, then the
linear programming relaxation of MP has integer extreme points.

For a proof we refer the reader to [15].

It is convenient to consider only a subset Z(w)" C Z(w) of feasible zonal
designs for each scenario w in the master problem. We define this restricted
master problem (RMP) by (26) - (30) with J(w) replaced by J(w)’ the index set
of Z(w)". A column generation algorithm is applied to dynamically add FZD’s
to the linear relaxation of the master problem.

In each iteration of the algorithm, the linear relaxation (RMP-LP) of RMP is
solved yielding the dual prices v and p. A new column (p(w)c(w) T 37 (w), 1, 27 (w))
may improve the solution of RMP-LP if and only if the associated reduced cost
e(w) = p(w)e(w) "3 (w) + p(w) T 29 (w) — v(w) is negative.

A column for scenario w may therefore be constructed by solving the sub-
problem:

min  p(w)cw) 'z + p(w) "z — v(w)
st. (z,w,z,v) € Qw),

where v(w) and p(w) are the dual prices returned from RMP-LP.

Any feasible solution (z,w,z,v) € Q(w) with negative objective function
gives rise to a potential candidate column for RMP-LP. If no columns with
negative reduced cost exist then we have solved the relaxed master problem
(MP-LP) to optimality. Furthermore, if the solution (¢*,y*) to MP-LP is inte-
gral then (¢*,y*) is an optimal solution to the master problem (26) - (30) and
y* is the optimal zonal design. Otherwise, we may resort to a branch-and-price
framework for finding optimal integral solutions. Note that a fractional solution
will always have at least one fractional y-value (see Proposition 3.2). Hence,
we branch on one of the fractional y-variables and hope that this will resolve
the fractionality. If not, one may continue branching on y-variables until the
fractionality is resolved.

11



4. Contiguous Zones

The formulation presented so far does not restrict zones to be spatially con-
tiguous. This means that a feasible zone may consist of nodes that are separated
by nodes from another zone. In this section we provide a spanning forest for-
mulation that requires zones to be contiguous. The formulation is based on the
minimum spanning tree formulation by Martin [8].

Let Hx be a spanning forest of |K| trees on the graph (M \ {s}, A\ S). We
can now replace (6)-(8) by

ac€Hkg =pi—p;j=0 Va = (i,7) € A\ S (31)
Let x be binary vector defining a spanning forest on the transmission net-

work. The following is due to Martin [8]. Arc a belongs to Hy if and only if
Xa = 1 and (x, q) is a feasible solution to,

> xa =V - K] -1 (32)
a€ER

Xa =Qnij + Gnji VheN,a=(i,j) € R (33)

> ann; <0 VheN (34)
i#h

Z nij <1 Vh#ie N (35)
J#i

Xas nij: qnji 10,1} VheN,a=(i,j) €R (36)

where ¢ is vector of binary auxillary variables.
We can now write (31) as,

—M(1—xa4) <pi—pj < M(1—xa) Va = (i,j) € A\ S (37)

Example

For the purpose of illustration we consider in the following a single scenario
instance of the zonal design problem on a network with 13 transmission nodes.
The network is described in [16], however the generation data is modified to give
interesting zonal designs. The topology of the transmission network is shown in
Figure 8. All transmission line capacities are set to 55, that is u, = —l, = 55
for all arcs a in R. Reactance coeflicients are given in Table 1, while demand
and generation is summarised in Table 2. Lower bound on generation for all
generators is 0, that is [, = 0 for all ¢ in §. We wish to find a partition of the
nodes into three zones, that minimises the total generation cost of the system.

An optimal zonal design for the 13 node instance, when zones are not re-
quired to be contiguous is shown in Figure 9 with a total generation cost of
3926.77, while Figure 10 shows an optimal design when contiguity is enforced

12



transmission arc  reactance node  demand supply

from to Ta i d; capacity = marg. cost
1 2 0.1515 1 0.0 65 10
1 5 0.1515 2 77.6
2 5 0.1887 3 7.8
2 4 0.1563 4 94.7
2 3 0.1020 5 7.6 200 20
3 4 0.1333 6 11.2
4 5 0.1515 7 0.0
4 7 0.1961 8 29.5 200 40
4 8 0.5263 9 9.0
7 8 0.1695 10 3.5
8 9 0.1099 11 6.1
9 10 0.1667 12 13.5 200 10
6 10 0.1887 13 14.9
5 6 0.2326
6 12 0.2703
162 12 82‘1132 Table 2: Supply and demand coefficients for the 13
11 12 0:4545 node network.
8 11 0.2632

Table 1: Reactance coefficients for 13
node transmission network.

yielding a total cost of 4150.24. When not requiring contiguous zones the opti-
mal solution involves generation strictly within bounds for all generators (that
is, lg < x4 < uq for all @ in §), which requires that the corresponding zonal
price equals the marginal generation cost. If zones must be contiguous, this
is no longer possible (with only three zones). Hence, the generation pattern
is changed shifting generation to nodes with higher cost generation, yielding a
solution at a considerably higher cost.

5. Conclusion

In this paper, we have presented a linearised version of the stochastic zonal
design problem and we have shown that when the stochastic parameters are
independently distributed the problem is #P-hard. The complexity of the prob-
lem motivated a Dantzig-Wolfe reformulation based on a split variable approach.
Finally, a formulation ensuring spatially contiguous zones based on a spanning
forest is provided.

The Dantzig-Wolfe reformulation is prone to the symmetry of the zonal
requests and we do not expect a column generation algorithm based on this for-
mulation to be efficient unless this symmetry is broken. A similar Dantzig-Wolfe
reformulation for the stochastic model with contiguous zones may be deduced
based on using tree variables as master problem variables. However, this con-
struction exhibits similar symmetry problems, as many trees may represent the
same zone. One approach may be to define linking constraints between scenarios
based on the arcs belonging to the cuts between zones as these will be uniquely
determined.

13



Figure 8: 13 node network with four generators located in the four emphasised (bold) nodes
(1,5,8,12). All transmission line capacities are uq = —lq = 55. Supply arc capacities are all
200 except for the arc into node 1 which have u, = 65.

Two-stage stochastic programs with integer variables are in general hard to
solve due to both the non-convexities and potential explosion in the number
of scenarios (as shown). However, it remains to be shown whether the inte-
grality constraints yields the problem NP-hard. In practice, scenarios may be
correlated and the resulting zonal design problem may not be #P-hard. Hence,
further research should be dedicated to computational experiments to verify the
efficiency of an algorithm based on the Dantzig-Wolfe reformulation to practical
instances.

If, indeed, the stochastic problem is difficult to solve for large instances with
many scenarios, further research should be directed towards stronger formula-
tions of the stochastic zonal design problem.
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In deregulated electricity markets with zonal pricing the market is partitioned into a number of
zones, each of which is assigned a market price to which market participants react at any given point
in time. We discuss the problem of designing such zones for a market subject to uncertainty.

A two-stage stochastic program is presented and discussed. In particular, we show that when the
stochastic parameters are independently distributed, the problem is #P-hard. Furthermore, the sto-
chastic program contains integer variables.

Hence, the problem is potentially difficult to solve. This motivates a Dantzig-Wolfe reformulation of
the problem based on scenario decomposition, as we conjecture that for large instances decompos-
ing the problem will lead to more efficient solution procedures. Finally, we present a formulation
ensuring spatially contiguous zones.
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