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ABSTRACT 26 

 Pork contributes significantly to the public health disease burden caused by Salmonella 27 

infections. During the slaughter process pig carcasses can become contaminated with 28 

Salmonella. Contamination at the slaughter-line is initiated by pigs carrying Salmonella on 29 

their skin or in their faeces. Another contamination route could be resident flora present on 30 

the slaughter equipment. To unravel the contribution of these two potential sources of 31 

Salmonella a quantitative study was conducted. Process equipment (belly openers and carcass 32 

splitters), faeces and carcasses (skin and cutting surfaces) along the slaughter-line were 33 

sampled at eleven sampling days spanning a period of 4 months.  34 

 Most samples taken directly after killing were positive for Salmonella. On 96.6% of the 35 

skin samples Salmonella was identified, whereas a lower number of animals tested positive in 36 

their rectum (62.5%). The prevalence of Salmonella clearly declined on the carcasses at the 37 

re-work station, either on the cut section or on the skin of the carcass or both (35.9%). 38 

Throughout the sampling period of the slaughter-line the total number of Salmonella per 39 

animal was almost 2log lower at the re-work station in comparison to directly after slaughter. 40 

  Seven different serovars were identified during the study with S. Derby (41%) and S. 41 

Typhimurium (29%) as the most prominent types. A recurring S. Rissen contamination of one 42 

of the carcass splitters indicated the presence of an endemic ‘house flora’ in slaughterhouse 43 

studied. On many instances several serotypes per individual sample were found.  44 

 The enumeration of Salmonella and the genotyping data gave unique insight in the 45 

dynamics of transmission of this pathogen in a slaughter-line. The data of the presented study 46 

support the hypothesis that resident flora on slaughter equipment was a relevant source for 47 

contamination of pork. 48 

 49 
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INTRODUCTION 51 

 Salmonellosis is an important cause of food-borne human gastroenteritis in most European 52 

countries (EFSA, 2010; Valkenburgh et al., 2007). Farm animals and foods of animal origin 53 

form an important source of human Salmonella infections. In various European countries a 54 

significant number of human cases of salmonellosis (up to 25%) is described to be related to 55 

the consumption of pork and pork products (EFSA, 2006; van Pelt et al., 2000; Valdezate et 56 

al., 2005). 57 

 Carrier pigs are a predominant source of Salmonella contamination of pig carcasses during 58 

the slaughtering process (Alban and Stärk, 2005; Baptista et al., 2010; Berends et al., 1997; 59 

Borch et al., 1996;). Pigs may already have Salmonella on their skin before entering a 60 

slaughterhouse and, despite stringent hygiene procedures during carcass processing, cross 61 

contamination to both Salmonella positive and – negative carcasses can occur. The slaughter-62 

line itself can become contaminated by faeces of carrier pigs. In addition, the presence of 63 

endemic ‘house flora’ of Salmonella has been described for several slaughterhouses (Baptista 64 

et al., 2010; Hald et al., 2003; Visscher et al., 2011; Warriner et al., 2002).  65 

 European data on the prevalence of Salmonella contaminated carcasses and on serotypes of 66 

Salmonella on the carcasses is available in various papers. For example, Hald et al. (2003) 67 

documented that the prevalence of Salmonella contaminated carcasses varied between 0 and 68 

8.5% among 1,623 carcasses examined from five different countries. An EFSA study (26 69 

countries; 5,736 carcass samples) reported a prevalence of Salmonella positive carcasses of 70 

0–20% (EFSA, 2008). The most frequently isolated serotype in both studies was S. 71 

Typhimurium.  72 

 The aim of this study was to investigate the dynamics of Salmonella in a pig slaughtering 73 

process and to assess the origin of carcass contamination. Hereto, the prevalence of 74 

Salmonella contaminated carcasses was determined. In addition, the concentration of this 75 
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pathogen was measured at different sites on the pork meat and slaughtering equipment 76 

throughout the slaughtering-line by sampling individual carcasses at exsanguination up to the 77 

re-work station. Salmonella isolates were serotyped and genotyped.  78 
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MATERIALS AND METHODS 79 

Slaughterhouse characteristics 80 

 The Dutch slaughterhouse investigated in this study was partly automated with robots for 81 

pre-cutting, belly opening, rectum drilling, splitting, leaf lard removal, neck cutting and 82 

marking. The capacity of the slaughterhouse is 650 pigs per hour, and 5,000-6,000 animals 83 

per day. The waiting time for the pigs at the slaughterhouse was as short as possible (not more 84 

than 2 h). Before entering the slaughter-line pigs were electrically stunned, sticked on a table, 85 

scalded in a tank, dehaired, flamed, wet polished, flamed and wet polished for a second time. 86 

 The belly opener cuts open the belly of a carcass and then cleaves the breastbone into two 87 

symmetrical parts. The carcass splitter cuts a carcass into two equal halves with a double 88 

knife, without cutting the head. 89 

 90 

Sampling strategy  91 

 Carcass and equipment samples were collected on eleven days over a period of four 92 

months. Different herds were sampled on one sampling day, with a preference of two animals 93 

per herd, to account for herd variability. In total, 118 pigs and their carcasses were sampled at 94 

two steps of the slaughter process (see Fig. 1 for exact sampling sites)). Directly after 95 

exsanguination, skin and rectal samples were taken for the detection, enumeration and typing 96 

of Salmonella. Immediately after exsanguination 4 cork borer samples were obtained from the 97 

shoulder of the animal. A sterile hand held cork borer was used to make four incisions on the 98 

shoulder. With a sterile scalpel and forceps slices of 5 cm2 with a thickness of approximately 99 

5 mm, were cut from the carcass. The four tissue samples, representing a total of 20 cm2, were 100 

collected in one sterile plastic bag, constituting one sample. In addition, a rectal sample was 101 

taken from the same animal with a sterile swab (Transwab, Medical Wire and equipment Co. 102 
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Ltd., Corsham, Wilts., England), which was immediately placed in 6 ml Buffered Peptone 103 

Water (BPW; bioTRADING Benelux B.V., Mijdrecht, The Netherlands).  104 

The carcasses sampled at exsanguination were tracked in the slaughter-line and sampled again 105 

after meat inspection at the re-work station. From the cutting site, ham, back before pelvis, 106 

sternum and shoulder muscle were sampled with the cork borer. From the lard side, samples 107 

were taken with the cork borer from the back, the jowl, the ham and the belly. These interior 108 

and exterior samples were collected separately in two sterile plastic bags. In this way a paired 109 

set of 2 × 2 different samples were obtained from each animal; two at exsanguination 110 

(shoulder (EE), faeces (FS)) and two after final meat inspection at the re-work station 111 

(exterior (RE), interior (RI)).  112 

 In the slaughter-line the sets of parallel operating belly openers (BO) as well as the carcass 113 

splitters (CS) were sampled prior to the start and at the end of the day, immediately after 114 

finishing with the slaughtering process. Blades and other easy to reach contact surfaces from 115 

the belly openers and the splitting robots were swabbed on both sites using the Meat/Turkey 116 

carcass sampling kit (Nasco, Fort Atkinson, WI). In addition, sterile flexistem brushes were 117 

used for sampling of parts of the equipment which were less accessible with the carcass 118 

sampling kit.  119 

All samples were cooled on site and transported to the laboratory to be analysed on the same 120 

day of collection. 121 

 122 

Detection of Salmonella 123 

 Cork borer samples were weighed after arrival in the laboratory and an equal volume of 124 

BPW was added. To rectal swabs, equipment swabs and flexistem brushes 6, 20, and 40 ml of 125 

BPW, respectively, was added. Cork borer and equipment swab samples were homogenised 126 

for 1 min with a Stomacher 400 (Seward, Worthing, United Kingdom). Rectal swabs and 127 
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equipment samples taken with a flexistem brush were vortexed for 30 s. A 5 ml aliquot was 128 

removed from each sample and stored at 4 °C for enumeration later (see next section). After 129 

addition of 90 ml BPW to the cork bore samples, rectal and equipment swabs, all samples 130 

were incubated without shaking at 37 °C for 18 to 20 h. 131 

 DNA was isolated from a 1 ml aliquot of the enriched culture, using a Chelex-100 132 

suspension (50–100 mesh; Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) 133 

according to the manufacturer’s instructions. From the final DNA solution, a 5 µl aliquot was 134 

directly used as template in the PCR assay described below. 135 

 The Salmonella real-time assay described by Malorny et al. (2004), except for the internal 136 

amplification control, was used to determine the presence of DNA of this pathogen in the 137 

various samples. The 50 µl PCR mixture contained 0.4 µM of the primers ttr-4 and ttr-6, 0.25 138 

µM ttr-5 probe (5'-FAM, 3'-BHQ1), 1×Universal Mastermix (Diagenode sa, Liège, Belgium) 139 

and a 5 µl aliquot of the sample DNA. Conditions for the real-time PCR were 95 °C for 1 min 140 

followed by 45 cycles of 95 °C for 15 s and 65 °C for 30 s. PCR tests were performed on a 141 

iQTM5 Cycler (Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) and data was 142 

analysed using the Bio-Rad iQ5 software (Version 2.0).  143 

Samples that were found positive by PCR were considered to be true positives for the 144 

assessment of the Salmonella prevalence (the cut off value was set at threshold cycle Ct 40 as 145 

result of an internal house validation process). 146 

 147 

Enumeration of Salmonella  148 

 The most probable number (MPN; de Man, 1983) method was used to estimate Salmonella 149 

numbers in the samples identified as positive by PCR. Three subsequent 10-fold serial 150 

dilutions were prepared from the stored 5 ml of the original samples. In triplicate 1 ml of each 151 

dilution was added to 9 ml of BPW and enriched for 18±2 h at 37 °C. Three separate and 152 
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equally spaced drops of incubated BPW (total 100 µl) were pipetted onto the surface of a 153 

Modified Semi-solid Rappaport Vassiliadis (MSRV) medium base plate (Merck B.V., 154 

Schiphol-Rijk, The Netherlands) supplemented with Novobiocin (20 mg l-1) (Oxoid B.V., 155 

Badhoevedorp, The Netherlands) in a triangular configuration. MSRV plates were incubated 156 

at 41.5 °C and examined after 24 and 48 h for suspect Salmonella growth. A sterile loop (1 157 

µl) was dipped into the edge of any opaque growth and streaked onto SM® ID2 agar plates 158 

(BioMérieux SA, Marcy l'Etoile, France) which were incubated at 37 °C for 24 h for the 159 

confirmation of Salmonella. 160 

 To compute the MPN per ml of BPW, it was assumed that all Salmonella were detached 161 

from the cork borer sample of the carcass surface and brought into the BPW during 162 

stomaching. The MPN per ml were converted to MPN per cm2. Hereto, it was assumed that 163 

the bacteria were homogeneously spread over the carcass skins. Salmonella numbers per gram 164 

of faeces from the rectal swab data were also assessed. The amount of faeces on the swab was 165 

not determined during the sampling experiment. Therefore, a small study was performed 166 

afterwards in which 50 swabs were weighted before and after insertion into pigs’ rectums. 167 

The mean amount of faeces that was found on a swab was used to estimate the number of 168 

Salmonella per gram faeces, using the MPN per swab. 169 

 170 

Statistical data analysis 171 

 A beta distribution was used to describe uncertainty about the prevalence estimates of 172 

Salmonella on site or at day level (Vose, 2000). For further analysis of the quantitative 173 

Salmonella data, the hypothesis that the variation in the Log of all MPN data at one sampling 174 

site for Salmonella-positive carcasses can be expressed by a Normal distribution was verified 175 

by visually checking its fit to Normality in a quantile-quantile plot. If, by this test, no 176 

deviations from normality could be seen, then the per day variation in the MPN data from one 177 
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sampling site was expressed by a Log-Normal (, ) distribution. The parameters of this 178 

distribution were estimated using maximum likelihood estimation, yielding the estimators  179 

(mean) and  (standard error). Samples that were positive by PCR, but in which no 180 

Salmonella was detected in the dilution series for the MPN assessment, were taken into 181 

account and regarded as censored positives. For the censored numbers, the cumulative Log-182 

Normal ( , ) distribution function was used to represent the probability of being an 183 

observation below detection limit (Gelman et al., 2004). Such concentration distributions 184 

could, however, not be assessed for all days. If most, or all, samples were negative in the 185 

MPN dilution series on one day, then  and  could not be estimated. For such data sets only 186 

the upper limit of the expected concentration , as provided by the minimal MPN, is given. 187 

 188 

Sero- and genotyping of Salmonella 189 

 Depending on the Salmonella concentrations, one to a maximum of five (representative) 190 

isolates from each sample were randomly selected. All isolates were stored at –70 °C until 191 

use.  192 

 The multiplex PCR described by Lim et al. (2003) was used to discriminate between S. 193 

Typhimurium and non-Typhimurium serotypes in the numerous isolates from the 194 

slaughterhouse. The non-Typhimurium isolates were subsequently serotyped by slide and 195 

tube agglutination following the Kauffmann–White scheme (Grimont and Weill, 2007). 196 

 Multiple-locus variable-number of tandem-repeat analysis (MLVA) was performed on the 197 

(monophasic) S. Typhimurium isolates as described previously (Torpdahl et al., 2007) to 198 

determine whether the isolates were epidemiologically related. Only one (monophasic) S. 199 

Typhimurium isolate per sample was analysed by MLVA. The MLVA repeats were 200 

calculated and named according to the method described by Lindstedt et al. (2004). 201 
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 Pulsed-field gel electrophoresis (PFGE) was carried out on S. Derby and S. Rissen isolates 202 

with the XbaI restriction enzyme according to the Pulse-Net protocol (Ribot et al., 2006). 203 

Gels were analysed using BioNumerics 6.5 software. A dendrogram was produced using the 204 

Dice coefficient and the unweighted pair-group method (UPGMA) with a 1.5% tolerance 205 

limit and 1.5% optimisation. 206 
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RESULTS 207 

Salmonella screening and enumeration 208 

 Salmonella was identified on the skin surfaces of 96.6% of all carcasses sampled at 209 

exsanguination (Table 1). The estimated mean concentration ( ) of Salmonella per day in the 210 

samples at this site varied between 0.04 and 1.75 log MPN cm-2 (Table 2). Of the rectal swabs 211 

taken directly after exsanguination 62.5 % were identified positive, whereas the average 212 

number of Salmonella was 1.88 ± 1.42 log MPN g.-1. At the re-work station, 16.2% and 213 

29.9% of the exterior and interior samples, respectively, were tested positive for Salmonella 214 

(Table 1). In addition, the pathogen counts were lower in comparison to samples taken at 215 

exsanguination, with maximum estimated numbers of Salmonella of 0.11 and -0.13 log MPN 216 

cm-2 on the carcass surface (exterior) and cut section (interior), respectively (Table 2). Of all 217 

the samples taken in this study, 44.5% (265/596) were identified as Salmonella positive. The 218 

prevalence of Salmonella on the different carcass sampling sites varied between sampling 219 

days (Table 1). For the carcass samples collected at the re-work station, an increase in 220 

Salmonella prevalence was observed from around the second half of the sampling period (08-221 

06-2009 till 16-06-2009), especially for samples collected from the interior part of the 222 

carcass. The prevalence declined again towards the end of the experiment. Within one day no 223 

clear increase of Salmonella positive samples could be demonstrated, i.e. the prevalence of 224 

this pathogen in samples taken in the morning were not different from those obtained in the 225 

afternoon (Fig. 2). 226 

 Before slaughter, no Salmonella could be demonstrated on either belly openers, whereas at 227 

the end of slaughter 3 out of 40 samples (7.5%) were tested positive. On one sampling day, 228 

Salmonella was identified on both belly openers (Table 1).  229 

Samples taken from the carcass splitters were more frequently found to harbour Salmonella. 230 

More specifically, carcass splitter number 2 (CS2) was repeatedly contaminated with this 231 
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pathogenic microorganism. In total, during eight out of the eleven sampling days Salmonella 232 

was identified on this robot after the end of slaughter. Moreover, on two consecutive days 233 

Salmonella was already found on carcass splitter 2 at the beginning of the slaughtering 234 

process (Table 1). In all cases, equipment swabs and flexistem brushes had equal test results. 235 

 236 

Salmonella serotypes 237 

 In total, 620 Salmonella isolates were obtained from all samples taken during this study. 238 

Because S. Typhimurium was expected to be the most prevalent serovar in pigs (Hald et al, 239 

2003; EFSA, 2008), the multiplex PCR described by Lim et al. (2003) was used to 240 

discriminate S. Typhimurium isolates from other serovars. The PCR results revealed that 241 

67.5% of all salmonellae isolated at the slaughterhouse were non-Typhimurium isolates. 242 

Because of this very large set, it was decided to serotype the main part (64%). When not all 243 

isolates from one sample were typed, the result of the subset of typed isolates was assumed to 244 

reflect the serotypes of the non-typed ones. 245 

Overall, seven different serotypes were identified, i.e. S. 4,5,12:i:– (from here on called 246 

monophasic S. Typhimurium), S. Bredeney, S. Brandenburg, S. Derby, S. Infantis, S. Rissen 247 

and S. Typhimurium (Table 3). Six serotypes were characterised from the animals entering 248 

the slaughterhouse, whereas only five different serovars were identified on the carcasses after 249 

slaughtering, and only three serotypes were isolated from the slaughterhouse equipment 250 

sampled. The most prominent serovars identified at the carcass at exsanguination and their 251 

rectal swabs were S. Derby (38%), S. Typhimurium (36%) and S. Brandenburg (18%) (Table 252 

4). The serotypes frequently isolated from the carcasses at the end of the slaughter-line were 253 

S. Derby (47%) and S. Rissen (25%), whereas S. Typhimurium was only found in 18% of the 254 

cases. The predominant Salmonella serotype isolated at the slaughterhouse varied by day of 255 

the study. 256 
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Although S. Typhimurium was prominently present on the carcasses at exsanguination and to 257 

a lesser extent at the re-work station, this serovar was not isolated from the carcass splitters. 258 

In contrast on the belly openers S. Typhimurium was found in two out of three occasions. 259 

Carcass splitter 2 (CS2) was frequently contaminated with serovars Derby (56%) and Rissen 260 

(44%). 261 

In 15% of all Salmonella positive incidences multiple serovars were isolated from individual 262 

samples. This was especially true for carcasses at exsanguination (data not shown). 263 

 264 

Salmonella genotypes  265 

 At least one S. Typhimurium or monophasic S. Typhimurium isolate from each individual 266 

swab or carcass sample (80 animals, 119 isolates in total) positive for these serovars was 267 

typed by multiple-locus variable-number of tandem-repeat analysis (MLVA). Nineteen and 268 

three different MLVA types could be distinguished among the S. Typhimurium and 269 

monophasic S. Typhimurium isolates analysed, respectively (Table 5).  270 

In 18 cases the same MLVA type was detected in both the rectal swab and exterior sample at 271 

exsanguinations, whereas 5 times different MLVA types were encountered in these samples. 272 

The 17 S. Typhimurium and monophasic S. Typhimurium isolates originating from carcasses 273 

at the re-work station matched with MLVA types isolated at exsanguination from the same 274 

animals, except in three instance (Table 6; Animals 149_1, 657_1 and 657_2).  275 

The two S. Typhimurium MLVA types detected on belly opener 2 (BO2) were also found on 276 

Salmonella samples originating from the incoming animals on those sampling days. In 277 

addition, both of these MLVA types were identified in samples taken at the re-work station 278 

(Table 5).  279 

 A selection of the S. Derby and S. Rissen isolates (n=96) were genotyped using PGFE. The 280 

dendrogram (Fig. 3) shows that the S. Rissen isolates belonged to one indistinguishable type, 281 
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whereas the PFGE profiles varied among the S. Derby isolates analysed, although one 282 

particular S. Derby genotype clearly dominated the phylogenetic tree. Isolates belonging to 283 

this branch originated from various sampling days and all types of samples taken at the 284 

slaughterhouse, except the belly opener. In contrast, one branch with a PFGE pattern very 285 

similar to the S. Rissen profile contained 5 S. Derby isolates isolated only from the carcass 286 

splitter but at different sampling days.  287 

From several individual carcasses, S. Derby was isolated at two or more sampling sites (Table 288 

4). The phylogenetic tree in Figure 3 includes some of these isolates (in bold). S. Derby 289 

isolates originating from rectal swabs (FS) and skin samples (EE) showed an identical PFGE 290 

pattern in 75% of the cases (n=4), whereas, only different PFGE profiles were encountered 291 

among the exsanguination (EE) and the re-work station isolates of the same animal of this 292 

serovar (n=8). 293 
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DISCUSSION 294 

 The prevalence of Salmonella contaminated carcasses started with 96.6% at 295 

exsanguination and was 35.9% after slaughtering at the re-work station. The level of 296 

contaminated carcasses in this study was relatively high, compared to other studies (Bouvet et 297 

al., 2003; de Busser et al., 2011; Swanenburg et al., 2001a). This high level of Salmonella 298 

positive samples gave the opportunity to get a clear picture of the contamination routes.  299 

At the re-work station, over 35% of the carcasses tested were Salmonella positive. In 10.3% 300 

of all tested carcasses, Salmonella was detected on both the cut section and on the skin, 19.7% 301 

of the tested carcasses were only contaminated at the cut section, and 6.0% contained 302 

Salmonella only on the skin. So the slaughter process reduces the number of skin 303 

contaminated carcasses from 96.6 to 16.2%. Cross contamination via the slaughter process 304 

was responsible for at least 30% of all carcasses, i.e. the carcasses were contaminated at the 305 

interior side. These results correspond to data reported by others (Berends et al., 1997; 306 

Botteldoorn et al., 2003). However, this cross contamination percentage might be an 307 

underestimated value since they do not take into account the genotypic diversity of 308 

Salmonella serovars. In the present study on the one hand the same MLVA type was found at 309 

exsanguination and re-work station (Table 6), but on the other hand it was clearly shown that 310 

genotypically different subtypes of the same Salmonella serotype can be present on one 311 

carcass at exsanguination and at the re-work station (see Fig 3 and Table 5). 312 

 An excision technique was used as the sampling method for pig skins and carcasses. In 313 

many studies (Botteldoorn et al, 2003; EFSA, 2008; Hald et al., 2003; Oosterom et al., 1985; 314 

Swanenburg et al., 2001a, 2001b) dry-wet swabbing was the technique of choice. Comparison 315 

of both techniques showed that the excision technique was approximately 10-fold more 316 

sensitive, but there seemed to be no linear relationship between the two results (Hutchison et 317 

al, 2005; Martínez et al., 2010). In case of low concentrations, swabbing a large area is to be 318 
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preferred above excision of a small area (Lindblad, 2007), since the excision techniques only 319 

samples 5 cm2 per excision. The concentration data obtained in this study clearly showed that 320 

the level of contamination of the sampled carcasses was high enough to use the excision 321 

technique. 322 

 The average number of Salmonella per carcass was almost 2log lower at the end of the 323 

slaughter-line. On the skin (12,000 cm2) a 10 fold lower number was found, i.e. 3.8 to 0.37  324 

Salmonella per cm2. At the cutting area (3,000 cm2), the average MPN of Salmonella was 325 

0.48 per cm2. As a consequence, the average number of Salmonella per carcass decreased 326 

from 44,050 (prevalence × concentration × surface; 0.966 × 3.8 × 12,000) at exsanguination 327 

to 1,150 per carcass (0.162 × 0.37 × 12,000 + 0.299 × 0.48 × 3,000) at the re-work station. As 328 

37.5% of all salmonellae on carcasses at the re-work station were found on the cutting edges, 329 

cross contamination is responsible for more than 35% of all Salmonella on pork carcasses 330 

based on bacterial counts. 331 

 The seven Salmonella serovars identified in this study, i.e. S. Bredeney, S. Brandenburg, S. 332 

Derby, S. Infantis, monophasic S. Typhimurium (Salmonella 4,5,12:i:–), S. Rissen and S. 333 

Typhimurium were also described by various other authors on pigs at the slaughterhouse 334 

stage (Arguello et al., 2011; Bouvet et al., 2003; de Busser et al., 2011; Hald et al., 2003; 335 

Swanenburg et al., 2001a). 336 

At the re-work station, five different serovars were detected, whereas at exsanguination six 337 

Salmonella serotypes were characterised (Table 3 and 4). Two serovars detected at 338 

exsanguination, i.e. S. Bredeney and S. Infantis, were not detected at the re-work station. It 339 

might be possible that the contamination level with these serovars was very low and that they 340 

disappeared during the slaughter process. In contrast, one serovar, i.e. S. Rissen, was not 341 

detected at exsanguination but was detected at the re-work station and on one of the carcass 342 

splitters. The companies own monitoring program reflected that this slaughterhouse 343 
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encountered hygiene problems during and after the study (data not shown). The serological 344 

pattern (Table 3 and 4) clearly indicated complicated contamination routes. 345 

The phenomenon of multiple serovars present in individual samples (15%), especially in 346 

those taken from carcasses at exsanguination suggested an underestimation of Salmonella 347 

serotypes in pork, since routinely only one isolate per sample is serotyped. 348 

 In order to determine their origin, isolates of the serovars S. Rissen, S. Derby and 349 

(monophasic) S. Typhimurium were subtyped. The results differed per serotype. S. Rissen 350 

was not detected on any of the incoming pigs. Only one PFGE genotype was found on cutting 351 

areas of carcasses at the re-work station and on the carcass splitter on various sampling days. 352 

This result strongly suggested that resident house flora was a source of carcass contamination.  353 

S. Derby showed the characteristics of a cross contaminator as none of the strains detected on 354 

a single carcass at the re-work station was detected on the same carcass at exsanguination. 355 

Comparing MLVA types of (monophasic) S. Typhimurium isolates on carcasses at 356 

exsanguination and re-work station revealed that (monophasic) S. Typhimurium can originate 357 

from pigs carrying Salmonella into the slaughterhouse. The observation that some carcasses at 358 

the re-work station contained MLVA types that were not detected on the same carcass at 359 

exsanguination, again showed that cross contamination from one carcass to another can also 360 

have occurred. 361 

 In this study the carcass splitter was identified as an important source of S. Rissen 362 

contamination. In previous assessments the carcass splitter has been considered an 363 

unimportant attributive source of Salmonella, because of the high infection status of the pigs 364 

entering the slaughterhouse, especially, if the splitter is equipped with automatic disinfection 365 

between each carcass and faecal contamination during evisceration is controlled (Berends et 366 

al., 1997; Borch et al., 1996). However, other reports showed that a significant Salmonella 367 

contamination via the slaughterhouse environment was caused by the carcass splitter 368 
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(Sørensen et al., 1999; Swanenburg et al., 2001a, 2001b). In the present study slaughter 369 

equipment apparently contributed also to Salmonella on pig carcasses. Despite cleaning and 370 

disinfection, one of the robots was repeatedly contaminated with S. Rissen. Moreover, once 371 

this serovar was even present on this carcass splitter prior to the start of slaughter on that day 372 

and over the weekend (Fig 3; S. Rissen; CS, 13-07-2009). 373 

 374 

In the slaughterhouse studied, cross-contamination contributed significantly to the carcass 375 

contamination. Resident flora was detected throughout the study on one of the slaughter 376 

robots. The serovar identified, S. Rissen, contributed significantly to the contamination at the 377 

end of the slaughter-line, whereas it was not found on any of the incoming carcasses. In 378 

addition, serovars on carcass at the re-work station were many times other types than the ones 379 

detected at exsanguination in skin and faeces samples. The data collected, especially the 380 

Salmonella enumeration results and the sero- as well as genotyping data, gave unique insight 381 

in the dynamics of transmission in a slaughter-line. 382 

The sero- and genotyping data will be compared using a variety of statistical tests and 383 

implemented in a tracing scheme to predict the source of Salmonella on a carcass at the re-384 

work station (Smid et al., 2011). 385 
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Figure Legends 498 

Fig. 1. 499 

Locations of the various cork borer samples, rectal and equipment swabs taken during the 500 

slaughtering process in the pig slaughterhouse investigated. 501 

 502 

Fig. 2. 503 

Salmonella prevalence data at the different carcass sampling sites determined by real-time 504 

PCR. The black bars represent the samples taken at approximately 11AM; the grey ones 505 

indicate the samples taken at approximately 1PM; the white bars show the samples taken at 506 

approximately 3PM. 507 

 508 

Fig. 3. 509 

PFGE dendrogram of S. Rissen and S. Derby isolates from the slaughter-line and pigs. BO: 510 

Belly opener; CS: Carcass splitter; EE: Exsanguination, exterior; FS: Rectal swab; RE: Re-511 

work station, exterior; RI: Re-work station, interior.  512 

Sample names in bold indicate S. Derby isolates from individual carcasses isolated at different 513 

stages of the slaughter-line. 514 
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Figure 1.  515 
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Figure 2. 516 
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Figure 3. 517 
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Table 1: Number of Salmonella positive samples per sampling date and per sampling site determined by real-time PCR.  518 

 Robots – Before slaughter a Exsanguination Re-work station Robots – After slaughter a 

Date BO1 BO2 CS1 CS2 Carcass 
skin 

Faeces Exterior Interior BO1 BO2 CS1 CS2 

14-04-2009 nd nd nd nd 6/6 nd 2/6 1/6 0/1 0/1 0/1 0/1 
20-04-2009 0/1 0/1 0/1 0/1 12/12 10/12 0/12 0/12 0/1 0/1 0/1 0/1 
11-05-2009 0/1 0/1 0/1 0/1 8/8 5/8 0/8 0/8 0/2 0/2 0/2 0/2 
25-05-2009 0/1 0/1 0/1 0/1 11/12 5/12 2/11 0/11 0/2 0/2 0/2 2/2 
02-06-2009 0/1 0/1 0/1 0/1 12/12 6/12 0/12 3/12 0/2 0/2 0/2 2/2 
08-06-2009 0/1 0/1 0/1 0/1 12/12 11/12 5/12 8/12 0/2 0/2 0/3 3/3 
09-06-2009 0/1 0/1 0/1 0/1 8/8 6/8 2/8 3/8 0/2 1/2 0/2 2/2 
15-06-2009 0/1 0/1 0/1 0/1 12/12 8/12 2/12 8/12 0/2 0/2 0/4 4/4 
16-06-2009 nd nd nd nd 12/12 8/12 2/12 7/12 1/2 1/2 0/3 3/3 
13-07-2009 0/2 0/2 0/2 2/2 12/12 8/12 3/12 2/12 0/2 0/2 0/2 2/2 
14-07-2009 0/2 0/2 0/2 2/2 9/12 3/12 1/12 3/12 0/2 0/2 0/2 2/2 
Total 0/11 0/11 0/11 4/11 114/118 70/112 19/117 35/117 1/20 2/20 0/24 20/24 

Note: a BO = Belly opener; CS = Carcass splitter; nd = not determined. 519 



 

 

Table 2. Estimated parameters (sample mean, , and standard error, ) of the Log-Normal 520 

probability distribution representing the concentration of positive samples. 521 

 Exsanguination Re-work station 
 Carcass skin (log 

MPN/cm2) 
Faeces (log 
MPN/g) 

Exterior (log 
MPN/cm2) 

Interior (log 
MPN/cm2) 

Date         
14-04-2009 1.75 0.59 nd  <-0.51  <-0.35  
20-04-2009 0.47 0.49 2.71 0.98     
11-05-2009 0.42 0.71 1.91 1.19     
25-05-2009 0.26 0.75 2.31 1.36 <-0.79    
02-06-2009 0.46 0.84 2.7 0.68   <-0.61  
08-06-2009 0.04 0.91 2.11 1.02 0.11 0.53 -0.13 1.12 
09-06-2009 0.52 0.71 2.35 0.78 <-0.52  -0.47 1.04 
15-06-2009 0.60 0.61 -3.32 4.96 -0.42 0.82 -0.31 0.72 
16-06-2009 0.92 1.33 2.75 1.43 <-0.80  -0.32 0.43 
13-07-2009 0.59 1.00 2.61 1.22 -0.98 0.47 -0.37 0.99 
14-07-2009 0.34 0.34 2.65 0.6 <-0.83  <-0.59  
Average 0.58 0.75 1.88 1.42 -0.43 0.61 -0.32 0.86 

 522 

Per month: 523 

 Exsanguination Re-work station 
 Carcass skin (log 

MPN/cm2) 
Faeces (log 
MPN/g) 

Exterior (log 
MPN/cm2) 

Interior (log 
MPN/cm2) 

Date         

April-May 0.75 0.80 2.43 1.08 <-0.51  <-0.35  
May-June 0.31 0.83 2.33 1.00 -0.38 0.69 -0.49 1.09 
June-July 0.63 0.95 2.25 1.54 -1.30 1.03 -0.39 0.64 



 

 

Table 3. Salmonella serovars per sampling day determined by multiplex PCR and serotyping. 524 

 Serovar a        
Date BDY BEG DRB INS mSTM RSN STM Unknown 
14-04-2009 0 0 4 6 14 0 3 0 
20-04-2009 0 0 55 1 2 0 1 0 
11-05-2009 0 0 20 0 6 0 8 0 
25-05-2009 0 0 4 0 0 0 16 0 
02-06-2009 0 0 35 0 1 5 11 0 
08-06-2009 5 16 33 0 0 13 26 1 
09-06-2009 0 32 12 0 0 4 14 0 
15-06-2009 1 6 41 0 0 20 12 0 
16-06-2009 0 0 27 0 0 6 42 1 
13-07-2009 3 30 5 0 0 13 24 0 
14-07-2009 0 0 19 0 0 2 22 0 
% of total 1.4% 13.5% 41.0% 1.1% 3.7% 10.1% 28.8% 0.3% 

Note: The multiplex PCR has been described by Lim et al. (2003). The serotyping was 525 

performed by slide and tube agglutination following the Kauffmann–White scheme. a BDY: S. 526 

Bredeney; BEG: S. Brandenburg; DRB: S. Derby; INS: S. Infantis;  527 

mSTM: monophasic variant S. Typhimurium; RSN: S. Rissen; STM: S. Typhimurium. 528 



 

 

Table 4. Salmonella serovars per sampling site determined by multiplex PCR and serotyping.  529 

Serotypea Sample placeb 
BDY BEG DRB INS mSTM RSN STM Unknown 

BO1 0 0 0 0 0 0 0 0 

BO2 0 0 0 0 0 0 0 0 

SP1 0 0 0 0 0 0 0 0 

Robots –  
Before slaughter 

SP2 0 0 2 0 0 6 0 0 

Skin 7 63 118 6 17 0 97 1 Exsanguination 

Faeces 2 17 47 1 2 0 60 0 

Carcass exterior 0 3 5 0 3 10 8 0 Re-work station 

Carcass interior 0 1 37 0 1 12 8 1 

BO1 0 0 1 0 0 0 0 0 

BO2 0 0 0 0 0 0 6 0 

CS1 0 0 0 0 0 0 0 0 

Robots –  
After slaughter 

CS2 0 0 45 0 0 35 0 0 

Note: The multiplex PCR has been described by Lim et al. (2003). The serotyping was 530 

performed by slide and tube agglutination following the Kauffmann–White scheme. a BDY: S. 531 

Bredeney; BEG: S. Brandenburg; DRB: S. Derby; INS: S. Infantis; mSTM: monophasic variant S. 532 

Typhimurium; RSN: S. Rissen; STM: S. Typhimurium. b BO = Belly opener, CS= Carcass splitter. 533 



 

 

 Table 5: MLVA types distribution among the various samples. 534 

Exsanguination Re-work station  
Serovar Allele string Date Carcass skin Faeces Exterior  Interior BO2 

02-03-19-14-02 02/06/2009  1    
14/04/2009 4  3 1  02-06-04-00-02 
20/04/2009 1     

monophasic     
S. Typhimurium 
  

02-07-06-00-02 11/05/2009 2 1    
09/06/2009 3  1  1 
13/07/2009   1   

02-02-05-00-02 

14/07/2009 7   1  
02/06/2009 1     02-03-19-01-02 
13/07/2009 1     
25/05/2009 1     
02/06/2009 1 4    
08/06/2009 5 5    
09/06/2009  1    
15/06/2009 4 2    

02-03-19-14-02 

13/07/2009 5 1 1   
02-05-05-00-02 11/05/2009 5 2    

25/05/2009  2    02-05-06-00-03 
08/06/2009  1    

02-05-20-00-02 16/06/2009 9 3    
02-06-04-00-02 14/04/2009 1     
02-07-09-08-03 16/06/2009 2 2 1 1 1 
02-07-10-08-03 16/06/2009  1    

02/06/2009 1     02-07-11-06-03 
08/06/2009 1     

02-08-09-05-03 20/04/2009  1    
02-11-06-00-03 14/07/2009 1     
02-17-05-00-02 09/06/2009 1     
03-02-04-13-02 08/06/2009  2    
03-03-20-05-02 14/07/2009    1  

14/04/2009 2     
02/06/2009    1  
16/06/2009    2  

03-04-04-22-02 

14/07/2009  1    
03-08-13-19-02 14/07/2009   1   
04-01-17-14-02 25/05/2009 8 3 2   

S. Typhimurium 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  06-03-00-00-01 13/07/2009  1    
Note: a BO = Belly opener  535 



 

 

Table 6. All paired occurrences of (monophasic) S. Typhimurium typed by MLVA on single 536 

carcasses. 537 

Date Herd_Animal Origina Serovarb MLVA allele string 

14-04-2009 A_1 EE-RE mSTM 02-06-04-00-02 
 C_1 EE-RE-RI mSTM 02-06-04-00-02 
11-05-2009 396_1 EE-FS mSTM 02-07-06-00-02 
 396_2 EE-FS STM 02-05-05-00-02 
 646_2 EE-FS STM 02-05-05-00-02 
25-05-2009 723_1 EE, FS STM 04-01-17-14-02, 02-05-06-00-03 
 787_1 EE-FS STM 04-01-17-14-02 
 787_3 EE-FS-RE STM 04-01-17-14-02 
 900_1 EE-FS STM 04-01-17-14-02 
 900_2 EE-RE STM 04-01-17-14-02 
02-06-2009 826_1 EE, FS STM 02-03-19-01-02, 02-03-19-14-02 
08-06-2009 431_1 EE-FS STM 02-03-19-14-02 
 611_2 EE-FS STM 02-03-19-14-02 
 921_1 EE, FS STM 02-03-19-14-02, 03-02-04-13-02 
 921_2 EE-FS STM 02-03-19-14-02 
 968_1 EE, FS STM 02-03-19-14-02, 03-02-04-13-02 
15-06-2009 532_1 EE-FS STM 02-03-19-14-02 
 921_1 EE-FS STM 02-03-19-14-02 
16-06-2009 662_1 EE-FS STM 02-05-20-00-02 
 662_2 EE-FS STM 02-05-20-00-02 
 657_1 EE-FS, RI STM 02-05-20-00-02, 03-04-04-22-02 
 657_2 EE, RI STM 02-05-20-00-02, 03-04-04-22-02 
 657_3 EE-FS STM 02-07-09-08-03 
 657_4 EE-FS-RE-RI STM 02-07-09-08-03 
13-07-2009 149_1 FS, RE STM 03-04-04-22-02, 03-08-13-19-02 
 921_1 EE-FS-RE STM 02-03-19-14-02 
 921_2 EE, FS STM 02-03-19-14-02, 06-03-00-00-01 

Note: a EE: Exsanguination, exterior; FS: Exsanguination, Rectal swab; RE: Re-work station, 538 

exterior; RI: Re-work station, interior. b mSTM: monophasic S. Typhimurium; STM: S. 539 

Typhimurium. 540 

 541 


