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Tycho Brahe and Johannes Kepler
(Condensed Version: see below for links to fuller version)
Michael Fowler University of Virginia

These two colorful characters made crucial contributions to our understanding of the universe: Tycho’s observations were accurate enough for Kepler to
discover that the planets moved in elliptic orbits, and his other laws, which gave Newton the clues he needed to establish universal inverse-square gravitation.

What you should know:

Tycho Brahe (1546-1601), from a rich Danish noble family, was fascinated by astronomy, but disappointed with the accuracy of tables of planetary motion
at the time. He decided to dedicate his life and considerable resources to recording planetary positions ten times more accurately than the best previous
work. After some early successes, and in gratitude for having his life saved by Tycho’s uncle, the king of Denmark gave Tycho remendous resources: an
island with many families on it, and money to build an observatory. (One estimate is that this was 10% of the gross national product at the time!) Tycho
built vast instruments to set accurate sights on the stars, and used multiple clocks and timekeepers.
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Sources of delay in dynamic sub-structuring:

« Computation time of time step of model
 Delayed actuation of physical experiment

This delay is usually sufficiently large to destabilise
the combined system.
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Vertically excited pendulum

Set-up Continuation of rotations
feedback control for angle 0
reference signal 0, starting point—»

saddle-node
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Sieber and Krauskopf, Nonlinear Dynamics, 2008
Sieber, Krauskopf, Wagg, Neild and Gonzalez-Buelga, JCND, 2011



Continuation in an energy harvester

continuation experiment by David Barton and Stephen Burrow
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Barton, Mann and Burrow, J. Vib. Control, accepted manuscript.



Guiding Simulations and
Experiments using Continuation

| ! "x:r.w :
[ liss § s

Test rig with impact oscillator.




Control based Continuation

Continuation rests upon the Implicit Function Theorem. Assume we
are given an equation of the form

F(u,u)=0, F:XXR"->Y

and we know an initial solution. Then, a continuation algorithm will
compute a covering of the solution manifold through the initial
solution.

To apply continuation we need to construct a zero problem for our
experiment.



Control based Continuation

Fundamental idea: introduce feed back control that uses

0=x(t)—2z(t)
as a control target and apply Newton (like) method to solve the
equation
Xo—2o=0,

where X, and Z, are discretisations of x(t) and z(t) .
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The control scheme must satisfy a number of conditions.
Notation:
® Experiments Y, Z

® Measurements y(u,t), z(u,t,x(t))

® Samples Y(u,N)={yo.--»¥n_1)> Z,(1,N,X)
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1. Consistent: Y=Z,

[ Continuous? , Smooth? ]



Control based Continuation

1. Consistent: Y=Z,

2. Locally stabilising: any equilibrium state y of Y must hecome an
asymptotically stable equilibrium state of Zu. In other words, if a
controlled experiment Zu with control target

|
0=y(t)—z(t)
is initialized close to an equilibrium state of Y, then the state z must
converge to the state y over time.



Control based Continuation

3. Non-invasive: |u||<5||x—2z|, xe€U.(y)

!
Remember, the control targetis 0=x(t)—z(t), so any linear
control scheme will typically be consistent and non-invasive.
In many applications a PD controller will be locally stabilising.

In our implementation we use Simulink's PID block, which is non-
linear and time-dependent, but locally monotonic around 0.
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Discretisation.

® Fourier transformation @ 'RN—>R2Q+1, CP;' R c”
® Target function ceR* Y, x(t):= ( )
® Control force u(t):=G(x(t)):=PD(x(t)—z(t))

)
® Zero problem F(c,u):= Q(Zu([,l,N,G(GP(—)l(C))))—C
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Proof of concept.

lull = [[PD(x—z]]|

IA

0|x—z|
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xample: Impact Oscillator
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Example: Impact Oscillator




Example: Duffing Oscillator

Simulations by
Viktor.

Experimental
results.




Current and Future Work

Matlab toolbox for: Techniques for:
® Guided simulations ® Measuring stability
® Guided experiments ® Detecting bifurcations

® Equation free methods ® Branch-switching etc.



Current and Future Work

Unstable solutions are useful!

|
Pyragas control: 0=z(t)—z(t—T)
!
Sieber control: 0=y(t)—z(t)
Very simple (low-tech) auto-adaptive control schemes.

Exploit, don't destroy natural dynamics!
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