
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Pricing and Capacity Planning Problems in Energy Transmission Networks

Villumsen, Jonas Christoffer; Clausen, Jens; Pisinger, David

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Villumsen, J. C., Clausen, J., & Pisinger, D. (2011). Pricing and Capacity Planning Problems in Energy
Transmission Networks. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/pricing-and-capacity-planning-problems-in-energy-transmission-networks(01e37129-d135-48dd-ac2b-fc5b2466d00b).html


Pricing and Capacity Planning Problems in

Energy Transmission Networks

Jonas Christoffer Villumsen

Kgs. Lyngby, 2011



2

Department of Management Engineering

Technical University of Denmark

Produktionstorvet, Building 424

DK-2800 Kgs. Lyngby, Denmark

Phone: +45 45 25 48 00, Fax: +45 45 25 48 05

info@man.dtu.dk



Resumé

Effektiv brug af energi er et stadig vigtigere emne. Miljø-og klima problemer
samt bekymring for forsyningssikkerhed har gjort vedvarende energikilder til et
reelt alternativ til traditionelle energikilder. Men den fluktuerende karakter af
for eksempel vind- og solenergi nødvendiggør en radikal ændring i den måde vi
planlægger og driver energisystemer. Et andet paradigmeskift, som begyndte i
1990’erne for el-systemer er markedsderegulering, hvilket har ført til en række
forskellige markedsstrukturer forskellige steder i verden.

I denne afhandling diskuterer vi kapacitetsplanlægnings- og transmissionspris-
sætningsproblemer i energitransmissionsnetværk. Selv om modelleringen gælder
for energinetværk i almindelighed vedrører de fleste af anvendelsesomr̊aderne
transmission af elektricitet.

En række af de forelagte problemer indebærer switching af transmissionsnet-
tet. Dette giver operatøren af et el-transmissionsnet mulighed for automatisk
at tage transmissionslinjer ind og ud operationelt for at optimere flow af elek-
tricitet i netværket. Vi viser, at transmission switching i systemer med stor-
skala vindkraft kan reducere overbelastninger i nettet, hvilket kan føre til en
højere udnyttelsesgrad af den installerede vindkraftkapacitet. Vi præsenterer
formuleringer af — og effektive løsningsmetoder til — problemet at bestemme
den optimale udbygning af transmissionskapacitet samt unit-commitment prob-
lemet i el-systemer med transmission switching. Vi viser ogs̊a, at transmission
switching radikalt kan ændre den optimale kapacitetsudbygningsstrategi for el-
transmissionsnetværk.

I det nordiske elsystem er det vedtaget at el-markedet er opdelt i zoner, s̊aledes
at hver zone tildeles en bestemt markedspris. Vi formulerer problemet med
at designe zoner p̊a en optimal måde n̊ar usikkerhed omkring f.eks. udbud og
efterspørgsel indg̊ar. Endelig formulerer vi det integrerede problem at beslutte
en optimal pipelineinvesteringsstrategi samt prissætning af transmissionstariffer
i et naturgastransmissionsnet.
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Summary

Efficient use of energy is an increasingly important topic. Environmental and
climate concerns as well as concerns for security of supply has made renewable
energy sources a viable alternative to traditional energy sources. However, the
intermittent nature of for instance wind and solar energy necessitates a radical
change in the way we plan and operate energy systems. Another paradigm
change which began in the 1990’s for electricity systems is that of deregulation.
This has led to a variety of different market structures implemented across the
world.

In this thesis we discuss capacity planning and transmission pricing problems
in energy transmission networks. Although the modelling framework applies
to energy networks in general, most of the applications discussed concern the
transmission of electricity.

A number of the problems presented involves transmission switching, which
allows the operator of an electricity transmission network to switch lines in
and out in an operational context in order to optimise the network flow. We
show that transmission switching in systems with large-scale wind power may
alleviate network congestions and reduce curtailment of wind power leading to
higher utilisation of installed wind power capacity. We present formulations of
— and efficient solution methods for — the transmission line capacity expansion
problem and the unit commitment problem with transmission switching. We
also show that transmission switching may radically change the optimal line
capacity expansion strategy.

In the Nordic electricity system a market with zonal prices is adopted. We con-
sider the problem of designing zones in an optimal way explicitly considering
uncertainty. Finally, we formulate the integrated problem of pipeline capacity
expansion planning and transmission pricing in natural gas transmission net-
works.
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Chapter 1

Introduction

Efficient use of energy ressources is one of the most important issues in modern
societies due to the economic importance of energy to a functioning society. The
increasing population, level of development, globalisation and potentially scarce
resources continually cause the use and cost of energy to increase. From 1973
to 2008 the global use of primary energy almost doubled from approximately
6.1 mio. kilo ton of oil equivalent to 11.9 mio. kilo ton of oil equivalent [72].

In recent years focus on environmental and climate issues has created an in-
creased demand for renewable energy sources. Intermittent energy sources like
wind and solar energy are available in most parts of the world and consti-
tute feasible sources of energy to substitute fossil fuels in electricity generation.
However, the intermittent nature of these energy carriers makes it difficult to
integrate them into existing energy systems as supply and demand of electricity
must balance at all times, since storage of electricity is not (yet) available on a
large scale.

Several technologies exist or are being developed for the purpose of integrating
large amounts of renewable energy in the electricity system. These include
among others (and not necessarily disjoint):

• flexible demand

• storage of electricity

• linking energy carriers

• transmission expansion

• various smart grid applications

One particular smart grid application in electricity networks is the concept of
transmission switching [27]. The idea of transmission switching is to view the
topology of the transmission network as dynamic rather than static, as is the

3



4 INTRODUCTION

case in classic electricity transmission systems. This enables us to co-optimise
the network topology with the changing patterns of supply and demand.

Transmission switching may alleviate congestions in the network arising from
load flow constraints and may increase the potential of renewable energy sources
when the network is congested. Another way of dealing with congestion in the
transmission network is to expand the transmission capacity by building new
lines. In the short term, start-up of existing power plants may incur large fixed
start-up costs, while in the long term building new power plants requires large
fixed investment costs. This leads us to the following design question:

How to optimally design and configure a transmission network?

Another recent development in energy systems is the policy push for deregu-
lated energy systems in many parts of the world. This was first implemented
for electricity systems in the 1990’s (e.g. New Zealand, Scandinavia, U.S.A. [10],
etc.). This meant that supply and transmission of energy was unbundled and
as a consequence a central optimisation of the energy system was no longer pos-
sible. Instead, individual agents will optimise their own part of the system and
the combined solution may not be optimal in a global sense. Regulatory insti-
tutions and frameworks, however, may be (and indeed have been) put in place
to ensure that solutions obtained in deregulated markets are close to system op-
timality. (See e.g. Nagurney [48] for a discussion of user optimality and system
optimality for transportation networks and how to model this using variational
inequalities.)

The design of a particular energy market and the regulatory frameworks may
indeed affect the efficiency of an energy system and are therefore important
issues when planning efficient energy systems. Often, market design is a trade-
off between simplicity of the market structure (to ensure transparency) and the
ability to obtain efficient (globally near-optimal) solutions. This leads us to the
following question:

How to design energy markets that are both simple and yield solutions that are
close to system optimality?

In particular, this thesis deals with the issue of pricing the use of transmis-
sion services, when market participants are not subjected directly to network
constraints.

In deregulated energy markets the planning of physical capacity and decisions
on transmission pricing are interrelated problems as transmission prices affect
the demand for capacity, while expansion of capacity may affect the optimal
pricing strategy.

Throughout the thesis we assume that the design of the market and the trans-
mission network is performed by a welfare maximising organisation. Total (ex-
pected) welfare of the system comprises benefit to all actors (producers, con-
sumers, network operators, etc.) except total cost of the system. The amount
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of availabel renewable energy in the system may be imposed, exogenously, but
is only dispatched if it is economically efficient under given circumstances.

Outline of thesis

Two parts constitute this thesis. Part I, that you are reading now, provides
an overview and background as well as a unified framework for the problems
discussed. Part II consists of a number of self contained scientific papers relating
to the topic of the thesis.

The remaining part of Part I is laid out as follows: Chapter 2 gives an intro-
duction to concepts and models used in the planning of energy systems today.
In Chapter 3 a specific model is considered and its mathematical formulation is
provided. In particular, this model makes it possible to formulate inter-temporal
and strategic decisions for transmission pricing and capacity planning problems
for energy networks in a unified approach. Several interesting applications of
the model are discussed in Chapter 4. Chapter 5 provides a summary of papers
included in Part II, while Chapter 6 discusses the results and contributions of
the thesis as well as directions for future research.

Part II is organised as follows: Chapter 7 – 9 presents two different capacity
planning problems in switchable electricity transmission networks. Efficient
solution methods are presented and the problems are applied to realistically
sized networks. In particular, Chapter 7 provides a Dantzig-Wolfe reformulation
of a two-stage stochastic investment problem with integer variables in both
stages, that seems to be very efficient compared to existing methods. Chapter 8
shows that changing the topology of the electricity transmission network in an
operational context by switching, may lead to a higher utilisation of wind power,
when the network is congested.

Chapter 10 considers the problem of partitioning electricity transmission nodes
into zones in a zonal pricing scheme and shows that ensuring contiguous zones
may lead to higher cost generation. In Chapter 11 a model for planning of
pipeline capacity and design of transmission tariffs in natural gas transmission
networks is provided.

A more detailed description of each of the papers are given in Chapter 5.
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Chapter 2

Modeling Energy Systems in a Planning

Context

This chapter describes and compares some relevant energy models used in the
industry and draws on theory developed in the litteraure. Each section of the
chapter focusses on one important concept in energy systems, namely supply,
demand, storage, transmission, and conversion, respectively. For each section
the concept is defined and it is briefly explained how the concept is implemented
in various energy models. It is not the purpose of this chapter to give an exhaus-
tive description of each model, but rather to highlight some important features
of energy systems modelling as well as to facilitate a comparison between the
different models.

The scope of this chapter is energy models that are used in the planning of a
larger energy system, i.e. on the national or regional level. No choice has been
made regarding the type of energy carrier although the majority of the examples
are from electricity networks. The chosen models describe both technical and
economical properties of the system. This means that there are associated costs
and benefits of operation as well as technical restrictions limiting the operation
of the system. Transient behaviour of the system is disregarded and thus all the
models describe the steady state of the energy system.

The concepts targeted here are: Supply, demand, storage, transmission, and
conversion of energy. Supply denotes the input of energy to the system and
is associated with a cost and technical capacity of supply. Similarly, demand
defines the extraction of energy from the system giving rise to a benefit to the
consumer. For some energy carriers, storage of energy in time is an important
property that is modelled to a greater or lesser extent by various models.

The capacity of the transmission network restricts the flow of energy spatially,
which may cause congestions and bottlenecks in the system. To accomodate
this limitation, one may model the complete transmission network in detail to
make sure to capture all potential congestions. Alternatively, one may choose to

7
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model MARS SIVAEL EMPS Balmorel eTransport ELMOD GASMARS

energy carrier(s) electricity + + + + + +

natural gas + + +

district heat + + +

others +

supply cost function linear + + + + + + +

quadratic +

unit-commitment + + +

demand utility function piecewise constant + + + + +

linear +

cobb-douglas +

market power +

transmission link capacity + + + + +

load flow + +

storage hydro reservoirs + + +

nat. gas reservoirs + +

district heat + + +

conversion + +

Table 2.1: Summary of the properties of the different models considered.
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subdivide the geographical space into areas such that interconnections between
areas reflect known bottlenecks in the network. When considering more than
one energy carrier the conversion between two or more energy carriers must be
accounted for.

The models considered in this chapter are: MARS [18], SIVAEL [51, 19], EFI’s
Multi-area Power-Market Simulator (EMPS) [21], Balmorel [55, 2], eTrans-
port [5], ELMOD [40], and GAS-MARS. Not all of the models are discussed in
each section. Rather, representative examples are discussed in order to illustrate
the respective concept. The majority of the models considered in this paper are
either used or developed (or both) by the Danish transmission system operator
for electricity and natural gas Energinet.dk. Table 2.1 gives an overview of the
models discussed and how the different concepts have been modelled.

2.1 Supply

In general, supply denotes the process of capturing energy outside the system
and converting it to a form of energy inside the system that is to be modelled.
In that respect the supply defines a system boundary of the model on the input
side. As the name implies, supply cost denotes the cost of supplying energy to
the market or the system under consideration from some energy supply source.
In some cases supply costs include both operating costs and investment costs,
while in other cases only operating costs are considered (when investments in
production/conversion facilities are irrelevant).

Operating costs may include start-up costs associated with the start-up of a
given supply unit. The start-up cost of a supply unit in time period t is positive if
and only if supply in period t−1 is 0 and supply in period t is positive, otherwise
start-up cost is 0. The unit commitment problem is the problem of determining
an optimal pattern of start-ups and shut-downs of supply units over a discretised
planning period. This problem may include inter-temporal constraints on the
minimum and maximum up- and down-time of a unit, ramping constraints, and
reserve requirements. See e.g. [61] and [50] for a formulation and litterature
review of solution techniques for the unit commitment problem.

The supply from a source may be limited. For each source the supply in each
period of time is limited by e.g. equipment (conversion units, extraction facilities,
etc.), transport facilities (LNG shipping, natural gas pipelines, etc.) and natural
phenomena (wind patterns, cloud cover, etc.). In addition, exhaustible resources
may be limited in the total amount of energy available.

In deregulated energy markets it is often assumed that suppliers (and con-
sumers) are price takers — thus the market is said to be perfectly competitive.
Samuelson’s seminal paper [57] describe spatial price equilibria and their rela-
tion to linear programming under this assumption. Under certain conditions,
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however, large suppliers may be able to affect market prices in deregulated
energy markets. Harker [28] generalises spatial price equilibria to imperfectly
competitive markets. This may lead to a lower value of welfare than in the case
of perfect competition. In particular, large suppliers may exploit the spatial [23]
and temporal [34, 70] structure of energy markets.

NATGAS [75] describes an equilibrium model of the European market for natu-
ral gas in which suppliers may assert strategic behaviour. This assumes a closed
form expression for the supply price (as a function of the supplied quantity),
which leads to a mixed complementarity problem (MCP) — a generalisation of
non-linear complementarity problems (see e.g. [14] for a thorough introduction
to linear complementarity problems).

When exactly one of the suppliers can assert market power we can model him
as a leader in a Stackelberg game [71]. This leads to a mathematical program
with equilibrium constraints (MPEC, see e.g. [42, 58]) in which the upper level
problem maximises the profit of the strategic supplier subject to optimality and
feasibility constraints of all the other players including technical feasibility of the
system (see e.g. [41] for a definition of Stackelberg games and its corresponding
MPEC).

This approach is presented in [33] for an oligopolistic electricity market with
transmission network constraints. The authors use a penalty interior point
algorithm to solve the MPEC. In [24] the authors model the European electricity
market with one strategic supplier. They model the equilibrium constraints by
introducing auxillary binary variables and disjunctive constraints [22].

When several strategic players are present this results in an equilibrium problem
with equilibrium constraints [65], [41]. In [33] the single supplier problem is
extended to a multi supplier problem and an algorithm for solving the resulting
EPEC is presented and tested on a 30 node network with two suppliers. The
paper [74] presents an equilibrium model of an electricity market with oligopoly
suppliers settling the forward and spot market with demand uncertainty. The
resulting EPEC consists of a number of MPEC’s each corresponding to the
profit maximisation of one of the strategi suppliers. The authors propose an
EPEC-solution scheme in which the underlying MPEC’s are solved iteratively
fixing the decision variables of the other MPEC’s.

A similar approach is used in MARS to solve the market equilibrium in the
Nordic electricity market with several strategic suppliers. Each supply unit is
assumed to have constant marginal unit operating cost, but producers may be
given the possibility of exercising market power by adding a linear mark-up to
the constant marginal cost function. Hence, dominant producers (i.e. producers,
that are allowed to use mark-up) bid their supply capacity u at price p = c+ax,
where c is the marginal cost and 0 ≤ x ≤ u. See [68] for a description of the
model. This is shown in Figure 2.1 (left). The mark-up a is adjusted iteratively
for all dominant producers until a Nash-equilibrium is reached, i.e. until no
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dominant producer has an incentive to unilaterally change his strategy.

SIVAEL operates with two types of supply; supply with constant marginal cost
and supply with piecewise linear marginal cost and unit commitment. The
former being used for production units with constant marginal cost and no
unit commitment cost (such as wind generators) as well as import from areas
exogenous to the model, while the latter may be used to describe the operating
costs of thermal production units. In Figure 2.1 (right), the marginal operating
cost function for a thermal unit with three potential fuels is shown. The marginal
fuel (i.e. the fuel necessary to increase supply marginally) is determined by the
operating point of the supply unit. E.g. at a supply of x MWh fuel 1 is used
fully and fuel 2 is used partly and the marginal supply cost is given by c. Note
that the marginal cost function is not necessarily continous due to differences
in fuel cost of different fuels.

Each all-electricity supply unit (i.e. unit supplying only electricity) i maximises
its own profit given the market prices on electricity for each weekly period of
168 hours, i.e.

max

168
∑

t=1

(

πtxe,ti − ci(x
e,t
i )
)

where πt is the market price for electricity in time period t, xe,ti is the amount
of electricity supplied to the market by unit i in time period t, and ci is the
operating cost function of unit i.

quantity

price

ax

x u

c

p

quantity

price

xx1 x2

c

Figure 2.1: Left: Supply curve in MARS. The solid curve shows the supply curve when
strategic behaviour is not applied, i.e. the marginal cost c is bidded. When strategic
behaviour is applied a linear markup ax is added to the marginal cost (the dashed
curve). Right: The marginal cost curve for a thermal unit with three potential types
of fuel in SIVAEL. Fuel 1 is being used when the unit is active, i.e. when the level of
supply is positive. Fuel 2 is being used at a level of supply greater than x1, while fuel
3 is being used at a level of supply greater than x2. At the indicated supply x the
marginal fuel is fuel 2 and the marginal supply cost is c.

Combined heat and power (CHP) plants produce both electricity and heat for
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consumption in a local district heating network. In SIVAEL, two different CHP
production technologies are modeled, namely extraction and backpressure tech-
nology. The production technology determines the feasible operating region of
a CHP plant, i.e. a set of (xe, xh)-pairs, where xe denotes the output of electric-
ity and xh denotes the output of heat. Figure 2.2 shows the feasible operating
region of the two technologies graphically.

heat

electricity

heat

electricity

Figure 2.2: The feasible operating region for CHP plants with backpressure, resp.,
extraction technology in SIVAEL.

Piecewise constant marginal operating costs are used for all supply units in
Balmorel, as well as in GAS-MARS. This is a prerequisite for the linearity of
the two models that makes them computationally less complex compared to
non-linear models. ELMOD [40] has piecewise constant marginal supply cost
and fixed cost for start-up of supply units. Furthermore, minimum up- and
down time constraints are incorporated.

In eTransport optimal capacity expansion strategies for supply units may be
identified using dynamic programming, when the market is assumed to be per-
fectly competitive. Balmorel allows for a heuristic approach to investments in
supply capacity. For supply capacity expansion in imperfect electricity markets
see [47]. For a survey on generation capacity planning in centralised as well as
deregulated electricity markets see [36].

2.2 Demand

Like supply, demand defines a system boundary — the interface where energy
leaves the system. This may be due to consumption of energy (or conversion to
an energy carrier that is not modelled) or simply by export to a geographical
area or timeperiod outside the scope of the model. Demand and consumption
are sometimes used interchangably. Here, consumption is defined as the amount
of energy actually consumed (or exported), whereas demand is defined as the
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ability and desire to purchase energy [1]. By this definition, demand defines an
upper bound on consumption.

For each demand, the associated utility is determined by a demand curve. In
traditional engineering models, the demand curve is often assumed to be vertical
and the utility set to infinity so that consumption equals demand at all times,
irrespective of the cost of supplying the energy. In economic models, the demand
curve is usually assumed to have some negative slope indicating, that some
users are not willing to pay an arbitrarily high price for supply of energy. The
standard choice in the economic litterature assumes a Cobb-Douglas demand

function [12], where the price p = kx
1

β is a function of the consumption x, and
where k is a constant, and β is the elasticity of demand 1, which is also constant.

SIVAEL assumes a combination of fixed demand that must be satisfied and
flexible demand that is only satisfied if the price is below a specified threshold.
Hence, the demand curve is a piecewise constant curve going towards infinity at
the fixed demand. An example of a demand curve with three flexible demands
is shown in Figure 2.3 (left). Similarly, in EMPS, the demand curve is assumed
to be piecewise constant, but with no fixed demand part as shown in Figure 2.3
(right).

demand

price

x1

x2

x3

demand

price

x1

x2

x3

Figure 2.3: Demand curve in SIVAEL with a fixed demand and two flexible demand
units (left) and in EMPS with three flexible demand units (right)

In MARS, the demand curve is assumed for each area to be a Cobb-Douglas
function with a specified constant elasticity as shown in Figure 2.4 (left). Bal-
morel assumes a piecewise constant demand curve (resulting in a linear model.
However, the Cobb-Douglas demand function may be approximated as detailed
in [55].

1The elasticity of demand is defined as the relative change in consumption divided by the

relative change in price, i.e. ∆x/x
∆p/p

(see e.g. [39]). In general, the elasticity of demand will vary

along the demand curve, however, for the Cobb-Douglas function elasticity is constant in the
entire domain of the function.
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demand

price

demand

price

Figure 2.4: Cobb-Douglas demand curve used in MARS (left) and a linear inverse
demand function (right) as used in many economic models.

2.3 Storage

A storage facility enables the system to keep energy supplied at one point in time
for consumption at a later point in time. Energy storage may either be modelled
endogenously by optimising the system over the entire planning horizon or by
subdividing the planning horizon and performing an approximated optimisation
of the system. In order to keep computational complexity low storage of energy
is sometimes neglected or simplified in models of the power system.

Of course, the type and size of the storage(s) must be considered when determin-
ing the length of the planning horizon and subdivisions. For hydro reservoirs
the seasonal variation in precipitation and the size of the reservoirs typically
calls for optimisation over one year. Storages for natural gas are also typically
optimised over the year. The varying demand pattern causes injection to the
storage during low demand periods (e.g. summer) and extraction during high
demand periods (e.g. winter). For district heating storages the storage size is
much smaller and optimisation may be performed on a weekly basis considering
the variation in heating demand pattern over the week.

In [53, 54] Quelhas et. al. applied differentiated time resolutions to a system of
multiple energy carriers. The authors optimise the network flow of coal, natural
gas, and electricity in the U.S.A. over one year, where the time resolution for
the three energy carriers are 1 week, 1 day, and 1 hour, respectively, and where
storage of coal and natural gas are possible (and storage of electricity is not
possible).

Computational issues arise when the detail of the model becomes too large. This
may happen when the planning horizon needed to describe the use of a storage
facility is long, but the temporal resolution must still be kept relatively small
in order to capture e.g. supply or demand variations in areas where storage is
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not available (or for energy carriers that cannot be stored).

In general, energy storages are used to accomodate temporal differences in sup-
ply and demand patterns, so that arbitrage may be performed between periods
of high supply (or low demand) and periods of low supply (or high demand)
yielding an economic trading surplus.

EMPS is a simulation model of a hydro-based power system, where efficient
use of hydro reservoirs is of great importance. However, it is costly to run an
optimisation of a large system (such as the nordic system) in detail for one entire
year. Therefore, the optimisation is done in two steps. Firstly, an optimisation
of the hydro reservoirs is carried out. This yields for each time period and each
area a vector of water values. Secondly, an optimisation of the whole system is
carried out for each time period using the water values as input. There is no
feed-back loop to the first iteration, hence the water values are not guranteed
to be optimal for the problem of the second iteration.

The water values are calculated using manual calibration and give an indication
of the expected value of the water in the reservoir at a given point in time
given the level of the reservoir. That is, the water value (vrit) is the minimum
price that the respective hydro power producer will accept for energy from the
reservoir r in time period t given that the reservoir level is i relative to the
capacity of the reservoir. In other words, vrit indicates the (constant) supply
price of reservoir r in time period t given the reservoir level i. The water
value is the price a non-strategic hydro power producer will bid in the market
corresponding to the marginal costs of thermal power plants, since he must also
(apart from a marginal production cost close to zero) consider the scarcity of
the water ressource. This supply price is used in the second iteration, where the
supply, consumption and flows of energy are determined for the model area for
each time period independently.

In MARS, the water values calculated by EMPS are used as supply prices for
hydro power stations. As for the second iteration of EMPS, the market clearing
are calculated for each time period (hour), independently, taking into account
the level of the reservoir based on the supply of energy in previous time periods.

SIVAEL models the storage of heat in warm water tanks for consumption in
local district heating networks. The optimisation of the heat storages are done
for each weekly period of 168 hours. (In fact, optimisation is done over 192 hours
of which the last 24 hours are discarded, so that only the first 168 hours are
used in the solution. This is done in order to ensure a realistic level of storage
at the end of the week). The input to the storage are supplied by combined
heat and power (CHP) generation plants operating according to fixed prices for
heat and variable market price for electricity.
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2.4 Transmission

It may be necessary explicitly to model the transmission of energy, i.e. the
movement of energy in space. This may either be due to technical restrictions
(bottlenecks) in the system or because of high costs related to the transmission.
When it is necessary to model transmission explicitly, the geographical space of
the model is subdivided into areas, such that transmission within each area is
costless and without restriction (i.e. there are no bottlenecks). The geographical
segregation must be chosen so that the requirement of costless and unrestricted
transmission holds (to a satisfactory degree), while minimising the number of
areas and thereby the computational complexity.

The geographical resolution is analogous to the temporal resolution described in
Section 2.3 and geographical arbitrage may be performed between adjacent ar-
eas, i.e. between areas that are directly connected by transmission links, yielding
an economic trading surplus. Hence, energy will be bought in areas with excess
supply (low price area) and sold in areas with excess demand (high price area).
The trading surplus is the price difference between the two areas multiplied
by the amount of energy traded except transaction costs. In a perfect market,
price differences (larger than transaction costs) only occur when the capacity
of transmission is reached. Assuming perfect competition between owners of
transmission infrastructure, this potential difference would attract capital to in-
crease the capacity of the transmission link in question. However, most energy
transmission networks are natural monopolies and therefore not subject to the
assumption of perfect competition.

The flows on transmission links of an energy network is in practice not free, but
governed by some physical laws. The flow of energy along a link is determined by
some variable potential at the end nodes of the respective link. E.g. for natural
gas networks the flow of energy in a pipeline is determined by the end pressures of
the pipeline. Conservation of energy implies that the sum of potential differences
around a circuit in the transmission network is 0. For electrical networks this is
referred to as Kirchhoff’s second law or Kirchhoff’s voltage law. These type of
restrictions will be denoted load flow constraints. However, these physical laws
are neglected in many economic macro-level models of energy systems. Instead,
an estimated capacity level is used for the maximum flow of each transmission
link. In the following, these constraints will be denoted link capacity constraints.
The two types of models will be referred to as load flow models and link capacity
models, respectively.

2.4.1 Link capacity models

MARS is an example of a link capacity model, where the areas are determined
beforehand to reflect important bottlenecks of the power transmission system.
Each link between two areas has an associated capacity and a constant unit
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flow cost. The link capacity is determined by the total maximum technical
capacity or the available trading capacity between the two areas. The electrical
network is not modelled in detail and Kirchhoff’s second law is not considered.
The transmission cost per unit of energy transmitted may be set arbitrarily
and reflects e.g. loss of energy or transaction costs related to trading. Also, the
transmission costs limit the number of optimal solutions to the market clearing
problem.

SIVAEL is originally a one-area model, where transmission is not modelled.
However, a heuristic approach to model a single transmission constraint has
been implemented. The approach is outlined in Algorithm 1.

Algorithm 1 Transmission constraint heuristic used with SIVAEL.

find a solution to the problem where the transmission constraint is relaxed
for all timeperiods where the transmission constraint is violated do

set the flow to the capacity of the transmission line
end for

for all timeperiods do
fix flows on the transmission link

end for

for all areas do
find a solution with fixed import respectively export corresponding to the
fixed flow on the transmission line as determined previously

end for

This heuristic ensures that the solution is feasible with respect to the transmis-
sion constraint, but not necessarily optimal. When transmission is considered
SIVAEL may be classified as a link capacity model, as only a fixed capacity on
the transmission link is employed.

Balmorel defines geographical regions, such that transmission of electricity be-
tween regions is restricted. Distribution within one region (i.e. from genera-
tors to consumers) is assumed not to lead to bottlenecks and is therefore not
restricted. However, transmission (between regions) and distribution (within
regions) of electricity always cause a loss of electricity relative to the amount
transmitted. Furthermore, a constant unit cost of transmission and distribution
is implied. Balmorel may be classified as a link capacity model. An area in Bal-
morel is a geographical subdivision of a region. Heat is produced and consumed
within the same area, i.e. transmission of heat between areas is not possible.
Distribution of heat within an area from supply source to consumer lead to a
constant unit loss of energy as well as a constant unit cost similar to electricity
distribution. As for electricity distribution there is no capacity constraint on
the distribution of heat.
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2.4.2 Load flow models

Many electricity network models (e.g. eTransport, ELMOD, etc.) considers
a direct current load flow (DCLF) approximation of the alternating current
load flow (ACLF). DCLF assumes that voltage phase angle differences between
neighbouring nodes are small. See e.g. [11] or [64] for a derivation of DCLF.

Under these assumptions the real power flow on a line a = (i, j) may be described
as a linear function of the voltage phase angle difference between the two end
nodes.

xa =
wi − wj

ra

where ra is the reactance (typical for line type), wi and wj are the voltage phase
angles of the two end nodes and the flow of power is in the direction from i to
j if xa is positive and in the direction from j to i if xa is negative. Due to the
resistance of a transmission line energy dissipates when flowing across a line.
This has two consequences:

1. The amount of energy received at node j is less than the amount of energy
sent at node i (assuming positive flows).

2. The dissipated energy causes the line to heat up.

Often energy losses (1.) is neglected. However, for eTransport [5] and the New
Zealand market dispatch model [67], energy losses are considered explicitly for
each power line and included in the energy conservation constraints for each
network node. Due to (2.) an upper bound (thermal constraint) on the flow of
a line is necessary to ensure secure operation of the system [73].

The DCLF approximation to the ACLF is generally considered to be acceptable
for long term planning.

Several commercial simulation packages for electricity networks exist, including
PowerWorld [52] and DIgSILENT’s PowerFactory [16]. These typically have
both an alternating current (AC) and a direct current (DC) load flow model.
This makes it possible to simulate in detail the load of the network given the
consumption and supplies.

Determining optimal investments in new transmission capacity is an important
problem as new transmission capacity usually has a high fixed cost and a high
impact on the existing system. Furthermore, the problem is computationally
hard.

Villasana et. al. [69] uses linear programming to identify bottlenecks in electric-
ity transmission networks. The static transmission capacity expansion problem
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is the problem of determining an an optimal expansion strategy for a target
period. For electricity networks assuming a DC-approximated load flow for-
mulation, the problem can be formulated as a mixed integer program using
disjunctive constraints (see e.g. [4] and [3]).

The standard way of solving the static transmission capacity expansion problem
is by use of Benders decomposition [6]. This yields a master problem for gen-
erating (possibly infeasible) capacity expansion candidates and a sub problem
checking feasibility of the expansion plans generated in the master problem.
The sub problem solution results in cuts that are added to the master prob-
lem. See [13] for a survey on solving fixed charge network design problems. [56]
proposes a hierarchical decomposition based on Benders decomposition for the
static transmission network expansion problem. In [49] Oliveira et. al. notes
that the investment master problem is a computationally hard mixed integer
program, that needs to be solved successively. They propose to use heuristics to
solve the master problem of the Benders algorithm. Another approach based on
Benders decomposition is proposed in [7]. The stochastic version of the trans-
mission capacity expansion problem is presented in [25]. Here it is assumed that
capacity expansion decisions are taken in the first stage subject to operational
dispatch decisions of market players (who are all pricetakers) in a number of
scenarios (second stage). In [62] the authors propose a Dantzig-Wolfe reformu-
lation [15] and a column generation approach for design of survivable electricity
distribution networks.

Strengthening transmission lines by reducing the reactance or increasing trans-
mission capacity by adding new lines in electricity networks may, however, in-
crease the cost of power generation. This paradox is due to Kirchoffs second
law and is demonstrated in [73] and [9].

Transmission switching [27] may alleviate such effects by switching out trans-
mission lines in periods when this is helpful. Ultimately, one may view the trans-
mission network – not as a static network – but as a dynamic network, which is
reconfigured in an operational context in order to match supply and demand.
In general transmission switching may increase security of a network by the use
of corrective (or post-contingency) rescheduling [46, 59, 60] and decrease cost
of generation [20, 29, 30]. The transmission switching model has been extended
to include unit commitment of suppliers with transmission switching and secu-
rity constraints. A heuristic solution procedure [31] and an algorithm based on
Benders decomposition [37] has been proposed for this problem. Khodaei and
Shahidehpour [38] propose a Benders decomposition approach for solving the
dynamic transmission capacity expansion problem with transmission switching.
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2.5 Conversion

When multiple energy carriers are considered proper conversion between the
energy carriers must be modelled. Examples of conversion facilities are hydro
power stations (water to electricity), gas turbines (natural gas to electricity),
compressed air energy storages (electricity and natural gas to compressed air to
electricity). This conversion may incur some loss of energy, so that the energy
input is higher than the energy output.

eTransport is an example of a model that considers multiple energy carriers and
conversion. eTransport operates with the following types of conversion facilities:
CHP plants, boilers, LNG-plants, LNG-regassification plants, and power plants
with emission flows. Boilers convert fuels or electricity to heat for consumption
in a district heating network. Heat output xbt from boiler b in time period t is
a linear function of the input energy f b

t and is bounded above by ub, i.e.

xbt = kbf b
t ≤ u

b

where kb ∈ [0; 1] is the efficiency of boiler b and ub is the capacity of the boiler
[5].

Even for models that may not be classified here as considering multiple energy
carriers, conversion between different forms of energy may be considered. In
SIVAEL conversion from fuels to electricity and heat supply is modelled in the
supply units as described in section 2.1.2 The increasing marginal cost function
for each fuel in Figure 2.1 (right) reflects a decreasing efficiency of conversion,
while the difference in cost level (corresponding to an efficiency of 1) between
different fuels reflects difference in fuel costs.

In [26] a general framework for considering multiple energy carriers is consid-
ered. In particular, the concept of an energy hub is developed. An energy hub
may model a CHP-plant, an industrial plant, or an urban or rural area, and is
characterised by the input and output energy carriers as well as the coupling
between them. In Figure 2.5 an energy hub with three input energy carriers
(electricity, natural gas, and district heat) and two output energy carriers (elec-
tricity and heat) is shown. The energy hub consists of an electrical transformer,
a gas turbine, a gas furnace, and a heat exchanger. The coupling between the
vector of power input xin and the vector of power output xout is determined
by the coupling matrix C, such that xout = Cxin, where the ith element of
xin, respectively, xout denotes the input, respectively, output of energy carrier i
and Cij denote the coupling between input energy carrier i and output energy
carrier j (i.e. one unit of input i results in Cij units of output j.

2SIVAEL is here not classified as considering multiple energy carriers as fuels are only
modelled with one parameter, namely its price (which is constant). No technical restrictions
are considered, which implies that any quantity of fuel is available at any supply unit at any
time.
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Figure 2.5: Energy hub with three input energy carriers and two output energy carriers.
The hub consists of four converters, namely an electrical transformer (A), a gas turbine
(B), a gas furnace (C), and a heat exchanger (D). The figure is derived from [26].

2.6 Summary

In this chapter some important concepts in energy systems modelling have been
discussed covering supply, demand, storage, transmission, and conversion of
energy. Examples from practical models have been used to illustrate the different
concepts and to facilitate a comparison between the models.
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Chapter 3

Formulation

This chapter provides a unified framework for modelling capacity planning and
market design problems in energy transmission networks. In particular, the
formulation presented applies to load flow formulations of energy transmission
networks. For modelling specific energy systems additional side constraints may
be necessary. For instance, pressure bounds are usually included when modelling
natural gas networks [45, 66]. Section 3.1 provides an optimal load flow formu-
lation of an energy system maximising total social welfare in a particular point
in time. Section 3.2 introduces strategic or inter-temporal decisions linking op-
erational decisions made at different points in time. Particular applications of
the framework is presented in chapter 4.

Consider a directed multigraph G = (N ,A) with source/sink node s. For each
arc a ∈ A, the cost, capacity and lowerbound are stochastic (time dependent)
parameters given by ca, ua, and la, respectively. We wish to find a vector of
flowvariables x ∈ R

|A|, a vector of node potentials w ∈ R
|N |, as well as, a

switching configuration defined by a binary vector z ∈ {0, 1}|A|. Each node
i ∈ N \ {s} has a fixed demand represented by the stochastic (time dependent)
variable di. Let the set of arcs F(i), respectively, T (i) denote the set of arcs with
tail, resp. , head i. Let the set of supply and demand arcs S = F(s)∪T (s) ⊆ A
be defined by having s as the tail, respectively, head. We allow cost coefficients
to be negative. This allows us in particular to model positive benefit of energy
consumption corresponding to flows on demand arcs T (s). An illustration of a
five node instance is shown in Figure 3.1.

3.1 Operational Dispatch

We will now present a generic load flow formulation for an energy transmission
network before we introduce strategic and inter-temporal decisions . This for-
mulation applies in particular to direct current load flow (DCLF) formulations
of electricity networks with switching capabilities.

23
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For a single time period or single scenario ω we observe a realisation c(ω), u(ω), l(ω), d(ω)
of the stochastic parameters c, u, l, d.

3.1.1 A minimum cost network flow model

The globally optimal state (with maximum social surplus) of the system may
be found by solving:

MCNF(ω) : min
∑

a∈A

ca(ω)xa (3.1)

subject to

xa ≤ ua(ω)za ∀a ∈ A (3.2)

xa ≥ la(ω)za ∀a ∈ A (3.3)
∑

a∈F(i)

xa −
∑

a∈T (i)

xa = di(ω) ∀i ∈ N \ {s} (3.4)

za = 1 ⇒ xa = ga(wi, wj) ∀a = (i, j) ∈ A \ S (3.5)

za ∈ {0, 1} ∀a ∈ A (3.6)

where ga is the power flow function, xa is the flow on arc a, za is the switching
decision indicating whether arc a is on or off, and di is the potential of node i.

The binary switching decision za = 1 may for instance represent the decision to
turn on a supply unit (for a in S) or switch a transmission element in (for a in
A \ S). For potential investments za = 1 may represent a request for capacity
on that particular arc.

For the DCLF model in electricity networks with linear generation costs and
no line losses, we have for all arcs a = (i, j) in A \ S, g(wi, wj) = ka(wj − wi),
where ka denotes the susceptance coefficient of line a and fixed za for all arcs a
in A. The node potentials w represents the physical voltage phase angles.

In natural gas transmission networks the flow on a pipeline may be approxi-

mated by the Weymouth equation [66], ga(wi, wj) = ka
√

w2
i − w

2
j , where wi, wj

denotes the pressure at the end points of the pipeline.

In order to illustrate the model we will consider a small example with four trans-
mission nodes, two generators, and two flexible demands. We assume a DCLF
formulation with susceptance coefficient ka = −1. The remaining parameters
are shown in Figure 3.1. All transmission arcs have zero cost and infinite capac-
ities except for the arc from node 2 to 4, that has capacity ua = −la = 5. All
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supply and demand arcs a ∈ S have lower bound la = 0, while all transmission
arcs a ∈ A \ S have lower bound la = −ua. Figure 3.2 shows the optimal flow
and prices with fixed topology, that is za = 1 for all arcs a in A. This solution
has a cost of -777.5. (A negative value indicates that the benefit to consumers
is larger than the total cost on arcs with positive cost coefficients).

s

1
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3

4

∞

∞

5

∞

(20,51) (10,2) (5,-50) (15,-90)

Figure 3.1: DCLF instance with five nodes,
four transmission lines, two supply arcs,
and two demand arcs. Arc labels (ua, ca)
indicate arc capacities and costs for supply
and demand arcs a ∈ S (dotted) and ca-
pacities for transmission arcs a ∈ A \ S
(solid). s denotes the source/sink node,
while 1,2,3,4 denotes transmission nodes.
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Figure 3.2: Optimal flow. Arc labels indi-
cate flows.

In electricity networks Kirchhoff’s voltage law may — together with thermal
capacity constraints — impose additional restrictions on the network flow. In
some cases this leads to a higher cost of generation, than what could be achieved
with a simple link capacity model. Actively switching network elements may
help to alleviate negative effects of Kirchhoff’s voltage law. Figure 3.3 shows
the optimal solution in a switched network, where z is free. The corresponding
total cost of this solution is -1560.

In deregulated energy markets several players have conflicting interests and
make decisions that may not maximise social welfare. In the following, we
assume that each supply and demand arc may be operated by individual agents,
each of which maximise their own profit.

3.1.2 An arc operator

Assume now that a supply or demand arc a = (i, j) in S is operated by an
independent operator purchasing energy in node i and selling energy in node j
in order to maximise his profit. In a particular scenario or time period ω we
can formulate his optimisation problem as follows, assuming that za = 1 is fixed
exogenously,
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Figure 3.3: Optimal flow in switched network. Arc labels indicate flows. The dashed
arc is switched out (za = 0).

AOPa(ω) : max (ρi − ρj − ca(ω))xa (3.7)

s.t. xa ≤ ua(ω) (3.8)

xa ≥ la(ω) (3.9)

where ρ is a vector of market prices determined exogenously. Constraint set
(3.8)-(3.9) is equivalent to

−xa ≥ −ua(ω) (λa) (3.10)

xa ≥ la(ω) (µa) (3.11)

where λa and µa are the dual prices associated with constraints (3.10) and
(3.11), respectively.

The corresponding dual problem is

min ua(ω)λa − la(ω)µa (3.12)

s.t. λa − µa = ca(ω) + ρi − ρj (3.13)

λa, µa ≥ 0 (3.14)

The basic solutions xa and (λa, µa) are said to be complementary if and only if

λa ⊥ ua(ω)− xa (3.15)

µa ⊥ −la(ω) + xa (3.16)
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are satisfied (see e.g. [32]). The ⊥-operator ensures that at least one of the
two operands must be 0. Furthermore, xa is said to be an optimal solution
to AOPa(ω) if and only if xa is feasible and there exist a complementary dual
solution (λa, µa) satisfying (3.13)- (3.14) [32].

The corresponding mixed complementarity problem is then to find

(x∗a, λ
∗
a, µ

∗
a) ∈ {(xa, λa, µa)|(3.10)− (3.11), (3.13)− (3.14), (3.15)− (3.16)}

The complementarity constraints can be linearised using disjunctive constraints
[22].

3.2 Strategic and Inter-Temporal Decisions

We now turn our attention to decision problems involving several time periods
or scenarios. This allows us to model decisions that are dependent in time and
decisions taken under uncertainty. Let the planning horizon be defined by a set
Ω of time periods or scenarios, and — as before — let c(ω), u(ω), l(ω), and d(ω)
be time dependent parameters or particular realisations of stochastic parameters
in a particular time period or scenario ω in Ω.

Let y be a vector of strategic capacity decision variables and let f be the per
unit cost vector associated with these decisions. A generic capacity planning
problem may now be formulated by

CPP:min f>y +
∑

ω∈Ω

p(ω)c(ω)>x(ω) (3.17)

s.t. (y, z) ∈ Y (3.18)

(x(ω), z(ω), w(ω)) ∈ X (ω) ∀ω ∈ Ω (3.19)

where X (ω) = {(x,w, z)|(3.2) − (3.6)} denotes the set of feasible operational
decisions for scenario (time period) ω and Y denotes the set of constraints linking
the scenarios (time periods). If CPP is a stochastic program, p(ω) denotes the
expected probability of scenario ω and the objective maximises the expected
social welfare. If CPP is a deterministic program, p(ω) denotes a weight on
each time period. When p = {1}, the objective maximises the total social
welfare over the planning horizon.

In deregulated markets we need to ensure optimality for each of the arcs that are
individually operated and so X (ω) is replaced byQ(ω) = {(x,w, z, ρ, λ, µ)|(3.2)−
(3.6), (3.13)− (3.16)} for all scenarios ω in Ω.
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Now, let ψ be a vector of strategic pricing decisions. A generic transmission
pricing problem maximising total social welfare may be formulated by

TPP:min
∑

ω∈Ω

p(ω)c(ω)>x(ω) (3.20)

s.t. (ψ, ρ) ∈ Y (3.21)

(x(ω), z(ω), w(ω)) ∈ X (ω) ∀ω ∈ Ω (3.22)

(x(ω), ρ(ω), λ(ω), µ(ω)) ∈ Q(ω) ∀ω ∈ Ω (3.23)

where X (ω) = {(x,w, z)|(3.2) − (3.6)} denotes the set of feasible operational
decisions for scenario (time period) ω and Q(ω) = {(x, ρ, λ, µ)|(3.13)− (3.16)}
ensures optimality for each of the individually operated arcs for scenario ω.

In the next chapter we will discuss some important applications of CPP and
TPP in energy systems.



Chapter 4

Applications

The modelling framework presented in chapter 3 is applied to a range of capacity
planning and transmission pricing problems. Most of the problems presented
below are strategic decision problems involving uncertainty, that can be mod-
elled as two-stage stochastic programs. However, one example of a short-term
capacity planning problem is given in section 4.2. Section 4.1 presents the node
partitioning problem for markets with zonal pricing. In section 4.2 the unit com-
mitment problem for power generators is presented, while section 4.3 considers
network capacity expansions and transmission switching in electricity transmis-
sion networks. Finally, section 4.4 models optimal investments in wind power
generation parks.

4.1 Optimal partitioning of nodes for zonal pricing

In deregulated electricity markets different transmission pricing schemes may
be employed. A distinction is made between between nodal and zonal pricing
schemes. Nodal pricing refers to a system with market prices for each physical
node in the network, whereas in zonal pricing the network is partitioned into
zones and a market price is assigned to each zone.

In the following, we will consider the design of zones under uncertainty for a
deregulated electricity market employing zonal pricing with |K| zones maximis-
ing expected social welfare. See [8] for the corresponding deterministic version.
Let ψ be a vector of binary variables and let ψij = 1 if and only if node i in
N \ {s} is located in the same zone as node j in N \ {s}. The problem may
now be defined as the strategic pricing problem (3.20)-(3.23) with

Y = {(ψ, ρ) |ψij = 1⇒ ρi(ω) = ρj(ω), ∀i, j ∈ N \ {s}, ω ∈ Ω} (4.1)

where ψij = 1 forall (i, j) ∈ HK and 0 otherwise, and HK is a forest of |K|
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components spanning the complete graph with node set N \ {s}. See [44] for
a MIP formulation of the minimum spanning tree problem, that may easily be
adapted to a minimum spanning forest problem.

This problem is considered in chapter 10, where a Dantzig-Wolfe reformulation
based on a split variable approach [43] is also provided.

4.2 Unit Commitment of Power Generators

We will now consider the problem of finding the minimum cost dispatch and
commitment of power generation units in a transmission network. First, we
make the assumption that the planning horizon Ω is a cyclic ordered set of
timeperiods and that Π(ω) denotes the timeperiod immediately preceding ω.
Furthermore, we assume that a fixed cost fa(ω) is incurred by the start-up of a
generation unit corresponding to supply arc a in S. Let ya(ω) = 1 denote the
decision to start-up unit a in time period ω and, correspondingly, let za(ω) = 1
if and only if unit a is on in time period ω.

The unit commitment problem can now be formulated as the capacity planning
problem (3.17) - (3.19), with

Y =
{

(y, z) | z(ω)− z(Π(ω)) ≤ y(ω) ∈ {0, 1}|A|, ∀ω ∈ Ω
}

(4.2)

Assuming a non-negative fixed cost vector, we can relax the integrality require-
ments on y.

The unit commitment problem with transmission switching and a Dantzig-Wolfe
reformulation is presented in chapter 9 together with computational results for
the IEEE 118-bus network.

4.3 Line Capacity Expansion and Transmission Switching

The line capacity expansion or network design problem is an important problem
in the design of efficient electricity systems. In this application, we consider the
possibility of actively switching transmission lines in an operational context. We
assume that the switching of a transmission line (or transformer) is conditioned
on the line having an advanced switch already installed incurring a fixed cost.

The problem is to determine an optimal strategy for investing in new line ca-
pacity and switches. Let y1 be the binary decision vector of line capacity in-
vestments and let y2 be the binary decision vector of switch investments so that
e>a y1 = 1 if and only if line a is installed and, similarly, e>a y2 = 1 if and only if
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line a is equipped with a switch, where ea is the unit vector of all zeros except
the ath element which is equal to 1.

Let y =

(

y1

y2

)

. We may now formulate the problem by (3.17)-(3.19), with

Y =
{

(y, z) | y1 − y2 ≤ z(ω) ≤ y1, y ∈ {0, 1}
2|A|∀ω ∈ Ω

}

(4.3)

This yields a two-stage stochastic program in which first stage decisions identify
investments in transmission capacity and switches and the second stage models
operational decisions after the stochastic realisations of demand, generation cost,
generation capacity, transmission capacity, etc.

A Dantzig-Wolfe reformulation and its integrality properties are discussed in
chapter 7. In chapter 8 we apply the model to the Danish transmission network
and show that switching may increase wind power generation considerably in
systems with large-scale wind.

Switching to increase network reliability

Now, we turn to the problem of increasing the reliability of a transmission
network by investing in transmission switches. We begin by defining the concept
of N-1 reliability.

Definition 1 A network defined by the multi-graph G = (N ,A) is N-1 reliable
in scenario (time period) ω if and only if forall arcs a ∈ A: MCNF(ω) with
fixed z = {1} is feasible for the network defined by G = (N ,A \ {a}).

Consider a network, which is not N − 1 reliable, i.e. in at least one case a
failure of a single transmission line will cause load to be shedded. Traditionally,
unreliable networks are made reliable by adding new (and often expensive) line
capacity to the network. An alternative is to employ active switching of lines in
a post-contingency corrective scheduling framework to increase the reliability of
the network [59, 60]. Or in general: What is the optimal strategy for making a
network N − 1 reliable, when we can choose to install switches on existing lines
as well as reinforce existing lines?

In practice the capacity planning model (3.17)-(3.19) with Y defined by (4.3)
is applied with large penalties on load shedding. That is, we set di = 0 for all
nodes i ∈ N and instead introduce flexible demands with a very high benefit
(negative cost). We use the IEEE 118-bus network, with data described in [10].
This network has 185 lines, total peak load of 4519 MW, and a total thermal
generator capacity of 5859 MW.
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Each of the scenarios correspond to a contingency, where exactly one of the
lines fail. In total there are 185 existing lines, however, only 7 of these lines
cause load to be shedded when failing. We consider expansion of line capacity
on 7 lines by installing new lines in parallel with existing lines. The base case
refer to the situation without line failure and without switching and has total
operational dispatch cost of 2074 $/hour.

Each of these potential lines have thermal capacity 220 MW and reactance
coefficient equal to the existing parallel line. Cost of installing a new line is
10000 $. Switches may be installed across the network with a fixed cost of 100 $,
however, we only allow 2 switches to be open in each of the failure scenarios (in
addition to the one failing) in order to reduce computational complexity [20].

In the optimal solution one new line and five switches are installed incurring a
total investment cost of 10500. The optimal switching configuration is shown in
Table 4.1. The operational cost is lower than in the base case in most scenarios.
If switching is not possible we need to install two new lines incurring a total
investment cost of 20000 $.

ω Line failure Shedded load (MW) Opt. switch conf.

1 E77-82 4.33 E83-85, E89-90

2 E82-83 149.88 E77-82, E89-90

3 E83-85 0.16 E77-82, E89-90

4 E85-88 6.20 E77-82, E89-90

5 E89-90 87.31 E77-82, E83-85

6 E89-92 30.00 E77-82, E83-85

7 E91-92 67.97 E89-91, E95-96

Table 4.1: Failure scenarios for IEEE 118-bus network.

4.4 Positioning and connection of wind parks

The supply capacity of wind power turbines vary over time according to the
speed and direction of the wind and hence large fluctuations in capacity may
occur. When installing off-shore wind parks it is usually worthwhile to invest in
very large wind parks due to the high fixed investment costs. Together with the
extreme wind speeds at sea this exacerbates the sudden changes in electricity
supply. Since electricity cannot (yet) be stored in large amounts these variations
may cause three related problems:

• Electricity supplied by wind power does not match demand,

• other technologies (such as thermal power plants) does not support this
fluctuating supply (i.e. cannot fill in the missing supply at a rate fast
enough), and



4.4. POSITIONING AND CONNECTION OF WIND PARKS 33

• large supplies from a single point in the network may cause congestion in
the transmission network.

Hence, when planning an energy system with large amount of wind power it
may be beneficial to consider the location of wind parks and their connection to
the transmission network in order to alleviate (partly) some of these problems.

What is the optimal locations and connection points for large off-shore wind
parks with respect to social welfare?

For this purpose we may consider the network design problem (3.17) - (3.19),
where za(ω) = 1 is fixed for all transmission lines a ∈ A\S and scenarios ω ∈ Ω
and Y = {(y, z)|z(ω) = y, ∀ω ∈ Ω} ensures that the chosen investment strategy
is implemented in all scenarios.

Here the upper problem considers a number of potential wind park locations
and connection points minimising the total operating and investment costs,
while the lower problem describes the equilibrium flow of the network given the
upper level investment decisions y.

Consider the network in Figure 4.1, where the solid edges represent the existing
electricity transmission network ignoring existing generation units. The dotted
arcs represent potential locations and connection points for three new wind
power parks. It is assumed that exactly one connection point must be chosen
for each wind park.
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Figure 4.1: A small example of a network with three potential windpower parks and
their connection (dotted edges) to the transmission network. Arc labels indicate cost
c and capacity u, respectively of the arc flow x.

The model presented in chapter 8 allows for expansion of an electricity trans-
mission network in systems with large-scale wind power. However, the model
can easily be adapted to also identify optimal expansion plans for wind power
generators in an integrated approach.

In this chapter we have shown how the modelling framework presented in chap-
ter 3 can be applied to decision problems in energy transmission networks in-
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volving strategic or inter-temporal constraints. Some of these applications are
discussed in more detail in Part II. The next chapter provides a summary and
discussion of each of the chapters in Part II.



Chapter 5

Summary of Papers

This chapter summarises and discusses the papers presented in Part II. The
first three papers are concerned with capacity planning of electricity networks
assuming a centralised optimal dispatch, while the last three papers are con-
cerned with pricing problems in deregulated energy markets.

In terms of energy carriers, the first four papers consider electricity only. Paper
5 considers natural gas only, while paper 6 considers transmission of electricity
with hydro storage.

5.1 Investment in Electricity Networks with Tranmission

Switching

Submitted to European Journal of Operational Research, 2011.

This paper presents the strategic transmission capacity and switch provisioning
problem as a two-stage stochastic program minimising total investment cost and
expected cost of power generation. First stage decisions determine an optimal
investment strategy subject to uncertainty of demand and supply. In the second
stage economic dispatch of power is determined assuming transmission elements
may be switched if a switch is installed.

A Dantzig-Wolfe reformulation is presented and its integrality properties are
discussed. The Dantzig-Wolfe reformulation leads to a column generation ap-
proach embedded in a branch and bound framework for finding provably optimal
solutions. The approach is based on the approach provided by Singh et. al. [63]
for stochastic capacity planning problems.

The solution approach is tested on the IEEE 118-bus and the IEEE 73-bus test
cases. We were able to solve instances with up to 256 scenarios, which seems
to be well beyond the capability of competing methods. In all but one instance
the LP-relaxation of the Dantzig-Wolfe reformulation yields optimal integral
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solutions demonstrating the strength of the reformulation.

In most of the instances studied the number of active switches allowed in each
scenario (that is, the number of transmission elements that may be switched
out in any single scenario) are limited to at most k ≤ 3. Increasing k leads
to significantly more difficult sub problems to be solved in the column gen-
eration approach, which increases the solution time. Furthermore, one would
expect that the nice integrality properties of the LP-relaxation reduce. On the
other hand, when solving the compact (original) formulation using a commercial
MIP solver (CPLEX) increasing k seems to help convergence of the branch and
bound. However, this is a trend we have not explored — additional experiments
are necessary to confirm this.

The column generation approach includes fixed charge network design as a sub-
problem and hence is NP-hard [35]. Therefore, strong formulations of the
subproblem is crucial in order to solve instances with many switches and many
scenarios. In our experiments we applied cuts that would prohibit augmenta-
tion of the network into disconnected components by switching out transmission
elements. In particular, the following cut was implemented

∑

a∈P

(1− za) ≤ 1 (5.1)

for any path P such that all nodes in P except the first and last node are two-
connected. Constraints (5.1) provided some improvement for sparse networks
and may be explored further.

The main contribution of the paper is on the applicability of a Dantzig-Wolfe
reformulation to a strategic stochastic planning problem involving switching of
an electricity network. The paper illustrates the strength of the reformulation
by numerical examples and computational results on standard test cases.

5.2 Line Capacity Expansion in a Power System with Large-

Scale Wind Power

Submitted to IEEE Transactions on Power Systems, 2011 and presented at
the 19th Triennial Conference of the International Federation of Operational
Research Societies, 2011.

In this paper we apply the problem and solution methodology presented in pa-
per 1, to the problem of finding optimal line capacity expansion and switch
provisioning plans for electricity networks with large-scale wind power. While
paper 1 was concerned with the methodological framework showing the compu-
tational efficiency of the Dantzig-Wolfe reformulation, this paper is concerned
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with the application to a real network and the value of switching — in partic-
ular in connection with wind power. Computational results are provided for
the IEEE 118-bus network (only switch provisioning) and the projected Danish
transmission network for year 2025 (line capacity expansion and switch provi-
sioning).

Results for the IEEE 118-bus network with a single large wind power farm
show actively switching the network allows for an increase in generation of wind
power by 49 MW (or app. 10 %) in off-peak demand periods and 340 MW (or
app. 64 %) in peak demand periods with maximum wind availability. With
three equally sized wind power farms the corresponding increase in wind power
is 430 MW (app. 23 %) in peak demand and 293 MW (app. 20 %) in off-peak
demand periods. For the Danish network we see an increase of up to 187 MW
(app. 3 %) in peak demand with maximum availability of wind, but no increase
in off-peak periods when allowing to actively switch the transmission network.
These results confirm our intuition that switching yields the highest benefits in
periods where the network is congested.

More interestingly perhaps, the optimal transmission capacity expansion strat-
egy is highly sensitive to the level of switching allowed in the network. For in-
stance, for the Danish network the optimal strategy invests in 6 new lines when
no switching is allowed; 10 new lines when only new lines may be switched; and
8 new lines when all new lines and one additional line may be switched at any
point in time. Contrary to our expectations, introducing a switching regime
generally increases the number of new lines in the optimal expansion plan.

The paper applies active switching to electricity networks with large-scale wind
power. To our knowledge, it is the first time that the benefit of switched net-
works for the integration of large-scale wind power has been quantified. This is
an important application in many parts of the world as wind power and other
intermittent power sources are becoming increasingly more dominant in electric
power systems.

5.3 Column Generation for Transmission Switching of Elec-

tricity Networks with Unit Commitment

Presented at IAENG International Conference on Operations Research, 2011,
and published in the proceedings Lecture Notes in Engineering and Computer
Science. The paper was awarded Certificate of Merit.

This paper considers the economic dispatch and unit commitment of power gen-
erators connected by a switchable electricity transmission network over a short
planning horizon. The application departs from the previous two papers in that
the problem is a deterministic short-term capacity planning problem. For this
problem the capacity decisions refer to the decision to start-up a generation unit
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at a particular point in time. The paper derives a Dantzig-Wolfe reformulation
based on a decomposition of the planning horizon which is quite similar to the
one derived in paper 1.

Although integrality of the LP-relaxation of the Dantzig-Wolfe reformulation
is not guaranteed, results for the IEEE 118-bus network yield optimal integral
solutions without branching for limited switching.

The model presented here is rather simplified. Many constraints often included
for unit commitment of power generators have been disregarded. This includes
minimum and maximum up- and down time constraints, ramp rate constraints,
and security constraints. Adding these constraints are likely to affect the com-
putational complexity of the column generation scheme. We expect that up- and
down time constraints will make the algorithm converge faster as the feasible
space is limited considerably. In a column generation context, this means that
once a good column (with low cost) is added to the restricted master problem,
the shadow price for the up/down time constraints will impose a high cost on
having units turned on or off in certain time periods. This is likely to improve
convergence for the branch and bound algorithm used to solve the sub problem
as well as reduce the optimality gap for the relaxed master problem.

The contribution of this paper is on the Dantzig-Wolfe reformulation of the sim-
plified unit commitment problem with transmission switching. The more general
problem has been treated before and solved using heuristics [31] and Benders
decomposition [37]. However, computational results suggest that column gen-
eration for the Dantzig-Wolfe reformulation has potential in future algorithms
yielding optimal or near optimal solutions for realistic data sets.

5.4 Modelling Zonal Pricing Design Under Uncertainty in

Electricity Markets

Submitted, 2011.
Technical report, Technical University of Denmark, 2011.

In deregulated electricity markets, market prices are used to determine the
dispatch of generation (and to a certain extent consumption). In some markets,
such as the Nordic electricity market, zonal pricing is employed restricting the
price for all generators within the same zone to be equal. In this paper we
present the problem of optimally designing price zones in electricity markets
with zonal pricing under uncertainty assuming a fixed number of zones. The
deterministic non-linear version of this zonal design problem is presented in [8].

A novel formulation of the stochastic problem is presented in the form of a linear
mixed integer two-stage stochastic program. In general, two-stage stochastic
programs are #P-hard under the assumption that the stochastic parameters
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are independently distributed even if all variables are continuous [17]. Under
the same assumption we show that the stochastic zonal design problem is also
#P-hard. This motivates a Dantzig-Wolfe reformulation of the problem, as we
hope that decomposing the problem will lead to a stronger formulation and a
more efficient solution procedure. However, it remains to be shown that the
reformulation does in fact lead to efficient solution algorithms. One may argue
that for practical instances, the stochastic parameters are highly correlated. For
instance, if uncertainty is due to the intermittency of wind generators.

Finally, we show that contiguous zones may be ensured by embedding a spanning
forest formulation, so that each tree in the forest correspond to a zone. We
show that with the same number of zones, ensuring contiguity of zones may
yield solutions with higher cost of generation compared to the non-contiguous
case.

To our knowledge, it is the first time a stochastic version of the zonal design
problem is presented. Also, we are not aware of any previous formulations for
this problem that ensures contiguous zones.

5.5 Capacity Expansion and Transmission Pricing in Nat-

ural Gas Networks

Working paper.

In this paper we combine strategic capacity planning decisions with pricing deci-
sions at the tactical level (short to medium term) for a natural gas transmission
network. This leads to a three stage stochastic program where strategic deci-
sions regarding the expansion of the network are made in the first stage, while
decisions regarding the level of transmission tariffs are made at the second stage
after realisation of some of the stochastic parameters. The third stage models
the economic dispatch of natural gas in the network. Strategic and tactical
decisions are assumed to be made by a welfare maximising organisation, while
dispatch of supply and consumption is made by an independent operator, who
is not subjected to network constraints.

It is shown that different pricing strategies affect the social welfare of the system
and the profit of the independent operator. Furthermore, expanding the capac-
ity of the network may influence the optimal pricing strategy chosen. Hence, an
integrated approach is needed.

To our knowledge it is the first time that the problem of determining optimal
transmission tariffs for a natural gas network has been proposed. The main
contribution of the paper is on the modelling framework integrating strate-
gic capacity planning and tactical tariff decisions in a stochastic programming
framework.
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Since capacity decisions are often long-term strategic decisions, while market
designs or regulatory frameworks may in principle be changed with very short
notice, it may not be optimal to rely on a single specific market framework when
choosing capacity investments. We may accommodate this by letting stage two
model different market regimes.

5.6 Modelling Hydro-electric Power Producers Strategic

Use of Water Reservoirs

Presented at the 8th Conference on Applied Infrastructure Research (INFRA-
DAY), 2009.

In all the papers of Part II markets are assumed to be perfectly competitive.
In this paper, however, we are concerned with the exercise of market power by
hydro power suppliers in electricity transmission networks. The paper models
an electricity market with oligopolistic power producers and storage of hydro
energy.

A numerical example shows that market power of a single hydro-power sup-
plier may lead to spilling of water (letting water run through the dam without
producing power) and lower social welfare. Even though, power flows in the
transmission network are not affected by market power, it leads to generally
higher prices and a lower reservoir level at the end of the planning horizon
compared to the case with perfect competition.

The non-linear, non-convex nature of this type of problems make them noto-
riously hard to solve. One option is to discretise the supply quantities and
introduce conjunctive constraints for the equilibrium constraints as described in
[24]. This leads to a mixed integer linear program. The advantage is that this
allows for modelling additional discrete decisions. Unfortunately, discretising
continuous variables may lead to sub-optimal solutions when the chosen dis-
cretisation is too coarse, while a fine discretisation leads to a MIP with a large
number of integer variables, that may yield the problem intractable.



Chapter 6

Conclusion

This chapter concludes Part I. First a brief summary of the main content of
the thesis is given. Then the main scientific contribution of the papers are high-
lighted, and finally, some ideas and directions for further research is provided.

6.1 Summary

This thesis is concerned with transmission pricing and capacity planning prob-
lems in energy tranmission networks. Various models are provided and efficient
solution methods are suggested in many cases. A generic modelling framework
is presented and several applications are suggested. Although the modelling
framework applies generally to energy transmission networks most of the prob-
lems considered in this thesis describe applications to electricity transmission
networks. Each of the applications involve the design or configuration of an
optimal transmission network or transmission constrained energy market.

All of the applications involve finding the optimal dispatch and equilibrium flow
in the transmission network in a number of discrete time periods or scenarios
given upper level decisions taken by a social welfare maximising system opera-
tor anticipating the dispatch and network flow in all time periods or scenarios.
In most of the applications the upper level decisions refer to capacity expan-
sion or pricing decisions taken under uncertainty in a stochastic programming
framework.

The special multi-period or multi-scenario structure of the problems consid-
ered is amenable to a decomposition by time period (scenario) due to the block
structure of the corresponding mixed integer program. A Dantzig-Wolfe refor-
mulation is provided for several of the problems leading to efficient solution pro-
cedures using column generation. The following briefly summarises the chapters
of Part II.

In chapter 7 a stochastic capacity planning model for determining optimal trans-
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mission network expansion and switch provisioning in an electricity transmission
network is presented. A Dantzig-Wolfe reformulation of the problem is provided
and its integrality properties are discussed. The model is applied to the problem
of investing in advanced switches under uncertainty allowing the transmission
network to be switched in an operational context. Branch and price and col-
umn generation algorithms are used to obtain provably optimal solutions for
two IEEE test networks with a large number of scenarios.

Chapter 8 considers the application of transmission switching to electricity net-
works with large-scale wind power. The model presented in chapter 7 is ap-
plied to two different networks. Firstly, the switch provisioning problem is
considered on an IEEE network with 118 busses. These results indicates that
switching increases the throughput of wind power in particular in congested net-
works. Secondly, the projected Danish transmission network for 2025 with large
amount of installed wind power capacity and potential line capacity expansions
is considered. Results for the Danish network show that switching may reduce
curtailment of wind power in periods with peak demand and high wind power
significantly.

Chapter 9 presents a simplified unit-commitment problem for power generation
units in a switchable electricity transmission network. Whereas the preceeding
two chapters considers strategic capacity planning under uncertainty, the prob-
lem considered here is a short-term, deterministic capacity planning problem
determining optimal commitment patterns for generating units. A Dantzig-
Wolfe reformulation of the problem is provided and applied to an IEEE test
case.

In the first three chapters of Part II we looked at capacity planning problems
in electricity networks. We did not make any assumptions regarding the type
of market setting — or rather, we took a central planning approach assuming
that the behaviour of individual agents will not deviate significantly.

In chapter 10 we treat the problem of finding a partition of the transmission
nodes into price zones in an electricity market employing zonal pricing. Since,
the zonal design must be static we embed the problem into a two-stage stochastic
programming framework. A Dantzig-Wolfe reformulation for the problem is also
provided.

Chapter 11 combines capacity plannning and transmission pricing design for a
natural gas transmission network with entry-exit tariffs. A three-stage stochas-
tic model is presented in which first stage decisions model investments in pipeline
capacity, second stage model pricing decisions, while the operational dispatch
of natural gas is modelled in the third stage.
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6.2 Main Contributions

The main contributions of this thesis are highlighted below. The contributions
fall into three categories: Novel model formulations, new applications of existing
models, and efficient solution methods and model reformulations.

Three novel model formulations are described and discussed.

• A formulation of the network capacity expansion problem with switch
provisioning under uncertainty is provided as a two-stage stochastic mixed
integer program.

• We give a linearised stochastic version of the zonal pricing problem and
introduce a clustering method based on a minimum spanning forest for-
mulation to ensure spatially contiguous zones.

• An integrated approach is presented for determining an optimal pipeline
capacity expansion strategy and transmission pricing decisions in natural
gas transmission networks with entry/exit tariffs.

Transmission switching in electricity networks has given rise to some interesting
results.

• Switching principles are applied to electricity networks with large-scale
supply of wind power. We have shown that introducing switching may
reduce curtailment of wind power, especially in peak demand periods and
may support integration of large supplies of wind power into existing elec-
tricity transmission systems.

• When considering expansion of electricity transmission networks by con-
structing new lines, introducing a regime where transmission lines may
be switched alters the optimal line capacity expansion plan considerably.
The results suggest that allowing to switch new lines increases the num-
ber of lines to be installed, while allowing to switch existing lines has the
opposite effect. However, this should be confirmed on more test instances.

Eventhough the data for these problems have been selected carefully, the results
should not be seen as a recommendation for introducing active switching, but
rather as an indication of a promising area for research and development within
the industry. The model does not capture for instance security and stability
issues. Also, the scenarios described are rather coarse — capturing only major
fluctuations. Hence, further analyses are needed.

For several of the problems considered a Dantzig-Wolfe reformulation enables
efficient solution methods.
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• We derive a Dantzig-Wolfe reformulation of the stochastic network ca-
pacity expansion problem with switch provisioning and show that this
gives rise to efficient column generation and branch and price algorithms.
These algorithms are tested on two IEEE test networks as well as the
Danish transmission network showing superiority of the algorithms over
standard branch and bound on the original formulation. For the switch
provisioning problem we are able to solve instances with up to 256 scenar-
ios in less than 9 hours, which seems to be well beyond the capability of
competing methods.

• A Dantzig-Wolfe reformulation for the simplified unit-commitment prob-
lem with network constraints and transmission switching is provided. Com-
putational results seem promising.

6.3 Some Ideas for Future Research

In this section we outline some interesting ideas and directions for future re-
search.

Long term stochastic capacity planning problems usually involve several capac-
ity expansion decisions to be taken over an extended period of time (the planning
horizon). The two-stage stochastic capacity planning models presented in this
thesis may be naturally extended to multi-stage models where each stage refers
to a particular point in time in a discretised planning horizon.

Multi-stage formulations may also be used to ensure that the topology of the
switched network is N − 1 reliable in any scenario. This would result in a
three-stage stochastic program in which investment decisions are taken in the
first stage, switching decisions in a number of scenarios in the second stage,
while redispatch decisions are taken in the third stage representing contigencies
corresponding to failure of each of the transmission lines.

Similarly, one can extend the two-stage stochastic capacity planning problem
presented in chapter 7 with unit-commimtment decisions over a number of time
periods in each scenario. In this way the operational dispatch problem for each
scenario is itself a multi-time period problem, that may be solved using column
generation as outlined in chapter 9 in a nested approach.

The network capacity expansion and switch provisioning problem is described
for electricity transmission networks in chapter 7 and 8. The approach may also
be applied to distribution networks, in which lines are required to be switched
into a radial topology in each scenario.

The scenarios discussed in chapter 8 are greatly simplified. The relative wind
power capacity is uniformly spread geographically, so that all off-shore wind
power plants has the same capacity coefficients across the network in each sce-
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nario. The power of switchable networks stems from the ability to provide a
network topology that is optimised for the generation and demand patterns at
any point in time. It would be interesting to include in the analysis scenarios
that have different levels of wind in different parts of the network. For instance,
one may construct two scenarios; one with high wind capacity in the eastern
part of the network and no wind in the western part and vice versa. Two in-
teresting questions arise: Does the benefit from transmission switching increase
when considering more versatile scenarios? and how does this influence solution
times and the LP-integrality of the Dantzig-Wolfe reformulation?

The model considered in chapter 9 is rather simplified. Furhter effort should
be directed at introducing additional constraints to make the formulation more
realistic. These include ramp rate constraints, minimum and maximum up- and
down time of generation units, and security constraints. See e.g. [31] for a de-
scription of these constraints. Inclusion of these additional constraints are likely
to influence the proposed column generation algorithm as they further couple
time periods. However, it is yet to be seen if they have a positive or negative
effect on the convergence of the algorithm. Also, solutions to the Dantzig-Wolfe
reformulation of the unit commitment problem are not guaranteed to be op-
timal. Embedding the column generation in a branch and bound framework
would make it possible to achieve optimal integral solutions in general.
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We consider the application of Dantzig-Wolfe decomposition to stochastic integer pro-
gramming problems arising in the capacity planning of electricity transmission net-
works that have some switchable transmission elements. The decomposition enables a
column-generation algorithm to be applied, which allows the solution of large problem
instances. The methodology is illustrated by its application to a problem of determin-
ing the optimal investment in switching equipment and transmission capacity for an
existing network. Computational tests on IEEE test networks with 73 nodes and 118
nodes confirm the efficiency of the approach.
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7.1 Introduction

In this paper we consider economic dispatch models for wholesale electricity
supply through an AC transmission network as discussed in e.g. [4]. These
models typically make use of a DC-load flow assumption in which reactive power
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is ignored, line resistance is assumed to be small in comparison to reactance,
and voltage magnitudes are treated as constant thoughout the system. In such
models, Kirchhoff’s laws are used to determine the flow on each line. The voltage
law states that power flow on a transmission line is proportional to the difference
in voltage phase angles at each endpoint, and the current law states that the
total power flowing from the network into any location matches the demand
minus supply at this point. Thus, given the optimal dispatch and demand for
a tree network, the power flow is uniquely determined by the current law. The
voltage phase angles that generate this flow can be uniquely determined up to
an additive constant by applying the voltage law.

Most electricity transmission networks are designed as meshed networks (with
cycles) for security reasons, so that if any line fails, the power can still flow from
source to destination by alternative paths. When the network contains cycles,
the voltage law and current law must be applied simultaneously to determine
the line flows and voltage angles from the dispatch of flow and generation. The
presence of cycles places additional constraints on the line flows that are absent
in tree networks. In particular, for each cycle in a network the sum of voltage
angle differences (with respect to the direction) around the cycle must equal
zero. Hence, each cycle in the network gives rise to one additional constraint on
the line flows. This leads to a paradox (see e.g. [2]) in which adding a new line
to a transmission network might increase the cost of supplying electricity, even
if the cost of the line itself is zero.

Based on these observations, it is easy to see that it may be beneficial in mesh
networks to take some lines out of operation — to either decrease system cost or
increase reliability [10, 17]. The process of taking out lines and bringing them
back in is done by opening (respectively closing) a switch at the end of the line
and is referred to as switching.

Recent interest in renewable intermittent energy sources and the call for intel-
ligent transmission networks or smart grids have spurred a renewed interest in
switching problems. Fisher et. al. presents in [8] the problem of optimal switch-
ing of transmission elements in an electricity transmission network to minimize
the delivered cost of energy. They propose a mixed-integer program to solve
the DC-loadflow economic dispatch model with switching decisions in a single
time period. They note that the problem is NP-hard. Results are provided for a
118-node network with 186 transmission lines. Hedman et. al. [12] extends the
model to consider reliability of the network. Reliability constraints are added
to the problem to ensure that any line failure will not lead to an infeasible dis-
patch of generation. They note that in some cases adding reliability constraints
increases the value of switching.

In [13] Hedman et. al. discuss a decomposition algorithm to solve the trans-
mission switching problem with unit commitment decisions made heuristically
over 24 time periods. It is noted that adding transmission switching may yield
a cheaper unit commitment plan than what could be achieved without switch-
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ing. In this model, it is assumed that a technology is available that makes it
possible to switch lines instantaneously. That is, a line may be switched auto-
matically from one moment to the next without delay. In this case, switching
out lines will (in theory) not affect system security (disregarding failures on
switching equipment), since all lines may be switched back in immediately, in
case of any failure in the system. Khodaei and Shahidehpour [14] describe a
Benders decomposition of the security constrained unit commitment problem
with transmission switching that outperforms an integrated MIP-model, and
Khodaei et. al. [15] provide a Benders decomposition approach for solving
capacity expansion problems in electricity networks with active transmission
switching.

The solution of the large-scale mixed-integer programming problems that arise
when switching is considered remains a challenging obstacle to their implemen-
tation in practice. Most of the literature in this area has focused on demon-
strating the savings in cost that can be made by transmission switching, while
acknowledging that there are still computational hurdles to be overcome when
solving large real-life instances. Fisher et. al. [8] were unable to prove optimality
of transmission switching in the IEEE 118-bus network with a single scenario
and unrestricted number of open lines. The heuristic approach presented by
Hedman et. al. [13] for the transmission switching and unit commitment prob-
lem with security constraints is unable to prove optimality for the IEEE 73-bus
network over 24 time periods — even with extensive computer resources. Kho-
daei and Shahidehpour [14] limits the space of switchable lines to find solutions
to the security constrained unit commitment problem with transmission switch-
ing using Benders decomposition. Even when the single-scenario problems are
restricted to allowing a small number of switches, these are sufficiently hard to
make a multi-period or multi-scenario model intractable.

Making it possible to switch lines instantaneously often requires that some hard-
ware is installed in the network. Firstly, a switch needs to be installed at the
line. Secondly, communications equipment between the switch and operating
control center is required to ensure automatic remote operation of the switch.
Moreover, the ability to profitably switch lines out might be enhanced by adding
new transmission lines to the network to absorb increases in flow.This leads to
a two-stage stochastic integer programming problem of determining an opti-
mal capital provisioning plan that will satisfy demand almost surely at least
expected cost. Note, that even though the fixed cost of enabling a line to be
switched instantaneously may be small (e.g. if the switch is already present and
only communication equipment needs to be installed) it may not be worthwhile
to enable switching on all lines (unless this cost is 0 for all lines), since some
lines may never be switched.

In this paper we show how one can attack the stochastic capital provisioning
problem using Dantzig-Wolfe decomposition [6] and column generation to give
provably optimal or close to optimal solutions. Our approach is based on the
approach of Singh et al [19] for determining optimal discrete investments in
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the capacity of production facilities. They proposed a split-variable formulation
and Dantzig-Wolfe reformulation resulting in a sub-problem for each node in
the scenario tree, and showed how this could enable the solution of previously
intractable instances of capacity planning problems for electricity distribution
networks. Our contribution in this paper is to show how this methodology ap-
plies to a transmission switching model, to enable their solution in settings where
there are many scenarios representing future uncertainty. With a limitation on
the number of switches used in each scenario, the decomposition approach en-
ables us to solve IEEE test problems with up to 256 scenarios, which appears
to be well beyond the capapility of competing methods.

We begin the paper by recalling a mixed-integer programming formulation for
transmission switching based on the model in [8]. In section 7.3, we address the
problem of the planning of transmission networks under uncertainty consider-
ing both installation of switches and line capacity expansions. In particular, we
consider a two-stage stochastic program in which the first-stage decisions con-
cern the investments in switch equipment and line capacity, while the second
stage models operational decisions in different scenarios. The model is reformu-
lated using Dantzig-Wolfe decomposition, and solved using column generation.
In section 4 we study the structure of the master problem in order to provide
some insights into the strength of the decomposition. We show that the mas-
ter problem has naturally integer optimal solutions in some circumstances, and
provide counter examples where this is not true. Computational results of the
method applied to two standard test problems (the IEEE 73-bus network and
the IEEE 118-bus network) are presented in section 7.5. We then draw some
general conclusions about the effectiveness of the approach.

7.2 Optimal Transmission Switching

We model the electricity transmission system as a network where N denotes the
set of nodes (or busses) and A denotes a set of arcs representing transmission
lines (and transformers) connecting the nodes. Let T (i) denote the set of arcs
incident with node i where i is the head of the incident arc, and let F(i) denote
the set of arcs incident with node i, where i is the tail of the incident arcs. So an
arc in F(i) ∩ T (j) is directed from node i to node j. Since power flow can flow
in both directions in a transmission line we allow these flows to take negative
values, indicating power flow in the opposite direction from the arc direction.

Many transmission systems consist of alternating current circuits, interlinked by
high voltage direct current links. We shall ignore these interconnections in this
paper, and assume that all lines carry alternating current. The methodologies
can easily be adapted to treat direct current lines as special cases. Note, that
even though we assume all lines to be alternating current lines, the models pre-
sented are based on the linear direct current optimal power flow approximation
as discussed in the introduction.
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Let G be the set of all generating units, where G(i) is the set of generating
units located in (and supplying electricity to) node i. For simplicity, we assume
that each unit g ∈ G offers its entire electricity capacity ug to the system at its
marginal cost cg. (A model in which each unit offers a step supply curve is a
straightforward extension.) We denote by qg the dispatch of power of unit g.

At each node i the demand di must be met. Load shedding at node i may
be modelled by introducing a dummy generator at each node offering di at a
penalty price.

Each transmission line a ∈ A is characterised by its reactance Xa and thermal
capacity Ka. The flow on line a is denoted Pa, which can be negative in order
to model power flows in the direction opposite to the orientation of a.

A subset of lines S ⊆ A are considered to be switchable. Lines that are switch-
able may be taken out of operation in any given period of time. For each line
a ∈ S, za = 1 denotes that the line has been switched out (opened), while za = 0
denotes that the switch is closed.

The economic dispatch problem of finding the minimum cost optimal DC-load
flow may now be formulated as

EDP: minimize
∑

g∈G

cgqg (7.1)

s.t. 0 ≤ qg ≤ ug, g ∈ G (7.2)

za = 0 ⇒ XaPa − θi + θj = 0, a = (i, j) ∈ A (7.3)
∑

g∈G(i)

qg −
∑

a∈F(i)

Pa +
∑

a∈T (i)

Pa = di, i ∈ N (7.4)

−Ka(1− za) ≤ Pa ≤ Ka(1 − za), a ∈ A (7.5)
∑

a∈A

za ≤ k, (7.6)

za = 0, a ∈ A \ S (7.7)

za ∈ {0, 1}, a ∈ S (7.8)

The objective (9.1) minimizes the total generation costs respecting generation
capacities (9.2), flow conservation (9.3), and thermal line capacity (9.4). For
lines that are not switched out, Kirchhoff’s voltage law must be respected (9.5).
Furthermore, we only allow k lines to be switched simultaneously (9.8) and only
lines in S are switchable (7.7). Finally switching decisions are binary (7.8).

Note, that constraint (9.5) may be linearised using a big-M construction

−Mza ≤ XaPa − θi + θj ≤Mza, a = (i, j) ∈ A (7.9)

whereM is some sufficiently large number. To give a strong linear programming
relaxation, lower values of M are better. The choice of an appropriate value of
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M is discussed in [1], who observe that the difference in voltage angles between
any two nodes i and j is bounded by

Mij = max{
∑

a∈R

XaKa | R is a path of edges joining i and j}

and so choosing M =maxi,jMij will give the smallest value in general. This
poses some difficulty in practice, since the computation of Mij is a hard prob-
lem, and so its use is restricted to small networks where it can be found by
enumeration (see [1]). The approach taken in [13] imposes a uniform bound on
the magnitude of the voltage phase angle of 0.6 radians. This constraint allows
a value of M = 1.2 to be chosen.

7.3 Switch and transmission provision under uncertainty

We now consider the problem of installing switches and new lines in an electric-
ity transmission network to minimize the capital cost and expected operating
cost averaged over a number of scenarios denoted ω ∈ Ω. In each scenario ω
we have a realization of demand d(ω) and generation cost c(ω) and genera-
tion capacity u(ω). This enables us to vary parameters according to climatic
conditions (e.g. high costs could model shortage of water in hydro stations,
and low capacity model low wind outcomes for wind farms). We assume that
transmission switching and economic dispatch is carried out after these random
outcomes are realized. In each scenario ω we have the switching and dispatch
problem:

EDP(ω): minimize
∑

g∈G

cg(ω)qg (7.10)

s.t. 0 ≤ qg ≤ ug(ω), g ∈ G (7.11)

XaPa − θi + θj +Mza ≥ 0, a = (i, j) ∈ A
(7.12)

XaPa − θi + θj −Mza ≤ 0, a = (i, j) ∈ A
(7.13)

∑

g∈G(i)

qg −
∑

a∈F(i)

Pa +
∑

a∈T (i)

Pa = di(ω), i ∈ N (7.14)

−Ka(1− za) ≤ Pa ≤ Ka(1− za), a ∈ A (7.15)
∑

a∈A

za ≤ k, (7.16)

za = 0, a ∈ A \ S
(7.17)

za ∈ {0, 1}, a ∈ S. (7.18)
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We now consider the problem of installing switches and new transmission lines
prior to the realization of ω. We assume that a fixed cost is associated with
installing switching equipment at each line and that this cost covers all the
actual costs of making it possible to perform instantaneous switching of that
particular line. Furthermore, we assume a fixed cost of installing new lines from
a fixed set of possible line expansions.

This gives a two-stage stochastic model, where the first-stage decisions involve
investments in switching equipment yS and line capacity yL, while the second-
stage problem EDP(ω) models operational decisions (q, P, θ, z) for dispatch and
switching in each scenario ω occuring with probability p(ω). For each scenario
ω ∈ Ω, let

Q(ω) = {(q, P, θ, z) | (7.11-7.18)}.

The model may now be formulated as

min f>
S yS + f>

L yL +
∑

ω∈Ω

p(ω)c(ω)>q(ω) (7.19)

s.t. yL − yS + z(ω) ≤ 1, ω ∈ Ω (7.20)

yL + z(ω) ≥ 1, ω ∈ Ω (7.21)

(q(ω), P (ω), θ(ω), z(ω)) ∈ Q(ω), ω ∈ Ω (7.22)

yL, yS ∈ {0, 1}
|A|. (7.23)

The capital costs fS and fL are amortized to give a per period capital charge
that is traded off against the expected economic dispatch cost per period, as
expressed by objective (9.11). We set e>a yL = 1 and e>a fL = 0 for existing lines.
The constraints (9.12) ensure that switching of installed lines is only possible if
a switch is also installed. Constraints (8.12) allow lines to be switched in only
if they have non-zero capacity. Note, that not installing a line corresponds to
having the line switched out (i.e. z(ω) = 1) in all scenarios ω ∈ Ω.

We can decompose (9.11)-(8.14) following the approach in [19]. The idea is
to decompose the stochastic problem into a master problem and a number of
subproblems — one for each scenario. We let the binary vector z(ω) define a
feasible switching plan (FSP) for scenario ω if there exists q(ω), P (ω), θ(ω) such
that (q(ω), P (ω), θ(ω), z(ω)) ∈ Q(ω). Now, let Z(ω) = {ẑj(ω)|j ∈ J(ω)} be the
set of all FSP’s for scenario ω, where J(ω) is the index set for Z(ω). We can
write any element in Z(ω) as

z(ω) =
∑

j∈J(ω)

ϕj(ω)ẑj(ω)

∑

j∈J(ω)

ϕj(ω) = 1, ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω).
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Assume that for each feasible switching plan ẑj(ω) the corresponding optimal
dispatch of generation and load shedding is given by q̂j(ω). The master problem
can now be written in terms of ẑ and q̂ as

MP: min f>
L yL + f>

S yS +
∑

ω∈Ω

∑

j∈Jω

p(ω)c(ω)>q̂j(ω)ϕj(ω) (7.24)

s.t. yL − yS +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≤ 1, [π(ω)] , ω ∈ Ω (7.25)

yL +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≥ 1, [ρ(ω)] , ω ∈ Ω (7.26)

∑

j∈J(ω)

ϕj(ω) = 1, [µ(ω)] , ω ∈ Ω (7.27)

ϕj(ω) ∈ {0, 1}, j ∈ J(ω) (7.28)

yL, yS ∈ {0, 1}
|A| (7.29)

where µ(ω), π(ω) and ρ(ω) denote the dual prices associated with the respective
constraints.

The master problem MP is a two-stage stochastic integer program with integer
variables in both stages. Although in general these are difficult to solve, the
structure of MP is such that integer extreme point solutions are common. To
help understand the reasons for this we examine some special cases of MP in
the following section.

7.4 The structure of MP

In this section we investigate the structure of MP. We first assume that we do
not install new lines, so that e>a yL = 1, a ∈ A. This simplifies MP since the
constraints (7.26) can be removed from the formulation. The constraints (7.25)
become

−yS +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≤ 0.
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Suppose now that there is at most one switch allowed in each scenario. The
master problem matrix with |S| possible locations for switches takes the form

A =



































−I I

−I I
...

. . .

−I I

e> 1

e> 1
. . .

. . .

e> 1



































where I is the |S| × |S| identity matrix and e ∈ {0, 1}|S| is a vector of 1’s, and
there is a copy of −I and I for each scenario ω ∈ Ω. If switches are permitted
only on a small subset of lines then we are guaranteed an integer optimal solution
to MP.

Proposition 2 If |S| ≤ 2 then A is totally unimodular.

Proof. If |S| = 1, then A> (after multiplying its last |Ω| rows by -1) is a node-
arc incidence matrix which is totally unimodular. For the case |S| = 2, we use

the fact that the total unimodularity of
[

L M
]

implies that

[

L M

0 I

]

is

totally unimodular. It suffices to show that the transpose of the first 2 (|Ω|+ 1)
columns of A is totally unimodular. This matrix is

B =

















−I −I . . . −I

I e

I e
. . .

. . .

I e

















which can be transformed into a node-arc incidence matrix by multiplying the
first row of B by -1, and then multiplying by -1 each row of B corresponding to
the first row in each occurrence of I.

For larger values of |S|, we cannot guarantee that A is totally unimodular, even
if only at most one switch is allowed in each scenario.

Example 1

Consider the network in Figure 1.
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1

2

4

3

1

4

2

3

Figure 7.1: Network for Example 1, showing node and line indices. We seek optimal
switch investments on lines 1, 2, and 3

Suppose that all lines have equal reactance and lines 1, 2, and 3 have capacity
5 while line 4 has capacity 1. Suppose that there are three scenarios ω = 1, 2, 3.
In scenario ω, zero cost power of 5 units is available at node ω and there is a
demand of 5 and unlimited power at cost 2 at node ω + 1 (one could imagine
these being different wind scenarios). We consider installing switches on lines
1, 2, and 3, each with a cost of 1.

In scenario 1, without any switches we can only send 4 units from 1 to 2 through
the network (3 directly from 1 to 2 and 1 unit from 1 to 4 to 3 to 2). Given
the extra unit of generation required at node 2, this has cost 2, which is more
expensive than switching out either lines 2 or 3 in this scenario, enabling 5 units
to be sent directly from 1 to 2 at zero cost. If we switch out line 1, then we can
send only one unit and the cost of generating the shortfall is 8.

The other scenarios are essentially the same. In scenario 2, we can switch out
lines 1 or 3 to get a zero cost dispatch, and in scenario 3, we can switch out lines
1 or 2 to get a zero cost dispatch. Note that line 4 is unable to be switched.

If we consider the single switch options in each scenario, then we get a master
problem constraint matrix of the following form:

A =

















































−1 1

−1 1

−1 1

−1 1

−1 1

−1 1

−1 1

−1 1

−1 1

1 1 1 1

1 1 1 1

1 1 1 1
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This is not totally unimodular. Moreover MP has a fractional solution given by

yS =
[

1
2

1
2

1
2

]>

ϕ(1) =
[

0 1
2

1
2

]>

ϕ(2) =
[

1
2 0 1

2

]>

ϕ(3) =
[

1
2

1
2 0

]>

This corresponds to installing half a switch on each of lines 1,2, and 3, giving a
total cost of 3

2 . The optimal integer solution will place a switch on any two of
the lines to give total cost of 2.

We now look at the case where we have only two scenarios but more than one
binary decision variable in MP. This means that we now allow more than one
switch to occur in each scenario.

Example 2

Consider the following two-stage two-scenario switch investment problem with
two investment options, that may be chosen in the first stage only. As in
Example 1, we also consider investment only in switches. That is we assume
e>a yL = 1 for all arcs a in A as before. If we enumerate all the possible switching
plans, these make up our columns of switch requests that may be chosen for each
scenario. The corresponding constraint matrix is as follows:

A =





















−1 1 1

−1 1 1

−1 1 1

−1 1 1

1 1 1 1

1 1 1 1





















where the first four rows correspond to the capacity constraints (7.25) and the
last two rows corresponds to the convexity constraints (7.27). Columns 3 to 6
(respectively 7 to 10) represent feasible switching patterns in scenario 1 (respec-
tively 2). Note that the submatrix consisting of the first five rows and columns
1, 2, 4, 5, and 7 has determinant 2. Assume, that the vector of cost coefficients is
represented by c = (3, 3, 10, 0.9, 1, 10, 1.5, 10, 10, 7.3). Then the optimal integer

solution minimizing c

(

yS

ϕ

)

is

(

y>S , ϕ
>
)∗

IP
=
[

1 1 0 1 0 0 1 0 0 0
]

yielding a cost of 8.4, while the optimal LP relaxed solution
(

y>S , ϕ
>
)∗

LP
=
[

1
2

1
2 0 1

2
1
2 0 1

2 0 0 1
2

]
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yields the (slightly) lower value of 8.35.

The third column in A represents a request for switching capacity on both lines
in scenario 1 incurring an operational cost of 10. So, in our example, switching
both lines would incur a high operational cost in scenario 1, but a very low
cost in scenario 2. Also, in scenario 1, switching exactly one line incurs a much
smaller cost. The result is that the solution to the relaxed master problem saves
enough by installing only half a switch on each line to compensate for the extra
operating cost that is incurred by only admitting half the operational benefits
of switching to accrue. This results in a fractional optimal solution.

Although the examples above show how fractional optimal solutions to the mas-
ter problem might arise, in practice we obtain fractional solutions to MP very
rarely. We conjecture that this is because it is unlikely with realistic electric-
ity network data that the symmetrical situations as in the examples above will
generate subproblem solutions with the specific cost structure needed to give
fractions at optimality.

Fractional solutions are also prevented by the fact that MP has inequality con-
straints rather than equations. Observe in our model that every possible line
expansion involves a switch as well. This means that the use of the line in any
dispatch scenario is optional. As we have observed above, the mandatory use
of an additional line might increase the dispatch cost in some scenarios. If such
a situation occurs then a fractional expansion, that trades off good and bad
dispatch outcomes, might become more likely.

If this does occur then we need to apply a branch-and-price procedure. This is
easy to implement owing to the following result.

Proposition 3 If yL and yS are chosen to be fixed vectors of binary integers,
then the linear programming relaxation of MP has integer extreme points.

Proof. When yL and yS are fixed, the constraints of the linear programming
relaxation of MP decouple by scenario to give

∑

j∈J

ϕj = 1, (7.30)

yL − yS +
∑

j∈J

ẑjϕj ≤ 1, (7.31)

yL +
∑

j∈J

ẑjϕj ≥ 1, (7.32)

ϕj ≥ 0, (7.33)
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where we suppress the dependence on ω for notational simplicity. Let

I0 = {i | e>i yL = 0},

I1 = {i | e>i yL = e>i yS = 1},

I2 = {i | e>i yL = 1, e>i yS = 0}.

This gives constraints

−e>i yS + e>i
∑

j∈J

ẑjϕj ≤ 1, i ∈ I0 (7.34)

e>i
∑

j∈J

ẑjϕj ≥ 1, i ∈ I0 (7.35)

e>i
∑

j∈J

ẑjϕj ≤ 1, i ∈ I1 (7.36)

e>i
∑

j∈J

ẑjϕj ≥ 0, i ∈ I1 (7.37)

e>i
∑

j∈J

ẑjϕj ≤ 0, i ∈ I2 (7.38)

e>i
∑

j∈J

ẑjϕj ≥ 0, i ∈ I2 (7.39)

∑

j∈J

ϕj = 1, (7.40)

ϕj ≥ 0, (7.41)

Constraints (7.34) and (7.36) are dominated by (7.40) and can be removed.
Similarly constraints (7.37) and (7.39) are redundant.

Constraint (7.35) must be satisfied as an equation and subtracting from (7.40)
implies that ϕj = 0 for all columns j with e>i ẑ

j = 0, for some i ∈ I0. Similarly
constraint (7.38) implies ϕj = 0 for all columns j with e>i ẑ

j = 1, for some i ∈ I2.
Let

Z = {j ∈ J | e>i ẑ
j = 0 for some i ∈ I0, or e

>
i ẑ

j = 1, for some i ∈ I2}.

Then ϕj = 0 for all columns j ∈ Z, which may be removed. This results in the
system

e>i
∑

j∈J\Z

1ϕj = 1, i ∈ I0,

e>i
∑

j∈J\Z

0ϕj ≤ 0, i ∈ I2,

∑

j∈J\Z

ϕj = 1,

ϕj ≥ 0,
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which clearly has integer extreme points.

This means that any branch-and-price scheme may branch in the master prob-
lem simply by imposing constraints on the variables yL and yS . In other words to
solve this problem, we do not need to construct a specific constraint-branching
methodology, where columns generated on each side of the branch are con-
strained to meet certain conditions (see e.g. [16]).

It is convenient to consider only a subset Z(ω)′ ⊆ Z(ω) of feasible switching
plans for each scenario ω in the master problem. We define this restricted master
problem (RMP) by (8.15) - (8.20) with J(ω) replaced by J(ω)′ the index set of
Z(ω)′. A column generation algorithm is applied to dynamically add feasible
switching plans to the linear relaxation of the master problem. The algorithm
is initialised by letting Z(ω)′ = {ẑ0(ω)} = {0}, for all scenarios ω ∈ Ω. That
is, initially no line may be switched out in either scenario. The corresponding
operational costs c(ω)T q̂0(ω) can easily be found by solving a linear program for
each scenario. In each iteration of the algorithm, the linear relaxation (RMP-
LP) of RMP is solved yielding the dual prices µ, π, and ρ. A new column
(p(ω)c(ω)>q̂j(ω), 1, ẑj(ω)) may improve the solution of RMP-LP if and only if
the associated reduced cost c̄(ω) = p(ω)c(ω)>q̂j(ω)+π(ω)>ẑj(ω)−ρ(ω)>ẑj(ω)−
µ(ω) is negative.

A column for scenario ω may therefore be constructed by solving the subprob-
lem:

min p(ω)c(ω)>q + π(ω)>z − ρ(ω)>z − µ(ω)

s.t. (q, P, θ, z) ∈ Q(ω),

where π(ω), ρ(ω), and µ(ω) are the dual prices returned from RMP-LP.

Any feasible solution (q, P, θ, z) ∈ Q(ω) with negative objective function gives
rise to a potential candidate column for RMP-LP. If no columns with negative
reduced cost exist then we have solved the relaxed master problem (MP-LP)
to optimality. Furthermore, if the solution (ϕ∗, y∗) to MP-LP is integral then
(ϕ∗, y∗) is an optimal solution to the master problem (8.15) - (8.20) and y∗

is the optimal line and switch investment strategy. Otherwise, we may resort
to a branch-and-price framework for finding optimal integral solutions. Note
that a fractional solution will always have at least one fractional y-value (see
Proposition 7). Hence, we branch on one of the fractional y-variables and hope
that this will resolve the fractionality. If not one may continue branching on
y-variables until the fractionality is resolved.

7.5 Computational Results

In this section we apply the column generation technique to the problem of
investing in switching equipment to minimize total investment and expected
generation cost over a number of scenarios with varying demand and supply.
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Computational experiments are performed on two different IEEE electricity
transmission networks — the IEEE 73-bus network and the IEEE 118-bus net-
work. The computational results are compared to solving the original formula-
tion with a commercial MIP-solver (CPLEX).

The IEEE 73-bus network is based on the three area reliability test system 1996
[11]. Data for this network can be found in [7]. The transmission network was
modified as described in [13] The resulting network has 117 lines, 99 generators,
total generation capacity of 8998 MW, and total peak demand of 8550 MW.
The IEEE 118-bus network is described in [3]. This network has 185 lines, 20
generators, total peak load of 4519 MW, and a total thermal generator capacity
of 5859 MW. These networks were modified to accommodate varying supply
and demand scenarios.

For the IEEE 118-node network a 1600 MW intermittent wind-power generator
with varying supply capacity is located at node 91 supplying power at marginal
generation cost 0. Nodal demands were scaled uniformly in the interval 0.535
to 1.0. In each instance half the scenarios had no wind power while the other
half had full wind-power capacity.

The original IEEE 73-bus network has 18 hydro units (six in each area) each
with capacity 50 MW and marignal cost 0. In our model, four of the hydro
units in nodes 222 and 322 (area 2 and 3) were modified to represent wind
generators with marginal generation cost 0 and varying generation capacity over
the scenarios. Similarly, all six hydro units in node 122 (area 1) were modified
to have varying marginal cost but constant generation capacity of 50 MW over
the scenarios. Nodal demands were scaled uniformly by a factor in the interval
0.5 to 1.0. Table 7.1 gives a summary of the values of the stochastic parameters
used in the different instances of the problem. For both networks the stochastic
parameters are all assumed to be independent of each other and scenarios are
assumed to be equally likely to occur.

|Ω| = 16

|Ω| = 81

stochastic parameter |Ω| = 256

demand factor 1 0.67 0.5 0.84

wind capacity factor, node 222 1 0 0.33 0.67

wind capacity factor, node 322 1 0 0.67 0.33

hydro price factor, node 122 0 30 5 15

Table 7.1: Summary of stochastic demand, generation capacity, and marginal cost
factors.

First stage decisions include only investment decisions in switching equipment.
That is, we assume e>a yL = 1 for all arcs a in A. The fixed amortized switch
investment costs are set to $5/h for each switch.
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Computational experiments were performed on a 2.26 GHz Core 2 Duo computer
with 4 GB RAM.

7.5.1 Experiments with branch and price

In order to solve large instances, the Dantzig-Wolfe reformulation described
above was implemented in a branch-and-price framework using the DIP soft-
ware framework [9]. DIP (Decomposition for Integer Programming) is a general
open source framework developed under COIN-OR for solving discrete optimiza-
tion problems using various decomposition algorithms. DIP allows the user to
formulate mixed integer programs in the original space and to provide the prob-
lem structure needed for decomposition. DIP then handles the reformulation
and provides methods for solving the problem using decomposition algorithms.
The code is implemented in C++ and is designed and maintained by Matthew
Galati and Ted Ralphs at Lehigh University [5].

Instances with the IEEE 118-bus network and the IEEE 73-bus network and
different number of scenarios and values of k are constructed. These are solved
using DIP’s branch and price algorithm with default parameters, except that
each node is solved to optimality before branching (TailOffPercent = 0), com-
pression of columns are turned off (CompressColumns = 0), and the master
problems are solved to optimality (MasterGapLimit = 0) using interior point
method (CPLEX 12.2 barrier). Sub-problems are solved using the CPLEX 12.2
MIP-solver. For comparison the instances are also solved using the CPLEX
12.2 branch-and-bound solver with default settings. Computational results are
shown in Table 7.2, while Table 7.3 and Table 7.5 shows the objective func-
tion values and number of installed switches in the optimal solution of the
corresponding instances for the IEEE 118-bus network and the IEEE 73 bus
network.

Results show that the CPLEX MIP solver performs well on instances with a
small number of scenarios. With more scenarios, however, the CPLEX solver
exhausts the memory, while DIP solves to optimality in reasonable time. DIP
outperforms CPLEX for 11 out of the 15 instances investigated. In general, it
seems that DIP scales well with the number of scenarios, while CPLEX handles
large k-values better.

For branch and price all instances except the 118-node, 32-scenario instance are
solved to integer optimality in the root node and hence no branching is needed.
For the 32-scenario instance a fractional solution is returned in the root node.
However, integrality is obtained by branching only once. (The fractional solution
has a strictly lower value than the optimal integer solution obtained.)

The decomposition relies on solving a large number of sub-problems with feasible
set Q(ω). For large k the computational complexity of the sub-problems is high
and solving them to optimality is hard. This can be seen from Table 7.2 that
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shows that only a small fraction of the time is spent solving the master problems,
while the majority of time is spent solving the sub-problems. This makes the
branch-and-price algorithm perform less well on instances with large k. Hence,
further research is needed to strengthen the sub-problems in order to solve
instances with large k. On the other hand, as shown in section 7.4, the master
problem matrices have some nice properties resulting in shallow branching trees.

Branch and price Branch and bound

Instance time (s) price- no. of time (s) gap lower

|N | |Ω| k total master passes nodes bound

118 2 3 96 0 10 1 547 0.00 1351.22

118 2 5 1427 1 20 1 330 0.00 1338.55

118 4 3 257 4 16 1 2310 0.00 1036.93

118 4 5 3172 6 38 1 7133 0.00 1033.95

118 4 10 22444 30 98 1 3055 0.00 1009.60

118 8 3 978 8 26 1 2070 † 2.26 846.17

118 16 3 3213 11 36 1 3722 † 0.00 775.01

118 32 3 25477 279 129 3 4968 † 9.68 690.81

118 64 3 11126 72 38 1 8589 † 28.84 678.44

73 4 1 12 1 6 1 401 0.00 65297.22

73 16 1 53 2 9 1 5013 † 2.05 66270.18

73 81 1 2037 36 18 1 14414 ‡ 6.07 52884.46

73 4 3 972 3 35 1 42 0.00 65266.08

73 16 3 3888 17 69 1 490 0.00 66266.34

73 81 3 36793 163 93 1 6732 † 0.08 52885.56

Table 7.2: Results for the switch investment problem on the IEEE 118-bus network and
IEEE 73-bus network. Solve times and gaps are reported for the branch-and-price al-
gorithm (DIP) and standard branch-and-bound (CPLEX) for problem instances with
at most k open switches and |Ω| scenarios. All instances was solved to optimality
using branch-and-price. Branch-and-bound was terminated with the CPLEX default
optimality tolerance except for ‡ which was terminated manually after 14400 s. For
branch-and-price the total solve time for the master problems, number of pricepasses,
and the number of nodes in the branching tree are also reported. For branch-and-
bound the lower bound is reported. Gaps reported are absolute gap to best known
solution. For the branch-and-bound the best lower bound is also reported. The fastest
solution time is highlighted in bold face. † denotes that the optimization was termi-
nated due to lack of memory.

7.5.2 Experiments with column generation for the 73 node network

In this subsection we consider the column-generation algorithm without branch-
ing. The motivation for this study comes from the need to solve stochastic
models with many scenarios. To investigate how the decomposition algorithm
scales with scenarios, we restrict attention to the smaller IEEE 73-bus network.
The decomposition and models in the following results are formulated using the
AMPL modelling language and all master problems and subproblems are solved
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Instance Optimal solution

|Ω| k obj. function value no. of switches

2 3 1351.36 5

2 5 1338.68 7

4 3 1037.03 5

4 5 1034.06 6

4 10 1009.70 9

8 3 898.48 7

16 3 871.10 3

32 3 734.04 3

64 3 763.97 3

Table 7.3: Objective function value and number of switches installed in the optimal
solution for instances of the switch investment problem for the IEEE 118-bus network.

with CPLEX 12.2. The relaxed master problems are solved using CPLEX bar-
rier algorithm without crossover, while the subproblems are solved using the
CPLEX standard branch-and-bound algorithm. For the branch-and-bound al-
gorithm CPLEX 12.2 was applied with default parameters.

Computational results are shown in Table 7.4, while Table 7.5 shows the ob-
jective function values and number of switches installed in the corresponding
optimal solutions. These results show that the time taken to solve the Dantzig-
Wolfe reformulation is approximately proportional to the number of scenarios,
and we are able to solve up to 256 scenarios in reasonable time. Note that all
instances are solved to optimality in the root node of the branch and bound tree
and hence no branching is necessary. For k = 1 solving the compact formulation
using CPLEX is much more time consuming than solving the Dantzig-Wolfe re-
formulation. However, for k = 3 solving the compact formulation is faster for
a small number of scenarios, but performs worse with an increasing number of
scenarios.

The computational results presented in this section show that solving the Dantzig-
Wolfe reformulation by column generation is faster for small values of k com-
pared to solving the original formulation in CPLEX. When k is small, column
generation scales well with the number of scenarios. For large values of k, how-
ever, the subproblems become intractable. The master problem — except for
one instance — always yields an optimal integer solution in the root node.

7.6 Conclusion

In this paper we consider decomposition methods for stochastic investment prob-
lems involving transmission switching in electricity networks. In particular,
we look at determining optimal switch investment and line capacity expansion
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Column Generation Branch-and-bound

Instance price- no. of lower

|N | |Ω| k time (s) passes nodes time (s) gap bound

73 4 1 16 4 1 401 0.00 65297.22

73 16 1 54 6 1 5013 † 2.05 66270.18

73 81 1 286 8 1 14414 ‡ 6.07 52884.46

73 256 1 1518 12 1 48373 † 8.15 54648.50

73 4 3 1153 31 1 42 0.00 65266.08

73 16 3 1326 30 1 490 0.00 66266.34

73 81 3 25056 52 1 6732 † 0.08 52885.56

73 256 3 30880 39 1 68670 ‡ 4.72 54647.76

Table 7.4: Computational results for the switch investment problem on the IEEE73-
bus network. All instances was solved to optimality using column generation. Branch-
and-bound was terminated with the CPLEX default optimality tolerance. Gaps re-
ported are absolute gap to the optimal solution. For the branch-and-bound the best
lower bound is also reported. † denotes that the optimization was terminated due to
lack of memory. The fastest solution time is highlighted in bold face. ‡ denotes that
CPLEX was manually terminated before reaching optmimum.

Instance Optimal solution

|Ω| k obj. function value no. of switches

4 1 65303.75 1

16 1 66301.56 1

81 1 52905.05 1

256 1 54668.09 1

4 3 65270.02 2

16 3 66272.91 2

81 3 52890.74 2

256 3 54656.02 2

Table 7.5: Objective function value and number of switches installed in the optimal
solution for instances of the switch investment problem for the IEEE 73-bus network.

strategies and we propose a Dantzig-Wolfe reformulation of a two-stage stochas-
tic mixed integer program.

A column-generation approach is outlined to solve the Dantzig-Wolfe reformu-
lation. The approach is tested on two IEEE test networks. When the number
of allowed switching actions is small, the proposed algorithm turns out to be
significantly more efficient than solving the compact formulation directly, and
it enables us to solve instances with up to 256 scenarios.

In general, the linear programming relaxation of the reformulation does not
have integer extreme points, but in practice this often happens to be the case.
In the rare instances where the relaxed master problem has fractional solutions,
our formulation admits a simple branch-and-price scheme that can be used to
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resolve these with very few iterations.

The approach is limited by the complexity of the subproblems. Solving large-
scale problems requires a strong formulation of the subproblem, especially when
many switching actions are allowed. In our experiments, we attempted to apply
some strengthening to the subproblems by adding the constraint

∑

a∈P

za ≤ 1

for any path P in which all nodes except the first and last nodes are two-
connected, and setting za = 0 for any arc a such that the network (N,A \
{a}) is not connected. These provided some improvement on subproblems in
sparse networks and/or with larger values of k, but gave no improvement in
computation time for the instances discussed in this paper. This indicates that
further research should be directed at providing stronger formulations and more
efficient solution methods for the subproblems in order to improve efficiency of
the algorithm.

The methodology described in this paper can be applied to other stochastic
programming problems in which switching is allowed. For example, one might
construct a multi-stage plan for investing in switches and transmission line ex-
pansions using the approach explored in [19] for distribution networks (in which
switching to a radial structure is required in each scenario and stage). The
approach can also be used to investigate the optimal investment in switches
to ensure the N − 1 reliability of an existing network. In this setting the sce-
narios represent failures of single lines or units. This approach is explored for
distribution networks in [18], and described for transmission networks in [20].
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In 2025 electricity production from wind power should constitute nearly 50 % of elec-
tricity demand in Denmark. In this paper we look at optimal expansion of the trans-
mission network in order to integrate 50 % wind power in the system, while minimising
total fixed investment cost and expected cost of power generation. We allow for active
switching of transmission elements to eliminate negative effects of Kirchhoffs voltage
law. Results show that actively switching transmission lines may yield a better utili-
sation of transmission networks with large-scale wind power and increased wind power
penetration. Furthermore, transmission switching is likely to affect the optimal line
capacity expansion plan.

77



78
LINE CAPACITY EXPANSION AND TRANSMISSION SWITCHING IN POWER

SYSTEMS WITH LARGE-SCALE WIND POWER

8.1 Introduction

In 2025 electricity generation from wind power is planned to constitute nearly
50 % of demand for electricity in Denmark. This will primarily be achieved
through a huge increase in the number of offshore wind farms.

As a consequence, massive changes are expected in the Danish electricity system
in the years to come. Conventional power plants will close down, new market
structures are expected to emerge as balancing needs and the requirement for
flexible demand are going to increase. Transmission flows will change and the
need for transmission capacity will increase.

In addition to the wind power development, it has been decided that all 132/150
kV overhead lines in Denmark shall be replaced by underground cables during
the next 30 years. This constitutes a huge challenge for the Danish transmis-
sion system operator, Energinet.dk, however, it is also a great opportunity to
redesign this part of the transmission grid as a whole.

Energinet.dk, is state owned and operates the grid on a non-profit basis. In
general, transmission investments are carried out at lowest cost while maintain-
ing a certain high level of security of supply. Connections abroad and large
domestic grid investments are considered to have significant societal economical
impact, and hence the socio-economic welfare effect of such investments must
be evaluated. Only investments that provide positive overall socio-economic
impacts are promoted. To ensure robust decisions, the impact of any larger in-
vestment is evaluated in a context of different future scenarios, each describing
likely developments of the society twenty years ahead in time.

Traditionally, in Denmark, investments have mainly been considered incremen-
tally. However, considering the underground cabling and the rapid wind power
development there might be huge gains by coordinating investments to find
an optimal future grid. In this paper, we consider the stochastic line capac-
ity expansion problem with transmission switching. This model can be applied
to the development of the Danish grid and we show that active switching of
transmission lines increases the utilisation of the transmission grid.

The combinatorial complexity of the line capacity expansion problem makes
it hard to solve. The deterministic version of this problem has been solved
succesfully using Benders decomposition [17, 2] and a commercial MIP solver
(CPLEX) [1]. In [7] a stochastic scenario based formulation of the line capacity
expansion problem for competitive markets is presented.

Adding new lines to an electricity network may increase the cost of power gen-
eration. This paradox is due to Kirchhoff’s voltage law and is demonstrated
in [3]. Transmission switching [14] may alleviate such effects by switching out
transmission lines. In general transmission switching may increase security of a
network [18] and decrease cost of generation [12, 15]. Khodaei and Shahideh-
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pour [16] propose a Benders decomposition approach for solving the dynamic
line capacity expansion problem with transmission switching.

In this paper we apply the model proposed in [21] for the two-stage stochastic
line capacity and switch investment problem with uncertain future generation
capacities and demand. In the first stage decisions on line capacity expan-
sions and switch investments are made. Line capacity expansions and switch
investments are chosen from a candidate set of potential line upgrades. In the
second stage operational decisions on power generation, line flows, and switch-
ing decisions are made in a number of scenarios reflecting variations in demand
(e.g. peak/off-peak) and generation capacity (e.g. level of wind).

The contribution of this paper is two-fold. Firstly, we demonstrate that the line
capacity expansion problem with transmission switching modeled as a two-stage
stochastic mixed integer program can be solved efficiently for realistically sized
networks using column generation. Secondly, we show that actively switching
transmission elements in congested networks with large-scale wind power may
reduce generation cost and increase the amount of wind power that can be
integrated into the system. Furthermore, actively switching transmission lines
may alter the optimal line capacity expansion plan.

We begin the paper by recalling a mixed integer progamming formulation of
the direct current approximated optimal power flow problem with transmission
switching [12]. In section 8.3 we state the line capacity expansion and switch
investment problem as a two-stage stochastic program and provide the Dantzig-
Wolfe reformulation [6] as proposed in [21]. Section 9.4 provides computational
results for the IEEE 118-bus network and the Danish transmission network with
large-scale wind power. Finally, concluding remarks and directions for future
research is given in section 9.5.

8.2 Operational Dispatch

We assume a linear DC-approximation of the optimal power flow (see e.g. [5],
[20]) with linear generation costs and no line losses.

Consider the directed graph G = (N ,A) with a source/sink node s. For each
arc a ∈ A, the cost, capacity, and reactance coefficients are given by ca, ua,
and ra, respectively. The flow on each arc a ∈ A is denoted by xa, while wi

denotes the voltage phase angle for each node i ∈ N . Let the set of arcs F(i),
respectively, T (i) denote the set of arcs with tail, resp. , head i. Let the set of
supply and demand arcs S = F(s)∪T (s) ⊆ A be defined by having s as the tail
or head, and let ra = 0 for all a ∈ S. The supply arcs F(s) represent generation
units with marginal generation cost ca and generation capacity ua, while the
demand arcs T (s) represent flexible demand with value of consumption −ca and
maximum consumption ua. Inflexible demand di must be met at all nodes i in
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N .

Furthermore, let za be a binary variable indicating whether line e is active
(za = 0) or not. An active line is one which is installed and not switched out.
Define by D the set of direct current (DC) lines, while E denotes the set of
existing lines and H the set of switchable lines.

For a single time period (snapshot) the globally optimal state (with maximum
social surplus) of the system may be found by solving the mixed integer linear
program

min
∑

a∈A

caxa (8.1)

subject to

xa ≤ uaza ∀a ∈ A (8.2)

xa ≥ laza ∀a ∈ A (8.3)
∑

a∈T (i)

xa −
∑

a∈F(i)

xa = di ∀i ∈ N \ {s} (8.4)

za = 0⇒ raxa − wi + wj = 0 ∀a = (i, j) ∈ A \ (S ∩ D) (8.5)

za ∈ {0, 1} ∀a ∈ A (8.6)

za = 0 ∀a ∈ A \ H (8.7)

where the objective (10.1) minimises the total cost of operation subject to the
following constraints. Capacity limits on arc flows (10.2)-(10.4). Conservation
of flow (10.5) at each node except the source node s. Kirchhoffs voltage law
(8.5) for all active arcs. The switching variables za are binary (8.6) and fixed
for lines that are not switchable (8.7).

Furthermore, we may restrict the number of existing lines that are being switched.

∑

a∈E

za ≤ k (8.8)

Note, that constraints (8.5) may be linearised using a big-M construction

−Mza ≤ raxa − wi + wj ≤Mza, ∀a = (i, j) ∈ A \ (S ∩ D) (8.9)

where M is some sufficiently large number.
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8.3 A Two-Stage Stochastic Model with Transmission Switch-

ing

We now consider a two-stage stochastic model, where the first stage decisions
involve investment in switching equipment yS and line capacity yL, while the
second stage models operational decisions (x,w, z) for dispatch and switching
in a number of scenarios ω ∈ Ω each occuring with probability p(ω). For each
scenario ω ∈ Ω, let

Q(ω) = {(x(ω), w(ω), z(ω)) | (10.2) - (8.8)}.

The model may now be formulated as

min f>
S yS + f>

L yL +
∑

ω∈Ω

p(ω)c(ω)>x(ω) (8.10)

s.t. yL − yS + z(ω) ≤ 1 ∀ω ∈ Ω (8.11)

yL + z(ω) ≥ 1 ∀ω ∈ Ω (8.12)

(x(ω), w(ω), z(ω)) ∈ Q(ω) ∀ω ∈ Ω (8.13)

yL, yS ∈ {0, 1}
|A| (8.14)

The objective (9.11) minimizes the hourly fixed and operational cost, while
(9.12) ensures that switching of installed lines is only possible if a switch is also
installed. Constraint (8.12) allows lines to be switched in only if they are also
installed. We set e>a yL = 1 and e>a fL = 0 for existing lines a in E , where ea is
the binary unit vector of |A| elements with the ath element being 1.

Note, that not installing a line corresponds to having the line switched out
(i.e. z(ω) = 1) in all scenarios ω ∈ Ω.

8.3.1 Dantzig-Wolfe Reformulation

The mathematical program (9.11)-(8.14) may be reformulated using Dantzig-
Wolfe [6] and a branch-and-price algorithm may be applied to obtain optimal
solutions to this reformulation.

The idea is to decompose the stochastic problem into a master problem and a
number of subproblems — one for each scenario. We let the binary vector z(ω)
define a feasible switching plan (FSP) for scenario ω if there exists x(ω), w(ω)
such that (x(ω), w(ω), z(ω)) ∈ Q(ω). Now, let Z(ω) = {ẑj(ω)|j ∈ J(ω)} be the
set of all FSP’s for scenario ω, where J(ω) is the index set for Z(ω). We can
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write any element in Z(ω) as

z(ω) =
∑

j∈J(ω)

ϕj(ω)ẑj(ω)

∑

j∈J(ω)

ϕj(ω) = 1, ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω).

Assume that for each feasible switching plan ẑj(ω) the corresponding optimal
dispatch of generation and load shedding is given by x̂j(ω). The master problem
can now be written in terms of ẑ and x̂ as

MP: min f>
L yL + f>

S yS +
∑

ω∈Ω

∑

j∈Jω

p(ω)c(ω)>x̂j(ω)ϕj(ω) (8.15)

s.t.
∑

j∈J(ω)

ϕj(ω) = 1 [µ(ω)] , ∀ω ∈ Ω (8.16)

yL − yS +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≤ 1 [π(ω)] , ∀ω ∈ Ω (8.17)

yL +
∑

j∈J(ω)

ẑj(ω)ϕj(ω) ≥ 1 [ρ(ω)] , ∀ω ∈ Ω (8.18)

ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω) (8.19)

yL, yS ∈ {0, 1}
|E| (8.20)

where µ(ω), π(ω) and ρ(ω) denote the dual prices associated with the respective
constraints.

The master problem MP is a two-stage stochastic integer program with integer
variables in both stages. Although in general these are difficult to solve, the
structure of MP is amenable to a branch-and-bound procedure by virtue of the
following result.

Proposition 4 If yL and yS are chosen to be fixed binary integers, then the
linear programming relaxation of MP has integer extreme points.

For a proof we refer the reader to [21].

It is convenient to consider only a subset Z(ω)′ ⊆ Z(ω) of feasible switching
plans for each scenario ω in the master problem. We define this restricted master
problem (RMP) by (8.15) - (8.20) with J(ω) replaced by J(ω)′ the index set of
Z(ω)′. A column generation algorithm is applied to dynamically add feasible
switching plans to the linear relaxation of the master problem. The algorithm
is initialised by letting Z(ω)′ = {ẑ0(ω)} = {0}, for all scenarios ω ∈ Ω. That
is, initially no line may be switched out in either scenario. The corresponding
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operational costs c(ω)T q̂0(ω) can easily be found by solving a linear program for
each scenario. In each iteration of the algorithm, the linear relaxation (RMP-
LP) of RMP is solved yielding the dual prices µ, π, and ρ. A new column
(p(ω)c(ω)T x̂j(ω), 1, ẑj(ω)) may improve the solution of RMP-LP if and only if
the associated reduced cost c̄(ω) = p(ω)c(ω)>x̂j(ω)+π(ω)>ẑj(ω)−ρ(ω)>ẑj(ω)−
µ(ω) is negative.

A column for scenario ω may therefore be constructed by solving the subprob-
lem:

min p(ω)c(ω)>x+ π(ω)>z − ρ(ω)>z − µ(ω)

s.t. (x,w, z) ∈ Q(ω),

where µ(ω), π(ω) and ρ(ω) are the dual prices returned from RMP-LP.

Any feasible solution (x,w, z) ∈ Q(ω) with negative objective function gives
rise to a potential candidate column for RMP-LP. If no columns with negative
reduced cost exist then we have solved the relaxed master problem (MP-LP)
to optimality. Furthermore, if the solution (ϕ∗, y∗) to MP-LP is integral then
(ϕ∗, y∗) is an optimal solution to the master problem (8.15) - (8.20) and y∗ is the
optimal switch investment strategy. Otherwise, we may resort to a branch-and-
price framework for finding optimal integral solutions. Note that a fractional
solution will always have at least one fractional y-value (see Proposition 7).
Hence, we branch on one of the fractional y-variables and hope that this will
resolve the fractionality. If not one may continue branching on y-variables until
the fractionality is resolved.

8.4 Computational Results

In this section experiments are performed on two different networks — the IEEE
118 bus network and the Danish transmission network. Experiments with the
IEEE 118 bus network with four scenarios suggests that transmission switching
is beneficial for the integration of large-scale wind power. Also, these results
justify the use of stochastic programming. Results for the Danish network with
the expected development of off-shore wind power generation by 2025 confirm
that allowing switching may reduce generation cost and increase the amount of
wind power integrated in the system.

8.4.1 The IEEE 1118 Bus Network

We will first study the IEEE 118 bus network [8] with network data described in
[4]. This network has 185 lines, total peak load of 4519 MW, and a total thermal
generator capacity of 5859 MW. We will consider a four scenario instance of the
switch investment problem presented in section 8.3 with uncertain outcomes
of demand and wind generation capacity. First stage decisions include only
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investment decisions in switching equipment. That is we assume yL = 1 to be
fixed. The results justify the use of stochastic programming and indicates that
transmission switching is particularly beneficial in systems with large-scale wind
power.

Four scenarios are defined with respect to the load level (peak/off-peak) and
amount of wind power (high/low). The scenarios have equal probabilities and
are summarised in Table 8.1. The fixed amortized switch investment costs are
arbitrarily set to $5/h for each switch.

A 1600 MW intermittent wind power generator with varying supply capacity
and 0 marginal cost is located at node 91. Generation from the windpower
generator is not fixed so wind generation may be curtailed.

Scenario Probability Load Windpower

ω p(ω) % of peak capacity, MW

1 0.25 off-peak 59% high 1600

2 0.25 peak 100% high 1600

3 0.25 off-peak 64% low 0

4 0.25 peak 99% low 0

Table 8.1: Summary of scenarios for a small instance of the switch investment problem.

Without switches the total generation cost incurred is $1031.55/h. In the opti-
mal switch investment strategy with k = 3 five switches are installed incurring
a total investment cost of $25/h and generation cost $910.25/h. The total sav-
ings from switching is thus approximately 9%. With optimal switching the
dispatched windpower is increased from 499 MW to 648 MW in scenario 1 and
from 535 MW to 875 MW in scenario 2. Thus by employing active switching one
can increase the amount of windpower in the system and decrease system cost.
The optimal switching configurations and the corresponding saved operational
costs for each scenario are shown in Table 8.2.

ω Switching configuration Saved costs

1 E77-80 E89-90 E89-92 7.6

2 E77-80 E89-90 E89-92 36.0

3 E77-80 E89-90 E94-96 2.2

4 E77-80 E89-91 E94-96 75.4

Total 121.2

Table 8.2: Optimal switching configurations and saved operational costs for a small
four-scenario instance of the switch investment problem on the IEEE 118 bus network.

Since in general (10.1)-(8.8) is a difficult mixed integer program for k ≥ 1 one
might consider to decouple the scenarios and solve each scenario separately
with amortized investment costs and subsequently piece the solutions together.
While this approach might yield good solutions for some instances, we cannot
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rely on this in general. Applying this approach to our four-scenario instance
described above by solving four smaller mixed integer programs, we obtain an
investment strategy with nine switches and total operational cost of $904/h.
The net benefit (including switch installation costs) of switching is only $82.6/h
as opposed to $96.3/h for the optimal switch investment strategy obtained by
solving the integrated model. Hence, the value of switching is clearly lower when
decoupling the scenarios completely.

We now consider an instance of the problem where we — in addition to have a
wind power park at node 91 — also have wind power parks in node 5 and node
26. All wind power parks are assumed to be relatively large (1600 MW installed
capacity). The scenarios and network are unchanged.

Without switching the total expected generation cost is $881.56/h. With switch-
ing (k = 3) this is decreased to $750.45/h with a total of five installed switches
leading to a net benefit of $106.12/h or approximately 12 %. This reduction in
costs covers an increase in wind power on the three parks by a total of 430 MW
in scenario 2 and 293 MW in scenario 1 (see Table 8.3). The corresponding
optimal switching configuration is shown in Table 8.4.

Scenario k = 0 k = 3

ω 91 5 26 91 5 26

1 499.7 479 453 633.13 697.49 395.28

2 538 918 383 737.43 937.25 595.08

3 0 0 0 0 0 0

4 0 0 0 0 0 0

Table 8.3: Wind power generation in different scenarios without (k = 0) and with
(k = 3) switching.

ω Switching configuration

1 E77-80 E23-25

2 E77-80 E94-96 E23-25

3 E89-91 E38-37

4 E23-25

Table 8.4: Optimal switching configurations for a small four-scenario instance of the
switch investment problem on the IEEE 118 bus network.

8.4.2 The Danish Transmission Network

We will now consider the current Danish transmission network and potential line
capacity expansions in a future setting with development of many new off-shore
wind power plants.

Potential off-shore windpower development in Denmark in the period 2010 -
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2025 is described in [9] and [11]. The projects considered are summarised in
table 8.5. We assume that all projects are realised.

Network and generation data is obtained from the Danish transmission system
operator Energinet.dk. This data is confidential, but aggregated values are
available in Table 8.6. Potential line capacity expansion projects are likewise
based on confidential data form Energinet.dk. Line investment costs for 400kV
lines are based on underground cable costs - overhead lines are not considered.
This is in accordance with future expansion guidelines for the Danish electricity
transmission grid [10]. The potential candidates for new transmission lines are
limited to a set of 10 lines on the 400 kV level and 5 lines on 132 kV level.

Neighbouring areas (Norway, Sweden, Germany, and The Netherlands) are mod-
eled in a very simplistic way with no demand and a generator with fixed marginal
cost and capacity. This assumes that there is always excess generation capacity
in the respective areas which can be supplied at constant cost.

The ability to switch a particular line incurs a fixed investment cost. This is
assumed to cover any equipment needed to perform automatic switching of that
line including the switch itself (if it needs to be upgraded) and any communica-
tion equipment if necessary. Here, we arbitrarily assumes a relatively small fixed
cost of 1 DKK/h. In the experiments swithcing was allowed on high voltage
(>100 kV) transmission lines only.

name capacity (MW) area

Djursland 400 DK1

Horns Rev 1000 DK1

Læsø 600 DK1

Jammerbugt 800 DK1

Ringkøbing 1000 DK1

Kriegers Flak 800 DK2

Rønne Banke 400 DK2

S. Middelgrund 200 DK2

Table 8.5: Summary of projected installed off-shore wind power capacity in the year
2025.

no. of nodes (busses) 610

no. of transmission lines 529

no. of transformers 302

no. of generators 418

total gen. capacity (DK) 13530

total peak demand 6945

Table 8.6: Summary of network data.

We shall now consider a particular six-scenario instance of the problem. In
Table 8.7 a summary of the scenarios are given. The scenarios and their proba-
bilities are for illustration only, and do not reflect our true expectations for the
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future. Nevertheless, they do give some valuable insights – in particular with
regard to the value of switching and its impact on investments in line capacity.

Demand (MW) Wind capacity

ω p(ω) DK1 DK2 on-shore off-shore

0 0.16 4076 2869 0.90 0.95

1 0.16 4076 2869 0.50 0.50

2 0.17 4076 2869 0.00 0.00

3 0.17 1448 934 0.90 0.95

4 0.17 1448 934 0.50 0.50

5 0.17 1448 934 0.00 0.00

Table 8.7: Summary of scenarios. Wind capacity is the share of installed capacity.

Five instances of the problem with different levels of switching is investigated:
no switch and k = 0, 1, ..., 3. The no switch instance has fixed yS = 0 and allows
for investments in new lines only. The k = 0 instance allows switching on new
lines only — no switches on existing lines is allowed. For the instances with
k = 1, 2, 3 switching on all new lines and at most k existing lines are allowed.
Table 8.8 gives a summary of results for the different instances, while Table 8.9
gives an overview of the benefit of switching.

For the six scenarios described above, the optimal solution contains investments
in 5 of the possible 15 new lines without switching (total cost of 466970 DKK/h
of which 141 DKK/h are investment costs). Allowing to switch new lines (k =
0), results in a total of 10 new lines installed of which 7 may be switched
(Table 8.8). This gives a net-benefit of 12366 DKK/h (Table 8.9).

Figure 8.1 shows part of the 400kV network topology in Eastern Denmark,
with proposed network expansions, while Figure 8.2 shows the partial optimal
line capacity expansion plan for that part of the network when no switching
is allowed. The network shown in Figure 8.3 depicts the optimal line capacity
expansion plan when switching is allowed on new lines only (k = 0).

ASV

KYV

BJS

AVV

Figure 8.1: Part of the existing Eastern
400kV topology (black) and potential ex-
pansion options (green).

ASV

KYV

BJS

AVV

Figure 8.2: Partial line capacity expan-
sion plan without switching.

In the following experiment, we – in addition to allowing switching on new lines
– also allow for switching of one existing line in each scenario (k = 1). This
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yields an investment plan with 8 new lines and 12 switches. The total net
benefit of the solution is 32706 DKK/h or 7% compared to the solution without
switching. Figure 8.4 depicts (part of) the corresponding optimal line capacity
expansion plan.

ASV

KYV

BJS

AVV

Figure 8.3: Partial line capacity expan-
sion plan (k = 0).

ASV

KYV

BJS

AVV

Figure 8.4: Partial line capacity expan-
sion plan (k = 1).

By allowing switching the wind generation is increased by up to 251 MW in
scenario 0 (k = 3). Also, operational costs are reduced significantly in the
peak demand without wind (scenario 2) by switching to lower cost (thermal)
generation.

no switch k = 0 k = 1 k = 2 k = 3

no. of installed lines 5 10 8 11 10

no. of installed switches - 7 12 13 15

wind (MWh/h) 2649 2661 2687 2687 2689

fixed cost (DKK/h) 141 311 283 320 319

op. cost (DKK/h) 466829 454293 433982 430916 427294

total cost (DKK/h) 466970 454604 434265 431237 427613

Table 8.8: Summary of results for different levels of switching.

k = 0 k = 1 k = 2 k = 3

abs rel abs rel abs rel abs rel

op. cost, DKK/h -12536 -3 -32847 -7 -35913 -8 -39535 -8

fixed cost, DKK/h 170 120 142 100 179 127 178 126

total cost, DKK/h -12366 -3 -32706 -7 -35734 -8 -39357 -8

wind (avg.), MWh/h 12 0.46 38 1.42 38 1.42 40 1.52

wind (ω = 0), MWh/h 76 1.13 235 3.53 236 3.53 251 3.77

Table 8.9: Benefit of switching. Values are absolute and relative (in %) difference as
compared to the non-switched network (yS = 0).

The results obtained from experiments with the Danish transmission network
with large-scale wind power suggests that transmission switching may reduce
generation cost and increase wind power generation. As transmission switching
acts to reduce congestion in the network, this reduction in cost is entirely due
to relief of congestion in the peak demand scenarios.
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More interestingly, the optimal line expansion plan is highly sensitive to the
level of switching allowed. Actively switching transmission elements increases
the number of installed transmission lines (roughly by a factor of 2). This is due
to the fact that some lines may be beneficial in some scenarios, but restrictive
in others.

The previous experiments include only a few extreme scenarios with equal proba-
bilities. In addition, we now introduce amedium scenario with a high probability
in order to investigate the proportionality of cost and wind power generation.
The scenarios are summarised in Table 8.10. Also, the cost of adding a switch
has been quadrupled. Both of these changes are expected to discourage the use
of transmission switching.

Demand (MW) Wind capacity

ω p(ω) DK1 DK2 on-shore off-shore

0 0.0833 4076 2869 0.90 0.95

1 0.0833 4076 2869 0.50 0.50

2 0.0833 4076 2869 0.00 0.00

3 0.0833 1448 934 0.90 0.95

4 0.0833 1448 934 0.50 0.50

5 0.0833 1448 934 0.00 0.00

6 0.5000 2869 1902 0.30 0.30

Table 8.10: Summary of scenarios for the instances with 7 scenarios. Wind capacity
is the share of installed capacity.

Results for the seven scenario instances are summarised in Table 8.11. We see
that increasing the cost of switches and introducing a new scenario, results in
different investment strategies for k > 0 with fewer (or the same) switches and
line expansions.

no switch k = 0 k = 1 k = 2 k = 3

no. of installed lines 6 10 8 8 7

no. of installed switches - 7 10 10 12

wind (MWh/h) 2860 2861 2874 2874 2875

fixed cost (DKK/h) 254 332 300 300 323

op. cost (DKK/h) 339693 332965 322614 321094 319265

total cost (DKK/h) 339947 333297 322914 321394 319588

Table 8.11: Summary of results for different levels of switching with seven scenarios.

Table 8.12 shows the benefit of allowing to switch transmission lines in the
instances with seven scenarios. It is seen that increasing the cost of switches and
introducing a medium scenario does reduce the benefit of switching considerably.
However, the benefit is still significant. Switching allows a reduction in total
cost of up to 6% and increases wind power generation in scenario ω = 0 by up
to 187 MW.
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k = 0 k = 1 k = 2 k = 3

abs rel abs rel abs rel abs rel

op. cost, DKK/h -6728 -1.98 -17080 -5.03 -18599 -5.48 -20428 -6.01

fixed cost, DKK/h 78 30.76 46 18.11 46 18.11 69 27.15

total cost, DKK/h -6650 -1.96 -17034 -5.01 -18553 -5.46 -20359 -5.99

wind (avg.), MWh/h 1 0.03 14 0.50 14 0.50 16 0.55

wind (ω = 0), MWh/h 12 0.17 171 2.55 172 2.55 187 2.78

Table 8.12: Benefit of switching. Values are absolute and relative (in %) difference as
compared to the non-switched network (yS = 0).

We acknowledge that the scenarios described here are not truly representative
and that more work is necessary to identify a set of scenarios representing our
true expectation of the future.

8.4.3 Running times

Optimal solutions for the six-scenario instances described above was obtained
using column generation. The model was implemented using the COIN-OR DIP
framework [13] and instances were solved using default parameters except that
each node was solved to optimality before branching (TailOffPercent = 0),
compression of columns was turned off (CompressColumns = 0), and the master
problems were solved to optimality (MasterGapLimit = 0) using interior point
method (CPLEX 12.2 barrier). Subproblems were solved using CPLEX 12.2
MIP-solver. Table 8.13 gives a summary of running times for different instances
of the problem with branch-and-price (DIP) and CPLEX.

Branch-and-price CPLEX

Instance time (s) price- no.

|Ω| k total master passes nodes gap time (s) gap (%)

6 - 740 131 134 3 0 8.4 0.00

6 0 126 11 20 1 0 431 0.00

6 1 965 68 35 1 0 2239 † 0.00

6 2 2592 58 32 1 0 8999 † 0.02

6 3 4795 57 31 1 0 10006 † 0.02

12 1 4094 201 62 1 0 - -

24 1 11982 178 62 1 0 - -

Table 8.13: Computational results for solving the Dantzig-Wolfe reformulation using
branch-and-price and the compact formulation using CPLEX. Gap is relative (in %)
from best known solution.

Except for the instance without switching all instances were solved to optimal-
ity in the root node — that is no branching was needed. For all instances with
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switching column generation seems to be superior to solving the compact for-
mulation using a commercial MIP solver (CPLEX). We were able to solve for
24 scenarios with k = 1 in less than 12000 s. Solution times for the column
generation approach seem to scale relatively well with the number of scenarios.
However, the majority of the solution time is used to solve subproblems and
this is prohibitive for the number of scenarios that can be solved in reasonable
time — especially for values of k larger than 1.

8.5 Conclusion

In this paper we have treated the line capacity expansion problem with trans-
mission switching under future uncertainty in demand and wind generation
capacity. The problem is formulated as a two-stage stochastic program and the
Dantzig-Wolfe decomposition is solved using column generation.

Results indicate that the topology of the transmission network is important
for the dispatch of wind energy and that intermittent generation calls for a
dynamically optimised topology. This can be achieved by actively switching
transmission lines. Our results show that transmission switching may reduce
curtailment of wind power with up to 250 MW in peak demand for the Danish
network under study. Also, switching of transmission elements may influence
the optimal line capacity expansion strategy, making it worthwhile to install
more new transmission capacity. Solving the decomposed model makes it pos-
sible to solve instances for real networks in reasonable time and is superior
to solving the compact formulation using a commercial MIP solver (CPLEX).
Furthermore, the decomposition approach seems to scale well with increased
number of scenarios.

The Danish network presented in this paper is isolated from the remaining
European electricity transmission network. In order to obtain more realistic
results further work is needed to represent the neighbouring areas in a better
way. This is important as large scale wind power generation is also under way
in other parts of Northern Europe.

The results presented here are only for a limited number of scenarios, that
may not reflect our true expectation of the future. Further work is needed to
identify realistic and representative scenarios. Other stochastic parameters may
be relevant such as generation prices (depending on water values of hydro power
generation units, oil prices, etc.). Also, geographically dependent wind power
generation time series is highly relevant in order to capture periods of high
wind power in one part of the network and low wind power in other parts of
the network. Even though such outcomes may occur only with low probability
(e.g. only for short periods of time), this may increase further the need for a
dynamic network topology and the value of transmission switching.
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In practice, expansion of transmission line capacity and investment in new off-
shore wind power plants is performed over a planning period of many years.
At each stage of the planning period the expectation of the future is changed
as more information becomes available and so the optimal expansion plan may
change as well. This model can be extended to a multi-stage formulation fol-
lowing the approach in [19]. In a multi-stage setting decisions on line capacity
expansions may be made at any stage, while the expansion of wind power ca-
pacity may be subject to uncertainty.
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This paper presents the problem of finding the minimum cost dispatch and commit-
ment of power generation units in a transmission network with active switching. We
use the term active switching to denote the use of switches to optimize network topol-
ogy in an operational context. We propose a Dantzig-Wolfe reformulation and a novel
column generation framework to solve the problem efficiently. Preliminary results are
presented for the IEEE-118 bus network with 19 generator units. Active switching is
shown to reduce total cost by up to 15 % for a particular 24-hour period. Furthermore,
the need for generator startups is reduced by 1. Instances with limited switching, some
of which are intractable for commercial solvers, are shown to solve to optimality in
reasonable time.

9.1 Introduction

In meshed electricity transmission networks Kirchhoff’s laws constrain the flow
on each line in a cycle. In the DC-load flow approximation, the power flow
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on any line must be proportional to the voltage phase angle difference for the
two end nodes. For power flow in a tree network, the power flows are uniquely
determined by flow conservation at the nodes. For any feasible flow the voltage
phase angles are then uniquely determined up to an additive constant, and so
they do not affect the economic dispatch.

When the network contains cycles, the voltage phase angles affect the dispatch.
This is important in practice, since most electricity transmission networks are
designed as meshed networks (with cycles) for security reasons, so that if any
line fails, the power can still flow from source to destination by alternative
paths. In a meshed network, voltage phase angles become important, since they
result in additional constraints on the line flows. In particular, for each cycle in
a network the sum of voltage angle differences (with respect to the direction)
around the cycle must equal zero. Hence, each cycle in the network gives rise to
one additional constraint on the line flows. This leads to a paradox (see e.g. [1])
in which adding a new line to a transmission network might increase the cost of
supplying electricity, even if the cost of the line itself is zero.

Based on these observations, it is easy to see that it may be beneficial in mesh
networks to take some lines out of operation — to either decrease system cost
or increase reliability [5, 10]. The process of taking out lines and bringing them
back in is done by opening (respectively closing) a switch at the end of the line
and is referred to as switching.

Recent interest in renewable intermittent energy sources and the call for intel-
ligent transmission networks or smart grids have spurred a renewed interest in
switching problems. Fisher et. al. presents in [4] the problem of optimal switch-
ing of transmission elements in an electricity transmission network to minimize
the delivered cost of energy. They propose a mixed-integer program to solve
the DC-approximated loadflow with switching decisions in a single time period.
They note that the problem is NP-hard. Results are provided for a 118-node
network with 186 transmission lines. Hedman et. al. [6] extends the model
to consider reliability of the network. Reliability constraints are added to the
problem to ensure that any line failure will not lead to an infeasible dispatch of
generation. They note that in some cases adding reliability constraints increases
the value of switching.

In [7] Hedman et. al. discuss a decomposition algorithm to solve the security con-
strained transmission switching problem with unit commitment decisions made
heuristically over 24 time periods. The master problem handles unit commit-
ment decisions over the planning horizon given a fixed switching configuration
of the lines, while sub-problems — one for each time period — optimizes the
switching configuration given a fixed unit commitment plan. It is noted that
adding transmission switching may yield a cheaper unit commitment plan with
fewer start-ups than what could be achieved without switching. Khodaei and
Shahidehpour [8] propose a Benders decomposition of the security constrained
unit commitment and transmission switching problem.
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In this paper, we assume that a technology is available that makes it possible
to switch lines instantaneously. That is, a line may be switched automatically
from one moment to the next without delay. In this case, switching out lines
will (in theory) not affect system security (disregarding failures on switching
equipment), since all lines may be switched back in immediately, in case of any
failure in the system.

We propose a Dantzig-Wolfe reformulation and column generation framework
for the transmission switching and unit commitment problem. In this approach,
each subproblem generates a feasible switching and unit commitment plan for a
single time period, while the master problem makes a selection from the set of
generated plans so as to minimize the total cost of generation. In this paper we
disregard security constraints and other special constraints such as minimum
up- and down time, ramp rate, and reserve constraints. Results show that
employing active switching may reduce generation cost by up to 15 % and save
generator startup costs. This is in line with results obtained in [7].

The paper is laid out as follows. Section 9.2 describes a deterministic minimum
cost dispatch DC-approximated load flow model with transmission switching for
a single time period. In section 9.3 we look at the multi-period problem with
start-up costs and propose a Dantzig-Wolfe reformulation and column genera-
tion framework for finding (near-) optimal solutions. In section 9.4 we present
some results for the IEEE 118-bus network. Section 9.5 concludes the paper
and gives some directions for future research.

9.2 Optimal Dispatch with Transmission Switching and

Unit Commitment

Consider an electricity transmission network, where N denotes the set of nodes
(or buses) and E denotes the set of transmission lines (and transformers) con-
necting the nodes. Let T (i) denote the set of lines incident with node i where
i is the head of the incident lines, and let F(i) denote the set of lines incident
with node i, where i is the tail of the incident lines. So a line in F(i) ∩ T (j) is
oriented from i to j.

Many transmission systems consist of alternating current circuits, interlinked
by high voltage direct current links. We shall ignore these in this paper, and
assume that all lines carry alternating current. The methodologies can easily
be adapted to treat high voltage direct current lines as special cases.

Let G be the set of all generating units, that may offer electricity to the market.
Furthermore, let G(i) be the set of generating units located in (and supplying
electricity to) node i. Each generating unit g offers a price cg and a quantity
ug of energy to be generated. If the offer is accepted, unit g will deliver the
quantity qg to the market (assuming that a generator will never offer more than
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its generating capacity).

At each node i the demand di must be met. Load shedding at node i may be
modelled by introducing a dummy generator g′ offering the quantities qg′ at the
corresponding (sufficiently high) price cg′ such that qg′ ≤ max(0, di) = uqg′ .

Each transmission line e ∈ E is characterized by its reactance Re and thermal
capacity ue. The flow on line e is denoted xe, which can be negative to model
power flows in the direction opposite to the orientation of e. All lines are
assumed to be switchable and may be taken out of operation in any given period
of time. For each line e ∈ E, ze = 0 denotes that the line has been switched out
(opened), while ze = 1 denotes that the switch is closed.

The minimum cost dispatch problem for a single period assuming no start-up
cost may now be formulated as,

min
∑

g∈G

cgqg (9.1)

s.t.

lgzg ≤ qg ≤ u
q
gzg, ∀g ∈ G (9.2)

∑

e∈T (i)

xe −
∑

e∈F(i)

xe +
∑

g∈G(i)

qg = di, ∀i ∈ N (9.3)

−ueze ≤ xe ≤ ueze, ∀e ∈ E (9.4)

ze = 1 ⇒ Rexe = θi − θj , ∀e = (i, j) ∈ E (9.5)

qg ≥ 0, ∀g ∈ G (9.6)

zg, ze ∈ {0, 1}, ∀g ∈ G, e ∈ E (9.7)

The objective (9.1) minimizes the total generation costs respecting generation
capacities and minimum generation on committed units (9.2), flow conservation
(9.3), and thermal line capacity (9.4). For lines that are not switched out
Kirchhoff’s voltage law must be respected (9.5). Generation quantities are non-
negative (9.6), and switching and unit commitment decisions are binary (9.7).

Since (9.2) - (9.7) is NP-hard [4], we may — for computational reasons — limit
the number of lines to be switched simultaneously to at most k:

∑

e∈E

(1 − ze) ≤ k, (9.8)

Note, that constraints (9.5) may be linearized using the big-M notation,
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−M(1− ze) ≤ Rexe − θi + θj , ∀e = (i, j) ∈ E (9.9)

M(1− ze) ≥ Rexe − θi + θj , ∀e = (i, j) ∈ E (9.10)

where M is some sufficiently large number.

9.3 Multi-Period Formulation and Dantzig-Wolfe Refor-

mulation

We now consider the problem of finding a minimum cost dispatch of generation
and commitment of generator units in an electricity transmission network with
active switching over several timeperiods.

Consider the discretized planning horizon Ω as a set of discrete time periods.
For each period ω ∈ Ω, let Q(ω) denote the set of feasible operational decisions
(q, x, θ, z) satisfying constraints (9.2) - (9.8) . The multi-period model may now
be formulated as,

min
∑

ω∈Ω

(

f>y(ω) + c(ω)>q(ω)
)

(9.11)

s.t.

zg(ω)− zg(ω − 1) ≤ yg(ω), ∀g ∈ G,ω ∈ Ω (9.12)

(q(ω), x(ω), θ(ω), z(ω)) ∈ Q(ω), ∀ω ∈ Ω (9.13)

y(ω) ∈ {0, 1}|G|, ∀ω ∈ Ω (9.14)

The objective (9.11) minimizes the hourly fixed and operational cost, while
(9.12) ensures that fixed unit commitment cost is incurred if the unit is on in
the current time period ω and off in the previous time period ω−1. We assume,
that the planning period is cyclic so that for the first element ω′ of Ω, ω′ − 1
refer to the last element of Ω.

We propose a Dantzig-Wolfe reformulation of the multi-period model following
the approach in [11]. First, let the binary vector z(ω) define a feasible switching
and unit commitment plan (FSUP) for time period ω, if and only if, there
exists q(ω), x(ω), θ(ω) such that (q(ω), x(ω), θ(ω), z(ω)) ∈ Q(ω). The idea is
to decompose the multi-period problem into a master problem and a number
of subproblems — one for each time period. Each of the subproblems generate
feasible switching and unit commitment plans for the corresponding time period,
while the master problem chooses among the generated FSUP’s and determines
the optimal unit commitment strategy.
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Now, let Z(ω) = {ẑj(ω)|j ∈ J(ω)} be the set of FSUP’s in time period ω, where
J(ω) is the index set for Z(ω). We can now write any element in Z(ω) as

z(ω) =
∑

j∈J(ω)

ϕj(ω)ẑj(ω),

∑

j∈J(ω)

ϕj(ω) = 1, ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω)

Assume that for each feasible switching and unit commitment plan ẑj(ω) the
corresponding optimal dispatch of generation and load shedding is given by
q̂j(ω). The master problem can now be written in terms of ẑ and q̂, that is

min
∑

ω∈Ω



f>y(ω) +
∑

j∈J(ω)

c(ω)>q̂j(ω)ϕj(ω)



 (9.15)

s.t.
∑

j∈J(ω)

ϕj(ω) = 1, [µ(ω)] ∀ω ∈ Ω (9.16)

∑

j∈J(ω)

ẑj(ω)ϕj(ω)−
∑

j∈J(ω−1)

ẑj(ω−1)ϕj(ω−1) ≤ y(ω), [π(ω)] ∀ω ∈ Ω (9.17)

ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω), ω ∈ Ω
(9.18)

y(ω) ∈ {0, 1}|G|, ∀ω ∈ Ω (9.19)

where µ(ω) and π(ω) denote the dual prices for constraints (9.16) respectively
(9.17).

It is convenient to consider only a subset Z ′(ω) ⊆ Z(ω) of feasible switching and
unit commitment plans for each time period ω in the master problem. We define
this restricted master problem (RMP) by (9.15) - (9.19) with J(ω) replaced by
J ′(ω) the index set of Z ′(ω). A column generation algorithm is applied to
dynamically add FSUP’s to the linear relaxation of the master problem. The
algorithm is initialized by letting Z ′(ω) = {z0(ω)} = {1}, for all time periods
ω ∈ Ω. That is, initially no line may be switched and all units are comitted
in all time periods. The corresponding operational costs c>(ω)q̂0(ω) can easily
be found by solving a linear program for each time period. In each iteration
of the algorithm the linear relaxation (RMP-LP) of RMP is solved yielding the
dual prices µ, π. A new column (c>(ω)q̂j(ω), 1, ẑj(ω)) may improve the solution
of RMP-LP if and only if the associated reduced cost c̄(ω) = c>(ω)q̂j(ω) −
(π̂>(ω)− π̂>(ω + 1))ẑj(ω)− µ̂(ω) is negative.
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A column for time period ω may be constructed by solving the subproblem,

min c>(ω)q(ω)− (π̂>(ω)− π̂>(ω + 1))z(ω)− µ̂(ω) (9.20)

s.t. (q(ω), x(ω), θ(ω), z(ω)) ∈ Q(ω) (9.21)

where π̂(ω) and µ̂(ω) are the dual prices returned from RMP-LP. Note, that
each subproblem is in fact a network design problem with single commodity
flow and Kirchhoff’s voltage requirements (9.5) — see eg. [9].

Any feasible solution (q̂(ω), x̂(ω), θ̂(ω), ẑ(ω)) ∈ Qω with negative objective func-
tion gives rise to a potential candidate column for RMP-LP. Hence, we do not
rely on finding optimal solutions to the subproblems. Since our subproblems
are NP-hard mixed integer programs (and potentially large for realistic size
transmission networks) we may settle with suboptimal solutions in favour of
generating more columns. In fact, it is not necessary to generate solutions to
all the subproblems in each iteration, and hence we may postpone the genera-
tion of columns for subproblems, where a solution with negative reduced cost is
not easily obtained. When all subproblems return solutions with non-negative
reduced costs c̄ we resolve all subproblems to optimality if necessary.

If no columns with negative reduced cost exist we have solved the relaxed master
problem (MP-LP) to optimality. Furthermore, if the solution (ϕ∗, y∗) to MP-LP
is integral, (ϕ∗, y∗) is an optimal solution to the master problem (9.15) - (9.19)
and y∗ is the optimal unit commitment strategy. Otherwise, we may resort to
a branch-and-bound framework for finding optimal integral solutions or simply
solve the integral RMP in the hope of finding a good feasible integer solution.

When the relaxed master problem MP-LP yields fractional solutions one may
resort to branching to attain integral solutions. In this paper a crude one-level
branching scheme, where we branch on one of the y-variables, is proposed to
resolve fractionality of the relaxation. This does not guarantee optimal integral
solutions in general, but yields feasible near-optimal solutions in practice. A
branch-and-price scheme — in which one continue to branch on fractional vari-
ables until fractionality is resolved — may be employed to guarantee optimal
integral solutions in general.

9.4 Computational Results

In this section, we apply the column generation algorithm proposed above to
the IEEE 118-bus network [3] with network data described in [2]. This network
has 185 lines, 19 generator units, total peak load of 4519 MW, and a total
thermal generator capacity of 5859 MW. We consider the demand data [3] for
day 2 (winter, weekend) with 24 hourly time periods and assume a minimum
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generation level of 20 % of capacity and start-up cost of $ 10 for each of the 19
generator units.

The decomposition and models are formulated using the AMPL modelling lan-
guage and all master- and subproblems are solved with CPLEX 12.2. The
relaxed master problems are solved using CPLEX barrier algorithm (without
applying crossover at the end), while the subproblems are solved using the
CPLEX standard branch-and-bound algorithm. Computational experiments
are performed on a 2.26 GHz Core 2 Duo computer with 4 GB RAM.

The power dispatch problem with unit commitment is solved for different values
of k, where k = 0 characterizes the instance without switching. Table 9.1 shows
solutions and running times for the column generation and branch-and-bound
algorithm for problem instances with 24 (hourly) time periods. For the branch-
and-bound algorithm CPLEX 12.2 was applied with default parameters.

Instance Column generation Branch-and-bound

network k time (s) time, sub (s) abs. gap ite. col. time (s) abs. gap

IEEE118 0 46.6 46.0 0 16 ? 84 8 0

IEEE118 1 1996.1 1995.5 0 18 ? 80 - 1353.52

IEEE118 2 5531.3 5531.0 0 7 ? 70 - 2467.23

IEEE118 3 15681.4 15680.9 0 9 ? 69 - 2434.40

IEEE118 4 29665.3 29664.8 0 13 ? 83 - 2779.21

IEEE118 8 45553.0 45552.4 - 17 † 106 - -

Table 9.1: Solution times and absolute gap to the optimal solution for problem in-
stances with 24 time periods for the proposed column generation algorithm and stan-
dard branch-and-bound (CPLEX). For the column generation algorithm the time used
in the subproblems, the number of iterations and the number of columns added is also
shown. Instances marked by ? are solved to integrality in the root node, while † de-
notes that optimisation was terminated without proving optimality. For k > 0 the
branch-and-bound algorithm was terminated due to lack of memory.

The column generation algorithm solved all instances with k ≤ 4 to optimality
in the root node and hence no branching was needed. For k = 8 the algorithm
terminated without proving optimality or even providing a lower bound. In
general, integrality is not guaranteed and branching on fractional variables may
be necessary to obtain integral optimal solutions. Only a small fraction of the
total solve time used by the column generation algorithm is spent solving the
master problems. The majority of the time is spent in the subproblems. Future
research should be directed at solving the subproblems efficiently.

Without switching (k = 0) the branch-and-bound algorithm proved more ef-
ficient than column generation. However, for k > 0 the branch-and-bound
algorithm ran out of memory and the best feasible solution returned was con-
siderably worse than the solution returned by the column generation algorithm.

Table 9.2 shows the objective function value and number of start-ups in the
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Instance Best known solution

network k value start-ups

IEEE118 0 28128.35 8

IEEE118 1 26580.22 6

IEEE118 2 25898.55 7

IEEE118 3 25215.01 7

IEEE118 4 24978.30 7

IEEE118 8 23884.08 ‡ 7

Table 9.2: Solution values and number of start-ups for the best known solution to
instances with k = 0, 1, 2, 3, 4, 8. ‡ indicates that optimality was not proven.

best known solution for each instance. In the situation without switching the
total generation and unit commitment cost incurred is $ 28128.35 and a total
of 8 start-ups are required. When allowing switching of at most four switches
in each time period the total cost is reduced to $ 24978.3. For k = 8 the total
cost is further reduced to $ 23884.08 with 7 generator start-ups.

9.5 Conclusion

In this paper we consider the problem of determining an optimal dispatch and
unit commitment of power generation in a transmission network with active
switching. We propose a Dantzig-Wolfe reformulation of the multi-period formu-
lation into a master problem handling start-ups over the entire planning horizon
and a number of subproblems each of which generates feasible unit commitment
and switching patterns for a single time period. A column generation approach
is outlined to solve the Dantzig-Wolfe reformulation.

The effect of allowing active switching in a setting with start-up costs on gen-
erator units is evaluated on the IEEE-118 bus network. Computational results
show that over a particular 24-hour period total cost is reduced by up to 15 %
and the number of start-ups are reduced by 1.

Furthermore, the proposed column generation algorithm is shown to be signifi-
cantly more efficient than solving the problem using CPLEX standard branch-
and-bound with default options. However, due to the computational complexity
of the subproblems the algorithm spends the majority of the time solving the
subproblems. Hence, further research should be directed at providing stronger
formulations and more efficient solution methods for the subproblems, in order
to improve the overall efficiency of the algorithm.

The model in this paper disregards security constraints, ramp rate constraints,
and other generation specific constraints. Security constraints have been noted
by Hedman et. al. [7] to increase the computational complexity of the problem
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significantly. Future research should investigate the impact of such constraints
on the running times of the column generation algorithm.

The algorithm employed in this paper is a first step showing proof of concept
— and it may not always return optimal integer solutions. Integrality may be
ensured by employing a general branch-and-price scheme, where we continue
branching on fractional variables until an integer solution is obtained. Optimiz-
ing the algorithm design may speed up solution times as well as ensure optimal
solutions in general.
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In deregulated electricity markets with zonal pricing the market is partitioned into a
number of zones, each of which is assigned a market price to which market participants
react at any given point in time . We discuss the problem of designing such zones
for a market subject to uncertainty. A two-stage stochastic program is presented
and its complexity is discussed. In particular, we show that, when the stochastic
parameters are independently distributed, the problem is #P-hard. Furthermore,
the stochastic program contains integer variables. Hence, the problem is potentially
difficult to solve. This motivates a Dantzig-Wolfe reformulation of the problem based
on scenario decomposition, as we conjecture that for large instances decomposing
the problem will lead to more efficient solution procedures. Finally, we present a
formulation ensuring spatially contiguous zones.

10.1 Introduction

Deregulated electricity markets may employ different transmission pricing mech-
anisms. Nodal pricing refers to a system with individual market prices for each
physical node in the network, whereas in zonal pricing the network is partitioned
into zones and a market price is assigned to each zone. The partitioning of the
network may be based on physical characteristics of the network (e.g. capacity
constraints) as well as political (national borders) and organisational divisions.
In this paper we shall not delve into the discussion on nodal versus zonal pricing

107
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(see e.g. [8] for a discussion), but rather assume that a zonal pricing regime is
chosen exogenously. However, we may note that while nodal pricing may be
optimal in a perfect market, zonal pricing may offer greater transparency to
market participants and a greater sense of fairness.

We refer to the problem of determining optimal price zones as the zonal design
problem. This involves allocating each node in the tranmsission network to a
particular zone. We will here assume that the number of zones is fixed. The
zonal design problem for a single period with linear marginal generation cost
and demand curves has been treated in [2].

In general, the resulting zonal design must be static in the short to medium
term, but may be changed in the medium to long term. Johnsen et. al. [9] report
in 1999 that the Norwegian zonal system may be changed on a weekly basis.
The nordic market pool operator, NordPool, announced that Sweden will change
from a single zone to four zones (to better reflect bottlenecks in the transmission
network) in 2011 following a 17 months notice [12]. Figure 10.1 illustrates the
current (September 2011) zonal design of the Nord Pool Spot electricity market
[13]. The stochastic nature of electricity systems means that a particular zonal
design must accommodate a variety of supply and load conditions in the network
as well as potential line failures. This leads us to propose a stochastic version
of the zonal design problem, that maximises the expected social welfare of the
system. That is, the total generation cost (and potential transmission cost)
except total consumer benefits is minimised.

NO1

NO2

NO5

NO3

NO4

FI

SE

DK1

DK2

EE

Figure 10.1: Schematic outline of the 10 price zones in the Nord Pool Spot market
area comprising Norway (NO), Sweden (SE), Finland (FI), Estonia (EE), and Denmark
(DK) as of September 2011.

Another attribute of price zones is contiguity. Often price zones are required to
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be spatially contiguous. That is, two nodes in the same zone must be connected
by at least one path, that does not go through any other zone. When requiring
that zones are contiguous with respect to the transmission network, the resulting
problem is a graph clustering problem with an underlying equilibrium dispatch
of electricity generation and network flow. Graph clustering problems have been
studied within various applications for many years. For example, Augustson and
Minker [1] explores clustering techniques for information retrieval systems.

The contribution of this paper is three-fold. Firstly, we present a linear mixed
integer formulation of the deterministic zonal design problem. Secondly, a two-
stage stochastic formulation based on scenario decomposition using a split vari-
able approach (see e.g. [10]) is presented and we show that the stochastic prob-
lem is #P-hard when the stochastic parameters are independent. Thirdly, we
provide a formulation that ensures spatially contiguous zones based on a mini-
mum spanning forest formulation suggested by Martin [11] and show that this
may lead to higher total generation cost.

We begin the paper by introducing the deterministic zonal design problem in
section 10.2 and motivate the need for considering uncertainty. Subsequently,
we state the stochastic version of the problem in section 10.3 and discuss its com-
plexity. A Dantzig-Wolfe reformulation [5] and column generation framework
for solving the stochastic problem more efficiently is suggested. In section 10.4
we provide a formulation ensuring spatially contiguous zones. Finally, some
concluding remarks are given in section 10.5.

10.2 Model Formulation

We assume a linear direct current approximation of the optimal alternating
current power flow (see e.g. [4, 14]) with linear generation costs and no line
losses.

Consider the directed graph G = (N ,A) with a source/sink node s. For each arc
a ∈ A, the cost, lower-, and upper bound on power flows, as well as reactance
coefficients are given by ca, la, ua, and ra, respectively. The flow on each arc
a ∈ A is denoted by xa, while wi denotes the voltage phase angle for each node
i ∈ N . Let the set of arcs F(i), respectively, T (i) denote the set of arcs with
tail, resp. , head i. Let the set of supply and demand arcs S = F(s)∪T (s) ⊆ A
be defined by having s as the tail, respectively, head. Let the set of transmission
arcs be denoted by R = A \ S.

The economic dispatch of generation, consumption, and flows in the network,
at any given time, may be found by solving the following linear program,
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min
∑

a∈A

caxa (10.1)

subject to

−xa ≥ −ua (λa) ∀a ∈ A (10.2)

xa ≥ la (µa) ∀a ∈ A (10.3)
∑

a∈F(i)

xa −
∑

a∈T (i)

xa = 0 (πi) ∀i ∈ N (10.4)

raxa + wj − wi = 0 (γa) ∀a = (i, j) ∈ A \ S (10.5)

where symbols in parenthesis denotes dual prices and in particular π is a vector
of nodal prices. The objective (10.2) maximises total social welfare. Con-
straints (10.2) and (10.3) provides upper, respectively, lower bounds on the arc
flows, constraints (10.4) ensures conservation of energy, and constraints (10.5)
is Kirchhoff’s voltage constraints.

We now introduce a set of zones K and we wish to restrict the market prices so
that the price in two nodes belonging to the same zone is equal. Let ρ ∈ R

N

denote the vector of market prices. In a nodal pricing regime we have ρ = π.

A vector z ∈ {0, 1}(|N |−1)|K| of binary variables denotes the allocation of nodes
to zones, such that zik = 1 if and only if node i belongs to zone k. That is,

zik = zjk = 1⇒ ρi − ρj = 0 ∀i 6= j ∈ N \ {s}, k ∈ K (10.6)
∑

k∈K

zik = 1 ∀i ∈ N \ {s} (10.7)

zik ∈ {0, 1} ∀i ∈ N \ {s}, k ∈ K (10.8)

Introducing some sufficiently large number M , we can rewrite (10.6) in a linear
form as,

−M(2− zik − zjk) ≤ ρi − ρj ≤M(2− zik − zjk) ∀i 6= j ∈ N \ {s}, k ∈ K
(10.9)

We may without loss of generality allocate the first transmission node to the
first zone.
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For the market dispatch of generation (and consumption) to be feasible, we
must ensure that if generation (consumption) is at the lower bound, then the
cost is at least the price difference beween the end nodes (and profit is non-
positive). Similarly, if generation (consumption) is at capacity, then the cost is
at most the price difference and the corresponding profit is non-negative. Also,
we must ensure that for a generator (demand segment) producing (consuming)
strictly in the interval ]la, ua[ the price difference must equal the cost. Otherwise
the generator (demand segment) would either increase or decrease generation
(consumption). That is,

xa = la ⇒ ca ≥ ρj − ρi ∀a = (i, j) ∈ S

la < xa < ua ⇒ ca = ρj − ρi ∀a = (i, j) ∈ S

xa = ua ⇒ ca ≤ ρj − ρi ∀a = (i, j) ∈ S

We can write this using the shadow prices λa and µa as,

ca − λa + µa = ρj − ρi ∀a = (i, j) ∈ S (10.10)

and complementarity constraints,

0 ≤ λa ⊥ ua − xa ≥ 0 ∀a ∈ S (10.11)

0 ≤ µa ⊥ xa − la ≥ 0 ∀a ∈ S (10.12)

In a nodal pricing scheme, constraint set (10.10) corresponds to the set of dual
constraints associated with the flow variables x on supply and demand arcs with
ρ = π. For simplicity, we may without loss of generality assume that ρs = 0.

The complementarity conditions (10.11) - (10.12) may be linearised (due to
Fortuny-Amat [7]) by introducing new auxillary binary variables v+a and v−a for
each a in S and a sufficiently large constantM . That is, we can replace (10.11)
- (10.12) by

ua − xa ≤Mv+a ∀a ∈ S (10.13)

λa ≤M(1− v+a ) ∀a ∈ S (10.14)

xa − la ≤Mv−a ∀a ∈ S (10.15)

µa ≤M(1− v−a ) ∀a ∈ S (10.16)

λa, µa ≥ 0 ∀a ∈ S (10.17)

v+a , v
−
a ∈ {0, 1} ∀a ∈ S (10.18)
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Now we can formulate the problem of finding optimal zones by minimising
∑

a∈A caxa subject to the constraints (10.2)− (10.5), (10.6)− (10.8), (10.10)−
(10.12) or as the equivalent mixed integer linear program

min
∑

a∈A

caxa s.t. (10.1)− (10.5), (10.7)− (10.9), (10.10), (10.13)− (10.18)

For notational convenience define the vector of binary variables v =

(

v−

v+

)

.

We will now look at a tiny instance with four transmission nodes, two generators,
and two demands. The parameters are shown in Figure 10.2. All transmission
arcs have reactance coefficient 1, zero cost and infinite capacities except for the
arc from node 2 to 4, that has capacity 5. Figure 10.3 shows the optimal flow
and prices in a nodal pricing scheme, while Figure 10.4 shows the flows and
price for zonal pricing scheme with only one zone. Having a single price zone
reduces the total social surplus of the system as well as the consumption in node
2.

1

2

3

4

∞

∞

5

∞

supply demand

node 1 2 2 4

c 51 2 -50 -90

u 20 10 5 15

Figure 10.2: Small instance with four transmission nodes, two supply arcs, and two
demand arcs. Arc labels u = −l indicate capacities of the transmission arcs. All
transmission cost and reactance coefficients are 0 respectively 1.

Usually, the zonal design is static in the short to medium term, while costs
and capacities may vary over time. For instance, the capacity of a wind power
generator varies from hour to hour with the wind velocity etc., while the cost of
generation from a natural gas turbine varies with the market price on natural
gas. Also, thermal transmission line capacities may vary over the year due to
temperature differences. Hence, a good zonal design must be robust to such
changes. The following two-period example illustrates the problem. The pa-
rameters of the example are shown in Figure 10.5. The transmission network
consists of four nodes and four lines.
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90
2.5

5

2.5

supply demand

node 1 2 2 4

x 2.5 10 5 7.5

Figure 10.3: Optimal flow with nodal
pricing (four zones). Arc labels indicate
flows, while node labels indicate prices.
Solution value is -777.50.
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supply demand

node 1 2 2 4

x 0 10 3.33 6.67

Figure 10.4: Optimal flow with two price
zones consisting of the nodes 1, 2, 3 re-
spectively node 4. Arc labels indicate
flows, while node labels indicate prices.
Solution value is -746.67.

An optimal solution with two zones for each of the two periods is depicted in
Figure 10.6. However, these solutions dictates a dynamic zonal allocation, since
the low price zone consists of node 2 and 3 in period 1, while in period 2 it
consists of node 1 and 2. Also, imposing the optimal zonal design obtained for
period 1 will yield a suboptimal flow for period 2.

When we require the zonal allocation to be identical in the two scenarios, the
total surplus decreases in scenario (a), while it remains the same in scenario (b).
This is due to a reduction of consumption in node 2 and 4 and a reduction of
generation in node 1. The result is shown in Figure 10.7

Based on these observations the optimal design of zones is not obvious. In the
following section, we propose a two-stage stochastic programming formulation
for the zonal design problem minimising the total expected cost over a number
of scenarios.

10.3 A Two-Stage Stochastic Model

Now, we extend the problem of identifying optimal zones to a stochastic setting
in which costs and capacities are not constant.

Let zik(ω) denote a request for node i to belong to zone k in scenario ω.

Consider a two-stage stochastic model, where the first stage decisions determine
the zonal design, while the second stage models operational decisions (x,w, z, v)
of dispatch and zonal allocation requests in a number of scenarios ω ∈ Ω, each
occurring with probability p(ω). For each scenario ω ∈ Ω let



114
MODELLING ZONAL PRICING DESIGN UNDER UNCERTAINTY IN

ELECTRICITY MARKETS

1

2

3

4

∞

∞

5

5

supply demand

node 1 2 2 4

c 51 2 -50 -90

u 20 10 5 15

(a)
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(b)

Figure 10.5: Small instance with two scenarios (a) and (b) and four transmission
nodes. Arc labels show transmission capacities u = −l. All transmission reactance
coefficients are 1. The tables show supply and demand arc coefficients. Lower bound
on supply and demand is 0.

Q(ω) = {(x(ω), w(ω), z(ω), v(ω)) |

(10.2)− (10.5), (10.7)− (10.9), (10.10), (10.13)− (10.18)} (10.19)

be the set of feasible dispatch (and zonal design) solutions for a particular
scenario ω.

The problem of identifying an optimal zonal design may now be formulated as

SZDP: min
∑

ω∈Ω

p(ω)c(ω)>x(ω) (10.20)

s.t. z(ω) = y ∀ω ∈ Ω (10.21)

(x(ω), w(ω), z(ω), v(ω)) ∈ Q(ω) ∀ω ∈ Ω (10.22)

The objective (10.20) minimises the expected operational costs, while (10.21)
ensures that zone allocation is static (over all scenarios).

10.3.1 Complexity

Two-stage stochastic programs are in general #P-hard even when efficient algo-
rithms exist for solving the single scenario problem. This is shown by Dyer and
Stougie by reduction from the graph reliability problem for discrete probability
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Figure 10.6: Resulting flows and prices when the scenarios are optimised separately
with 3 price zones. Arc labels indicate transmission flows, while node labels indicate
prices. Scenario (a) has an optimal cost of -777.50, while scenario (b) has optimal cost
-1068.00.
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Figure 10.7: Resulting flows and prices when the scenarios are co-optimised with 3
price zones. Arc labels indicate transmission flows, while node labels indicate prices.
Scenario (a) has an optimal cost of -746.67, while scenario (b) has optimal cost -
1068.00.

distributions and by reduction from the volume of a knapsack polytope problem
for continuous probability distributions [6].

In the following we show that the stochastic zonal design problem is also #P-
hard, which motivates the decomposition of the problem presented in the suc-
ceeding section. The proof relies on the stochastic parameters being indepen-
dently distributed, which will lead to an exponential number of scenarios.

In many practical cases this may not hold. E.g. if the stochastic parameters
represent capacity of wind turbines or level of water in hydro reservoirs across
the network, these are likely to be highly correlated.
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Define the graph G′ = (N ′,R), where N ′ = N \ {s}.

Consider the problem of finding a path from i to j in G′ following a random
event which renders each arc in R unusable with probability 1/2 corresponding
to the failure of a transmission arc. Furthermore, assume that arc failures are
independently and identically distributed.

This corresponds to the following two-stage stochastic program SP with 2|R|

scenarios, where each scenario ω in Ω corresponds to an outcome of the random
event occuring with equal probabilities p(ω) = (1/2)|R|.

SP: max Z =
∑

ω∈Ω

p(ω)xa′(ω) (10.23)

s.t. 0 ≤ xa(ω) ≤ ua(ω) ∀ω ∈ Ω, a ∈ A (10.24)
∑

a∈T (i)

xa(ω)−
∑

a∈F(i)

xa(ω) = 0 ∀i ∈ N , ω ∈ Ω (10.25)

SP is obtained from SZDP by setting the number of zones to the number of
transmission nodes |K| = |N ′| so that each transmission node constitutes its
own price zone. This makes the zonal pricing constraints (10.7) - (10.9), and
the equilibrium constraints (10.10), (10.13) - (10.18) redundant. Furthermore,
we let the reactance coefficients ra = 0 for all transmission arcs a in R. This
eliminates the constraints (10.5), as the flows are decoupled from the voltage
phase angles. For each scenario ω ∈ Ω, we set the lower bound on arc flows to
la(ω) = 0. Finally, the objective function is defined by a negative unit cost on
supply ca′(ω) = −1, and ca(ω) = 0 for all a 6= a′ ∈ A and ω ∈ Ω.

The graph reliability problem is defined as follows [6],

Definition 5 Given a directed graph G and a pair of vertices (i, j). Rij(G)
is an instance of the graph reliability problem defined by the problem of finding
the probability that i and j are connected, if each arc fails independently with
probability 1/2.

Proposition 6 SP is equivalent to the graph reliability problem.

Proof. Take any instance Rij(G
′) of the graph reliability problem on the graph

G′ = (N ′,R). Add to G′ the node s and the arcs a′ = (s, i) and a′′ = (j, s)
and assign to them the fixed capacities ua′ = ua′′ = 1. For all arcs a in R
assign random capacities ua, that are independent and identically distributed
with discrete probability distribution p(ua = 0) = p(ua = 1) = 1/2. Define a
set of scenarios Ω, such that each scenario ω in Ω corresponds to an outcome
of the random vector u occurring with probability p(ω) = (1/2)|R|. Let u(ω)
denote the realisation of arc capacities u in scenario ω.
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Suppose, that for a realisation of arc failures in the graph reliability instance cor-
responding to the scenario ω, there exist a path P from i to j. The corresponding
partial solution x(ω) to SP is constructed by letting xa′(ω) = xa′′(ω) = 1 and
xa(ω) = 1 for all a in the path P and xa(ω) = 0 for all remaining arcs a in
R \ P . Similarly, if for a realisation of arc failures in the graph reliability in-
stance corresponding to the scenario ω, there does not exist a path P from i to
j, the corresponding partial solution x(ω) is constructed by letting xa(ω) = 0
for all a in R∪{a′, a′′}. The combined solution for all realisations of arc failures
yields the optimal solution x∗ with value Z∗ being the realibility of the graph
reliability instance Rij(G

′).

Conversely, an optimal solution x∗ to SP will have for each scenario ω in Ω,
corresponding to some realisation of arc failures in the graph reliability problem,
xa′(ω) = 1 if and only if the graph G′ contains a path from i to j and xa′(ω) = 0,
otherwise. Hence, the optimal value Z∗ is the realiability of the graph G′.

It follows from Proposition 6 and the fact that the graph reliability problem is
#P-hard [15], that SP is also #P-hard. Hence, SZDP is #P-hard.

10.3.2 Dantzig-Wolfe reformulation

We have shown in section 10.3.1 that the stochastic zonal design problem is
#P-hard, and hence potentially hard to solve. In the following, we provide a
Dantzig-Wolfe reformulation of the problem, that allows us to decompose the
problem based on scenarios and solve it using column generation and branch-
and-price. We conjecture that for large instances a decomposition of the problem
will lead to more efficient solution procedures.

The Dantzig-Wolfe reformulation follows in the line of [16]. Let the binary
vector z(ω) define a feasible zonal design (FZD) for scenario ω if there exists
x(ω), w(ω), v(ω) such that (x(ω), w(ω), z(ω), v(ω)) ∈ Q(ω). Now, let Z(ω) =
{ẑj(ω)|j ∈ J(ω)} be the set of all FZD’s for scenario ω, where J(ω) is the index
set for Z(ω). We can write any element in Z(ω) as

z(ω) =
∑

j∈J(ω)

ϕj(ω)ẑj(ω)

∑

j∈J(ω)

ϕj(ω) = 1, ϕj(ω) ∈ {0, 1}, ∀j ∈ J(ω).

Assume that for each feasible zonal design ẑj(ω) the corresponding optimal
dispatch is given by x̂j(ω). The master problem can now be written in terms of
ẑ and x̂ as
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MP: min
∑

ω∈Ω

p(ω)
∑

j∈Jω

c(ω)>x̂j(ω)ϕj(ω) (10.26)

s.t.
∑

j∈J(ω)

ϕj(ω) = 1 [ν(ω)] , ∀ω ∈ Ω (10.27)

y −
∑

j∈J(ω)

ẑj(ω)ϕj(ω) = 0 [ρ(ω)] , ∀ω ∈ Ω (10.28)

ϕj(ω) ∈ {0, 1}, j ∈ J(ω) (10.29)

y ∈ {0, 1}|A||K| (10.30)

where ν(ω) and ρ(ω) denote the dual prices associated with the respective con-
straints.

The master problem MP is a two-stage stochastic integer program with integer
variables in both stages.

Proposition 7 If y is chosen to be a fixed vector of binary integers, then the
linear programming relaxation of MP has integer extreme points.

For a proof we refer the reader to [16].

It is convenient to consider only a subset Z(ω)′ ⊆ Z(ω) of feasible zonal designs
for each scenario ω in the master problem. We define this restricted master
problem (RMP) by (10.26) - (10.30) with J(ω) replaced by J(ω)′ the index set
of Z(ω)′. A column generation algorithm is applied to dynamically add FZD’s
to the linear relaxation of the master problem.

In each iteration of the algorithm, the linear relaxation (RMP-LP) of RMP is
solved yielding the dual prices ν and ρ. A new column (p(ω)c(ω)>x̂j(ω), 1, ẑj(ω))
may improve the solution of RMP-LP if and only if the associated reduced cost
c̄(ω) = p(ω)c(ω)>x̂j(ω) + ρ(ω)>ẑj(ω)− ν(ω) is negative.

A column for scenario ω may therefore be constructed by solving the subprob-
lem:

min p(ω)c(ω)>x+ ρ(ω)>z − ν(ω)

s.t. (x,w, z, v) ∈ Q(ω),

where ν(ω) and ρ(ω) are the dual prices returned from RMP-LP.

Any feasible solution (x,w, z, v) ∈ Q(ω) with negative objective function gives
rise to a potential candidate column for RMP-LP. If no columns with negative
reduced cost exist then we have solved the relaxed master problem (MP-LP)
to optimality. Furthermore, if the solution (ϕ∗, y∗) to MP-LP is integral then
(ϕ∗, y∗) is an optimal solution to the master problem (10.26) - (10.30) and y∗
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is the optimal zonal design. Otherwise, we may resort to a branch-and-price
framework for finding optimal integral solutions. Note that a fractional solution
will always have at least one fractional y-value (see Proposition 7). Hence,
we branch on one of the fractional y-variables and hope that this will resolve
the fractionality. If not, one may continue branching on y-variables until the
fractionality is resolved.

10.4 Contiguous Zones

The formulation presented so far does not restrict zones to be spatially contigu-
ous. This means that a feasible zone may consist of nodes that are separated
by nodes from another zone. In this section we provide a spanning forest for-
mulation that requires zones to be contiguous. The formulation is based on the
minimum spanning tree formulation by Martin [11].

Let HK be a spanning forest of |K| trees on the graph (N \ {s},A\S). We can
now replace (10.6)-(10.8) by

a ∈ HK ⇒ ρi − ρj = 0 ∀a = (i, j) ∈ A \ S (10.31)

Let χ be binary vector defining a spanning forest on the transmission network.
The following is due to Martin [11]. Arc a belongs to HK if and only if χa = 1
and (χ, q) is a feasible solution to,

∑

a∈R

χa =|N | − |K| − 1 (10.32)

χa =qhij + qhji ∀h ∈ N , a = (i, j) ∈ R (10.33)
∑

j 6=h

qhhj ≤0 ∀h ∈ N (10.34)

∑

j 6=i

qhij ≤1 ∀h 6= i ∈ N (10.35)

χa, qhij , qhji {0, 1} ∀h ∈ N , a = (i, j) ∈ R (10.36)

where q is vector of binary auxillary variables.

We can now write (10.31) as,

−M(1− χa) ≤ ρi − ρj ≤M(1− χa) ∀a = (i, j) ∈ A \ S (10.37)
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Example

For the purpose of illustration we consider in the following a single scenario
instance of the zonal design problem on a network with 13 transmission nodes.
The network is described in [3], however the generation data is modified to give
interesting zonal designs. The topology of the transmission network is shown in
Figure 10.8. All transmission line capacities are set to 55, that is ua = −la = 55
for all arcs a in R. Reactance coefficients are given in Table 10.1, while demand
and generation is summarised in Table 10.2. Lower bound on generation for all
generators is 0, that is la = 0 for all a in S. We wish to find a partition of the
nodes into three zones, that minimises the total generation cost of the system.

transmission arc reactance

from to ra

1 2 0.1515

1 5 0.1515

2 5 0.1887

2 4 0.1563

2 3 0.1020

3 4 0.1333

4 5 0.1515

4 7 0.1961

4 8 0.5263

7 8 0.1695

8 9 0.1099

9 10 0.1667

6 10 0.1887

5 6 0.2326

6 12 0.2703

12 13 0.3448

6 13 0.3125

11 12 0.4545

8 11 0.2632

Table 10.1: Reactance coefficients
for 13 node transmission network.

node demand supply

i di capacity marg. cost

1 0.0 65 10

2 77.6

3 7.8

4 94.7

5 7.6 200 20

6 11.2

7 0.0

8 29.5 200 40

9 9.0

10 3.5

11 6.1

12 13.5 200 10

13 14.9

Table 10.2: Supply and demand coefficients for
the 13 node network.

An optimal zonal design for the 13 node instance, when zones are not required
to be contiguous is shown in Figure 10.9 with a total generation cost of 3926.77,
while Figure 10.10 shows an optimal design when contiguity is enforced yield-
ing a total cost of 4150.24. When not requiring contiguous zones the optimal
solution involves generation strictly within bounds for all generators (that is,
la < xa < ua for all a in S), which requires that the corresponding zonal
price equals the marginal generation cost. If zones must be contiguous, this
is no longer possible (with only three zones). Hence, the generation pattern
is changed shifting generation to nodes with higher cost generation, yielding a
solution at a considerably higher cost.
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Figure 10.8: 13 node network with four generators located in the four emphasised
(bold) nodes (1,5,8,12). All transmission line capacities are ua = −la = 55. Supply
arc capacities are all 200 except for the arc into node 1 which have ua = 65.

10.5 Conclusion

In this paper, we have presented a linearised version of the stochastic zonal de-
sign problem and we have shown that when the stochastic parameters are inde-
pendently distributed the problem is #P-hard. The complexity of the problem
motivated a Dantzig-Wolfe reformulation based on a split variable approach.
Finally, a formulation ensuring spatially contiguous zones based on a spanning
forest is provided.

The Dantzig-Wolfe reformulation is prone to the symmetry of the zonal requests
and we do not expect a column generation algorithm based on this formulation
to be efficient unless this symmetry is broken. A similar Dantzig-Wolfe refor-
mulation for the stochastic model with contiguous zones may be deduced based
on using tree variables as master problem variables. However, this construc-
tion exhibits similar symmetry problems, as many trees may represent the same
zone. One approach may be to define linking constraints between scenarios
based on the arcs belonging to the cuts between zones as these will be uniquely
determined.

Two-stage stochastic programs with integer variables are in general hard to
solve due to both the non-convexities and potential explosion in the number
of scenarios (as shown). However, it remains to be shown whether the inte-
grality constraints yields the problem NP-hard. In practice, scenarios may be
correlated and the resulting zonal design problem may not be #P-hard. Hence,
further research should be dedicated to computational experiments to verify the
efficiency of an algorithm based on the Dantzig-Wolfe reformulation to practical
instances.
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Figure 10.9: Resulting zonal design with
three zones when zones are not required
to be contiguous. Total generation cost
is 3926.77. Dashed lines indicate zonal
borders and italic font zonal prices.
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Figure 10.10: Resulting zonal design
with 3 zones when zones must be con-
tiguous. Bold lines indicate the for-
est defining the zonal design, while
dashed lines indicate the corresponding
zonal borders. Total generation cost is
4150.24.

If, indeed, the stochastic problem is difficult to solve for large instances with
many scenarios, further research should be directed towards stronger formula-
tions of the stochastic zonal design problem.

Bibliography

[1] J. Augustson and J. Minker. An analysis of some graph theoretical cluster
techniques. Journal of the ACM (JACM), 17(4):571–588, 1970.

[2] M. Bjørndal and K. Jörnsten. Zonal pricing in a deregulated electricity
market. Energy Journal, 22(1):51–73, 2001.

[3] S. A. Blumsack. Network Topologies and Transmission Investment Under
Electric-Industry Restructuring. PhD thesis, Carnegie Mellon University,
2006.

[4] R. Bohn, M. Caramanis, and F. Schweppe. Optimal pricing in electrical
networks over space and time. The Rand Journal of Economics, 15(3):360–
376, 1984.



BIBLIOGRAPHY 123

[5] G. Dantzig and P. Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

[6] M. Dyer and L. Stougie. Computational complexity of stochastic program-
ming problems. Mathematical Programming, 106(3):423–432, 2006.

[7] J. Fortuny-Amat and B. McCarl. A representation and economic interpre-
tation of a two-level programming problem. The Journal of The Operational
Research Society, 32(9):783–792, 1981.

[8] W. Hogan. Transmission congestion: the nodal-zonal debate revisited.
1999.

[9] T. Johnsen, S. Verma, and C. Wolfram. Zonal pricing and demand-side
bidding in the norwegian electricity market. 1999.

[10] I. Lustig, J. Mulvey, and T. Carpenter. Formulating two-stage stochastic
programs for interior point methods. Operations Research, pages 757–770,
1991.

[11] R. K. Martin. Using separation algorithms to generate mixed integer model
reformulations. Operations Research Letters, 10(3):119 – 128, 1991.

[12] Nord Pool Spot. No. 26/2010 NPS - subdivision of the Swedish electricity
market into several bidding areas. http://nordpoolspot.com/Message-

center-container/Exchange-list/Exchange-information/No-

262010-NPS---Subdivision-of-the-Swedish-electricity-market-

into-several-bidding-areas/?year=2010&month=4, April 2010. On-
line. Accessed 1 October, 2011.

[13] Nord Pool Spot. Nord pool spot website. http://nordpoolspot.com,
September 2011.

[14] H. Stigler and C. Todem. Optimization of the austrian electricity sector
(control zone of verbund apg) by nodal pricing. Central European Journal
of Operations Research, 13(2):105, 2005.

[15] L. Valiant. The complexity of enumeration and reliability problems. SIAM
Journal on Computing, 8:410, 1979.

[16] J. C. Villumsen and A. B. Philpott. Investment in electricity networks with
transmission switching. Submitted to European Journal of Operational
Research, 2011.



124 BIBLIOGRAPHY



Chapter 11

Capacity Expansion and Transmission

Pricing in Natural Gas Networks

Jonas C. Villumsen∗

∗Department of Management Engineering, Technical University of Denmark,

Produktionstorvet, Building 424, DK-2800 Kgs. Lyngby, Denmark

jcvi@man.dtu.dk

For natural gas transmission networks in liberalised markets investments in pipeline
capacity and decisions on the level of transmission tariffs collected are important and
interrelated problems. In this paper we present a three-stage stochastic program de-
termining an optimal investment strategy and transmission tariffs under uncertainty of
supply, demand, transport costs, and pipeline capacity. The problem is formulated as
a mixed integer linear program with equilibrium constraints and a numerical example
justifies the model.

11.1 Introduction

In this paper we discuss the problem of determining an optimal pipeline ca-
pacity expansion strategy and transmission tariffs for natural gas transmission
networks.

We will assume here that the natural gas transmission network is owned and
operated by one or several transmission system operators (TSO’s). If several
TSO’s exists each TSO exclusively own and operate his own part of the net-
work. Producers deliver gas at entry points of the network, while consumers
demand gas at exit points of the network. Transport customers purchase gas
from producers at an entry point and deliver to consumers at an exit point.
Transportation of gas across the transmission network accrues a fee for the use
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of the transmission network infrastructure payable to the TSO. The TSO’s have
two different, but interrelated decision problems: 1) What should the physical
transmission capacity be on each of the pipelines? and 2) What to charge trans-
port customers for providing this capacity?

New transmission capacity reduces congestion in the network and changes the
cost of transporting gas across the network. Hence the decision in problem 1
affect the optimal decision in problem 2. Conversely, the price of transmission
capacity determined in problem 2 might influence transport customers choice
of where to purchase and sell natural gas and hence the need for capacity in
different parts of the transmission network (problem 1). Thus, an integrated
decision approach is desirable.

If the current capacity level is insufficient, capacity may be increased by one
of the following means: Doubling of existing pipelines, installing compressors
along an existing pipeline, or by construction of completely new pipelines. Each
of these tasks involves a large fixed investment cost, which must be recovered by
increased social welfare (aggregated demand utility except cost of the system).

A transmission pricing scheme may help to reduce congestion in the network
and increase social welfare. In Europe, the most common transmission pricing
scheme is that of entry-exit tariffs. Here, transport customers pay a tariff per
unit energy entering the network at the entry point and another tariff per unit
energy leaving the network at the exit point. The tariffs may differ between
points in the network, but are not directly related to the distance or route
of the gas being transported. Not knowing the network structure in detail,
transport customers may choose combinations of entry and exit points that
causes congestions in the network without being charged for this congestion.
Furthermore, if entry and exit points are located in parts of the transmission
network belonging to different TSO’s, any compensation between the two TSO’s
and any intermediate TSO’s must be worked out by the TSO’s themselves and
does not concern the transport customer.

In this paper, we assume – for simplicity – that there is only one TSO operating
the entire transmission network and one transport customer handling all supplies
and demands.

In recent years a number of equilibrium and optimisation models for deregulated
natural gas markets has been proposed. In [5] Gabriel et. al. describe a mixed
complementarity problem for modelling deregulated natrual gas markets. The
North American and European markets are modelled and studied by Gabriel
et. al. in [6] respectively by Egging et. al. in [2]. In [3] Egging et. al. presents a
global natural gas model. Zhuang and Gabriel extends in [10] the equilibrium
problem of natural gas market by introducing uncertainty. A stochastic portfolio
optimisation model for a natural gas producer considering network effects and
uncertainty in spot prices is presented by Midthun et. al. in paper 3 of Midthun’s
PhD. thesis [7]. In paper 4 of [7] Midthun et. al. propose an equilibrium model
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for transport booking in natural gas transmission networks. This is modelled
using a stochastic complementarity problem, where each producer solves a two-
stage stochastic optimisation problem. NATGAS [11] models the equilibrium of
a European natural gas market, and allows continuous investments in pipeline
capacity, LNG capacity, and storage by the network owner.

In this paper we consider a particular market structure in which transport cus-
tomers are charged entry- and exit tariffs for transporting gas across the net-
work. We present an optimisation model for a system operator and network
owner for determining optimal discrete investments in pipeline capacity and
transmission tariffs given equilibrium conditions governing demand for transport
capacity. Our model differs from most of the existing models in that it provides
optimal decisions for a system operator maximising total social welfare. To our
knowledge it is the first model that considers the problem of choosing optimal
tariffs — and to explore the interdependence between the tariffs chosen and the
optimal capacity expansion strategy in deregulated natural gas markets.

We assume that the cost and capacity associated with supply and transport of
natural gas – as well as the demand for natural gas – are subject to uncertainty.
In the short term, demand varies seasonally with temperature (among others)
while supply and transport capacity may be subject to contigencies (e.g. disrup-
tion of supply from a well or from a pipeline connecting neighbouring markets).
In the long term (and perhaps to a lesser extent in the short term), supply and
transport cost is subject to the general trend of the oil price on global mar-
kets (and the general global situation), while supply capacity is subject to the
discovery of new natural gas reservoirs, and development of new — or delay or
cancellation of already planned — pipelines for supplying gas from new markets.

This leads to a three-stage stochastic program in which the stochastic parame-
ters are realised partly in the second stage, partly in the third stage. We assume
that decisions on investments in pipeline capacity are taken in the first stage,
while decisions on transmission tariffs are taken in the second stage, and the
third stage models the economic dispatch of natural gas. The first and second
stage decisions are assumed to be taken by a system operator (who also owns
the network).

In the third stage operational dispatch decisions are taken by transport cus-
tomers to maximise their profit of trading with gas and by the system operator
minimising total transport cost. Figure 11.1 shows a scenario tree with un-
certainty in the supply price and demand and with a number of contingency
scenarios representing e.g. pipeline unavailability. The resulting deterministic
equivalent is a mathematical program with equilibrium constraints, which can
be formulated as a mixed integer linear program.

The model is described in section 11.2, while section 11.3 presents a numerical
example for a small network. Section 11.4 provides some concluding remarks.
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0

1high price

3 high demand

4 low demand

5 high demand

6 low demand

2low price

7 high demand

8 low demand

9 high demand

10 low demand

Figure 11.1: Example of a scenario tree. Branch (0,1) and (0,2) represents the reali-
sation of a high respectively low natural gas supply price in the long term. Scenario
3,5,7, and 9 represents relisations of a high demand for natural gas e.g. winter. Sce-
nario 3,4,7,8 may represent normal seasons, while 5,6,9,10 may represent contingency
scenarios. Investment decisions are taken in the root node (0), while decisions on the
transmission tariffs are taken in node 1 and 2.

11.2 Capacity Planning and Transmission Pricing under

Uncertainty

Consider the network G = (N ,A). Where N is the node set representing
physical nodes in a natural gas transmission network and a source/sink node
s. Let the arcs in A be partitioned into two exclusive subsets S and T , where
S = {a = (i, j) ∈ A|i = s ∨ j = s} is the set of supply and demand arcs
representing supply of – and demand for – natural gas and the transmission
arcs T represents physical properties of the transmission network (pipelines,
compressors, etc.). Define by F(i) ⊆ A and H(i) ⊆ A the set of edges with tail,
respectively head, i.

Denote by xa for all a ∈ A the physical flow of energy in the transmission
network (for a ∈ T ) and supply and consumption of energy (for a ∈ S). For
all a ∈ S, let ca be the cost (negative benefit) of supplying (consuming) one
unit of energy along supply (demand) arc a in S, and let ua be the maximum
supply (consumption). This allow us to model a piecewise linear generation cost
(inverse demand) function at each node. For all a ∈ T , let ca denote the cost
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of transporting one unit of energy along arc a (e.g. cost for use of compressors
along a pipeline).

The flow xa along a pipeline a = (i, j) depends on the pressure wi, wj at the two
end nodes, and is often modelled by the Weymouth equation (see e.g. [1, 8]):

xa = ka

√

w2
i − w

2
j ∀a = (i, j) ∈ T (11.1)

where ka is the Weymouth constant describing physical properties of the pipeline
(including length and diameter).

As in [9] we approximate the capacity of each pipeline a ∈ T by a set L of linear
inequality constraints with additional parameters k′a,m, k

′′
a,m based on selected

pairs of input and output pressures. This linearisation, however, relaxes the
equality of (11.1) to an inequality so that the flow on a pipeline is not uniquely
determined by the pressure difference. Let a = (i, j) denote an arc representing
a pipeline, as explained in paper 2 of [7] the relaxation is equivalent to allowing
a pressure drop between the tail node i and the inlet of the pipeline. We refer
the reader to [9] for a description of the linearisation.

For all transmission nodes i in N \{s}, let wi denote the pressure and let li and
ui denote lower and upper bounds on the pressure.

Assume for simplicity of the model that sets of entry and exit nodes are disjunct
and letM = {i ∈ N \ {s}|(F(i) ∪ H(i)) ∩ S 6= ∅} denote the set of entry and
exit nodes in the network and the source node s. Let ti denote the tariff for
entry respectively exit of energy at node i.

In the following we consider the problem of installing new pipeline capacity
and determine optimal transmission tariffs in a natural gas network to minimise
capital cost and expected operating cost over a number of scenarios denoted
ω ∈ Ω3.

We assume that investment decisions y are taken first. Subsequently, some of the
stochastic parameters are realised. Then decisions on transmission tariffs t are
taken prior to the realisation of the remaining stochastic parameters. Finally,
the economic dispatch of natural gas is carried out. This leads to a three-stage
scenario tree in which the root node corresponds to the first stage. We denote
by Ω2 the set of scenario tree nodes at the second stage, and by Ω3 the leaf nodes
of the scenario tree. Let ρ(ω) ∈ Ω2 denote the predecessor node of node ω for
all nodes ω except the root node. For ω ∈ Ω2, t(ω) denotes the transmission
tariffs at node ω.
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11.2.1 Transport Customer

For the purpose of simplicity, we assume that all transport customers are rep-
resented by one aggregate transport customer maximising total profit.

In each leaf node ω ∈ Ω3 of the scenario tree the problem of the transport
customer is to determine for all supply arcs a ∈ {(i, j) ∈ S|i = s} the amount of
energy xa to be purchased at entry node j and for all demand arcs a ∈ {(i, j) ∈
S|j = s} the amount of energy xa to be delivered at exit node i in the network
given the transmission tariffs t(ρ(ω)) of the predecessor node of ω. Let k(ω)
denote the realisation of supply arc capacities and maximum demand k and let
c(ω) be the realisation of supply costs and negative demand utility c in leaf node
ω. We assume that ts(ω) = 0 is fixed for all ω ∈ Ω2.

TC(ω) : min
∑

a=(i,j)∈S

(ca(ω) + ti(ρ(ω)) + tj(ρ(ω)))xa (11.2)

subject to

−xa ≥ −ka(ω) (λa) ∀a ∈ S (11.3)
∑

a∈(R∪S)∩F(i)

xa −
∑

a∈(R∪S)∩H(i)

xa = 0 (πi) ∀i ∈M (11.4)

0 ≤ xa ∀a ∈ R∪ S (11.5)

where λ and π denote dual variables associated with the respective constraints.
The transport customer must minimise his total cost of purchase, delivery and
transport (11.2), respecting supply capacity and maximum demand (11.3), and
conservation of energy in entry and exit nodes (11.4). We assume without loss
of generality, that arc flows are non-negative (11.5).

We may now write the conditions for optimality and feasibility of the transport
customers problem (11.2) - (11.5) as,

0 ≤ xa ⊥ λa + πi − πj + ca(ω) + ti(ρ(ω)) + tj(ρ(ω)) ≥ 0 ∀a = (i, j) ∈ S
(11.6)

0 ≤ xa ⊥ πi − πj ≥ 0 ∀a = (i, j) ∈ R
(11.7)

0 ≤ λa ⊥ ka(ω)− xa ≥ 0 ∀a ∈ S (11.8)

∑

a∈(R∪S)∩F(i)

xa −
∑

a∈(R∪S)∩H(i)

xa = 0 ∀i ∈ M (11.9)

Using Fortuny-Amat [4] we can linearise (11.6) - (11.8) by introducing binary
variables v and z indicating the binary decision to set the left, respectively right,
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operand of the ⊥-operator to zero. For instance, for constraints (11.8) we have
va = 0⇒ λa = 0 and va = 1⇒ xa = ka(ω).

0 ≤ xa ≤ ka(ω)za ∀a ∈ S (11.10)

0 ≤ xa ≤Mza ∀a ∈ R (11.11)

0 ≤ λa + πi − πj+

ti(ρ(ω)) + tj(ρ(ω)) + ca(ω) ≤M(1− za) ∀a = (i, j) ∈ S (11.12)

0 ≤ πi − πj ≤M(1− za) ∀a = (i, j) ∈ R (11.13)

0 ≤ λa ≤Mva ∀a ∈ S (11.14)

0 ≤ ka(ω)− xa ≤ ka(ω)(1 − va) ∀a ∈ S (11.15)

where M is a sufficiently large number.

11.2.2 System Operator

In each leaf node ω ∈ Ω3 of the scenario tree we have a realisation of transport
costs c(ω) and the Weymouth constant k(ω). Note, that k is normally deter-
ministic. However, we may choose ka(ω) = 0 to model disruption of pipeline
capacity in a contingency scenario. The problem of the system operator is to
determine energy flows xa on all transmission arcs a ∈ T and pressure wi in all
transmission nodes i ∈ N \ {s} given flows xa on all supply and demand arcs
a = (i, j) ∈ S and the current configuration of the transmission network y.

SO(ω) : min
∑

a∈T

ca(ω)xa (11.16)

subject to

xa ≤ ka(ω)
(

k′a,mwi − k
′′
a,mwj

)

ya ∀a = (i, j) ∈ T ,m ∈ L

(11.17)
∑

a∈(S∪T )∩F(i)

xa =
∑

a∈(S∪T )∩H(i)

xa ∀i ∈ N \ {s} (11.18)

li ≤ wi ≤ ui ∀i ∈ N (11.19)

0 ≤ xa ∀a ∈ T (11.20)

The system operator must minimise operational transport cost (11.16) respect-
ing transmission arc capacities (11.17), conservation of energy (11.18), and
bounds on pressure (11.19). We assume that the pipeline capacity is linearised
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and is a function of the pressures in the two end nodes and that L is the index
set of the linearisation constraints for each pipeline. See e.g. [9] for an example
on how to linearise the Weymouth equation. Furthermore, we assume without
loss of generality that pipeline flows are non-negative (11.20).

Equations (11.17) have bi-linear terms. We may linearise the capacity con-
straints by replacing (11.17) by

xa ≤ ka(ω)
(

k′a,mwi − k
′′
a,mwj

)

∀a = (i, j) ∈ T ,m ∈ L (11.21)

xa ≤Mya ∀a ∈ T (11.22)

where M ≥ ka(ω)
(

k′a,mwi − k′′a,mwj

)

∀a = (i, j) ∈ T ,m ∈ L.

Prior to the operational dispatch of gas the system operator may invest in new
pipelines at a fixed cost and set transmission tariffs at entry and exit nodes.
We assume that investment decisions are taken first and decisions on transmis-
sion tariffs are taken secondly after the realisation of some of the stochastic
parameters. This leads to a three-stage stochastic model, where the first stage
decisions involve pipeline investments y and second stage decisions involve tar-
iffs t for each scenario tree node ω ∈ Ω2 occuring with probability p(ω). The
third stage problem SO(ω) models operational decisions (x,w) for dispatch of
natural gas in each leaf node ω ∈ Ω3 occuring with probability p(ω). For each
leaf node ω ∈ Ω3, let

X (ω) = {(x,w, λ, π)|(11.16)− (11.20), (11.6)− (11.9)}

be the feasible set of arc flows (representing supply, demand, and pipeline flows),
node pressures, capacity-, and nodal prices.

The system operators problem of determining an optimal investment strategy
and optimal transmission tariffs under uncertainty, may now be formulated as

SO1 : min f>y +
∑

ω∈Ω

p(ω)p(ρ(ω))
∑

a∈T

ca(ω)xa(ω) (11.23)

s.t. (x(ω), w(ω), λ(ω), π(ω)) ∈ X (ω) ∀ω ∈ Ω3 (11.24)

ti(ω) ≥ 0 ∀i ∈M \ {s}, ω ∈ Ω2 (11.25)

y ∈ {0, 1}|T | (11.26)

11.3 Numerical Example

We will now turn our attention to a small example illustrating the problem.
For the sake of simplicity we will assume that there is no uncertainty in the
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second stage. So all the stochastic parameters are realised in the third stage
after decisions on transmission tariffs are already made, that is |Ω2| = 1 and
p(ω) = 1 for ω ∈ Ω2.

Consider the transmission network shown in Figure 11.2 with four pipelines,
one entry point (and one supplier) and two exit points (and three demand
segments). For simplicity of the example we assume that all pipeline capacities
are approximated by one linear constraint with k′a = k′′a = 1 for all pipelines
a ∈ T , i.e. the capacity of a pipeline a = (i, j) is the Weymouth constant ka
multiplied by the pressure difference between the two nodes i and j.

We consider two scenarios ω = 1, 2 with variable supply capacity and demand
utility. In scenario 1, supply capacity is 10, and demand utility is 9 in node 4,
and 20 (high value demand), respectively, 5 (low value demand) in node 2. In
all examples we assume the entry tariff t1 = 0 is fixed.

First, let us look at the case without any potential transmission network im-
provements. The problem of the TSO is to determine the optimal entry tariff t1
and exit tariffs t2, t4 to charge transport customers in order to minimise total
transport cost of the network.

2

1

3

4
1,5

1,5

1,5 8,5

5,5

supply demand

node 1 2 2 4

c(1) 1 -5 -20 -9

u(1) 10 5 5 5

c(2) 1 -4 -20 -10

u(2) 15 5 5 5

Figure 11.2: An illustrative example of a small natural gas network with one entry
point (node 1) and two exit points (nodes 2 and 4). Cost (benefit) and capacity of
injection (extraction) are given in the table for scenario ω = 1, 2. Solid arcs represent
transmission pipelines, while dashed arcs represent trading arcs. The dotted arc rep-
resents a potential new pipeline. Transmission arc labels indicate acutal system cost
and Weymouth coefficient, respectively, of the arc flow.

We first consider only scenario 1. In Table 11.1, three different pricing strate-
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gies are considered: No tariffs, single exit-zone with same tariff (t2 = t4), and
differentiated exit tariffs. For simplicity of the example entry tariff is assumed
to be 0. Without any transmission tariffs, the optimal strategy of the transport
customer is to purchase 10 units and deliver 5 units to node 4, and 5 units
to node 2, which will yield a profit of 5(9 − 1) + 5(20 − 1) = 135. The cor-
responding social welfare (total utility less actual supply and transport costs)
is 85. Since, transport costs to node 4 is higher than the profit margin of the
transport customer, it is not desirable from a system perspective to have flow on
this path. Introducing a high exit tariff in node 4 forces the transport customer
to consider a strategy only serving demand node 2. In a naive strategy where
all exit tariffs are equal (to 8), the transport customer chooses to send 5 units to
node 2 and nothing to node 4. This reduces his profit to 55, but increases social
welfare to 90. In a situation with differentiated exit tariffs it may be possible
to increase flow to 10 units (delivering 5 units to a low value demand segment),
which increases transport customers profits to 115 and social welfare to 100.

tariffs transport customer

t1 t2 t4 strategy profit social welfare

0 0 0 (0,5,5) 135 85

0 8 8 (0,5,0) 55 90

0 0 8 (5,5,0) 115 100

0 0 8 (5,5,0) 115 100

0 0 0 (0,5,5) 135 105

0 0 4 (0,5,5) 115 105

0 4 4 (0,5,5) 95 105

0 4 8 (0,5,5) 75 105

Table 11.1: Different entry-exit pricing strategies and their effect on a transport cus-
tomer buying energy at node 1 and selling it at node 2 and 4 in scenario 1. For
three different pricing strategies, the corresponding optimal strategy of the transport
customer (the amount to sell at node 2 respectively node 4) and his profit is given
along with the total social welfare of the system. The first three rows correspond to
the network without network expansion, while the bottom five rows correspond to a
situation with a new pipeline (1, 4) (social welfare does not include investment costs).

Now, assume that the system operator may invest in new pipelines. Consider the
option of constructing a new pipeline from node 1 to node 4 with operational
unit cost 5. This will increase the throughput capacity, but also change the
optimal transmission pricing strategy. Consider the best pricing strategy of
Table 11.1 without the new pipeline (t2 = 0, t4 = 8). The best response of
the transport customer (5,5,0) now yields a suboptimal solution. Changing the
tariffs may increase social welfare to 105. The resulting flows are shown in
Figure 11.3.

Consider now scenario 2. Table 11.2 shows the effect of different transmission
pricing strategies for scenario 2 with and without network expansion of line
(1, 4).
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2

1

3

4

5 5

supply demand

node 1 2 2 4

x 10 0 5 5

Figure 11.3: Flows in the network with new pipeline from node 1 to node 4 and exit
tariffs (t2 = 4, t4 = 8).

Without capacity expansion, the optimal pricing strategy for scenario 1 (t2, t4) =
(0, 8) is suboptimal for scenario 2. Increasing the exit tariff t2 to 3 results in
the social optimal welfare 100. A pricing strategy with t2 = 0 and t4 < 11 is
infeasible as the optimal response of the transport customer is to purchase 15
units in node 1, and the maximum transport capacity out of node 1 is 10.

tariffs transport customer

t1 t2 t4 strategy profit social welfare

0 0 0 (5,5,5) - inf.

0 0 11 (5,5,0) 110 95

0 3 3 (5,0,5) 120 100

0 3 11 (5,0,5) 80 100

0 0 0 (5,5,5) 165 125

0 0 11 (5,5,5) 110 125

0 4 11 (5,0,5) 75 120

Table 11.2: Different entry-exit pricing strategies and their effect on a transport cus-
tomer buying energy at node 1 and selling it at node 2 and 4 in scenario 2. For different
pricing strategies, the corresponding optimal strategy of the transport customer (the
amount to sell at node 2 respectively node 4) and his profit is given along with the
total social welfare of the system. The first four rows correspond to the network with-
out network expansion, while the bottom five rows correspond to a situation with a
new pipeline (1, 4) (social welfare does not include investment costs).

These examples illustrate the need for an integrated approach when determin-
ing optimal transmission investments and pricing strategies for a natural gas
transmission network.
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11.4 Conclusion

This paper proposes a three-stage stochastic model to determine optimal in-
vestment strategies in pipeline capacity and transmission tariffs in natural gas
transmission networks. Uncertainty in supply- and transport costs and capac-
ities, as well as demand, are modelled by stochastic parameters. In this way,
one may model seasonal variations of demand, long term uncertainty about the
price and availability of natural gas, and even disruptions in supply and pipeline
capacity. We assume a market structure in which a system operator collects
entry-exit tariffs from transport customers maximising total social welfare. A
numerical example justifies the use of an integrated model for determination of
pipeline capacity and transmission tariffs.

Acknowledgments

The author of this paper would like to thank Zbigniew Pisarski from the Danish
transmission system operator for electricity and natural gas, Energinet.dk, for
helpful comments and suggestions during the development of the model pre-
sented here.

Bibliography

[1] D. De Wolf and Y. Smeers. The gas transmission problem solved by an
extension of the simplex algorithm. Management Science, pages 1454–1465,
2000.

[2] R. Egging, S. A. Gabriel, F. Holz, and J. Zhuang. A complementarity model
for the european natural gas market. Energy Policy, 36(7):2385–2414, 2008.

[3] R. Egging, F. Holz, and S. A. Gabriel. The world gas model: A multi-
period mixed complementarity model for the global natural gas market.
Energy, 35(10):4016 – 4029, 2010.

[4] J. Fortuny-Amat and B. McCarl. A representation and economic interpre-
tation of a two-level programming problem. The Journal of The Operational
Research Society, 32(9):783–792, 1981.

[5] S. Gabriel, S. Kiet, and J. Zhuang. A mixed complementarity-based equi-
librium model of natural gas markets. Operations Research, 53(5):799–818,
2005.

[6] S. A. Gabriel, J. Zhuang, and S. Kiet. A large-scale linear complementar-
ity model of the north american natural gas market. Energy Economics,
27(4):639–665, 2005.



BIBLIOGRAPHY 137

[7] K. Midthun. Optimization models for liberalized natural gas markets. Nor-
wegian University of Science and Technology, Faculty of Social Science and
Technology Management, Department of Sociology and Political Science,
2007.

[8] K. Midthun, M. Bjorndal, and A. Tomasgard. Modeling optimal economic
dispatch and system effects in natural gas networks. The Energy Journal,
30(4):155–180, 2009.

[9] A. Tomasgard, F. Rømo, M. Fodstad, and K. Midthun. Optimization mod-
els for the natural gas value chain. Geometric modelling, numerical simu-
lation, and optimization, pages 521–558, 2007.

[10] J. Zhuang and S. A. Gabriel. A complementarity model for solving stochas-
tic natural gas market equilibria. Energy Economics, 30(1):113 – 147, 2008.

[11] G. Zwart and M. Mulder. NATGAS: a model of the european natural gas
market. Cpb memorandum, CPB Netherlands Bureau for Economic Policy
Analysis, 2006.



138 BIBLIOGRAPHY



Appendix A

Modelling Hydroelectric Power Producers

Strategic Use of Water Reservoir

Jonas C. Villumsen∗

∗Department of Management Engineering, Technical University of Denmark,

Produktionstorvet, Building 424, DK-2800 Kgs. Lyngby, Denmark

jcvi@man.dtu.dk

Strategic behaviour of suppliers in an electricity system may influence market prices
and the level and distribution of social welfare. We formulate a model of an oligopolistic
electricity market with energy storage in which suppliers determine their bid prices in
order to optimise their profit over several time periods. In particular, a hydropower
producer’s strategic use of water reservoirs is analysed. Preliminary results suggests
that the use of market power at a hydro power storage may alter the equilibrium and
social welfare of the system significantly. The value of the social welfare is the basis for
many transmission infrastructure decisions in the nordic area, where hydro power is
dominant. We therefore believe that temporal market power deserves a more thorough
investigation.

Keywords: Market power, Electricity Networks, Hydro power, Game theory,
Mathematical Program with Equilibrium Constraints

JEL Classification: L94, C72

A.1 Introduction

Changes in total social welfare is used by several (public) electricity transmis-
sion network owners as indicator for investments in transmission infrastructure.
Also, private production companies anticipating changes to their porfolio of pro-
duction units need to analyse changes in their profit, given changed market con-

139
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ditions. Models calculating market prices and social welfare given assumptions
about the infrastructure, composition of supply, and demand characteristics are
therefore essential in order to identify optimal investments.

Because of the complexity of electricity systems, traditional models often ex-
clude dominant electricity suppliers potential use of strategic behaviour to in-
fluence market prices (e.g. [7]). However, recent advances in solution procedures
([3], [4], [6]) has spurred a renewed interest in the area and several papers pro-
pose models that include strategic behaviour of dominant suppliers in a single
time period [2], [4], [8], [9]. Johnsen [5] presents a numerical two-period model of
strategic behaviour in a hydro power system with transmission constraints and
stochastic water inflows, while Bushnell [1] presents a more rigorous modelling
framework, but excludes transmission constraints.

In this paper, we propose a model with multiple time periods that is able to cap-
ture dominant suppliers use of market power across transmission lines (spatial
marketpower), as well as across different time periods (temporal marketpower).
The model allows for suppliers to bid their price in the market following the
approach in [4] maximising their total profit over the planning horizon. This
makes it possible to analyse e.g. a hydropower producer’s strategic use of water
reservoirs for storage of energy and the influence on market prices and social
welfare.

We assume that supply units have constant marginal costs, while demand is
modelled by a linear downward sloping inverse demand function. Energy may
be transported between price areas observing a simple constant capacity. At
certain areas energy may furthermore be stored between time periods.

Preliminary results on a small generated case show that including temporal
market power in the model yields significantly different results with respect to
the market prices, total social welfare, and the distribution of welfare between
suppliers and consumers. However, further analyses are needed to investigate
this result in a realistic setting.

A.2 Model Description

We model the electricity system by a network of nodes representing price areas,
transmission links connecting the nodes, and supply and demand units located
at each node. The supply units represent, for example, power plants supplying
energy to the system, while demand units represent end consumers. The model
considers multiple time periods (e.g. hours) and at certain nodes temporal stor-
age of energy is possible.
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A.2.1 Notation

Each supply unit s produces in time period t a maximum of uSst units of elec-
tricity xSst at a constant unit cost cSs . The set of supply units is denoted by S,
while the set of supply units located at node i ∈ N is given by Si ⊆ S. Each
supply unit is owned by exactly one firm h ∈ H , where H is the set of all firms,
and Sh denotes the set of supply units owned by h.

The benefit of consumers at demand unit d is given by the constant utility fdt.
xDdt is the consumption of demand unit d in time period t and is limited by the
maximum consumption uDdt. The set of demand units is denoted D and the set
of demand units in node i is given by Di ⊆ D.

In each time period t, each directed transmission link (i, j) connecting node
i with node j transports xAijt units of energy at a unit cost of cAij and has a

capacity of uAij . The set A denotes the set of all transmission links. A link
may be owned by the system operator or a firm. The set of links owned by the
system operator is denoted by AQ, while Ah denotes the set of links owned by
firm h ∈ H .

xRit denotes the amount of energy stored at node i from time period t to t + 1
at a cost of cRi per unit energy. The capacity of the storage is denoted by uRi .
The set of nodes where storage is possible is denoted by R ⊆ N , and the set
RQ ⊆ R (Rh ⊆ R) denotes the set of nodes at which the storage is owned by
the system operator (firm h).

The initial level of each storage reservoir i is assumed to be fixed and is denoted
by xRi0.

A.2.2 The system operator problem

In this paper, we assume that a system operator operates part of the trans-
mission network including storages that is not owned by supply firms. That is,
the system operator purchases energy at nodes (markets) in the network and
delivers energy to the consumers maximising social welfare ensuring that the
market clears in each node and that transmission capacity is respected.

The optimisation problem of the system operator is thus the sum of consumer
surplus (net benefit) and trading surplus on links and storages owned by the
system operator, i.e.
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max
∑

t∈T





∑

i∈N

∑

d∈Di

(fdt − πit) x
D
dt +

∑

(i,j)∈AQ

xAijt
(

πjt − πit − c
A
ij

)

+
∑

i∈RQ

xRit
(

πi,t+1 − πit − c
R
i

)



 (A.1)

subject to the capacity constraints,

xAijt ≤ u
A
ij , (λAijt) ∀(i, j) ∈ AQ, t ∈ T (A.2)

xRit ≤ u
R
i , (λRit) ∀i ∈ RQ, t ∈ T (A.3)

xDdt ≤ u
D
dt, (λDdt) ∀d ∈ D, t ∈ T (A.4)

market clearing constraints,

∑

s∈Si

xSst+
∑

j∈N

(

xAjit − x
A
ijt

)

−
∑

d∈Di

xDdt+x
R
it−x

R
i,t+1 = 0, (πit) ∀i ∈ N, t ∈ T (A.5)

and non-negative xDit for all i ∈ N and t ∈ T , xAijt for all (i, j) ∈ AQ and t ∈ T ,

xRit for all i ∈ RQ and t ∈ T .

Here πit denotes the market clearing price in node i in time period t and λAijt
(λRit ,λ

D
dt) denotes the shadow price on capacity of link (i, j) (storage i, demand

unit d) in time period t.

Deriving the KKT-conditions for the above problem yields the following mixed
complementarity problem:

0 ≤ xAijt ⊥ cAij + λAijt + πit − πjt ≥0 ∀(i, j) ∈ AQ, t ∈ T (A.6)

0 ≤ xDdt ⊥ −fdt + πit + λDdt ≥0, ∀i ∈ N, d ∈ Di (A.7)

0 ≤ xRit ⊥ cRi + λRit + πit − πi,t+1 ≥0, ∀i ∈ RQ, t ∈ T (A.8)

0 ≤ λAijt ⊥ uAij − x
A
ijt ≥0, ∀(i, j) ∈ AQ, t ∈ T (A.9)

0 ≤ λDdt ⊥ uDd − x
D
dt ≥0, ∀d ∈ D, t ∈ T (A.10)

0 ≤ λRit ⊥ uRi − x
R
it ≥0, ∀i ∈ RQ, t ∈ T (A.11)

This problem optimises the demand and part of the transmission and storage
network owned by the system operator, maximising total social welfare. In
the following subsection, the supply side of the network and the part of the
transmission and storage network owned by supply firms is modelled.
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A.2.3 The supplier problem

The suppliers of electricity may own one or more supply units located across the
transmission network as well as transmission links and storages. Sh denote the
set of supply units, while Ah denote the set of transmission links, and Rh ⊂ N
denote the set of storages owned by firm h. Supply units are represented by a
constant marginal cost cS and a supply capacity uS. It is assumed that a supply
unit may always be turned on and off without incurring extra costs.

The problem of a supply firm h is to maximise its profit zh respecting capacity
constraints on supply units, transmission links, and storages, i.e.:

max zh =
∑

t∈T





∑

i∈N,s∈Sh∩Si

xSst(πit − c
S
s ) +

∑

(i,j)∈Ah

xAijt(πjt − πit − c
A
ij)

+
∑

i∈Rh

xRit(πi,t+1 − πit − c
R
it)

]

(A.12)

subject to

xSst ≤ u
S
st, ∀s ∈ Sh, t ∈ T (A.13)

xAijt ≤ u
A
ij , ∀(i, j) ∈ Ah, t ∈ T (A.14)

xRit ≤ u
R
i , ∀i ∈ Rh, t ∈ T (A.15)

and 0 ≤ xSst for all s ∈ Sh, t ∈ T , 0 ≤ xAijt for all (i, j) ∈ Ah, t ∈ T , 0 ≤ xRit for
all i ∈ Rh, t ∈ T .

The following KKT-conditions ensures stationarity and feasibility of the single-
firm problem Ph

0 ≤ xAijt ⊥ cAij + λAijt + µA
ijt + πit − πjt ≥0, ∀(i, j) ∈ Ah, t ∈ T (A.16)

0 ≤ xSst ⊥ cSst + λSst + µS
st − πit ≥0, ∀s ∈ Sh, i ∈ N : s ∈ Si (A.17)

0 ≤ xRit ⊥ cRi + λRit + πit − πi,t+1 ≥0, ∀i ∈ Rh, t ∈ T (A.18)

0 ≤ λAijt ⊥ uAij − x
A
ijt ≥0, ∀(i, j) ∈ Ah, t ∈ T (A.19)

0 ≤ λSst ⊥ uSs − x
S
st ≥0, ∀s ∈ Sh, t ∈ T (A.20)

0 ≤ λRit ⊥ uRi − x
R
it ≥0, ∀i ∈ Rh, t ∈ T (A.21)

where the firms strategic decisions µS
st, µ

A
ijt denote the firms price markup on

supply and transmission respectively.
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Furthermore, due to regulatory concerns, we assume that the price markups are
bounded above by µ̄S

st and µ̄
A
ijt, respectively. In the remainder of the paper, we

also assume that the supplier does not perform market power on its transmission
links, ie. µ̄A

ijt = 0 for all time periods and all (i, j) ∈ Ah.

Firm h anticipates the reaction of the system operator and the other supply
firms, assuming that the other firms have fixed price markups. Hence, the
problem of supply firm h may be formulated as the mathematical program with
equilibrium constraints given by,

max zh (A.22)

subject to the equilibrium constraints,

0 ≤ xAijt ⊥ cAij + λAijt + πit − πjt ≥0, ∀(i, j) ∈ A, t ∈ T (A.23)

0 ≤ xSst ⊥ cSst + λSst + µS
st − πit ≥0, ∀s ∈ S, i ∈ N : s ∈ Si (A.24)

0 ≤ xRit ⊥ cRi + λRit + πit − πi,t+1 ≥0, ∀i ∈ R, t ∈ T (A.25)

0 ≤ xDdt ⊥ −fdt(x
D
dt) + πit + λDdt ≥0, ∀i ∈ N, d ∈ Di (A.26)

0 ≤ λAijt ⊥ uAij − x
A
ijt ≥0, ∀(i, j) ∈ A, t ∈ T (A.27)

0 ≤ λSst ⊥ uSs − x
S
st ≥0, ∀s ∈ S, t ∈ T (A.28)

0 ≤ λRit ⊥ uRi − x
R
it ≥0, ∀i ∈ R, t ∈ T (A.29)

0 ≤ λDdt ⊥ uDd − x
D
dt ≥0, ∀d ∈ D, t ∈ T (A.30)

and bounds on strategic variables,

0 ≤ µS
st ≤ µ̄

S
s , ∀s ∈ Sh, t ∈ T (A.31)

where µS
st is fixed for all s ∈ S \ Sh and t ∈ T .

Note that a solution to the problem of a perfectly competitive market, where all
the firms are price takers, may be obtained by solving the mixed complemen-
tarity problem (A.23) - (A.30) with µS = 0.

Using this modelling framework, a hydroelectric power supplier h may be mod-
elled by adding a node i ∈ Rh representing the reservoir owned by h and a
transmission line (i, j) ∈ Ah connecting the reservoir to an existing node j. The
capacity of the hydropower unit is represented by the capacity of transmission
line (i, j), while inflow to the reservoir is modelled by a supply unit s with
marginal cost 0 and time dependent capacity uSst corresponding to the natural
inflow of water (from e.g. precipitation, melting snow, rivers etc.). The final
level of each storage reservoir is variable and is modelled by consumption of one
or more demand units with uDdt = 0 in all time periods t except the last period
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t′. The utility fdt′ of this demand unit represents the expected future (long-
term) value of water in the reservoir. A high value of fdt′ gives the hydro power
supplier an incentive not to empty the reservoir withing the planning horizon.

is sufficiently low, and if sufficiently high prevents emptying the reservoir.

A.2.4 Multi-firm equilibrium

In this section we consider the case when more than one supply firm can ma-
nipulate prices by adjusting their price markups.

A Nash equilibrium is defined as an equilibrium, where no firm has an incentive
to change its decisions unilaterally.

We implement a simple algorithm to identify a Nash equilibrium among the
firms. That is, we solve an Equilibrium Problem with Equilibrium Constraints
in which the upper level problem is a game between firms that can exert market
power, while the lower level describe the equilibrium of the players who do not
exert market power. In each iteration of the algorithm solutions to each of the
suppliers problem Ph are computed using GAMS/NLPEC [3]. If in two consec-
utive iterations the markups µS are constant for all firms, or if the maximum
number of iterations k̄ has been reached, the algorithm stops and returns the
solution. The algorithm is outlined in Algorithm 2.

Algorithm 2 Outline of multi-firm equilibrium solution procedure.

while not equilibrium and k < k̄ do

for all h ∈ H do

Compute the solution to Ph and let µ∗
k(h) be the corresponding optimal

strategic decision variables
end for

if µ∗
k(h) = µ∗

k−1(h) then

equilibrium = true
end if

k ← k + 1
end while

Note that convergence of the algorithm or even existence of an equilibrium
solution has not been established.

A.3 Analysis

We now use the modelling framework presented in section A.2 to analyse the
potential use of water reservoirs by hydropower suppliers to exert market power
in hydro-based electricity networks.
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A.3.1 Results

A small problem instance with four nodes, one storage, and seven supply units,
is constructed to illustrate the problem. One dominant hydropower producer is
considered, while the remaining suppliers are assumed to be pricetakers. Two
time periods are considered. The parameters are given in Tables A.1, A.2, and
A.3.

Node A, B, and C represent price areas, while node H represents the reservoir
of the hydro-power supplier. Each pair of price area A, B, and C are connected
by transmission links. The hydro-power reservoir supplies energy to node B
(modelled by a transmission link from node H to node B), while the remaining
supply units are distributed across the network. Note that supply unit s3 in
node H (Table A.1) represents inflow to the reservoir. The demand in node H
is 0 except for the last time period and represents the expected long-term value
of water in the reservoir.

supply unit marg. cost mark-up capacity area owner comment

s cSs µ̄S
s t = 1 t = 2

s1 6.25 0 2289 2289 A h1 nuclear

s2 19 0 572 572 A h3 thermal

s3 1 50 19500 195 H h2 hydro

s4 22 0 4579 4579 C h3 thermal

s5 0 0 1456 1575 C h1 wind

s6 45 0 114 114 B h1 thermal

s7 65 0 1145 1145 C h2 thermal

Table A.1: Data for supply units of example 1.

demand price f max. demand uD

node t = 1 t = 2 t = 1 t = 2

A 5259.5 5089 5219.5 5049

B 3551.3 3436.6 3511.3 3396.6

C 5828.9 5639.8 5788.9 5599.8

H 50 50 0 2000

H 30 30 0 2000

H 10 10 0 1000

Table A.2: Demand parameters of example 1.

The solution of the instance in which the hydropower producer is not allowed
respectivley allowed to use the storage for strategically maximising his profit is
shown in Figure A.1 respectively Figure A.2. It is seen that with marketpower,
prices are significantly higher in the second time period and in node B of the
first time period. Inflow to the reservoir in the second time period is reduced
by 165, while maintaining the same production (5030). Hence, the storage level
is reduced from 2165 to 2000 in the market power scenario. This is due to the
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node node transmision cost transmission capacity owner

i j cAij cAji uA
ij uA

ji

A B 1 1 1000 1000 Q

B C 1 1 1000 1000 Q

A C 1 1 3000 3000 Q

H B 0 - 6000 0 h2

Table A.3: Transmission link parameters of example 1.

long term value of water, which is assumed to be 50 for the first 2000 units and
30 for the next 2000 units (Table A.2).

time period 1 time period 2

H1

A66

B 1

C 65

H

30

A32

B 30

C 31

5511

1000

1358

1000

5030

1000

1187

633

7000 2165
12511 195

Figure A.1: Solution of a small example assuming perfect competition. The left part
of the figure shows solution values for the first time period, while the right part shows
values for the second period. Solid arcs represent transmission lines, while dotted arcs
represent storage. Arc labels indicate transmission and storage flows, respectively.
Node labels (in italic) indicate nodal prices.

Furthermore, allowing the use of market power causes a change in the total social
welfare, and in the distribution of social welfare, as shown in Table A.4. While
the suppliers gain, the consumers loose, and the total social welfare decreases.

Perfect competition Marketpower

supplier 617300 1212460

operator 128000 48000

storage 203000 0

consumer 141704200 141387200

total 142652500 142647700

Table A.4: Comparison of surplus values for different segments. Left column shows
values when no the hydropower producer is not allowed to perform marketpower, while
the right column shows values when marketpower is allowed.
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time period 1 time period 2

H45

A66

B 45

C 65

H

45

A47

B 45

C 46

5511

1000

1358

1000

5030

1000

1187

633

7000 2000
12511 30

Figure A.2: Solution of a small example with market power. The left part of the figure
shows solution values for the first time period, while the right part shows values for
the second period. Solid arcs represent transmission lines, while dotted arcs represent
storage. Arc labels indicate transmission and storage flows, respectively. Node labels
(in italic) indicate nodal prices.

A.3.2 Computational Challenges

The single firm equilibrium is solved using GAMS and the MPEC solver NLPEC
[3]. Two approaches have been tested. In the first, the problem is specified with
a linear inverse demand function, while in the second the problem assumes
constant utility for each demand segment.

In the first approach optimal solutions to the single firm problem given by
equations (A.22) - (A.31) may be obtained immediately for small problems
(e.g. single period) using NLPEC with default settings. However, solving large
problems is not immediately possible within reasonable computation time. In
fact, we may not even be able to obtain a feasible solution.

Considering constant utility of consumers (i.e. a piecewise constant demand
curve) the single firm problem without market power gives rise to a linear op-
timisation problem maximising total social welfare. This makes it possible to
easily find a feasible solution to the single firm problem - namely the solution in
which all markups µS are 0 - using an LP solver. The MPEC solver may then
be started with the initial solution being the socially optimal solution given by
the LP solver.

For a large instance of the nordic area consisting of 10 price areas, 13 reservoirs
and 24 time periods, the second approach yields a feasible locally optimal so-
lution relatively fast (within a few minutes). However, the solution obtained is
not guaranteed to be globally optimal. Indeed the solution is to close to the
social optimum as calculated by the LP solver.
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More research is necessary to develop solution procedures that can generate
optimal or near-optimal solutions to large (multi-period) instances. It may be
worthwile to investigate different candidates for initial solutions supplied to the
MPEC solver as well as alternative solver parameters.

A.4 Conclusion

This paper introduces a modelling framework to investigate the potential use of
market power in electricity networks. In particular, it allows to analyse the use
of market power by e.g. hydropower producers with reservoirs. A small instance
of the problem is constructed and a hydropower producers potential strategic
use of a water reservoir to perform marketpower is analysed.

Preliminary results suggest that the use of market power at a hydro power
storage may alter the equilibrium of the system and reduce social welfare sig-
nificantly. The value of the social welfare is the basis for many transmission
infrastructure decisions in the nordic area, where hydro power is dominant. We
therefore believe that temporal market power deserves a more thorough inves-
tigation.

More work is needed in the investigation of temporal marketpower on realistic
data of the nordic electricity system. Does temporal market power have the
potential to influence the level and distribution of social welfare? Ultimately,
a planning horizon of one year is preferable due to the size of the hydro power
reservoirs and seasonal variations of water inflows.

From a computational point of view, more research is needed to develop efficient
solution procedures that can solve large problem instances in reasonable time.

Further work include the extension of the model with Kirchoffs voltage law for
direct current networks as well as stochastic modelling of windpower and water
reservoir inflow.
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