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Summery 

Most composites for dental restoration are based on a methacrylate polymer matrix and a ceramic filler, often 

silanized silica or silicate glasses. A problem with these composites is the polymerization shrinkage, which 

causes the filling to loosen from the tooth under formation of a crack. This will facilitate discoloration by 

colorants from e.g. coffee and red wine entering the crack, or even worse lead to secondary caries and 

infection of dental pulp due to bacteria. The aim of this study was to develop a low shrinkage dental composite 

based on an expandable metastable zirconia filler  

A metastable zirconia filler has been developed, which is able to expand in the cured polymer matrix upon 

water diffusion from saliva and dentin to the filler particles. The tetragonal zirconia will upon exposure to 

water transform to the monoclinic phase, which has a larger specific volume. This expansion counteracts the 

polymer shrinkage and reduces the overall shrinkage of the composite. In this thesis the zirconia filler is 

characterized and tested for the potential as a filler for use in dental composites.  

The zirconia powder is composed of highly agglomerated particles of nanosized crystals. The average particle 

size is 1.5-2 μm and the crystal size is ~6 nm. These crystals are so water sensitive that 65 vol% phase 

transforms to the monoclinic phase as a result of exposure to the humidity in the air and 84 vol% transforms 

upon exposure to water. This transformation is very fast and it is impossible to measure the transformation 

rate with x-ray diffraction. Other molecules are also able to initiate the phase transformation; these are HCl, 

NH3, HF, and HBr. Photoacid generators releasing HCl, was tested for their ability to initiate the phase 

transformation in zirconia crystals imbedded in a dimethacrylate polymer matrix upon radiation with blue light. 

After 30 min light exposure a monoclinic volume fraction of 0.6 was observed, when using 2-(4-methoxystyryl)-

4,6-bis(trichloromethyl)-1,3,5-triazine as the photoacid generator. 

Surface modification is very important in order to obtain a dental composite with good mechanical properties 

and high resistance towards hydrolysis. Due to their stabilizing effect on the tetragonal phase, it was, however, 

not possible to modify the filler surface with silanes or phosphate, which are the most commonly used 

surfactants in dentistry, and simultaneously preserve the ability to phase transform. Instead it was found 

possible to bind 3-(acryloyloxy)-2-hydroxy-propyl methacrylate to the surface by reaction with surface 

carbonates. In this way it might be possible to increase the wetability of the surface and hence increase the 

mechanical adhesion between polymer matrix and the filler. Reaction between the OH-group of the surfactant 

and the carbonate furthermore increases the reactivity of the zirconia. This increased reactivity originates from 

an inhibition of the competing reaction between the surface bound carbonates and water molecules.    

As zirconia has a higher refractive index than the polymer matrix, a large particle size will result in a very 

opaque material. To improve the esthetics of the composite a low particle size of the filler is necessary in order 

prevent the particles from scattering light. For this reason a particle size below 40-60 nm is desirable. Different 

deagglomeration methods were tested and it was found possible to deagglomerate almost to the primary 

crystals with ball milling, but this method causes the zirconia to undergo phase transformation initiated by 
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shear stresses. Instead ultrasonication was tested and it was found possible to deagglomerate the particles to 

300-400 nm without any phase transformation.  

Finally the ability of the filler to counteract the polymerization shrinkage was investigated. In this test the 

phase transformation was initiated by water diffusing in to the composite during water storage at 40˚C. The 

composite was found to have a monoclinic volume fraction, vm, of 0.5 after 8 h of water storage. The overall 

shrinkage of the composites was found to reduce from 3.2 % (initially) to 1.7% (14 days in water).     
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Danish Summery/ Dansk Resumé 

De fleste kompositter til tandfyldninger er baseret på en methacrylat matrix og keramiske fillere, ofte 

silaniseret silica eller silikat glas. Et problem med disse kompositter er polymerisation skrumpet, der kan 

forårsage at fyldningen løsner fra tanden under dannelse af en spalte. Spaltedannelse kan resultere i 

misfarvning eller endnu værre i sekundære caries og infektion af tandroden. Dette tilskrives indsivning af 

bakterier og farvestoffer fra f.eks. kaffe og rødvin. Formålet med denne afhandling var at udvikle en lavt 

skrumpende plastkomposit baseret på en metastable zirconia filler, der kan ekspandere. 

En metastabil zirconia filler er blevet udviklet. Denne er i stand til at expandere i den hærdede polymermatrix 

ved diffusion af vand fra spyt og dentin til filler partiklerne. Tetragonal zirconia vil efter eksponering til vand 

fasetransformere til den monokline fase, som har et større specifik volumen. Denne ekspansion modvirker 

polymerisationsskrumpet og reducerer det samlede skrump af kompositten. I denne afhandling er zirconia 

filleren karakteriseret og testet for sit potentiale som filler til fyldningsmaterialer.   

Zirconiapulveret består af agglomererede partikler af nano-krystaller. Den gennemsnitlige partikelstørrelse er 

1,5-2 μm med en krystalstørrelse på ~6 nm. Disse krystaller er så vandfølsomme, at 65 vol% fasetransformerer 

til den monokline fase som følge af eksponering til luftens fugtighed og 84 vol% transformerer efter 

eksponering til vand. Denne transformation er meget hurtig, og det er i praksis umuligt at måle 

transformationshastigheden med røntgendiffraktion. Også andre molekyler kan initiere fasetransformationen, 

disse er HCl, NH3, HF og HBr. Fotosyre generatorer, der frigiver HCl, blev testet for deres evne til at initiere fase 

transformation i zirconia krystaller i en dimethacrylat polymer matrix ved belysning med blåt lys. Efter 30 min 

eksponeringstid blev der observeret en monoklin volumenfraktion på 0,6, når 2-(4-methoxystyryl)-4,6-

bis(trichloromethyl)-1,3,5-triazine anvendes som fotosyre generator.  

Overflademodificering er meget vigtigt for at opnå en komposit med gode mekaniske egenskaber og stor 

modstand mod hydrolyse. Det var imidlertid ikke muligt at behandle overfladen af filleren med silaner eller 

phosphater, som er nogle af de mest almindeligt anvendte koblingsagenter i tandplejen, pga. deres 

stabiliserende virkning på den tetragonale fase. I stedet konstateredes det muligt at binde 3-(acryloyloxy) -2-

hydroxy-propyl methacrylat til overfladen ved reaktion med karbonater på overfladen. På denne måde er det 

potentielt muligt at øge dispergeringsevnen af partiklerne og dermed øge den mekaniske adhæsion mellem 

polymer matrix og filleren. Desuden øger denne reaktion mellem OH-gruppen i det overfladeaktive stof, og 

karbonat reaktiviteten af zirconia, ved at begrænse den konkurrerende reaktion mellem karbonater og vand 

molekyler.  

Da zirconia har et højere brydningsindeks end polymermatricen vil en stor partikel størrelse resultere i et 

meget uigennemskinneligt materiale. For at forbedre æstetikken af kompositten er en lav partikelstørrelsen 

nødvendig, da dette vil forhindre partiklerne i at sprede lyset. Af denne grund er en partikelstørrelse under 40-

60 nm ønskelig. Forskellige neddelingsmetoder blev testet og det blev konstateret muligt at deagglomerere 

næsten til de primære krystaller med kuglemølleformaling. Denne metode medførte desværre at 
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zirconiakrystallerne fasetransformerede som et resultat af tværspændinger. I stedet blev ultralydsdispergering 

testet og det blev konstateret muligt at deagglomerere partiklerne ned til 300-400 nm uden nogen fase 

transformation.   

Endelig blev fillerens evne til at modvirke polymerisationsskrump undersøgt. I denne test blev 

fasetransformation initieret af vand, der diffunderede ind i kompositten under opbevaring i 40˚C varmt vand. 

Kompositten havde en monoklin volumenfraktion på 0,5 efter 8 timers opbevaring i vand. Det samlede skrump 

af kompositten reduceredes fra 3,2% (oprindeligt) til 1,7% (14 dage i vand). 
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1 Introduction 

1.1 Reader instructions 
 
The way to read this thesis is to read the introduction in the beginning of the chapter and then read the 

associated publications found in the appendixes. After reading the introduction and the associated papers, 

read the rest of the chapter. For a fast overview; read the introduction in each chapter and proceed to the 

summery in the end of the chapter. The summery summarizes both the chapter and the publications.  

1.2 Dental composites; composition, properties and use  
Dental restorations have been known for a long time. Amalgam filling was first reported in china in year 650, 

but has ‘only’ been used in Europe and North America for the last ~150 years. These were made of mercury 

containing materials that are now unwanted due to their environmental effects. The use of amalgam for dental 

fillings was forbidden in Denmark in 1995, with the exception of fillings in molar teeth, which are exposed to 

wear. At the moment the only realistic substitute for amalgam is resin composites1.       

The first resin composites were marketed in the 1950’s but because of their tendency to discoloration, low 

resistance to abrasion and high tendency to crack formation, the composites were not very attractive from a 

practical point of view. In the 60’s these materials were improved - especially due to the development of 

dimethacrylates, and for close to 50 years resin composites have been used as restorative materials to replace 

missing tooth structure. In the last 15-20 years, resin composites have been the most commonly used dental 

restorative material. Only in posterior teeth, where esthetics plays little or no role, silver amalgam is still the 

preferred materials2.  

The term composite refers to a material composed of at least two different phases. In the case of composite 

restoratives these phases are a filler and a monomer matrix (Figure 1).    

  

Figure 1 Composition of resin composite restorative materials. The dark blue line around the filler particles symbolizes 

the coupling agent 

The composites can be divided in different categories; hybrid, microfilled and nanofilled composites based on 

the filler volume fraction and on the size of the filler particles. The characteristics of these categories are listed 

in Table 1.  

 

Fillers (32-80 vol%)

Matrix (20-68 vol%)
Monomer, initiators etc.
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Table 1 Characteristics of resin composites
2,3

 

Composite type Filler size (μm) Volume of filler (%) Handling characteristics and properties 

Nanofilled 0.002-0.075 78.5 High polish, strength and modulus 
Hybrid 0.04, 0.2-3.0 60-70 High strength and modulus 
Microfilled 0.04-50 32-50 Best polish and esthetics. High shrinkage 
Packable microfilled  0.04, 0.4-20 80 Packable, low shrinkage and lower wear 
Flowable 0.04, 0.2-3.0 42-62 Syringeable, lower modulus. High wear 

 
Dental resin composites are composed of four important components; an organic polymer matrix, inorganic 

filler particles, a coupling agent and a light activated initiator/accelerator system. These components are 

described in section 1.2.1 to 1.2.3.   

1.2.1 Monomers 

In general, the most optimum combination of monomers to archive composites with the best properties, such 

as high flexural strength, low watersorbtion and solubility is obtained with methacrylic acid esters called 

methacrylates. These methacrylates can be obtained with high purity and widely varying structures by 

relatively simple technical means. Moreover methacrylates demonstrate lower toxicity than acrylates. For this 

reason most dental resin composites are based on methacrylate chemistry4,5. 

The most important monomers in dental restorative materials are dimethacrylates and some of the most 

common monomers are represented in Figure 2. The polymerization of these monomers occurs by free-radical 

polymerization initiated by the photoinitiator system described in Chapter 1.2.3. The viscosities of the two 

most commonly used monomers, bisphenol A glycidyl methacrylate (Bis-GMA) and Diurethane dimethacrylate 

(UDMA), are so high that dilution with monomers such as triethylene glycol dimethacrylate (TEGDMA) is 

necessary to enable compounding of the monomer with sufficient amounts of filler. TEGDMA has a lower 

molecular weight and its amount should be limited since high amounts will increase the polymerization 

shrinkage and hydrophilicity of the composite3. 

 

Figure 2 Common monomers for dental resin composites
6
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1.2.2 Fillers and coupling agents 

Most composites contain fillers in the form of amorphous silica, Ba-, Sr-, and Zr containing glass, quartz or 

zirconia particles. The particle sizes vary from 0.002-50 μm. Ba-, Sr-, and Zr containing glass particles are added 

to increase the radiopacity of the composite. Radiopacity can be useful in resin composites as it makes it 

possible to distinguish between composite and tooth with x-ray imaging2,3.   

A strong interface between polymer matrix and filler surface is expected to increase the strength of polymeric 

dental composites. Furthermore, wetting of the filler surface with resin is enhanced by surface modification 

and consequently the possible filler load in the composite is increased. The resin is normally bonded to the 

filler surface with a difunctional coupling agent capable of creating a strong bond between the filler surface 

and the polymer matrix. To get high hydrolysis resistance, the coupling agent should bind the surface either 

covalently or make strong ionic bonds. For resin composites the functional group is a methacrylate, which is 

able to react with the methacrylate matrix by copolymerization. Sufficient surface modification of the filler is 

normally considered vital for achieving high interface strength. This coupling agent also has the function of 

increasing the water resistance of the polymer/zirconia interface, since surface modification reduces the 

accessibility of water to the interface and thereby decreases hydrolytic degradation and discoloring of the 

interface7. Hydrolysis of the interface will strongly affect the strength of the composite; this is illustrated in 

Figure 3. Figure 3b) shows the case with an unsilanized filler; here the interface is hydrolyzed and the crack 

follows the matrix/filler interface. As no chemical bond exists in the interface, the interface is weaker than the 

polymer matrix. This will result in a lowering of the fracture resistance. In c) the filler surface is silanized and 

the interface will be less subjected to hydrolysis. The lower level of hydrolysis will give a composite with higher 

fracture resistance, as the crack has to go through the polymer matrix.   

 

Figure 3 Effect of surface modification on the fracture mechanics of resin composite. The green line symbolizes the 

crack. (a) Before the crack reaches the filler particle and fracturing of a water stored composite with (b) unsilanized 

filler and (c) silanized filler (the thick blue line symbolizes the silane layer) 

a)

b)

c)
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A number of different types of coupling agents are commonly used in dentistry. The most common surfactants 

in polymer based dental composites are trifunctional silanes (R’Si(OR)3), where R is either –CH3 or –CH2CH3. The 

alkoxysilane groups are able to react with OH-groups on silica surfaces and intramolecularly forming covalent 

bonds. The mechanism proposed by Plueddman8 is the following:  

R’Si(OR)3 + HO-Si≡ →  R’Si(OR)2OSi≡ + ROH     (1) 

The OR groups are readily hydrolyzed by reaction with water under formation of R’Si(OH)3. After hydrolysis of 

the methoxy groups, silanes are able to react with each other under formation of a multilayered interphase. A 

rule of thumb is that a triple layer of silane is the most optimal for resin composites. When this average is 

reached the entire surface is expected to be covered.  

The most commonly used coupling agent in dental resin composites is γ-methacryloxypropyl trimethoxy silane 

(MPTMS), which not only increases the strength properties of the composite material but also increases the 

water resistance of the interface9. However, MPTMS is not considered being a good choice of surfactant for 

zirconia surfaces since the Zr-O-Si bond is not as stable towards hydrolysis as the silicon counterpart, siloxanes 

and it has been reported that silanes are not always able to bind to zirconia10. Several studies have showed that 

methacrylate-decyl dihydrogenphosphate (MDP) is a better coupling agent than MPTMS for zirconia 

systems11,12,13.  

 

Figure 4 γ-methacryloxypropyl trimethoxy silane (MPTMS) 

In this thesis, a wide range of surfactants have been tested to improve the filler surface properties – with the 

big challenge of achieving this without reducing the ability of the crystals to undergo a  phase transformation 

later.  

1.2.3 Initiators and inhibitors 

Photoinitiation is very common in dentistry as the degree of conversion with photoinitiation ranges from 65 to 

80 %, but only from 60 to 75 % with chemical initiation14. The most popular initiator system is a combination of 

camphorquinone (CQ) and a tertiary amine such as ethyl 4-dimethylamino benzoate (DABE). Camphorquinone 

is a yellowish substance, which absorbs visible light in the wave length range of 400-500 nm (λmax≈ 465). 

Addition of CQ gives the composite a slight yellow tint, which disappears or faints during cure3. DABE is added 

to accelerate the radical formation from CQ and acts as co-initiator or accelerator. The radical formation occurs 

when the carbonyl groups of CQ are activated by light. In this process an intermediate is formed, which 

abstracts one H atom from DABE. The formed α-amino alkyl radical initiates the polymerization reaction (Figure 

5). The used amounts of CQ and DABE ranges from 0.2 to 0.3 % by mass of the monomer matrix2,3.  
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Figure 5 Reaction of camphorquinone by exposure to blue light. 

Inhibitors are added to all monomers as these have a tendency to spontaneously polymerize. These inhibitors 

are often phenols such as hydroquinone monomethyl ether. These aerobic inhibitors interact with oxygen and 

are only fully affective in the presence of oxygen. Oxygen from the atmosphere dissolves in the monomer 

matrix and prevents premature polymerization. During storage dissolved oxygen will be used up and the 

packing should allow diffusion of oxygen from the atmosphere to elongate shelf life. Inhibitors are added in 

range of 0.001-0.1 wt% of the monomer. Oxygen is able to react with the radical of polymer chain ends2: 

R-M-M-M-M• + O2 → R-M-M-M-M-O-O•     (2) 

This is a chemical equilibrium, which is shifted to the right. The formed peroxy radical has a low reactivity and 

hence reduces the polymerization rate. These peroxy radicals can also react with the phenol inhibitors (ρ-OH)2: 

ρ-OH + R-M-M-M-M-O-O• → ρ-O• + R-M-M-M-M-O-O-H   (3) 

The formed radical, ρ-O•, is not able to initiate polymerization but can contribute to termination2.  

1.3 Durability of resin composite fillings 
During the last couple of decades great effort has been spend on improving resin composites. Especially 

problems with polymerization shrinkage, water sorption, discoloring and abrasion have gained attention. After 

many years of research the abrasion of commercial composites is acceptable. This is a result of development of 

hybrid and nanofilled composites where the mean distance between the filler particles are lower than in 

microfilled composites. The smaller distance lowers the abrasion of the polymer matrix and reduces the loss of 

filler particles from the abraded composite surface2. Also silanization of the filler particles reduces the abrasion 

of the composite surface15.   

Internal discoloration is a darkening of the composite material as a result of oxidation processes. These are 

mainly observed in two-component systems because of the relatively high concentration of tertiary and 

aromatic amines. The amines will as a result of oxidation turn yellowish, reddish and brownish. After the 

O

O

N

O

OH

Light,

468 nm

CH2R NCHR



 18 

 

development of the photoinitiator system internal discoloration of the filling is no longer a problem, as two-

component composites are no longer used as filling material2.  

The polymerization shrinkage, however, has only been reduced, and can be minimized by the use of varies 

techniques. In large fillings however, the result is not always acceptable2. So optimization of the composites 

with regard to polymerization shrinkage is still needed in order to make better fillings and to ease the 

preparation techniques. In this thesis focus is on reduction of polymerization shrinkage. 

1.3.1 Polymerization shrinkage in resin composite restoratives 

Shrinkage is inherent in all resins. Most resin composites give a wall-to-wall contraction (linear strain)of 0.3-0.5 

% and an overall volume contraction of 2-3 %2. This shrinkage creates polymerization stress as high as 13 MPa 

between the cavity walls and the composite filling. This stress severely strain the tooth/filling interface and will 

in a cavity cause the formation of cracks. The crack may result in loss of the filling, secondary caries, 

discoloration or even infection of the dental pulp and if the formed polymerization stress exceeds the tensile 

strength of the enamel, the stress can cause stress cracking and enamel fractures along the interface2,3. The 

crack formation is illustrated in Figure 6. 

 

Figure 6 SEM picture of the formed crack between the tooth and the composite filling. The width of the crack is ~15 μm 

Techniques to minimize crack formation involves building up the filling by inclined layers of composite and cure 

these layers separately2. This is, however, time consuming and the possibility to make complete bulk fillings in 

one operation is preferable for the dentist to reduce chair time. Bulk fillings set demands to the polymerization 

shrinkage as well as to the depth of cure of the composite. To prepare bulk fillings the light from the light probe 

should be able to penetrate all the way through the material. For this reason the opacity of the material is a 

crucial parameter.  

1.3.2 Central hypothesis of this study 

The chosen path to lower the composite contraction is to ad an expandable zirconia filler16. The working 

hypothesis is that the expantion of the filler in the cured or semicured organic matrix can counteract the 

overall polymerization shrinkage of the composite. 
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1.4 Zirconia in prosthetic dentistry 
Ceramic materials are used in a wide range of dental applications, such as inlays, onlays, implants, crowns and 

fixed partial dentures, because of its biocompatibility, wear resistance and esthetics. They are, however, 

subject to brittle failure. Yttria stabilized zirconia (YSZ) is a durable and tough dental material, which has 

esthetical advantages over metals. Compared to other ceramics YSZ has superior strength and rising fracture 

resistance (R-curve behaviour)17,18,19. The mechanical properties of YSZ are mainly due to transformation 

toughening when loaded above the fracture resistance. The transformation toughening originates from stress 

induced tetragonal to monoclinic (t→m) phase transformation, which causes the zirconia to expand ~4 vol%20.  

Zirconia has attracted interest both as catalyst support and as catalyst in varies reactions such as isomerization 

of n-butane21, synthesis of derivatives of 1,5-benzodiazepine and diaryl sulfoxides22, and benzylation of 

toluene23. This is the reason the surface properties of zirconia have been intensively studied. High surface 

area24 and thermal stability as well as controllable crystal size and density of OH-groups on the surface are 

desirable properties25. Control of surface area, crystal size and OH-density are also very important properties 

when a high activity of zirconia and easily initiated phase transformation is desired. 

At room temperature (RT) and atmospheric pressure, the thermodynamic stable phase for pure zirconia is the 

monoclinic. As the temperature is raised, zirconia undergoes the following change in crystal phases: 

Monoclinic → tetragonal → cubic → melt     (4) 

At RT, a metastable tetragonal phase is often seen, but it easily transforms to the stable monoclinic phase. Ruff 

and Ebert first documented the existence of metastable tetragonal zirconia26. Since the discovery of metastable 

tetragonal zirconia the tetragonal to monoclinic phase transformation at RT has been studied intensively, due 

to the excellent mechanical properties of zirconia, which are associated with this phase transformation. The 

known triggers for this transformation are: Chemical reaction with e.g. water27, annealing28 and mechanical 

stress29. However, mostly the effect of water and humidity on the crystal phase has gained attention. Murase 

and Kato30 found in 1979, that presence of water molecules on the zirconia surface caused phase 

transformation in metastable tetragonal zirconia crystals during milling. In contrast the tetragonal phase was 

stabile, when milled in water free argon atmosphere. Since then a number of publications concerning the 

effect of water on the phase stability of tetragonal zirconia at RT have been published. Different transformation 

mechanisms of the tetragonal phase have been proposed, ranging from hydrolysis of Zr-O-Zr bonds in the 

surface31, water reacting with Y2O3 under formation of Y(OH)3
32 to the most current perception; that the phase 

transformation is a result of reaction between OH- and oxygen vacancies under formation of hydrogen defects 

in the crystal lattice33,34. 

The tetragonal phase is metastable at RT and atmospheric pressure and an activation barrier must be 

overcome before transformation from the tetragonal phase (high energy state) to the monoclinic phase (low 

energy state) can proceed. Thus, the phase transformation cannot proceed spontaneously (Figure 7).  
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Figure 7 Free energy in tetragonal and monoclinic zirconia 

The phase transformation is martensitic, which by definition means that the transformation is diffusionless35 - 

the crystal structure needs no extra atoms to undergo the transformation. Thus, the transformation can be 

very fast, almost instantaneous and can be controlled. The transformation mechanism has to have a free 

energy high enough to overcome the activation energy needed to go from the metastable tetragonal phase to 

the stable monoclinic phase (see Figure 7).     

1.5 Zirconia in dental composite restoratives 
In the dental clinic zirconia ceramics is used in bridges, crowns, veneers, and for other applications where high 

strength and low solubility is crucial for the life time of the material. Also in composite restorative materials, 

zirconia is used, again because of its mechanical properties but also to increase the radiopacity, which is 

important to distinguish the filling from the tooth with x-ray imaging. The use of zirconia is already marketed in 

products, such as Filtek supreme and Filtek Z250 both produced by 3M. These two products have good 

mechanical properties, such as high flexural strength and fracture toughness36.   

The use of zirconia in resin composites sets high demands to the particle size because of the high refractive 

index of zirconia. Zirconia has a refractive index of 2.1-2.2 depending on the crystal phase, but the refractive 

index of the polymer matrix is 1.45-1.55. This means that in order to get a good esthetic composite the particle 

size has to be well below the wavelength of visible light, and preferable below 40 nm to prevent light from 

scattering from the particles giving the material an opaque appearance37. Opacity is a property of the materials 

that prevents the passage of light. When all the colors of the spectrum from a white light source is rejected at 

the same intensity as received, the object appears white. Opacity is represented by a constrast ratio, which is 

the difference in the daylight apperent reflection ratio of a sample, when backed by a white and a black 

standard. The constrast ratio for a dental composite should lie between 0.55 and 0.768.   
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The reason for opaque appearance is the increased light scattering with increasing particle diameter as 

described by Rayleighs law38:  

         (5) 

Where I0 is the intensity of the incoming and I of the transmitted light, ϕp is the volume fraction of the 

particles, x is the optical path length, r the radius of spherical particles, λ is the wavelength of the light and np 

and nm are the refractive index of the particles and the matrix respectively. High scattering will make the 

composite opaque due to multiple scattering. The necessary particle size is, however, also dependent upon the 

differences between the refractive indices of the particles and the matrix. If these are equal the scattering 

intensity is independent of the particle size38. Glass and resin has the same refractive index, which allows 

addition of large glass particles to the composite.  

1.6 The aims of this study 
The aim of this project is to develop a low shrinkage dental composite based on an expanding metastable 

zirconia filler. In order to achieve this, a better understanding of the zirconia particles is needed in order to 

reduce polymerization shrinkage in dental composites. The key questions are: What triggers the phase 

transformation? Is it possible to increase the transformation rate? High transformation rate of the zirconia is 

attractive as it enables phase transformation during the fast polymerization of the dimethacrylate matrix. 

Furthermore, detailed knowledge of the effect of surface modification and deagglomeration on the zirconia 

filler is required to improve the mechanical and esthetic properties of the resin composite.  

The main tasks of this study are: 

 To find molecules, which enable light initiated phase transformation of the zirconia filler dispersed in a 

dimethacrylate matrix simultaneous with curing of the resin. 

 To surface modify the zirconia particles without losing reactivity. 

 To deagglomerate the zirconia particle in order to obtain particle sizes below 40 nm.  

 To test the material properties of the final material. 

Chapter 2 contains descriptions of the used experiment procedures and characterization methods. In chapter 

3, the zirconia powder is described in regards to properties and morphology. The phase transformation and 

how the transformation rate can be increased are described in chapter 4. Possible ways to induce phase 

transformation as a result of exposing the composite to blue light during polymerization of the composite are 

also described in this chapter. Chapter 5 deals with surface modification of the zirconia particles including the 

effect of surface modification on the transformation rate and on the fracture energy of the filler/matrix 

interface. Surface modification is very important for improving the interface strength and water resistance of 

the composite. Methods to deagglomerate the zirconia powder are described in chapter 6. Surface 

modification is also essential to stabilize zirconia particles in water free suspension and prevent the particles 

from flocking after deagglomeration. In chapter 7, the shrinkage reduction properties of the expanding zirconia 

filler are described along with results from mechanical testing of prepared test composites. The last chapter 
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gives a summery and future prospects of the result presented in this thesis. In the end of every chapter a short 

summery is given of the chapter and the associated publications to ease the overview for the reader.      
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2 Experimental methods  

2.1 Experimental 
All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and used as received. Except for zirconium 

oxychloride, which is purchased from Bröste AB (Mölndal, Sweden) and ammonium hydroxide purchased from 

Borup Kemi I/S (Borup, Denmark).   

2.1.1 Synthesis of ZrO(OH)2 

Amorphous zirconia is prepared according to the following general procedure: 

1. Precipitation of amorphous zirconia. The reaction is:  

ZrOCl2 + 2 NH3 + 2 H2O→ ZrO(OH)2 + 2 NH4C l     (6) 

Aqueous solutions of 0.5 M ZrOCl2 and 5 M NH3 are prepared. The two solutions are added together at a ratio 

of approx. 2.8 times as much 5 M NH3 as 0.5 M ZrOCl2 by volume and the pH is monitored during this mixing. 

The pH should be close to 10, never above, and at best at 9.8-10. If pH drops below 9.6 only ammonia is added 

to the reaction mixture until pH reaches ~ 9.9 at room temperature and with stirring. ZrO(OH)2 gel precipitates 

during the mixing. 

2. Washing 

The precipitate is filtered at 1100 rpm and washed with water at room temperature in a basket centrifuge in 

order to exclude chlorine and ammonium ions. Water is added until a chloride test of the centrifugate is 

negative (no AgCl precipitate (white) can be detected when drops of 0.5 M AgNO3-solution is added to a 

sample of washing water). Then the filter cake is centrifuged at 1600 rpm for 15 minutes. The filter is removed 

from the basket of the centrifuge and the ZrO(OH)2 cake is gently and quantitatively released from the filter. 

3. Conditioning 

The ZrO(OH)2-cake from the centrifuge is transferred to a blender and mixed with 15 L of water pr. 9 L 

zirconium oxychloride original solution used. The mixture is blended to a uniform slurry. The slurry is 

transferred to a flask, and fitted with condenser and stirrer. With stirring the slurry is heated to the boiling 

point and kept boiling for 10 hours.  

4. Washing  

The conditioned precipitate is then filtered and washed with 100 L water as in step 2. 

5. Azeotropic distillation  

The amorphous ZrO(OH)2 cake is transferred in portions to a blender and mixed with isopropanol to a 
homogeneous dispersion. The dispersion is transferred to the round bottom flask for the pilot plant sized 
rotary evaporator. The product is dried when a fresh sample of distillate gives no precipitation when adding 
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zirconium(IV) butoxide, 80 wt% solution in 1-butanol. A white precipitate in this test indicated that the water 
content was higher than 0.7 % in the distillate. For a full portion (9 L ZrOCl2 solution) expect 35-40 L 
isopropanol to be required. When a negative water test is obtained, the remaining isopropanol is evaporated. 
The dried powder is transferred to a glass oven pan, and dried at 60°C for at least 48 hours. 

2.1.2 Calcination 

The amorphous ZrO(OH)2 is grinded in a coffee mill (OBH Nordica) until no detectable grains are remaining, 

usually one minute (determined by rubbing a small sample between the fingers, wear thin nitrile protective 

gloves). Keep the milled amorphous ZrO(OH)2 in an airtight container prior to use. 80 g milled amorphous 

ZrO(OH)2 is placed in the glass dish. The material is heated to 130°C overnight under vacuum. After vacuum 

drying, it is beneficial to carefully agitate the powder, as the powder may sink during vacuum drying. The glass 

dish with amorphous ZrO(OH)2 is placed in the retort. The sample is calcined for 3 hours at 475°C under dry air 

with an airflow of 9-11 L/min. The reaction for the calcination is: 

 ZrO(OH)2  → ZrO2 + H2O        (7) 

When the retort is cold the air inlet valve is closed. The retort is immediately after placed in the glovebox 

antechamber. The antechamber with the retort is evacuated twice, and refilled with nitrogen. The retort is 

moved into the glovebox and the glass dish is taken from the retort. The tetragonal zirconia is placed in an 

aluminum laminate bag, which is sealed. 

2.1.3 Surface modification 

2.1.3.1 Surface modification of zirconia powder 

In inert atmosphere in a glovebox, the zirconia powder was stirred overnight with 6 ml anhydrous methanol 

and 1 ml surfactant for each 1 g zirconia. The surface modified particles were filtered and washed three times 

with anhydrous methanol. After washing the samples were dried in the filter inside the glove box 

2.1.3.2 Surface modification of silicon wafers 

Silicon wafers were surface modified with hexamethyl disiloxane (HMDS) in a YES 6112 oven (Yield Engineering 

Systems, San Jose, US) at 150oC. Modification of the surfaces with γ-methacryloxypropyl trimethoxy silane 

(MPTMS) and (3-Aminopropyl)trimethoxysilane (APS) were obtained by covering the specimens with a mixture 

of 10:1 dry methanol : surfactant for 2 hours. Subsequently the samples were washed three times with 

methanol and dried under an air flow. Reference samples were prepared with clean silicon wafers.  

2.1.4 Preparation of dimethacrylate monomer mixture 

40 g (20 wt%) triethylene glycol dimethacrylate (TEGDMA) is poured into a glass beaker, then 88 g (44 wt% ) 

Diurethane dimethacrylate (UDMA) is added and then 72 g (36 wt%) Bisphenol A glycidyl methacrylate (Bis-

GMA). Before addition, Bis-GMA is taken out of the refrigerator and heated in an oven at 60°C until it is 

pourable. The mixture is stirred by hand until homogeneous. 0.5 wt% camphorquinone (CQ) and 0.5 wt% ethyl 

4-dimethylaminobenzoate (DABE) are added. The mixture is stirred by hand until DABE and CQ are dissolved in 

the resin. After addition of the photoinitiator system the resin has to be stored at maximum 5°C in aluminum 

coated bottles in order to prevent premature polymerization. 
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2.1.5 Preparation of matrix dispersed zirconia samples for XRD 

The zirconia powder for analysis is mixed, in the glovebox, with the dimethacrylate monomer mixture from 

section 2.1.4. A sample of this is placed between two glass plates and cured for 2 min using blue light (1100 

mW) from a Bluephase® (Ivoclar Vivadent, Liechtenstein). Such samples are called matrix dispersed zirconia. 

The samples are subjected directly to XRD measurement for phase analysis. 

2.1.6 Spray drying 

Dispersions of amorphous zirconia in water were spray dried in a MOBILE MINORTM Pilot Plant with an overall 

chamber diameter of 0.8 m, a cylindrical height of 0.83 m and a 60˚ cone. The drying gas, air (once through), is 

heated by an electrical heater and enters the drying chamber through a ceiling gas disperser. At drying 

temperatures 275/145˚C (inlet/outlet), dry looking powders were obtained.   

Other spray dried particles were produced in a lab scale spray-drying reactor, which consists of a spraying 

chamber combined with a tube furnace and a filter39. Droplets of the precursor solution were generated in the 

spraying chamber using a two-flow spray-nozzle with a replaceable orifice with a diameter of 1.5 mm. The 

liquid flow and gas flow was set to 1.76 ml/min and 16,000 ml/min, respectively. Own temperature was 280oC 

and dry-looking white spherical powders were collected in both cases. 

2.2 Characterization 

2.2.1 X-ray diffraction (XRD) 

One of the main uses of x-ray is in the determination of structures of materials using x-ray diffraction. When an 

x-ray beam strikes a crystal the beam will diffract in many specific directions. It is possible to identify the 

chemical composition and crystal phase of a material by analyzing the angle and the intensity of the diffraction 

pattern40,41.  

An x-ray diffractometer comprises an x-ray source, a detector and data collection and processing systems 

(Figure 8). In the x-ray source x-rays are generated by accelerating an electron beam onto a metal target in a 

vacuum tube, most often copper. The high energy electrons hit the metal target. In the hit atoms electrons are 

ejected from the ground-state. This ejection of electrons creates holes and x-rays are emitted during the 

refilling of the ground-states41.   

In powder diffraction, which is the used technique in this thesis, every possible crystalline orientation will be 

represented equally in the diffractogram41. Some powders can have a tendency to align in the sample holder, 

this leads to an over representation of one specific crystal orientation. This, however, seems not to be the case 

for the zirconia particles studied in this thesis, but to be safe the sample holder is rotated during analysis. 
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Figure 8 schematic drawing of XRD 

The crystal phases of zirconia can be identified with the use of powder XRD as seen in Figure 9. Tetragonal 

zirconia gives a diffractogram with a high intensity reflection (101) at 30.2° (2 angle) suitable for comparison 

with monoclinic zirconia. Monoclinic zirconia gives a diffractogram with two high intensity reflections (-111) 

and (111) at 28.2° and 31.5° (2 angle) suitable for comparison with tetragonal zirconia. 

 

Figure 9 Screen dump from WinX
POW

, analysis of a sample containing both tetragonal and monoclinic crystals. 
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The volume fraction of monoclinic zirconia (vm) can be determined from the following relationships42: 

        (8) 

where 1.34 is the intensity of reflection hkl, from the surface of a thick layer of the crystal powder and the 

integrated intensity ratio (xm) is:  

       (9) 

where Im(111) and Im(-111) are the integrated intensities of the (111) and (-111) reflections for monoclinic 

zirconia and It(101) is the integrated intensity of the (101) reflection for tetragonal zirconia. Intensities were 

integrated using STOE WinXPOW (ver.2.07) software, as seen in Figure 9. The method is generally good and gives 

valid results - integration may however not give a precise ratio of the phase transformation, when one or two 

of the reflections are small and overlaps with a greater reflection. To reduce this problem with overlapping 

reflections, the full width at half maximum intensity is fixed when analyzing the raw data. This gives a better 

fitting of the reflections.  

The crystal size can be calculated from XRD patterns by the Scherrer equation43:    

          (10) 

where τ is the mean crystallite dimension, K is the shape factor, λ is the x-ray wavelength (1.54 Å for Cu Kα), β is 

the full width at half maximum intensity (FWHM) in radians, and θ is the Bragg angle. The dimensionless shape 

factor varies with the shape of the crystallite, but has typically a value about 0.9. XRD cannot be used to 

analyze thick zirconia containing composite samples due to absorption. This can cause a problem when testing 

phase transformation initiated by diffusion of water. For that reason the samples are prepared with a thickness 

of 1 mm. The attenuation in a material is dependent on the element number of the atoms the sample. The 

attenuation increases with Z4. In the analyzed composites the x-rays will reach zirconia particles hundreds of 

μm down in the sample. There can however be some gradient differences through the sample, but this is not 

possible to test, because if the sample is split in two the dispersed zirconia will be exposed to humidity in the 

air and phase transform.  

2.2.2 Scanning Electron Microscopy (SEM)  

A scanning electron microscope uses a focused electron beam to image the surface. The image is obtained by 

scanning the focused electron probe across the surface and collecting the resulting image signal from the 

surface. The signal is collected from the specimen surface and the electron beam loses energy by inelastic 

scattering as the electrons penetrate beneath the sample surface. Most of the electron current from an excited 

sample is due to release of secondary electrons from the sample surface44. Changes in the local curvature will 

change the probability that a secondary electron can escape. A region with a positive radius of curvature 
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increases the chances of the secondary electron to escape and vice versa will regions with negative radius of 

curvature reduce the secondary electron current. The scanning electron microscope provides images that 

closely approximate what the eye and brain expect. As the intensity of the image will depend upon the number 

of secondary electrons reaching the detector, secondary electron imaging provides topographic images of 

rough surfaces45.  

2.2.3 Transmission Electron Microscopy (TEM) 

The transmission electron microscope uses a focused electron beam, just like the SEM. In TEM the detector is, 

however detecting electrons transmitted through the sample. This sets limitations on the specimen thickness, 

which should be less than 0.1 μm to allow most of the high energy electrons to pass without serious energy 

loss. This setup gives high resolution in two dimensions, but does not provide topographic images as SEM 

does44.  

Both SEM and TEM needs vacuum to operate. The high energy electron beam has limited path length in air, so 

the whole microscope column should be kept under a vacuum better than 10-6 Torr and for the highest 

resolution 10-7 Torr is desirable44.       

2.2.4 Atomic force microscopy (AFM)  

In atomic force microscopy a cantilever with a very fine needle (typical tip radii is 20-60 nm) is scanned across 

the sample surface, which registers the changes in height or stiffness in the surface. AFM can be operated in 

two ways; (i) in contact mode where the tip is lowered to the surface until a surface repulsion is detected as a 

positive deflection of the cantilever. Under atmospheric conditions a film of moisture on the surface can result 

in capillary forces. Also electrostatic charging of nonconducting surfaces can result in either attraction or 

repulsion of the probe tip. These effects can be limited by the use of contact mode, if the deflection of the tip is 

positive. (ii) In tapping mode the cantilever oscillate vertically at its resonance frequency. The tip-surface force 

interaction causes a change in the amplitude, the phase and the resonance frequency of the vibrating 

cantilever.  This technique is used to overcome the limitations of contact mode in studying soft materials. AFM 

gives a topographic image of the surface in an area ranging from 1 μm x 1 μm to 50 μm x 50 μm46.           

2.2.5 X-ray photoelectron spectroscopy (XPS)  

X-ray photoelectron spectroscopy is also known as electron spectroscopy for chemical analysis (ESCA) and is 

frequently used to characterize surfaces. The technique is used to probe most of the energy levels in the 

surface atoms, but does not have any spatial resolution. XPS uses x-rays to generate photoelectrons from the 

atoms in the surface. The kinetic energy (Ekin) of these photoelectrons is detected and the binding energy (Eb) of 

the exited electron can be calculated: 

Eb = hυ – (Ekin + ϕ)       (11) 

where hυ  is the energy of the x-ray and ϕ is the orientation-dependent workfunction that is required to bring 

the electron from the Fermi level into the vacuum just outside the surface. The workfunction is specific for 

each particular spectrometer. The binding energy of an electron depends on the atom the electron originates 

from, on the orbital where it was placed and on the binding of the atom to other atoms. The last effect is called 
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chemical shift and is much smaller, than the first two. The binding energy in the atom increases as the energy 

of the photoelectron decreases47.  

In practice the quantification is done by integrating the specific peak of all detectible elements in the sample 

correcting the areas for instrumental factors and dividing with relative photoelectron cross sections for each 

peak to give the relative concentration of elements. XPS cannot detect hydrogen or helium atoms. In this thesis 

whenever an atom composition percentage is presented, it is the percent of electrons detected from a specific 

atom species compared with the total number of electrons from all detected atoms.     

2.2.6 Dynamic light scattering (DLS) 

Dynamic light scattering, also known as photon correlation spectroscopy is used to find the size distribution of 

particles in suspension. This is done by monitoring the temporal fluctuations in the intensity of the scattered 

light. From monitored Brownian motions the particles the particle size can be calculated from the Stokes-

Einstein relation, when the viscosity of the solvent and the temperature are known48.  

2.2.7 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry is a thermoanalytical technique used to find the difference in the amount of 

heat needed to increase the temperature in a sample and a reference sample. In DSC a sample and a reference 

is subjected to a controlled temperature program and the difference in energy input into the sample and the 

reference is measured as a function of temperature.  The reference sample should have a well defined heat 

capacity in the measured temperature range49.    

2.3 Mechanical tests  

2.3.1 Peel test  

The so-called peel test is a simple method for qualitative assesment of the fracture toughness of bimaterial 

interfaces. The method is used to measure the fracture resistance of a thin layer bonded on a thick substrate or 

of two layers bonded together. The force needed for tearing an adherent layer from a substrate or for tearing 

two adherent layers from one another is measured. The peel test is well suited for fracture mechanical 

charaterization of thin layers. Furthermore the failure mode of peel tests generally is adhesive i.e., cracking 

along the film/substrate interface50. The energy release rate is calculated according to the equation51:  

       (12) 

where G is the energy release rate, P is the value of the peel force during separation, φ is the peel angle and b 

is the width of the flexible adherent. This equation applies if the adherent is flexible in bending, but 

inextensible51. During an experiment, the force increases. When the force reaches a critical value, crack 

propagation occurs along the film/substrate interface. Through (12), the critical value of the force can be used 

to calculate the critical energy release, Gc, also called the fracture energy. A picture of the experimental setup 

is seen in Figure 10.  

http://en.wikipedia.org/wiki/Thermal_analysis
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Figure 10 photo of the peel test set up (the test specimen is 20 x 60 mm) 

For a constant fracture energy and width of the sample the peel force will decrease with increasing peel angle 

for angles between 0  and 180 . The fracture occurs under a combination of peel and shear (Mixed Mode), but 

the mode mixety is fairly insensitive to the peel angle52. 

2.3.2 Three point bend test 

The three point bending test is used to characterize the strength of materials such as dental composites and 

ceramics. In this test method, a beam of the material, supported at each end, is applied a load on the middle 

and the maximum stress in the beam is calculated. The highest stress measured during the bending test is 

called the flexural strength. The maximum stress in the specimen can be calculated from the equation15.  

          (13) 

Where F is the load (in newtons), l is the distance between the supports and b and h are the specimen width 

and height respectively. The flexural strength is found when the maximum value Fmax, corresponding to the 

breakage of the specimen, is inserted into (13)15.    

All flexural strength tests were performed according to ISO 4049:2000(E). Test composites were prepared by 

mixing zirconia powders with the monomer mixture described in section 2.1.4. The mixing was done in a 60°C 

warm mortar, to increase the viscosity of the monomer mixture. For each mixture, a total of 8 specimens were 

prepared. Six specimens were tested with 3-point bending test and two specimens were use for determination 

of the filler content according to DS/EN 12880:2001. In the 3-point bending test surface defects are dominating 

over bulk defects. For this reason, the specimen preparation is very important for the measured strengths and 

the sample surfaces have to be polished prior to testing. For brittle materials, the strength is controlled by the 

size of the defects in the specimens. Such materials can show a large variation in strength due to variation in 

defect size from specimen to specimen. The strength variation can be described in terms of the Weibull 

distribution53. Polymers, however, usually show smaller strength variations.    
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2.4 Deagglomeration  

2.4.1 Ultrasonication 

Ultrasonication is the act of applying ultrasound to agitate particles in a sample. It is a soft nonimpact method 

to deagglomerate particles or to speed dissolution, by breaking intermolecular interactions. The 

deagglomerating effect derives primarily from acoustic cavitation (the formation, growth and collapse of 

bubbles). Near a solid surface the implosion of the cavitation bubbles results in micro-turbulences and micro-

jets of liquid into the surface of up to 1000 m/sec. Large particles of brittle materials are subject to surface 

damage and fragmentation54. 
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3 Zirconia powder – Surface and Morphology 
3.1 Introduction 

Resin composites are highly affected by the filler load. A high filler load will result in a composite with lower 

shrinkage and wear, but also a composite with higher strength2. To obtain these high filler loads it is important 

to have well characterized filler particles in regards to size, porosity and particle size. In this case, where the 

filler is expected to phase transform from one crystal phase to another, crystal phase analysis is an extra 

parameter of concern.      

In this chapter morphology, crystal phase and surface chemistry are described for the synthesized zirconia 

powder.   

3.2 Particles 
The synthesized zirconia powder was analyzed with SEM and the particles were found to have a highly porous 

structure (Figure 11), where the zirconia particles appear as small “clouds”. The large particles in the picture 

are agglomerates of zirconia. It was tried to separate those with a spatula resulting in the smaller particles with 

a diameter of ~1-2 µm. This was also the result confirmed by DLS where the particle size was determined to 1.8 

μm. 

 

Figure 11 SEM picture of zirconia powder. The large agglomerates were separated with a spatula  
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Figure 12 XRD patterns of the calcined zirconia powder (in resin) t=tetragonal reflection, m=monoclinic reflection  

It was confirmed with XRD that the zirconia is tetragonal and only contains traces of monoclinic crystals (Figure 

12). The crystal size was calculated to ~6 nm from the XRD patterns by the Scherrer equation43. This crystal size 

was confirmed by transmission electron microscope analysis. The analysis showed that the zirconia powder 

indeed are composed of very small 6-8 nm nanocrystallites, which are interconnected and make three 

dimensional porous networks of about 1.5-2.0 micrometers (Figure 13). The structure of highly agglomerated 

nanocrystals gives rise to a high surface area and the specific surface area was determined by nitrogen 

adsorption to ~150 m2/g.   

 

Figure 13 TEM pictures of zirconia powder 
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3.3 Surface 
From infrared spectroscopy of the zirconia only two kinds of hydroxyl groups on zirconia can be determined; 

isolated hydroxyl group and the bi-bridged zirconia at 3766 and 3686 cm-1 respectively. The number of OH-

groups on the surface was determined, by LiAlH4 titration, to 3-4 groups per nm2. Other species on the surface 

of zirconia are carbonates (15 atom% carbon was found) which are described in section 4.1. The production 

method does, however, not leave ions adsorbed on the surface as it was found that the electrolytic 

conductivity do not change in de-ionized water when 1 wt% zirconia is added.  

On the surface of m-ZrO2 was furthermore a water layer, the amount of adsorbed water on the monoclinic 

zirconia surface is found to be 5.5 wt%. 5.1 wt% is deadsorbed below 110˚C, this means that only a small 

fraction of the water molecules are chemically bound.  

3.4 Summary of Chapter 3 
A primarily tetragonal zirconia powder was obtained, which consist of heavily agglomerated nanocrystals, with 

a size of ~6 nm. The sizes of these agglomerates are 1.5-2 μm and they have a very large surface area in the 

range of 150 m2/g. On the surface is found 3-4 OH-groups per nm2 and 15 atom% carbon found as carbonates.  
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4 Phase transformation 

4.1 Introduction 
As described in Chapter 1 tetragonal zirconia is used in many applications. For this reason the phase 

transformation mechanism is widely studied. Mostly the effect of water and humidity on the crystal phase has 

gained attention.  

The synthesized zirconia powder is very reactive towards water and starts to transform when the water 

content in the atmosphere gets above 150 ppm (dewpoint = -40˚C). At room temperature in ambient 

atmosphere the degree of phase transformation of the zirconia powder is approximately 65 vol% (see figure 1 

in Appendix I). The phase transformation is very fast and it is not possible to measure the transformation rate 

with XRD. This high transformation rate is also reported by Xie et al55. They measured a phase transformation 

time of 10 seconds as a result of exposure to ambient atmosphere. 

It is important that the zirconia filler is very sensitive towards water, as the activity of water in the composite is 

low due to the hydrophobicity of the resin. Because of this low water content all unwanted side reactions 

should be minimized. It is known from literature that carbonates on the zirconia surface react with water 

molecules. This will hinder water from initiating the phase transformation56. It was investigated how this 

competing reaction could be hindered. The results of this study is presented in Appendix II and in the patent 

presented in Appendix III. 

Chemical reaction is, however, not the only way to initiate phase transformation. Also application of 

mechanical stress and annealing can induce phase transformation. It was tested how sensitive the produced 

zirconia was towards uniaxial stress and the results of this study is presented in the first part of Appendix IV. 

The effect of annealing was also tested and the produced ZrO(OH)2 was calcined at different temperatures. It 

was observed that the zirconia turns monoclinic when the temperature is increased above 550°C. But because 

chemically initiated phase transformation is the only possibility in dental resin composites this is the initiation 

mechanism, which has gained attention in this thesis.  

In this chapter the sensitivity and reactivity of the produced zirconia filler is described. Also different molecules 

able to initiate the tetragonal to monoclinic phase transformation are identified. In this study water and other 

molecules were tested for their ability to initiate phase transformation in metastable tetragonal zirconia at RT. 

This investigation is performed to find molecules, which on exposure to the curing light are able to phase 

transform the zirconia. The results are described in Appendix V and Appendix VI. Furthermore the ability of 

zirconia to phase transform when dispersed in a dimethacrylate matrix was investigated (see Appendix VII). As 

presented above, water is one of the most important initiator molecules for inducing phase transformation of 

the zirconia filler. 
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4.2 Photoacid generators  
During the study of the phase transformation in water, it was proven possible to phase transform the zirconia 

in a dimethacrylate matrix by diffusion of water to the zirconia surface (see Appendix VII). The most desirable 

scenario, however, is to initiate the phase transformation during curing, while the resin is in the gel state. One 

way to do this is by light initiated release of initiator molecules. Water and HCl releasing photoacid generators 

(PAG) and photoacid generator systems were identified and tested (see Appendix V). The best candidate was 

found to be the commercially available 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine. But this HCl 

releasing PAG leads to a discoloration of the polymer matrix and absorbs at a low wavelength ( max =379 nm). 

The light probe used by dentists has an emission peak at 430-490 nm. For this reason the merocyanine dye 

linked bis(trichloromethyl)-1,3,5-triazine (MT1), described by Kawamura57, was synthesized. The synthesis 

route is illustrated in Figure 14 and Figure 15. MT1 has max =430 nm and is known to bleach upon irradiation57. 

These properties make MT1 a very interesting candidate. 

 

Figure 14 Synthesis of the merocyanine dye (3-(2-hydroxyethyl)-5-(3-octyl-3H-benzothiazol-2-ylidene)-2-thioxo-

thiazolidin-4-one) 
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Figure 15 Synthesis of 4-(4-chlorocarbonylphenyl)-2,6-bis-(trichloromethyl)-s-triazine and coupling with the 

merocyanine dye 

The HCl yield of the merocyanine dye linked bis(trichloromethyl)-1,3,5-triazine was determined by exposure to 

blue light in methanol and the formed HCl was precipitated with a 0.5 M AgNO3 solution. The yield of HCl, with 

respect to molar amount of the PAG, was found to 5.6 % after 20 min of irradiation at max. intensity. This is 

almost twice as much as the HCl yield of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (see 

Appendix V), which proves that the merocyanine dye linked bis(trichloromethyl)-1,3,5-triazine is more effective 

in the given emission range. Another advantage is that the merocyanine dye linked bis(trichloromethyl)-1,3,5-

triazine actually bleaches at low concentrations such as 0.5-1 wt% in the resin leading to removal of the yellow 

color.  

4.3 Summary of Chapter 4 and Appendixes I through VII 
The tetragonal to monoclinic phase transformation can be induced by chemical initiator molecules. Molecules 

known to initiate phase transformation are water, HF, HCl, HBr and NH3 – with water as the most efficient. The 

zirconia is sensitive towards shear stress and phase transforms in uniaxial strain tests with applied pressures as 

low as 60 MPa. Also annealing initiates the phase transformation and at temperatures above 550°C the crystals 

turn monoclinic 

Chemically initiated phase transformation is a very quick reaction. When the zirconia powder reacts with water 

vapor in air, the reported transformation time down is as low as 10 s. It is possible to phase transform 60 - 70 

vol% of the zirconia crystals in air and up till 84 vol% in water. A phase transformation of ~60 vol% is obtained 

for zirconia in a water stored composite material. The phase transformation happens in the water stored 

composite over 2 days after curing – most within the first 8 h.  
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It was also shown possible to phase transform matrix dispersed zirconia crystals by light initiated formation of 

HCl, by exposing 2-(4-Methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine in the compound to blue light. A 

phase transformation of 60 vol% was reached after 30 min exposure. The synthesized merocyanine dye linked 

bis(trichloromethyl)-1,3,5-triazine (MT1) gave a HCl yield of 5.6 % and were able to photobleach in the matrix 

upon exposure to blue light.     

It was found that carbonates on the zirconia surface reduce the transformation rate in the composite due to 

competing reactions with water. This inhibition of the phase transformation can be suppressed by addition  of 

alcohols , thiols and molecules with other functional groups, which react with the carbonates and hence hinder 

the carbonates from reacting with water – and thus works as activators making the phase transformation 

faster. Polyalcohols and dialcohols, however, which have the possibility to coordinate bi-dentate, hinder phase 

transformation. 
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5 Surface Modification 

5.1 Introduction  
A strong surface modification is very important for the properties of the final composite, as described in 

section 1.2.2. Different surfactants were tested for their ability to bind to the zirconia surface. In this thesis it 

was found possible to silanize the zirconia particles in a water free atmosphere without any phase 

transformation (see Appendix VIII), but because of the absence of water and hence absence of hydrolysis of the 

methoxy groups, it is only possible to obtain one monolayer of silane regardless of solvent, temperature and 

the use of an amine catalyst8. In the same way it was possible to modify the surface with phosphates, sulfonic 

acids and carboxylic acids, but these caused some phase transformation due to water formed by condensation 

with OH-groups on the zirconia surface (see Appendix VIII). The surfactants were also tested for their ability to 

prevent hydrolytic degradation of the matrix/filler interface and it was found that MPTMS gave the highest 

interlaminar fracture energy both in the dry and in the water aged samples (see Appendix IX).        

In this chapter, the effect of surface modification on the interface strength and resistance to hydrolysis is 

tested. Also the stabilizing effect of surfactants on the tetragonal crystals is analyzed. To overcome the 

stabilizing effect of these surfactants a new surfactant had to be identified. This study is described at the end of 

the chapter. 

5.2 Effect of surface modification on strength 
Appendix IX describes how peel tests can be used to evaluate the effect of different surfactants on the 

interface fracture toughness of the zirconia/dimethacrylate interface (see also section 2.3.1). The same study 

was conducted on adhesives bonded to silicon surfaces. The tested surfactants were hexamethyl disiloxane 

(HMDS), (3-Aminopropyl)trimethoxysilane (APS) and 3 γ-methacryloxypropyl trimethoxy silane (MPTMS). These 

results were compared with the results found for an untreated surface. The tested specimens are 2 x 6 cm silica 

samples covered with a methacrylate film with the thickness of 100 μm. Polymers can possess rate-dependant 

properties58,59. Therefore, it was first necessary to identify the most optimal peel speed. Two experiments were 

conducted. First, the tape/dimethacrylate interface was tested in order to ensure that this interface was 

stronger than the Si/dimethacrylate interface. Otherwise it would be difficult to test the right interface. Tests 

of the interface between the kapton tape and the dimethacrylate film showed that the peel force increased for 

speeds between 0.5 mm/min and 50 mm/min and the results of this study are plotted in Figure 16. Then a 

similar peel experiment was performed for a dimethacrylate resin cured on a clean Si wafer. This interface was 

significantly weaker than that of the kapton tape, however the load and thus the fracture energy was seen to 

increase with peel speeds between 0.5 mm/min and 20 mm/min (Figure 17).  
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Figure 16 Peel speed dependency on the fracture energy for kapton tape on a dimethacrylate surface 

 

Figure 17 Peel speed dependency on the peel force for a dimethacrylate film on a silicon wafer. The plotted data are 

originating from 2 equivalent samples.  

Furthermore stick-slip failures are observed at higher speeds. Slip-stick behavior is characterized by a saw-

tooth shaped load profile for a peel test specimen60 (see Figure 18). Initially the specimen is loaded until the 

fracture propagates. As the velocity of the crack decreases and stops, an arrest load is reached. This type of 

behavior is repeated several times as the crack moves down the specimen length. The load required for 

initiating the fracture is greater than that required for stable crack growth and part of the energy is dissipated 

as kinetic energy61.  
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Figure 18 Plot of the measured fracture energies of silicon/methacrylate interfaces measured at different peel speed; 

(blue) 1mm/min and (black) 10 mm/min; the latter shows slip-stick behavior 

It is observed that the fracture energy increases with increasing peel speed. This can be due to two different 

phenomena or a combination of these, 1) the fracturing is rate dependent62 or 2) the bulk plasticity is rate 

dependent and absorbs more energy at higher peel speed59.      

From these results it was decided to use a peel speed of 1 mm/min so that slip-stick fracture is avoided. Next, 

the effect of different surfactants on the fracture energy of the interface was analyzed. The results of this test 

are represented in Table 2. Just as for the zirconia surfaces studied in Appendix IX, MPTMS gave the highest 

fracture energy and again the test specimens surface modified with HMDS were so weak, that they were 

impossible to test - they cracked during handling. APS did not increase the fracture energy significantly 

compared with the untreated surfaces. This is not surprising since APS is unable to bond the resin and it is 

known from literature that a coupling agent has to connect to both the surface and the resin covalently in 

order to secure sufficient high interface toughness63.  

Table 2 Mean (standard deviation) of fracture energy (J/m
2
) recorded using peel-test 

Surface treatment Fracture energy 

HMDS NA 
Reference 15.0 (5.7) 
APS 20.4 (2.3) 
MPTMS 36.2 (11.8) 

NA; not analyzed 

5.3 Mechanically induced phase transformation 
It was readily observed that many of the tested surfactants stabilized the tetragonal phase and hence 

prevented the zirconia filler from undergoing phase transformation. Thorough studies were conducted and this 

lead to the articles presented in Appendix I and Appendix VIII.  
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As described above, surface modification of tetragonal zirconia often leads to a stabilization of the crystal 

phase, e.g., silanes stabilize the tetragonal phase so strongly, that not even boiling in water is sufficient to 

initiate phase transformation. The reason for such behavior is not understood. Therefore, the ability of 

surfactants to stabilize the tetragonal zirconia crystal from undergoing phase transformation as a result of 

applied shear stress was investigated. Mechanical compression tests were performed for both the surface 

modified the untreated samples as described in the article “Effect of microscale shear stresses on the 

martensitic phase transformation of nanocrystalline tetragonal zirconia powders” in Appendix IV. 

 

Figure 19 Volume fraction of monoclinic zirconia as a function of applied pressure to silanized samples (■) and an 

unmodified zirconia sample (▲) results from Figure 3 in Appendix IV 

It is observed that the silanized zirconia phase transforms, just as it is observed with untreated zirconia when 

macroscopic compression is applied (Figure 19). As for the unsilanized sample, microscale shear stresses cause 

the zirconia to undergo a t→m phase transformation. So surface modification only stabilizes the tetragonal 

phase towards chemically initiated phase transformation and does not hinder a phase transformation due to 

mechanical stress. It is observed in Figure 19 that application of a pressure to the surface modified zirconia 

seems to induce a higher amount of phase transformation than the unmodified zirconia. But as the curves in 

both experiments have similar slopes, it is more likely that the increase originates from water initiated phase 

transformation during the silanization.  

5.4 Promoting wetting of the surface  
Even though many of the tested surfactants stabilize the tetragonal phase, it was necessary to find one 

surfactant, which is able to bind to the surface in order to improve the wettability of the surface. It is a well 

known fact that surface modification of ceramic fillers for resin composites is necessary to wet the surface in 

order to gain higher filler loads in the final composite9. As described in section 1.2.2 silanes are commonly used 

as coupling agents in dental materials and MDP is used to bond resin to zirconia surfaces. But silanes or 

phosphates are not an option due to problems with phase stabilization and unwanted phase transformation. A 

number of alternatives were evaluated (see Appendix VIII).  
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The carbonates on the surface react with alcohols as described in section 4.1 and it was found that addition of 

a methacrylate or acrylate with an alcohol group, such as 3-(acryloyloxy)-2-hydroxy-propyl methacrylate 

(Figure 20), increases the wettability of the surface and the surfactant also works as an activator. Better 

wetting of the surface will result in a stronger mechanical adhesion of the resin to the highly porous zirconia 

particles and in higher strength of the composite. Because the surfactant has two double bonds able to bind 

into the resin during the curing, the surfactant will not work as a softener, but become a part of the polymer 

matrix. The bond of the surfactant to the surface is not stable towards hydrolytic degradation, its purposes are 

to enhance wetting of the surface and hence increase the filler load and to work as an activator. At the same 

time the surfactant ensures a good and deep penetration of the resin into the porous material – securing the 

maximal mechanical bonding between the particles and the polymer matrix. 

To enable the reaction between the surfactant and the carbonates, it is important to make the dispersion in a 

solvent free of functional groups, which can compete with the surfactant for reaction with the carbonates on 

the zirconia surface. Acetonitrile was chosen for its ability to dissolve the resin.           

 

Figure 20 3-(acryloyloxy)-2-hydroxy-propyl methacrylate. 

5.4.1 The ability of 3-(acryloyloxy)-2-hydroxy-propyl methacrylate to work as an activator 

20 g zirconia, 16 g monomer mixture (without photoinitiator system), 1 g 3-(acryloyloxy)-2-hydroxy-propyl 

methacrylate and 60 g acetonitrile were dispersed 20 min with a high speed dissolver. 20 ml acetonitrile was 

added and the mixture was dispersed 5 min more. The dispersion was transferred with 20 ml acetonitrile to the 

sonication chamber. The mixture was sonicated 45 min at maximum intensity with a 1000W ultrasound device 

(UIP1000hd from Hielcher, Teltow, Germany). A small sample was dried in vacuum and mixed with a 

dimethacrylate monomer system (with initiator system). The sample was cured between two glass plates for 1 

min on each side and stored in water at 40 °C for three days. The sample was subjected to XRD analysis after 

water storage. 

5.4.2 Results       

The dispersion was fairly stable but not transparent and the particle size of the zirconia dispersion was 

determined with DLS to 300-400 nm. The XRD patterns of the reference sample and the water stored samples 

are illustrated in Figure 21. It is observed that the zirconia is able to phase transform as a result of water aging. 

From this it is concluded that 3-(acryloyloxy)-2-hydroxy-propyl methacrylate is able to react with the 

carbonates on the surface and hence work as an activator.  



 

 46 

 

  

Figure 21 XRD patterns of a) reference sample and b) sample water stored for 3 days at 40 °C c) reference sample 

without surfactant stored in water for 21 day 

5.5 Summary of Chapter 5 and Appendixes VIII and IX 
In peel tests of zirconia/methacrylate and Si/methacrylate interfaces, the surface modification with MPTMS 

was found to result in the highest fracture energy (higher than the untreated silicon wafer, HMDS and APS 

modified silicon wafers). But surface modification of the zirconia particles with conventional surfactants is not a 

possibility due to stabilization of the tetragonal phase or phase transformation due to water from 

condensation reactions between surfactant and OH-groups on the zirconia surface. The surfactants, however, 

only cause stabilization towards chemical initiation and not towards mechanically initiated transformation. But 

mechanical initiation of the order of this stress level (190 MPa) is of cause not a possible way to induce phase 

transformation in a dental composite. 

It was found possible to modify the zirconia surface by addition of 3-(acryloyloxy)-2-hydroxy-propyl 

methacrylate to the compound. This surfactant binds into the resin system and secures a good penetration of 

the porous material securing a high degree of mechanical adhesion of the polymer matrix to the filler particle. 

It was also concluded that the surfactant was able to inhibit surface bound carbonate stabilization. 
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6 Deagglomeration 

6.1 Introduction 
For zirconia particles in dental composites a low particle size is very important because of the high refractive 

index of zirconia (n = 2.2). The importance of low particle size is due to a desire of gaining low opacity and the 

resulting high depth of cure in the dental composite. This is described in section 1.5.  

After the calcination step, the zirconia powder consists of large agglomerated particles with a diameter of 1-2 

µm. To reduce the particle size, deagglomeration is needed. Ball milling, spray drying and ultrasound were 

tested for their ability to deagglomerate the zirconia particles. The results of the investigations with ball milling 

can be found in Appendix IV. In order to obtain a stable dispersion of the deagglomerated zirconia particles, a 

dispersant, is needed. This dispersant should neither stabilize nor induce phase transformation of the zirconia 

Furthermore the dispersant should be able to stabilize the deagglomerated particles in water free solvent in 

order to prevent reagglomeration.  The surfactant should either be able to stabilize the zirconia dispersion in 

low concentration or be able to bind into the polymer matrix, to prevent softening of the polymer matrix by 

the dispersing agent.  

This chapter describes the screening for the most optimal surfactant. But also the deagglomeration techniques 

ball milling, ultrasonication and a couple of spray drying methods are described.   

6.2 Screening of dispersants  
A screening of possible dispersants was performed at INM (Leibniz Institut für Neue Materialien) in 

Saarbrücken and at YKI (Ytkemiska Institutet) in Stockholm. Many chemical groups were tested for their ability 

to stabilize zirconia in suspension and for their ability not to induce or hinder phase transformation of the 

particles. Also several solvents were included in the test.  

6.2.1 Experimental 

Screening experiments were conducted to find suitable dispersing agents, which prevents agglomeration of the 

hydrophilic zirconia particles in the partial hydrophobic monomer mixture. In order to save time and material, 

the screening was done in small volume experiments. 

In small bottles (20 ml) 1 g ZrO2 and 0.2 g of dispersant were added to three solvents (Butyl glycol, 2-Butanone, 

Xylol). Sedimentation and agglomeration behavior were observed for the samples. The tested dispersants are 

listed in Table 3. Additional testing on the ability to stabilize the suspension was performed on: phosphates, 

polyamines, soluble polymers/emulgators, complex builders, glycols and derivates of glycols and combinations 

of the above. 
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Table 3 Most important dispersants tested for their ability to stabilize zirconia in suspension. The compositions of the 

commercial surfactants are unknown 

 

 

 

 

 

 

 

 

 

 

6.2.2 Results 

Neither of the tested dispersants nor combinations of dispersants worked optimally giving the desired 

stabilization of the suspension. Some of the carboxylic acids looked promising seen from a stabilizing point of 

view, e.g., TODS, but the acids had a tendency of causing phase transformation due to water formation from 

condensation reactions on the zirconia surface. The lack of stabilization is probably due to the low dispersant 

concentration. It is not possible to add unlimited amounts of dispersant to the suspension as this will 

compromise the mechanical properties of the final composite.   

6.3 Milling with Polyethylenimine (PEI) 
High concentrations of PEI were found to prevent reagglomeration of the deagglomerated zirconia particles. So 

PEI was used for initial ball milling and separation studies of zirconia despite the need for high concentrations.  

250 ml Si3N4 coated stainless steel grinding bowl was filled with a mixture of about 10 g of ZrO2 powder and 

145 g of PEI solution (a mixture of 20 g of PEI (Mw=1800) and 125 g IPA) and 150 g of 0.5 mm ZrSiO4 in the Ar 

atmosphere in the glove box and after sealed carefully with tape It was milled with a P6 planetary mill at 500 

rpm for 20 h. 

After milling, the suspension was cooled for several hours and the product was moved into anhydrous IPA in a 

N2 atmosphere (plastic glove box). The milled product was stirred slightly with a spatula in order to recover the 

part that stuck to the bowl. Otherwise, it was easily poured into the glass bottle. The ZrSiO4 balls remained in 

the grinding bowl. The milled ZrO2 suspension in isopropanol was separated by centrifugation. First, it was 

Acids Commercial surfactants 

Oleic acid Disperplast 1142 
Phthalic acid Disperplast 1150 
Benzoic acid Disperbyk 106 
Glycolic acid ethoxylatelaurylether  Disperbyk 180 
3,4,5 Trihydroxybenzoeacid Disperbyk 9076 
Decanoic acid Disperbyk 108 
Polyethylenglycol(600)dioic acid  Disperbyk 111 
3,6,9-Trioxadecanoic acid (TODS) Disperplast I 
Stearic acid Ilco Lube 5500 
Hydroxybenzoic acid Dapral AKZO GE 202 
Benzilicacid Tegin OV 
Sorbic acid Jeffamine D 230 
Levulinic acid Jeffamine M 600 
Gluconic acid Ultrasil CA 2 
Citric acid Octacare DSP OL 300 
 Dispex A 40 
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separated at 4000 rpm, 30 min with a Rotina 420 centrifuge. The precipitate was washed with IPA and the 

resulting suspension was marked S4. The supernant was subjected to further separation with a Beckman 

Ultracentrifuge. A polyallomer (ethylene-propylene copolymer) tube with 25 ml capacity was used, and 

separation was carried out at 25,000 rpm for 0.5 h. The supernant had a clear upper part, but was translucent 

at the lower part (marked S5 - translucent and slightly white in colour). The bottom precipitate was washed 

with IPA and marked S6. As the sample S5 was not transparent, 2/3 of this sample was further separated with 

ultracentrifuge again at 25,000 rpm, for 2h.  The supernant was totally clear and marked S7 (Figure 22). 

 

Figure 22 Side view of centrifuged  sample in the 25 ml polyallomer tube after separation of sample S5 at 25000 rpm, 2 

hrs; (b) Bottom view of sample S8 (precipitate) after the supernant was removed. (c) Appearance of wet-cake (sample 

S8) in a Petri dish; (d) Appearance of wet-cake dispersion (S8-1) in anhydrous IPA (2,2g wet cake dissolved in 50 ml IPA).  

~ 8.6 g precipitate (slightly yellowish transparent cake) was collected and it was divided in two. 6.4 g (¾ of it) 

collected in a glass bottle and kept in 30 ml IPA solution. It was not totally suspendable in isopropanol - not 

transparent. 2.2 g (¼) of it was dispersed in 50 ml isopropanol by hard shaking and marked S8-1 (not 

transparent either) (see Figure 22). An overview of the separation experiment is found in Figure 23. Size 

distribution was analyzed by diluting the samples with isopropanol.  
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Figure 23 Overview of the separation test 

The particle sizes of the collected samples were analyzed with DLS. The measured particle sizes are given in 

Table 4. The precipitate from the separation at 4000 rpm had an average size of 190 nm and had of course the 

largest measured particle sizes. It is shown that the particle size in the supernant is dependent upon the 

separation time and for 2½ h at 25000 rpm a particle size of 16 nm is reached. The collected samples were also 

analyzed with TEM and the particle sizes were confirmed. Progression of the particle size and morphology 

during the experiment is shown in Figure 24.  

Table 4 measured particle sizes 

 

 
PEI seems to work and no further settling was observed after stabilization with this polymer. Milling at 500 

rpm, for 20 h with 0.5 mm ZrSiO4 balls effectively reduce the size of ZrO2 particles to below 200 nm. To collect 

nanosized portion (which is lower than 40 nm) milled ZrO2, it seems that centrifugation between 25000 rpm for 

30 min and 25000 rpm for 150 min is necessary. In this case transparent precipitate can be collected and this 

precipitate can be used for dental composites. Particle sizes in the supernant depend on the centrifugation 

time, which is logical. 30 min separation at 25000 rpm, leaves particle below 90 nm in the supernant, while 150 

min separation leaves the particle size below 16 nm in the supernant.  

Dispersed 
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S6 90 
S7 16 
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Figure 24 TEM images of (a & b) the supernant after 25,000 rpm for 2h (S7) and (c & d) the precipitate (S8-01) 

PEI was found to only stabilize zirconia in suspension to a certain extend when added in high concentration. 

Addition of surfactants in that high concentration to the final composite will compromise the mechanical 

properties due to a lowering of the degree of polymerization. For this reason it was decided to change 

surfactant and instead focus on dimethacrylate monomers and 3-(acryloyloxy)-2-hydroxy-propyl methacrylate. 

These surfactants can be added in higher concentration, without working as softeners, as they are able to 

copolymerize with the monomer mixture. 

It was found possible to deagglomerate the zirconia particles to a particle size of 190 nm. But after XRD analysis 

it was observed that the powder had phase transformed during milling in the same way as the powder in the 

article ‘Effect of Microscale Shear Stresses on the Martensitic Phase Transformation of Nanocrystalline 

Tetragonal Zirconia Powders’ in Appendix IV. As stated in section 4 the zirconia is sensitive towards shear 

stresses and phase transforms even with relatively low applied pressure. Applied pressures as low as 60 MPa 

are enough to initiate the phase transformation (see Appendix IV). A similar experiment was performed with 

commercial tetragonal zirconia stabilized with 3% yttria, and no sign of phase transformation were observed 

even when exposed to 188 MPa. Because of this high sensitivity, processing such as ball milling could 

potentially cause a problem when deagglomerating the particles. Through the experiments with milling of the 

zirconia it was concluded that it in fact is impossible to mill the particle as even low milling speeds, such as 120 

rpm induces phase transformation. In recognition of this, ultrasonication was evaluated as an alternative way 

of deagglomerating the particles. 
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6.4 Ultrasonication 
Zirconia is known from literature to phase transform upon ultrasonication64. For this reason the effect of the 

available ultrasound equipment (Vibracell CV 33 VCX 750 (750 watts), Sonics & Materials Inc., Newtown, CT , 

USA) was tested at high amplitude for its ability to initiate phase transformation.     

6.4.1 Effect of ultrasonication on phase transformation of zirconia 

~100 g of ZrO2 in IPA (35 wt%) was ultrasonicated in nitrogen atmosphere at 75% amplitude for 1 h. To identify 

the effect of exposure to the atmosphere in the ultrasonication chamber a reference sample was kept in the 

ultrasonication chamber while the experiment was ongoing. This sample was not sonicated, but only exposed 

to the atmosphere in the chamber. 

Another sample of ZrO2 in IPA (35 wt%) was ultrasonicated for ~25 min at 95% amplitude at pulsed mode (1 

sec. on - 1 sec. off). Stopped due to overload of the ultrasonication equipment.   

 

Figure 25 XRD patterns of (a) reference sample, (b) zirconia sonicated at 75 % amplitude for 1h and (c) zirconia 

sonicated at 95 % amplitude for ~25 min at pulsed mode 

The XRD patterns from these experiments are illustrated in Figure 25. It is observed that the three samples 

have the same monoclinic volume fraction. This means that it is possible to ultrasonicate the zirconia powder 

without initiating phase transformation. Because of this result ultrasonication experiments were performed 

with different dispersing agents. 
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6.4.2 Ultrasonication in isopropanol 

First PEI was tested because it was known to stabilize the zirconia particles in suspension. 

Three samples were prepared. 10 g PEI, with different molecular weight, were mixed with 40 g of ZrO2 in IPA 

(35 wt.-%) and the mixtures were ultrasonicated for 20 min at 38 % amplitude with a Vibracell CV33 VCX 750 

(750 watts), Sonics & Materials Inc., Newtown, CT , USA. 

Table 5 Measured particle sizes for the ultrasonicated PEI/zirconia dispersions 

Sample Particle size (μm) 

Reference 1.8 
M600 0.4 
M1800 0.3 
M10000 0.35 

 
It is observed that it is possible to deagglomerate the zirconia particles down to a size of 0.3-0.4 μm with some 

variations in the particle size for the three different suspensions (Table 5). This might be a result of PEI M1800 

being the best surfactant or it could be a result of deviations in the test. The reproducibility of these results was 

not tested, as the most important result was that deagglomeration was possible with ultrasonication.       

6.4.3 Ultrasonication in acetonitrile 

As described in section 5.4, 3-(acryloyloxy)-2-hydroxy-propyl methacrylate is able to stabilize zirconia in 

suspension in acetonitrile. Acetonitrile is used instead of isopropanol in order to prevent a competition 

between the isopropanol and 3-(acryloyloxy)-2-hydroxy-propyl methacrylate in reacting with the carbonates on 

the zirconia surface. Other dispersing agents were tested as well in acetonitrile and in lower concentration than 

in the ultrasonication experiments with PEI’s above.   

20 g of ZrO2 in acetonitrile (47 wt%) and 0.7 g surfactant was ultrasonicated 30 min at 38% amplitude with a 

Vibracell CV33 VCX 750 (Sonics & Materials Inc., Newtown, CT). The results are listed in Table 6With these 

studies it was found possible to deagglomerate to a particle size of 300-400 nm with the ultra sound system 

with no phase transformation observed. 

 

Table 6. For the stable suspensions the particle size distribution was determined. All the samples had 

precipitate of large zirconia agglomerates, because the ultrasound equipment not was strong enough to 

deagglomerate all the particles. These precipitates of large agglomerates are not observed after ultrasonication 

with a 20 kHz, 1000W ultrasound device (see section 5.4). But this equipment was first purchased after this 

experiment was conducted.  

With these studies it was found possible to deagglomerate to a particle size of 300-400 nm with the ultra sound 

system with no phase transformation observed. 
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Table 6 The effect of different dispersing agents on the stability of dispersions of zirconia in acetonitrile 

Dispersing agent Stabile 

PEI M600 Yes 
Pentaethylene hexaamine  No 
3-(acryloyloxy)-2-hydroxy-propyl methacrylate Yes 
Pluronic 1231 Yes 
Monomer mixture No 

6.5 Salt assisted spray drying 
Another way to obtain small zirconia particles are by modifying the preparation route. Salt assisted spray 

drying was tested as a possible way. It is known from literature that salt assisted spray drying and salt assisted 

spray pyrolysis can be used to produce nanosized ceramic particles65.  

In this study different ways to prepare nanosized zirconia particles were investigated. The tested preparation 

routes are azeotropic distillation, spray drying of pure ZrO(OH)2 and spray drying in combination with either 

CsCl or NH4NO3. An overview of the tested methods is illustrated in Figure 26. The effect on particle size, crystal 

size, surface area, crystallization temperature and crystal phase of the formed zirconia is studied.     

 

Figure 26 the tested preparation routes 

6.5.1 Spray drying of neutral, aqueous dispersions 

An suspension of amorphous ZrO(OH)2 was prepared as described in section 2.1.1 (step 1-3). From this three 

different aqueous dispersions of ZrO(OH)2 were prepared by stirring, with non, low (lCsZrO2) and high (hCsZrO2) 

CsCl concentration. The pure ZrO2 precursor was spray dried without further preparation. The lCsZrO2 

precursor solution was prepared by stirring 4 L 5.0 wt% ZrO(OH)2 water suspension with 100 g CsCl until the 

salt was dissolved. The hCsZrO2 precursor solution was prepared by stirring 4 L 5.0 wt% ZrO(OH)2 aqueous  

suspension with 200 g CsCl until the salt was dissolved. The dispersions were spray dried at pilot plant scale 

(see section 2.1.6) and the produced powder was calcined at varies temperatures. 

Originally it was expected to be possible to washout the salt with anhydrous methanol. But the solubility of the 

salt was too low and the salt was instead removed with water to facilitate characterization of the particles. 

6.5.2 Spray drying of acidic, aqueous dispersions 

Dispersions containing high (hNZrO2) and low (lNZrO2) concentrations of NH4NO3 were prepared. The hNZrO2 

precursor solution was prepared by mixing 200 g 5.0 wt% ZrO(OH)2 water suspension, 200 ml ethanol (99.7%), 

ZrO(OH)2

IPA drying 
(section 2.1.1.) 

Spray drying
Spray drying 
with NH4NO3

Spray drying 
with CsCl
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10 g acetic acid, 100 g ammonium nitrate and 8 g of 2.0 M HCl. The resultant suspension was sonicated 30 

minutes with Vibracell before spray drying. 

The lNZrO2 precursor solution was prepared by mixing 200 g 5.0 wt% ZrO(OH)2 water suspension, 200 ml 

ethanol (99.7%), 10 g acetic acid, 5 g ammonium nitrate and 5 g of 2.0 M HCl. The resultant suspension was 

sonicated 30 minutes with Vibracell before spray drying. The precursor solutions were spray dried in lab scale 

(see section 2.1.6) and the produced powder was calcined at various temperatures. 

6.5.3 Results 

The effects of preparation methods and the presence of either salts or isopropanol during calcination are listed 

in Table 7. It is observed that the different methods result in zirconia powders with very different properties. 

This means that the preparation route has a large effect on the properties of the produced zirconia powders, 

especially the crystal phase and crystal size are influenced. For the CsCl containing samples also the 

crystallization temperature is influenced.  

Table 7 Crystal size in nanometers, calcination temperature, monoclinic volume fraction (vm) of the spray dried samples 

and crystallization temperature (from DSC) 

Sample Crystal size (nm) Calcination temp. (°C) vm Crystallization temp. (°C) 

Reference sample 5.5 450 0.68 433 
Spray dried ZrO2 7.2 450 0.69 435 
hCsZrO2 7.1 550 0.23 525 
lCsZrO2 7.5 550 0.27 525 
hNZrO2 11.6 450 0.10 437 
lNZrO2 13.7 450 0.65 437 

 
The XRD patterns for the samples calcined at 450°C are illustrated in Figure 27. It is observed that the (101) 

tetragonal reflection at 2θ = 30.2° is more dominating for hNZrO2 comparing with lNZrO2 and the two pure 

samples, which have more dominating (-111) and (111) monoclinic reflections. The difference in peak width is a 

result of different crystal sizes. This difference is most pronounced when comparing the XRD patterns of the 

alcohol dried sample and lNZrO2 (Figure 27c & 27e). The alcohol dried sample has the broadest peaks because 

it has the smallest crystal size. It is, furthermore, found that while both the pure zirconia samples and the two 

samples spray dried with NH4NO3 are crystalline at 450°C, this is not the case for the two CsCl containing 

samples, which still are amorphous at this temperature. For this reason these two samples were calcined at 

550°C and subjected to XRD. The results are illustrated in Figure 28. It is observed that the tetragonal reflection 

is dominating for both samples.         
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Figure 27 XRD patterns of powders calcined at 450°C; (a) lCsZrO2, (b) hCsZrO2, (c) alcohol dried zirconia, (d) spray dried 

pure zirconia, (e)  lNZrO2 and (f) hNZrO2 

 

Figure 28 XRD patterns of zirconia spray dried with CsCl calcined at 550°C; (a) l CsZrO2 and (b) hCsZrO2 
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The XRD patterns of the powders prepared with salt assisted spray drying show only the existence of zirconia 

peaks and none of the peaks corresponding to CsCl or NH4NO3 are observed. This result indicates that all the 

salt is removed during washing.    

All the samples were analyzed with SEM and TEM. The azeotropic distillation (section 2.1.1) resulted in 

particles with a diffuse morphology (Figure 13), whereas spray drying resulted for all samples in spherical 

particles with a diameter in the range of 1-2 μm for the pure sample and for the samples spray dried with CsCl 

(Figure 29 and Figure 30a-d). For the two samples spray dried with NH4NO3 the particle sizes were in the range 

of <0.5 μm (Figure 30e-i). The two NH4NO3 containing samples gave the widest particle size distributions. 

Except for the size differences, no changes in morphology were observed with either SEM or TEM in any of the 

spray dried samples. 

 

Figure 29 TEM and SEM images of spray dried pure ZrO2 

All the tested methods resulted in crystalline nanoporous zirconia powders with particle sizes up to 2 μm. This 

is in contrast to the very large and hard agglomerates of zirconia obtained by just calcining the air dried 

ZrO(OH)2 dispersion.  

The two pure zirconia samples have quite equal properties, but azeotropic drying gives the smallest crystals 

and micron sized particles with a more diffuse structure. Spray drying, however, gives micron sized spherical 

zirconia. Both methods give pure zirconia with primarily the monoclinic phase and the samples contain only 30 

vol% tetragonal crystals. From the DSC analyses the crystallization temperature is found for the samples and it 

is observed that both the pure zirconia samples crystallize at ~435°C.  

Salt assisted spray drying with CsCl lowers the monoclinic volume fraction in the zirconia samples. Both CsCl 

containing samples have lower vm than the pure zirconia sample (see Table 7). The crystallization temperatures 

are however increased and the two CsCl containing samples crystallize at 525°C. Calcination at 550°C was 

expected to increase the sintering of the zirconia samples and hence increase the crystal size, but the crystal 

size does not increase significantly in any of the two samples and does not differ significantly from the spray 

dried pure zirconia sample. The decrease in vm is probably a result of anionic stabilization origination from 
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incorporation of Cl- in the tetragon crystal lattice. The stabilizing effect is among others described by Gutzov et 

al66. Furthermore does chloride ions adsorb strongly on zirconia and is difficult to remove completely from the 

surface67. 

In contrast to the CsCl containing samples, the presence of NH4NO3 during calcination causes no increase of the 

crystallization temperature, as both the samples crystallizes at ~435°C. For the two NH4NO3 containing samples 

a significant difference is observed. hNZrO2 has a volume fraction of monoclinic crystals (vm) of 0.10 and lNZrO2 

has a vm of 0.65. The later is close to the vm of the two pure zirconia samples (Table 7). Also the crystal sizes 

vary in these two samples and hNZrO2 has a crystal size of 11.6 nm and lNZrO2 a size of 13.7 nm. These crystal 

sizes were confirmed by TEM. Both samples show increased crystal sizes comparing with all the other samples. 

Especially the sample containing the lowest content of NH4NO3 has increased crystal size.  

hNZrO2 gives the lowest vm, but has larger crystals, than the pure zirconia samples. This indicates a stabilization 

of the tetragonal phase, which most likely originates from ammonium ions working as mineralizers, in the same 

way, as chlorine ions stabilize the samples calcined in the presence of CsCl. The stabilizing effect of ammonium 

ions counteracts the size effect and increases the critical size of the tetragonal crystals. Normally when the 

crystal size increases the vm will increase as well. This is not the case in this study and supports the presence of 

ammonium stabilization. Surprisingly lNZrO2 is not stabilized to the same extend and is the one of all the salt 

containing samples with the highest vm. lNZrO2 and lCsZrO2 have the same zirconia concentration and the fact 

that only the CsCl is able to stabilize the tetragonal phase in the crystals underlines the stabilization potential of 

chlorine ions.  

In contrast to the diffuse particle structure of the samples dried with azeotropic distillation, all the spray dried 

samples are spherical, but with different sizes depending on the production process. This indicates that the 

morphology and size are more a result of processing parameters, than a result of the properties and 

concentrations of the salts. Also the fact that the two NH4NO3 containing samples gave a wider particle size 

distribution supports this conclusion.  

It was expected possible to produce nanosized particles. This was, however not the case. Furthermore either a 

stabilization of the tetragonal phase or phase transformation were observed. For these reasons the project 

with salt assisted spray drying was terminated.  
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Figure 30 SEM and TEM of salt-assisted spray dried ZrO2 (a & b) hCsZrO2, (c & d) lCsZrO2, (e & f) hNZrO2 and (h & i) 

lNZrO2 

6.6 Zirconia-silica samples 
Another idea is to add silica to the amorphous zirconia in order to lower the refractive index of the particles. 

This method is, e.g., used in the zirconia contain composite materials Filtek Z100 and Z250 (3M, MN, USA).  

Zirconia-silica particles were produced in an effort to lower the refractive index of the resulting particles. In this 

study two different approaches to produce zirconia-silica powders were investigated; (i) Spray drying of a 

dispersion of amorphous ZrO(OH)2 and silica nano-particles (as section 6.5.1). (ii) Precipitation amorphous 

ZrO(OH)2 from a solution zirconium oxychloride containing silica nanoparticles. 
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6.6.1 Spray drying of neutral, aqueous dispersions 

An aqueous dispersions of ZrO(OH)2 and silica nanoparticles were prepared by adding Ludox® TMA colloidal 

silica (34 wt%, suspension in deionized water) to the amorphous ZrO(OH)2 dispersion described in section 2.1.1 

(step 1-3). The silica suspension was added in such amounts that the calcined product will contain 20 wt% 

silica. The dispersion was spray dried in pilot plant scale (see section 2.1.6) and the produced powder was 

calcined at varies temperatures   

6.6.2 Precipitation with nano-silica 

ZrO(OH)2 were prepared according to the previously described method in section 2.1.1, but with addition of  

Ludox® TMA colloidal silica (34 wt%, suspension in deionized water) to the zirconium oxychloride solution, so 

the calcined product will contain 20 wt% SiO2. Before calcination the ZrO(OH)2 sample was dried by azeotropic 

distillation with isopropanol. The sample were dried until no reaction was detected between the distillate and 

Zr(OBu)4.     

6.6.3 Results 

The XRD patterns of the zirconia-silica samples are illustrated in Figure 31. It is observed that none of the two 

samples are crystalline after calcination at 450°C. The spray dried sample, however, contains small amounts of 

tetragonal crystals  (the reflection at 44° originates from the sample holder). When the samples are calcined at 

850°C both the samples turn crystalline. They are primarily tetragonal also after exposure to humidity. More 

information on the calcined samples are listed in Table 8. It is observed that there are some variations in the 

two samples such as crystal size and crystallization temperature.    

 

Figure 31 XRD patterns of zirconia spray dried with silica (a) calcined at 450°C and (c) calcined at 850°C. Zirconia 

precipitated with SiO2 (b) calcined at 450°C and (d) calcined at 850°C  
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Table 8 crystal size in nanometers, monoclinic volume fraction and the crystallization temperature (from DSC) of the 

spray dried samples 

Sample Crystal size (nm) Calcination temp. (°C) vm Crystallization temp. (°C) 

SiO2 spray dried 8.8 850 0 435 and 671 
SiO2 precipitated 4.5 850 0.07 811 

 
To understand the difference in crystallization temperature in the zirconia-silica samples the calcined samples 

were analyzed using TEM to produce elemental mapping of the samples. The TEM images of the precipitated 

sample showed very homogeneous samples and the silica particles are evenly distributed throughout the 

sample (Figure 32). This is in contrast to the more inhomogeneous spray dried sample (Figure 33). Here it was 

found that the silica particles had a tendency of clustering and the particles had large areas without silica 

particles. The zirconia was, however equally distributed throughout the sample. This can also explain the fact 

that some of the zirconia in the spray dried sample crystallized at 435°C and the rest of the sample need 

calcination at 671°C to get crystalline. For the precipitated sample nothing happened even at 600°C. This 

indicates that when the zirconia particles are not in direct contact with the silica particles, they behave as pure 

zirconia. But when the zirconia is in contact with the silica particles crystallization is inhibited.  

 

Figure 32 TEM of zirconia precipitated with silica and (a & b) calcined at 850°C, (c) Si map and (d) Zr map of the same 

particle 
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Figure 33 TEM of zirconia spray dried with silica and (a & b) calcined at 850°C, (c) Si map and (d) Zr map of the same 

particle 

Addition of silica to the amorphous zirconia lead to an increase of the crystallization temperature, which was 

increased from 435°C to 671°C and 811°C for the two samples. Furthermore silica stabilizes the tetragonal 

phase. From these results it was concluded that none of the two techniques described above were possible 

solutions to the problem with the high opacity of the composites. 

6.7 Summary of Chapter 6 and Appendix IV  
It was found possible to deagglomerate zirconia almost to the primary crystals, but deagglomeration in media 

mills is not a possibility as it, even at low milling speeds, causes the zirconia to phase transform. Ultrasonication 

deagglomerates zirconia down to 300-400 nm without any observed phase transformation.  

Because this thorough screening of surfactants did not lead to any solution, it was decided to deagglomerate in 

a mixture of 3-(acryloyloxy)-2-hydroxy-propyl methacrylate and the monomer mixture. This worked fairly well 

as dispersion agent and got past the problems with dispersants softening the polymer matrix. This surfactant 

was chosen from a number of available commercial monomers due to its relative size and properties.   

Separation condition for smaller particles (less than 100 nm) should be identified. Based on previous 

experiment, higher speed than 4000 rpm and at least 30 minutes is necessary to leave only the smaller 

particles in suspension. Then, the smaller size ZrO2 particles in the suspension should be further separated with 

ultracentrifuge at 25,000 rpm for up to 2½ h in order to obtain a suspension with a particle size less than 40 

nm.  
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Four different preparation routes were tested to prepare nanoporous zirconia powders; azeotropic distillation 

with isopropanol, spray drying and salt assisted spray drying with NH4NO3 or CsCl (two different concentrations 

in both cases). From the results of this study it is concluded that addition of high amounts of NH4NO3 gives the 

crystals with the lowest monoclinic volume fraction and particles having a spherical shape. Spray drying of a 

precursor solution containing 1:1 ZrO2:CsCl results in almost the same properties, but have a little higher 

monoclinic volume fraction and a little smaller crystal size. None of the tested preparation resulted in 

nanosized zirconia particles and the project was terminated.    

It was also tested if it was possible to lower the refractive index by addition of silica nanoparticles to the 

zirconia. Both spray drying and precipitation were tested as possible preparation routs to silica-zirconia 

powders. It was, however observed that addition of silica increased the crystallization temperature of the 

zirconia and stabilized the tetragonal phase.   

From the experiments described above it was concluded to use ultrasonication to deagglomerate the zirconia 

particles even though this method gave to large particles, it was the only method, which did not result in phase 

transformation or stabilization of the tetragonal crystal phase.   

 

 

 

 

 

 

 

 

 

 

  



 

 64 

 

  



 

 65 

 

7 Composite properties 

7.1 Introduction 
The durability of a dental composite depends on the mechanical, the chemical and the physical properties of 

the composite. These properties could be compromised by addition of an unsilanized, highly porous zirconia 

filler and for this reason the flexural strength of different test composites were tested. However in this thesis, 

the focus is on the polymerization shrinkage. So, firstly, it was tested whether the zirconia filler was able to 

counteract the polymerization shrinkage of dental composites. In this study the phase transformation was 

initiated by water diffusing into the polymer matrix (see Appendix VII). It was found that the overall shrinkage 

of a composite containing 42 wt% zirconia stored in water at 40˚C was reduced with 44 % within the first 7 days 

in comparison with an equivalent sample stored in air.  

The ability of the produced zirconia filler to reduce the overall curing shrinkage of a test composite is described 

in this chapter. This test is the most important test at all because if the addition of the zirconia filler does not 

change the overall shrinkage the hypothesis (section 1.3.2) falls. Also the effect on the mechanical properties is 

described for test composites. 

7.2 Mechanical properties 
The effect of addition of the porous filler on the flexural strength was investigated by three point bending tests. 

First, composites with various amounts of the unsilanized zirconia or MPTMS modified zirconia were tested. 

The results are plotted in Figure 34. A weak tendency of increasing flexural strength with increasing filler load is 

observed. It is also observed that the composites containing silanized zirconia have higher flexural strength.  

An experiment with the Silquest® A-1230 modified monoclinic zirconia showed strongly decreased flexural 

strength for the test composites – even lower than the results from the tests with unmodified monoclinic 

zirconia. The low flexural strength of this sample indicates that Silquest® A-1230 (polyethylene glycol 

trimethoxy silane) works as a softener of the system and it proves how important it is to identify the most 

optimal surfactant for the system to prevent this lowering of the flexural strength.    

Composites containing tetragonal zirconia were also tested. These composites were prepared according to the 

procedure described in section 2.3.1, but in water free air in a glove box to prevent premature phase 

transformation. As mentioned in section 1.2.3, oxygen works in conjugation with the phenol inhibitors and it is 

not possible to handle the monomer in an oxygen free atmosphere for longer periods of time. For this reason 

the samples were prepared in dry air and not in the normally-used nitrogen atmosphere.  
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Figure 34 Flexural strength as function of filler load for test composites containing unsilanized, monoclinic zirconia (▲), 

for MPTMS modified monoclinic zirconia (■) and for Silquest
®
 A-1230 modified monoclinic zirconia (●).  

Six test series were conducted with three MPTMS modified zirconia samples and three with unsilanized 

zirconia. Different specimens were tested under three different conditions: dry, after boiling in water for 48h 

and after water storage for a month at 37°C. The results are plotted in Figure 35. It seems that silanization has 

a tendency to increase the flexural strength, but it is not statistically significant. It is also observed that water 

aging reduces the flexural strength of the test composites. From the three point bending tests of different 

zirconia containing test composites, it is concluded that silanization of the zirconia particles prior to mixing do 

not have a statistically measurable effect on the flexural strength of the resulting composites. This could be due 

to the fact that the particles are highly porous, which result in a strong mechanical adhesion between filler and 

polymer matrix.     

 

Figure 35 Flexural strength as function of filler load for test composites containing silanized (■) or unsilanized (▲), 

tetragonal zirconia. (black) reference sample, (green) stored in water for 1 month and (blue) boiled in water for 48h. 
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Also, the composites described in Appendix VII were tested. The results are listed in Table 9. It is observed that 

the compounds have higher filler loads and flexural strength. All the composites have flexural strength above 

80 MPa, which is the requirement for a dental resin composite according to the ISO standard (ISO 4049:2000 

(E)); composites 2 and 3 have flexural strength comparable with commercial materials. The problem with these 

composites is the opacity. The samples are opaque and have an opacity close to 1. This is a result of the large 

particles, which prevents passage of light through the composite and hence reduces the depth of cure68.   

Table 9 Zirconia content, crystal phase, filler load and flexural strength of three test composites 

Sample Zirconia content (wt%) Crystal phase Filler content (wt%) Flexural strength (MPa) 

Composite 1 42 Tetragonal 63 96 

Composite 2 32 Tetragonal 65 113 

Composite 3 32 Monoclinic 65 121 

7.3 Summary of Chapter 7 and Appendix VII 
Test composites were prepared and it was found possible to decrease the polymerization shrinkage of resin 

composites by addition of metastable tetragonal zirconia filler particles, which are able to expand upon 

exposure to water molecules. The overall shrinkage of the composite (42 wt% zirconia) sample stored in water 

at 40˚C was reduced with 44 % within the first 7 days compared with an equivalent sample stored in air at 40˚C. 

For the composite containing 32 wt% metastable zirconia the shrinkage was reduced with 29%. It was shown 

that the reduced shrinkage of the composite was not a result of water up take, as the composite containing the 

stable monoclinic zirconia filler did not show the same reduction in shrinkage (11% reduction). The flexural 

strength of the tested composites were all acceptable and in the range of values for commercial dental resin 

composites. 

From the three point bending test it was concluded that silanes do not have a large effect on the flexural 

strength of the tested composites. This could be due to the high porosity of the zirconia filler, which gives a 

good mechanical adhesion of the resin.  
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8 Conclusions and outlook 
The aim of this study was to produce a low shrinkage dental composite based on an expandable zirconia filler. 

This filler was characterized in regards to crystal phase, surface chemistry and morphology. It was found to 

consist of 1.5-2 μm large highly porous agglomerates of 6 nm tetragonal zirconia crystals. It was found possible 

to initiate the martensitic tetragonal to monoclinic phase transformation by annealing above 550°C, by 

application of stresses and by reaction with water, HCl, HF, NH3 and HBr. The crystals are more sensitive 

towards these initiators than YSZ powders.    

Photoacid generators were tested for their ability to induce phase transformation upon exposure to the light of 

a curing probe and phase transformation was observed. The reaction speed was, however, to slow and the 

light activated reaction led to a discoloration of the polymer matrix. So, water diffusing into the composite was 

used as an initiator resulting in a monoclinic volume fraction of 0.6.     

Various ways to surface modify the zirconia were analyzed and it was quickly found that many of the 

commercial surfactants either stabilizes the tetragonal crystal phase or induces phase transformation as a 

result of water formation on the zirconia surface. A surfactant was, however, identified. 3-(acryloyloxy)-2-

hydroxy-propyl methacrylate is able to bind carbonates on the surface under formation of a carboxylic ester. 

This enables stabilization of the deagglomerated particles in acetonitrile and works as an activator of the 

zirconia crystals.  

Methods to deagglomerate the zirconia particles were investigated and it was found possible to ball mill the 

particles almost down to the primary crystals. This, however, caused the crystals to undergo the t→m phase 

transformation. Instead ultrasonication was tested and it was found possible to reach particle sizes of 300-400 

nm without any phase transformation. This is, however, not small enough to produce a transparent composite 

material. 

Finally the ability of the produced zirconia filler to counteract the polymerization shrinkage was investigated 

and a number of composites were prepared. The volume change over time was measured using Archimedes 

method. From these experiments it was shown that the addition of the metastable zirconia filler actually 

reduced the polymerization shrinkage with up to 44% after a week in comparison with and equivalent sample 

stored in air.  

It was also concluded that it is possible to produce a low shrinking dental composite containing a metastable 

tetragonal zirconia filler with acceptable mechanical properties. But the large particle size of the filler causes 

problems with high opacity and a small depth of cure.  

In order to optimize this composite the following three areas has to be addressed: Reduction of compound 

opacity, acceleration of phase transformation in matrix dispersed zirconia and increase of filler load. 
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8.1 Reduction of opacity 
Dental resin composite materials need a low opacity to imitate the natural dentine of the tooth, especially 

when used for visible fillings. Besides the esthetic aspect, a low opacity of the composite material will also 

insure a high depth of cure. 

The produced test composite materials have shown a high opacity, in the order of 99%, resulting in a rather 

low depth of cure. This is possibly caused by a combination of reagglomeration of particles during evaporation 

of solvent as part of the compounding process and the particle size in itself. 

Based on the initial development work, it has been possible to deagglomerate zirconia to a particle size of 300–

400 nm by use of ultrasonication, without causing undesired phase transformation of the particles.  

Furthermore, a reduction in particle size ultimately to a size below 100 nm is expected to improve the opacity 

dramatically. A decrease in particle size can in principle be met by optimizing the deagglomeration of existing 

particles or by modifying the existing production process making particles easier to deagglomerate. 

Alternatively, it might be possible to produce nano sized particles by an alternative process. 

8.2 Acceleration of the transformation rate 
The shrinkage of dental resins occurs when the resin starts to cure and continue for a couple of weeks until the 

polymerization is completed at ~70 % polymerization. Around 85 % of this shrinkage takes place within the first 

15 minutes after the resin is exposed to curing light. 

At present, the zirconia particles phase transform by water diffusing into the resin, a process which takes place 

over a couple of days with about 50 vol% of the particles transforming within the first 8 hours. The optimal 

situation would be to have a phase transformation rate closer to the curing rate of the resin – at least for a part 

of the zirconia. A faster transformation could be reached by the following routes; optimization of a photoacid 

generator, which do not discolor the composite, or making the particles more sensitive to water or other 

initiators.  

8.3 Increasing filler load 
The initial compounding trials have proved it possible to add up to 42 wt% zirconia and in total 63 wt% filler, 

with the remaining being silanized glass. This is a rather low number compared to traditional resin composites. 

The zirconia powder is characterized by a very large surface area. This requires a lot of resin to fully wet the 

surface. Initial tests were done with a 3-(acryloyloxy)-2-hydroxy-propyl methacrylate. However the system has 

never been optimized. A higher filler load can be reached by optimization of the compounding process and of 

the surfactant.  
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10 List of abbreviations 
 
AFM 

 
atomic force microscopy  

APS (3-aminopropyl)trimethoxysilane  

Bis-GMA bisphenol A glycidyl methacrylate   

CQ camphorquinone  

DABE ethyl 4-dimethylamino benzoate  

D3MA decane-1,10-diol dimethacrylate 

DMAP dimethylaminopyridine 

DSC differential scanning calorimetry 

DLS dynamic light scattering  

EBPDMA ethoxylated bisphenol A glycol dimethacrylate 

FWHM full width at half maximum intensity  

HMDS  hexamethyl disiloxane  

IPA isopropanol 

MDP methacrylate-decyl dihydrogenphosphate  

MPTMS 3 γ-methacryloxypropyl trimethoxy silane 

MT1 merocyanine dye linked bis(trichloromethyl)-1,3,5-triazine  

m-ZrO2  monoclinic zirconia 

PAG photoacid generator 

PEI polyethylenimine 

RT room temperature  

SEM scanning electron microscopy  

TEGDMA triethylene glycol dimethacrylate  

TEM transmission electron microscopy  

TODS 3,6,9-trioxadecanoic acid  

Ts tosyl group 

t-ZrO2  tetragonal zirconia 

UDMA diurethane dimethacrylate  

XPS X-ray photoelectron spectroscopy  

XRD X-ray diffraction  

YSZ yttria stabilized zirconia  
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11 List of symbols 
 

b width 

Eb binding energy 

Ekin kinetic energy 

F max load 

G energy release rate 

Gc critical energy release rate 

h height 

hυ  photon energy 

I intensity of transmitted light 

I0 intensity of incoming light  

Im integrated intensities of monoclinic reflections 

It integrated intensities of tetragonal reflections 

K shape factor 

l distance between supports 

m monoclinic 

nm refractive index of polymer matrix 

np refractive index of particles 

P peel force during separation 

r radius of spherical particles 

t tetragonal 

vm monoclinic volume fraction 

vol%  volume percent 

wt%  weight percent   

x optical path length 

Xm  integrated intensity ratio 

β full width at half maximum 

ΔG change in Gibb’s free energy 

Θ Bragg angle 

λ  wavelength  

λmax wavelength at absorption maximum  

ρ phenyl group 

σ stress 

τ  crystal size 

φ peel angle 

Φ workfunction 

ϕp volume fraction of particles 
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Introduction

Sulfated zirconia has gained a lot of interest due to the

ability to catalyze a wide range of organic reactions such as

isomerization of n-butane [1], synthesis of derivatives of

1,5-benzodiazepine and diaryl sulfoxides [2], and benzy-

lation of toluene [3]. The catalytic properties of phosphated

zirconia are likewise well-known [4–6]. Phosphates and

sulfates are known to stabilize the tetragonal and cubic

phase in zirconia, but the effect is not yet fully understood.

Several authors have proposed that the stabilization is a

crystal size effect, where the surface free energy difference

between the tetragonal and monoclinic phase for suffi-

ciently small crystals exceed the bulk free energy differ-

ence between the two phases [7, 8]. Other authors ascribe

the stabilization to the presence of anionic impurities

such as SO2�
4 ; PO3�

4 and Cl- [9–11]. The theory based on

anionic stabilization of the tetragonal phase is the most

commonly accepted. This investigation specifically

addresses the surface effect of the stabilization by sulfate

and phosphate on tetragonal zirconia, by experimental

removal of the crystal size effect.

Experimental

All chemicals were supplied by Sigma–Aldrich Inc.

(St. Louis, MO, USA) and used as received. Highly porous

nanocrystalline tetragonal zirconia powders were synthe-

sized as previously described [12] by controlled hydrolysis

of ZrOCl2 followed by careful calcination. The t-ZrO2

powders are extremely porous and have specific surface

area of *150 m2/g. The synthesized t-ZrO2 powders were

kept in water-free environment for further treatment.

Surface modification

In the inert atmosphere of a glovebox, 1 g metastable

tetragonal zirconia was stirred for 150 min with 10 mL

anhydrous methanol and 1 mL of either 99.99% phospho-

ric acid or concentrated sulfuric acid. The mixture was

filtered and the zirconia powder was washed twice with

anhydrous methanol and dried at RT in the glovebox. Four

samples were prepared with tetragonal zirconia, originating

from two different batches. For reference a small sample of

the surface modified zirconia was mixed with a methacrylic

monomer mixture (bisphenol-A diglycidyl ether dimeth-

acrylate, urethane dimethacrylate, and triethylene

glycol dimethacrylate—Bis-GMA/UDMA/TEGDMA, 36/44/

20 wt%) and a photo polymerization system (champhor-

quinone and ethyl 4-dimethylamino benzoate—CQ/DABE

both 0.5 wt%). A sample was placed between two glass

plates and cured for 2 min using blue light (1,100 mW)

from a Bluephase� light probe (Ivoclar Vivadent, Liech-

tenstein). The polymer matrix prevents the tetragonal

crystals from undergoing phase transformation. Such

samples are termed matrix dispersed zirconia. The cured

samples were then subjected directly to the X-ray diffrac-

tion (XRD) measurement for phase analysis.
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Results and discussion

The phosphor and sulfur content in the phosphated and the

sulfated samples were by XPS (K-alpha Monochromated,

XPS spectrometer, Thermo Fisher Scientific Inc., Waltham,

MA United States) analysis determined to *5 and

*4 atom%, respectively. Due to the careful washing in the

preparation step, it is assumed that measured amounts

represent ionic binding of SO2�
4 and PO3�

4 to the surface.

The reference sample did not contain either phosphor or

sulfur.

The recorded X-ray diffraction (XRD) patterns (STOE

& Cie GmbH, Darmstadt, Germany) for the reference

sample, the phosphated and the sulfated samples are

illustrated in Figs. 1, 2, and 3. For all three samples the

XRD patterns are recorded in air and in water. Furthermore

matrix dispersed zirconia samples were analyzed using

XRD. From Fig. 1 it is seen that the reference sample only

contains traces of the monoclinic phase prior to exposure to

humidity and the tetragonal 101 reflection of zirconia at

30.2� = 2h is dominating. Broad peaks in the XRD pat-

terns are a result of small crystal sizes. The powder is very

moisture sensitive and a few seconds of air exposure

induces the martensitic tetragonal to monoclinic (t ? m)

phase transformation [13]. After air exposure the two

monoclinic reflections (-111 and 111) grows in intensity

and the (101) reflection decreases, indicating a t ? m

transformation. The monoclinic volume fraction (vm) is

calculated following a procedure proposed by Toraya et al.

[14] to *0.68. After addition of a drop of water to the

XRD sample the monoclinic reflections becomes even

more dominating (vm & 0.84). For both the phosphated

and the sulfated samples no change in XRD patterns are

observed even with water addition and vm is calculated to

*0.5 both before and after exposure to humidity. Thus,

phase transformation does not occur in any of the samples.

However, it also shows phase transformation of some of

the zirconia crystals during the surface modification pro-

cedure. This is presumably due to water in the phosphoric

and sulfuric acids or condensation reactions of the two

acids with OH groups on the zirconia surface.

It has been speculated that the stabilizing effect of sul-

fate and phosphate on the tetragonal phase at RT is due to a

retardation of particle growth during the calcination [15].

However, in the present study the zirconia is sulfated or

phosphated after calcination and thus the crystal size is the

same for neat and surface treated specimens. The crystal

size of the reference sample was calculated by the use of

Scherrer equation [16] to *6 nm which, as expected, did

not change as a result of the modification with phosphoric

or sulfuric acid in any of the samples. The crystal size was

confirmed by the transmission electron microscope analysis

(FEI Technai, FEI Company, Hillsboro, OR USA)—

showing that all the samples indeed are composed of very

small, heavily agglomerated 6–8 nm nanocrystallites,

which are interconnected and make three dimensional

porous networks of up to 1.5–2.0 lm. From the TEM

images could further be concluded that the morphology of

the zirconia powder does not change as a result of modi-

fication with either phosphoric or sulfuric acid (see Fig. 4).

The results support that the phase stabilization is an

anionic stabilization effect and not crystal size effect.

Mekhmer and Ismail [10] found that calcination of phos-

phated monoclinic zirconia does not influence the crystal
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phase and furthermore that the zirconia remained mono-

clinic upon calcination, similarly to the unmodified zirco-

nia sample. Thus, PO3�
4 ions are capable of hindering phase

transformation but are not capable of inducing a mono-

clinic to tetragonal phase transition.

Different mechanisms are proposed for the t ? m phase

transformation. A number of these are based on reaction

with water on the crystal surface. Today, it is commonly

accepted that the existence of metastable tetragonal zirco-

nia at RT is due to the stabilizing effect of oxygen

vacancies in the crystal lattice and that the phase trans-

formation of pure tetragonal zirconia can be initiated by

reaction with water [17]. Within this framework SO2�
4 and

PO3�
4 ions prevents water molecules from reacting with the

zirconia surface and/or retards the migration of OH- ions

into the oxygen vacancies and thereby prevents the

hydrolytic degradation of tetragonal zirconia. Alternatively

SO2�
4 and PO3�

4 ions both change the surface energy and

thereby retard the transformation. It has been proposed that

water adsorbed on the tetragonal zirconia surface reduces

the surface energy difference between the tetragonal and

the monoclinic phases [18, 19]. Such a surface energy

reduction will reduce the critical size of the tetragonal

crystals and thereby induce the t ? m phase transforma-

tion. An eventual change of the surface energy through

sulfate and phosphate treatment can be sufficient to prevent

Fig. 4 TEM images

of a–b phosphated sample,

c–d sulphated sample,

and e–f reference sample
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phase transformation caused by adsorption of water on the

surface.

Conclusion

The effect of phosphates and sulfates on the stability of

metastable tetragonal zirconia in water and ambient

atmosphere at RT was studied. Due to experimental

setup—calcination followed by surface treatment with

either phosphoric or sulfuric acid—crystal size difference

between native and surface treated specimens are neither

expected nor observed. Hence retardation of crystal growth

cannot be the reason for the observed stabilization. Instead

the stabilization of tetragonal zirconia by phosphate and

sulfate is caused by anionic interactions with sulfate and

phosphate ions on the zirconia surface. The stabilization is

either a result of hindered reaction of water on the surface

or a result of change in surface energy, which favors the

tetragonal phase. Further investigations have to be con-

ducted to understand the stabilizing effect of SO2�
4 and

PO3�
4 ions on tetragonal zirconia at RT.
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Abstract 

Water is known to initiate a tetragonal to monoclinic phase transformation in zirconia particles. Carbonates on the zirconia 

surface react with water molecules and hence reduces the transformation rate. This study investigates the possibility of 

inhibition of the reaction between surface carbonates and water in order to increase the transformation rate in the zirconia 

crystals. It was found possible to limit the reaction by reacting the surface carbonates with alcohols, a thiol and a primary 

amide prior to reaction with water. It was also concluded that di- and trialcohols are able to stabilize the tetragonal phase, 

probably as a results of induced lattice strain. 

Keywords: zirconia, surface carbonates, phase transformation  
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Introduction 

A problem with dental resin composites is the polymerization shrinkage, which results in loosening of the filling 

from the tooth or induced crack formation. The formation of a crack can give raise to discoloration due to 

colorants from e.g. coffee and red wine entering the crack or - worse - to secondary caries and infections of the 

dental pulp due to bacteria [1]. 

We have developed an expandable metastable tetragonal zirconia filler, which transforms into the lower 

density monoclinic phase upon reaction with water or HCl, and thereby, seen for the composite as a whole, is 

able to counteract the polymerization shrinkage of the monomer matrix. The tetragonal to monoclinic (t→m) 

phase transformation is accompanied by a 4% decrease in density. This expansion is for instance used in 

transformation toughening of ceramic materials [2].  

In previous work we have tested the potential of the filler to counteract the polymerization shrinkage by 

initiating the phase transformation by water diffusing into the polymer matrix [3] and found that the overall 

shrinkage of a composite containing 42 wt-% zirconia stored in water at 40˚C was reduced with 44 % within the 

first 7 days comparing with an equivalent sample stored in air. However, the most desirable scenario is to 

initiate phase transformation of the tetragonal zirconia filler during polymerization of the organic matrix. We 

envisage that simultaneous phase transformation initiation and curing can be achieved by adding a photoacid 

generator, which releases HCl or water upon illumination [4]. 

Water is known for the ability to induce phase transformation of tetragonal zirconia [5]. High sensitivity of the 

zirconia filler towards water is however important as the activity of water in the composite is low due to the 

hydrophobicity of the resin. It is known from literature, that carbonates on the zirconia surface react with 

water molecules [6]. This limits the water availability for phase transformation initiation. In this study we 

investigate how this undesirable side reaction can be inhibited in order to increase the sensitivity of the 

metastable tetragonal zirconia filler towards water and HCl and hence increase the phase transformation rate. 

Experimental 

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and used as received. Highly porous (specific 

surface area of ~150 m2 /g) nanocrystalline tetragonal zirconia powders were synthesized as previously 

described [7, 8] by controlled hydrolysis of ZrOCl2 followed by careful calcination. The synthesized t-ZrO2 

powders were kept in water-free environment for further treatment to prevent the t→m phase transformation 

which is induced by exposure to water vapor [9, 10].  

Test of different activators 

1 mmol of the potential activators (as described in Tab. 1) was mixed with 500 mg of a dimethacrylate 

monomer mixture (bisphenol-A diglycidyl ether dimethacrylate, urethane dimethacrylate, and triethylene 

glycol dimethacrylate - Bis-GMA/UDMA/TEGDMA, 36/44/20 wt%) and a photo polymerization system 
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(camphorquinone and ethyl 4-dimethylamino benzoate - CQ/DABE both 0.5 wt%). In a glove box 200 mg of the 

metastable tetragonal zirconia powder and 100 mg of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-

triazine were added. Tested solid activators were dissolved in the dimethacrylate matrix prior to mixing with 

the zirconia powder.  

A sample of this mixture was placed between two glass plates and cured for 30 min using blue light (1,100 mW) 

from a Bluephase® light probe (Ivoclar Vivadent, Liechtenstein). The phase transformation is initiated during 

curing. The cured samples were then subjected directly to the X-ray diffraction (XRD) measurement for phase 

analysis. The polymer matrix prevents the tetragonal crystals from undergoing phase transformation initiated 

by humidity.  

Also a reference sample without addition of any potential activator were prepared  

Samples for water aging 

In inert atmosphere a sample of 1 g tetragonal zirconia was suspended in anhydrous methanol. The suspension 

was filtered and left to dry in the filter overnight in inert atmosphere. 200 mg of this methanol treated zirconia 

were matrix dispersed (as described above) and cured. Furthermore, equivalent samples were prepared 

containing 200 mg unmodified zirconia and 500 mg dimethacrylate mixture. Such samples are termed matrix 

dispersed zirconia. The matrix dispersed samples were stored in water at 40 °C and following subjected directly 

to the X-ray diffraction (XRD) measurement for phase analysis.   

Characterization 

X-Ray Diffraction (XRD) evaluation 

XRD patterns were scanned in 0.1 steps (2θ), in the 2θ range from 27˚ to 33˚. The XRD patterns were analyzed 

using WinXPOW software. The tetragonal and monoclinic volume fractions (vt and vm) were calculated from the 

integral intensities of the monoclinic diffraction lines (-1 1 1) and (1 1 1) and the tetragonal diffraction line (1 0 

1), following the procedure proposed by Toraya et al [11]. 

Fourier transform infrared spectroscopy  

Fourier transform infrared spectrometry (FTIR) was performed using a PerkinElmer Spectrum one FTIR 

spectrometer. The samples for analysis were prepared by pressing a pellet with a diameter of 1 cm of 30 mg 

zirconia and placing it between two CaF2 windows in an airtight holder. All handling was done in a glove box 

(<10 ppm water). Spectra were collected within the range from 900 to 4000 cm-1 with averaging over 32 scans.   
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Autosorbtion: determination of water adsorption  

The amount of water adsorbed on the zirconia surface at a given partial pressure can be determined using a 

Quantachrome XT autosorb analyzer, (Quantachrome Instruments, Florida, US). A sample of the zirconia 

powder is kept at 0°C (ice bath) during the experiment. In order to avoid premature phase transformation it is 

necessary to use a seal that only opens in the autosorbtion machine. This way the sample can be kept under an 

inert atmosphere or vacuum until measurement starts and again after the sample is removed from the 

machine. The zirconia sample is evacuated to the relative pressure, P = 0.01 x P0; where P0 is the ambient 

pressure. The sample is then titrated with water in gaseous form by the procedure of finding a relative 

pressure and then noting the amount of water necessary to get this pressure. At a given end-point (a given 

p/p0) the sample was re-evacuated and taken to a glove box. The zirconia was matrix dispersed as described 

above and subjected directly to the XRD measurement for phase analysis.   

Results 

Triazine tests 

The effect of addition of different potential activators on light initiated phase transformation is listed in Tab. 1. 

It is observed that besides from some of the alcohols and octane thiol only acetamide is able to activate the 

zirconia. Out of the tested activators 1,5-pentanediol results in the highest monoclinic volume fraction in the 

samples. For the reference sample without any activator added, very little phase transformation was detected 

even after 2 h of light exposure. 
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Tab. 1 effect of addition of 1 mmol of potential activators to the resin on the monoclinic volume fraction of 
zirconia caused by initiation of phase transformation by 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-
triazine exposed to blue light   

Tested activators vm 

Tert-Butylamine 0 

Diethylamine 0 

Triethylamine 0 

Ethylenediamine 0 

  

Methanol 0.53 

Iso-propanol 0.55 

Iso-octanol 0.46 

Ethylene glycol 0 

1,3-propanediol 0 

1,4-butanediol 0 

1,5-pentanediol 0.63 

Glycerol 0 

Octane thiol 0.50 

  

N,N-Dimethylformamide 0 

Chloroform 0 

Acetamide 0.24 

Cyanamide 0 

  

Unmodified zirconia 0 

 

Effect of activators 

The XRD patterns of the water stored matrix dispersed zirconia are illustrated in Fig. 1. The methanol treated 

zirconia has a vm = 0.67 after water storage for 2 days and already after 8 h the sample has a vm = 0.57. The 

untreated samples, however, need more than 21 days to reach vm = 0.47. From Fig. 1 it is observed that the 

reference sample only contains traces of the monoclinic phase prior to water storage and the tetragonal 101 

reflection of zirconia at 30.2˚ = 2θ is dominating. Broad peaks in the XRD patterns are a result of small crystal 

sizes. The powder is very moisture sensitive and the diffusion of water to the crystallite surface induces the 

martensitic tetragonal to monoclinic (t m) phase transformation [9]. During water storage the two monoclinic 

reflections (-111 and 111) grows in intensity and the (101) reflection decreases, indicating a t m 

transformation.        
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Fig. 1 XRD patterns of matrix dispersed unmodified zirconia after (a) 0 hour, (b) 3 days and (c) 21 days water 
storage at 40˚C and of a methanol modified matrix dispersed zirconia after water storage at 40˚C in (d) 8 hours 
and (e) 3 days. 
 

IR studies 

The results from the analysis of unmodified and methanol treated zirconia samples are plotted in Fig. 2 The 

observed carbonate species on the synthesized zirconia are: ionic carbonate CO3
2-: 1444 cm-1, bidentate 

bicarbonate HCO3
-: 1598 cm-1, bidentate covalent surface carbonate "CO3": 1558 and 1325 cm-1 and finally ionic 

carboxylate CO2
-: 1423 cm-1. The intensities of the ionic carbonate and carboxylate are the same, creating a 

double peak in the IR spectrum. The bidentate covalent surface carbonate is just shoulders to the double peak 

and the bicarbonate is a small peak and only a shoulder to the bidentate covalent surface carbonate peak. 

After exposure to methanol three peaks at 1614, 1471 and 1359 cm-1 respectively appears.  
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Fig. 2 IR Spectra of a) zirconia and b) methanol treated zirconia 

Autosorbtion 

In the autosorbtion study different zirconia samples were analyzed. In Fig. 3 the result from the analysis of the 

untreated zirconia and the methanol treated zirconia are plotted. In both samples a discontinuity is observed at 

relative pressure of ~0.1 and for the unmodified zirconia this increase is 6 times larger than for the methanol 

treated zirconia sample. 

From Tab. 1 it is observed that ethylene glycol does not work as an activator, for this reason ethylene glycol 

modified zirconia were subjected to an autosorbtion analysis and the results are also plotted in Fig. 3. In this 

sample the slope steepens at a relative pressure of ~0.16. Comparing with the methanol treated sample, 7 

times as much water can be added without any significant increase of the relative pressure.  

 

Fig. 3 Autosorbtion curves of ■) methanol treated zirconia, ▲) untreated zirconia and ●) ethylene glycol treated 
zirconia.  
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The methanol treated zirconia was analyzed further and the analyses were stopped at different relative 

pressures. The zirconia samples were handled to prevent further phase transition. The XRD patterns obtained 

from these samples are illustrated in Fig. 4. It is observed that some of the zirconia is phase transformed at a 

relative pressure of 0.05 and the level of phase transformation increases with increasing relative pressure. 

Again the reference sample only contains traces of the monoclinic phase prior to water storage and the 

tetragonal 101 reflection of zirconia at 30.2˚ = 2θ is dominating. The growth in intensity of the two monoclinic 

reflections (-111 and 111) indicates a t m transformation.        

 

Fig. 4 XRD patterns of methanol treated zirconia (a) before and (b) after autosorbtion stopped at p/p0 = 0.05, 
(c) p/p0 = 0.1, (d) p/p0 = 0.9 
 

Discussion 

Evaluation of phase transformation activators 

In an effort to inactivate the carbonates towards reaction initiator molecules, various molecules were used to 

modify the zirconia surface. Very little phase transformation was detected in the reference sample without any 

activator added. Apparently, the initiator species derived from the triazine was almost completely "consumed" 

by the carbonates present at the surface of the zirconia particles.  

When the zirconia surface is covered with carbonates higher amounts of initiator molecules are needed to 

initiate the phase transformation - as carbonates are reactive towards water and that reaction will lower the 

number of water molecules reacting with the surface. This is crucial for the speed of phase transformation in 

resin, as the activity of water is low. This is observed from the water storage experiments, where the matrix 

dispersed methanol treated zirconia phase transforms much faster than the unmodified matrix dispersed 
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samples. Already after 8 h the methanol treated samples have a higher monoclinic volume fraction than the 

untreated samples have after 21 days.    

From the results of the test of potential activators it is concluded that alcohols, thiols and primary amides are 

able to activate the zirconia surface. An exception from alcohols is short chained di- and tri-alcohols with less 

than five carbon molecules separating the OH-groups e.g. ethylene glycol, glycol and 1,4 butanediol. These 

molecules inhibit the phase transformation. It has been experimentally shown that molecules able to make a 

bidentate bond to the zirconia surface have a stabilizing effect, e.g., the ethylene glycol treated sample did not 

phase transform at all as a result of exposure to ambient atmosphere (not shown). The untreated zirconia is 

previously proven to have a monoclinic volume fraction of 0.68 after exposure to ambient atmosphere [12]. 

Ethylene glycol is a bidentate molecule, which can potentially stabilize the tetragonal zirconia in the same 

manner as trimethoxy silanes and phosphates by binding two OH-groups across a Zr-O-Zr bridge because of a 

chelate effect. Probably an increased strain in the crystal lattice results [13].  

In order to avoid bridge bonding the activator should be monodentate (only able to bind with one group) or 

the functional groups should be far away from each other. The distance between the functional groups can be 

determined by intervals of C-bonds in the dialcohol. Ethylene glycol, 1,3 propanediol and 1,4 butanediol block 

the phase transformation, whereas 1,5 butanediol does not. The distance between the bonding groups should 

be more than 4 carbon bonds in order to avoid stabilizing the tetragonal phase. Actually 1,5 butanediol results 

in a higher vm than methanol. Possibly 1 mmol activator not is enough to inactivate all the carbonates on the 

surface and since 1,5 butanediol can react with two carbonates it can potentially deactivate a larger fraction of 

the carbonates. Methanol is smaller than 1,5 butanediol and is for this reason chosen. Addition of the smallest 

possible amount of solvent is preferable for the mechanical properties of the dental composites. 

IR spectroscopy 

During the calcination of the zirconia powder, remaining solvent from the drying process will burn and result in 

formation of CO2. This is known to react with zirconia surfaces under formation of carbonates. The adsorption 

of CO2 on zirconia has been widely studied [14]. The kind of species formed on the surface of zirconia is very 

dependent on the process condition such as temperature, amount of CO2 and the surface of the zirconia. All 

the observed carbonates can react with methanol and form methyl carbonates. Methyl carbonates give rise to 

IR spectra with three significant peaks at: 1600, 1474 and 1370 cm-1 [15]. Methanol treatment of the zirconia 

particles give rise to peaks at 1614, 1471 and 1359 cm-1. The formation of a substituted carbonate can 

therefore be observed in IR as a change of the carbonate peaks into the substituted species peaks. The above 

mentioned peaks are all assigned to the C-O (or C=O) vibrations as these are the modes with the highest 

extinction and are by far the easiest way to recognizing a change in carbonates on the surface of zirconia.  

Autosorbtion 

Looking at the autosorbtion curves of water on different zirconia surfaces several observations can be made. It 

is observed that the unmodified zirconia has a very steep adsorption curve at a partial pressure of ~0.1. This 
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sharp adsorption increase can also be found in other autosorbtion studies of zirconia with surface modification. 

The increase varies in size and a little in position (in relative pressure). The unmodified and methanol modified 

zirconia differ significantly in the amount of water adsorbed on zirconia. The origin of the increase cannot be 

associated with phase transformation of zirconia since some phase transformation is observed already at p/p0 

= 0.05 (Fig. 4). The increase is more likely to be associated with adsorption/absorption of water on the surface 

of zirconia.  

The results show that with a more hydrophobic surface the discontinuous part of the curve appears at a higher 

relative pressure. We cannot explain the reason for the differences in the magnitude of this increase. It could, 

however, be a result of the reaction between water and the surface carbonates. The discontinuity has the 

same magnitude for the untreated and the ethylene glycol treated sample. We speculate that the ethylene 

glycol prefers to bind the zirconia surface due to the possibility of bidentate binding, rather than reacting with 

the surface carbonates, this can explain the differences. In the methanol treated samples the methoxylated 

carbonates are unable to react with water and can for this reason not absorb as much water as the unmodified 

and ethylene glycol treated samples. This leads to an increase in the relative pressure comparing with the two 

other samples.   

Conclusion 

Carbonates on the zirconia surface reduce the transformation rate in the composite due to competing 

reactions with the initiator molecule water. The competing reaction can be inhibited by modification with 

alcohols, thiols and molecules with other functional groups, which react with the carbonates. The carbonates 

are prevented from reacting with water – and thus the molecules works as activators making the phase 

transformation faster. Through methanol treatment of the zirconia prior to dispersion in a polymer matrix, the 

monoclinic volume fraction can be increased from 0.47 within 21 days of water storage to 0.67 after 48 h water 

storage, with most of the phase transition occurring within the first 8 h. Dialcohols and polyalcohols, however, 

such as ethylene glycol, which have the possibility for bidentate coordination, hinder phase transformation. 
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Abstract

For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of
nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders
are extremely sensitive to both macroscopic uniaxial compressive strain and ball-milling induced shear stress and easily transform martensitically
into the monoclinic phase. A linear relationship between applied compressive stress and the degree of tetragonal to monoclinic (t → m) phase
transformation was observed. Ball-milling induced microscale stress has a similar effect on the t → m phase transformation. Furthermore, it was
found that even very mild milling condition, such as 120 rpm, 1 h (0.5 mm balls) was enough to induce phase transformation. Surfactant assisted
ball-milling was found to be very effective in de-agglomeration of our nanocrystalline porous ZrO2 particles into discrete nanocrystals. However,
the t → m phase transformation could not be avoided totally even at very mild milling condition. This suggests that the metastable t-ZrO2 is
extreme sensitive to microscale shear stress induced by both mechanical compression and ball-milling. The findings presented in this work are
very important in further understanding the stress-induced phase transformation of nanocrystalline t-ZrO2 powders in a water free atmosphere and
their further stabilization in industrially relevant solvents.
© 2010 Elsevier Ltd. All rights reserved.

Keywords: ZrO2; Phase transformation; Milling; Biomedical application; Composites

1. Introduction

Zirconia (ZrO2) ceramics have found broad applications
in energy,1 catalysis,2,3 catalysis support,4 composites5,6

coatings,7–9 dental and body implants,10–14 and solid
electrolytes,15 because of their unusual combination of strength,
fracture toughness, ionic and thermal conductivity. These attrac-
tive characteristics are largely associated with the stabilization of
the tetragonal and cubic phases through alloying with aliovalent
ions.

At room temperature (RT) and atmospheric pressure, the ther-
modynamic stable phase of pure zirconia is the monoclinic and

∗ Corresponding author. Tel.: +46 10 516 6059.
E-mail address: anwar.ahniyaz@yki.se (A. Ahniyaz).

it goes through the following crystal phase as the temperature is
raised:

monoclinic → tetragonal → cubic → melt

By suitable control of the processing parameters, however,
it is possible to create ZrO2 in a metastable tetragonal phase
at room temperature.16 The metastable tetragonal phase easily
transforms to the monoclinic phase. As a result of the t → m
phase transformation, the density of the zirconia crystals is
decreased since the crystals expand 3–5 vol%. This volume
increase, caused by the martensitic phase transformation, is an
important property of t-ZrO2 (tetragonal zirconia) as it is the
basis for transformation toughening, which is used in various
applications, e.g. dental inlays, dental crowns and dental bridges
where high tensile strength is important.17

0955-2219/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jeurceramsoc.2010.05.025
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In the last few decades, numerous efforts have been made to
understand the phase transformation behaviour of doped zirco-
nia. Effect of particle size, water, and oxygen vacancies on phase
transformation of YSZ has been reported.18,19

Effect of uniaxial stress on tetragonal to monoclinic (t-m)
phase transformation has been reported.20

There are only a few reports on the effect of external mechan-
ical stress on the phase transformation behaviour of undoped
ZrO2.

The most often described phase transformation is from mon-
oclinic to tetragonal21–23 as well as the direct transformation
from monoclinic to cubic is seen,24 but also the reverse reac-
tion (tetragonal to monoclinic) is reported.25 These varying and
contradicting results can be expected to be an effect of different
milling conditions (e.g. wet or dry milling) and the history of
the zirconia. Regarding the stabilizing effect of ball-milling on
the tetragonal and the cubic phase at room temperature several
theories have been proposed: lattice imperfections caused by
quenching on high-energy impact,24 incorporations of impuri-
ties due to wearing of the milling media,21,22 and small crystallite
size have been suggested.26

Unfortunately, however, in most cases, ball-milling exper-
iments were done in uncontrolled atmosphere, like open air,
where phase transformation may occur also under the influence
of water vapor, for example. Therefore, it is very difficult to
evaluate the effect of milling and stress on the phase stability of
zirconia crystals and this leads to different conclusions. More-
over, all these previous studies were limited on doped-zirconia,
such as yttria-stabilized zirconia (YSZ) and ceria-stabilized zir-
conia (CSZ).27–29

To our knowledge, effect of microscale shear stress on the
martensitic phase transformation of nanocrystalline t-ZrO2 has
never been reported.

It is well known that yttria-stabilized zirconia (YSZ) particles
embedded in a ceramic matrix can display autocatalysis. That
is, the t → m phase transition of one particle induces a strain
field in the surrounding matrix that triggers the phase transition
in neighbour particles.30

The behaviour of YSZ powder alone is anticipated to be very
different from that of YSZ particles in a ceramic matrix. In the
latter case, the ceramic matrix encloses the YSZ particles and
acts as an elastic medium that transfers stresses between YSZ
particles that are not in direct contact. In contrast, for YSZ pow-
der, stress transfer can only occur by direct particle-to-particle
contact. This implies that the microscale stress state differs from
the macroscale stress state. As an example, consider powder
subjected to macroscopic compression in a rigid die (Fig. 1).
At the macroscale, the YSZ powder is subjected to uniaxial
strain. However, at the microscale, individual particles touch
each other and transfer stresses via the contact points. Then,
at the microscale, the particles are subjected to a complicated
stress state involving compressive, shear and possibly also ten-
sile stresses. The presence of shear stresses at the microscale
can induce the t → m phase transition in some crystal in some
of the YSZ particles. The transforming crystals may bring on
autocatalytic phase transition in the crystals they are bonded to.
The similar autocatalytic behaviour can be expected for undoped

Fig. 1. A schematic illustration showing how particle-to-particle contact can
generate microscale shear stresses and tensile stresses although the macroscopic
applied stress in compression.

t-ZrO2. The hypothesis is that a macroscopic compression stress
may cause a t → m phase transition in t-ZrO2 powders due to
microscale shear stresses. If true, this hypothesis has the impor-
tant implications on the ways that pure t-ZrO2 powder should be
handled, since any mechanical treatment of t-ZrO2 powder will
generate microscale stresses that can induce the t → m phase
transition.

In the present work, the effect of microscale shear stress orig-
inating at particle scale during uniaxial strain test and low speed
ball-milling on the crystal phase of zirconia are investigated in
carefully controlled atmosphere with XRD, transmission elec-
tron microscopy (TEM) and photo correlation spectroscopy.
Special attention was paid to avoid any possible water contact
with the zirconia samples to evaluate the effect of shear stress
on the stability of t-ZrO2.

2. Experimental methods

All chemicals were supplied by Aldrich and they were all
used as received. Highly porous nanocrystalline tetragonal zir-
conia powders were synthesized by controlled hydrolysis of
ZrOCl2 followed by careful calcination.31 The t-ZrO2 pow-
ders are extremely porous and have specific surface area of
∼150 m2/g. The powder is very sensitive to water vapor and
a few seconds air exposure is enough to cause martensitic phase
transformation from tetragonal to monoclinic phase. Therefore
synthesized t-ZrO2 powders were kept in water free environment
for further treatment.



M. Skovgaard et al. / Journal of the European Ceramic Society 30 (2010) 2749–2755 2751

2.1. Uniaxial strain testing

In inert atmosphere in a glove box, 200 mg zirconia was
placed in pressing tools with a diameter of 13 mm. The press
was sealed from atmosphere with nitrile rubber to prevent phase
transformation due to reaction of zirconia with water vapor in the
air.32 The samples were exposed to macroscopic compression
to pressures of 60, 120 or 188 MPa. The pressure was applied
with a speed of 2 kN/min until the maximum value reached and
thereafter the pressure was decreased linearly with time back to
zero. Data for time, piston position and load was collected at a
PC at a data acquisition rate of 10 Hz.

After releasing the pressure, the samples were carefully trans-
ferred back to the glove box and mixed with a methacrylic
monomer mixture consisting of Bisphenol-A diglycidyl ether
dimethacrylate (Bis-GMA), urethane dimethacrylate (UDMA)
and triethylene glycol dimethacrylate (TEGDMA) in the ratio
(36/44/20 wt%) in combination with a polymerization system
composed of champhorquinone and ethyl 4-dimethylamino ben-
zoate both in contents of 0.5 wt% of resin. A sample of this
was placed between two glass plates and cured for 2 min using
blue light (1100 mW) from a Bluephase® light source (Ivoclar
Vivadent, Lichtenstein). This treatment was done as the polymer
matrix prevents the tetragonal crystals to undergo phase trans-
formation. The cured samples were then subjected directly to
the XRD measurement for the phase analysis.

2.2. Ball-milling

A 250 ml Si3N4 coated stainless steel grinding bowl was filled
with 60 g of aggregated t-zirconia nanocrystals in anhydrous
isopropanol (35 wt%), ∼12 g of either polyethylene hexamine
or a 1:1 mixture of urethane dimethacrylate:triethylene glycol
dimethacrylate and ∼150 g of 0.5 mm ZrSiO4 in Ar atmosphere
in the glove box and after sealed carefully with tape. The
0.5 mm zircon balls (ZrSiO4) used in our milling experiment
were kindly provided by Comballs Corp., Graphtech Materials
Co. Ltd., Qing Dao, China. The zirconia powder was milled
with Fritsch P6 planetary monomill at 120, 250 or 500 rpm.
Samples of the milled dispersion were collected after 1, 3 and
18 h. After milling, the zirconia dispersions were moved into
pre-dried anhydrous isopropanol. It was transferred into the
glass bottles; the ZrSiO4 balls remained in the grinding bowl.
The milled zirconia samples were dried under vacuum and
mixed, in the glove box, with a methacrylic monomer mix-
ture consisting of Bisphenol-A diglycidyl ether dimethacrylate
(Bis-GMA), urethane dimethacrylate (UDMA) and triethylene
glycol dimethacrylate (TEGDMA) in the ratio (36/44/20 wt%)
in combination with a polymerization system composed of
champhorquinone and ethyl 4-dimethylamino benzoate both
in contents of 0.5 wt% of resin. A sample of this was placed
between two glass plates and cured for 2 min using blue light
(1100 mW) from a Bluephase® (Ivoclar Vivadent, Lichtenstein).
The samples were subjected directly to the XRD measurement
for the phase analysis.

2.3. Characterization

2.3.1. X-ray diffraction (XRD)
XRD patterns were scanned in 0.1 steps (2θ), in the 2θ range

from 26.5◦ to 33◦, with a fixed counting time (40 s). The XRD
patterns were analyzed using WinXPOW software (STOE & Cie
GmbH, Darmstadt, Germany). The obtained values of the t-
ZrO2 and m-ZrO2 volume fractions (vt and vm) were compared
with the values obtained from the integral intensities of the
monoclinic diffraction lines (−1 1 1) and (1 1 1) and the tetrag-
onal diffraction line (1 0 1), following a procedure proposed by
Toraya et al.33

2.3.2. Transmission electron microscopy (TEM)
Low- and high-resolution TEM images and Selected Area

Electron Diffraction (SAED) patterns were obtained using a
JEOL JEM-3010 microscope operating at 300 kV (Cs = 0.6 mm,
point resolution 0.17 nm). Images were recorded with a CCD
camera (MultiScan model 794, Gatan, 1024 �m × 1024 �m) at
a magnification of 4000–400,000 times. TEM samples were pre-
pared by applying a drop of zirconia–isopropanol dispersion
onto a carbon coated Cu grid and the solvent was allowed to
slowly evaporate at room temperature.

2.3.3. Photon correlation spectroscopy
Particle size distribution was analyzed using a Zetasizer

(Nano ZS, 2003, Malvern Instruments, UK). Refractive indices
for isopropanol and zirconia were set at 1.39 and 2.2,
respectively. Viscosity of the solvent at 25 ◦C was set to
2.32 × 10−3 Pa s. The standard general-purpose algorithm was
the default for the analysis.

All mixing was done by shaking and measurement was
carried out immediately after mixing. The sample bottle was
thoroughly shaken by hand for 10 s before diluting it with
isopropanol and the diluted sample was analyzed by size mea-
surement. This procedure was chosen to be able to measure the
overall size distribution of the samples.

3. Results

3.1. Uniaxial strain test

Recorded XRD patterns of the casted ZrO2 samples from the
uniaxial strain test are shown in Fig. 2. For the sample exposed to
60 MPa the (1 0 1) reflection at 30.2◦ (2θ) is dominating, but as
the applied pressure increases, the reflection from the tetragonal
zirconia diminishes and the two reflections at 28.2◦ and 31.4◦
(−1 1 1 and 1 1 1) from monoclinic zirconia grow in intensity.
It can be seen in Fig. 2 that an increased applied compressive
stress increases the monoclinic volume fraction in the sample.

In Fig. 3, the volume fraction of phase-transformed crystals
are plotted against the maximum applied pressure. The figure
shows that the volume fraction increases approximately linearly
with the maximum pressure.
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Fig. 2. XRD of zirconia after one axial strain test at different applied pressures,
(a) 60 MPa, (b) 120 MPa and (c) 188 MPa.

Fig. 3. Volume fraction of formed monoclinic zirconia as a function of applied
pressure.

3.2. Ball-milling

The XRD patterns recorded from the milled and in casted
samples at different milling speed after 1 and 18 h are illustrated
in Figs. 4 and 5. For both experiments, the reflection (1 0 1) of
tetragonal zirconia at 30.2◦ = 2θ dominates after 1 h milling. The
two reflections (−1 1 1 and 1 1 1) from monoclinic zirconia grow
during milling and the (1 0 1) reflection decreased, indicating a
tetragonal to monoclinic transformation.33 It is also seen that
when milling speed is increased to 500 rpm, transformation rate
is also significantly higher than 250 rpm.

Phase transformation of the zirconia crystals caused by
milling is shown in Fig. 6. It can be seen that the monoclinic vol-
ume fraction (vm) increases with elongated milling time and that

Fig. 4. XRD patterns showing the evolution of m-phase produced by ball-milling
of tetragonal zirconia nanoparticles at 120 rpm, (a) 1 h and (b) 18 h.

Fig. 5. XRD of zirconia milled (a) 1 h and (b) 18 h at 250 rpm.

Fig. 6. Volume fraction of formed monoclinic zirconia function a milling time
at 120 and 250 rpm.

the results from the 120 and 250 rpm experiments have approx-
imately the same curve progression. As indicated in Fig. 6 the
effect of milling speeds at low speed, such as 120 and 250 rpm
is not very significant in respect to transformation rate.

Fig. 7 shows the XRD patterns before and after milling.
Before milling, the sample mainly consists of tetragonal ZrO2
giving broad peaks in the XRD patterns as a result of small crys-
tal sizes. The amount of tetragonal phase diminishes as a result
of milling but the crystal size remains at 8 nm, calculated by the
Scherrer equation:

τ = Kλ

β cos θ
,

Fig. 7. XRD patterns of zirconia powders before and after milling, (a) before
milling, (b) milling at 120 rpm, 18 h and (c) 250 rpm, 18 h.
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Fig. 8. TEM images of the zirconia particles milled with 0.5 mm ZrSiO4 balls: (A and B) prior to milling; (C and D) milled at 500 rpm, 4 h (E and F) 500 rpm, 18 h.

where τ is the mean crystallite dimension, K is the shape factor, λ
is the X-ray wavelength (1.54 Å for Cu K�), β is the full widths at
half maximum intensity (FWHM) in radians, and θ is the Bragg
angle. The dimensionless shape factor varies with the shape of
the crystallite, but has typically a value about 0.9.34

It was confirmed by the transmission electron microscope
analysis (Fig. 8a and b) that as prepared samples indeed com-
posed of very small, about 8–10 nm size nanocrystals which are
interconnected and makes three dimensional porous networks
with an average particle size of about 2.0 �m.

The average size of the milled ZrO2 particles was deter-
mined using photo correlation spectroscopy. The results from the
milling experiment performed at a speed of 120 rpm are shown
in Fig. 9. The size distribution of milled ZrO2 that was obtained
from DSL analysis agrees well with the result obtained by TEM
analysis. For both milling speeds, the particle size reaches a
minimum at which point further milling only will give more
phase transformation and not lead to further de-agglomeration.
Although it is not possible to reduce the average size of milled
ZrO2 particles to less than approximately 300 nm with speed
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Fig. 9. Size distribution of zirconia particles milled at 120 rpm that is dispersed
in isopropanol obtained by dynamic light scattering analysis.

milling such as 120 rpm or 250 rpm, it is interesting, however,
to observe the possibility of reducing the particle size to less
than 100 nm by prolonged milling of the powders together with
suitable surfactants at 500 rpm (Fig. 8). TEM result (Fig. 8e and
f) showed that by high energetic ball-milling it is possible to
break down the porous network of the zirconia particles and
de-aggregate them almost to their primary crystals.

4. Discussion

During the experimental work with the high surface area zir-
conia powder it became clear that the nanocrystalline t-ZrO2 is
very sensitive towards shear stress. In the compression tests we
found phase transformation; this may result from the multi-axial
stress field at micro/nanoscale. Likewise, milling test also gen-
erates a complicated microscale stress field that induces zirconia
undergo a martensitic phase transformation. The increase in the
monoclinic volume fraction with increasing applied maximum
pressure could be due to an increase in the microscale shear
stresses causing enhanced transformation. It is remarkable to
observe the similar phase transformation can occur even with
our undoped t-ZrO2.

Furthermore, in the uniaxial strain tests, we have observed
a correlation between t → m phase transformation rate and
specific surface area. Higher the surface area, faster the trans-
formations is. This observation makes us believe that t → m
phase transformation must be caused by the structural rear-
rangement of atoms to compensate the accumulated stress at the
outermost surface of the t-ZrO2 nanocrystals, which is further
enhanced by the additional shear stress that is provided to the
system with extra energy to overcome the activation energy for
phase transformation. The porous t-ZrO2 powders are formed
from interconnected nanocrystals. Transforming nanocrystals
at the surface may bring autocatalytic phase transformation in
the neighbour nanocrystals that they bound to. Although it is
impossible for us to determine the defect concentration of the
nanocrystalline ZrO2 powder, it is most likely that the high
surface area of our zirconia powders can be correlated to an
increased defect concentration on the surface compared with the
surface defect concentration of low surface area t-ZrO2 powders
and we assume that the tested zirconia powder, with a high sur-

face area will have more defects per gram, than the low surface
area t-ZrO2. Therefore, we have a reason to believe that t → m
phase transformation must follow the similar reaction pathway
that was reported for doped zirconia.20,32

The observed phase transformation in the milling experi-
ments, probably also caused by the complicated stress field,
which will cause some shear stresses and shear strains result-
ing in the phase transformation, just as in the uniaxial strain
tests. It is also seen from the XRD patterns that this transforma-
tion is little more pronounced in the sample milled at 250 rpm
(Figs. 5 and 6). This makes sense as the produced shear stresses
depend on the energy supplied to the system. Higher speed will
probably cause higher stresses causing an increasing transfor-
mation rate. That the difference between the two transformation
rates is not more pronounced could be due to the fact that at these
relatively low rpm’s the balls are still circling at the bottom of
the grinding bowl. As shown in Fig. 6 the transformation rate
(t → m) increases with the increasing milling time, but seems
to approach a maximum value. This indicates that milling alone
will not cause 100% phase transformation, at least not at these
low milling speeds.

In comparison with t-zirconia powders which have relatively
low surface area, the nanocrystalline zirconia powder that was
obtained with our method31 possesses very high surface area
(150 m2/g). But even though the zirconia powder is very porous
(Fig. 8a and b) and milling makes the zirconia change from
tetragonal to monoclinic phase. Indeed, mild milling condi-
tion, such as 250 rpm, is not strong enough to separate other
than loosely agglomerated particles. However, it is possible to
break up these interconnected nanocrystals under more ener-
getic milling conditions, such as 500 rpm or higher. This must
be due the fact that the zirconia crystals are sintered during the
calcinations and apparently milling at low speed does not give
enough force to break the sintered crystals from each other.

5. Conclusion

Low milling speed can induce the martensitic phase trans-
formation from tetragonal to monoclinic crystal phase of
nanocrystalline zirconia powders. Likewise, macroscopic com-
pression was found to generate the t → m phase transition of
zirconia powders. At the microscale, both tests induce shear
stress in the nanocrystalline zirconia particles. It is proposed
that the phase transition caused by milling and compression
of zirconia powders induces microscale shear stresses that are
responsible for phase transformation.

The present study provides an improved understanding to
the phase transformation behaviour of undoped t-ZrO2 powders
under shear stress that was induced by uniaxial compression and
ball-milling.
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Surface Area Measurement 

The specific surface area of the zirconia powder was done with N2 adsorption for BET 

determination (Autosorb-AS6, Quantachrome, Boynton Beach, FL). A number of samples 

were analyzed the specific surface area was determent to ≈150 m
2
/g.  
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Figure S1. XRD pattern of highly porous nanocrystalline t- ZrO2 powders  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from the high angle powder diffraction pattern that synthesized zirconia powders 

are tetragonal with only a small fraction of the monoclinic phase and broad peaks indicates 

the nanocrystalline nature of the powders. 
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Figure S2. Low resolution transmission electron micrographs of highly porous nanocrystalline 

t- ZrO2 powders at different magnification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from TEM image that as synthesized t-ZrO2 powders are micron sized aggregates 

of three-dimensionally interconnected nanocrystallites. Highly porous nature of the powders 

is evident. 
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Figure S3. Low resolution transmission electron micrographs of milled ZrO2 powders with 

0,5 mm ZiSiO4 balls at different conditions (a), (b) 500 rpm, 4 hrs; (c), (d) 500 rpm, 18hrs   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clear from these selected area diffraction patterns that longer milling time enhanced the t-

m phase transformation. TEM images showed that particle size is gradually decreased with 

increasing milling time.   
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Abstract 

In order to identify candidate initiator molecules for light activated phase transformation of metastable tetragonal zirconia 

nanocrystallites, different molecules were tested for their ability to initiate phase transformation. The zirconia powder 

was exposed to the molecules in alcohol suspensions, and the samples were analyzed with x-ray diffraction (XRD). 

Changes in the monoclinic volume fraction were calculated. It was found that water, HCl, HF and NH3 all initiate phase 

transformation of tetragonal zirconia at room temperature, whereas NBu4Cl and NBu4OH does not. Furthermore the 

relation between the initiator/zirconia concentration and the measured phase transformation was investigated. From 

these results photoacid generators were chosen and their ability to mediate photo induced phase transformation in 

metastable tetragonal zirconia crystals were tested in methanol. Four different photoacid generators were able to initiate 

phase transformation. 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was most efficient (monoclinic volume 

fraction reached 0.57). The triazine was also tested for its ability to phase transform zirconia crystals dispersed in a 

dimethacrylate matrix. After 2 min exposure to light a monoclinic volume fraction of 0.19 was observed. This increased to 

0.6 after 30 minutes. 

mailto:ms@dentofit.com
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Introduction 

Shrinkage during polymerization of dental resin composites is unavoidable and the leading problem in the 

usage of composite resin restorations. Stresses are induced on the filling/tooth interface, the filling can loosen 

from the tooth leading to the formation of a crack between tooth and the composite material or micro-cracks 

in the composite material itself. This can lead to discoloration or, worse, to secondary caries and infection of 

the dental pulp due to bacteria and colorants from e.g. coffee and red wine entering the crack [1]. During the 

last few decades substantial efforts have addressed the shrinkage in dental resin composites by an approach 

based on modification of the monomer system to achieve less polymerization shrinkage. The typical 

dimethacrylate monomers have e.g. been replaced with ring-opening systems [2-4]. The overall curing 

shrinkage has an effect on the clinical properties of the composite and a low shrinkage composite will reduce 

the preparation time because of the possibility to make bulk fillings instead of have to use the more time 

consuming technique, where the filling is build up of layers [5]. 

We have investigated an alternative approach to minimizing the polymerization shrinkage. Instead of trying to 

reduce the polymerization shrinkage of the monomer system, the shrinkage problem is addressed by 

counteracting the polymerization shrinkage with an expanding inorganic filler. We have developed an 

expandable metastable tetragonal zirconia filler, which upon reaction with water, is able to counteract the 

polymerization shrinkage of the monomer system [6]. The tetragonal to monoclinic (t→m) phase 

transformation is accompanied by a decrease in density, where the crystals expand ~4 vol%. This expansion is 

for instance used in transformation toughening of ceramic materials [7]. The tetragonal to monoclinic phase 

transformation is known to be initiated by the following: Chemical reaction with e.g. water [8], annealing [9] 

and mechanical stress [10]. 

When developing a dental resin composite restorative a lot of different material properties have to be taken 

into consideration such as mechanical properties, solubility and water sorption, color stability, polymerization 

shrinkage, depth of cure, radiopacity and biocompatibility [1]. All these issues have to be addressed also for 

expandable filler approach. In this paper we concentrate on the ability to induce the t→m phase transition at 

will. Until now we have tested the potential of the filler to counteract the polymerization shrinkage by initiating 

the phase transformation by water diffusing into the polymer matrix [11]. We found that the overall shrinkage 

of a composite containing 42 wt-% zirconia was reduced with 44 % comparing with an equivalent sample 

stored in air, when the composite was stored in water at 40˚C for 7 days. This is, however, to slow to give a 

good dental composite; where the shrinkage reduction optimally should happen within the time it takes to 

prepare the filling. The most desirable scenario is to make the zirconia phase transform during curing, while the 

resin is in the gel state, because then the expansion will have the largest effect with the possibility of causing 

stresses in the matrix. As annealing and mechanical stress, for obvious reasons, not are possible ways to initiate 

the phase transformation. We have decided to focus on light initiated release of initiator molecules, where it 

should be possible to control the initiation of the phase transformation. This study investigates the degrading 
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effect of possible phase transformation initiators in order to find possible initiator molecules for light activated 

phase transformation.  

Experimental 

Materials  

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and used as received. Highly porous (specific 

surface area of ~150 m2 /g) nanocrystalline tetragonal zirconia powders were synthesized as previously 

described [12] by controlled hydrolysis of ZrOCl2 followed by careful calcination. The synthesized t-ZrO2 

powders were kept in water-free environment for further treatment to prevent the t→m phase transformation 

[13, 14] which is induced by exposure to water vapor. 

Testing of potential phase transformation initiators 

Solutions of potential phase transformation initiators in anhydrous methanol or isopropanol were prepared. In 

a glove box (< 10 ppm water) zirconia was added to the solution and allowed to react. The reaction mixture 

was filtered and the zirconia was dried at RT in the glove box. To prevent further phase transformation and 

make it possible to handle the zirconia samples in ambient atmosphere the sample was mixed with a 

dimethacrylate monomer mixture (bisphenol-A diglycidyl ether dimethacrylate, urethane dimethacrylate, and 

triethylene glycol dimethacrylate - Bis-GMA/UDMA/TEGDMA, 36/44/20 wt%) and a photo polymerization 

system (camphorquinone and ethyl 4-dimethylamino benzoate - CQ/DABE both 0.5 wt%). A sample was placed 

between two glass plates and cured for 2 min using blue light (1,100 mW) from a Bluephase® light probe 

(Ivoclar Vivadent, Liechtenstein). The polymer matrix prevents the tetragonal crystals from undergoing phase 

transformation. Such samples are termed matrix dispersed zirconia. The cured samples were then subjected 

directly to the X-ray diffraction (XRD) measurement for phase analysis. 

Test of potential photoacid generators (PAG’s) in solvent 

In a glove-box (< 10 ppm water) 200 mg of the zirconia particles and 150 mg photoacid generator (PAG) were 

weighted into a glass flask (100 mg LiOH was added to the samples with photo acid generators, which only 

releases a protons. OH- from the LiOH will react with the proton under formation of water). Then 21 g 

methanol was added. The suspension was exposed to 22 hours of UV (BlueWaveTM 50, Dymax Corp., CT, USA) 

while stirred with a magnetic stirring bar. The suspension was filtered and dried in vacuum. The samples were 

matrix dispersed as described above. 

Test of 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine in resin 

In a glove box 200 mg zirconia particles was mixed with 100 mg 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-

1,3,5-triazine (CAS number: 42573-57-9) in 5 ml anhydrous methanol and the methanol was evaporated.  The 

dried zirconia powder was dispersed in the dimethacrylate matrix as described above, with prolonged curing, 

and subjected to XRD measurements.  

http://www.sigmaaldrich.com/catalog/Lookup.do?N5=CAS+No.&N3=mode+matchpartialmax&N4=42573-57-9&D7=0&D10=&N25=0&N1=S_ID&ST=RS&F=PR
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HCl yield  

1 g 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was dissolved in 50 ml methanol and the 

solution was irradiated with the light from a Bluephase® light probe (Ivoclar Vivadent, Liechtenstein) for 20 min. 

0.5 M AgNO3 was added in order to precipitate the formed HCl. The precipitate was filtered and dried. 

Characterization 

XRD patterns were scanned in 0.1 steps (2θ), in the 2θ range from 27˚ to 34˚. The XRD patterns were analyzed 

using WinXPOW software. The tetragonal and monoclinic volume fractions (vt and vm) were calculated from the 

integral intensities of the monoclinic diffraction lines (-1 1 1) and (1 1 1) and the tetragonal diffraction line (1 0 

1), following the procedure proposed by Toraya et al [18]. 

Results 

Testing of potential phase transformation initiators 

The matrix dispersed zirconia samples were analyzed using XRD and the results are shown in Table 1. It is 

observed that water, HCl and HF initiates the tetragonal to monoclinic (t→m) phase transformation. NH3 also 

has some effect on the stability of the tetragonal phase. 

Table 1 degrading effect of different solutions on metastable tetragonal zirconia   

Potential initiator PT Potential initiator PT 

H2O Yes Bu4NOH No 

HCl Yes LiCl No 

HF Yes Bu4NCl No 

NH3
a Some Organic acidb Noc   

LiOH No Organic solvents No  
a Tested in dioxane. b Tested acids are: CF3CO2H, CHCl2CO2H, CCl3CO2H, CH3CO2H and CF3SO3H. c Some phase transformation was observed due to a 

condensation reaction of the acids with OH-groups on the surface under formation of measurable amounts of water (Karl Fischer analysis), which 

initiates phase transformation. 

The XRD patterns from the testing of potential phase transformation initiators are illustrated in Fig. 1. It is 

observed that the reference sample only contains traces of the monoclinic phase prior to exposure to potential 

phase transformation initiators and the tetragonal (101) reflection of zirconia at 2θ = 30.2˚ is dominating. The 

broad peaks in the XRD patterns are a result of small crystal sizes. After exposure to a phase transformation 

initiator the two monoclinic reflections (-111 and 111) grow in intensity and the (101) reflection decreases, 

indicating a t m transformation. It is also observed that water and HCl initiate phase transformation the most. 

HF and NH3 initiate less phase transformation. HBr was also tested and showed a tendency to initiate the 

transformation. 
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Fig. 1 XRD patterns of zirconia (a) reference and zirconia exposed to (b) NH3, (c) HF, (d) H2O and (e) HCl 

In a 1.5 M HCl aqueous solution the degree of phase transformation of the zirconia particles reaches 92 %, 

indicating a synergistic effect of water and HCl as phase transformation initiators (Fig. 2). When the zirconia 

was exposed to 1.5 M HCl in isopropanol 60% of the tetragonal zirconia was phase transformed to the 

monoclinic phase. 

 

Fig. 2 XRD patterns of zirconia (a) reference, (b) exposed to 1.5 M HCl in MeOH, (c) exposed to 1.5 M water in MeOH and 

(d) exposed to 1.5 M HCl in water. 

The amount of phase transformation initiator relative to zirconia was investigated. Fig. 3 shows the monoclinic 

volume fraction of zirconia as a function of phase transformation initiator concentration (HCl or H2O). The 

amount of phase transformation initiator is given relative to the amount of zirconia (n%). The increase of phase 

transformation with increasing amount of phase transformation initiator is the same for the two compounds 

and vm  0.7 at an amount of 83 n% of water. 
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Fig. 3 Phase transformation as a function of mole percent of the initiator in relation to zirconia for HCl (▲) and for water 

(■) 

The ability of PAG’s to phase transform zirconia 

The results from the screening of the ability of the different photo acid generators to induce phase 

transformation of metastable tetragonal zirconia in anhydrous methanol are shown in Table. Out of the tested 

PAG’s 2-(4-ethoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine results in the highest monoclinic volume 

fraction (vm) in the samples. 

Table 2 monoclinic volume fraction (vm) in samples phase transformed by different PAG's 

PAG vm 

Diphenyl idonium chloride 0.47 

2-(4-Methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine 0.57 

Triphenyl sulfonium triflate + LiOH 0.48 

Triarylsulfonium hexafluoro phosphate + LiOH 0.46 

Ortho nitro benzylalcohol 0 

 

The XRD patterns from the test of 2-(4-Methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine in resin are 

illustrated in Fig. 4. In the matrix dispersed zirconia samples containing triazine a monoclinic volume fraction 

(vm) of 0.19 was observed after two minutes of curing with the Bluephase® light probe. vm= 0.60 was reached 

after 30 min of exposure. 
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Fig. 4 Phase transformation initiated by PAG (triazine) after (a) 0 min - reference without triazine, (b) 2 min and (c) 30 min. 

The yield of HCl from the light initiated reaction was measured by precipitation with AgNO3. The yield of HCl 

from 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine was found to be 2.8% after 20 min of 

irradiation at maximum intensity.  

Discussion 

Qualitative assessment of phase transformation initiators 

A number of molecules are found to initiate the t→m phase transformation: H2O, HCl, HF and NH3 (Table  and 

Fig. 1). The most effective of those are water and HCl, with a tendency that water induces more phase 

transformation than HCl and that an aqueous solution of HCl results in highest vm (Fig. 2). Sato and Shimada 

[15] also found that an aqueous solution of HCl had a little higher degradable effect on tetragonal zirconia 

comparing with pure water.  

The phase transformation is not, to our knowledge, initiated by any organic solvent, not even after boiling for 

48h (Table ). This is in contrast to the results published by Sato and Shimada [15], who found that solvents with 

a lone pair all have a degrading effect on tetragonal zirconia. However, in the study by Sato and Shimada the 

water content in the tested solvents were as high as 15,000 ppm, whereas we in this study has used anhydrous 

solvents with a water content of <0.005 ppm. Also a number of bases and acids were tested and no phase 

transformation was found. Apparently the initiator molecules need to be both a proton donor and provide a 

small nucleophile to initiate the phase transformation. LiCl or LiOH do for instance not initiate the phase 

transformation and the same is the case for carboxylic and sulfonic acids. Phase transformation to a small 

extend is, however, observed as a result of exposure to organic acids. This is a result of formation of 

measurable amounts of water (Karl Fischer titrator, Metrohm Ltd., Herisau, Switzerland) due to condensation 

reactions with the OH-groups on the zirconia surface. We have also, previously, shown that the zirconia does 

not transform as a result of exposure to phosphoric acid or sulfuric acid. These acids actually stabilize the 

metastable tetragonal phase towards water initiated phase transformation [16]. These results show that the 

initiator has to be a proton donor and also provide a small nucleophile in order to induce the m→t phase 
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transformation. For both water and HCl there are a strong correlation between the concentration of initiator 

molecules and the monoclinic volume fraction in the sample (Fig. 3). Based on several experiments in various 

solvents it is observed that the degree of phase transformation appears more dependent on the initiator-

zirconia ratio than on the initiator concentration in the solvent (data not shown). It is found that the phase 

transformation is dependent upon the activity of the initiator molecule. Thus the zirconia particles phase 

transform to a higher degree when exposed to humidity in the atmosphere or water in solvents such as 

methanol than in the more hydrophobic dimethacrylate matrix [11, 14, 17].  

Light activated phase transformation  

Molecules, which generate acid upon exposure to radiation, are called photoacid generators (PAG). A large 

number of photoacid generators are known because of their wide applications, especially in the field of 

photolithography[18, 19]. Photoacid generators split into two radicals, which form a strong acid after chemical 

reaction with each other or the medium. They can, e.g., be used to initiate the phase transformation, if one of 

the formed radicals is either hydroxide or halogen radicals. These radicals will abstract hydrogen from either 

the monomer or another PAG molecule during the curing resulting in formation of initiator molecules (HX)[20]. 

PAG’s were selected for their ability to form either water or HCl, because of the conclusion that these two 

molecules induce most phase transformation. From the screening of potential PAG´s it was found that 2-(4-

methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine caused most phase transformation. Consequently the 

ability of triazine to phase transform matrix dispersed tetragonal zirconia was tested. It was found that a phase 

transformation in the tetragonal zirconia powder can be induced and that a vm of 0.6 was observed after 30 

min of exposure to the blue light.  

The yield of HCl from the triazine is low, only 2.8 % of expected yield after 20 min. The polymerization is fast 

and when the polymer reaches the glass transition is the mobility of the initiator molecule decreased. It is here 

necessary to point out, that we have not used the most optimal triazine for the system, but used the 

commercially available 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine (Fig. 5), which has a max of 

379 nm. This is not the optimal value as the light probe (Bluephase® Ivoclar Vivadent) used for these 

experiments has a wave length range of 430-490 nm.  

We expect that the system could be optimized by finding (or developing) a small photo acid generator with max 

~460 nm, which releases an initiator molecule. It may furthermore be important to decrease the diffusion 

distance to diminish the necessary PAG amount by placing the PAG as close as possible to the zirconia surface. 

This is the rationale for dissolving the triazine in methanol and subsequently evaporating the methanol in an 

effort to precipitate the triazine on the surface of zirconia. This will presumably generate the HCl as close to the 

zirconia surface as possible. 

Triazines are large yellow molecules, which is the reason for the sensitivity towards blue light. This leads to 

discoloration of the cured resin due to the need for large amounts of triazine to initiate the phase 

transformation of the zirconia. The phase transformation preferable has to be done before the resin reaches 

the glassy state, since at this stage the expanding filler will have the most effect on the overall shrinkage. The 
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high triazine concentration is needed to ensure that a sufficient amount of initiator molecules reach the 

zirconia surface.  

As a result of the photo activation the composite turns brown. For optimization of this system there is a need 

for a photo bleaching PAG. This could for instance be a merocyanine dye linked bis(trichloromethyl)-1,3,5-

triazine[21]. These molecules are photo bleaching and have max in the region 400-500 nm. This will result in a 

higher quantum yield but the high molecular weight of this compound is a drawback due to need for large 

amounts to initiate the phase transformation. 

Besides from the low HCl yield from the triazine, another reason for the slow phase transformation may be due 

to the fact that the diffusion rate of HCl in the curing dimethacrylate matrix is low. This will increase the time 

for the formed HCl molecules to reach the zirconia surface. The mobility of radicals is highly affected by the 

viscosity of the system. Dental composites are highly viscous systems, where both high filler content and 

monomers contribute to the viscosity. When the resin is cured, viscosity is significantly increased. This leads to 

substantial increases of life time of the generated radicals. The half-life of radicals at a degree of 

polymerization of 40% is 4 sec which increases to 30 sec at 60%. Polymerization of commercial resin composite 

restoratives normally stops at 60-80% conversion at room temperature. At this conversion are the half-lives of 

radicals 53 hrs [22]. The experiments in this study were conducted at RT due practical limitations in the glove 

box. By increasing the temperature to 37 °C, the radicals are able to diffuse at higher rates. This will most likely 

lead to a higher degree of phase transformation of the tetragonal zirconia. Furthermore will a dental filling 

absorbs water from saliva, which over time is expected to lead to further phase transformation because of 

diffusion of water through the composite.  

Conclusion 

During the investigations it was found that out of the tested molecules, water and HCl induces most m→t 

transformation and that HF and NH3 induces some transformation. It was furthermore concluded that the 

phase transformation initiators need to be a proton donor and provide a small nucleophile in order to be able 

to induce transformation. Initial experiments with PAG´s were performed and of the tested PAG’s, triazines 

were the most promising. The tested PAG´s were; a triazine, diphenyl idonium chloride, ortho nitro 

benzylalcohol and two sulfonium salts. It was found possible to phase transform zirconia in resin by exposure 

to blue light by adding 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine to the composite. A 

monoclinic volume fraction of 0.6 was reached after 30 min exposure. However, the phase transformation is 

too slow to be of commercial interest and further investigations have to be conducted.  
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Abstract  

A problem with dental resin composites is the polymerization shrinkage, which makes the filling loosen 

from the tooth or induces crack formation. We have developed an expandable metastable tetragonal 

zirconia filler, which upon reaction with water, is able to counter the polymer shrinkage. The 

shrinkage of the composite was calculated from density measurements using Archimedes method. The 

rate of the phase transformation in resin was measured by determining the volume fraction of 

monoclinic zirconia (vm). The composite had a vm of 0.5 after 8 h of water storage. The overall 

shrinkage of the composites was reduced from 3.2% (initially) to 1.7%. 

Keywords: dental composite material, polymerization shrinkage, zirconia, phase transformation 

Introduction 
When a dental resin composite cures, polymerization shrinkage of the material will occur. For most 

commercial composites the free polymerization shrinkage is 2-3.5 % and can result in high stresses as 

at the interface between composite and tooth structure. These stresses can lead to the formation of a 

crack along the interface between the composite and the tooth. The formation of a crack can give raise 

to discoloration due to colorants from e.g. coffee and red wine entering the crack or - worse - to 

secondary caries and infections of the dental pulp due to bacteria
1
. 
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During the last few decades substantial efforts have addressed the shrinkage in dental resin composites 

by an approach based on modification of the monomer system to reduce the polymerization shrinkage. 

The typical dimethacrylate monomers has been replaced with ring-opening systems such as 

photocurable oxirane/polyols
2, 3

, alicyclic spiroortocarbonates/epoxy comonomers
4
 and recently a new 

composite material (Filtek Silorane) based on silorane monomers has been introduced
5-7

. Another 

approach is the use of cyclopolymerizable monomers, which gives both a higher degree of conversion 

(90%) and a 40% reduction of polymerization shrinkage in comparison with the commonly used 

triethylene glycol dimethacrylate
8
. Furthermore, the use of liquid crystal monomers

9
 and branched

10
, 

hyperbranched
11

 and dendritic monomers
12

 has been proposed as modifications of the resin system 

which can lead to reduction of the curing contraction in dental resin composites. 

Zirconia particles currently find use, in combination with glass particles, as fillers in dental resin 

composites in order to improve the cured resin mechanical properties or to make the material 

radiopaque (attenuation of electromagnetic radiation). Radiopacity can be useful in resin composites as 

distinguishing between composite and tooth becomes feasible with x-ray imaging.  

For aesthetic reasons a low visual opacity (the degree to which light is attenuated) is desired to give the 

cured composite a life-like luster. The refractive index of zirconia is substantially higher than that of 

the cured methacrylate matrix and zirconia particles have depending on the particles size, a large 

potential for light scattering and thereby a potential for increasing the opacity. Thus small particles are 

desirable since small sizes promote both low opacity, good depth of cure, and also low abrasion. The 

maximum particle size should be substantially below the wave length of visible light to prevent 

scattering and particle size below 60 nm are considered optimal
13

. Addition of zirconia to resin 

composites is known from the commercial products such as Filtek
TM

 supreme plus and Filtek
TM

 Z250 

(3M ESPE, St. Paul, MN, USA).  

At room temperature (RT) and atmospheric pressure, the thermodynamic stable phase of pure zirconia 

is the monoclinic phase which goes through the following phases as the temperature is raised:  

monoclinic → tetragonal → cubic → melt 

The manufacture of metastable tetragonal phase ZrO2 at RT is feasible through suitable control of the 

crystal size and processing parameters. The metastable tetragonal phase easily transforms to the 

monoclinic phase. The tetragonal to monoclinic (t→m) phase transformation is accompanied by a 

decrease in density. The crystals expand 3-5 vol%. This expansion is for instance used in 

transformation toughening of ceramic materials
14

. The known triggers for this transformation are: 

chemical reaction with e.g. water
15

, annealing
16

 or mechanical stress
17

. The stability of the tetragonal 

phase at RT has been widely studied and a number of degradation mechanisms have been proposed; 

some based on hydrolysis of the surface
18

 others on reactions with point defects and oxygen vacancies 

in the crystal structure
19

. 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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We have developed a metastable tetragonal zirconia filler that transforms to the monoclinic phase upon 

exposure to water. In the present work we analyze the ability of this filler to counteract the 

polymerization shrinkage in a polymer matrix and reduce the overall curing shrinkage of the composite 

upon exposure to water.  

Experimental 

Materials  

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and used as received. Highly 

porous (specific surface area of ~150 m
2
 /g) nanocrystalline tetragonal zirconia powders were 

synthesized as previously described
17

 by controlled hydrolysis of ZrOCl2 followed by careful 

calcination. The synthesized t-ZrO2 powders were kept in water-free environment for further treatment 

to prevent the t→m phase transformation
20

 which is induced by exposure to water vapor. 

Compounding of zirconia powder 

Three composites were prepared by compounding zirconia powder and silanized glass particles into a 

standard methacrylic dental resin containing a camphorquinone/ ethyl 4-dimethylamino benzoate 

photoinitiator system. 1) 42 wt-% tetragonal zirconia, 21 wt-% silanized glass and 37 wt-% resin. 2) 32 

wt-% tetragonal zirconia, 33 wt-% silanized glass and 35 wt-% resin. Monoclinic zirconia was obtained 

by exposing the metastable zirconia to humidity in the air over night followed by drying under vacuum 

for two days at 120˚C and used for compound 3) 32 wt-% phase transformed zirconia, 33 wt-% 

silanized glass and 35 wt-% resin. After compounding, the samples were exposed to vacuum in order to 

remove air bubbles from the composites. 

Curing 

Discs (15 mm in diameter and 1.3 mm in thickness) of composite were prepared between to glass plates 

and cured by exposing the samples to the light of a Bluephase® light probe (Ivoclar Vivadent, 

Liechtenstein) for 2 minutes on each side. 

Water testing  

The cured samples were stored in water at 40˚C for 0, 8, 24, 48, 72, 120 and 168 hours. After storage 

the samples were subjected directly to the XRD measurements for the phase analysis.  

Density measurement 

The change in density between a sample stored at 40˚C in water and in air at 40˚C was determined for 

all three materials by the use of Archimedes method. The volume change compared with the uncured 

composite was calculated. 
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Characterization 

The composite samples were analyzed by x-ray diffraction: XRD patterns were scanned in 0.1 steps 

(2θ), in the 2θ range from 20˚ to 65˚, with a fixed counting time (30 sec.). The XRD patterns were 

analyzed using WinX
POW

 software. The t-ZrO2 and m-ZrO2 volume fractions (vt and vm) were calculated 

from the integral intensities of the monoclinic diffraction lines (-111) and (111) and the tetragonal 

diffraction line (101), following a procedure proposed by Toraya et al
21

.
 

Results 
The XRD patterns recorded from the water stored discs of composite 1 after 0 h and 168 h are 

illustrated in Figure 1. It is observed that the reflection (101) of tetragonal zirconia at 30.3˚ = 2θ is the 

dominating in the 0 h sample. The sample consists mainly of tetragonal ZrO2 that gives broad peaks in 

the XRD patterns as a result of small crystal sizes. The two reflections ((-111) and (111) at 2θ = 28.2° 

and 31.5° respectively) from monoclinic zirconia increases in intensity with increasing water storage 

time and the (101) reflection decreases, indicating a tetragonal to monoclinic transformation.  

 
Figure 1. XRD patterns of composite 1 after 0 hour (black) and 168 hours (blue) water storage at 40˚C t=tetragonal 

reflection, m=monoclinic reflection.  

 

The calculated volume fractions of the monoclinic crystals (vm) in the samples are plotted against the 

storage time (Figure 2). The plot shows that after 48 hours is the volume fraction of the monoclinic 

phase stabilized at ~0.6 and that most of the phase transformation happens within the first 8 hours. 
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Figure 2. Volume fraction of the monoclinic phase in composite 1 plotted against storage time in water at 40˚C. 

 

The volume change over time for composite 1 and 2 stored in water and in air at 40˚C is illustrated in 

Figure 3. Increased polymerization shrinkage is observed during the first 24 h for all four samples, but 

is followed by subsequent decreases in the volume change for the two samples stored in water. The 

volume change in the two samples stored in air is fairly constant after the first 24 h. Composite 1 was 

subjected to prolonged measurements and the volume change stabilized at ~ -1.5 % after 21 days 

(results not shown). 

 

Figure 3. Volume change compared with the uncured composite for composite 1 (▲) and 2 (■) during water storage at 

40˚C (solid line) and storage in air at 40˚C (dotted line). The lines are just added as a guideline for the eye. 

 

For composite 3, which contains phase transformed zirconia, only a small difference in the volume 

change between the sample stored in water and the sample stored in air is observed (Figure 4). 

Similarly to the air stored samples of composite 1 and 2 (Figure 3), the composite shrinks the first 24 h 

and then stabilizes. 
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Figure 4. Volume change compared with the uncured composite for composite 3 during water storage at 40˚C (▲) and 

storage in air at 40˚C (■). 

 

Discussion 
Based on the recorded XRD patterns it is observed that phase transformation of the metastable 

tetragonal zirconia filler into the monoclinic phase occurs by exposure to water. The water diffuses into 

the composite and reacts with the surface of the zirconia crystals. Most of the phase transformation 

happened within the first 8 h where a volume fraction of the monoclinic phase of ~0.5 was reached. 

The monoclinic volume fraction continues to increase further and the level of phase transformation 

stabilized at 0.6 after two days. This stabilization of the monoclinic volume fraction during aging has 

previous been documented
22

. The phase transformation can be increased even further by using a more 

hydrophilic monomer system (data not included). The increased number of water molecules that 

reaches the zirconia surface will increase both the transformation rate and the final transformation 

level. However, the higher water uptake in the polymer matrix achieved with a more hydrophilic 

monomer system will compromise the mechanical properties of the composite. 

The water induced phase transformation of metastable tetragonal zirconia into the monoclinic phase 

has an effect on the overall shrinkage of the composite. The density measurements show that the 

observed polymerization shrinkage during the first 24 h is followed a counteracting expansion due to 

the expansion of the zirconia filler which leads to stabilization of the cured composite volume after 3 

weeks at a lower level of contraction. 

Figure 3 shows that addition of 42 wt-% zirconia to a composite gives rise to a 44% reduction of the 

shrinkage in comparison with the equivalent sample stored in air. The corresponding volume reduction 

for the test composite containing 32 wt-% zirconia is 29%. This difference is expected since composite 

1 has a higher volume fraction of the expandable filler; this leads to a higher reduction of the overall 

composite shrinkage. In order to test whether the shrinkage reduction was caused by differences in 

water uptake rather than differences in filler expansion, the third composite containing volume stable 
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zirconia (composite 3) was prepare. As shown in Figure 4, the time dependence of volume change for 

this sample is qualitatively different (no minimum) from samples of composite 1 and 2. Furthermore, 

the overall shrinkage is only reduced with 11% compared with samples stored in air. Thus iy can be 

concluded that at least 62% of the overall shrinkage reduction in composite 2 is caused by expansion of 

the zirconia filler and of cause this figure will be even higher for composite 1.  

The expected volume change after a week of water storage was calculated for composite 2. The 

calculation was based on a change in vm of 0.35, a transformation expansion of 4.4 vol.-% for zirconia 

and that the water uptake is independent of the phase state of the zirconia particles such that the aging 

of composite 3 (0.55 vol.-%) is taken as a measure of the water uptake. The expected volume change 

was calculated to -2.7 %. The calculated volume change can be compared with the actual volume 

change of -2.4 % for composite 2. The measured shrinkage is thus less than expected. We ascribe the 

difference to higher initial water content of composite 3 than composite 2 since the particles used for 

composite 3 were exposed to ambient atmosphere prior to compounding. The phase transformed 

zirconia in composite 3 was dried at 120 °C for 48 h before compounding, but there is no guarantee 

that this procedure will remove water from the surface of the zirconia particles to the same extend as 

the calcination process used for the fabrication of the particles used for composite 2. Higher initial 

water content in the composite will reduce the amount of water absorbed before equilibrium is reached. 

This would lead to a lower reduction of the shrinkage of composite 3. Prior to compounding the water 

content in two composite samples was analyzed with Karl Fisher titration and the water content were 

determined to 0.017% and 0.19%, respectively, for composite 2 and 3. If this difference in water 

content is added to the shrinkage reduction in composite 2, the expected volume change will be -2.5 %. 

This is close to the observed volume change of -2.4%.  

Possibilities for further reduction of the overall shrinkage include addition of increased amounts of 

zirconia filler, and combination of the expandable zirconia filler with a low shrinkage monomer or a 

low shrinkage composite system. A composite with an overall shrinkage below 1% seems attainable. 

This will increase the durability of dental restorations and allow the dentist to make bulk fillings using 

polymer based composites and hence reduce chair time. Another interesting idea is to the use the 

expandable zirconia filler in a two-component composite containing a condensating monomer system. 

It is expected that the stabilization time in such a system will be shorter, possible hours rather than 

days, since the phase transformation will be induced due to the formation of water in the condensation 

polymerization. The presented results are based on initial tests of the zirconia material and they show a 

potential for further reduction of the overall composite shrinkage. Additional work has been initiated to 

improve the system further to reach an end target of a composite system with an overall shrinkage 

below 1 %.       
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Conclusion 
The results of the present study show that polymerization shrinkage of resin composites can be 

decreased by addition of metastable tetragonal zirconia filler particles, which expand upon exposure to 

water molecules. The phase transformation happens in composite stored in water over 2 days after 

curing – most within the first 8 h. The overall shrinkage of the composite (42 wt-% zirconia) sample 

stored in water at 40˚C was reduced with 44 % within the first 7 days compared with an equivalent 

sample stored in air. For the composite containing 32 wt-% metastable zirconia the shrinkage was 

reduced with 29%. It was shown that the reduced shrinkage of the composite was not a result of water 

uptake, as the composite containing the stable monoclinic zirconia filler showed a much smaller 

reduction in shrinkage (11% reduction).  
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Abstract 

Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature. A stabilizing 

effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable 

tetragonal zirconia nanocrystallites was tested by prolonged boiling in water. The samples were analyzed with X-ray 

photoelectron spectroscopy (XPS) and x-ray diffraction (XRD). Changes in the monoclinic volume fraction in the samples 

were calculated. A number of surfactants were screened for their ability to stabilize the tetragonal phase upon exposure to 

humidity. Only silanes and phosphate esters of these were able to stabilize the tetragonal phase in water. Even as small 

amounts of silanes as 0.25 silane molecule per nm
2
 are able to stabilize the tetragonal phase in water at room temperature. 

Aminopropyl trimethoxy silane and γ-methacryloxypropyl trimethoxy silane were even capable of preventing phase 

transformation during boiling for 48 hours in water. 

mailto:ms@dentofit.com
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Keywords: Metastable tetragonal zirconia, phase stabilization, powder, low temperature degradation. 

Introduction 

Zirconia, especially the tetragonal crystal phase, has gained increasing interest, primarily because of it 

high strength and resistance to fracture, and its ability to catalyze organic reactions, such as 

isomerization of n-butane [1], synthesis of derivatives of 1,5-benzodiazepine and diaryl sulfoxides [2], 

and benzylation of toluene [3]. Below 1175°C, the stable phase of zirconia is the monoclinic phase. 

Thus the tetragonal phase can only exist at a room temperature (RT) through stabilization. This is 

normally achieved by adding a dopant such as Y2O3 or by modifying the surface with sulfuric or 

phosphoric acid. It is, however, possible to obtain metastable tetragonal ZrO2 at RT, by suitable control 

of the processing parameters and thereby crystal grain size. Zirconia nanocrystals can below a certain 

critical crystal size adopt the metastable tetragonal phase [4].  

 

In resin composites for dental restoration zirconia particles can be added in combination with glass 

particles in order to render the material radiopaque (dense materials that prevent the passage of 

electromagnetic radiation) or to improve the mechanical properties and resistance to abrasion. 

Radiopacity can be useful in resin composites since it enables the distinction between composite and 

tooth with x-rays. Since stabilizing the tetragonal phase with yttria, which is less radiopaque than 

zirconia, lowers the overall radiopacity, limitation of the dopant amount is preferable [5]. Thus dopant 

free stabilization of tetragonal zirconia is desirable.  

 

During the last couple of decades the tetragonal→monoclinic (t→m) martensitic phase transformation 

in zirconia has been studied and the exact mechanism is still under discussion. Different mechanisms 

have been proposed. Most of these deal with zirconia containing stabilizing oxides such as Y2O3 and 

CeO2, and many of the proposed degradation mechanisms involve reactions with the stabilizing agent. 

Only limited work has been done to study the phase transformation of pure tetragonal zirconia at RT. 

However, some of the mechanisms based on stabilized zirconia studies are do not involve reactions 

with the stabilizing oxide. Sato and Shimada [6-8] based a model on reaction between water and Zr-O-

Zr bonds on the surface resulting in formation of OH-groups which in turn cause the release of the 

strain, which acts to stabilize the tetragonal phase. Murase and Kato [9, 10] proposed that water 

adsorbed on the tetragonal zirconia surface reduces the surface energy difference between the 

tetragonal and the monoclinic phases. This reduces the critical size of the tetragonal crystals and lead to 

phase transformation. However, today it is commonly accepted that the existence of metastable 

tetragonal zirconia at RT is due to the stabilizing effect of oxygen vacancies in the crystal lattice. 

Yoshimuru et al [11, 12] proposed that phase transformation is a result of adsorption of water on the 

surface leading to formation of Zr-OH and/or Y-OH which creates stressed sites on the surface. This 

mechanism is based on the formation of strain in the surface and lattice, caused by occupation of 

http://en.wikipedia.org/wiki/Electromagnetic_radiation
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oxygen vacancies by OH
-
 ions, nucleating monoclinic phase in the tetragonal crystallites. Kim et al [13] 

proposed a mechanism based on OH
-
 ions diffusing through oxygen vacancies and reacting with these 

under formation of Zr-OH bonds. This reaction leads to a build-up of tensile strain, which will induce 

the phase transformation. Guo [14-16] proposed a mechanism consisting of the following steps: 1) 

water is absorbed on the surface, 2) OH
- 
is formed by reaction of water with O

2-
 on the zirconia surface, 

3) diffusion of OH
-
, 4) formation of proton defects by filling of oxygen vacancies with hydroxyl, and 5) 

t→m phase transformation when the concentration of oxygen vacancies is reduced to the extent that the 

tetragonal phase is no longer stabilized. 

 

Different types of surface modifying agents such as trimethoxy silanes and phosphate esters are used to 

secure a strong bond between the filler surface and the polymer matrix in dentistry. The present study 

investigates the effect of surface modification with different surface modifying agents, especially 

silanes, on the phase stability of metastable tetragonal zirconia crystals in humid atmosphere and in 

water. Furthermore the stability of the surface modified tetragonal crystals in boiling water is also 

investigated.  

Experimental 

All chemicals were supplied by Sigma-Aldrich (St. Louis, MO, USA) and they were all used as 

received. Highly porous nanocrystalline tetragonal zirconia powders were synthesized as previously 

described [17] by controlled hydrolysis of ZrOCl2 followed by careful calcination. The tetragonal 

zirconia powder is extremely porous and has specific surface area of ~150 m
2
/g. The synthesized 

tetragonal zirconia powders were kept in water free environment for further treatment.  

 

Surface modification of zirconia powder 

In inert atmosphere in a glovebox, 7 g zirconia powder was stirred with 40 ml anhydrous methanol and 

7 ml of surfactant overnight. The surface modified particles were filtered and washed three times with 

anhydrous methanol. The samples were exposed to air and analyzed with x-ray diffraction (XRD). For 

each sample, parts of the modified zirconia was mixed in the glovebox with a di-methacrylic monomer 

mixture consisting of bisphenol-A diglycidyl ether dimethacrylate (Bis-GMA), urethane dimethacrylate 

(UDMA) and triethylene glycol dimethacrylate (TEGDMA) in the ratio (36/ 44/ 20 wt%) in 

combination with a photo-polymerization system composed of camphorquinone and ethyl 4-

dimethylamino benzoate both in a content of 0.5 wt-%. A sample was placed between two glass plates 

and cured on each side for 2 min using blue light (1100mW/cm
2
) from a Bluephase

® 
light probe 

(Ivoclar Vivadent). Such samples are termed matrix dispersed zirconia. After curing, the resulting 

composites were stored at 37˚C in water for 2-30 days and subsequently subjected to XRD analysis.  
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Stability test in air  

1 g zirconia powder was stirred with 10 ml anhydrous methanol and γ-methacryloxypropyl trimethoxy 

silane (MPTMS) in amounts ranging from 0 – 1000 µL in dry air in a glove box. After 2 hours the 

mixtures were filtered and washed twice with anhydrous methanol to remove unreacted silane and 

dried inside the glove box. The stability was tested by exposing the samples for XRD to ambient 

atmosphere prior to the analysis. A reference samples for each sample were prepare by mixing the 

modified samples with resin and cure as described above. The matrix dispersed zirconia samples were 

after curing analyzed with XRD. 

Stability test in water  

For the stability test 1 g zirconia powder was stirred with 10 ml anhydrous methanol and aminopropyl 

trimethoxy silane (APTMS) in amounts ranging from 0 – 2000 µL in dry air in a glove box. After 2 

hours the mixtures were filtered and washed twice with anhydrous methanol to remove unreacted silane 

and dried inside the glove box. The stability was tested by adding a few drops of water to the samples 

for XRD analysis. A reference sample for each sample was prepared by mixing the modified sample 

with resin and cure as described above. The matrix dispersed zirconia samples were analyzed with 

XRD after curing. 

Stability in boiling water 

15 g zirconia powder was stirred with 100 ml anhydrous methanol and 10 ml of either APTMS or 

MPTMS for 2 hours in inert atmosphere in a glovebox. The mixture was filtered and the zirconia was 

washed twice with anhydrous methanol, 150 ml in total. The silanized zirconia samples were dried at 

RT in the glovebox. The silanized samples were then boiled in 400 ml water and samples were 

collected, filtered and dried at RT. After drying, the samples were subjected to XRD analysis. Samples 

were collected after 1, 2, 4, 8, 24 and 48 hours of boiling. 100 ml water was added after the first 8 h to 

prevent mixture from drying or burn. 

Characterization 

X-Ray Diffraction (XRD) evaluation 

XRD patterns were scanned in 0.1 steps (2θ), in the 2θ range from 20˚ to 65˚, with a fixed counting 

time (30 sec.). The XRD patterns were analyzed using WinX
POW

 software. The tetragonal and 

monoclinic volume fractions (vt and vm) were calculated from the integral intensities of the monoclinic 

diffraction lines (-1 1 1) and (1 1 1) and the tetragonal diffraction line (1 0 1), following a procedure 

proposed by Toraya et al [18]. 
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X-ray photoelectron spectroscopy (XPS) evaluation 

Surface analyses were performed with a K-alpha monochromated, XPS spectrometer from Thermo 

Fisher Scientific Inc., Waltham, MA United States. 

Surface Area Measurement 

The specific surface area of the zirconia powder analysis was done with N2 adsorption for BET 

(Brunauer-Emmett-Teller) determination (Autosorb-AS6, Quantachrome, Boynton Beach, FL). A 

number of pure zirconia samples were analyzed the specific surface area was determent to ≈150 m
2
/g.  

Results  

Surface modification and phase transformation 

None of the analyzed samples phase transformed as a result of exposure to humidity in the air. A 

number of different surfactant classes were tested but only silanes and phosphates stabilize the 

tetragonal phase when exposed to water. All the tested surfactants were able to stabilize the tetragonal 

phase when exposed to humidity in the air (Table 1).  

 

Table 1 Zirconia surface modified with different groups of surfactants tested for its ability to phase transform (PT) in air and 

in water (matrix dispersed zirconia) 

Group of 

surfactants 

Name PT in 

air 

PT in water 

(matrix dispersed) 

Carboxylic acids Hexylic acid  no yes 

 2-[2-(2-Methoxyethoxy)ethoxy]acetic acid NA yes 

Sulfonic acid 4-Dodecylbenzenesulfonic acid  no yes 

Phosphate ester Ethylene glycol methacrylate phosphate no no 

Silanes γ-Methacryloxypropyl trimethoxy silane 

(MPTMS) 

no no 

 Aminopropyl trimethoxy silane (APTMS) no no 

 Methyl trimethoxy silane no no 

PEG O-(2-aminopropyl)-o´-(2-methoxyethyl) 

polypropylenglycole 500 

NA yes 

Amines Tetrabutyl ammonium bromide  NA yes 

NA: not analyzed 

 

Fig. 1 shows the XRD patterns of a silanized and an unmodified zirconia samples, respectively, 

exposed to humidity in air. The silanized zirconia exhibit a trace characteristic of the tetragonal phase 



20 

 

(curve a) whereas the unmodified zirconia trace is dominated by monoclinic reflections (curve b). 

Thus, unmodified zirconia goes through the t→m transition after brief exposure to ambient atmosphere, 

whereas the tetragonal phase in silanized zirconia is stable in humid air. No phase transformation is 

observed even after a week of exposure. The same stability is seen with silanized tetragonal zirconia 

when cured in resin and stored in water at 37 ˚C for 30 days. Under these conditions the untreated 

zirconia phase transforms in less than 2 days (not shown).  

 

Fig. 1 XRD patterns for zirconia silanized with MPTMS exposed to air (a) and unmodified zirconia exposed to air (b) 

t=tetragonal reflection, m=monoclinic reflection.  

 

Stability in air and water 

In order to test how small amounts of silane are sufficient to hinder phase transformation of zirconia 

particles exposed to ambient atmosphere a set of zirconia particles with decreasing amount of 

silanization was prepared through treatment of particles with increasingly diluted solution of 

silanization agent. The lowest silane coverages were not detectable in XPS. It is chosen to use the 

theoretical number of silane molecules per nm
2
 (assuming 100% conversion) and not the actual number 

when comparing data. This means the actual number is potentially lower as unreacted silanization 

agent in the reaction mixture is washed out during the silanization. The results are plotted in Fig. 2. It 

can be seen that even very small amounts of MPTMS are sufficient to achieve stabilization of the 

tetragonal phase. When the theoretical number of silane molecules per nm
2
 gets down to 0.35 the 

volume fraction of monoclinic zirconia starts to increase and at coverage degree of ~0.017 the phase 

transformation reaches a vm of ~0.6. This is close to, but not equal to the level of unmodified zirconia, 

which reaches a vm of ~0.7 upon exposure to the ambient atmosphere.  
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Fig. 2 Volume fraction of monoclinic zirconia in MPTMS modified samples in ambient atmosphere as a function of the 

theoretical number of silane molecules per nm
2 

 

The same trend is observed for zirconia silanized with APTMS (Fig. 3) and exposed to water at RT. 

Below a surface coverage of 0.25 silane molecule per nm
2
 the volume fraction of monoclinic zirconia 

starts to increase and at the coverage of 0.008 silane molecules per nm
2
 the volume fraction reaches 

0.63. Even this minute surfactant coverage prevent phase transformation to the same extend as the 

unmodified reference sample, which becomes almost entirely monoclinic after exposure to water [19]. 

The curve asymptotically approaches a monoclinic volume fraction of ~0.3. This level is as supported 

by XRD analysis of the reference samples due to phase transformation coursed by the silanization. 

Similar to the MPTMS experiments, the theoretical number of silane molecules per nm
2
 is used as 

variable due to limitations in XPS.  

 
 

Fig. 3Volume fraction of monoclinic zirconia in APTMS modified samples exposed to water as a function of the theoretical 

number of silane molecules per nm
2 

 

The XRD patterns (illustrated in Fig. 4 and Fig. 5) of the boiled samples show the stability of the 

tetragonal phase in the silanized samples. 48 h of boiling in water is insufficient to induce change in the 

monoclinic volume fraction in both of the samples. A small increase in the monoclinic phase occurs 
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within the first hour. In XPS the atom-% of silicon were measured to 2-2.5% for both samples prior to 

the boiling test. No silane was found on unmodified zirconia samples. 

 

 

Fig. 4 XRD patterns of APTMS modified zirconia boiled for 0 (dashed black), 1 (solid blue), 2 (dotted purple) and 48 hours 

(green dash dot) 

 

 

Fig. 5 XRD patterns of MPTMS modified zirconia boiled of 0 (dashed black), 1 (solid blue), 2 (dotted purple) and 48 hours 

(green dash dot) 

Discussion 

The results from the study of the ability of different surfactants to stabilize zirconia are summarized in 

table 1. It is observed that all the tested surfactants are able to stabilize the tetragonal phase on 

exposure to humidity in the air. But only silanes and phosphates were able to stabilize the tetragonal 

phase enough to withstand exposure to water, when aged in a di-methacrylate matrix. This is in 

26,5 28,5 30,5 32,5

In
te

n
s

it
y
 [

a
rb

. 
u

n
it

s
]

2θ [degree]

0 h 1 h 2h 48 h

26,5 28,5 30,5 32,5

In
te

n
s

it
y
 [

a
rb

 u
n

it
s
]

2θ [degree]

0 h 1 h 2h 48 h



23 

 

accordance with the fact that silanes are the only tested surfactant forming covalent bonds to the 

surface and phosphate esters are known to bind zirconia strongly [20]. This means that the bonds 

between the zirconia surface and either the silane and the phosphate are strong enough to withstand 

hydrolysis. The necessity of testing the water stability of the zirconia crystal phase in a polymer matrix 

is due to the fact that the surface modified powder is hydrophobic to the extent that mixing with water 

is difficult thus hindering the access of water to the zirconia surface, whereas in the polymer matrix the 

water is forced to the surface as the polymer absorbs water. The polymer almost works as a surfactant 

facilitating wetting of the zirconia surface. 

 

The powder is very sensitive to water vapor and few seconds of air exposure is sufficient to induce the 

martensitic t m phase transformation [21]. This can be observed in Fig. 1, which shows x-ray patterns 

of pure tetragonal zirconia that is exposed to humid air and undergoes martensitic phase transformation 

resulting in monoclinic crystals. The silanization prevents the transformation probably due to the 

produced hydrophobic surface that hinders the access of water molecules to the surface. Furthermore 

surface treated zirconia floats on water where untreated zirconia disperses. Alternatively the 

stabilization of the tetragonal phase can also be a result of a change in the surface energy which 

increases the activation energy of the phase transformation. The initial amount of monoclinic zirconia 

in the sample is most likely due to small amounts of water in the methanol used for the silanization or 

other contamination with water. 

 

Samples silanized with APTMS show a lower reactivity than MPTMS silanized samples during 

stability tests in air and water in spite of the fact that the APTMS modified samples are tested in water 

and as such are expected to have a higher monoclinic volume fraction. The differences in sensitivity of 

samples with the two different silane modifications are probably caused by a higher reactivity of 

APTMS due to the autocatalytic catalytically effect of the primary amine in the silanization reaction 

[22]. This will give a higher actual coverage of the APTMS modified zirconia powder than for the 

MPTMS modified zirconia powder leading to a lower sensitivity towards humidity. 

 

The results of the boiling experiment show that the Si-O-Zr bonds are sufficiently stable that the 

surface bound silanes prevent the t m zirconia phase transformation even after 48 hours in boiling 

water. The small initial phase transformation, observed in both Fig. 4 and Fig. 5, can be due to either a 

small number of unmodified zirconia crystals or crystals with very low silane densities. Such crystals 

will upon water contact rapidly transform into the monoclinic phase. The monoclinic volume fraction is 

stabilized at 0.5 after 2 hours for the APTMS modified sample and somewhat slower for the MPTMS 

modified sample. The silanized zirconia is very hydrophobic preventing wetting with water. However, 

boiling the silanized zirconia in water for a short time overcomes this resistance and the mixing with 

water ensues. This takes it little longer for the MPTMS modified samples. As expected the MPTMS 

modified zirconia is powder more hydrophobic than the APTMS modified. This difference in 
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hydrophilicity is probably the reason for the lower transformation rate in the MPTMS modified 

samples.   

 

The generally accepted models for the stability of metastability of tetragonal zirconia and the induction 

of phase transformation to monoclinic zirconia all involve interaction of absorbed water on the surface 

with oxygen vacancies to form proton defects in the crystal structure. In the models, the water 

absorption is followed by formation of OH
-
 that either stays in the surface or diffuses into the crystal. 

Thus from a surface point of view, it is the absorption of water that is the critical step. The observed 

stability of tetragonal zirconia surface modified with either silanes or phosphate esters cannot be 

reconciled with these models. The amount of e.g. silanization required to obtain stabilization is far from 

enough to hinder absorption of water since at a silane density of 0.25 molecules per nm
2
 only 10 % of 

the possible sites are covered (determined as –OH group by titration with LiAlH4). We hypothesize that 

the surface modification blocks the access of water to certain active sites – of presently unknown nature 

– which are crucial in the phase transformation mechanism. It remains a possibility, however, that the 

silanization reduces the surface energy more for the tetragonal phase than for the monoclinic phase and 

thereby shifts the critical crystal size upwards. Our data do not permit distinguishing between these two 

models. 

 

Conclusion 

Within the group of the screened surfactants surface modification with phosphates and silanes stabilize 

tetragonal zirconia in water. Even as small amounts of silane as 0.25 silane molecules per nm
2
 are 

enough to stabilize the tetragonal phase in water at room temperature and the stabilizing properties of 

silanes are even sufficient to withstand boiling in water for 48 hours.  
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Abstract 

The aim of this study was to uncover the effect of different chemical modifications of zirconia surfaces 

on the bond strength of zirconia/ resin interfaces, with limited mechanical adhesion. Zirconia thin films 

on silicon wafers were surface modified with hexamethyl disiloxane (HMDS), γ-methacryloxypropyl 

trimethoxysilane (MPTMS), Silquest
®
 A-1230 or ethylene glycol methacrylate phosphate (EGMP) and 

a 100 µm methacrylate film was cured on top of the surfactant layer. Different fracture mechanics test 

methods were used (tape-peel adhesive test and cross-cut adhesion test). In order to avoid effects of 

physical adhesion between zirconia and polymer smooth wafers were used. The samples were tested 

under three conditions: dry, after water storage for 1 week at 37 ˚C and after water storage and drying 

at room temperature for 4 months.   

Significant differences in interlaminar fracture energy were found in the samples. MPTMS gave the 

highest bond strength regardless of storage conditions. A detailed investigation of the cross-cut 

adhesion test method gave results dominated by edge effects rather than adhesive fracture revealing 

that the cross-cut adhesion test under certain condition is unsuitable as an adhesion testing method. 

mailto:ms@dentofit.com
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These results indicates that di-methacrylate resin binds more strongly to MPTMS modified zirconia 

than to EGMP modified surfaces and that the silane promote enhanced resistance to degradation from 

water storage for 1 week at 37 ˚C.   

Keyword: primers and coupling agents, interfaces, peel, adhesion by chemical bonding  

Introduction  

Zirconia is commonly used in dental ceramics like crowns and veneers, and several studies have been 

conducted to understand and improve the resin to zirconia bond [1,2]. The resin is normally bonded to 

the zirconia surface with a difunctional coupling agent capable of creating a strong bond between the 

filler surface and the polymer matrix by copolymerization [3]. This coupling agent also has the function 

to increase the water resistance of the polymer/zirconia interface, since the surface modification 

reduces the accessibility of water to the interface and thereby decreases the hydrolytic degradation of 

the interface [4]. Several types of coupling agents are commonly used in dentistry. The most commonly 

used coupling agent in glass containing dental resin composites is γ-methacryloxypropyl trimethoxy 

silane (MPTMS), which not only increases the strength properties of the composite material but also 

increases the water resistance of the interface [3]. However, MPTMS is not considered being a good a 

choice of surfactant for zirconia surfaces since the Zr-O-Si bond is not as stable towards hydrolysis as 

the silane counterpart, siloxanes and it is not even always able to bind to zirconia [2]. A number of 

studies have showed that methacrylate-decyl dihydrogenphosphate (MDP) is a better coupling agent for 

zirconia systems than MPTMS [1,2,5].  

Methods for proper mechanical characterization of polymer/ zirconia interfaces in dental materials are 

not well established. Several test methods have been used to evaluate the bond strength of resin to 

zirconia mainly tensile [5,6], microtensile [7,8] and shear [9-12] tests. There is no significant difference 

between the measured values of bond strength of microtensile- and the shear test methods when 

evaluating bond strength between resin and zirconia, but the shear bond strength test gave exclusively 

adhesive failure i.e. failure along resin/zirconia interface, and the mixed failure mode was dominating 

in the microtensile bond strength test [13].  

From shear tests, it is however known that the shear bond strength not only is affected by the chemical 

bond between resin and ceramic surface, but also by ceramic-resin bond originating from mechanical 

adhesion. A surface with higher roughness will have a larger surface area able to bind the resin and will 

furthermore enhance the possibility for mechanical retention. Derand and coworkers [2] showed that a 

rough zirconia surface gives higher bond strength between zirconia and a polymer. It was shown that 

independent of surface modification the rougher hot-pressed zirconia surface gave a higher strength 

than the smoother glazed zirconia surface. 
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The effect of surface roughness on the tensile bond strength of resin composite to sandblasted and non 

sandblasted surfaces has been studied previously for alumina ceramics [14]. It was found that silanes 

and phosphates on a non-sandblasted surface did not give a stable long-term bond, and the samples 

debonded spontaneously after 150 days of water storage. The bond strength decreased only slightly for 

the sandblasted samples. It was proposed that the reason for this was the roughness of the surface 

causing micro retention and that the surfactant increased the wettability allowing the resin to flow 

deeper into the undercuts and porosities.  

It is well-known that different elastic properties can cause stress concentrations or singular stress fields 

at bi-material corners [15]. The stress concentration of stress singularity of a bimaterial corner depend 

on , the corner angle and the four elastic constants, E1, 1, E2, 2, (where Ej and  j are the Young's 

modulus and Poisson's ratio, respectively of material number j)[15] (see Figure 1). Following Dundurs 

[16], the stress field of the corner depends on only two non-dimensional elastic properties. For plane 

strain they can be written as  

 D  =
21

21

EE

EE
  D  =

)1(2)1(2

)21()21(

1221

1221 ,  (1) 

where jE = Ej(1- i
2

) is the plane strain modulus, and j is the shear modulus ( j = Ej/2(1+ j)) of 

material number j.  

For instance, for identical elastic properties (D  = D  = 0), for = 90 , the corner stress field has a 

singularity of the form [15] 

    
11p

ij r     (2) 

where ij represents the stress components, r is the distance from the tip of the corner and the non-

dimensional parameter  p1  0.545.  For D   1 and D   1, p1 takes complex values, generating a 

logarithmic singularity. For  = 0  (corresponding to an interface crack), the logarithmic singularity is 

given by p1 = 0.5  , where  is the bimaterial constant, that only depends on the second Dundur's 

parameter, D  [15]: 
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It follows that simple tensile and shear tests, that are easy to perform, possess complicated stress fields and 

do not enable easy interpretation. Calculations of average stresses, ignoring the complicated (sometimes 

singular) stress fields at biomaterial corners have little merits. Instead, it is relevant to study strength, 

accounting for the complicated stress field at biomaterial corners. 

Mohammad and Liechti [17] studied the effect of the corner angle γ on the crack initiation (Figure 1). 

Experimentally, they found that the load at crack initiation increased dramatically with increasing 

corner angle. For  = 90 , the crack initiation load was twice that of a corner with  = 0 , and a corner 

having  = 120  had crack initiation load five times that of a corner with  = 0 . Thus, details like the 

shape of a corner can have a strong effect on the measured microscopic strength. 

 

Figure 1 The stress field at a bimaterial corner depend on the four elastic constants, E1, 1, E2, 2, (where Ej and  j are the 

Young's modulus and Poisson's ratio, respectively of material number j)and the corner angle, . 

One way to account for the singular stress field at biomaterial fracture is fracture mechanics testing, 

where the bond strength is characterized in terms of the fracture energy of the interface [18].  

A simple method for qualitative assesment of bimaterial interfaces is the so-called peel test. The peel 

test is well suited for fracture mechanic charaterization of thin layers. Furthermore the failure mode of 

peel tests is generally adhesive i.e., cracking along the film/substrate interface [19]. The fracture energy 

is calculated according to the equation [20]:  

   ))cos(1(
B

P
G     (4) 
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where G is the fracture energy per area, P is the value of the peel force during separation,  is the peel 

angle and B is the width of the flexible adherent. This equation applies if the adherent is flexible in 

bending, but inextensible [20]. 

Obviously, a simple qualitative test for the interface strength would be beneficial. Inspired by a recent 

publication [21], the method of cross-cut samples of cured resin on flat zirconia surfaces treated with 

the interface bonding agents of interest was used in the present study. In the process, a method for the 

coating of silicon wafers with zirconia without appreciable increase in roughness was developed. The 

availability of a very flat surface is important in order to separate intrinsic interfacial bonding 

properties from mechanical interactions originating from roughness or incomplete wetting of a rough 

surface.  

The aim of this study was to analyze the effect of different chemical modifications of zirconia surfaces 

on the bond strength between zirconia and resin in the absence of physical adhesion between zirconia 

and polymer. Smooth surfaces were used in order to minimize the effect of roughness. Two different 

test methods (tape-peel adhesive test and cross-cut adhesive test) were tested. Therefore, the results 

were expected to be unaffected of physical adhesion and where it was possible to test the bond strength 

and water resistance of the coupling agent. These methods are only affected by the strength of the 

bonds between resin and ceramic and the water resistance of the interface. This study is also relevant 

for the understanding of zirconia filled resin composites strength properties, since zirconia particles 

sometimes are added to make the material radio-opaque or to improve the mechanical properties [22]. 

Material and Methods 

All chemicals were supplied by Aldrich except for Silquest
®
 A-1230 delivered by TriboTec AB and 

they were all used as received.  

Preparation of thin zirconia film 

Zirconia thin films were prepared by using a polymer precursor spin-coating process. The polymer 

precursor was prepared by refluxing 25 ml methylcellusolve and 4.9 g zirconium (IV) isopropoxide 

isopropanol complex for one hour. 2.6 ml ethanolamine was added and the mixture was refluxed for 

another hour. The mixture first turned orange and then colorless again. The mixture was filtered 

through a 45 μm filter and diluted 5 times with methylcellusolve and spin coated on a p-type Si-wafer 

(orientation <100>) at 1000 rpm for 1 min in ambient atmosphere. The as-coated film was dried at 

150°C for 1 hour, and then calcined at 600°C for 1 hour in air. After calcination the wafers were cut 

into appropriate sizes. 
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Surface modification of zirconia films 

The zirconia films were surface treated with hexamethyl disiloxane (HMDS) in a YES 6112 oven 

(Yield Engineering Systems, San Jose, US) at 150
o
C. Modification of the surfaces with γ-

methacryloxypropyl trimethoxy silane (MPTMS), Silquest
®
 A-1230 and ethylene glycol methacrylate 

phosphate (EGMP) were obtained by covering the specimens with a mixture of 10:1 dry methanol : 

surfactant for 2 hours. Subsequently the samples were washed three times with methanol and dried 

under an air flow. Reference samples were prepared with clean zirconia surfaces.  

Preparation of methacrylate film 

The dimethacrylate monomer system was composed of Bisphenol-A diglycidyl ether dimethacrylate 

(BisGMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) in the 

ratio (36/ 44/ 20 wt%) in combination with a polymerization system composed of camphorquinone and 

ethyl 4-dimethylamino benzoate both in a contents of 0.5 wt%. The specimens of surface treated 

zirconia were coated with the resin using a 100 μm spacer. The thin polymer film was cured for 2 min 

using blue light (1100 mW/cm
2
) from a Bluephase

®
 light source (Ivoclar Vivadent).  

Structuring methacrylate surfaces by cross-cutting 

20 mm x 20 mm films were cross-cut with a scalpel into approximately 2 mm × 2 mm squares and the 

adhesion of the polymer to the zirconia surfaces were assessed by tape peeling with a kapton tape. The 

procedure was done according to ASTM-standard: D3359-09. The patterned samples were tested by 

gluing a piece of adhesive tape to the specimen and peeling it off by hand. Afterwards, the number of 

squares removed from the surface was registered. 

Structuring methacrylate surfaces by RIE 

O2 reactive ion etching on a Plasmatherm (Unaxis, St Petersburg, FL) 740 reactive ion etcher (RIE) was 

used to structure the surface of the methacrylate films. 1000 Å gold was deposited in a metal 

evaporator (Temescal FC1800 Technical Engineering Services Inc., Santa Cruz, CA, US) on to the 

methacrylate surface through a plate with hexagonally placed holes of radius 1.5 mm and spacing 1 

mm. The methacrylate surface with gold spots were placed in the RIE and given sufficient O2 plasma to 

etch through the uncoated methacrylate layer. The gold coated patches were protected from etching 

thus leaving a patterned surface (see figure 2). 
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Figure 2 Structuring of films by RIE 

Preparation of specimens for Tape-Peel Adhesive Tests 

Tape-peel-adhesive samples were 20 mm in width and 60 mm in length. After curing of the 

methacrylate film, 1/3 of the specimens were cover with a kapton tape and edges of the film covering 

the substrate edges were removed with a scalpel to prevent adhesion to the backside of wafer. The rest 

of the samples (2/3) were water aged at 37°C for 7 days; they are henceforth denoted “wet” samples. 

After aging, the samples were covered with kapton tape and the edges were cut off with a scalpel to 

ensure no adhesion of the film to the substrate edges. The samples were prepared initially with the 

polymer going all the way to the back of the sample thus covering the otherwise exposed interface. For 

samples not prepared this way the films all loosen during water aging. The samples named “wet” were 

tested no later than 6 hours after ending water aging. Half of the water aged samples were dried for 4 

months at room temperature (RT) – named “redried”.  

Characterization 

Scanning electron microscopy (SEM) evaluation 

The structured surfaces were analyzed using an Inspect „S‟ scanning electron microscope (FEI, Oregon, 

USA), secondary electrons (SE2) with an acceleration current of 5.00kV. No coating of the surface 

with gold were needed.   

Atomic force microscopy (AFM) evaluation 

The surface roughnesses of the calcinated zirconia thin films were analyzed with a PSIA XE-150, (Park 

Systems Corp. Suwon, Korea). The images were taken in air and using tapping mode. Fields of view at 

10 µm x 10 µm were scanned. 
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X-ray photoelectron spectroscopy (XPS) evaluation 

Analyses were performed with a K-alpha Monochromated, XPS spectrometer from Thermo Fisher 

Scientific Inc., Waltham, MA United States. In order to evaluate the quality of the surface 

modification. 

Peel tests 

The peel test were performed at a cross-headspeed of 1 mm/min. The testing machine was from Instron 

Material, model TT-CM no. A-0050 with a 2 kN load cell and 10 Hz data acquisition. The sample, 

glued on a 2 mm steel plate, was mounted at a rolling bearing that allowed horizontal translation so that 

the peel angle remained close to 90 degree.  

The mean values of each group were statistically analyzed using two-way analysis of variance 

(ANOVA), (α = 0.05). After testing, the samples were analyzed using a light microscope (Axioskop, 

Zeizz, Germany) at 50x magnification. 

Results  

AFM analysis 

The AFM analysis of calcinated ZrO2 films showed a very low roughness with average roughness 

values (Ra) of ~0.65 nm in an 10 x 10 μm area. This roughness is suspected to be low enough to 

prevent mechanical adhesion of the polymer film to the zirconia surface.  

XPS analysis 

The result of the surface modifications were examined with XPS and the existence of 1-2 atom% 

silicon and phosphorus on the silanized and phosphorylated samples respectively were detected. As the 

surfaces have been washed three times with methanol and are exposed to ultra high vacuum in the XPS 

chamber, it is assumed that the detected surfactants are chemically bound to the surface. Neither silicon 

nor phosphorus were detected on the reference samples. 

Peel Tests of cross-cut samples 

The number of squares released depends on the peel direction relative to the cut direction and also on 

the identity of the person doing the cutting. Anywhere from half to all squares could loosen from 

otherwise identical samples. 
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Peel testing at constant peel rate 

The tape was peeled at steady speed until a maximum load was reached and the load curve flattens out 

(see Figure 3). Detachment of the film began at the point where the curve started to flatten. HMDS 

gave so weak adhesion that it was not possible to prepare the test specimens – the methacrylate films 

loosened prior to testing. The fracture energy for the other 2 silane coupling agents and the phosphate 

coupling agent was calculated using equation 4 and the results are given in Table 1.  

 

Figure 3. Measured force over time for a MPTMS treated sample (dry). Resin film peeled at 1 mm/min. 

Table 1Mean (standard deviation) of fracture energy (J/m
2
) recorded using peel-test. Mean with same subscript letters are 

not statistically different (p > 0.05) 

Surface treatment  Dry Wet Redried 

EGMP 35.2
a
 (4.3)

 
4.1 (0.1) 27.7

a
 (3.2) 

MPTMS 30.0
a,b

 (13.4) 14.2 (0.5) 50.5 (6.4) 

Silquest A-1230 17.6
b
 (10.8) 1.6 (0.05) 30.0

a
 (11.4) 

Reference 9.2 (0.8) 3.0 (0.1) 12.3 (0.2) 

 

Discussion 

Qualitative assessment of interface strength through peel testing 

In the case of the flat surface forced wetting is feasible and thus interfacial strength is characterized 

here independent of wetting.  
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It turned out that the qualitative peeling from cross-cut specimens gave somewhat irreproducible 

results. Thus peeling in the same or in the opposite direction of the cutting had significant influence on 

the result. Furthermore, the reproducibility between different experimenters was also unsatisfactory. 

Several reasons for this behavior can be envisioned including differences in the force and rate with 

which the cutting is performed. The knife (scalpel) will introduce a shear stress in the film which can 

lead to partial or total delamination (see Figure 4). This particular effect will render the test very 

sensitive to film thickness. It appears that the qualitative cross-cut technique is heavily influenced by 

edge effects. A new method to eliminate the edge effects and the irreproducibility of the cutting was 

developed in order to prove the hypothesis that edges effects were dominating. 

 

Figure 4 HMDS treated sample structured by cross-cutting. The light parts of the squares are areas where the film is 

delaminated.  

The requirements to the new process were that it should eliminate the handicraft component and the 

stresses involved in cutting. Laser ablation and reactive ion etching was investigated before the 

described method was settled upon (see Figure 2).  

The results from these experiments are very clear indeed. When there are no edge defects in the 

attachment of the 2×2 mm
2
 squares as evidence by Figure 4 it is not possible to remove any of them 

through the peel test. Even in the case when the surface was deliberately modified to give poor 

adhesion (through HMDS treatment) the results was the same. In fact the squares were very difficult to 

remove from all surfaces including the HMDS treated surface even by pushing with a scalpel. 

It is obvious that the results regarding the cross-cutting can be sensitive to crack initiation. Although 

the test method is intended to be a rough method for estimating the fracture energy, the measurement 

can be misleading if the load at crack initiation is significantly higher than the load corresponding to 

subsequent crack propagation. As discussed in the Introduction, the corner angle has an influence on 

crack initiation. As indicted in Figure 5, the strength of a 90  corner may depend on geometry details. 

For instance, if the corner is actually rounded outwards so that  is large, a higher crack initiation 

strength is expected. Then, the problem may be initiation-controlled. In contrast, if the cut induces a 
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small interface crack (  = 0 ), the corner singularity is stronger and the corner initiation strength 

becomes lower, comparable to that related to crack propagation. Only in the latter case the fracture 

energy determination is valid. The samples and especially the edges were studied with SEM and it was 

observed that the edges indeed in many places had angles larger than 90° (Figure 6). This can explain 

the high fracture resistance of the round dots and supports that the crack initiation is dominated by 

edges effects. We are not able to explain the existence of the thin film on the zirconia surface between 

the methacrylate dots, but as it does not bind to the dots, it is cannot affect the crack initiation or the 

bond strength of the dots.       

 

Figure 5 the Proposed hypothesis regarding the strength of the pattern test: Details of the corner geometry will have a 

strong effect on the stress field at the corner: A round corner (γ ≈ 180˚) will give a weaker stress singularity than a crack-

type corner (α ≈ 0˚) 

 

 

Figure 6 A scanning electron microscope view of structure on HMDS treated surface. Magnification of 1,000 and 10,000X 
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Different methods for creating the cut are likely to create different corner geometry and thus affecting 

the measurement. In case the cut is made manually, it is likely that different persons create different 

corner geometries.  

It is, thus, demonstrated, that the qualitative testing of interface strength through peeling of film 

structured into small fields (here squares) are completely dominated by edge effects. Consequently 

these methods are unsuitable for the characterization of the interface strength [23]. 

Effect of water 

The quantitative numbers obtained through peel testing at constant rate give determinations of the 

interfacial fracture energy between matrix and surface with reasonable certainty (see Figure 3). The 

fracture energy decreases significant after water aging although the MPTMS treated samples was less 

affected than the other. It is noted that samples prepared without the matrix covering the 

zirconia/matrix interface on the sides of the sample delaminated during the water treatment. This 

supports the notion that it is the effect of water on the zirconia/resin bond that weakens the interface in 

the wet state. The hypothesis is that the absorption of water into the interface leads to hydrolysis of the 

interface silanes and cause debonding. The debonded interface is the fastest path for entering of water 

molecules into the interior of the samples [24]. By covering the sides of the samples this debonding is 

hindered during the water aging.     

Surprisingly, the interfaces regain their strength on drying and in fact in several cases are significantly 

stronger that the original interface. The reason for this behavior is not known at the present. 

Coupling Agent Quality 

The results of the peel tests show that MPTMS treated samples are less affected by water exposure. It is 

most likely due to the ability of MPTMS to bond covalently to both filler and polymer. The importance 

of covalent bonding of filler surface to the polymer matrix was also shown on zirconia in another study 

[25]. In this study the hydrolytic degradation was found to decrease when a methacryloxy- or a 

acryloxy trimethoxy silane was used for surface modification. 

The increase of interface fracture energy of the MPTMS treated samples is probably due to cross 

linking of the silanes caused by the hydrolysis of the surplus methoxy groups. When the water is 

evaporated, cross linking is favored. This has previously been described [26] as an effect of less steric 

hindrance of the shorter hydroxyl group in comparison with the original methoxy group. The same 

effect is seen for the Silquest
®
 A-1230 treated samples. The EGMP modified samples regained the 

original strength after drying and no increase in strength was observed. When the water disappeared 

from the interface the phosphate group coordinated to the zirconia surface again. According to the 
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microscopy inspection after the peel testing (pictures not shown), the failure mode of all the samples 

was purely adhesive i.e. cracking along the methacrylate film/zirconia interface, independently of 

surface modification and aging conditions.  

At all three test conditions, the MPTMS modified samples were stronger than the phosphorylated ones. 

In another study where the used coupling agent was 10-methacryloxo decyl dihydrogenphosphate, it 

was found that phosphates are the best coupling agent for zirconia surfaces [5,14]. This finding is 

surprising. 

In the present study, EGMP was chosen as an example of a phosphate coupling agent in order to keep 

the spacer between surface binding functionality and polymerizable functional group unaltered 

compared to TMSMAP. Since EGMP has a substantially shorter spacer than the decyl phosphate, 

EGMP offers less screening of the interface against water. It is speculated that differences in 

hydrophilicity is an equally viable explanation for the observed differences in interface fracture energy 

as differences in interface bonding functional groups. In the present study, the different surface binding 

functionalities are compared at equal hydrophobicity. Thus, the present study indicates that trimethoxy 

silane groups bind zirconia stronger than phosphates do. The effect of the surfactant chain length has 

been investigated [3,27], and the more hydrophobic 10-methacryloxydecyl trimethoxysilane (MDTMS) 

was found to give higher flexural strength and better water resistance in composites than the shorter 

and less hydrophobic MPTMS. Furthermore, it was shown that surface modification with MDTMS 

enables higher filler loadings in resin composites, which indicates better compatibility with the resin 

leading to better wetting of the filler surface. It is probably the same effect we observe in this study; 

because of the shorter chain length of the phosphate, the silane is stronger. Based on this, it is 

speculated that MDTMS will be a candidate to enhance bonding of resin to e.g. zirconia crowns or a 

good coupling agent in zirconia based composites. This however has to be tested. This is beyond the 

scope of the present study. 

Conclusion 

Different tests methods for easy determination of interface fracture energy were tested and the best was 

peel test at constant peel rate. The qualitative interfacial test, which consists of counting the number of 

small delaminated fields of a cross-cut film that is removed in a simple tape peel test is dominated by 

edge effects; therefore this method cannot be trusted. Within the group of analyzed surfactants, 

MPTMS gave the highest adhesion, even higher than EGMP.  
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