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Summary

The security of almost all the public-key cryptosystems used in practice depends on
the fact that the prime factorization of a number and the discrete logarithm are hard
problems to solve. In 1994, Peter Shor found a polynomial-time algorithm which
solves these two problems using quantum computers. The public key cryptosystems
that can resist these emerging attacks are called quantum resistant or post-quantum
cryptosystems. There are mainly four classes of public-key cryptography that are
believed to resist classical and quantum attacks: code-based cryptography, hash-based
cryptography, lattice-based cryptography and multivariate public-key cryptography.

In this thesis, we focus on the first two classes. In the first part, we introduce cod-
ing theory and give an overview of code-based cryptography. The main contribution is
an attack on two promising variants of McEliece’s cryptosystem, based on quasi-cyclic
alternant codes and quasi-dyadic codes (joint work with Gregor Leander). We also
present a deterministic polynomial-time algorithm to solve the Goppa Code Distin-
guisher problem for high rate codes (joint work with Jean-Charles Faugère, Ayoub
Otmani, Ludovic Perret and Jean-Pierre Tillich).

In the second part, we first give an overview of hash based signature schemes. Their
security is based on the collision resistance of a hash function and is a good quantum
resistant alternative to the used signature schemes. We show that several existing
proposals of how to make multiple-time signature schemes are not any better than
using existing one-time signature schemes a multiple number of times. We propose
a new variant of the classical one-time signature schemes based on (near-)collisions
resulting in two-time signature schemes. We also give a new, simple and efficient
algorithm for traversing a tree in tree-based signature schemes (joint work with Lars
R. Knudsen and Søren S. Thomsen).
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Resumé

Sikkerheden i de fleste public-key kryptosystemer, der bruges i praksis, afhænger af, at
faktoriseringsproblemet eller det diskrete logaritme-problem er svære at løse. I 1994
fandt Peter Shor en algoritme med polynomiel tidskompleksitet, som løser disse to
problemer ved hjælp af en kvantecomputer. Public-key kryptosystemer, som bevarer
deres sikkerhed over for en kvantecomputer, kaldes post-kvante kryptosystemer. Der
findes overordnet set fire typer af public-key kryptografi, som menes af være sikre mod
en kvantecomputer: kode-baseret kryptografi, hash-baseret kryptografi, lattice-baseret
kryptografi samt kryptografi baseret p̊a multivariate andengradspolynomier.

I denne afhandling fokuserer vi p̊a de første to typer. I den første del introduc-
eres fejlrettende koder, og der gives et overblik over kode-baseret kryptografi. Det
væsentligste bidrag er et angreb p̊a to lovende varianter af McEliece kryptosystemet
baseret p̊a kvasicykliske alternerende koder og p̊a kvasidyadiske koder (samarbejde
med Gregor Leander). Der præsenteres desuden en deterministisk polynomieltids-
algoritme, som løser det s̊akaldte “Goppa Code Distinguisher” problem for koder med
høj rate (samarbejde med Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret og
Jean-Pierre Tillich).

I afhandlingens anden del gives først et overblik over hash-baserede digitale sig-
natursystemer. Sikkerheden i disse er baseret p̊a kollisionssikkerheden af en haskfunk-
tion, og de er gode post-kvante alternativer til de signatursystemer, der bruges i praksis
i dag. Det vises, at mange eksisterende forslag til hash-baserede digitale signatursys-
temer, som kan underskrive flere beskeder for hver nøgle, hvad ang̊ar nøglestørrelse
ikke er bedre end ældre signatursystemer, der kun kan underskrive en enkelt besked
per nøgle. Der foresl̊as desuden en ny variant af et klassisk engangs-signatursystem:
en variant der er baseret p̊a (nær-)kollisioner i en hashfunktion, og som kan under-
skrive to beskeder per nøgle. Slutteligt beskrives en ny, simpel og hurtig algoritme til
beregning af knuderne i et træ i træ-baserede signatursystemer (samarbejde med Lars
R. Knudsen og Søren S. Thomsen).
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Chapter 1

Introduction

Human beings have tried to hide written information since writing was developed.
There are stone inscriptions and papyruses showing that many ancient civilizations
like the Egyptians, Hebrews and Assyrians had cryptographic systems. The word
cryptology is derived from the Greek words “κρυπτ óς” (hidden) and “λoγία” (study).
It combines cryptography and cryptanalysis, i.e., the art of making cryptosystems and
the art of analyzing the security of the cryptosystems and trying to break them.

Before the modern era, cryptography was used only to ensure secrecy in commu-
nications, i.e., to enable two people to communicate over an insecure channel so that
any third party can neither understand nor modify the message. The main idea is
to modify the message such that no-body apart from the receiver can understand its
meaning; we will call this new message the ciphertext.

Nowadays, cryptography is the cornerstone in data security and is used for many
purposes: secrecy of data, to ensure anonymity, to ensure the authenticity of commu-
nications, digital signatures, etc. Some example of daily use of cryptography are the
electronic commerce, e-banking, ATM cards, computer password, etc.

Cryptography is mainly divided in two types: symmetric and asymmetric (or
public-key) cryptography. Let us assume that Alice wants to send a message to Bob
through an insecure channel. In the first case, Alice and Bob agree on a secret key.
This key is used in the encryption and the decryption process. In the asymmetric
case, there exist two different keys (produced by Bob): the public key, used in the
encryption process, and the secret key used to decrypt the ciphertext. As we can see
in Figure 1.1, Alice chooses a message m, encrypts it using Bob’s public key and sends
it to Bob. Bob is the only one who is able to find the original message, since he is
the only one who knows the secret key. In a public-key cryptosystem (PKC) we need
a function that is easy to compute in one way (anybody can encrypt the message)
and that is hard to invert unless we have an additional information called a trapdoor.
Therefore, these functions are called trapdoor one-way functions. The idea of using
this kind of function was proposed by Diffie and Hellman in 1976, but they didn’t
give any example. The first public-key cryptosystem (called RSA) was proposed by
Rivest, Shamir and Adleman in 1977, after this scheme many other schemes emerged
using different kinds of one-way functions. Nowadays, many strong, and standardized,
public key encryption schemes are available. Nevertheless, the security of the public-
key cryptosystems used in practice depend dangerously on only the two following
problems:

• The factoring problem: Given n = pq, where p and q are different primes,
find p and q. This is a hard problem.

1



2 CHAPTER 1. INTRODUCTION

• The discrete logarithm problem: Given α,m and β = αa mod m, find a.
This is a hard problem if the involved numbers are large.

In both cases one has to be careful with the choice of the values since there are
some ease cases.

Bob 
Insecure 
channel 

 
Bob’s secret key 

Message: m 

c=(c1,…,cn) 

Alice 

Bob’s public key 

Message: 
m=(m1, …, mk)  

Encrypt: Decrypt: 

Figure 1.1: Public-key cryptosystem scheme.

In 1994, Peter Shor found a polynomial-time algorithm [105] which solves these
two problems using quantum computers. Therefore, public key cryptosystems based
on these problems would be broken as soon as quantum computers of an appropriate
size could be built. The public key cryptosystems that remain secure even when
the adversary has access to a quantum computer are called quantum resistant or
post-quantum cryptosystems. Grover’s algorithm [56], is another quantum algorithm
that may lead to some attacks, but it is not too dangerous since cryptographers can
avoid the attack by a simple change of parameters (the algorithm has exponential
complexity).

An other reason to motivate the research of alternative systems is that most of
the standard schemes are too expensive to be implemented in very constrained envi-
ronments like RFID tags or sensor networks.

There are mainly four classes of public-key cryptography that are believed [24] to
resist classical and quantum attacks:

• Code-based cryptography

• Hash-based cryptography

• Lattice-based cryptography
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• Multivariate public-key cryptography.

In this thesis we will focus on the first two classes. In the first part, we will intro-
duce coding theory (see Chapter 2) and give an overview of code-based cryptography
(see Chapter 3). We will introduce the McEliece cryptosystem [78], that is a well-
known alternative public-key encryption scheme based on the hardness of decoding
random (looking) linear codes. To today’s knowledge, it resists quantum comput-
ers. Another advantage is that for encryption only elementary binary operations are
needed and one might therefore hope that McEliece is suitable for constrained devices,
see for example [38,59]. However, this scheme has a serious drawback: the public and
the secret keys have larger magnitudes compared to RSA. Therefore one very reason-
able approach is to modify McEliece’s original scheme in such a way that it remains
secure while the key size is reduced. A lot of papers already followed that line of
research, but so far no satisfying answer has been found. Some of these proposals will
be introduced in Chapter 4. In Chapter 5 we introduce two attacks on two McEliece
variants: one based on quasi-cyclic alternant codes by Berger et al. [11] and the other
based on quasi-dyadic matrices by Barreto and Misoczki [85] (introduced in Chapter
4). The first attack is from [52] and is a joint work with Gregor Leander. The second
attack is due to Faugère et al. [44].

In 2001, Courtois et al. introduced the Goppa Code Distinguishing (GCD) prob-
lem [34]. This is a decision problem that aims at recognizing in polynomial time a
generator matrix of a binary Goppa code from a randomly drawn binary matrix. The
main motivation for introducing the GCD problem is to formalize the security of the
McEliece public-key cryptosytem. In the same paper, Courtois et al. prove that the
CFS signature scheme security can be reduced to the syndrome decoding problem
and the distinguishability of binary Goppa codes from a random code. In Chapter
6 we present a deterministic polynomial-time distinguisher for high rate codes. This
chapter is based on the paper [43], that is a joint work with Jean-Charles Faugère, Ay-
oub Otmani, Ludovic Perret and Jean-Pierre Tillich. The fact that this distinguisher
problem is solved in the range of parameters used in the CFS signature scheme is not
an attack on the system, but it invalidates the hypothesis of the security proof.

In the second part we will give an overview of hash based signature schemes. A
digital signatures on a message is a special encryption of the message that can easily
be verified by third parties. It is used in everyday situations providing authenticity,
integrity and non-repudiation of data. The digital signature schemes that are used
in practice are able to sign an unlimited number of messages for a given key and are
based on trapdoor one-way functions.

We would like to have an alternative to these signature schemes, such that they
are secure and efficient now and in the possible presence of quantum computers. The
security of hash-based digital signature schemes is based on the collision resistance
of a hash function. They are a good candidate for post-quantum alternatives. The
first scheme originates from Lamport [68] devised a simple one-time signature scheme
based on a one-way (hash) function. Later, Merkle and Winternitz [81, 82] proposed
improvements to Lamport’s original scheme. We will introduce these one-time signa-
ture schemes in Chapter 8.
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Multiple-time signature schemes have also been proposed. They allow multiple
(but usually still only a few) messages to be signed. We will introduce these in
Chapter 9. The drawback of most hash-based signature schemes is that they are only
able to sign a limited number of times for each secret/public key pair, and that the
signature and the key pair are large. But on the other hand, they are typically efficient
on the generation and verification process.

In 1979, Merkle introduced tree-based signature schemes which are build on one-
time signatures, but which can be used to sign many messages. There are simple and
efficient “chaining” methods to combine these one-time signature schemes. However,
these “chaining” methods generally have a negative impact on the signing and verifi-
cation efficiency, and also on the signature length. This will be explained in Chapter
10. Multiple-time signature schemes can often also be chained together, which would,
in principle, allow for a large number of signatures with limited impact on signing,
verification times and the length of the signature.

This part is based on joint work with Lars R. Knudsen and Søren S. Thomsen that
appears in [64]. The contributions are: In Section 9.5, we show that several existing
proposals of how to make multiple-time signature schemes are not any better than
using existing one-time signature schemes a multiple number of times. We question
whether any such schemes based on so-called cover-free families will be better than the
simpler solution. Also, we investigate whether the cover-free families proposed in [73]
based on orthogonal arrays would yield better results, but the answer is negative. In
Section 9.7, we propose a new variant of the classical one-time signature schemes based
on (near-)collisions resulting in two-time signature schemes. The new scheme can be
used as the underlying signature schemes in Merkle’s tree-based signature schemes.
In Section 10.2, we give a new, simple and efficient algorithm for traversing a tree in
tree-based signature schemes.



Part I

Code-based Cryptography





Chapter 2

Linear codes

Claude Shannon’s paper “A Mathematical Theory of Communication” [103] from 1948
gave birth to the twin disciplines of information theory and coding theory. The main
goal of coding theory is to find an efficient and reliable data transmission method.
When we send a message (that can be seen as a string of symbols) through a noisy
channel it is possible that the message gets modified (e.g., some errors are added to
the message by changing some of the symbols). One simple way to find the errors
would be to send the message several times and a majority vote method can enable
us to recover the correct message. This is however not the best way to do it in order
to be efficient. The main idea is to send more information through the channel than
what we actually need. If this redundancy has a structure, we will be able to use it to
correct possible added errors. In this chapter we will give an overview of the principal
definitions and theorems that we will need in the thesis, for more information please
refer to [62] and [76].

2.1 Linear codes

One of the largest families of error-correcting codes are block codes. Each message
is divided in blocks of the same length and each of these blocks is encoded and sent
separately. Linear codes are one of the most important subfamilies and are the ones
we are interested in. Let F be a finite field and n and k two natural numbers such
that k < n. All vectors are row vectors. This notation is going to be used throughout
the thesis (unless we write explicitly another definition). An (n, k)-linear code C is
a k-dimensional subspace of the vector space Fn. The block of information that we
want to send can be seen as a vector in Fk. Using a linear encoding function we will
map this k-vector into a codeword in Fn. Any matrix that corresponds to this linear
function is called a generator matrix of C and we denote it by G. We then have that

C
def
= {uG|u ∈ Fk}. G is said to be in a systematic form, if its first k columns form

the identity matrix. Note that the redundancy is added by choosing k < n. The code
uses n symbols to send k message symbols, the transmission rate is k

n . We may also
define a parity-check vector, h, of length n which satisfies

GhT = 0

(where hT denotes the transpose of h). The parity-check vectors are a subspace of the
vector space Fn. We define a parity-check matrix H for an (n, k)-linear code over F
by an (n − k) × n matrix whose rows are linearly independent parity-check vectors.
Note that for each generator matrix G we can determine it’s kernel, whose basis is

7
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given by H: the corresponding parity-check matrix of G such that GHT = 0, where 0
is a k × (n− k) matrix of zeros. The dual code C⊥ of C is the (n, n− k)-linear code
over F generated by H.

Property 2.1. [62, page 4] Given the parity-check matrix in the canonical form
H = [A|In−k], we have that G = [Ik| −AT ]. Here Ij is the j × j identity matrix.

Assume that we want to send a message u ∈ Fk through a noisy channel, the first
step is to encode it, and we will obtain the codeword c = uG. The receiver will get
y = c+e where e ∈ Fn is an error vector. We assume that the amount of errors added
is not too big. In Figure 2.1 we can see the encoding scheme.

Sender

Encoder

Receiver

u=(u1,...,uk)

c=(c1,...,cn)

e=(e1,...,en)

Noisy channel

y=(y1,...,yn)

Figure 2.1: Encoding scheme.

2.2 Decoding problems

Keeping the same notations, our goal is to recover c from y. Once we have it, it will
be easy to recover u. In Figure 2.2 we can see the complete communication system.
We denote u′ the vector that the receiver gets, it is assumed to be equal to the original
message u (but it may be different if the receiver does not recover c from y but an
other codeword).

As we assume that the amount of errors added is not too big, we try to find the
“closest” codeword of y, and we claim that this codeword is c. Decode y is the process
of recovering the codeword that is the “closest” to y. To define properly the “closest”
notions we introduce the Hamming distance.
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Sender

Encoder

Receiver

u=(u1,...,uk)

c=(c1,...,cn)

e=(e1,...,en)

Noisy channel

y=(y1,...,yn)

Decoder

u’=(u’1,...,u’k)

Figure 2.2: The communication system.

Definition 2.1. [62, page 4,5] The Hamming distance between two words x and y
in Fn (dist(x, y)) is defined to be the number of coordinates in which x and y differ.
The Hamming weight wt(x) of x is the number of non-zero coordinates of x.

Definition 2.2. [62, page 5] Let C denote an (n, k)-linear code over F. The minimum
distance d of C is the smallest Hamming distance between distinct codewords. We add
this information in the description of the code, and we say that it is a (n, k, d)-linear
code.

For a linear code the minimum distance is the minimal weight of a non-zero code-
word.

Theorem 2.1 (The Singleton bound). [62, page 49] Let C be a (n, k)-linear code
with minimum distance d. Then d ≤ n− k + 1.

To prove this theorem we need the following two lemmas.

Lemma 2.1. Let C be an (n, k, d)-linear code with parity-check matrix H. If j
columns are linearly dependent, C contains a codeword with nonzero elements in some
of the corresponding positions. If C contains a word of weight j, then there exist j
linearly dependent columns of H.

This follows immediately from the fact that the codewords are defined by the
vectors c such that HcT = 0.
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Lemma 2.2. Let C be an (n, k, d)-linear code with parity-check matrix H. The min-
imum distance d is equal to the minimal number of linearly dependent columns of
H.

Theorem 2.1 follows from the fact that the rank of a parity-check matrix H is
n−k, we have then that any n−k+1 columns of H are linearly dependent. Therefore
the minimal number of dependent columns (that we know from Lemma 2.2, that is
equal to d) must be smaller or equal to n− k + 1.

Definition 2.3. Given a code C , a vector y ∈ Fnq and a positive integer w a (w-error-
correcting) decoding algorithm for C is an algorithm that gives the set of all elements
c ∈ C such that dist(x, y) ≤ w; the set is empty if there is no such c.

Unique decoding algorithm: In order to have a unique decoding solution, the
maximal number of errors that a linear code with minimum distance d can correct is
the error correcting capability t

def
= bd−12 c: the biggest integers such that it is strictly

smaller than d/2. If we decode until this amount of errors, we are sure to have a
unique decoding solution. In fact, if we assume that there exists a codeword c with
dist(y, c) ≤ t, if there exist another codeword, named c′ for example, such that the
dist(c′, y) ≤ t, we will have that dist(c, c′) < d and this will contradict the definition
of d. If there is no a codeword c such that dist(c, y) ≤ t, we say that y cannot be
decoded. In Figure 2.3 we can visualize the problem, if y is in the blue area it cannot
be decoded. In an ideal case the circles centered in the codewords and of radius t
will represent a partition of the space and all the received words will be able to be
uniquely decoded.

List decoding algorithm: Given the received word y and a parameter w > bd−12 c,
the idea is to give the list of codewords ci ∈ C such that the distance between ci and y
is less than w. This list may be empty, but may also contain more than one codeword.
The main purpose is to allow a greater number of errors than in the unique decoding
technique. We are only interested in the parameters w such that the problem has a
unique solution with high probability.

Syndrome decoding: Keeping the previous notations, we define the syndrome by

syn(y)
def
= HyT . Then syn(y) is a column vector of length r = n− k. Note that if the

received word is y = c+ e, then syn(y) = H(c+ e)T = HeT .

Theorem 2.2. [76, page 17] For a binary code, the syndrome is equal to the sum of
the columns of H where the errors occurred.

This is why it is called the “syndrome”, because it gives the symptoms of the
errors. Define the syndrome mapping (related to H) by

SH : {0, 1}n → {0, 1}r
y 7→ (HyT )T
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c1

c2

c3

c4

c5

t

t

t

t

t

d

Figure 2.3: The codewords surrounded by circles of radius t, that is the biggest integers
such that it is strictly smaller than d/2 .

And we denote S−1H (s) the set of words that have syndrome sT :

S−1H (s)
def
= {y ∈ {0, 1}n|(HyT )T = s}.

Definition 2.4. Let C be an (n, k)-linear code and a ∈ Fn. The coset containing a
is the set a+ C = {a+ c|c ∈ C }.

If two words x and y are in the same coset, there exist two codewords c1 and c2
such that x = a + c1 and y = a + c2. We have then that HxT = H(a + c1)

T =
HaT = H(a+ c2)

T = HyT so the two words have the same syndrome. On the other
hand if two words x and y have the same syndrome, then HxT = HyT and therefore
H(x− y)T = 0. This is the case only if x− y is a codeword and therefore x and y are
in the same coset. Therefore we have that

Lemma 2.3. Two words are in the same coset if and only if they have the same
syndrome.

The cosets form a partition of the space into classes.

Proposition 2.1. [93, page 106] For any s ∈ {0, 1}r we have

S−1H (s) = y + C = {y + c|c ∈ C },

where y is any word of {0, 1}n of syndrome sT . Moreover, finding such a word y from
s (and H) can be achieved in polynomial time.
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Given the parity-check matrix H, a vector y and its syndrome S, we would like
to find the error e of minimum weight such that HeT = S. This is called syndrome-
decoding problem. We also define the following problem:

Problem 2.1 (Computational Syndrome Decoding (CSD)). Given a binary r × n
parity-check matrix H, a word s ∈ {0, 1}r and an integer w > 0, find a word e ∈ S−1H (s)
of Hamming weight ≤ w.

Berlekamp, McEliece and van Tilborg showed in 1978 [13] that the associated
decision problem is NP-complete.

Finding Low-Weight Codewords: Canteaut and Chabaud [26] showed that de-
coding a linear code can be reduced to the problem of finding small codewords in a
related linear code. Keeping the previous notation, we have that C is a linear code of
minimum distance d and generator matrix G. We fix c ∈ C , e ∈ Fn2 of weight less than
half the minimum distance d, and y = c + e be the received word. Then we define
C ′ =< C , y >, the linear code spanned by C and y. i.e., the code with generator
matrix [

G
y

]
.

As dist(y, c) = wt(e) < d/2, by definition of the minimum distance for every
c′ ∈ C , dist(y, c′) ≥ d/2 and therefore e = y − c is the codeword of C ′ of minimum
weight. Thus, if we find the codeword of minimum weight of C ′ (i.e., e), we can decode
y.

Problem 2.2 (Decoding problem). Let C be an (n, k, d) linear code over F, y ∈ Fn
and S = syn(y). The general decoding problem for linear codes is defined as solving
one of the following equivalent problems.

1. Find x ∈ C where the Hamming distance between x and y is minimal.

2. Find an error vector e ∈ y + C of minimal Hamming weight.

3. Find an error vector e ∈ S−1H (ST ) of minimal Hamming weight.

The problem of decoding a random code is a long-standing problem, the most
effective algorithms [16, 18, 27, 47, 71, 72, 109] have an exponential time complexity.
These algorithms are based on information set decoding. We will give an overview in
Section 3.2.1.

2.3 Special codes

In this section we are going to define some of the codes that we will use in the following
chapters, for more information see [76]. Before getting to the proper definitions we
will introduce some special type of matrices that we will need.
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Definition 2.5. [85] Let X = (x1, . . . , xn) ∈ Fn and r > 0. The Vandermonde
matrix with parameters r and X is defined as

V dm(r,X) =


1 · · · 1
x1 · · · xn
...

...

xr−11 · · · xr−1n


Definition 2.6. [85] Given r, n > 0 and two disjoint sequences z = (z0, . . . , zr−1) ∈
Fr and L = (L0, . . . , Ln−1) ∈ Fn of distinct elements. The Cauchy matrix C(z, L) is
the r × n matrix with elements Cij = 1/(zi − Lj) i.e.,

C(z, L) =


1

z0−L0
. . . 1

z0−Ln−1

...
. . .

...
1

zr−1−L0
. . . 1

zr−1−Ln−1


Let X = (x1, . . . , xn) ∈ Fn, the diagonal matrix Diag(X) is the square matrix

whose diagonal is given by the entries of X and all the other entries are zeros.

Diag(X) =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn


Cyclic codes

Cyclic codes form one of the most important class of linear codes.

Definition 2.7. [62, page 63][Cyclic codes] An (n, k)-linear code C over F is called
cyclic if any cyclic shift of a codeword is again a codeword i.e., if

c = (c0, c1, . . . , cn−1) ∈ C ⇒ c′ = (cn−1, c0, . . . , cn−2) ∈ C .

It is easier to understand the properties of these codes if we use the following
algebraic description: we associate to each vector c = (c0, c1, . . . , cn−1) ∈ Fn the
polynomial c(x) = c0 + c1x+ · · ·+ cn−1x

n−1 in F[x].

Theorem 2.3. [62, page 64] Let C be a cyclic (n, k) code over F and g(x) be a monic
polynomial of minimal degree in C \ {0}. Then

1. g(x) divides c(x) for every c(x) ∈ C .

2. g(x) divides xn − 1 in F[x].

3. k = n− deg(g(x)).

Note that g(x) is unique. It is called the generator polynomial of the cyclic code
C .
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Theorem 2.4. [62, page 64] Suppose g(x) ∈ F[x] is monic and divide xn − 1. Then

C = {i(x)g(x)|i(x) ∈ F[x], deg(i(x)) < n− deg(g(x))}

is the cyclic code with generator polynomial g(x).

Definition 2.8. [76, page 506][Quasi-cyclic codes] A code of length n is called quasi-
cyclic of order s (for n a multiple of s), if every cyclic shift of a codeword by s
coordinates is again a codeword.

Reed-Solomon and Generalized Reed-Solomon codes

Introduced in 1959 by Reed and Solomon [122], they are one of the most important
class of error-correcting codes, having a wide application range, from encoding CDs
and DVDs to satellite communications. Let q be an integer, we denote Fq the finite
field with q elements and Pk the set of polynomials in Fq[x] of degree less than k.

Definition 2.9. Let n and k two integers such that k ≤ n ≤ q and x1, . . . , xn be
different elements of Fq. A Reed-Solomon code consists of the codewords

(f(x1), f(x2), . . . , f(xn)) where f ∈ Pk.

The parity-check and the generator matrix of a Reed-Solomon code of length n
and dimension k can be written as H = V dm(n − k,X) ×XT and G = V dm(k,X),
where X = (x1, . . . , xn) ∈ Fqn (proof in [62, page 56]). Since we must have n ≤ q we
are not interested in the binary case, however in the majority of the practical cases
we have q = 2m. A polynomial of degree less than k can have at most k − 1 zeros, so
the weight of a codeword is at least n − k + 1. From Theorem 2.1 we can conclude
that d = n− k + 1, i.e., the code corrects the maximal number of errors for the given
parameters. There are several polynomial time methods to decode bn−k2 c errors in a
Reed Solomon code. An overview can be found in [62, Chapter 5].

Definition 2.10. [76, page 303][General Reed-Solomon codes GRSr(X,D)] Let X =
(x1, . . . , xn) such that the xi are pairwise different elements of Fqm and D = (D1, . . . , Dn)
where Di are non-zero elements of Fqm. For k ≤ n consider the set Pk of polynomi-
als in Fqm [x] of degree less than k. Let r = n − k, a General Reed-Solomon code
GRSr(X,D) consists of the codewords

(D1f(x1), D2f(x2), . . . , Dnf(xn)) where f ∈ Pk

GRSr(X,D) is an (n, k, r+1)-linear code over Fqm , and has a parity-check matrix
H = V dm(r,X)×Diag(D).

Alternant codes

Alternant codes form a very large class of codes. We will define them and some of
their subclasses. Figure 2.4 (taken from [76, page 333] ) shows the relationship between
these subclasses (it is not drawn to scale). Any linear subspace of C is said to be a
subcode of C .
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Definition 2.11 (Subfield-subcode). If C is a code over F and FSUB is a subfield of
F, then the FSUB-subfield subcode of C is the code consisting of all words of C , which
have only entries in FSUB.

A FSUB-subfield subcode is a FSUB-linear code. Next we discus how to derive the
parity check matrix of the subfield subcode (see [76, page 207]):

Let F = Fqm , FSUB = Fq and H = (hij) the parity-check matrix of the code
C defined over Fqm , where hij ∈ Fqm for 1 ≤ i ≤ r and 1 ≤ j ≤ n. Pick a basis
(α1, . . . , αm) for Fqm over Fq and write

hij =

m∑
l=1

hijlαl, where hijl ∈ Fq.

The parity-check matrix H ′ of the subfield subcode can be obtained by replacing
each element of H by the corresponding column vector (hij1, . . . hijm)T of length m
from Fq. Thus

H ′ =



h111 h121 . . . h1n1
h112 h122 . . . h1n2

...
...

. . .
...

h11m h12m . . . h1nm
h211 h221 . . . h2n1

...
...

. . .
...

hr1m hr2m . . . hrnm


.

Definition 2.12 (Alternant code). Let X = (x1, . . . , xn) such that the xi are pairwise
different elements of Fqm and D = (D1, . . . , Dn) where Di are nonzero elements of
Fqm. The Alternant code of order r, denoted Ar(X,D), is the subfield subcode of the
Generalized Reed-Solomon code GRSr(X,D).

This means that Ar(X,D) is the restriction of GRSr(X,D) to Fq, therefore

Ar(X,D) = {c ∈ Fnq |V dm(r,X)×Diag(D)cT = 0}.

Theorem 2.5. [76, page 334] Ar(X,D) is an (n, k, d)-linear code over Fq with
n−mr ≤ k ≤ n− r and minimum distance d ≥ r + 1.

Fact 1. [76, page 365] There exists a polynomial time algorithm decoding all errors
of Hamming weight at most r

2 for an alternant code Ar(X,D) of order r once a parity-
check matrix of the form H = V dm(r,X)×Diag(D) is given for it.

Goppa codes

A subfamily of alternant codes was introduced by Goppa in 1970 [55].
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Alternant codes
Goppa codes

Generalized 
Srivastava codes

BCH codes

Srivastava
codes

Narrow-sense,
primitive

BCH codes

Figure 2.4: Relationship between various subclasses of alternant codes (taken from [76,
page 333] ).

Definition 2.13 (Goppa code). Given a sequence L = (L0, . . . , Ln−1) ∈ Fnqm of
distinct elements and g(x) a polynomial in Fqm [x] of degree t, such that g(Li) 6= 0 for
0 ≤ i < n. The Goppa code Γ(L, g) over Fq is At(L,D), the alternant code over Fq
that correspond to the GRSt(L,D), where D = (g(Lo)

−1, . . . , g(Ln−1)
−1).

Goppa codes Γ(L, g) have dimension k ≥ n−mt and minimum distance d ≥ t+ 1
(with t the degree of g(x) and n = |L|). Their parity-check matrix is
V dm(t, L)× diag(D) i.e.,

H =


1 . . . 1
L1 . . . Ln
...

...

Lt−11 . . . Lt−1n


 g(L1)

−1 0
. . .

0 g(Ln)−1

 .

Theorem 2.6. [115] The Goppa code generated by a monic polynomial g(x) =∏t−1
i=0(x− zi) without multiple zeros admits a parity-check matrix of the form

H =


1

z0−L0
. . . 1

z0−Ln−1

...
. . .

...
1

zt−1−L0
. . . 1

zt−1−Ln−1

 .

This means that the Goppa code Γ(L, g) consists of all elements c = (c0, . . . , cn−1) ∈
Fnq such that for all j ∈ {0, . . . , t− 1}
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n−1∑
i=0

ci
zj − Li

≡ 0 mod g(x). (2.3.1)

Goppa codes are alternant codes. So by Fact 1 there exists a decoding algorithm
that can correct up to t

2 errors. In the case of binary Goppa codes, we can correct
twice as many errors. This follows from the following theorem [76, page 341].

Theorem 2.7. A binary Goppa code Γ(L, g) associated to a Goppa polynomial g(x)
of degree t without multiple roots is equal to the alternant code A2t(L,D), with Di =
g(Li)

−2.

Fact 2. There exists a polynomial time algorithm decoding all errors of Hamming
weight at most t in a Goppa code Γ(L, g) when g has degree t and has no multiple
roots, if L and g are known. This algorithm is due to Patterson [94].

BCH codes

Definition 2.14 (BCH-codes). A cyclic code of length n over Fq with generator poly-
nomial g(x) is a BCH code of designed distance δ if, for some integer b ≥ 0, g(x) is
the monic polynomial of lowest degree over Fq having αb, αb+1, . . . , αb+δ−2 as zeros.

Its parity-check matrix is

H =


1 αb α2b . . . αb(n−1)

1 αb+1 α2(b+1) . . . α(n−1)(b+1)

...
...

...
. . .

...

1 αb+δ−2 α2(b+δ−2) . . . α(n−1)(b+δ−2)


Note that taking r = δ− 1, D = (1, αb, . . . , αb(n−1)) and X = (1, α, α2 . . . , α(n−1)),

H = V dm(r,X)×Diag(D).

If b = 1 the code is called narrow sense BCH code.

Generalized Srivastava codes

Definition 2.15 (Generalized Srivastava codes). Given a prime power q and m, s, n, t ∈
N, let α = (α1, . . . , αn), w = (w1, . . . , ws) be n + s distinct elements of Fqm and
(z1, . . . , zn) be non zero elements of Fqm. The Generalized Srivastava code of order st
and length n is defined by a parity-check matrix of the form

H =


H1

H2
...
Hs

 (2.3.2)

where each block is
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Hi =


z1

α1−wi . . . zn
αn−wi

z1
(α1−wi)2 . . . zn

(αn−wi)2
...

...
...

z1
(α1−wi)t . . . zn

(αn−wi)t

 . (2.3.3)

The Generalized Srivastava codes have length n ≤ qm− s, dimension k ≥ n−mst,
minimum distance d ≥ st+ 1 and are alternant codes. The original Srivastava codes
are the case t = 1 and zi = αµi for some µ.



Chapter 3

Code-based cryptography

In 1978 McEliece introduced a public-key cryptosystem [78] informally based on the
hardness of decoding random linear codes. In this chapter we will describe it and one
of its variants proposed by Niederreiter in 1986 [87]. We will see that for the text-book
versions of these PKC there are protocol-based attacks, but they can be avoided by
using the CCA2-secure scheme presented by Kobara and Imai [67]. In Section 3.2
we will present the known attacks on McEliece PKC, none of them presents a serious
threat (apart for some parameters). In the last section we will introduce a signature
scheme based on these cryptosystems.

3.1 McEliece and Niederreiter PKC

3.1.1 McEliece PKC

The main idea of the McEliece cryptosystem is to use a code that has an efficient
decoding algorithm and to disguise it, so that it looks like a general instance of the
decoding problem. In the original version [78] McEliece uses a (1024, 524, 101)-binary
Goppa code. The user picks u, t ∈ N, such that n = 2u and t ≪ n. Then randomly
selects an irreducible polynomial g of degree t over F2u and chooses a Goppa code
Γ(L, g) of length n, dimension k ≥ n − ut and minimum distance d ≥ t + 1. We call
γ the polynomial time decoding algorithm that can correct up to t errors, and G0 a
k × n generator matrix of Γ(L, g). The user also picks a random n × n permutation

matrix P and a k × k non-singular matrix S, then computes G
def
= SG0P . The public

key is (G, t) and the secret key is (S,G0, P, γ). The encryption and decryption are
presented in Algorithm 1 and the PKC is illustrated in Figure 3.1.

In fact c × P−1 = m × (SG0P )P−1 + e × P−1 = (m × S) × G0 + e × P−1. As
P−1 does not affect the weight of e, we can apply the decoding algorithm γ and
recover mSG0, then by linear algebra we recover m. In the case of the McEliece’s
original proposal Canteaut and Chabaud [26] state that “the row scrambler S has no
cryptographic function; it only assures for McEliece’s system that the public matrix
is not systematic otherwise most of the bits of the plaintext would be revealed”. This
statement is not valid for all the variants, for example in the case of the CCA2-secure
scheme presented in [67]. The matrix P is indispensable to hide the algebraic structure
of the code.

19
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Algorithm 1 McEliece’s encryption and decryption algorithm

• Encryption:

– Input: (G, t) and m ∈ Fk2.

– Randomly pick e in Fn2 of weight t.

– Output: c = m×G+ e.

• Decryption:

– Input: (S,G0, P, γ) and c ∈ Fn2 .

∗ Compute γ(c× P−1) = mSG0.

∗ Use linear algebra to recover m.

– Output: m.

Bob 
Insecure 
channel 

 
Bob’s secret 
key: (S,G0 , P, γ) 

Message: m 

c=(c1,…,cn) 
 

[γ(c P-1)] 
 
 

Alice 

Bob’s public 
key: (G,t) 

Message: 
m=(m1, …, mk)  

e 

A random vector of weight t, 
chosen by Alice: e=(e1, …, en) 

c=mG+e 

Encrypt: 
Decrypt: 

Using linear 
algebra 

Figure 3.1: Alice sends a message to Bob using McEliece PKC.
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3.1.2 Niederreiter PKC

In 1986, Niederreiter proposed a different code-based encryption scheme [87] using
GRS codes. The main difference is that instead of representing the message as a
codeword, Niederreiter proposed to encode it in the error vector. This cryptosystem
describes the code through the parity-check matrix and hides its structure by scram-
bling and permuting transformations. The encryption algorithm takes as input words
of weight t (the number of errors that can be decoded). In 1992 Sidelnikov and Shes-
takov showed that this proposal is insecure [108]. Nevertheless if we substitute the
GRS codes by the Goppa codes we can see that it is the dual variant of the McEliece
PKC and it remains a secure cryptosystem. In the following, by “Niederreiter PKC”
we refer to the version that uses Goppa codes.

As in the McEliece PKC, the user picks u, t ∈ N, such that n = 2u and t ≪ n.
Then she/he randomly selects an irreducible polynomial g of degree t over F2u and
chooses a Goppa code Γ(L, g) of length n, dimension k ≥ n−ut and minimum distance
d ≥ t + 1. We call γ the polynomial time syndrome decoding algorithm, and H0 the
(n − k) × n parity-check matrix of Γ(L, g). The user also picks a random n × n
permutation matrix P and a (n − k) × (n − k) non-singular matrix S, then she/he

computes H
def
= SH0P . The public key is (H, t) and the secret-key is (S,H0, P, γ).

The encryption and decryption are presented in Algorithm 2.

Algorithm 2 Niederreiter’s encryption and decryption algorithm

• Encryption:

– Input: (H, t) and m ∈ Fn2 of weight less or equal than t.

– Output: c = H ×mT .

• Decryption:

– Input: (S,G0, P, γ) and c ∈ Fn−k2 .

– Output: m = P−1 × [γ(S−1 × c)].

In fact S−1 × c = S−1(SH0P ) × mT = H0(P × mT ). As P does not affect the
weight of m, we can apply the syndrome decoding algorithm γ and recover P ×mT .
Then by multiplying with P−1 we recover mT .

The disadvantage is that the message has to be encoded into an error vector by a
function φn,t : {0, 1}l →W2,n,t where l = blog2

(
n
t

)
c and W2,n,t denotes the words of Fn2

of weight t. In the Algorithm 3 we will see how to build φn,t, we present a corrected
version of the algorithm presented in [93, page 99].

The inverse is easy to define (assuming
(
n
k

)
= n!

k!(n−k)! where n ≥ k and 0 otherwise):

φ−1n,t(e) =
n∑
i=1

(
ei ×

(
i− 1∑i
j=1 ej

))
+ 1.
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Algorithm 3 φn,t : {0, 1}l →Wq,n,t

Input: x ∈ {0, 1}l, n and t.
Output: a word e = (e1, e2, · · · , en) of weight t and length n.

1. c←
(
n
t

)
, c′ ← 0, j ← n, t′ ← t and i← the natural number that represent x in

decimal base.

2. while j > 0 do

• c′ ← c× j−t′
j

– if i ≤ c′ then ej ← 0 and c← c′

– else ej ← 1, i← i− c′, c← c× t′

j and t′ ← t′ − 1

• j ← j − 1

This algorithm is quite inefficient and has complexity O(n2log2n), in [93] Sendrier and
Overbeck discuss more efficient alternatives.

The security of the McEliece and the Niederreiter PKC is equivalent. An attacker
who can break one is able to break the other [74]. But for given parameters, the
Niederreiter cipher presents many advantages. First of all the public key can be in
a systematic form (reducing the key size, since it is sufficient to store the redundant
part of the matrix H) without any cost of security whereas this would reveal a part
of the plaintext in the McEliece system. The public key in the Niederreiter system is
then n/(n−k) times smaller than in the McEliece version (since the public key in the
Niederreiter system has (n−k)×k bits and in the McEliece system it has n×k). The
systematic form of the public matrix H and the low-weight of vector m significantly
reduce the computational cost involved in the encryption in Niederreiter’s version.

3.1.3 Protocol-based attacks

All the attacks presented in this section require either additional information, such as
partial knowledge on the target plaintexts, or a decryption oracle which can decrypt
arbitrarily given ciphertexts except the challenged one.

Known-partial-plaintext attacks

The partial knowledge of the target plaintext reduces the computational cost of the
attacks on the McEliece PKC [28], [66]. For example, let ml denote the first kl bits
of m and mr the last bits, where k = kl + kr and m = (ml‖mr). We suppose that the
adversary knows mr, we have that

c = mG+ e, then

c = mlGl +mrGr + e
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where Gl and Gr are the the upper kl rows and the remaining kr rows of G respectively,
then

c+mrGr = mlGl + e.

If kl is a small enough to use the information-set-decoding attacks (see Section 3.2.1)
in polynomial time, the computational cost to recover the missing values of m is
polynomial on n.

Related-message attack

Let m1 and m2 be two plaintexts, c1 = m1G+ e1, c2 = m2G+ e2 and e1 6= e2. In this
attack we assume that the adversary knows δm = m1 +m2 [19]. Note that

δmG+ c1 + c2 = (m1 +m2)G+ (m1G+ e1) + (m2G+ e2) = e1 + e2.

The adversary chooses k coordinates whose values are 0 in (δmG+c1+c2) (in these co-
ordinates e1 and e2 have high probability to be 0) and apply information-set-decoding
attacks (see Section 3.2.1) to either c1 or c2, it is very likely that he can recover m1

and m2. If the same message is encrypted twice (or more), the difference between e1
and e2 is c1 + c2, this case is referred as message-resend attack [19].

Reaction attack

In this attack [57], the adversary flips one or a small number of bits of the target
ciphertext c, we denote c′ the flipped bit. He sends c′ to the receiver that has the
private key and observes his reaction. They are two possible reactions:

• Reaction A: he repeats the request to the adversary due to an uncorrectable
error or due to the meaningless plaintext.

• Reaction B: he returns an acknowledgment or does nothing since the proper
plaintext m is decrypted.

The reaction B will happen if there are still less than t errors in c′, otherwise we
will have the reaction A. Repeating this process a polynomial number of times on n
the adversary can obtain the error vector.

Adaptive chosen-ciphertext attack (CCA2)

The attacker knows c and wants to find m such that c = mG + e. She/he has ac-
cess to a decryption oracle which provide her/him with ciphertext-plaintext pairs of
her/his choice (except for c). We say that a cryptosystem is secure against adaptive
ciphertext attack (CCA2 secure) if such attacker has no advantage in deciphering a
given ciphertext. In the McEliece case, the attacker can generate a new ciphertext
c′ = c+m′G = (m+m′)G+ e, ask the oracle to give her/him back c′ = m+m′ and
then she/he is able to recover m.
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We can see that McEliece PKC is not secure against adaptive chosen-ciphertext
attacks. However, Imai and Kobara [67] proposed in 2001 a CCA2-secure version that
prevent all the attacks described in this section. An overview can be found in [39].

3.2 Attacks on McEliece Cryptosystem

There are mainly two guidelines to attack McEliece cryptosystem:

1. Decoding attacks: decode the public code which has no visible structure. Attack
a single ciphertext using a generic decoding algorithm (independent od the inner
code).

2. Structural attacks: recover the original structure of the secret code from the
public key.

There are also some side-channel attacks approaches [7,106,112], but we will focus
on the first two kinds of attack. We use the same notation as before, G is a k × n
generator matrix of a (n, k, d)-linear code, c = mG+ e is the encrypted word and t is
the error correcting capability.

3.2.1 Decoding attacks

Assume that the trapdoor is sufficiently well hidden. We want to correct errors in a
linear code for which we only know the generator (or the parity-check) matrix.

The most effective attacks known against the McEliece and Niederreiter cryptosys-
tems are derived from Information-Set Decoding. The idea was proposed by McEliece
in his original paper [78] and there are many variants. An information set of an
(n, k, d)-linear code, with generator matrix G is the set I of k elements of {1, 2, . . . , n}
such that the set of columns of G indexed by I form a k × k invertible submatrix of
G, denoted GI .

Let us choose an information set I and the columns of c and e restricted to I
(denoted by cI and eI), we then have that cI = mGI +eI . The main idea of the attack
is that if eI = 0 as GI is non-singular, m can be recovered by Gaussian elimination.
This is called plain information-set-decoding.

In 1988 Lee and Brickell proposed to allow a very small number of errors (0 ≤ p ≤ t)
in the selected eI [71]. In Algorithm 4 we can see the main idea of the attack.

We call generalized information-set-decoding attack when eI 6= 0. Leon [72] pro-
posed an improvement by looking for codewords containing zeros in a windows of size
s. In 1989 Stern proposed [109] to divide the information set in two parts, allowing
to speed-up the search for codewords with zeros in the window by a birthday attack
technique. Other improvements have been proposed, see for example the following
papers: Canteaut and Chabaud [27], Bernstein et al. [16], Finiasz and Sendrier [47]
and Bernstein et al. [18]. All variants look for specific error patterns as shown in Fig-
ure 3.2 (taken from [93] and from [18]). In the figure we find the distribution of the
non-zero elements in the error vector and the number inside the boxes is the Hamming
weight of the corresponding segment.
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Algorithm 4 Information set decoding (for parameter p)

• Input: a k × n matrix G, the received word c, the error correcting capability t
and a parameter p such that 0 ≤ p ≤ t.

• Output: a vector ε ∈ Fn2 , with wt(ε) ≤ t such that c− ε ∈ C if such ε exists.

• 1. Choose an information set I and compute E
def
= c+ cIG

−1
I G

2. List all the possible errors e′j of Hamming weight ≤ p in the se I. For each
of this vectors compute

ε
def
= E + e′jG

−1
I G

– IF wt(ε) ≤ t, RETURN ε and STOP.

– ELSE try another vector of the list.

3. Go back to step 1.

0 t

p t-p

Plain information-set decoding

Lee-Brickell

p t-p0

s n-k-s

Leon

Stern

Ball-collision decoding

p t-2p0p

t-2p-2qqp p q

Figure 3.2: Distribution of the non-zero elements in the error vector (the number
inside the boxes is the Hamming weight of the corresponding segment).
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McEliece’s original parameters (n, k, t) = (1024, 524, 50) are not secure any more,
in Table 3.1 we can see the year, the method and the work factor of some attacks
based on information set decoding for this parameter. Ball-collision decoding [18] is
asymptotically faster than the algorithm proposed by Finiasz and Sendrier [47].

Table 3.1: Year, method and work factor of the different attacks on McEliece original
parameters (n, k, t) = (1024, 524, 50).

Year Method Work factor

1998 Canteaut and Chabaud [27] 264.2

2008 Bernstein, Lange and Peters [16] 260.5

2009 Finiasz and Sendrier [47] 259.9

This kind of attacks does not destroy the McEliece cryptosystem but may help
in the choice of secure parameters. We consider a parameter choice b-bit secure if it
takes at least 2b bit operations to decrypt a single ciphertext using information-set
decoding techniques. In Table 3.2 we can find some parameters for various security
levels in CCA2-secure variants of the McEliece’s cryptosystem taken from [16] and
the public key size of the RSA cryptosystem for those security levels [1].

Table 3.2: Parameters for various security levels in CCA2-secure variants of the
McEliece’s cryptosystem. Where (n, k) are the length and dimension of the Goppa
codes and t is the number of errors than can be corrected. And the public key size
for McEliece (PK-McEliece) and RSA (PK-RSA) cryptosystems.

Security level (n, k) t PK-McEliece PK-RSA

80-bit (2048, 1751) 27 520047 1248

128-bit (2960, 2288) 56 1537536 3248

256-bit (6624, 5129) 115 7667855 15424

3.2.2 Structural attacks

In the original paper McEliece proposed to choose the code amongst the irreducible
binary Goppa codes. With this choice (changing the parameters) no efficient algorithm
has been discovered yet for decomposing G into (S,G0, P ). Considering for the secret
key Γ(L, g) a t-error correcting binary irreducible Goppa codes of length n = 2u over
F2u , it is composed by

• a generator, a monic irreducible polynomial g(z) of degree t over F2u and

• a support, a vector L ∈ Fn2u with distinct coordinates.

If we know one of the two components we can find the other in a polynomial time
from the public key G:

1. If we know the support L, we can obtain g(z) using some codewords from G and
Equation 2.3.1 on page 17. After computing a few gcd’s (usually one is enough)
the generator polynomial is obtained.
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2. If we have the generator polynomial, we can construct a generator matrix G′ of
the Goppa code Γ(L0, g(z)) where L0 is fixed and chosen arbitrarily. We can
then obtain L by applying to G′ and G the support splitting algorithm due to
Sendrier [101].

In both cases, we need an exhaustive search attack, either by enumerating the ir-
reducible polynomials or the permutations. The first case is the best known structural
attack on McEliece’s encryption scheme due to Loidreau and Sendrier [75]. They give
a structural attack that reveals part of the structure of a “weak” G which is generated
from a “binary” Goppa polynomial. This attack can be avoided if we do not use such
weak public keys (this implies G0 should not be a BCH code). The second case is
Gibson’s attack: find an equivalent Goppa code of G (which is not necessarily G0)
such that we know a decoding algorithm for it. In [2] and [53] is shown that the
probability of this case is negligibly small.

In Chapter 5 we will present two structural attacks on two variants of the McElice’s
cryptosystem.

3.3 CFS signature scheme

The size of the keys in the McEliece PKC is one of the reasons to prefer the RSA PKC.
Another main disadvantage was the belief that McEliece could not be used to sign. A
digital signature is a small size piece of information, that depends on the message and
the signer. It needs an algorithm to compute a signature for any message (such that
the desired person is the only one that is able to sign) and a fast public verification
algorithm. Consider the following public-key cryptosystem: Let X be the set of plain
texts, Y the set of ciphertexts, e : X → Y the encryption function, d : Y → X
the decryption function (such that d ◦ e = id) and M the set of messages. Now let
h :M→ Y a one-way public collision-resistant hash function (i.e., it is hard to find m
and m′ in M such that h(m) = h(m′)). A signature scheme can be built from these
PKC:

• The signature of the message m ∈M is σ = d(h(m)).

• For the verification, we just have to apply the encryption function to σ and
check if e(σ) = h(m).

If we assume that h is independent from e and d, then the computation of d(h(m))
is as hard as the computation of d(y) for any y ∈ Y. If we assume now that the PKC
is based on error correcting codes, there is a problem in the computation of d(h(m)),
in fact it is very likely that h(m) is not a codeword unless it is explicitly produced
as an output of the encryption function, i.e., for any m ∈ M, h(m) = e(g(m)) for a
function g that should be secret. In this case g = d ◦ h and thus h is not independent
from e and d.

In 1990, Xinmei Wang proposed the first digital signature scheme based on error-
correcting codes [121], two years later Harn and Wang [58], Alabbadi and Wicker [3]
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and van Tilburg [116] showed that it was not a secure scheme. They also proposed
some modifications, but all of them have been attacked [4–6,117]. In 1993 Stern pro-
posed an identification scheme based on the syndrome decoding problem [110]; a dual
version (using generator matrix) was proposed by Véron [119]. In 1997 Kabatianskii
et al. proposed a signature scheme [63]. Its security and the efficiency have been stud-
ied in [29, 88]. The first practical code-based signature scheme [34] came out almost
twenty years after McEliece’s proposal. It is due to Courtois, Finiasz and Sendrier and
is called CFS signature scheme. The difference between encryption and this signature
scheme lies in the choice of the parameters of the binary Goppa codes. For signature
the Goppa codes have to correct very few errors i.e., they have a very high rate.

Let e and d be the encryption and decryption functions of Niederreiter cryptosys-
tem, with a binary irreducible [n = 2u, k = n− ut, 2t+ 1]-Goppa code. And let h be
a collision resistant hash function, from an arbitrarily long binary sequence to a value
in {0, 1}n−k. The algorithm to produce the CFS signature is described in Algorithm
5.

Algorithm 5 CFS signature scheme

Input: The encryption (e) and the decryption (d) functions, the message m and the
hash function h.
Output: σ, the signature of m.

1. ∀i ≥ 0, let yi = h(m||i) ∈ {0, 1}n−k.

2. Let i0 the smaller integer such that yi0 can be decoded, we denote xi0 = d(yi0).

3. σ = (xi0 , i0).

Verification: Check if e(xi0) and h(m||i0) are equals.

Overbeck and Sendrier state in [93, page 101] that “ The average number of at-
tempts needed to reach a decodable syndrome can be estimated by comparing the
total number of syndromes to the number of efficiently correctable syndromes:∑t

i=0

(
n
t

)
2n−k

' nt/t!

nt
=

1

t!
.”

Since by the definitions of the parameters of the Goppa code, 2n−k = 2ut = nt and as
t≪ n, we have

∑t
i=0

(
n
t

)
'
(
n
t

)
' nt

t! .

In Table 3.3 (from [34]) we can see the characteristics of the signature scheme
based on a (n = 2u, k = n− tu, d ≥ 2t+ 1)-binary Goppa code.

As proven in [34] CFS signature scheme security can be reduced to the syndrome
decoding problem and the distinguishability of binary Goppa codes from a random
code. However in Chapter 6, we will see that in joint work with Jean-Charles Faugère,
Ayoub Otmani, Ludovic Perret and Jean-Pierre Tillich [43], we solve the second prob-
lem in the range of parameters used in the CFS signature scheme. This is not an
attack in the system, but it invalidates the hypotheses of the security proof.
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Table 3.3: Characteristics of the signature scheme based on a (n = 2u, k = n− tu, d ≥
2t+ 1) binary Goppa code

Signature cost t!t2u3

Signature length (t− 1)u+ log2t
Verification cost t2u
Public key size tu2u

An attack on this signature scheme due to Bleichenbacher is explained in [47] and
consists of forging a valid signature for a chosen message. It is based in the Gen-
eral Birthday Attack and made the original CFS parameters insecure. Finiasz state
in [46] that “ for a given security level, resisting Bleichenbacher’s attack only requires
a small parameter increase, but this small increase can have a heavy impact on the
signature time or the public key size”. In 2010 [46] Finiasz proposed a modification
to the CFS signature scheme, called parallel CFS, that produce more than one CFS
signature in parallel for the same message and that resists Bleichenbacher’s attack.
There are other recent proposals based on quasi-dyadic codes, like Barreto’s et al. [10]
and Kobara’s [65].

We can also construct other cryptographic primitives, such as random numbers
generators, hash functions and identification schemes based on coding theory. We are
not going to introduce them but an overview can be found in [93].
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Chapter 4

McEliece Variants

The main drawback of McEliece PKC is the huge size of the public and the secret keys
(several hundred thousand bits in general). The secret key may be reduced by using a
pseudo-random number generator, save only the seed and recompute everything each
time. In this chapter we will see some examples of McEliece variants, using other
codes than the Goppa codes, that have been proposed to reduce the key size. Some
of the codes that will mention are defined in Section 2.3; the others are defined in
Appendix B.

In the last section we will introduce two McEliece variants: one is based on quasi-
cyclic alternant codes proposed by Berger et al. [11] and the other variant is based
on quasi-dyadic matrices proposed by Barreto and Misoczki [85]. We will see that
both papers follow a very similar approach and that the reduction (in comparison to
classical Goppa codes) in the key size of both schemes is impressive. In Chapter 5 we
will present two independent attacks [44,52] of these two variants.

In Chapter 3 we saw that the main idea of the McEliece cryptosystem is to choose
a code (given by a generator matrix G) that is easy to decode, and modify G in order

to hide its structure. In the original scheme McEliece proposed to set G′
def
= SGP , but

there are other ways to do this modification. In [93, page 100] Overbeck and Sendrier
regroup the main strategies used to hide the structure of a code. We may combine
these strategies but this have to be done carefully since it may lead to an insecure
cryptosystem.

4.1 Use other families of linear codes

If we change the family of linear codes used in the McEliece PKC we may find a
shorter key. If we for example use Reed-Solomon codes, we have to only remember
the generator polynomial and we can recreate the generator matrix from it. However,
such modifications can make the McElice PKC vulnerable to structural attacks. The
family of linear codes have to fulfill the following requirements:

1. Avoid enumeration: one should avoid the attack that consists in enumerating
all the codes in the family until a code equivalent to the public code is found.
This can be done by using Sendrier’s support-splitting algorithm [101]. This
algorithm determines if two generator matrices correspond to equivalent codes
and then recovers the permutation.

31
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2. Neither the generator nor the parity-check matrix of a permutation equivalent
code should give any information about the structure of the secret code.

The second item dismisses many families of codes, for example the GRS, the con-
catenated and the product codes.

Generalized Reed-Solomon codes (GRS): The structure of a permuted GRS
code can be easily recovered solving a linear system. The attack was presented by
Sidelnikov and Shestakov [108] in the cryptographic context, but the main idea was
previously introduced in [99]. The attack is based on the following property that relate
the parity-check matrix of a GRS code with its systematic form.

Proposition 4.1. Given Y = (y1, . . . , yn) a sequence of distinct elements in Fnq and
α = (α1, . . . , αn) a sequence of non-zero elements in Fnq , the systematic form of the

parity-check matrix (H
def
= V dm(n, Y )× diag(α)) is

H ′ =

 1 R1,r+1 . . . R1,n

. . .
...

. . .
...

1 Rr,r+1 . . . Rr,n


with

Ri,j =
yi
yj

r∏
l=1
l 6=i

αj − αl
αi − αl

for 1 ≤ i ≤ r and r ≤ j ≤ n.

Reducing the public-key matrix and using the fact that the systematic form is
unique we can find a system of equations such that the unknown variables are yi and
αi. The symmetries that we find in the expressions of Ri,j allow us to write a linear
system which can be solved in polynomial time.

Concatenated codes: These codes seemed to be a good candidate for replacing
Goppa codes, since they have an algorithm to decode really fast. In practice they
can decode ( i.e., with a probability near to 1) many more errors than the half of the
minimum distance. Unfortunately there is a structural attack against this family of
codes presented in [100, 102]. The attack is based on the existence of codewords of
small weight in the dual of the concatenated code. We can then find in a polynomial
time a concatenated structure equivalent to the initial one. This is not enough to
decode C but gives a lot of information about the structure of the code.

Product codes: These codes have the same property as the previous codes (there
exist a lot of codewords of small weights in the dual code). The same attack (as for
concatenated codes) can be adapted to this family of codes.
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Quasi-cyclic codes: This family of codes has the advantage of having a very simple
and compact description. Gaborit [51] first proposed to use them, Baldi and Chiar-
aluce did another proposal [9], but both have been attacked [89]. In the following
section we will introduce a variant introduced by Berger et al. [11] using quasi-cyclic
alternant codes. However, it has also been attacked. In Chapter 5 we will present two
independent attacks [44,52].

Reed Muller codes: These codes are one of the oldest and most studied families
of codes. In 1994 Sidelnikov proposed to use them for cryptography [107]. And was
attacked in 2007 by Minder and Shokrollahi [84].

Rank metric (Gabidulin) codes: These codes are a subclass of Srivastava codes,
their minimum distance is d = n − k + 1 and there exists an efficient decoding al-
gorithm [50]. They were proposed to be used in the McEliece PKC instead of the
Goppa codes in several proposal like [49, 50, 90], however all these variants proved to
be insecure [91,92].

There are some codes that may still be used (for some parameters):

Generalized concatenated codes: In this case it is possible to build codes such
that the dual distance is big enough, so the previous attack is not efficient in this case.
The construction of these codes is possible, but they will not have the same property
that the non generalized codes, and so they will not give the same advantage as the
others. It may be interesting to use this kind of codes in cryptography.

Algebraic geometry codes: Proposed by Janwa and Moreno [61], they are broken
by generalizing the attack of Sidelnikov and Shestakov [45, 77, 83]. The status is
unknown for the algebraic geometry codes with a subfield subcode construction.

LDPC: Another idea is to use very sparse matrices. In [104] Shokrollahi et al.
proposed to use Low Density Parity-Check (LDPC) codes, but they showed that it
is not a secure solution. In 2007 Baldi and Chiaraluce proposed to use quasi-cyclic
LDPC codes [9], but Otmani et al. developed an attack [89] that is able to recover
the secret key with very high probability. In 2008 Baldi et al. proposed a new version
of the cryptosystem that resists this attack [8].

Quasi-dyadic codes: In 2009 Barreto and Misoczki proposed to use quasi-dyadic
codes [85], will be explain this variant in the next section. It has been attacked
for almost all proposed parameters. In Chapter 5 we will describe two independent
attacks [44,52].

Srivastava: Persichetti [95] proposed a very similar variant to the one in [85] in
2011, which uses Srivastava codes. The attack presented in [52] cannot be applicable
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in this case. In the paper, the author says that this variant is secure against the attack
presented in [44].

Wild Goppa codes: Bernstein et al. propose to take a subclass of Goppa codes
which can correct more errors than the classical case for large fields [17].

4.2 Quasi-cyclic and quasi-dyadic variants of McEliece
PKC

In this section we present two McEliece variants: one uses quasi-cyclic alternant codes
by Berger et al. [11] and the other uses quasi-dyadic matrices by Barreto and Misoczki
[85]. In the following description the notation will differ from the one in [11,85]. This
is an inconvenience necessary in order to unify the description and to be able to apply
the attack (that we will introduce in Chapter 5).

4.2.1 Notation

Let r,m be integers and let q = 2r. We denote by Fq the finite field with q elements
and by Fqm its extension of degree m. In most of the cases we will consider the case
m = 2 and we stick to this until otherwise stated. For an element x ∈ Fq2 we denote
its conjugate xq by x. Given an Fq basis (1, ω) of Fq2 we denote by ψ : Fq2 → F2

q the
vector space isomorphism such that ψ(x) = ψ(x0 + ωx1) =

(
x1
x0

)
. Note that, without

loss of generality, we can choose θ such that ψ(x) =
( φ(x)
φ(θx)

)
where φ(x) = x+ x with

x = xq. Note that we have the identity

φ(x) = φ(x). (4.2.1)

A fact that we will use at several instances later is that given a = φ(αx) and b = φ(βx)
for some α, β, x ∈ Fq2 we can recover x as linear combination of a and b (as long as
α, β form an Fq basis of Fq2). More precisely it holds that

x =
α

βα+ βα
b+

β

βα+ βα
a (4.2.2)

All vectors are row vectors and they are right multiplied by matrices. The i.th com-
ponent of a vector x is denote by x(i). Let xi, ci two sets of elements in Fq2 of size n
and t ∈ N. Both variants have a secret key parity-check matrix of the form:

H =


φ(c0) φ(c1) . . . φ(cn−1)
φ(θc0) φ(θc1) . . . φ(θcn−1)

...
...

...

φ(c0x
t−1
0 ) φ(c1x

t−1
1 ) . . . φ(cn−1x

t−1
n−1)

φ(θc0x
t−1
0 ) φ(θc1x

t−1
1 ) . . . φ(θcn−1x

t−1
n−1)

 =

 sk0
...

sk2t−1

 (4.2.3)
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To simplify the notation later we denote by ski the i.th row of H. The public key
in both variants is

(public key) P
def
= SH, (4.2.4)

where S is a secret invertible 2t×2t matrix. Actually, in both schemes P is defined to
be the systematic form of H, which leads to a special choice of S. As we do not make
use of this fact for the attacks one might as well consider S as a random invertible
matrix. In both cases, without loss of generality c0 and x0 can be supposed to be 1.
In fact, given that the public key H is not uniquely defined, we can always include
the corresponding divisions needed for this normalization into the matrix S. The main
difference between the two proposals is the choice of the constants ci and the points
xi. In order to reduce the public key and the secret key size, those 2n values are
chosen in a highly structured way. Both schemes use random block-shortening of
very large private codes (exploiting the NP-completeness of distinguishing punctured
codes [120]) and the subfield subcode construction (to resist the classical attack of
Sidelnikov and Shestakov, see [108]). In [11, 85] the authors analyze the security of
their schemes and demonstrate that none of the known attacks can be applied. They
also prove that the decoding of an arbitrary quasi-cyclic (resp. an arbitrary quasi-
dyadic) code is NP-complete. For the subfield subcode construction, both schemes
allow in principle any subfield to be used. However the most interesting case in terms
of key size and performance is the case when the subfield is of index 2 (i.e., m = 2) and
we focus on this case only. Both schemes use a block based description of the secret
codes. They take b blocks of ` columns and t rows. The subfield subcode operation
will transform each block into a 2t× ` matrix and the secret parity-check matrix H is
the concatenation of the b blocks. Thus, one obtains a code of length `b.

4.2.2 The quasi-cyclic variant

Berger et al. propose [11] to use quasi-cyclic alternant codes over a small non-binary
field. Let α be a primitive element of Fqm and β ∈ Fqm an element of order ` (those
are public values). The secret key consists of b different values yj and aj in Fqm where
b is small, i.e., b ≤ 15 for the proposed parameters. The constants ci and points xi
are then defined by

c`j+i := βisaj and x`j+i := βiyj (4.2.5)

for all 0 ≤ i ≤ `− 1 and 0 ≤ j ≤ b− 1. Here 1 ≤ s ≤ `− 1 is a secret value. Table 4.1
lists the parameters proposed in [11]. Note that in [11] cyclic shifts (modulo `) of the
columns are applied. This does not change the structure of the matrix (since β has
order `) and that is why we can omit this from our analysis.

4.2.3 The quasi-dyadic variant

Barreto and Misoczki propose [85] to use binary Goppa codes in dyadic form. They
consider (quasi) dyadic Cauchy matrices as the parity-check matrix for their code.
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Table 4.1: Parameters proposed in [11].
q qm ` t b Public key size (bits)

I 51 100 9 8160
II 51 100 10 9792
III 28 216 51 100 12 13056
IV 51 100 15 20400

V 75 112 6 6750
VI 210 220 93 126 6 8370
VII 93 108 8 14880

However, it is well known that Cauchy matrices define generalized Reed Solomon
codes in field of characteristic 2 [85] and thus, up to a multiplication by an invertible
matrix which we consider to be incorporated in the secret matrix S, the scheme has
a parity-check matrix of the form (4.2.3).

Again, the only detail to be described here is how the constants ci and points xi
are chosen. First we choose ` = t a power of two. Next, choose v = [Fqm : F2] = mr
elements in Fqm : y0, y1, y2, y4, · · · , y2v . For each j =

∑v
k=0 jk2

k such that jk ∈ {0, 1}
(i.e., the binary representation of j) we define

yj =
v∑
k=0

jky2k + (wt(j) + 1)y0 (4.2.6)

for 0 ≤ j ≤ #Fqm − 1 and wt(j) is the Hamming weight of j. Moreover, choose b
different elements ki with 0 ≤ i ≤ #Fqm − 1, b different elements ai ∈ Fqm and define

x`i+j := yki⊕j and c`i+j := ai (4.2.7)

for all 0 ≤ j ≤ `− 1 and 0 ≤ i ≤ b− 1. This choice implies the following identity. For
j =

∑u−1
f=0 jf2f , where u = log2(`) it holds that

x`i+j =

u−1∑
f=0

jfx`i+2f + (wt(j) + 1)xli. (4.2.8)

Note that in [85] dyadic permutations are applied. However, this does not change the
structure of the matrix and that is why we can omit this from our analysis. Table 4.2
lists the parameters proposed in [85, Table 5].
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Table 4.2: Sample parameters from [85].
q qm ` t b public key size (bits)

128 128 4 4096
128 128 5 6144

28 216 128 128 6 8192
256 256 5 12288
256 256 6 16384
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Chapter 5

Attacks on two McEliece variants

In this chapter, we will present two independent attacks on the two McEliece variants
proposed in [11] and [85] (described in Section 4.2). The first four sections give
the attack presented by Gauthier-Umaña and Leander in [52], and the last section
introduces the independent attack proposed by Faugère et al. in [44].

5.1 General framework of the attack

The starting observation for our analysis and attacks is the following interpretation
of the entries in the public key P .

Proposition 5.1. Let H be the 2t × n parity-check matrix defined as in Equation
(4.2.3). Multiplying H by a 2t× 2t matrix S we obtain a 2t×n matrix P of the form

P = SH =


φ(c0g0(x0)) φ(c1g0(x1)) . . . φ(cn−1g0(xn−1))
φ(c0g1(x0)) φ(c1g1(x1)) . . . φ(cn−1g1(xn−1))

...
...

...
φ(c0g2t−1(x0)) φ(c1g2t−1(x1)) . . . φ(cn−1g2t−1(xn−1))


where gi are polynomials with coefficients in Fq2 of degree less than t. Moreover,
if S correspond to a bijective mapping, the polynomials gi form an Fq basis of all
polynomials of degree at most t− 1.

Proof of Proposition 5.1. It is enough to consider the effect of multiplying a vector
s ∈ Ftq by H. For convenience we label the coordinates of s as

s = (α0, β0, α1, β1, . . . , αt−1, βt−1)

We compute

sH = s


φ(θc0) . . . φ(θcn−1)
φ(c0) . . . φ(cn−1)

...
...

φ(θc0x
t−1
0 ) . . . φ(θcn−1x

t−1
n−1)

φ(c0x
t−1
0 ) . . . φ(cn−1x

t−1
n−1)


=

(
t−1∑
i=0

αiφ(θc0x
i
0) +

t−1∑
i=0

βiφ(c0x
i
0), . . . ,

t−1∑
i=0

αiφ(θcn−1x
i
n−1) +

t−1∑
i=0

βiφ(cn−1x
i
n−1)

)

=

(
φ(c0

t−1∑
i=0

(θαi + βi)x
i
0), . . . , φ(cn−1

t−1∑
i=0

(θαi + βi)x
i
n−1)

)
= (φ(c0g(x0)), . . . , φ(cn−1g(xn−1)))

39
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where g(x) =
∑t−1

i=0(θαi + βi)x
i.

This observation allows us to carry some of the spirit of the attack of Sidelnikov
and Shestakov (see [108]) on McEliece variants based on GRS codes. The basic idea
is that multiplying the public key P by a vector results (roughly speaking) in the
evaluation of a polynomial at the secret points xi. More precisely the following holds.

Proposition 5.2. Continuing the notation from above, multiplying the public parity-
check matrix P with a vector γ ∈ F2t

q results in

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) (5.1.1)

where gγ(x) =
∑2t−1

i=0 γigi(x).

As the values γ, gγ and γP are extensively used below we summarize their relation
in Table 5.1.

Table 5.1: The relation among the values γ, gγ and γP . The polynomials gi are
defined in Proposition 5.1

γ A vector in F2t
q

gγ The polynomial defined by gγ(x) =
∑2t−1

i=0 γigi(x).

γP A vector in Fnq whose entries are given by φ(cigγ(xi)).

If we would have the possibility to control the polynomial gγ (even though we do
not know the polynomials gi) then γP reveals, hopefully, useful information on the
secret key. While in general, controlling gγ seems difficult, it becomes feasible in the
case where the secret points xi and the constants ci are not chosen independently, but
rather satisfy (linear) relations. The attack procedure can be split into three phases.

Isolate: The first step of the attack consists in choosing polynomials gγ that we want
to use in the attack. The main obstacle here is that we have to choose gγ such that the
redundancy allows us to efficiently recover the corresponding γ. As we will see later,
it is usually not possible to isolate a single polynomial gγ but rather to isolate a vector
space of polynomials (or, equivalently, of vectors γ) of sufficiently small dimension.

Collect: After the choice of a set of polynomials and the recovery of the correspond-
ing vectors γ, the next step of the attack consists in evaluating those polynomials at
the secret points xi. In the light of Proposition 5.2 this is simply done by multiplying
the vectors γ with the public parity-check matrix P .

Solve: Given the information collected in the second step of the attack, we now
have to extract the secret key, i.e., the values xi and ci. This corresponds to solving
a system of equations. Depending on the type of collected information this is done
simply by solving linear equations, by first guessing parts of the key and then verifying
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by solving linear equations, or by solving non-linear equations with the help of Gröbner
basis techniques (see Appendix C). The advantage of the first two possibilities is that
one can easily determine the running time in general while this is not true for the
last one. However, the use of Gröbner basis techniques allows us to attack specific
parameters very efficiently.

The isolate phase and the collect Phase in detail

The redundancy in the choice of the points xi and the constants ci will allow us to
identify sets of polynomials or more precisely vector spaces of polynomials. In this
section we elaborate a bit more on this on a general level. Assume that we are able to
identify a subspace Γ ⊆ F2t

q such that for each γ ∈ Γ we know that gγ is of the form

gγ(x) = α1x
d1 + α2x

d2 + · · ·+ αrx
dr

for some αi ∈ Fq2 and di < t. Equation (5.1.1) states that multiplying γ with the
public key yields

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) .

Using the assumed form of gγ , and writing αi = αi,1 + αi,2θ with αi,1, αi,2 ∈ Fq, we
can rewrite φ(cgγ(x)) as

φ(cgγ(x)) = φ(c(α1x
d1 + α2x

d2 + · · ·+ αrx
dr))

= α1,1φ(cxd1) + α1,2φ(θcxd1) + · · ·+ αr,1φ(cxdr) + αr,2φ(θcxdr).

Recalling that we denote by ski the i.th row of the secret key (cf. Equation 4.2.3), we
conclude that

γP = α1,1 sk2d1 +α1,2 sk2d1+1 +α2,1 sk2d2 +α2,2 sk2d2+1 + · · ·+ αr,2 sk2dr+1 .

Now, if the dimension of Γ is 2r this implies that there is a one to one correspondence
between the elements γ ∈ Γ and the coefficient vector (α1, . . . , αr). Stated differently,
there exists an invertible 2r × 2r matrix M such that for a basis γ1, . . . , γ2r of Γ we
have  γ1

...
γ2r

P = M

 sk2d1
...

sk2dr+1

 , (5.1.2)

where we now know all the values on the left side of the equation. This has to be
compared to the initial problem (cf Equation 4.2.4) we are facing when trying to
recover the secret key given the public key, where S is an invertible 2t × 2t matrix.
In this sense, the first step of the attack allows us to break the initial problem into
(eventually much) smaller subproblems. Depending on the size of r (which will vary
between 1 and log2 t in the actual attacks) and the specific exponents di involved, this
approach will allow us to efficiently reconstruct the secret key.
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Note that we are actually not really interested in the matrix M , but rather in the
values xi and ci. Therefore, a description of the result of the isolate and collect phase
that is often more useful for actually solving for those unknowns is given by

M−1

 γ1
...
γ2r

P =

 sk2d1
...

sk2dr+1

 . (5.1.3)

The advantage of this description is that the equations are considerably simpler (in
particular linear in the entries of M−1) as we will see when attacking specific param-
eters.

5.2 Applying the framework to the quasi-cyclic variant

In this section we show how the framework described above applies to the McEliece
variant presented in [11] (defined in Section 4.2.2). In particular we are going to make
use of Equation (4.2.5). Recall that β is an element of order ` in Fq2 . If ` is a divisor
of q − 1, such an element is in the subfield Fq. This is the case for all the parameters
in Table 4.1 except the parameter set V . We describe first an attack that works for
parameters I-IV,VI and VII. Furthermore, for parameters VI and VII we describe
attacks that allow us to recover the secret key within a few seconds. And Finally
we will see the case that β is not in the subfield. In Table 5.2 we can see running
complexity of our attacks and the average running time for the different parameters
proposed in [11] (see Table 4.1). Each column corresponds to the three subsections
announced above.

Table 5.2: Parameters proposed in [11], the running complexity of our attacks and
the average running time. The attacks were carried on a PC with an Intel Core2 Duo
with 2.2 GHz and 3 GB memory running MAGMA version V2.15 − 12. Times are
averaged over 100 runs.

Assumed Complexity of the Average running Average running
security attacks (log2) time (sec) time (sec)

I 80 74.9 – –
II 90 75.1 – –
III 100 75.3 – –
IV 120 75.6 – –

V 80 – – 47
VI 90 87.3 62 –
VII 100 86.0 75 –

The case β ∈ Fq (parameters I-IV,VI and VII)

In this part we describe an attack that works essentially whenever β is in the subfield.
The attack has a complexity of roughly q6 × (ndb)(4nd + b)2(log2 q

2)3 (where nd =
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blog2(t− `)c) which is the best decoding attacks known so far (they are more efficient
results using Gröbner basis techniques [44]). Moreover, the attack is a key recovery
attack, thus running the attack once allows an attacker to efficiently decrypt any
ciphertext. However, these attacks are far from being practical (cf. Table 5.2, first
column, for actual values).

In the attack we apply the general framework twice. The first part will reduce
the number of possible constants ci to q6 values. In the second part, for each of those
possibilities, we try to find the points xi by solving an over defined system of linear
equations. This system will be solvable for the correct constants and in this case reveal
the secret points xi. The secret value s (cf. Equation (4.2.5)) can be recovered very
efficiently, we assume it to be known from now on, and we will see later how to find
it.

Recovering the Constants cj:

Isolate: We start by considering the simplest possible candidate for gγ , namely
gγ(x) = 1. The task now is to compute the corresponding vector γ. Multiplying the
desired vector γ with the public key P we expect (cf. Equation (5.1.1)) to obtain the
following

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) = (φ(c0), φ(c1), . . . , φ(cn−1)).

Now, taking Equation (4.2.5) into account, this becomes

γP =
(
φ(a0), φ(βsa0), φ(β2sa0), . . . , φ(β(`−1)sa0),

φ(a1), φ(βsa1), φ(β2sa1), . . . , φ(β(`−1)sa1),

...

φ(ab−1), φ(βsab−1), φ(β2sab−1), . . . , φ(β(`−1)sab−1)
)
.

Since β is in the subfield we have φ(βx) = βφ(x) for any x ∈ Fq2 . Using this identity
we see that γ corresponding to the constant polynomial gγ satisfies

γP = φ(a0)v0 + φ(a1)v1 + · · ·+ φ(ab−1)vb−1

where

vi = (0, . . . , 0︸ ︷︷ ︸
i`

, 1, βs, β2s, . . . , β(`−1)s, 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

In other words, the γ we are looking for is such that γP is contained in the space U
spanned by v0 up to vb−1, i.e., γP ∈ U = 〈v0, . . . , vb−1〉. Thus to compute candidates
for γ we have to compute a basis for the space Γ0 = {γ | γP ∈ U}. We computed this
space for many randomly generated public keys and observed the following.

Fact 3. The dimension of the space Γ0 is always 4.
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We do not prove this, but the next lemma explains why the dimension is at least
4.

Lemma 5.1. Let γ be a vector such that gγ(x) = α0 + α1x
`. Then γ ∈ Γ0.

Proof. To show that γ is in Γ0 we have to show that γP is a linear combination
of the vectors vi. To see this, it suffices to note that gγ(βx) = α0 + α1(βx)` =
α0 + α1x

` = gγ(x) as β` = 1. As the points xi satisfy Equation (4.2.5) we conclude
γP = φ(a0gγ(y0))v0 + φ(a1gγ(y1))v1 + · · ·+ φ(ab−1gγ(yb−1))vb−1.

As, due to Observation 3, dim(Γ0) = 4 we conclude that

{gγ | γ ∈ Γ0} = {α0 + α1x
` | α0, α1 ∈ Fq2}.

Collect Phase: Denote by γ1, . . . , γ4 a basis of the four dimensional space Γ0. Re-
ferring to Equation (5.1.3) we get

M−1


γ1
γ2
γ3
γ4

P =


sk0

sk1

sk2`

sk2`+1

 . (5.2.1)

for an (unknown) 4× 4 matrix M−1 with coefficients in Fq.

Solve Phase: We denote the entries of M−1 by (βij). The i.th component of the
first two rows of Equation (5.2.1) can be rewritten as

β00(γ1P )(i) + β01(γ2P )(i) + β02(γ3P )(i) + β03(γ4P )(i) = sk
(i)
0 = φ(ci) = ci + ci

β10(γ1P )(i) + β11(γ2P )(i) + β12(γ3P )(i) + β13(γ4P )(i) = sk
(i)
1 = φ(θci) = θci + θci.

Dividing the second equation by θ and adding them, we get

δ0(γ1P )(i) + δ1(γ2P )(i) + δ2(γ3P )(i) + δ3(γ4P )(i) =

(
θ

θ
+ 1

)
ci, (5.2.2)

where

δi =

(
β0i +

β1i

θ

)
∈ Fq2 .

Assume without loss of generality that c0 = 1. Then, for each possible choice of δ0, δ1
and δ2 we can compute δ3 (using c0 = 1) and subsequently candidates for all constants
ci. We conclude that there are (q2)3 possible choices for the constants ci (and thus in
particular for the b constants a0 = c0, . . . , ab−1 = c(b−1)`). We will have to repeat the
following step for each of those choices.

Recovering Points xi: Given one out of the q6 possible guesses for the constants
ci we now explain how to recover the secret values xi by solving an (over defined)
system of linear equations. Most of the procedure is very similar to what was done to
(partially) recover the constants.
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Isolate: Here we make use of polynomials gγ = xd for d ≤ t− 1. The case gγ = 1 is
thus a special case d = 0. Following the same computations as above, we see that for
the vector γ corresponding to gγ = 1 it holds that γP ∈ Ud where

Ud = 〈v(d)0, . . . , v(d)b−1〉 (5.2.3)

and

v(d)i = (0, . . . , 0︸ ︷︷ ︸
i`

, 1, βs+d, β2(s+d), . . . , β(`−1)(s+d), 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

As before we define Γd = {γ | γP ∈ Ud}, and, based on many randomly generated
public keys we state the following.

Fact 4. For d ≤ 2t− ` the dimension of the space Γd is always 4.

Similar as above, the next lemma, which can be proven similar as Lemma 5.1,
explains why the dimension of Γd is at least 4.

Lemma 5.2. Let γ be a vector such that gγ(x) = α0x
d + α1x

d+`. Then γ ∈ Γd.

As, due to Observation 4, dim(Γd) = 4 we conclude that

{gγ | γ ∈ Γd} = {α0x
d + α1x

d+` | α0, α1 ∈ Fq2}.

Collect Phase: Denote by γ(d)1, . . . γ(d)4 a basis of the four dimensional space Γd.
Referring to Equation (5.1.3) we get

M−1d


γ(d)1
γ(d)2
γ(d)3
γ(d)4

P =


sk2d

sk2d+1

sk2(`+d)

sk2(`+d)+1


for an (unknown) 4×4 matrix M−1d with coefficients in Fq from which we learn (similar
to Equation (5.2.2))(θ

θ
+ 1
)
cix

d
i = δ(d)0(γ(d)1P )(i) + δ(d)1(γ(d)2P )(i) + δ(d)2(γ(d)3P )(i) + δ(d)3(γ(d)4P )(i)

(5.2.4)
for unknowns δ(d)i ∈ Fq2 (and unknowns xi). How to solve such a system? Here,
the freedom of choice in d allows us to choose 1 ≤ d ≤ t − ` as a power of two. In
this case, Equations (5.2.4) become linear in the bits of xi when viewed as binary
equations for a fixed guess for ci. Let nd be the number of possible choices for d, i.e.,
nd = blog2(t− `)c. We get a linear system with (log2 q

2)(4nd + b) unknowns (4nd for
the unknowns δ(d)i and b unknowns for the points x`j = yj) and (log2 q

2)ndb equations
(log2 q

2 equation for each d and each component i = j`). Thus whenever b > 4 and
nd ≥ 2 (i.e., t ≥ 4) this system is likely to be over defined and thus reveals the secret
values xi. We verified the behavior of the system and observed the following.
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Fact 5. Only for the right guess for the constants ci the system is solvable. When we
fix wlog x0 = 1, for the right constants there is a unique solution for the values xi.

As there are q6 possibilities for the constants and it takes roughly (ndb)(4nd +
b)2(log2 q

2)3 binary operations to solve the system, the overall running time of this
attack is q6 × (ndb)(4nd + b)2(log2 q

2)3. For the concrete parameters the attack com-
plexity is summarized in Table 5.2 (first column).

Recovering s: Now that we have all the notation that we need, we can find s: let
d′ = d+ s then for 0 ≤ i ≤ b− 1

v(d)i = (0, . . . , 0︸ ︷︷ ︸
i`

, 1, βs+d, β2(s+d), . . . , β(`−1)(s+d), 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

)

= (0, . . . , 0︸ ︷︷ ︸
i`

, 1, βd
′
, β2d

′
, . . . , β(`−1)d

′
, 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

).

Then Γd = Γd′−s, as the dimension of Γd = 4 if 0 ≤ d ≤ 2t − `, we have that the
dimension of Γd′−s = 4 if 0 ≤ d′ − s ≤ 2t − ` i.e., if s ≤ d′ ≤ 2t − ` + s. The idea is
to check the dimension of Γd′−s for each d′ from 0 to 2t− 1 and s will be the first d′

such that dim(Γd′−1) = 2 and dim(Γd′) = 4.

Practical attacks for parameter sets VI and VII

In this part we describe how, using Gröbner basis techniques, we can recover the
secret key for the parameter sets VI and VII of Table 4.1 within a few seconds on a
standard PC. The attack resembles in large parts the attack described above. The
main difference in the solve phase is that we are not going to guess the constants to
get linear equations for the points, but instead solve a non-linear system with the help
of Gröbner basis techniques.

Isolate: Again, we make use of polynomials gγ = xd but this time with the restric-
tion t − ` ≤ d < `. To recover the corresponding vectors γ we make use of the space
Ud defined by Equation (5.2.3). Now, with the given restriction on d it turns out that
the situation, from an attacker’s point of view, is nicer as for Γd = {γ | γP ∈ Ud}, we
obtain

Fact 6. For t− ` ≤ d < ` the dimension of the space Γd is always 2.

Thus, we isolated the polynomials g(x) = αdx
d in this case. In other words

{gγ | γ ∈ Γd} = {αxd | α ∈ Fq2}.

The reason why we did not get the second term, i.e., xd+` in this case, is that the
degree of gγ is bounded by t− 1 and d+ ` exceeds this bound.
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Collect Phase: Denote by γ(d)1, γ(d)2 a basis of the two dimensional space Γd. Re-
ferring to Equation (5.1.3) we get

M−1d

(
γ(d)1
γ(d)2

)
P =

(
sk2d

sk2d+1

)
,

for an (unknown) 2× 2 matrix M−1d with coefficients in Fq.

Solve Phase: We denote the entries of M−1d by (βij). The i.th component of the
first row can be rewritten as

β00(γ(d)1P )(i) + β01(γ(d)2P )(i) = cix
d
i + cixdi (5.2.5)

Again, we can assume x0 = c0 = 1. This (for i = 0) reveals β00(γ(d)1P )(0) +

β01(γ(d)2P )(0) = 0 and thus β01 =
β00(γ(d)1P )(0)

(γ(d)2P )(0)
. Substituting back into Equation

(5.2.5) we get

β00

(
(γ(d)1P )(i) +

(γ(d)1P )(0)

(γ(d)2P )(0)
(γ(d)2P )(i)

)
= cix

d
i + cixdi .

For parameter sets VI and VII we successfully solved this set of equations within
seconds on a standard PC using MAGMA [23]. For parameters VI, d ranges from 33
to 92 and for parameters VII from 15 to 92. Thus in both cases we can expect to get a

highly overdefined system. This allows us to treat ci and xdi as independent variables,
speeding up the task of computing the Gröbner basis by a large factor. The average
running times are summarized in Table 5.2 (second column).

This attack does not immediately apply to parameters I to IV as here the range
of d satisfying t − ` ≤ d < ` is too small (namely d ∈ {49, 50}) which does not
result in sufficiently many equations. However, we anticipate that using Gröbner
basis techniques might speed up the attack for those parameters as well.

A practical attack for parameter set V

Recall that β is an element of order ` in Fq2 , we focus on the case that β is not in the
subfield Fq. In the case things are a little different.

Isolate Phase: Assume that again we would like to isolate the polynomial gγ(x) =
xd. Multiplying the vector γ with the public key P yields

γP =
(
φ(a0y0), φ(βs+da0y0), φ(β2(s+d)a0y0) . . . , φ(β(`−1)(s+d)a0y0),

φ(a1y1), φ(βs+da1y1), φ(β2(s+d)a1y1) . . . , φ(β(`−1)(s+d)a1y1),

...

φ(ab−1yb−1), φ(βs+dab−1yb−1), . . . , φ(β(`−1)(s+d)ab−1yb−1)
)
.
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However, as β is not in the subfield we cannot continue as before. Instead (γP )(0)

and (γP )(1) allow to recover a0y0 by means of (γP )(0) = φ(a0y0) and (γP )(1) =
φ(βs+da0y0) using Equation (4.2.2), which reveals a0y0 as

a0y0 =
(γP )(0)βs+d + (γP )(1)

βs+d + 1
.

The same argument reveals ajyj using (γP )(j`) and (γP )(j`+1). Therefore, when look-
ing for γ corresponding to xd we can solve for all γ such that γP satisfies

(γP )(j`+i) = φ

(
βi(s+d)

(γP )(j`)βs+d + (γP )(j`+1)

βs+d + 1

)
(5.2.6)

for 0 ≤ j < b and 0 ≤ i < `. We denote by Γd the space of all possible solutions, i.e.,

Γd = {γ | γP satisfies Equation (5.2.6) }

Fact 7. The dimension of Γd is in {4, 6, 8}.
We next explain those dimensions.

Lemma 5.3. {gγ | γ ∈ Γd} contains all polynomials

α0x
d + αd+`1 + α2x

r + α4x
r+`

of degree at most t− 1 where r = q(d+ s)− s mod `.

Proof. In order to prove Lemma 5.3 we claim that any polynomial satisfies either
g(βx) = βdg(x) or βsg(βx) = βd+sg(x) is in the set. The first condition is obvious
and the second follows from the fact that in this case (using Equation (4.2.1))

φ(βsg(βx)) = φ(βd+sg(x)) = φ(βd+sg(x))

and
φ(g(x)) = φ(g(x)).

If g(x) is a monomial g(x) = xr we get

g(βx) = βrg(x).

Thus, to satisfy the second equations r has to fulfil.

r = q(d+ s)− s mod `

Clearly, the smaller the dimension of Γd is, the better the attack. We pick only
those d such that dim Γd = 4 (avoiding the exponents d+ ` and r+ `). The condition
for this is

t− ` ≤ d ≤ ` and r − ` ≤ d ≤ `
and βd+s /∈ Fq. In this case

{gγ | γ ∈ Γd} = {α0x
d + α1x

r}

where r = q(d+ s)− s mod `. For parameter set V, we ran through all possible values
s and verified that in any case the number of suitable exponents d is at least 8.
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Collect Phase: The collect phase, is also different in this case. Denote by γ(d)1,
γ(d)2 two linearly independent elements in Γd. Define

gγ(d)1 = α0x
d + α1x

r

and
gγ(d)2 = α′0x

d + α′1x
r.

We have

(γ(d)1P )(i`) = φ(aig(yi))

= φ(ai(α0y
d
i + α1y

r
i ))

= φ(aiα0y
d
i + aiα1yri )

and

(γ(d)1P )(i`+1) = φ(aiβ
sg(βyi)) = φ(aiβ

s(α0β
dydi + α1β

ryri ))

= φ(βs+daiα0y
d
i + βs+raiα1yri ))

= φ(βs+d(aiα0y
d
i + aiα1yri ))

where we made use of the identity βs+r = βs+d. Thus, given (γ(d)1P )(i`) and (γ(d)1P )(i`+1)

allows us to compute
ηi = aiα0y

d
i + aiα1yri

and similarly
η′i = aiα

′
0y
d
i + aiα′1y

r
i .

We obtain vectors η, η′ ∈ Fbq2 such that(
η
η′

)
=

(
α0 α1

α′0 α′1

)(
a0y

d
0 , a1y

d
1 , . . . , ab−1y

d
b−1

a0yr0, a1y
r
1, . . . , ab−1y

r
b−1

)
Stated differently, there exist elements β0, β1, β2, β3 such that(

β0 β1
β2 β3

)(
η
η′

)
=

(
a0y

d
0 , a1y

d
1 , . . . , ab−1y

d
b−1

a0yr0, a1y
r
1, . . . , ab−1y

r
b−1

)
. (5.2.7)

Solve Phase: We only consider the first row of Equation (5.2.7). In other words

β0η
(i) + β1η

′(i) = aiy
d
i .

Again, we assume wlog that a0 = y0 = 1 and this allows us to represent β1 in terms
of the unknown β0. Thus, we finally get equations

β0η
(i) +

(
β0η

(0) + 1

η′0

)
η′(i) = aiy

d
i .

Using the computer algebra package MAGMA this system of equations can be solved
very quickly on a standard PC. We give the running time in Table 5.2 (third column).
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5.3 Applying the framework to the dyadic variant

In this section we introduce, in a very similar way as we did in Section 5.2, how to
apply the general framework of the attack to the McEliece variant introduced in [85]
and described in Section 4.2.3. For u = log2 t the attack has a complexity of roughly
q2× (log2 q

2)3(u2 + 3u+ b)2u(u+ b) binary operations, which for the parameters given
in [85] means that we can recover the secret key within at most a few days with a
standard PC (cf. Table 5.3).

Recovering Constants cj:

Isolate phase: As before we consider gγ(x) = 1 and we want to compute the cor-
responding vector γ. From Equation (5.1.1) we have that

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1))) = (φ(c0), φ(c1), . . . , φ(cn−1)).

Now, taking Equation (4.2.7) into account, this becomes

γP = (φ(a0), φ(a0), φ(a0) . . . , φ(a0),

φ(a1), φ(a1), φ(a1) . . . , φ(a1),

...

φ(ab−1), φ(ab−1), φ(ab−1) . . . , φ(ab−1)) .

We see that γ corresponding to the constant polynomial gγ satisfies

γP = φ(a0)v0 + φ(a1)v1 + · · ·+ φ(ab−1)vb−1

where
vi = (0, . . . , 0︸ ︷︷ ︸

i`

, 1, 1, 1, . . . , 1, 0, . . . 0︸ ︷︷ ︸
((b−1)−i)`

) for 0 ≤ i ≤ b− 1.

Let U be the space spanned by v0 up to vb−1. The γ that we are looking for is such
that

γP ∈ U = 〈v0, . . . , vb−1〉.

Thus in order to find γ we have to compute a basis for the space Γ0 = {γ | γP ∈ U}.
We did this for many randomly generated public keys and observe the following.

Fact 8. The dimension of the space Γ0 is always 2.

The next lemma shows, why the dimension is at least 2.

Lemma 5.4. Let γ be a vector such that gγ(x) = α0. Then γ ∈ Γ0.

Note that dim Γ0 = 2 is actually the best case we can hope for within our frame-
work.
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Collect Phase: Denote by γ1, γ2 a basis of the two dimensional space Γ0. Referring
to Equation (5.1.3) we get

M−1
(
γ1
γ2

)
P =

(
sk0

sk1

)
(5.3.1)

for an (unknown) 2× 2 matrix M−1 with coefficients in Fq.

Solve Phase: We denote the entries of M−1 by (βij). We get(
β00 β01
β10 β11

)(
γ1
γ2

)
P =

(
φ(c0), φ(c1), · · · , φ(cb−1)
φ(θc0), φ(θc1), · · · , φ(θcb−1)

)
.

Assuming wlog that c0 = 1, we can compute β01 as a function of β00 and β11 as a
function of β10. Then guessing β00 and β10 allows us to recover all the constants. We
conclude that there are q2 possible choices for the b constants a0, . . . , ab−1. We will
have to repeat the following step for each of those choices.

Recovering Points xi: Assuming that we know the constants ci we explain how
to recover the secret values xi by solving an (over-defined) system of linear equations.
If the set of constants that we have chosen in the previous step is not the correct one,
the system will not be solvable.

Isolate: We start by considering gγ(x) = x, and multiply the desired vector γ with
the public key P . We expect (cf. Equation (5.1.1)) to obtain the following:

γP = (φ(c0gγ(x0)), . . . , φ(cn−1gγ(xn−1)))

then

γP = (φ(a0x0), φ(a0x1), . . . , φ(a0x`−1),
φ(a1x`), φ(a1x`+1), . . . , φ(a1x2`−1),

...
...

...
φ(ab−1x(b−1)`), φ(ab−1x(b−1)`+1), . . . , φ(ab−1xb`−1)).

(5.3.2)

Recalling Equation (4.2.8) we see that the vector γ we are looking for satisfies

(γP )(`i+j) =

u−1∑
f=0

jf (γP )(`i+2f ) + (1 +WH(j))(γP )(`i) ∀ 0 ≤ i < b, 0 ≤ j < `(5.3.3)

where j =
∑u−1

f=0 jf2f is the binary representation of j. Denoting Γ1 = {γ ∈
F2t
q | γ satisfies (5.3.3)} we got the following observation by randomly generating many

keys.

Fact 9. The dimension of the space Γ1 is always u+ 1.

Clearly, the dimension is at least u+ 1 as we are actually only checking if gγ is F2

affine and therefore if γ is such that gγ(x) = α0 + α1x + α2x
2 + · · · + αux

2u−1
then

γ ∈ Γ1.
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Collect Phase: A straight-forward application of Equation (5.1.2) would lead to a
linear system that becomes only over-defined for a large number of blocks. Thus, in
order to avoid this we modify the collect phase as follows. Let γ ∈ Γ1 be given. We
have

γP = (φ(a0gγ(x0)), φ(a0gγ(x1)), . . . , φ(a0gγ(xl−1)),

φ(a1gγ(x`)), φ(a1gγ(x`+1)), . . . , φ(a1gγ(x2`−1)), . . . )

where gγ is an F2 affine polynomial. Making use of the identity

x0 + xi = x` + x`+i ∀ 0 ≤ i < `

allows us to compute µ
(i)
γ = φ(a0(gγ(x0 + xi) + gγ(0))) and ν

(i)
γ = φ(a1(gγ(x0 + xi) +

gγ(0))). As we assume we know the constants a0 and a1, given µ
(i)
γ and ν

(i)
γ we can

recover (cf. Equation (4.2.2)) z
(i)
γ = gγ(x0 + xi) + g(0) (as long as (a0, a1) is an Fq

basis of Fq2). Next, by solving a system of linear equations, we compute a γ′ such
that

z
(i)
γ′ = θz(i)γ .

It turns out that the corresponding polynomial gγ′ is unique up to adding constants,
i.e., gγ′ = θgγ + c. Summarizing our findings so far we get

γP = (φ(a0gγ(x0)), φ(a0gγ(x1)), . . . , φ(ab−1gγ(xn−1)))

γ′P = (φ(θa0gγ(x0) + a0c), φ(θa0gγ(x1) + a0c), . . . , φ(θab−1gγ(xn−1) + ab−1c)).

This, again using Equation (4.2.2), allows us to compute

δ = (a0gγ(x0), . . . , ab−1gγ(xn−1)) + (a0c
′, . . . , ab−1c

′) + (a0c
′′, . . . , ab−1c

′′)

for (unknown) constants c′, c′′. Repeating this procedure for different elements γ ∈ Γ1

will eventually result in δ1, . . . , δu+2 that span a space of dimension u + 2. The data
we collected can thus be written as

 δ1
...

δu+2

 = M


(a0, a0, . . . , ab−1)
(a0, a0, . . . , ab−1)

(a0x0, a0x1, . . . , ab−1xn−1)
...

...

(a0x
2u−1

0 , a0x
2u−1

1 , . . . , ab−1x
2u−1

n−1 )

 (5.3.4)

for an invertible (u+ 2)× (u+ 2) matrix M .

Solve Phase: Multiplying Equation (5.3.4) by M−1 yields equations that, when
viewed as binary equations, are linear in the entries of M−1 and the values xi (as we
assume the ai to be known). The first two rows of M are determined by the (known)
values of the constants ai. Thus we are left with Nu = log2(q

2)(u(u + 2) + (u + b))
unknowns, i.e., the remaining u(u+ 2) entries of M−1 and the u+ b points

x0, x1, x2, x4, . . . , x2u−1 , x`, x2`, x3`, . . . x(b−1)`
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(all other points are given as linear combinations of those). The number of equations
is Ne = log2(q

2)(u+b)×u. In particular, whenever b ≥ 4 and u ≥ 4, i.e., t ≥ 24, we get
more equations than unknowns and can hope for a unique solution. We implemented
the attack and observed the following.

Fact 10. Only for the right guess of the constants ci the system is solvable. In this
case the constants x0 and x1 could be chosen as arbitrary non-zero elements in Fq2.

As there are q2 possibilities for the constants and it takes roughly (NeN
2
u) bi-

nary operations to solve the system, the overall running time of this attack is q2 ×
(log2 q

2)3(u2 + 3u + b)2u(u + b) binary operations. In Table 5.3 we computed the
complexity of the attack for the sample parameters given in [85, Table 5].

Table 5.3: Sample parameters from [85] along with the complexity of our attack.
Running time was measured on a PC with an Intel Core2 Duo with 2.2 GHz and 3
GB memory running MAGMA version V2.15− 12.
q qm ` t b Public key Assumed Complexity of Estimated

size security the attack (log2) running time(h)

128 128 4 4096 80 43.7 36
128 128 5 6144 112 43.8 41

28 216 128 128 6 8192 128 44.0 47
256 256 5 12288 192 44.8 107
256 256 6 16384 256 44.9 125

5.4 The binary case of the dyadic variant

In [85] Barreto and Misoski discusses why in the binary case, for chosen parameters,
the cryptosystem is not affected by the attacks presented by Faugère et.al. in [44].
We decide to do the binary case in a separated section, to study it in a more detail
way and see for which parameters the attack will be effective.

All the notation is like in the Section 4.2.1, we just do some small modifications
to be in the binary case: let m be an integer, we denote by F2m the extension of F2 of
degree m. For an element x ∈ F2m we denote its conjugate by x. Given an F2 basis
1, ω1, · · · , ωm−1 of F2m we denote by ψ : F2m → (F2)

m the vector space isomorphism
such that

ψ(x) = ψ(x0 + ω1x1 + · · ·+ ωm−1xm−1) = (xm−1, · · · , x1, x0)T .

Note that, without loss of generality, we can choose (θ0, · · · , θm−1) such that

ψ(x) = (φ(θ0x), · · · , φ(θm−1x))T

where φ(x) = Tr(x) = x + x2 + · · · + x2
m−1

is the trace mapping. A fact that we
will use at several instances later is that given φ(α0x), φ(α1x), · · · , φ(αm−1x) for some
α0, α1, · · · , αm−1, x ∈ F2m we can recover x as long as α0, α1, · · · , αm−1 form a basis
of F2m .
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Recovering Constants cj: This can be done exactly in the same way as in the pre-
vious section, keeping the same notation, we did the isolate phase for many randomly
generated public keys and observed the following.

Fact 11. The dimension of the space Γ0 is always m.

Lemma 5.4 shows, why the dimension is at least m. Note that dim Γ0 = m is
actually the best case we can hope for within our framework.

Collect Phase: Denote by (γ0, · · · , γm−1) a basis of the m dimensional space Γ0.
Referring to Equation (5.1.3) we get

M−1

 γ0
...

γm−1

P =

 sk0
...

skm−1

 (5.4.1)

for an (unknown) m×m matrix M−1 with coefficients in F2.

Solve Phase: We denote the entries of M−1 by (βij). We get β00 · · · β0(m−1)
... · · ·

...
β(m−1)0 · · · β(m−1)(m−1)


 γ0

...
γm−1

P =

 φ(θ0c0), · · · , φ(θ0cb−1)
... · · ·

...
φ(θm−1c0), · · · , φ(θm−1cb−1)

 .

Assuming wlog that c0 = 1, we can compute the first column of M−1 as a function
of the other columns. Then guessing (m− 1)×m unknowns, allows us to recover all
the constants. We conclude that there are 2m(m−1) possible choices for the b constants
a0, . . . , ab−1. We will have to repeat the following step for each of those choices.

Recovering Points xi: Doing exactly the same as in the previous section and
keeping the same notation, we made the following observation by randomly generating
many keys.

Fact 12. The dimension of the space Γ1 is always (u+ 1)m.

Clearly, the dimension is at least (u + 1)m as we are actually only checking if gγ
is F2 affine and therefore if γ is such that gγ(x) = α0 + α1x + α2x

2 + · · · + αux
2u−1

then γ ∈ Γ1.

Collect Phase: A straight-forward application of Equation (5.1.2) would lead to a
linear system that becomes only over-defined for a large number of blocks. Thus, in
order to avoid this we modify the collect phase as follows. Let γ ∈ Γ1 be given. We
have

γP = (φ(a0gγ(x0)), φ(a0gγ(x1)), . . . , φ(a0gγ(xt−1)),

φ(a1gγ(xt)), φ(a1gγ(xt+1)), . . . , φ(a1gγ(x2t−1)), . . . )
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where gγ is an F2 affine polynomial. Making use of the identity

x0 + xi = xt + xt+i ∀ 0 ≤ i < t

allows us to compute µ
(i)
0 = φ(a0(gγ(x0+xi)+gγ(0))) , µ

(i)
1 = φ(a1(gγ(x0+xi)+gγ(0)))

, · · · , µ(i)m−1 = φ(am−1(gγ(x0 + xi) + gγ(0))). As we assume we know the constants

a0, a1, · · · , am−1, given µ
(i)
0 , · · · , µ(i)m−1 we can recover z

(i)
γ = gγ(x0 + xi) + gγ(0) (as

long as (a0, a1, · · · , am−1) is an F2 basis of F2m , this happen with probability 0.288 1).
Next, by solving a system of linear equations, we compute γj for j = 0, 1, · · · ,m− 1,
such that

z(i)γj = θjz
(i)
γ .

It turns out that the corresponding polynomial gγj is unique up to adding constants.
Summarizing our findings so far we get

γ0P = (φ(θ0a0gγ(x0)), φ(θ0a0gγ(x1)), . . . , φ(θ0ab−1gγ(xn−1)))

γ1P = (φ(θ1a0gγ(x0) + a0c1), φ(θ1a0gγ(x1) + a0c1), . . . , φ(θ1ab−1gγ(xn−1) + ab−1c1))

...

γm−1P = (φ(θm−1a0gγ(x0) + a0cm−1), . . . , φ(θm−1ab−1gγ(xn−1) + ab−1cm−1)).

This allows us to compute

δ = (a0gγ(x0), a0gγ(x1), . . . , ab−1gγ(xn−1)) + (a0c
′
0, a0c

′
0, . . . , ab−1c

′
0) +

(a20c
′
1, a

2
0c
′
1, . . . , a

2
b−1c

′
1) + · · ·+ (a2

m−1

0 c′m−1, a
2m−1

0 c′m−1, . . . , a
2m−1

b−1 c′m−1)

for (unknown) constants c′0, c
′
1, · · · , c′m−1. Repeating this procedure for different el-

ements γ ∈ Γ1 will eventually result in δ1, . . . , δu+m that span a space of dimension
u+m. The data we collected can thus be written as

 δ1
...

δu+m

 = M



(a0, a0, . . . , ab−1)
...

(a2
m−1

0 , a2
m−1

0 , . . . , a2
m−1

b−1 )
(a0x0, a0x1, . . . , ab−1xn−1)

...
...

(a0x
2u−1

0 , a0x
2u−1

1 , . . . , ab−1x
2u−1

n−1 )


(5.4.2)

for an invertible (u+m)× (u+m) matrix M .

Solve Phase: Multiplying Equation (5.4.2) by M−1 yields equations that, when
viewed as binary equations, are linear in the entries of M−1 and the values xi (as we
assume the ai to be known). The first m rows of M are determined by the (known)

1The probability that (a0, a1, · · · , am−1) is an F2 basis of F2m is
∏m−1
i=1

2m−2i

2m
≈ 0.288 for m ≥ 8.
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values of the constants ai. Thus we are left with Nu = m(u(u+m)+(u+b)) unknowns,
i.e., the remaining u(u+m) entries of M−1 and the u+ b points

x0, x1, x2, x4, . . . , x2u−1 , xt, x2t, x3t, . . . , x(b−1)t

(all other points are given as linear combinations of those). The number of equations
is Ne = mu(u+ b).

In particular, whenever b ≥ dum+u
u−1 e, we get more equations than unknowns and

can hope for a unique solution. We implemented the attack and observed the following.

Fact 13. Only for the right guess for the constants ci the system is solvable. In this
case the constants x0 and x1 could be chosen as arbitrary non-zero elements in F2m.

As there are 2m(m−1) possibilities for the constants and it takes roughly (NeN
2
u)

binary operations to solve the system, the overall running time of this attack is
2m(m−1)m3u(u+ b)(u2 + (m+ 1)u+ b)2 binary operations. In Table 5.4 we computed
the complexity of the attack for different values of m and t, and give the number of
blocks needed such that the attack can be applied, i.e., if the code has more blocks
that the one in the table, the attack will be effective.

Table 5.4: Complexity of the attack, security level and minimum number of block
needed to use the attack for different parameters

m t Number of block Complexity of the Assumed security
needed Attack (log2) level (log2)

16 128 61 275 275,4
256 33 276 300

64 112 215 215,6
14 128 40 216 217

256 24 217 231

12 64 55 164 164,78
128 26 165 171

Note that if we use more blocks that the one in the table 5.4, the security level
is bigger, but the complexity of the attack is still the same (since using that many
blocks as in the table, we can find the constants, and then find the remaining blocks
is not that expensive). This can be observe in table 5.5.

For m = 8 and m = 10 it is not possible to use the attack. In the first case the
minimum number of blocks that we need to applied the attack is too big, and the the
code cannot exist. In the second case, the assumed security is always smaller than the
complexity of the attack.
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Table 5.5: Complexity of the attack, security level
m t Number of block Number of block Complexity of the Assumed security

needed used Attack (log2) level (log2)

62 278
16 128 61 64 275 284

70 300

34 311
16 256 33 38 276 252

42 389

41 226
14 128 40 46 216 247

50 263

25 246
14 256 24 29 217 301

32 338

27 177
12 128 26 32 165 209

36 230

5.5 An independent attack due to Faugère et al.

Faugère et al. proposed an independent attack in [44] that we will briefly explain
in this section. As we showed earlier, given a sequence X = (X1, . . . , Xn) ∈ Fnqm of
distinct elements and Y = (Y1, . . . , Yn) ∈ Fnqm of non-zero elements, the matrix

H = V dm(r,X)×Diag(Y )

is the parity-check matrix of a Goppa code Γ(X,Y ). We also know that given the
generator matrix G of Γ(X,Y ) we have that HGT = 0, then if we denote by gi,j the
entries of G in the ith row and the jth column, we have that:

{
gi,1Y1X

e
1 + · · ·+ gi,nYnX

e
n = 0|i ∈ {1, . . . , k}, e ∈ {0, . . . , r − 1}

}
. (5.5.1)

We also know by Fact 2, that if we are able to find X and Y , we are able to
decode Γ(X,Y ). As McEliece PKC uses Goppa codes, this means that if we are able
to solve the system of equation presented in Equation 5.5.1 we are also able to find the
secret key in the McEliece PKC. For the original scheme, the system is too large, but
for the variants [11] and [85], the structure added in the codes permit to drastically
reduce the number of variables; allowing to solve (5.5.1) for a large set of parameters
in polynomial-time using dedicated Gröbner bases techniques. This attack allow to
recover the key in few seconds for almost all the parameters proposed in [11] and [85],
only the binary case of the Quasi-dyadic variant is still not attacked.
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Chapter 6

A Distinguisher for high rate
McEliece cryptosystem

This chapter investigates the difficulty of the Goppa Code Distinguishing (GCD) prob-
lem which first appeared in [34]. This is a decision problem that aims at recognizing
in polynomial time a generator matrix of a binary Goppa code from a randomly
drawn binary matrix. It is assumed that no polynomial time algorithm exists that
distinguishes a generator matrix of a Goppa code from a randomly picked generator
matrix.

We present a deterministic polynomial-time distinguisher for high rate codes. It
is based on the algebraic attack developed by Faugère et al. against compact variants
introduced in [44]. In this approach, the key-recovery problem is transformed into the
one of solving an algebraic system (cf. Section 5.5). By using a linearizing technique,
we are able to derive a linear system whose rank is different from what one would
expect. More precisely, we observe experimentally that this defect in the rank is
directly related to the type of codes. This chapter is based on the paper [43] that is a
joint work with Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret and Jean-Pierre
Tillich.

We first define an algebraic distinguisher, then provide explicit formulas that pre-
dict the behavior of the distinguisher coming from heavy experimentations. In Section
6.2, we give a proof of its typical behavior in the random case. In Section 6.3 and
Section 6.4, we give explanations of the formulas for alternant and binary Goppa
codes. And finally, we conclude over the cryptographic implications the distinguisher
induces.

6.1 The distinguisher

Keeping the notation from Section 5.5, let G = (gij)16i6k
16j6n

be the generator matrix of

the public code. We can assume without loss of generality that G is systematic in its
k first positions, such a form can be easily obtained by a Gaussian elimination and by
a suitable permutation of the columns. We describe now a simple way of using this
particular form for solving (5.5.1). The strategy is as follows: let P = (pij) 16i6k

k+16j6n
be the submatrix of G formed by its last n− k = mr columns (i.e., G = (Ik|P )). For
any i ∈ {1, . . . , k} and e ∈ {0, . . . , r − 1}, we can rewrite (5.5.1) as

YiX
e
i =

n∑
j=k+1

pi,jYjX
e
j . (6.1.1)

59
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Because of the trivial identity YiYiX
2
i = (YiXi)

2 and Equation 6.1.1 it follows that

∀i ∈ {1, . . . , k},


Yi =

∑n
j=k+1 pi,jYj

YiXi =
∑n

j=k+1 pi,jYjXj

YiX
2
i =

∑n
j=k+1 pi,jYjX

2
j

for all i in {1, . . . , k}, we get:

n∑
j=k+1

pi,jYj

n∑
j=k+1

pi,jYjX
2
j =

 n∑
j=k+1

pi,jYjXj

2

.

It is possible to reorder this to obtain

n−1∑
j=k+1

n∑
j′>j

pi,jpi,j′
(
YjYj′X

2
j′ + Yj′YjX

2
j

)
= 0.

We can now linearize this system by letting Zjj′
def
= YjYj′X

2
j′+Yj′YjX

2
j . We obtain

a system LP of k linear equations involving the Zjj′ ’s:

LP
def
=


n−1∑
j=k+1

n∑
j′>j

pi,jpi,j′Zjj′ = 0

∣∣∣∣ i ∈ {1, . . . , k}
 . (6.1.2)

To solve this system it is necessary that the number of equations is greater than the
number of unknowns i.e., k >

(
mr
2

)
with the hope that the rank of LP denoted by

rank(LP) is almost equal to the number of variables. Observe that the linear systems
(6.1.2) have coefficients in Fq whereas solutions are sought in the extension field Fqm .
But the dimension D of the vector space solution of LP does not depend on the
underlying field because LP can always be seen as a system over Fqm . Remark that
we obviously have D =

(
mr
2

)
− rank(LP).

It appears that D is amazingly large. It even depends on whether or not the code
with generator matrix G is chosen as a (generic) alternant code or as a Goppa code.
Interestingly enough, when G is chosen at random, rank(LP) is equal to min

{
k,
(
mr
2

)}
with very high probability. In particular, the dimension of the solution space is typi-
cally 0 when k is larger than the number of variables

(
mr
2

)
.

Although this defect in the rank is an obstacle to break the McEliece cryptosystem,
it can be used to distinguish the public generator from a random code. Moreover,
since the linear system LP is defined over Fq, there exist two vector spaces solution
depending on whether the underlying field is Fqm or Fq. This duality leads to the
following definition.

Definition 6.1. For any integer r > 1 and m > 1, let us denote by N
def
=
(
mr
2

)
the

number of variables in the linear system LP as defined in (6.1.2) and D the dimension
of the vector space solution of LP. The normalized dimension of LP denoted by ∆ is
defined as:

∆
def
=
D

m
.
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We consider three cases corresponding to the possible choices for the entries pi,j ’s,
we denote by ∆random the normalized dimension when the pij ’s are chosen uniformly
and independently at random in Fq. When G is chosen as a generator matrix of a
random alternant (resp. Goppa) code of degree r, we denote the normalized dimension
by ∆alternant (resp. ∆Goppa). Note that in our probabilistic model, a random alter-
nant code is obtained by picking uniformly and independently at random two vectors
(x1, . . . , xn) and (y1, . . . , yn) from (Fqm)n such that the xi’s are all different and the
yi’s are all nonzero. A random Goppa code is obtained by also taking in the same
way a random vector (x1, . . . , xn) in (Fqm)n with all the xi’s different and a random
irreducible polynomial g(z) =

∑
i γiz

i of degree r.

A thorough experimental study (see Appendix D) through intensive computations
with Magma [23] by randomly generating alternant and Goppa codes over the field Fq
with q ∈ {2, 4, 8, 16, 32} for values of r in the range {3, . . . , 50} and several m revealed
that the (normalized) dimension of the vector space over Fq of the solutions of (6.1.2)
follows the following formulas. Recall that by definition N =

(
mr
2

)
and k = n − rm

where n 6 qm.

Experimental Fact 1 (Alternant Case). As long as N −m∆alternant < k, with very
high probability the normalized dimension ∆alternant has the following value Talternant:

Talternant =
1

2
(r − 1)

(
(2e+ 1)r − 2

qe+1 − 1

q − 1

)
(6.1.3)

where e
def
=
⌊
logq(r − 1)

⌋
.

As for the case of random Goppa codes we also obtain formulas different from
those of alternant codes. Note however that the Goppa codes are generated by means
of a random irreducible g(z) of degree r and hence g(z) has no multiple roots. In
particular, we can apply Theorem 2.7 in the binary case.

Experimental Fact 2 (Goppa Case). As long as N −m∆Goppa < k, with very high
probability the normalized dimension ∆Goppa has the following value TGoppa:

TGoppa =


1
2(r − 1)(r − 2) = Talternant for r < q − 1

1
2r
(

(2e+ 1)r − 2qe + 2qe−1 − 1
)

for r > q − 1
(6.1.4)

where e is the unique integer such that:

qe − 2qe−1 + qe−2 < r 6 qe+1 − 2qe + qe−1.

Based upon these experimental observations, we are now able to define a distin-
guisher between random codes, alternant codes and Goppa codes. This distinguisher
will be in particular useful to distinguish between McEliece public keys and random
matrices.
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Definition 6.2 (Random Code Distinguisher). Let m and r be integers such that
m > 1 and r > 1. Let G be a k × n matrix whose entries are in Fq with n 6 qm

and k
def
= n − rm. Without loss of generality, we assume that G is systematic i.e.,

G = (Ik | P ). Let LP be the linear system associated to G as defined in (6.1.2), and
∆ the normalized dimension of LP. We define the Random Code Distinguisher D as
the mapping which takes in input G and outputs b in {−1, 0, 1} such that:

D(G) =


−1 if ∆ = Talternant

0 if ∆ = TGoppa

1 otherwise.
(6.1.5)

6.2 The random case

The purpose of this section is to study the behavior of Drandom, namely the dimension
of the solution space of LP when the entries of the matrix P are drawn independently
from the uniform distribution over Fq. In this case, we can show that:

Theorem 6.1. Assume that N 6 k and that the entries of P are drawn independently
from the uniform distribution over Fq. Then for any function ω(x) tending to infinity
as x goes to infinity, we have

prob (Drandom > mrω(mr)) = o(1),

as mr goes to infinity.

Notice that if we choose ω(x) = log(x) for instance, then asymptotically the di-
mension Drandom of the solution space is with very large probability smaller than
mr log(mr). When m and r are of the same order (which is generally chosen in prac-
tice) this quantity is smaller than Dalternant or DGoppa which are of the form Ω(mr2).
The main ingredient for proving Theorem 6.1 consists in analyzing a certain (partial)
Gaussian elimination process on the matrix

M
def
= (pijpij′) 16i6k

k+16j<j′6n
.

We can see the matrix M in block form, each block consists of the matrix Bj =
(pi,k+jpi,k+j′) 16i6k

1≤j<j′6n−k
. Each block Bj is of size k × (rm− j).

M =


P1,k+1P1,k+2 . . . P1,k+1P1,k+n

P2,k+1P2,k+2 . . . P2,k+1P2,k+n

...
...

Pk,k+1Pk,k+2 . . . Pk,k+1Pk,k+n︸ ︷︷ ︸
B1

P1,k+2P1,k+3 . . .
P2,k+2P2,k+3 . . .

...
Pk,k+2Pk,k+3 . . .

P1,n−1P1,n

P2,n−1P2,n

...
Pk,n−1Pk,n


︸ ︷︷ ︸

Brm−1

(6.2.1)

Notice that in Bj , the rows for which pi,k+j = 0 consist only of zeros. To start
the Gaussian elimination process with B1, we will therefore choose rm − 1 rows for
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which pi,k+1 6= 0. This gives a square matrix M1. We perform Gaussian elimination
on M by adding rows involved in M1 to put the first block B1 in standard form. We
continue this process with B2 by picking now rm−2 rows which have not been chosen
before and which correspond to pi,k+2 6= 0. This yields a square submatrix M2 of size
rm−2 and we continue this process until we reach the last block. The key observation
is that:

rank(M) > rank(M1) + rank(M2) + · · ·+ rank(Mrm−1).

A rough analysis of this process yields the Theorem 6.1. The important point is that
what happens for different blocks are independent processes and it corresponds to
looking at different rows of the matrix P . We give all the previous results that we
need in order to prove Theorem 6.1.

It will be convenient to assume that the columns of M are ordered lexicograph-
ically. The index of the first column is (j, j′) = (k + 1, k + 2), the second one is
(j, j′) = (k + 1, k + 3), while the last one is (j, j′) = (n − 1, n). The matrices Mi’s
which are involved in the Gaussian elimination process mentioned above are defined
inductively as follows. Let E1 be the subset of {1, . . . , k} of indices s such that
ps,k+1 6= 0. Let F1 be the subset of E1 formed by its first rm − 1 elements (if these
elements exist). Now , we set

M1
def
= (ps,k+1ps,j) s∈F1

k+1<j≤n
. (6.2.2)

Let r1 be the rank of M1. To simplify the discussion, we assume that:

1. F1 = {1, 2, . . . , rm− 1},

2. the submatrix N1 of M1 formed by its first r1 rows and columns is of full rank.

Note that we can always assume this by performing suitable row and column permu-
tations. In other words M has the following block structure:

M =

(
N1 B1

A1 C1

)
.

We denote:

M (1) def
=

(
N−11 O

−A1N
−1
1 I

)
M,

where O is a matrix of size r1 × (k − r1) with only zero entries and I is the identity
matrix of size k − r1. Notice that M (1) takes the block form:

M (1) =

(
I B′1
O C ′1

)
.

This is basically performing Gaussian elimination on M in order to have the first r1
columns in standard form. We then define inductively the Ei, Fi,Mi,M

(i) and Ni as
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follows:

Ei
def
= {s|1 ≤ s ≤ k, ps,k+i 6= 0} \

i−1⋃
u=1

Fi−u,

Fi
def
= the first rm− i elements of Ei.

Mi is the submatrix of M (i−1) obtained from the rows in Fi and the columns associated
to the indices of the form (k+i, j′) where j′ ranges from k+i+1 to n. M (i) is obtained
from M (i−1) by first choosing a square submatrix Ni of Mi of full rank and with the
same rank as Mi and then by performing Gaussian elimination on the rows in order
to put the columns of M (i−1) involved in Ni in standard form (i.e., the submatrix of
M (i−1) corresponding to Ni becomes the identity matrix while the other entries in the
columns involved in Ni become zero). It is clear that the whole process leading to
M (rm−1) amounts to perform (partial) Gaussian elimination to M . Hence:

Lemma 6.1. When |Ei| ≥ rm− i, for all i ∈ {1, . . . , rm− 1}, we have:

rank(M) ≥
rm−1∑
i=1

rank(Mi).

Another observation is thatMi is equal to the sum of the submatrix (ps,k+ips,j) s∈Fi
k+i<j≤n

of M and a certain matrix which is some function on the entries pt,k+ipt,j where t be-
longs to F1 ∪ . . . Fi−1 and j ranges over {k+ i+ 1, n}. Since by definition of Fi, ps,k+i
is different from 0 for s in Fi. In addition, the rank of Mi does not change by multi-
plying each row of index s by p−1s,k+i. Then, it turns out that the rank of Mi is equal
to the rank of a matrix which is the sum of the matrix (ps,j) s∈Fi

k+i<j≤n
, another matrix

depending on the pt,k+ipt,j ’s (where t ranges over F1 ∪ . . . Fi−1) and the ps,k+1’s with
s ∈ Fi. This proves that:

Lemma 6.2. Assume that |Ei| ≥ rm − i for all i ∈ {1, . . . , rm − 1}. Then, the
random variables rank(Mi) are independent and rank(Mi) is distributed as the rank
of a square matrix of size rm− i with entries drawn independently from the uniform
distribution on Fq.

Another essential ingredient for proving Theorem 6.1 is the following well known
lemma (see for instance [31][Theorem 1])

Lemma 6.3. There exist two positive constants A and B depending on q such that
the probability p(s, `) that a random ` × ` matrix over Fq is of rank ` − s (where the
coefficients are drawn independently from each other from the uniform distribution on
Fq) satisfies

A

qs2
≤ p(s, `) ≤ B

qs2
.

This enables to control the exponential moments of the defect of a random matrix.

For a square matrix M of size `×`, we define the defect d(M) by d(M)
def
= `−rank(M).
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Lemma 6.4. If M is random square matrix whose entries are drawn independently
from the uniform distribution over Fq, then there exists some constant K such that
for every λ > 0,

E
(
qλd(M)

)
≤ Kq

λ2

4 ,

E(.) denoting the expectation.

Proof. By using Lemma 6.3, we obtain:

E
(
qλd(M)

)
≤

∞∑
d=0

qλd
B

qd2
≤ B

∞∑
d=0

qλd−d
2
.

Observe that the maximum of the function d 7→ qλd−d
2

is reached for d0 = λ
2 and is

equal to q
λ2

4 . Then, we can write the sum above as:

∞∑
d=0

qλd−d
2

=
∑
d≤d0

qλd−d
2

+
∑
d>d0

qλd−d
2

Finally, we notice that:

qλ(d+1)−(d+1)2

qλd−d2
≤ qλ(d0+1)−(d0+1)2

qλd0−d
2
0

=
1

q
for d > d0,

qλ(d−1)−(d−1)
2

qλd−d2
≤ qλ(d0−1)−(d0−1)

2

qλd0−d
2
0

=
1

q
for d ≤ d0.

This leads to:

∞∑
d=0

qλd−d
2 ≤

∑
d≤d0

qd−bd0cq
λ2

4 +
∑
d>d0

qdd0e−dq
λ2

4

= O

(
q
λ2

4

)
.

We can use now the previous lemma together with Lemma 6.1 and Lemma 6.2 to
derive

Lemma 6.5. Assuming that |Ei| ≥ rm− i for all i ∈ {1, . . . , t}, we get:

prob

(
t∑
i=1

d(Mi) ≥ u

)
≤ Ktq−

u2

t

where K is the constant appearing in the previous lemma.
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Proof. Let D
def
=
∑t

i=1 d(M i). Using Markov’s inequality:

prob(D ≥ u) ≤ E(qλD)

qλu
(6.2.3)

for some well chosen λ > 0. The exponential moment appearing at the numerator is
upper-bounded with the help of the previous lemma and by using the independence
of the random variables qλd(M i), i.e.,:

E(qλD) = E
(
qλ

∑t
i=1 d(Mi)

)
=

t∏
i=1

E
(
qλd(M i)

)
≤ Ktq

tλ2

4 . (6.2.4)

Using now (6.2.4) in (6.2.3), we obtain prob(D ≥ αt) ≤ Kt q
tλ2

4

qλu
= Ktq

tλ2

4
−λu. We

choose λ = 2u
t to minimize this upper-bound, leading to:

prob(D ≥ u) ≤ Ktq−
u2

t .

The last ingredient for proving Theorem 6.1 is a bound on the probability that Ei
is too small to construct Fi.

Lemma 6.6. Let ui
def
=
(
mr
2

)
− (2rm−i)(i−1)

2 , then

prob (|Ei| < rm− i | |F1| = rm− 1, . . . , |Fi−1| = rm− i+ 1) ≤ e−2
( q−1

q ui−rm−i+1)
2

ui

Proof. When all the sets Fj are of size rm − j for j in {1, . . . , i − 1}, it remains

N −
∑i−1

j=1(rm− j) = N − (2rm−i)(i−1)
2 = ui rows which can be picked up for Ei. Let

St be the sum of t Bernoulli variables of parameter q−1
q . We obviously have

prob (|Ei| < rm− i||F1| = rm− 1, . . . , |Fi−1| = rm− i+ 1) = prob(Sui < rm− i) .

It remains to use the Hoeffding inequality on the binomial tails to finish the proof.

We are ready now to prove Theorem 6.1:

Proof of Theorem 6.1. Let u = d
√
mrω(mr))e. We observe now that if all Ej ’s are of
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size at least rm− j for j ∈ {1, . . . , u}, we can write

D = N − rank(M)

≤ N −
rm−u∑
i=1

rank(Mi) (by Lemma 6.1)

=

rm−1∑
i=1

(rm− i)−
rm−u∑
i=1

rank(Mi)

=
rm−u∑
i=1

d(Mi) +
rm−1∑

i=rm−u+1

(rm− i)

=
rm−u∑
i=1

d(Mi) +
u(u− 1)

2

<
rm−u∑
i=1

d(Mi) +
mrω(mr)

2
.

From this we deduce that

prob(Drandom ≥ mrω(mr)) ≤ prob(A ∪B) ≤ prob(A) + prob(B)

where A is the event “
∑rm−u

i=1 d(Mi) ≥ mrω(mr)
2 ” and B is the event “for at least one

Ej with j ∈ {1, . . . , rm−u} we have |Ej | < rm− j”. We use now Lemma 6.5 to prove
that prob(A) = o(1) as rm goes to infinity. We finish the proof by noticing that the
probability of the complementary set of B satisfies

prob(B̄) = prob

(
rm−u⋂
i=1

|Ei| ≥ rm− i

)

=
rm−u∏
i=1

prob (|Ei| ≥ rm− i ||F1| = rm− 1, . . . , |Fi−1| = rm− i+ 1)

= 1− o(1) (by Lemma 6.6).
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6.3 The alternant case

We first consider the case of alternant codes over Fq of degree r. The goal of this
section is to identify a set of vectors which, after decomposition according to a basis
of Fqm over Fq, provides a basis of the solution space of LP. First observe that to
set up the linear system LP as defined in (6.1.2), we have used the trivial identity
YiYiX

2
i = (YiXi)

2. Actually, we can use any identity YiX
a
i YiX

b
i = YiX

c
i YiX

d
i with

a, b, c, d ∈ {0, 1, . . . , r− 1} such that a+ b = c+ d. It is straightforward to check that
we obtain the same algebraic system LP with:

n∑
j=k+1

∑
j′>j

pi,jpi,j′
(
YjX

a
j Yj′X

b
j′ + Yj′X

a
j′YjX

b
j + YjX

c
jYj′X

d
j′ + Yj′X

c
j′YjX

d
j

)
= 0.

(6.3.1)
So, the fact that there are many different ways of combining the equations of the

algebraic system together yielding the same linearized system LP explains why the
dimension of the vector space solution Vqm is large.

For larger values of r, the automorphisms of Fqm of the kind x 7→ xq
`

for some
` ∈ {0, . . . ,m−1} can be used to obtain the identity but the decomposition over Fq of
the entries of vectors obtained from such equations give vectors that are dependent of

those coming from the identity YiX
a
i Y

q`−`
′

i Xbq`−`
′

i = YiX
c
i Y

q`−`
′

i Xdq`−`
′

i if we assume
`′ 6 `. Therefore, we are only interested in vectors that satisfy equations obtained
with 0 6 a, b, c, d < r, 0 6 ` < m and a+ q`b = c+ q`d.

Definition 6.3. Let a, b, c and d be integers in {0, . . . , r − 1} and an integer ` in{
0, . . . , blogq(r − 1)c

}
such that a+ q`b = c+ q`d. We define

Za,b,c,d,`
def
=
(
Za,b,c,d,`[j, j

′]
)
k+16j<j′6n

where

Za,b,c,d,`[j, j
′]

def
= YjX

a
j Y

q`

j′ X
q`b
j′ + Yj′X

a
j′Y

q`

j Xq`b
j + YjX

c
jY

q`

j′ X
q`d
j′ + Yj′X

c
j′Y

q`

j Xq`d
j ,

for any j and j′ satisfying k + 1 6 j < j′ 6 n.

Without loss of generality, we can assume that d > b and set δ = d− b. Moreover,
as we have a+ q`b = c+ q`d, it implies that a = c+ q`δ. Note that any vector Za,b,c,d,`

is uniquely described by the tuple (b, c, δ, `) by setting d = b + δ and a = c + q`δ
provided that 1 6 δ 6 r − 1− b and 0 6 c+ q`δ 6 r − 1.

The next proposition shows that some vectors Zc+q`δ,b,c,b+δ,` can be expressed as
a linear combination of vectors defined with δ = 1.

Proposition 6.1. Let `, δ, b and c be integers such that ` > 0, δ > 1, 1 6 b+δ 6 r−1

and 1 6 c + q`δ 6 r − 1. Let us assume that δ > 2 and let bi
def
= b + i − 1 and

ci
def
= c+ q`(δ − i). We have

Zc+q`δ,b,c,b+δ,` =
δ∑
i=1

Zci+q`,bi,ci,bi+1,`. (6.3.2)
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From Proposition 6.1, we deduce that the set of vectors Zc+q`δ,b,c,b+1,` i.e., δ = 1
form a spanning set for the vector space generated by all the vectors Zc+q`δ,b,c,b+δ,`.
To prove Proposition 6.1, we require the following lemma.

Lemma 6.7. For any integers a, b, c, d, e, f in {0, . . . , r − 1}, and an integer ` in{
0, . . . , blogq(r − 1)c

}
such that a+ q`b = c+ q`d we have:

Za,b,c,d,` + Zc,d,e,f,` = Za,b,e,f,` (6.3.3)

Proof of Proposition 6.1. Let b∗
def
= b + 1, δ∗

def
= δ − 1 and c∗

def
= c + q`δ∗. Then c∗ is

the integer such that c∗ + q` = c+ q`δ, one can see that c+ q`δ∗ = c+ q`(δ − 1) = c∗

and by Lemma 6.7 we have:

Zc∗+q`,b,c∗,b+1,` + Zc+q`δ∗,b∗,c,b∗+δ∗,` = Zc∗+q`,b,c,b∗+δ∗,` = Zc+q`δ,b,c,b+δ,`

which means that

Zc+q`δ,b,c,b+δ,` = Zc∗+q`,b,c∗,b+1,` + Zc+q`δ∗,b∗,c,b∗+δ∗,` (6.3.4)

The proof follows by induction.

We can characterize more precisely the set of vectors Zc+q`δ,b,c,b+1,` i.e., δ = 1:

Definition 6.4. Let Br be the set of nonzero vectors Zc+q`δ,b,c,b+δ,` obtained with
tuples (δ, b, c, `) such that δ = 1 and satisfying the following conditions:{

0 6 b 6 r − 2 and 0 6 c 6 r − 1− q` if 1 6 ` 6 blogq(r − 1)c
0 6 b < c 6 r − 2 if ` = 0.

Proposition 6.2. Let r be an integer such that r > 3. The cardinality of Br is equal
to Talternant.

Proof. Let us set e
def
= blogq(r − 1)c. Then the number of elements in Br is given by

the number of tuples (b, c, `). Therefore we get:

|Br| =
1

2
(r − 1)(r − 2) +

e∑
`=1

r−2∑
b=0

(r − q`) =
1

2
(r − 1)

(
r − 2 + 2er − 2

e∑
`=1

q`

)

=
1

2
(r − 1)

(
(2e+ 1)r − 2

e∑
`=0

q`

)
= Talternant

Proposition 6.2 gives an explanation of the value of Dalternant. To see this, let us
introduce the following definition:

Definition 6.5. Consider a certain decomposition of the elements of Fqm in a Fq
basis. Let πi : Fqm 7→ Fq be the function giving the i-th coordinate in this decomposi-
tion. By extension we denote for a vector z = (zj)1 ≤j≤n ∈ Fnqm by πi(z) the vector
(πi(zj))1 ≤j≤n ∈ Fnq .

We have the following heuristic.

Heuristic 1. For random choices of xi’s and yi’s with 1 6 i 6 n the set {πi(Z)|1 ≤
i ≤ m,Z ∈ Br} forms a basis of the vector space of solution of LP.
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6.4 The binary Goppa case

In this section we will explain Experimental Fact 2 in the case of a binary Goppa
code. We denote by r the degree of the Goppa polynomial. In this case, it is readily
seen that the theoretical expression TGoppa has a simpler expression given by

Proposition 6.3. Let us define e
def
= dlog2 re + 1 and N

def
=
(
mr
2

)
. When q = 2, the

formula in Equation (6.1.4) can be simplified to TGoppa = 1
2r
(

(2e+ 1)r − 2e − 1
)
.

Theorem 2.7 shows that a binary Goppa code of degree r can be regarded as a
binary alternant code of degree 2r. This seems to indicate that we should have

DGoppa(r) = mTalternant(2r).

This is not the case however. It turns out that DGoppa(r) is significantly smaller
than this. In our experiments, we have found out that the vectors of B2r still form a
generating set for LP, but that they are not independent anymore.

We are really interested in the dependencies over the binary field F2, but we are
first going to find linear relations over the extension field F2m . There are many of
them, as shown by the following proposition which exploits that the Yi’s are derived
from the Goppa polynomial g(z) by Yi = g(Xi)

−1.

Proposition 6.4. Let t, ` and c be integers such that 0 6 t 6 r − 2, 1 6 ` 6

blog2(2r − 1)c and 0 6 c 6 2r − 2` − 1. We set c∗
def
= c+ 2`−1. It holds that:

r∑
b=0

γ2
`

b Zc+2`,t+b,c,t+b+1,` = Zc∗+2`−1,2t,c∗,2t+1,`−1 + Zc+2`−1,2t+1,c,2t+2,`−1. (6.4.1)

Propositon 6.4 which needs Lemma 6.8 is actually a particular case of Proposi-
tion 6.5.

Lemma 6.8. Let `, δ, b and c be integers such that ` > 0, δ > 1, 1 6 b+ δ 6 r − 1,
1 6 c+ q`δ 6 r − 1. We have for any j and j′ such that k + 1 6 j < j′ 6 n:

Zc+q`δ,b,c,b+δ,`[j, j
′] =

(
Xδ
j +Xδ

j′

)q` (
YjX

c
j

(
Yj′X

b
j′

)q`
+ Yj′X

c
j′

(
YjX

b
j

)q`)
(6.4.2)

Proof. Let d = b+ δ and a = c+ q`δ. We can write that:

Zc+q`δ,b,c,b+δ,`[j, j
′] = Za,b,c,d,`[j, j

′]

= YjY
q`

j′

(
Xa
jX

q`b
j′ +Xc

jX
q`d
j′

)
+ Yj′Y

q`

j

(
Xa
j′X

q`b
j +Xc

j′X
q`d
j

)
= YjY

q`

j′ X
q`b
j′

(
Xa
j +Xc

jX
q`δ
j′

)
+ Yj′Y

q`

j Xq`b
j

(
Xa
j′ +Xc

j′X
q`δ
j

)
Using the identity a = c+ q`δ, we also have:

Zc+q`δ,b,c,b+δ,`[j, j
′] = YjY

q`

j′ X
q`b
j′ X

c
j

(
Xq`δ
j +Xq`δ

j′

)
+ Yj′Y

q`

j Xq`b
j Xc

j′

(
Xq`δ
j′ +Xq`δ

j

)
=

(
Xq`δ
j +Xq`δ

j′

)(
YjY

q`

j′ X
q`b
j′ X

c
j + Yj′Y

q`

j Xq`b
j Xc

j′

)
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Proposition 6.5. Let t, `, δ and c be integers such that t > 0, ` > 1, δ > 1,
t+ δ 6 r − 1, c > 0 and c+ 2`δ 6 2r − 1. We have:

r∑
b=0

γ2
`

b Zc+2`δ,t+b,c,t+b+δ,` = Zc′+2`′δ′,b′,c′,b′+δ′,`′ (6.4.3)

where `′ = `− 1, δ′ = 2δ, b′ = 2t, c′ = c.

Proof. By Lemma 6.8, we have that:

Zc+2`δ,t+b,c,t+b+δ,`[j, j
′] =

(
Xδ
j +Xδ

j′

)2` (
YjX

c
jY

2`−1

j′ X2`t
j′

(
Yj′X

2b
j′

)2`−1
)

+(
Xδ
j +Xδ

j′

)2` (
Yj′X

c
j′Y

2`−1

j X2`t
j

(
YjX

2b
j

)2`−1
)

Using the fact that Yj
∑r

b=0 γ
2
bX

2b
j = 1 and Yj′

∑r
b=0 γ

2
bX

2b
j′ = 1 we also have:

r∑
b=0

γ2
`

b Zc+2`δ,t+b,c,t+b+δ,`[j, j
′] =

(
Xδ
j +Xδ

j′

)2`YjXc
jY

2`−1

j′ X2`t
j′

(
Yj′

r∑
b=0

γ2bX
2b
j′

)2`−1


+
(
Xδ
j +Xδ

j′

)2`Yj′Xc
j′Y

2`−1

j X2`t
j

(
Yj

r∑
b=0

γ2bX
2b
j

)2`−1


=
(
X2δ
j +X2δ

j′

)2`−1 (
YjX

c
j

(
Yj′X

2t
j′
)2`−1

+ Yj′X
c
j′
(
YjX

2t
j

)2`−1)
= Zc′+2`′δ′,b′,c′,b′+δ′,`′ [j, j

′]

with `′ = `−1, δ′ = 2δ, b′ = 2t, c′ = c. Since c′+2`
′
δ′ = c+2`δ and c+2`δ 6 2r−1

we have c′ + 2`
′
δ′ 6 2r − 1. Moreover, we require b′ + δ′ 6 2r − 1 which means

2(t+ δ) 6 2r − 1. This last inequality implies t+ δ 6 r − 1.

Proof of Proposition 6.4. By Proposition 6.5 when δ = 1 we have the following equal-
ity:

r∑
b=0

γ2
`

b Zc+2`,t+b,c,t+b+1,` = Zc+2`,2t,c,2(t+1),`−1

Moreover by Proposition 6.1, we also have:

Zc+2`,2t,c,2(t+1),`−1 = Zc∗+2`−1,2t,c∗,2t+1,`−1 + Zc+2`−1,2t+1,c,2t+2,`−1

where by definition c∗ is equal to c+ 2`−1.

As a consequence of Proposition 6.4, B2r can not be a basis of the linearized
system in the Goppa case. We count the number of such equations in the following
proposition.
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Proposition 6.6. The number NL of equations of the form (6.4.1) is equal to 2(r −
1) (ru+ 1− 2u) where u

def
= blog2(2r − 1)c.

Proof of Proposition 6.6. Each equation is defined by a triple (t, c, `). As 0 6 t 6 r−2,
1 6 ` 6 u and 0 6 c 6 2r − 2` − 1, we therefore have:

NL =
r−2∑
t=0

u∑
`=1

(2r − 2`).

One can easily check that this expression is exactly the same as given in the proposi-
tion.

Notice that each equation of the form (6.4.1) involves one vector of B2r that does
not satisfy the other equations. These equations are therefore independent and by
denoting by < B2r >F2m

the vector space over F2m generated by the vectors of B2r we
should have

dim < B2r >F2m
≤ |B2r| −NL.

The experiments we have made indicate that actually equality holds here. However,
this does not mean that the dimension of the vector space over F2 generated by the
set {πi(Z),Z ∈ B2r, 1 ≤ i ≤ m,Z ∈ B2r} is equal to m dim < B2r >F2m

. It turns out
that there are still other dependencies among the πi(Z)’s. The following proposition
gives an explanation of how such dependencies occur.

Proposition 6.7. Let Qa,b,c,d,`
def
=
(
Qa,b,c,d,`[j, j

′]
)
k+16j<j′6n

, with Qa,b,c,d,`[j, j
′] =

(Za,b,c,d,`[j, j
′])2. For any integers b > 0, t > 0, δ > 1 and ` such that 0 6 ` 6

blog2(2r − 1)c − 1, b+ δ ≤ 2r − 1 and t+ 2`δ 6 r − 1, we have

Z2t+2`+1δ,b,2t,b+δ,`+1 =
r∑
c=0

γ2cQc+2`δ,b,t+c,b+δ,`. (6.4.4)

Proof of Proposition 6.7. For any j and j′ such that k + 1 6 j < j′ 6 n, we have:

r∑
c=0

γ2c
(
Zc+2`δ,b,t+c,b+δ,`

)2
[j, j′] =

(
Xδ
j +Xδ

j′

)2`+1
((

Yj′X
b
j′

)2`+1

X2t
j Y

2
j

r∑
c=0

γ2cX
2c
j +

(
YjX

b
j

)2`+1

X2t
j′ Y

2
j′

r∑
c=0

γ2cX
2c
j′

)

=
(
Xδ
j +Xδ

j′

)2`+1
((

Yj′X
b
j′

)2`+1

YjX
2t
j +

(
YjX

b
j

)2`+1

Yj′X
2t
j′

)
= Zc′+2`′δ,b′,c′,b′+δ′,`′ [j, j

′]

with `′ = ` + 1, δ′ = δ, b′ = b, c′ = 2t and c′ + 2`
′
δ′ = 2t + 2`+1δ. In particular, one

can easily check that the necessary conditions are b+ δ ≤ 2r − 1 and t+ 2`δ 6 r − 1
in order for this equation to hold.
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Proposition 6.8. The number NQ of vectors of B2r satisfying Equation (6.4.4) is

equal to (2r − 1)(ru− 2u + 1) where u
def
= blog2(2r − 1)c.

Proof of Proposition 6.8. By Proposition 6.7 we know that NQ is the number of vec-
tors Z2t+2`+1δ,b,2t,b+δ,`+1 obtained with δ = 1, b > 0, t > 0 and satisfying 0 6 ` 6 u−1,

b+ δ ≤ 2r − 1 and t+ 2`δ 6 r − 1. Therefore we have:

NQ =

u−1∑
l=0

r−1−2`∑
t=0

(2r − 1) (6.4.5)

which is equal to the desired expression.

Each of such equations gives rise to m linear equations over F2 involving the πi(Z)
for Z in B2r. Therefore, it could be expected that ∆Goppa = |B2r| −NL −NQ. But,
some vectors in B2r appear both in linear relations of the form (6.4.1) and “quadratic”

equations of the form (6.4.4). More precisely, let Bquad2r be the subset of vectors of B2r
which are involved in an Equation of type (6.4.4). There are equations of type (6.4.1)

which involve only vectors of Bquad2r . Let N1 be their numbers. Moreover, it is possible
by adding two equations of type (6.4.1) involving at least one vector which is not

in Bquad2r to obtain an equation which involves only vectors of Bquad2r . Let N0 be the

number of such sums. Finally, let NL∩Q
def
= N1 + N0. It is possible to count such

equations to obtain

Proposition 6.9. NL∩Q = (r − 1)
(

(u− 1
2)r − 2u + 2

)
where u

def
= blog2(2r − 1)c.

Proof of Proposition 6.9. We will consider vectors Zc+2`,b,c,b+1,` of B2r that satisfy
Equation (6.4.4) and such that there exists a linear relation that link them. In other
words, we consider all the linear relations of the form

∑
i αiZci+2`i ,bi,ci,bi+1,`i

= 0 with
αi in F2m and where each Zci+2`i ,bi,ci,bi+1,`i

is equal to a linear relation of the form
(6.4.4). We will see that the number of independent equations is equal to NL∩Q. First,
one can observe that for any such vectors we necessary have ci even and 1 6 `i 6 u.
We also know by Proposition 6.4 that for any integers t, ` and c such that 0 6 t 6 r−2,
1 6 ` 6 u and 0 6 c 6 2r − 2` − 1, we have the following linear relation:

r∑
b=0

γ2
`

b Zc+2`,t+b,c,t+b+1,` = Zc∗+2`−1,2t,c∗,2t+1,`−1 + Zc+2`−1,2t+1,c,2t+2,`−1

where by definition c∗ = c+ 2`−1. Note in particular that whenever c is even then c∗

is also even and if ` > 2 then we obtain a linear relation between some vectors that
also satisfy quadratic equations of the form (6.4.4). Each equation enables to remove
one quadratic equation. So if we denote by N1 the number of equations of the form
(6.4.1) with c even and ` > 2, we have then:

N1 =
r−2∑
t=0

u∑
`=2

(
1

2
(2r − 2`)

)
= (r−1)

u−1∑
`=1

(r−2`) = (r−1)
(

(u−1)r−2u+2
)
. (6.4.6)
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Moreover in the case ` = 1 Equation (6.4.3) becomes

r∑
b=0

γ2bZc+2,t+b,c,t+b+1,1 = Zc+2,2t,c,2t+2,0.

In particular when c is even, say for instance c = 2t′ for some integer, then this
last equation can be rewritten as:

r∑
b=0

γ2bZ2t′+2,t+b,2t′,t+b+1,1 = Z2t′+2,2t,2t′,2t+2,0. (6.4.7)

We know that when t′ = t then Z2t′+2,2t,2t′,2t+2,0 is zero. In that case we obtain
new relations between vectors satisfying quadratic equations that are independent
even from those obtained with ` > 2. As for the case when t 6= t′ we also have
Z2t′+2,2t,2t′,2t+2,0 = Z2t+2,2t′,2t,2t′+2,0. From this identity and from Equation (6.4.7)
we then obtain new relations of the following form:

r∑
b=0

γ2bZ2t′+2,t+b,2t′,t+b+1,1 =
r∑
b=0

γ2bZ2t+2,t′+b,2t,t′+b+1,1 (6.4.8)

This last equation involves only vectors that satisfy also quadratic equations. So the
number N0 of equations of the form (6.4.8) is given by the number of sets {t, t′}. But
by assumption t and t′ should satisfy 0 6 t 6 r − 2 and c = 2t′ with 0 6 c 6 2r − 3,
which implies that 0 6 t′ 6 r − 2. Therefore, N0 is equal to the number (t, t′) such
that t 6 t′ and thus we get:

N0 =
r−2∑
t=0

r−2∑
t′=t

=
1

2
(r − 1)r. (6.4.9)

Finally, by gathering all the cases we therefore obtain that:

NL∩Q = N1 +N0 = (r − 1)
(

(u− 1)r − 2u + 2
)

+
1

2
(r − 1)r.

Proposition 6.10. For any integer r > 2, we have TGoppa(r) = |B2r| − NL − NQ +
NL∩Q.

Proof. Set u
def
= blog2(2r − 1)c. From Equation (6.1.3), we have

|B2r| = (2r − 1)
(
(2u+ 1)r − 2u+1 + 1

)
which implies from Proposition 6.8

|B2r| −NQ = (2r − 1)
(
(2u+ 1)r − 2u+1 + 1− (ru− 2u + 1)

)
= (2r − 1)((u+ 1)r − 2u).
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Moreover, from Proposition 6.6 and Proposition 6.9, we can write:

NL −NL∩Q = (r − 1)
(

2ur + 2− 2u+1 − (ur − r

2
− 2u + 2)

)
= (r − 1)

(
(u+

1

2
)r − 2u

)
Therefore by gathering all these equalities we obtain:

|B2r| − (NL +NQ −NL∩Q) = r

(
(u+

3

2
)r − 2u − 1

2

)
On the other hand from Proposition 6.3, we have TGoppa(r) = 1

2r ((2e+ 1)r − 2e − 1)
where e = dlog2 re + 1. Using the basic inequality 2r − 1 < 2r < 2(2r − 1), we have
therefore log2(2r−1) < log2(r)+1 < log2(2r−1)+1 which finally implies dlog2 re = u.
Thus, TGoppa(r) = 1

2r
(
(2u+ 3)r − 2u+1 − 1

)
and the proposition is proved.

6.5 Conclusion and cryptographic implications

The existence of a distinguisher for the specific case of binary Goppa codes has con-
sequences for code-based cryptographic primitives because it represents, and by far,
the favorite choice in such primitives. We focus in this part on secure parameters that
are within the range of validity of our distinguisher. The simple expression given in
Proposition 6.3 is not valid for any value of r and m but tends to be true for codes that
have a code rate n−mr

n that is close to one. This kind of codes are mainly encountered
with the public keys of the CFS signature scheme [34].

If we assume that the length n is equal to 2m and we denote by rmin the smallest
integer r such that N −mTGoppa > 2m −mr then any binary Goppa code defined of
degree r > rmin cannot be distinguished from a random linear code by our technique.
This value is gathered in Table 6.1.

Table 6.1: Smallest order r of a binary Goppa code of length n = 2m for which our
distinguisher does not work.

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmin 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

One can notice for instance that the binary Goppa code obtained with m = 13
and r = 19 corresponding to a McEliece public key of 90 bits of security, fits in the
range of validity of our distinguisher. The values of rmin in Table 6.1 are checked by
experimentations for m 6 16 whereas those for m > 17 are obtained by solving the

equation mr
2

(
(2e+ 1)r− 2e− 1

)
= 1

2mr(mr− 1)− 2m +mr. Eventually, all the keys

proposed in [47, table 4] for the CFS scheme can be distinguished.
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Part II

On Hash Based Signature
Schemes





Chapter 7

Signature schemes

7.1 Introduction

A handwritten signature is a small message that is added to a document to proove
the identity of the author. It is used in everyday situations and is why we need
an equivalent to be able to sign electronic documents. A handwritten signature is
physically part of the document that is being signed, it can be authenticated (by
comparing it with the signature of an ID document for example) and is very hard to
copy. In the electronic case we solve these three situations by forcing the signature to
depend on: the message that we want to sign and a public key that allows anybody to
verify the signature. We also add some additional information in the message like for
example, the date and time such that if any other person copy the signature it does
not have any validity.

We saw that in 1976 Diffie and Hellman proposed to use trapdoor one-way functions
in order to create a public-key cryptosystem. Let X be the set of plain texts, Y the
set of ciphertexts, epk : X → Y the encryption function that depends on the public
key (pk) and dsk : Y → X the decryption function that depends of the secret key (sk),
such that dsk ◦ epk = id. In the introduction we saw that with these cryptosystems
Alice and Bob can communicate in a safe way. Now, Bob wants to be sure that it was
Alice the one who sent the message. Note that we are not interested anymore in the
secrecy of the message. For this:

• Alice signs the message m ∈ X by using her secret key (sk) to compute the

signature of m: σ
def
= dsk(m).

• For the verification, we just have to apply the encryption function to σ using
Alice’s public key (pk) and check if epk(σ) = m.

A signature scheme needs an algorithm to compute a signature for any message
such that the desired person (Alice in this case) is the only person that is able to sign.
It also needs a public verification algorithm which output is “yes” or “no”: the answer
to the question: using the given public key is this a valid signature for the message?
The signature scheme is illustrated in Figure 7.1. In this chapter we will give a short
introduction on signatures schemes and their security, it is mainly based in [54,111].

7.2 Security of signature schemes

In this section we assume that Alice is the person who is signing the message. There
are two kinds of attacks:
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Bob 
Insecure 
channel 

 Alice’s  
public key (pk) 

(m,σ) 

Alice 

Alice’s  
secret key (sk) 

Message (m) 

Signature: Verification: 

σ=dsk(m)   z=epk(σ) 
 

If z=m If z≠m 

YES NO 

Figure 7.1: Signature scheme.

• Key-only attacks: the adversary only knows Alice’s public key.

• Message attacks: in this case the adversary has access to some message/signature
pairs before he tries to break the scheme. There are four kinds of message
attacks:

– Known-message attack : The adversary has access to the signatures of a set
of messages m1, . . . ,mt that are NOT chosen by her/him.

– Generic chosen-message attack : In this case the adversary can obtain the
signatures of a set of messages m1, . . . ,mt that she/he has chosen. These
messages do not depend on Alice’s public key and are chosen before the
attacker has saw any signature.

– Directed chosen-message attack : As in the previous case the adversary
can obtain the signatures of a set of messages m1, . . . ,mt that she/he has
chosen. The messages are chosen before any signatures are seen, but may
depend on Alice’s public key.

– Adaptive chosen-message attack : The attacker is allowed to use Alice as an
oracle. He can request signatures of messages that depend on her public
key and which depend additionally on previously obtained signatures.

We say that the signature scheme is “broken” if the attacker can do any of the
following with a non-negligible probability:

• A total break : the attacker is able to recover Alice’s secret key.



7.3. SIGNATURES AND HASH FUNCTIONS 81

• Universal forgery : the attacker finds an efficient signing algorithm functionally
equivalent to Alice’s signature algorithm (based on an equivalent, possible dif-
ferent, trapdoor information).

• Selective forgery : the attacker can sign a single message of her/his choice.

• Existential forgery : the attacker is able to create a valid signature for at least
one message which is chosen by another person.

We say that a scheme is respectively totally break, universally forgeable, selectively
forgeable or existentially forgeable if it is breakable in one of the above senses. We
assume that the signature scheme provides non-repudiation, i.e., is such that if Alice
sings a message, then she cannot deny that she has signed it.

There is another attack that is trivial: the attacker chooses an arbitrary value for

the signature σ′ and using Alice’s public key she/he computes m′
def
= epk(σ

′). Then
the pair (m′, σ′) is a valid pair, even if we do not have any control over m′. We will
see in the next section that we can avoid this trivial attack by using hash functions.

7.3 Signatures and hash functions

A cryptographic hash function maps strings of arbitrary length to strings of fix length,
say n, that is typically between 128 and 512 bits. We denote a hash function by
h : {0, 1}∗ → {0, 1}n. The output of the cryptographic hash function has being called
with different names like for example: hash message, message digest, fingerprint.

A hash function has to satisfy certain properties in order to be used in cryptog-
raphy. They are three main properties that are commonly required: and is that the
best attack for the following three problems is the brute force attack:

• Preimage: Given y
def
= h(x) find a string x′ such that h(x′) = y.

• Second preimage: Given x find a string x′ 6= x such that h(x′) = h(x).

• Collision: Find two strings x and x′ such that x′ 6= x and h(x) = h(x′).

By doing a brute force attack we can solve the preimage and second preimage
problem after 2n applications of h. And the collision problem after 2n/2 applications
of h.

By using hash functions in the signature scheme introduced in the previous section
we can avoid some problems. In fact if we sign the hash message h(m), instead of the
message m, we can avoid the trivial attack. In this case

• To sign the message m ∈ X : Alice computes h(m) and by using her secret key

(sk) computes the signature of m: σ
def
= dsk(h(m)). Then Alice sends to Bob the

valid pair (m,σ).
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• For the verification, we have to compute h(m) and then using Alice’s public key
(pk) encrypt σ and check if epk(σ) = h(m).

In the trivial attack the attacker chooses σ′ and computes y
def
= epk(σ

′). But now
he has to find a message m′ such that y = h(m′) i.e., he has to solve the preimage
problem. Another advantage that we get by hashing the message is that we can avoid
the cases where the message has a very big size.



Chapter 8

One-time signature schemes

A one-time signature scheme is a digital signature where the key is allowed to be
used only once. In the signature process, parts of the signature key are revealed, and
therefore, if it is used several times, an attacker can use the revealed parts to generate
a valid signature. The basic idea to sign a one-bit message m, is to choose two n-bit
strings x0 and x1 and let f : {0, 1}n → {0, 1}n be a one-way function. We compute
y0 = f(x0) and y1 = f(x1), then we authenticate them and make them public. To
sign the message m, we send xm. The verifier can check if f(xm) = ym.

The drawback of the schemes that we will describe in this chapter is that each
key pair can only be used once. If we want to do r signatures, we can of course call
the function r independent times, but in that case the total signature size will always
grow with the number of messages signed. And the public key size will be also r times
bigger.

In all the schemes we want to sign a k-bit message m = (m0, . . . ,mk−1). We
choose an integer n that is a security parameter (e.g., n = 128) and a one-way function
f : {0, 1}n → {0, 1}n.

Note that messages of greater length can be signed by first hashing them with a

hash function h. In those cases we first compute the k-bits message m∗
def
= h(m) and

then sign m∗. We should consider the case when the signer is not honest. She/he
may find two different messages m and m′ such that h(m) = h(m′). In this case both
messages will have the same signature, so the signer will be able to sign m and later
claim that she/he had sign m′ and not m. To avoid this case we assume that h is
collision resistant.

8.1 Lamport’s signature scheme

The idea of using a hash function to produce a digital signature apparently originated
from Lamport, who proposed a solution in a personal communication with Diffie [68].
The idea seems to have been first made public in the classic paper by Diffie and
Hellman [36], and was later described in a technical report by Lamport [69]. Lamport’s
signature scheme is described in Algorithm 6.

Each key pair can only be used to sign a single message. If two messages are signed,
then it might be possible to forge a signature on a third message. As an example,
consider (for k = 3) the two messages (written in binary) m = 100 and m′ = 111.
The signature on m consists of the values (x0,1, x1,0, x2,0), and the signature on m′

consists of the values (x0,1, x1,1, x2,1). An adversary will now be able to produce a valid
signature for the messages 110 and 101. As an example, the signature for the message
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Algorithm 6 Lamport’s signature scheme

• Key generation:

– Choose 2k random n-bit strings xi,j for 0 ≤ i < k and j ∈ {0, 1}.

– Compute yi,j
def
= f(xi,j) for 0 ≤ i < k and j ∈ {0, 1}.

– Authenticate and make public the yi,j for 0 ≤ i < k and j ∈ {0, 1}.

The secret key is (x0,0, x0,1 . . . , xk−1,1) and the public key is (y0,0, y0,1 . . . , yk−1,1).

• Signature generation: Sign m by revealing xi,mi for all i, 0 ≤ i < k.

• Signature verification: The signature is verified by computing zi
def
= f(xi,mi)

and checking that zi = yi,mi for all i, 0 ≤ i < k.

110 is (x0,1, x1,1, x2,0); all three values are known from the two valid signatures made
by the signer.

The secrets xi,j may be pseudorandomly generated from a, say, `-bit seed, in which
case the length of the secret key is ` bits. The length of the public key is 2kn bits and
the signature length is kn bits.

Remark 8.1. Since kn of the 2kn public key bits can be computed by the verifier,
and the remaining kn bits could be included in the signature, the public key does not
have to consist of all the values yi,j, but may simply be the single (say, n-bit) value
Y = h(y0,0‖y0,1‖ . . . ‖yk−1,0‖yk−1,1), where h is a cryptographic hash function.

Using this remark, the key length is n bits and the signature length is 2kn bits.

8.2 Improvements of Lamport’s signature scheme

In [80] Merkle proposes an improvement of Lamport’s scheme. The main idea is to
have a secret key of the form X = (x0, . . . , xk−1), where the xi are random n-bit
numbers and sign m by revealing xi for all i, 0 ≤ i < k, such that mi = 1. In this
case an adversary will be able to produce a valid signature for the messages which
does not have 1-bits in positions where m does not have 1-bits. For example if we
sign the message m = 0110, an adversary will also be able to sign the messages 0100
and 0010. To avoid this we add to the end of m the number of 0-bits it has.

We define k′
def
= k+blog2(k)c+1. The signature scheme is explained in Algorithm 7.

Example: Let k = 8 and m = 01101101. In this case k′ = k + 4, a = 3 and ab =
0011. We definem′ = 011011010011. The signature will be σ = (x1, x2, x4, x5, x7, x10, x11).
Any message with fewer 1-bits will have a 1-bit instead of a 0-bit in the binary rep-
resentation of a. Therefore, an adversary will not be able to sign it.
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Algorithm 7 Merkle’s improvement of Lamport’s signature scheme

• Key generation:

– Choose k′ random n-bit strings xi for 0 ≤ i < k′.

– Compute yi
def
= f(xi) for 0 ≤ i < k′.

– Authenticate and make public the yi for 0 ≤ i < k′.

X = (x0, . . . , xk′−1) is the secret key and Y = (y0, . . . , yk′−1) is the public key.

• Signature generation:

– Count the number of 0-bits in m, call this number a. Let ab be the binary

representation of a (with k′-bits) and m′
def
= (m‖ab).

– Sign m by revealing xi for all i, 0 ≤ i < k′ such that m′i = 1.

• Signature verification:

– Find a, ab and generate m′ as above.

– Compute zi
def
= f(xi) and check that zi = yi for all i such that m′i = 1.

The key length is now roughly n(k + log2(k)) bits; the signature length depends
on the message, but is about n(k+ log2(k))/2 bits on average. As in Remark 8.1, the
public key elements that cannot be computed from the signature may be included in
the signature, which makes it possible to achieve a key length of n bits and a signature
length of n(k + log2(k)) bits.

Bleichenbacher and Maurer described [21] another, more complicated but also
theoretically more efficient variant; Dods et al. [37] analyzed the proposal and found
that in practice, it does not perform as well as Winternitz’ scheme (see Section 8.3).
In 1992, Bos and Chaum described [22] another variant of the Lamport scheme. And
in 2002 Reyzin and Reyzin introduced a very similar variant [98] that we will present
in Section 9.1. It is essentially the same as Bos and Chaum, the main difference is
that Bos and Chaum wanted to minimize the public key size, while Reyzin and Reyzin
wanted to minimize the signature size.

8.3 Winternitz’s signature scheme

This scheme appears first in Merkle’s thesis [79], he wrote that Winternitz suggested
him this method in 1979. The idea is to apply several times the one way function f
as explained in the following example.



86 CHAPTER 8. ONE-TIME SIGNATURE SCHEMES

Example: We wish to sign the message m that can be 0, 1, 2, or 3. We authenti-
cate and make public y0 = f3(x0) and y1 = f3(x1). Then we reveal σ1 = fm(x0) and
σ2 = f3−m(x1). The verifier can easily find m by counting how many applications of
f does he need to apply to σ1 to reach y0. Is very important to send both σ1 and
σ2, if not the verifier could claim that she/he received a bigger power than the real one.

We present a more detailed description of this scheme, given in [24], in Algorithm 8.
Note that in this version instead of sending σ1 and σ2, we add an additional in-

formation at the end of the message, to apply the idea of the Merkle’s improvement
presented in the previous section. In fact, t1 bits are used for the signature part and t2
bits for the additional information that we will add. The public key and the signature
size are nt, where t = t1 + t2. The main advantage here is that the y′is can be hashed
together (as in Remark 8.1) without increasing the signature length.

In Table 8.1 we can see the public key and the signature size of the different
signature schemes introduced in this chapter.

Table 8.1: Signature and key size for different hash-based signature schemes. We
include the variant (indicated by an asterisk) proposed in Remark 8.1.

Scheme Public key size Signature size

Lamport 2kn kn

Lamport∗ n 2kn

Merkle’s improvement of Lamport (k + log2(k))n (k+log2(k)
2 )n

Merkle’s improvement of Lamport∗ n (k + log2(k))n

Winternitz n tn

There are variants of the one-time signature schemes described above which allow
multiple messages to be signed with the same key pair. We will introduce some of
them in the following chapter.
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Algorithm 8 Winternitz’s signature scheme

• Key generation:

– Choose a Winternitz’s parameter w ≥ 2, to be the number of bits to be
signed simultaneously.

– Let

t1 =
⌈ k
w

⌉
, t2 =

⌈blog2(t1)c+ 1 + w

w

⌉
and t = t1 + t2.

– Choose t random n-bit strings xi for 0 ≤ i < t.

– Compute, authenticate and make public yi
def
= f2

w−1(xi) for 0 ≤ i < t.

– X = (x0, x1, . . . , xt−1) is the secret key and Y = (y0, y1 . . . , yt−1) the public
key.

• Signature generation:

1. Add a minimum number of zeros at the beginning of m such that the
length of m is divisible by w. The extended m is split into t1 w-bit strings
bt−1, . . . , bt−t1 such that m = bt−1‖ . . . ‖bt−t1 .

2. Identify each bi with an integer in {0, 1, . . . , 2w−1} and define the checksum

c =
t−1∑

i=t−t1

(2w − bi).

Since c ≤ t12
w, the binary representation of c has a length at most

blog2 t12
wc + 1 = blog2 t1c + w + 1. We add a minimum number of ze-

ros at the beginning of c such that the length of c is divisible by w, and we
can define the t2 w-bit blocks bt2−1, . . . , b0 such that c = bt2−1‖ . . . ‖b0.

– The signature is σ = (f b0(x0), f
b1(x1), . . . , f

bt−1(xt−1)).

• Signature verification: The signature σ
def
= (σ0, . . . , σt−1) is verified by com-

puting the bit string b0, . . . , bt−1 as above and checking if

(f2
w−1−b0(σ0), . . . , f

2w−1−bt−1(σt−1)) = (y0, . . . , yt−1).
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Chapter 9

Multiple-time signature schemes

9.1 Reyzin-Reyzin signature scheme

In 2002, Reyzin and Reyzin proposed a signature scheme [98] . Let b, t and k be
integers such that

(
t
k

)
≥ 2b, T = {1, 2, . . . , t} and Tk is the family of k-subsets of T .

Let

S : {0, 1, . . . , 2b − 1} → Tk

be an injective function such that S(m) is the m-th k-element subset of Tk. Reyzin
and Reyzin propose two ways to implement S, the computational cost of the first one
is O(kt(log2t)

2) and of the second one is O(k2(log2t)(log2k)), both need O(k2(log2t)
2)

bits of memory. We want to sign a b-bit message m = (m0, . . . ,mb−1). We choose
an integer n that is a security parameter (e.g., n = 128) and a one-way function
f : {0, 1}n → {0, 1}n. The signature scheme is presented in Algorithm 9.

Algorithm 9 Reyzin-Reyzin’s signature scheme

• Key generation:

– Choose t random n-bit strings xi for 0 ≤ i < t.

– Compute yi
def
= f(xi) for 0 ≤ i < t.

– Authenticate and make public the yi for 0 ≤ i < t.

– X = (x0, . . . , xt) is the secret key and Y = (y0, . . . , yt) is the public key.

• Signature generation: Given the message m, interpret m as an integer be-
tween 0 and 2b − 1.

– Compute S(m)
def
= {i0, i1, . . . , ik−1} ∈ Tk.

The signature is σ = (xi0 , xi1 , . . . , xik−1
).

• Signature verification: Given the message m, and the signature

σ
def
= (σ0, . . . , σk−1)

– Interpret m as an integer between 0 and 2b − 1 and compute
S(m) = {i0, i1, . . . , ik−1}.

– Check if f(σj) = yij for all j ∈ {0, . . . , k − 1}.
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The public key size is nt, the key size is nk and the most expensive part is to
compute S.

They are many choices for the parameters t and k such that
(
t
k

)
≥ 2b. Notice that

the public key size is linear in t and the signature size is linear in k. We must do a
trade-off between these two variables to find a small signature scheme with a public
key of reasonable size.

The important property of S is that it is impossible to find any two distinct m
and m′ such that S(m) ⊆ S(m′). In the same paper, Reyzin and Reyzin proposed
another scheme called HORS (for “Hash to Obtain Random Subset”), that follows
the same idea but instead of using S they use a function S′ such that it has the
following weaker property: that it is infeasible to find any two distinct m and m′ such
that S′(m) ⊆ S′(m′). A function S′ with such a property is called a subset-resilient
function.

9.2 HORS signature scheme

We want to sign the message M . We choose an integer n that is a security parameter
(e.g., n = 128), a one-way function f : {0, 1}n → {0, 1}n. We also choose an integer k
and a k-bit hash function h : {0, 1}∗ → {0, 1}k. Let d and t be chosen such that d < t
and d · dlog2(t)e ≤ k. The HORS signature scheme is presented in Algorithm 10.

The public key size is nt and the key size is nd. The security requirements on the
hash function h are somewhat non-standard: h must be subset-resilient.

When r messages have been signed using the same key pair, the probability that
the signature of a random message can be forged (in a non-adaptive attack) is (rd/t)d;
in other words, the complexity of forging is around 2k/(rd)d.

Applying Remark 8.1 in this case, the signature would grow from dn bits to tn
bits.

9.3 HORS++ signature scheme

In 2003, Pieprzyk et al. [96] proposed a method to construct a multiple-time signature
scheme following the idea of the HORS scheme. As stated in Section 9.1, the main
condition of S is that for any two distinct messages M1 and M2, we have that S(M2) *
S(M1). Now if we want to sign r messages, we will be able to do it if we find
a function S such that for any r + 1 distinct messages M1, . . . ,Mr,Mr+1, we have
that S(Mr+1) *

⋃r
i=1 S(Mi). The proposal uses cover-free families introduced by

Erdös et al. [40]. An (`, t, r)-cover-free family is a set X of t elements, together with
B = {Bi ⊆ X|i = 1, . . . , `}, such that for all j and all sets I of r distinct integers
between 1 and `, not including j, we have

Bj *
⋃
i∈I

Bi.
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Algorithm 10 HORS signature scheme

• Key generation:

– Choose t random n-bit strings xi for 0 ≤ i < t.

– Compute yi
def
= f(xi) for 0 ≤ i < t.

– Authenticate and make public the yi for 0 ≤ i < t.

– X = (x0, . . . , xt) is the secret key and Y = (y0, . . . , yt) is the public key.

• Signature generation:

– Compute m = h(M) and split m into d chunks m0, . . . ,md−1 of dlog2(t)e
bits each. If d · dlog2(t)e < k, ignore some bits of m.

– Interpret each mi as an integer 〈mi〉 between 0 and t− 1.

The signature is σ = (x〈m0〉, x〈m1〉, . . . , x〈md−1〉).

• Signature verification: Given the signature σ
def
= (σ0, . . . , σk−1)

– Compute m = h(M) and split m into d chunks m0, . . . ,md−1 of dlog2(t)e
bits each. If d · dlog2(t)e < k, ignore some bits of m.

– Interpret each mi as an integer 〈mi〉 between 0 and t− 1.

– Check that f(σi) = y〈mi〉 for all i, 0 ≤ i < d.
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We want to sign the message M . We choose an integer n that is a security param-
eter (e.g., n = 128), a one-way function f : {0, 1}n → {0, 1}n, an (`, t, r)-cover-free
family (X ,B), an integer k such that 2k ≤ `, a one-to-one mapping S : {0, 1}k → B
and h a k-bit hash function. The signature scheme is explained in Algorithm 11.

Algorithm 11 HORS++ signature scheme

• Key generation:

– Choose t random n-bit strings xi for 0 ≤ i < t.

– Compute yi
def
= f(xi) for 0 ≤ i < t.

– Authenticate and make public the yi for 0 ≤ i < t.

– X = (x0, . . . , xt) is the secret key and Y = (y0, . . . , yt) is the public key.

• Signature generation:

– Compute m = h(M) = (m0, . . . ,mk−1) and interpret m as an integer
number between 0 and 2k − 1.

– Compute S(m)
def
= {i0, i1, . . . , ik−1} ∈ B.

The signature is σ = (xi0 , xi1 , . . . , xik−1
).

• Signature verification: Given the signature σ
def
= (σ0, . . . , σk−1)

– Compute m = h(M) = (m0, . . . ,mk−1) and interpret m as an integer
number between 0 and 2k − 1.

– Compute S(m)
def
= {i0, i1, . . . , ik−1} ∈ B.

– Check that f(σj) = yij for all j in {0, . . . , k − 1}.

The public key size is nt and the signature size is nk. Pieprzyk et al. give three
different ways to build the function S. We will explain the constructions based on
polynomials and on error-correcting codes.

Constructing S based on Polynomials: This construction was first proposed by
Erdös et al. [40]. Let d and c be integers and X = F2c × F2c (F2c being the finite field
of 2c elements). Consider the polynomials of degree less than d over F2c and associate
to each of those polynomials g the set Bg = {(x, g(x))|x ∈ F2c} ⊆ X . We define

B = {Bg|g is a polynomial of degree at most d− 1}.

Let g1 and g2 be two different such polynomials, then |Bg1 ∩ Bg2 | ≤ d − 1, since

g(x)
def
= g1(x)− g2(x) is a polynomial of degree less than d with at most d−1 different

roots. Let g, g1, . . . , gr be polynomials of degree less than d over F2c . Using the fact
that |Bg| = 2c, if 2c ≥ r(d− 1) + 1 we have that
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|Bg\(Bg1 ∪ · · · ∪Bgr)| ≥ |Bg| − (|Bg ∩Bg1 |+ · · ·+ |Bg ∩Bgr |)
≥ 2c − r(d− 1)

≥ 1.

Since |B| = 2dc and |X | = 22c, if 2c ≥ r(d − 1) + 1 then (X ,B) is a (2k, 22c, r)-
cover-free family.

We can now build the function S(m), where m is a message of length k ≤ cd. See

m as the concatenation of d c-bit substrings (m
def
= a0||a1|| . . . ||ad−1) and interpret

each one of these substrings as an element in F2c . Define gm(x) =
∑d−1

i=0 aix
i and the

mapping S : {0, 1}k → B by

S(m) = {(α, gm(α))|α ∈ F2c}.

Since X does not consist of random secrets in this case, we need another set Z of
the same size as X consisting of secret values zi, 0 ≤ i < 22c, and a mapping from
pairs in F2c × F2c to integers between 0 and 22c − 1.

S is an efficient function since implementing it involves only polynomial evaluations
in F2c . The public key size is n22c and the signature size is n2c. Applying Remark 8.1
in this case, the signature size is n22c.

Constructing S based on error-correcting codes: Let Y be an alphabet of q
elements and let C be a linear (N,K,D) code over Y (i.e., subspace of Y N of dimension
K such that the Hamming distance between two distinct vectors in C is at least D).
Each codeword is denoted by cij = (ci1, . . . , ciN ) with cij ∈ Y for all 1 ≤ i ≤ qK and
1 ≤ j ≤ N .

A cover-free family can be defined by letting

X = {1, . . . , N} × Y and Bi = {(j, cij) : 1 ≤ j ≤ N}

i.e., t = |X | = Nq, |Bi| = N and there are ` = qK subsets Bi.

For each pair i 6= k, we have that |Bi ∩ Bk| = |{j : cij = ckj}| ≤ N − D. Now,
as long as r ≤ N−1

N−D holds, we have a (qK , Nq, r)-cover-free family. In fact, taking
Bs, Bi1 , . . . , Bir (r + 1) different sets and assuming that r ≤ N − 1N −D we have
that

|Bs\(Bi1 ∪ · · · ∪Bir)| ≥ |Bs| − (|Bs ∩Bi1 |+ · · ·+ |Bs ∩Bir |)
≥ N − r(N −D)

≥ 1.

The public key size is Nq elements, and the signature size is N elements.
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As above, since X does not consist of random secrets, we need another set Z of
size Nq consisting of secret values zi, 0 ≤ i < Nq, and a mapping from pairs in
{1, . . . , N} × Y to integers between 0 and Nq − 1.

Assume q is a power of two, say q = 2c. We then identify Y with the finite field
F2c . In order to be able to sign a k-bit message m, we must have qK ≥ 2k, so K ≥ k/c.
We assume c divides k and choose K = k/c.

We split m into K substrings of length c bits each, interpret each c-bit substring
as an element in F2c and identify m with the K-vector (m1,m2, . . . ,mK) ∈ Y K . Let
G be a K ×N generating matrix for C ; then we define

S(m) = {(1, u1), (2, u2), . . . , (N, uN )},

where (u1, u2, . . . , uN ) = (m1,m2, . . . ,mK)G.

Note that the polynomial construction can be seen as a special case of this con-
struction using Reed-Solomon codes.

The advantages comparing to HORS are that: HORS++ is secure against an adap-
tive chosen-message attack and that the security requirements on the hash function h
are weaker than in HORS.

Pieprzyk et al. also propose to use hash chaining in order to increase the number
of messages that can be signed with their signature scheme. This method is almost
identical to the extension described in the following section.

9.4 HORSE signature scheme

HORSE [86] is HORS Extended. The extension consists in the idea of forming a hash
chain for each secret xi, e.g., x0i = xi, x

1
i = f(xi), x

2
i = f(x1i ), . . . , xsi = f(xs−1i ). The

public key consists of the values xsi , and the secret key consists of the hash chains xji ,
j = 0, . . . , s− 1. There is a technique by Coppersmith and Jakobsson [32] that allows
values in the hash chain to be computed efficiently with limited storage.

A message is signed as described for the HORS scheme above, but the public key
is refreshed for each signature by replacing all revealed values xji by xj−1i . This allows
at least a factor s more signatures to be produced with the same key pair; in practice,
often a lot more signatures may be produced before all secrets xji have been revealed
for some i. Moreover, security is not reduced from one signature to the next, since
whenever a secret value is revealed, it is replaced by another.

There is a problem with synchronization of this scheme, however, since signer
and verifier must agree on the state of the public key. The signer can include some
information in the signature about the state, but while a verifier is unsynchronized
with the signer, it becomes easier to forge a signature for that verifier. If, for instance,
the verifier has missed j updates to the public key, then a signature for this verifier can
be forged with complexity around 2k/(jd)d, since the situation is identical to HORS
where j messages have been signed.
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9.5 Are HORS, HORS++ and HORSE better than Win-
ternitz’s scheme?

We argue that HORS and its extension HORS++ and HORSE are not really better
than Winternitz’s method applied multiple times.

Winternitz’s scheme

In this scheme to sign one k-bit message we fix two parameters n and w. We define

t1 =
⌈
k
w

⌉
, t2 =

⌈
blog2(t1)c+1+w

w

⌉
and t = t1 + t2. We saw that the public key size is n

and the signature size is nt. If we want to sign r messages, we will then have a public
key of size rn and a signature key of size rtn.

HORS

Recall that one needs to choose two parameters, d and t, such that ddlog2(t)e ≤ k and
d < t, where k is the size of a subset-resilient hash function h. In the following we
will assume that t is a power of two, then log2(t) is an integer. Take as an example
k = 256, we have five options for the pair (d, t): (2, 2128), (4, 264), (8, 232), (16, 216)
and (32, 28).

Since the public key size is t, we are only interested in the pair (32, 28).

The complexity of forging a signature after r messages have been signed is roughly
2k/(rd)d. This is for an adversary that is not able to adaptively choose the messages
to be signed. If d = 32, t = 28, the complexity of forging a signature after seeing
a single valid signature is about 296, while the complexity drops to 264 after two
valid signatures and 232 after three valid signatures. A better security is obtained by
choosing d = 16 and t = 216, but this requires 216 = 65, 536 elements in the secret
and public key. In Winternitz’ scheme, the public key consists of a single hash value.
By concatenating 65, 536 hash values together, one can sign 65, 536 messages.

HORS++ with the cover-free family based on polynomials

Recall that in order to be able to sign k-bit messages, we need to choose two parameters
c and d such that cd ≥ k. As an example, with k = 256, assuming that c and d are
powers of two and trying to minimize the size of c and d, we only deal with the cases
where cd = k. We then have only nine possibilities for the pair (c, d): (1, 256), (2, 128),
(4, 64), (8, 32), (16, 16), (32, 8), (64, 4), (128, 2), (256, 1). However, since the public
key consists of as many elements as there are elements in the set X , namely 22c, we
are only interested in the pairs (1, 256), (2, 128), (4, 64) and (8, 32). With these, we
can securely sign r = b2c−1d−1 c messages. The first three pairs do not constitute proper
cover-free families (one has r = 0). By choosing c = 8 and d = 32, r = 8 messages
can be securely signed, but still 216 elements are needed in the public key. We might
choose c = d = 16 and obtain a (2256, 232, 4369)-cover-free family that can be used to
sign 4369 messages. However, the public key will consist of 232 elements.
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In both cases, the public key grows by a factor greater than r, meaning that
Winternitz’ scheme applied r times yields shorter public keys and shorter signatures.

HORS++ with the cover-free family based on error-correcting codes

We assume that the linear code is MDS [76], since MDS codes are optimal with respect
to this construction. Hence, D = N−K+1, so one can sign r ≤ N−1

K−1 messages securely.
We note that the linear code (N,K,N −K + 1) may not exist over a given alphabet
Y .

We again assume that k = 256, and we need to choose c and K such that cK = k.
The public key consists of Nq = N2c elements, and the signature size is N elements.
We have N ≥ K, and assuming we want to be able to sign eight messages (as in one
of the examples above), we obtain the condition N ≥ 8(K − 1) + 1.

We have the same possibilities for c and K as we had for c and d above. In order
to minimize the length of the public key, one would choose one of the first few options
in the list. For instance, one might choose c = 1 and K = 256 and obtain a binary
(2041, 256, 1786) code, which does not exist. Even if it did, 2041 elements would be
needed in the public key in order to sign 8 messages, compared to which Winternitz’
scheme applied multiple times is superior. The signature size is 256 elements, which
is also worse than in Winternitz’ scheme.

In general, for variable r, the size of the public key is at least Nq = (r(K−1)+1)2c

elements, which is always greater than r elements as in Winternitz’ scheme (except
for K = 1, in which case the signer must choose 2k secrets, i.e., one for each message
that he wants to sign. He must then hash all secrets, and in order to sign the message
m, reveal the corresponding secret).

HORSE

HORSE in principle has the same properties as HORS, but the number of messages
that one can sign increases by a factor about s/(1 − e−d/t). On the other hand,
increasing s amplifies synchronizing issues, and also increases key generation time.
Additionally, refreshing the key after each signature requires about log2(s) hash func-
tion evaluations.

Ignoring these issues, HORSE has very good properties compared to Winternitz’s
scheme. As an example, with k = 256, d = 32, t = 28, and s = 210, one can sign
about 8, 715 messages using a public key containing 256 elements. The security level
is about 296 in a non-adaptive attack.

We can see that HORS and its extension HORS++ (using cover-free families
based on polynomials and error-correcting codes) and HORSE are not really better
than Winternitz’s method applied multiple times.

9.6 Cover-free families based on orthogonal arrays

We may try to use a different cover-free family than the one proposed by Pieprzyk
et al. in order to decrease the key and the signature size. In [73] we can see the



9.7. USING (NEAR-)COLLISIONS TO SIGN TWICE 97

constructions of different kinds of cover-free families. An orthogonal array OA(t, `, s)
is an `×st array with entries from a set of s ≥ 2 symbols such that in any t rows, every
t× 1 column vector appears exactly once. Let q be a prime power and t < q, we know
from [30] that there exists an OA(t, q + 1, q), and from [73] that if this orthogonal
array exists, then we are able to construct a (qt, q2 + q, b q−1t−1 c)-cover-free family. Let
X be the set Fq ×Fq+1, the subsets Bi are defined by {(s1, 1), (s2, 2), . . . (sq+1, q+ 1)}
where (s1, s2, . . . , sq+1) is a column vector of OA(t, q + 1, q). In order to sign a k-bit
message m, we choose t such that k ≤ qt, then m can be mapped to its corresponding
column vector of OA(t, q + 1, q). Using the same idea for the signature scheme as in
HORS++, the size of the private key will be q(q + 1) elements and the signature size
will be q + 1 elements.

With k = 256 we need to choose q and t such that qt ≥ 2256. For implementation
reasons, it is a good idea to choose q to be a power of 2, so we choose some α and
define q = 2α. In order to compare with one of the HORS++ instances mentioned
above, we want to be able to sign 8 messages. So we also need that b q−1t−1 c ≥ 8. The
smallest α which makes it possible to satisfy both inequalities is α = 8, so we have
q = 28 and we choose t = 32. So qt = 2256 and we can sign 8 messages. With this
choice of q and t, the public key size is q(q+ 1) ≈ 216 elements, and the signature size
is 257 elements. This is almost exactly the same as in HORS++.

Table 9.1 shows a comparison between different signature schemes in terms of
public key size and signature size. In all schemes except Winternitz’s, we include the
variant proposed in Remark 8.1.

Table 9.1: Signature and key size for different 8-time hash-based signature schemes as-
suming a 256-bit message. We include the variant (indicated by an asterisk) proposed
in Remark 8.1. HORS++ uses cover-free family based on polynomials.

Scheme Public key size Signature size

Lamport 4,096n 256n

Lamport∗ 8n 512n

Winternitz (w = 4) 8n 67n

HORS++ (2256, 216, 8) 65,536n 256n

HORS++ (2256, 216, 8)∗ n 65,536 n

Scheme based on orthogonal array 65,792n 257n

Scheme based on orthogonal array∗ n 65,792 n

We can see that HORS++ using cover-free families based on orthogonal arrays is
neither better than Winternitz’s method applied multiple times.

9.7 Using (near-)collisions to sign twice

In this section, we describe a novel method that allows two signatures for each public
key, i.e., a two-time signature scheme. This is achieved without an increase in the
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public key size, nor in the signature size, but it requires a non-negligible amount of
offline work.

We want to sign two 1-bit messages m0 and m1. We choose an integer n that is a
security parameter (e.g., n = 128) and a one-way function f : {0, 1}n → {0, 1}n which
is not collision intractable. The scheme is described in Algorithm 12.

Algorithm 12 Signature scheme using collisions to sign twice

• Key generation:

– Find four n-bit strings x0, x
′
0, x1 and x′1 such that:{

f(x0) = f(x′0) = y0 and
f(x1) = f(x′1) = y1,

and such that x0 and x1 have a 0-bit in the most significant position, and
x′0 and x′1 have a 1-bit in the most significant position.

– Authenticate and make public y0 and y1.

– (x0, x
′
0, x1, x

′
1) is the secret key and (y0, y1) is the public key.

• Signature generation:

– In order to sign m0: reveal the string 0‖xm0 .

– In order to sign m1: reveal 1‖x′m1
.

The signatures are σ1 = 0‖xm0 and σ2 = 1‖x′m1
.

• Signature verification:

1. The signature on m0 is verified by

– Checking that f(xm0) = ym0 .

– Checking that xm0 has a leading 0-bit.

2. The signature on m1 is verified by

– Checking that f(x′m1
) = ym1 .

– Checking that x′m1
has a leading 1-bit.

This two-time signature scheme can be combined with, e.g, Merkle’s method (de-
scribed in Section 8.2) to allow the signing of messages of several bits. This would allow
two k-bit messages to be signed using a single public key of length about (k+log2(k))n
bits.

It can also be combined with Winternitz’ one-time signature scheme, but here it
seems that two different one-way functions f1 and f2 are required. One finds collisions
of the type f2

w−1
1 (x0) = f2

w−1
2 (x′0) = y0, etc.

The drawback of this method is the need to find collisions. With, say, n = 80,
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finding a collision requires about 240 hash function evaluations (finding k collisions
requires only roughly a factor

√
k more hash function evaluations). The work required

to forge a signature, however, is still about 2n, which currently seems infeasible with
n = 80. We could also try to find a one-way second preimage resistant function that
is not collision resistant.

In order to expand the gap between the amount of work required by the signer,
and the amount of work required to forge a signature, one might make use of near-
collisions. Hence, it is no longer required that (e.g.) x0 and x′0 collide in all bits, but
only in, say, n − t bits. The expected number of hash function evaluations required
to find a collision in n − t out of n bits, when the t bit positions that do not collide
are not fixed beforehand, is about √

2n/

(
n

t

)
.

However, it is necessary that the signer includes in the public key an indication of
the t bit positions to ignore when the signature is checked. This increases the public
key size (using Merkle’s one-time signature scheme) from about (k + log2(k))n bits
to about (k + log2(k))(n + tdlog2(n)e) bits. Hence, there is a trade-off here; larger
values of t will expand the gap between the signer’s and the forger’s work, but will
also increase the public key size.

As an example, with n = 96 and t = 5, one may find a near-collision after about
235.1 hash function evaluations. The work required to forge is about 296−5 = 291. With
k = 256, this means an increase in the public key size from 25, 440 bits to 34, 715 bits.
With t = 10, the work required by the signer is about 226.3, and the work required by
a forger is about 286. The public key size increases to 43, 990 bits in this case.
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Chapter 10

Merkle tree signature schemes

In order to sign several messages using one-time signature schemes, we need to store
a huge amount of verification keys, especially if the verifier needs to ask signatures
from many people. An idea will be to send at the same time the signature and the
verification key, this will solve the problem of the memory but will open the problem
of the authentication process. Merkle proposes two different ways to authenticate the
verification key with a modest memory requirement. The first method [82], called
Merkle tree authentication, allows us to do a finite number of signatures by building
a tree of finite length (a static tree). We will explain it in Section 10.1.1.

The second method [81] is a similar scheme that allows to sign an infinite number
of times. Nevertheless this has a cost, in fact, the signature size grows after each
signature. This is a problem for the efficiency and also because it reveals an additional
information about the number of signatures that have been made. This proposal uses
a dynamically expanding tree method, we will explain it in Section 10.1.2. We denoted
this method dynamic tree in opposition of the first method denoted static tree.

The first method was published two years later than the second one, but was
written eight years before, and is the most cited one 1. The fact that it can only
do a finite number of signatures may be an important difference compared with the
signatures schemes based on a one-way function with a trapdoor (like RSA). But in
practice these schemes are also limited to a finite number of signatures, this limitation
can be due to the devices where the scheme is implemented or to the policies of the
signature schemes.

10.1 Merkle tree authentication

10.1.1 Static tree

In this method we fix the number of messages that we want to sign, say, 2D (for
simplicity we fix it to be power of two). We choose a one-way function f : {0, 1}∗ →
{0, 1}n. In order to sign 2D (k-bits)messages (M1,M2, . . . ,M2D), the signer chooses a
one-time signature scheme and 2D secret/public key pairs (si, pi) for 0 ≤ i < 2D. In
Algorithm 13 we can see the key generation. We say that D is the depth or height of
the tree.

1 [82] “ was submitted to Ron Rivest, then editor of the Communications of the ACM, in 1979. It
was accepted subject to revisions and was revised and resubmitted in November 1979. Unfortunately,
Ron Rivest passed over the editorship to someone else, the author became involved in a startup, and
the referees reportedly never responded to the revised draft”.

101
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Algorithm 13 Key generation

• Generate 2D one-time key pairs (si, pi) for 0 ≤ i < 2D.

• Build a binary tree from the bottom to the top as follows:

– The leaves of the tree are yi0
def
= f(pi) for 0 ≤ i ≤ n− 1.

– The nodes at height j are yij
def
= f(y2ij−1‖y

2i+1
j−1 ) for 0 ≤ j ≤ D and 0 ≤ i <

2D−j .

• Authenticate and make public the root of the three Y = y0D.

The public key is the root of the three Y = y0D and the secret key are the one-time
key pairs (si, pi) for 0 ≤ i < 2D.

We assume that the message Mi is signed using the one-time key pairs (si, pi). To
be able to verify the signature one have to be able to authenticate pi using the public
key Y . This can be done if the signer adds to the signature an additional information
called authentication path that allows the verifier to authenticate pi (from Y ). In the
following example we fix D = 3 and we show how we can authenticate p4 using Y .

Example: We fix D = 3, the binary tree is represented in Figure 10.1.

Y = y03 is an authenticated public value. In order to authenticate p4 using Y :

1. The signer sends y02 and y12 so the verifier can compute y03 = f(y02‖y12) and check
if it is the right value. This will authenticate y12.

2. The signer sends y21 and y31 so the verifier can compute y12 = f(y21‖y31) and check
if it is the right value. This will authenticate y21.

3. The signer sends y50 and from p4, the verifier can compute y40
def
= f(p4) and then

check if y21 = f(y40‖y50) is equal to the authenticated value. This will authenticate
p4.

We can see that half of the transmissions are redundant, if we send the elements
in the opposite order (i.e., from the leaves to the root), from y40 = f(p4) and y50 the
verifier can compute y21, then the signer can send y31 and the verifier can compute y12.
Finally the signer will send y02 and the verifier can compute the root of the tree y03 and
compare it with the public value Y . This process is illustrated in Figure 10.1, the red
nodes represent the public values and the purple nodes the computed values.

If the signature is made in this order, instead of transmitting 2 log2(n) elements
we will just send log2(n) elements. In the previous example, the signer will send: y50,
y31 and y02. We call these elements the authentication path for p4.

This new method is very good to reduce the verifier’s memory, she/he will only
need to save the root of the tree instead of p0, p1, . . . , p2D−1.
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4) 
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0 y1

1 y1
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3 

y2
0 y2

1 
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0  f(y2

0||y2
1) 

 

Figure 10.1: Merkle static tree, D = 3.
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But we still need a good method to save the information in the tree, or the authen-
tication paths, so that the signer does not have to build it for each message. In Table
10.1 we can see all the authentication paths for each leaf in our previous example.

Table 10.1: Authentication path for D = 3.
p0 y12 y11 y10
p1 y12 y11 y00
p2 y12 y01 y30
p3 y12 y01 y20
p4 y02 y31 y50
p5 y02 y31 y40
p6 y02 y21 y70
p7 y02 y21 y60

An idea is to use the different pi in order, i.e., first authenticate p1, then p2, etc.
Since the authentication path from pi+1 uses a big part of the path of pi, we will be
able to delete from Table 10.1 all the redundant elements, we will then save only the
information written in red.

Now that we had define the authentication path, we can describe the signature
and the verification scheme in Algorithm 14. The computation of the authentication
path can be shared between signatures, so that the number of hash function calls per
signature is constant. There are many ways to do this, e.g. [14, 60, 82, 113]. See also
Section 10.2.

Algorithm 14 Signature and verification

• Signature generation: Sign Mi by revealing (si, pi) and the authentication
path of pi.

• Signature verification: The signature is verified by

– Checking if mi is signed with the key pair (si, pi) using the selected one-time
signature scheme.

– Authenticating pi by computing y0D (from pi and the authentication path)
and comparing with the authenticated and public value Y .

With this method, we can sign a fixed number of times, since once the tree is built,
no other leaf can be added such that the root value is respected. This “inflexibility”
makes it impossible to add new Yi’s but also makes it practically impossible to add
invalid leaves.

10.1.2 Dynamic tree

The second proposal of Merkle [81] presents an infinite tree of one-time signatures.
This time we start to build the tree from the root. Each node has associated with it
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a label (which is an integer):
- The label of the root is 0.
- The label of the left children-node of the node i is (2i+ 1).
- The label of the right children-node of the node i is (2i+ 2).

Note that in this way we can have an infinite tree. It is very easy to compute the
sub-nodes from the parental node, and vice-versa. We denote π(i) to the parent of
the node i (i.e., the node b(i− 1)/2c). Each node is going to have three functions:

1. Authenticate the left sub-node.

2. Authenticate the right sub-node.

3. Sign a k-bits message M .

Hence, each node i needs three one-time secret/public key pairs denoted (s`i , p
`
i),

(sri , p
r
i ) and (smi , p

m
i ), in order to authenticate the left and right sub-nodes and sign

the message respectively. Given a cryptographic hash function h, we define p∗i by

p∗i
def
= h(p`i)‖h(pri )‖h(pmi ).

A complete node can also be hashed; we define H(i) = h(p∗i ) to be the hash of node
i. We define σmj (A), σ`j(A) and σrj (A) to be the one-time signature on a message

A using the key pair (smj , p
m
j ), (s`j , p

`
j) and (srj , p

r
j) respectively. We can see the key

and signature generation algorithm using the dynamic tree to sign a message M in
Algorithm 15, and the verification algorithm in Algorithm 16.

In this scheme, the signature size grows logarithmically with the number of nodes
that we have used, and so do the signature generation and verification times. The
verifier has to repeat the second step of the verification process log2(i+ 1) times. We
fixed the tree to be binary but it can have k branches (instead of two), in this case
the number of time that the verifier has to repeat the second step of the verification
process is reduced to logk(i+ 1). But k cannot be too large since the computation of
p∗i will take longer:

p∗i
def
= p1i ‖p2i ‖ . . . ‖pki ‖pmi .

10.1.3 Remarks:

1. These two meta-systems can use any one-time signature scheme and any hash
function h. Of course the security, sizes and computational cost depend on
them. Coronado [33] proved that if h is collision resistant, then the Merkle tree
is existentially unforgeable under an adaptive chosen message attack.

2. We have presented the original Merkle tree introduced by Merkle, but there are
some improved versions that give an efficient and practical method, they can be
found in [24] and [35].
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Algorithm 15 Merkle’s dynamic tree signature scheme

• Key generation:

– Generate three one-time key pairs denoted: (s`0, p
`
0), (sr0, p

r
0) and (sm0 , p

m
0 ).

– Compute p∗0 = h(p`0)‖h(pr0)‖h(pm0 ) and H(0) = h(p∗0)

– Authenticate and make public Y
def
= H(0).

• Signature generation: Sign the message M given an existing tree. The sig-
nature S is constructed iteratively; initially S is the empty string.

1. The signer choose some leaf node, say, i.

2. Generate three one-time key pairs denoted: (s`i , p
`
i), (sri , p

r
i ) and (smi , p

m
i )

(this add two new leaves to the tree).

3. Compute σmi (M), the one-time signature on a message M using the key
pair (smi , p

m
i ).

4. S ← S‖M‖〈i〉‖σmi (M)‖p∗i , where 〈i〉 is a binary representation of the inte-
ger i.

5. – IF i = 0, the signature has been created.

– ELSE

∗ If i is odd (i.e., is a left sub-node) compute σ`π(i)(H(i)) and

S ← S‖σ`π(i)(H(i))‖p∗π(i).

∗ If i is even (i.e., is a right sub-node) compute σrπ(i)(H(i)) and

S ← S‖σrπ(i)(H(i))‖p∗π(i).

Replace i by π(i); go back to steps 5.
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Algorithm 16 Signature verification algorithm in the Merkle’s dynamic tree signature
scheme
The signature is verified by parts:

1. S can be seen as S ← S‖M‖〈i〉‖σmi (M)‖p∗i ‖S′.

• Verify that σmi (M) is a valid signature of M .

• We need to authenticate pmi , for this we check that h(pmi ) corresponds to
the correct suffix of p∗i .

• Compute H(i) from p∗i .

If H(i) is valid, then the signature is also valid. If i = 0 compare H(i) with Y
else got o step 2.

• IF i = 0, we compare H(i) with the public value Y = H(0) and STOP.

• ELSE go to step 2.

2. S′ can be seen as S′ ← σ`,rπ(i)(H(i))‖p∗π(i)‖S
′′. By σ`,rπ(i) we mean σ`π(i) if i is odd

and σrπ(i) if i is even.

• Verify that σ`,rπ(i)(H(i)) is a valid signature of H(i).

• We need to authenticate p`,rπ(i), for this we check that h(p`,rπ(i)) corresponds

to the correct suffix of p∗π(i).

• Compute H(π(i))

• – IF π(i) = 0, we compare H(π(i)) with the public value Y = H(0).

– ELSE S′ ← S′′ and replace i by π(i). Go back to steps 2.



108 CHAPTER 10. MERKLE TREE SIGNATURE SCHEMES

3. In the static method, a large binary tree is generated in the key generation
phase. This fixes the number of messages that can be signed to the number of
leaves in the tree. One may for instance generate a tree of depth 20 capable
of signing about 1 million messages. The time required for key generation is
not negligible, but an advantage of this scheme is that the signature size and
signature generation and verification times are constant (in contrast with the
dynamic tree method).

4. Doing a brute-force attack we are able to find a preimage or a second preimage
on a hash function after roughly 2n evaluations of the hash function, and a
collision after roughly 2n/2. In a quantum computer, using the Grover algorithm
[56] we only require 2n/3 applications of the hash function to find a collision
with probability at most 1/2. Grover’s algorithm will change the parameters
of security but the complexity remains exponential, so we can say that these
schemes are quantum resistant.

10.2 Simple and efficient hash tree traversal

In this section we describe a relatively simple and efficient hash tree traversal algo-
rithm. The algorithm resembles one described by Szydlo [113].

Hash tree traversal is used to compute authentication paths in the static tree
scheme described in Section 10.1.1. We note that there is a simple procedure, called
Treehash (see e.g., [24, Alg. 2.1]), which given the leaves of a hash tree of depth
D computes the root using 2D − 1 hash function evaluations and at most D units of
memory. Treehash can, of course, also be used to compute authentication nodes.

10.2.1 Preliminaries

We start with some observations on authentication paths. We use the term round
to denote the time interval in between two signatures; round i means the interval
between signature no. i− 1 and signature no. i, where counting starts from 0.

Future authentication nodes are computed in some round before the node is
needed. The hash tree traversal algorithms tries to schedule these computations.
We keep the same notation used in Section 10.1.1 and we try to find the authentica-
tion paths for the leaves in order, i.e., first find the authentication path of y10, then
y20, etc. We assume that we know the authentication path of y00.

An authentication node at level d must be replaced in round i whenever i is a
multiple of 2d. In round i, find d, r ∈ Z such that i can be written r × 2d, where r is
odd.

• The authentication node at level d must change from a right to a left node:
yrd → yr−1d .

• The authentication nodes at levels below d must change from left to right nodes

(its cousin): yr2
d−j−2

j → yr2
d−j+1

j for 0 ≤ j < d.
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Note that no other authentication nodes need to change, since if r is odd, then i is not
a multiple of 2d+1. One may conclude that there is at most one new left authentication
node per signature. If a left node yr−1d of height d is computed in the round i = r2d

(for r odd), i.e., the round where it is needed, then it can be computed using d + 1
hash function evaluations (we call these units in the following). The reason is that
the authentication path at that point contains exactly the nodes needed to quickly
compute yr−1d . In other words, yr−1d is on the path from the leaf yi−10 to the root.

Example (D = 4): In Table 10.2 we can compare the authentication path of the
leaves yj0 for 7 ≤ j ≤ 10 in the Merkle’s static tree with D = 4. We can see that an
authentication node at level d must be replaced in round i whenever i is a multiple of
2d. And writing i = r2d, if r is odd we notice that the change is from a right node to
its sibling. And if r is even the change is from a left node to a right node (its cousin).
This is illustrated in Figure 10.2 for round i = 8.

Table 10.2: Authentication path (AP) of the leaves yj0 for 7 ≤ j ≤ 10 in the Merkle’s
static tree with D = 4. We write i = r2d and if r is odd we notice that the change is
from a right node to its sibling (in red). And that if r is even the change is from a
left node to a right node (in blue).

AP of y70 i = 8 AP of y80 i = 9 AP of y90 i = 10 AP of y100
d = 3 y13 1× 23 y03 – y03 – y03
d = 2 y02 2× 22 y32 – y32 – y32
d = 1 y21 4× 21 y51 – y51 5× 21 y41
d = 0 y60 8× 20 y90 9× 20 y80 10× 20 y110

In this example, we can also illustrate the fact that a left node yr−1d of height d is
computed in the round i = r2d (for r odd) by using d+ 1 hash function evaluations.
Taking for example i = 8, y13 → y03. As y60, y

2
1 and y02 form the authentication path of

y70, then we can compute y03 by applying 3 times the hash function h: the first time
to compute y31 = h(y60‖y70), the seconde time to compute y12 = h(y21‖y31) and the last
time to compute y03 = h(y02‖y12).

We are now ready for a high-level description of the hash tree traversal algorithm.

10.2.2 Algorithm description

The authentication path needed for the first signature is computed and stored during
key generation. Hence, round 0 consists in key generation and nothing else.

We explain how we can compute authentication nodes by spending (at most) D
hash function evaluations (units) per round. The main ideas are:

• Left nodes are computed as late as possible, i.e., the node yr−1d is computed in
round i = r2d for r odd. We saw in the previous section that this be computed
using d+ 1 hash function evaluations. Then, once we are in round i = r2d (with
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d=3 

d=2 

d=1 

d=0 

Figure 10.2: In red the authentication path for y70 and in green the one for y80. The
green arrows show the changes that must be done in round i = 8.

r odd) the computation of left nodes has highest priority and is the first node
to be computed.

• Any remaining time is spent on right nodes. Highest priority is given to nodes
of smallest height. Hence, if the next right node at level j is not computed yet,
then we work on that node before moving to level j + 1, etc.

• We never work on more than one node at a given height at a time.

Since there will often not be enough units to finish the computation of a right
node, we may have to stop and continue in a later round. Hence, we imagine having
access to a function update(i,j,t) that given the current round number i, a height
j, and a number t of units that it is allowed to spend, is able to start or continue
working on the next right authentication node of height j. The function returns the
number of units it spent. It is able to figure out which node it needs to work on, and
it remembers how far it got the last time it was working on that node. It also knows
if there is no work to be done at height j.

As mentioned above, in round i = r2d, where r is odd, the right authentication

nodes yr2
d−j+1

j , for 0 ≤ j ≤ d− 1, must be ready. Computation of the node yr2
d−j+1

j

cannot begin sooner than round i− 2j+1 if we are working on only one authentication
node per level at a time. We imagine that update(i,j,t) is aware of this.

We have a maximum of D−1 authentication node computations at a time (one left
node, and at most D− 2 right nodes, since the right node at level D− 1 is computed
during key generation).
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It has been experimentally verified that the memory requirements are never more
than 3D − 4 hash values, and that nodes will always be available on time. We give a
proof sketch of the last fact below. Algorithm 17 describes the algorithm in pseudo-
code for a tree of height D; the description refers to the authentication path compu-
tations needed in round i. The first time the algorithm is called, we have i = 1.

Algorithm 17 Hash tree traversal algorithm

Input: i; the round number. update(i,j,t) is an external function maintaining its
own local state.

1. T ← D //time budget.

2. Find integers d and odd r such that i = r2d.

3. Compute the left node yr−1d needed in the next authentication path, using nodes
of height less than d in the current authentication path (if d > 0).

4. T ← T − (d+ 1) //d+ 1 units spent

5. j ← 0

6. while T > 0 and j ≤ D − 2

• t← update(i, j, T)

• T ← T − t //t units spent.

• j ← j + 1

end while

7. Replace the node at level d in the authentication path by yr−1d . Replace the

node at level j by yr2
d−j+1

j , 0 ≤ j ≤ d− 1.

10.2.3 Algorithm justification

We now argue why all authentication nodes are always ready when they are needed.
Consider a height-2 binary tree, where the authentication path for the first leaf is
already known. See Figure 10.3.

• In round 1, i.e., before signing the second message, we need to compute the leaf
y00. This requires one unit. Hence, we have one unit left to compute the next
right leaf y30, which requires exactly one unit (and is needed in round 2).

• In round 2, we spend both units computing the left node y01 needed in this round.

• In round 3, we need to compute the left leaf y20, which requires one unit. There
is nothing more to compute.
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y0
2 y0

3 

y1
0 y1

1 

y2
0 

y0
1 y0

0 

Figure 10.3: Merkle static tree, D = 2. In red we represent the authentication path
for y00.

Hence, we might say that we have one unit in spare, and we have only done
computations in three rounds, so in fact we have a full round of two additional units
in spare as well. In total, we have three units in spare.

Now let us double the size of the tree by increasing its height by one. The compu-
tations needed in the first half of the rounds are the same as before. There, we had
three units in spare, but since we have increased the height by one, we also increase
the “budget” of computations by one for each leaf. So there are an additional four
units in spare from the first four rounds, in total seven units. But we also have to
do more work, since there are three authentication nodes that have to be computed,
which did not have to be computed before (see Figure 10.4). These are the right nodes
y50 and y31, and the left node y02. The work required to compute these is (respectively)
one, three, and three units, in total seven. Hence, given the seven spare units from
the first half of the rounds, we can compute these nodes in time, and we’ll end up
with seven units in spare again after the last round.

In general, when we double the size of the tree, and we look at the situation after
the first 2D−1 rounds (where D is the new height of the tree), we need to compute D
new nodes in order to be in the same situation as before round 0. In fact in round
i = 2D−1 we have to compute:

• One left node: y0D−1, that requires D units (as discussed in Section 10.2.1, y0D−1
is on the path from the leaf y2

D−1−1
0 to the root).

• And (D− 2) right nodes, one at each level j for 0 ≤ j ≤ D− 2, requiring a total
of
∑D−2

j=0 (2j+1 − 1) units.

Hence, we need D+
∑D−2

j=0 (2j+1− 1) = (
∑D−1

j=1 2j) + 1 = 2D− 1 spare units at the
end of the first half to be ready to start the second half.
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Figure 10.4: A binary tree of height three. The red nodes are the authentication nodes
that must be computed before round 4.

We define g(D) to be the total number of hash function evaluations needed to
compute authentication nodes throughout the rounds in a tree of height D. We can
see that g(D) = (2D − 1) + 2g(D − 1), since until round 2D−1 we needed g(D − 1)
by definition, we saw above that in round i = 2D−1 we need (2D − 1) and after
round i = 2D we are in the same case as in a tree of height D − 1. This means that
g(D) =

∑D−1
j=0 (2D − 2j) = D2D − (2D − 1) = (D − 1)2D + 1.

As we want to useD units per round, until round i = 2D−1 we can useD2D−1 units.
We have used g(D−1) = (D−2)2D−1+1, then we have D2D−1−((D−2)2D−1+1) =
2D − 1 spare units at the end of the first half. Then, there will just be enough units
to prepare for the second half of the rounds.

To conclude, authentication nodes will always be available on time, and the total
number of hash function evaluations needed to compute authentication nodes through-
out the rounds is (D − 1)2D + 1.

10.2.4 Comparisons

Table 10.3 compares our hash tree traversal algorithm with others in terms of the num-
ber of hash function evaluations per round, and the maximum memory requirements.
The complexities of the descriptions of the algorithms varies substantially.
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Table 10.3: Comparison of our hash tree traversal algorithm with others in terms
of the number of hash function evaluations per round, and the maximum memory
requirements.

Algorithm Time (HF eval.) per round Memory requirements

Jakobsson et al. [60] 2D/ log(D) 1.5D2/ log(D)
Szydlo [113] 2D 3D − 2
Berman et al. [14] 2D/ log2(D) (D/ log2(D) + 1) log(D) + 2D
Our results D 3D − 4
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Conclusion

The security of most public-key cryptosystems used in practice depends only on the
hardness of solving the factoring and discrete logarithm problem. This fact is enough
motivation to study cryptosystems based on other trapdoor one-way functions. After
Peter Shore solved in 1994 the two problems mentioned above, we are even more
motivated to find an alterative solution that may be used in classical and quantum
computers. Maybe a large quantum computer will never be constructed and maybe no
one will ever solve the factoring and discrete logarithm problem for classical computers.
But if these ever occurs, we should be able to have an alternative solution that is
secure, efficient and that inspires confidence.

The main purpose of these thesis was to study two of the four families that we
believe are quantum resistant and hopefully motivate the research in these areas.

Code-based cryptography

The first family we were interested in was the code-based cryptography. McEliece
cryptosystem was published almost at the same time that the RSA and is very efficient
in encryption and decryption, the main drawback is that it has a public key with a
huge size. McEliece PKC uses Goppa codes but many variants have been proposed to
decrease the public-key size by using a different family of codes.

We know that it is hard to decode random codes; if we also have the statement
that the codes in the McEliece system cannot be distinguished from a random code,
then decoding the codes appearing in the McEliece system is hard. The distinguisher
problem (with binary Goppa codes) was introduced in 2001 by Courtois et al. [34].

Code based public-key cryptosystems are an interesting alternative to classical
cryptography since we can build cryptosystems, signatures schemes, hash functions,
etc. Even if it may not be interesting to redefine all the cryptographic primitives
that we have in classical cryptography, it is still interesting to keep working in this
area since we may find even more interesting alternatives. Remember for example
that the efficiency in encryption and decryption makes McEliece’s PKC suitable for
constrained devices [38,59].

Contributions and future work: In Chapter 5 we present a structural attack
on two promising variants: one that uses quasi-cyclic alternant codes by Berger et
al. [11] and the other that uses quasi-dyadic matrices by Barreto and Misoczki [85].
This chapter is based on the paper [52], joint work with Gregor Leander. It is very
hard to generalize the attacks of the McEliece variants based on different kinds of
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codes, since the attacks exploit the structure of the codes and therefore depend on
them. In 2011 Persichetti [95] proposed a very similar variant to the one in [85], which
uses Srivastava codes. The attack presented in [52] cannot be applicable in this case.
It will be interesting as a future work to modify the attack presented in Chapter 5 to
be able to attack it. And also to attack the signature scheme based on quasi-dyadic
codes proposed by Barreto’s et al. [10].

In Chapter 6 we present a deterministic polynomial-time distinguisher (between
Goppa, alternant and random codes) for high rate codes, i.e. the range of parameters
used in the CFS signature scheme. This is not an attack on the system, but it
invalidates the hypothesis of the security proof. This chapter is based on the paper [43],
that is a joint work with Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret and
Jean-Pierre Tillich.

Hash-based signatures schemes

Digital signatures are very important in electronic commerce, internet security and
many other daily applications. In the second part of the thesis we studied hashed-based
signatures schemes, that a are a good quantum-resistant alternative to the schemes
based on trapdoor one-way function. The first proposals are also from the late 70’s,
when Lamport and Winternitz proposed some one-way signature schemes based on
one-way functions and Merkle proposed the chaining methods to be able to sing more
than one times. We did on overview on one-time and multiple time signature schemes
and we present Merkle’s chaining methods. These proposals are not enough efficient
to be able to substitute the actual signature schemes like RSA for example.

Contributions and future work: This part is based on joint work with Lars
R. Knudsen and Søren S. Thomsen that appears in [64]. We analyzed some of the
multiple-time signature schemes (HORS, HORS++, HORSE) and showed that it is
better to use multiple times Winternitz’s scheme. We proposed a new signature scheme
that allows to sign two messages without increasing the public key and signature size,
but that requires a non-negligible amount of offline work. We also give a new, simple
and efficient algorithm for traversing a tree in tree-based signature schemes.

We still would like to decrease the signature size and to make the chaining methods
more efficient in order to have a scheme that could substitute the used schemes, like
for example RSA. It is also interesting to ask what is a good security notion for post-
quantum signatures and how to make more efficient the schemes in a “quantum-hard
instances”.
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Appendix A

The class NP and Asymptotic
notation

A.1 The class NP
The class P [13]: This class is defined to be a set of computational problems, which
can be solved by an algorithm that is guaranteed to terminate in a number of steps
bounded by a polynomial in the length of the input. Thus P corresponds to the class
of polynomial-time algorithms.

The class NP [13]: This class is defined to be a set of computational problems
which can be solved by non-deterministic algorithm, whose running time is bounded
by a polynomial in the length of the input. A non deterministic algorithm is such that
when it is confronted with a choice between two alternatives, it can create two copies
of itself and simultaneously follow the consequences of both courses. This repeated
splitting may lead to an exponentially growing number of copies; the algorithm is said
to solve the given problem if any one of these copies produces the correct answer. NP
correspond to the class of non-deterministic-polynomial-time algorithms.

The class NP-hard: This class is defined to be a set of computational problems
that are at least as hard as the hardest problems in NP. This means that there exist
hard instances, but the average case could be easy.

The class NP-complete: This class is defined to be a set of computational prob-
lems that are in the set of NP problems and also in the set of NP-hard problems,
i.e., these are the hardest problems in NP.

A.2 Asymptotic notation

• Big-Oh notation: We say that f(n) ∈ O(g(n)) if f is bounded above by g (up
to constant factor) asymptotically. i.e., as n→∞,

∃k > 0, n0|∀(n > n0), f(n) ≤ g(n)× k

• Little-Oh notation: We say that f(n) ∈ o(g(n)) if f is dominated by g asymp-
totically. i.e., as n→∞,

|f(n)| ≤ |g(n)| × ε, ∀ε
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NP-Hard

P

NP

NP-Complete

Figure A.1: Diagram for P, NP, NP-hard and NP-complete.

• Big Omega notation: We say that f(n) ∈ Ω(g(n)) if f is bounded below by
g (up to constant factor) asymptotically. i.e., as n→∞,

f(n) ≥ g(n)× k for some positive k.



Appendix B

Definition of some codes

The purpose of this appendix is to give the definitions of the codes used in the first part
that haven’t been defined. For a more detailed definition and to see the properties of
these codes, pleas refer to [62,76]. We are not going to define Low-density parity-check
(LDPC) and Algebraic geometry codes, but we refer the reader to [114] and [62].

B.1 Combination of codes

One idea to obtain a long code is to do a combination of shorter codes, in this section
we will introduce two examples. For a more complete description please refer to [62,
Chapter 10] and [76, page 307].

Product codes: Is the simplest form of composite codes.

Definition B.1. A product code is a vector space of n1 by n2 arrays such that each
row is a codeword in a linear (n1, k1, d1) code, and each column is a codeword in a
linear (n2, k2, d2) code.

Theorem B.1. The parameters of a product code are (N,K,D) = (n1n2, k1k2, d1d2).

Concatenated codes: These codes are also called serial encoding, since the mane
idea is to “place” codes next to each other and, the output of a code is the input of the
next one. The term “concatenated” was originally used to indicate the combination
of a Reed Solomon code and a binary code. In Figure B.1 we can see how the codes
are “placed”, the inner encoder and decoder use an (n, k, d) binary code (called inner
code). Now, let see the combination of inner encoder, channel and inner decoder as a
new channel, called superchannel, that transmit elements in Fk2. We can correct errors
of the elements transmitted through the superchannel using an (N,K,D) code over
Fk2, that we call outer code. The overall code (called sueprcode) is a binary code of
length nN , dimension kK and rate kn

KN [76, page 307].

Theorem B.2. [62, page 113] The minimum distance of the concatenated code is at
least D × d.

B.2 Other codes

Reed Muller (RM) codes: This section is based on [76, Chapter 13]. Reed Muller
codes are one of the oldest and more studied codes and they are easy to decode.
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ChannelInner
Encoder

Outer
Encoder

Inner
Decoder

Outer
Decoder

Superchannel

Figure B.1: Concatenated codes.

We fix n = 2m and v = (v1, . . . , vm) ∈ Fm2 . A Boolean function is any function
f(v) = f(v1, . . . , vm) which output is 0 or 1.

Definition B.2. The rth order binary Reed-Muller (RM) code R(r,m) of length n =
2m, for 0 ≤ r ≤ m, is the set of all vectors f , where f(v1, . . . , vm) is a Boolean
function which is a polynomial of degree at most r.

Theorem B.3. R(r,m) has minimum distance 2m−r.

Rank metric (Gabidulin) codes: The following definitions are from [12]. Let Fq
be a finite field, and a = (a1, a2, . . . , an) ∈ Fnqm , the rank weight of a is by definition
the rank of the m× n− matrix over Fq formed by extending every coordinate ai on a
basis of Fqm/Fq. The rank weight define a metric.

Definition B.3. Let C be a linear code over Fqm, the minimum rank distance of C
is d = minc∈C ∗(rank(c)).

Definition B.4. Let X be a k × n matrix with coefficients in Fqm. The column rank
of X over Fq is equal to the maximum number of columns of X that are linearly
independent over Fq.

In 1985 Gabidulin proposed a family of codes which are optimal for rank metric
[48]. We fix (g1, g2, . . . , gn), n elements in Fqm which are linearly independent over q,
the Gabidulin codes are defined by the following generator matrix



B.2. OTHER CODES 133

G =


g
[0]
1 g

[0]
2 . . . g

[0]
n

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n


where [i] = qi.
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Appendix C

Gröbner basis

Gröbner basis have been defined in two simultaneous and independent works. In 1964
Hironaka introduced them in his work on resolution of singularities over C (for which
he received the Field medal), and used the term “standard basis”. In 1965 Buchberger
gave an independent description in his PhD thesis, he named them “Gröbner basis” in
honor of his advisor W. Gröbner. In order to introduce them, we will first give some
of the definitions and properties that we need, then we will give the Hilbert algorithm
(that guarantees the existence of the basis), and finally we will explain how we can use
these basis to solve a system of equations. This Appendix is based on [118, Chapter
21] and [70, Chapter 5].

C.1 Preliminaries

Let F be a field, R = F[x1, . . . , xn] a polynomial ring in n variables over F, and
f1, . . . , fs ∈ R. The polynomials f1, . . . , fs form a basis of the ideal

I = 〈f1, . . . , fs〉 =
{ ∑

1≤i≤s
qifi|qi ∈ R

}
.

Definition C.1. [118, Page 585]

• A partial order < on a set S is an irreflexive and transitive relation, so that

not(α < α) and α < β < γ ⇒ α < γ ∀α, β, γ ∈ S.

• A partial order is a total order (or simply order) if either α = β or α < β or
β < α, for all α, β ∈ S.

• A well order is a total order such that every nonempty subset of S has a least
element.

Definition C.2. [118, Page 586] A monomial order in R = F[x1, . . . , xn] is a
relation ≺ on Nn such that

1. ≺ is a well order.

2. α ≺ β ⇒ α+ γ ≺ β + γ for all α, β, γ ∈ Nn

Definition C.3. [118, Page 587] Let f =
∑

α∈Nn cαx
α ∈ R be a nonzero polynomial

with all cα ∈ F (not all zero), and ≺ a monomial order.
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1. Each cαx
α with cα 6= 0 is a term of f .

2. The multidegree of f is mdeg(f) = max≺{α ∈ Nn : cα 6= 0}, where max≺ is
the maximum with respect to ≺.

3. The leading coefficient of f is lc(f) = cmdeg(f) ∈ F \ {0}.

4. The leading monomial of f is lm(f) = xmdeg(f) ∈ R.

5. The leading term of f is lt(f) = lc(f)× lm(f) ∈ R.

Algorithm 18 Multivariate division with remainder algorithm [118, Page 589]

• Input: Nonzero polynomials f, f1, . . . , fs ∈ R = F[x1, . . . , xn], where F is a
field, and a monomial order ≺ on R.

• Output: q1, . . . , qs, r ∈ R such that f = q1f1 + · · ·+ qsfs = r and no monomial
in r is divisible by any of lt(f1), . . . , lt(fs).

1. r ← 0, p← f for i = 1, . . . s do r ← 0.

2. while p 6= 0 do

3. if lt(fi) divides lt(p) for some i ∈ {1, . . . , s}
then choose some such i, qi ← qi + lt(p)

lt(fi)
, p← p− lt(p)

lt(fi)
fi

else r ← r + lt(p), p← p− lt(p)

4. Return q1, . . . , qs, r.

This algorithm may not be unique, the remainder r depend on the order of
f1, . . . , fs (like in the following example). We will like to have a generating set such
that the remainder is independent of the order of its elements. This set exist and is
called a Gröbner basis.

Example (from [118, Page 588]): We define the lexicographical order (≺lex) by

α ≺lex β ⇐⇒ the leftmost nonzero entry in α− β is negative.

Now let ≺=≺lex, f = xy2 + 1, f1 = xy + 1 and f2 = y + 1. We want to apply the
multivariate division with remainder algorithm, in order to find q1, q2 and r in R such
that f = q1f1 + q2f2 + r and no monomial in r is divisible by lt(f1) or lt(f2). In Table
C.1 we can see the division, in the left side it starts with f2 and in the right one with
f1. We can see that in fact the remainder output depend of the order of the set.
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Table C.1: Example of multivariate division with remainder.

xy + 1 y + 1 xy + 1 y + 1

xy2 + 1 xy xy2 + 1 y
−(xy2 + xy) −(xy2 + y)

−xy + 1 −x −y + 1 −1
−(−xy − x) −(−y − 1)

x+ 1 2

C.2 Existence

Lemma C.1. [118, Page 594] Let I be an ideal in R = F[x1, . . . , xn]. If G ⊆ I is a
finite subset such that 〈lt(G)〉 = 〈lt(I)〉, then 〈G〉 = I.

Theorem C.1 (Hilbert basis theorem.). [118, Page 594] Every ideal I in R =
F[x1, . . . , xn] is finitely generated. More precisely, there exists a finite subset G ⊆ I
such that 〈G〉 = I and 〈lt(G)〉 = 〈lt(I)〉.

Definition C.4 (Gröbner basis). [118, Page 594] Let ≺ be a monomial order and
I ⊆ R an ideal. A finite set G ⊆ I is a Gröbner basis for I with respect to ≺ if
〈lt(G)〉 = 〈lt(I)〉.

Corollary C.1. [118, Page 595] Every ideal I in R = F[x1, . . . , xn] has a Gröbner
basis.

A Gröbner basis is not unique, you can always add another polynomial g∗ ∈ I to
the list of polynomials in the Gröbner basis (g1, . . . , gr). Then (g1, . . . , gr, g∗) will also
be a Gröbner basis. This lead us to the following definition:

Definition C.5. [70, Page 212] A reduced Gröbner basis (g1, . . . , gr) is a minimal
Gröbner basis such that no term in gi is divisible by lt(gi) for i 6= j.

Buchberger proposed a method for computing Gröbner basis that is explained for
example in [70,118]. There are other proposal to find these basis, like for example F4
and F5 due to Faugère [41,42], that are optimizations of Buchberger’s algorithm.

C.3 Solving equations using Gröbner basis

Gröbner bases can be applied for solving systems of non-linear (polynomial) equations.
Let I = 〈f1, . . . , fs〉 as before, we define the variety of I by

V (I) = {u ∈ Fn|f(u) = 0∀f ∈ I} = {u ∈ Fn|f1(u) = · · · = fs(u) = 0}.

This variety is also denoted V (f1, . . . , fs) instead of V (〈f1, . . . , fs〉) for short. Let
(g1, . . . , gr) be a Gröbner basis of I, we get that

V (f1, . . . , fs) = V (g1, . . . , gr).
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Often solving the system g1(x1, . . . , xn) = 0, . . . , gr(x1, . . . , xn) = 0 is much easier
than solving f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0. The main idea is to eliminate
variables by combining some equations. In the ideal case we will find equations that
depend only on x1, then only on x1 and x2, etc.

Theorem C.2. [70, Page 215] Let G = (g1, . . . , gr) be a Gröbner basis for an ideal
I ⊆ R = F[x1, . . . , xn] with respect to the lexicographic ordering �lex given by x1 �lex
x2 �lex · · · �lex xn. Then (G ∩R) is a Gröbner basis for the ideal (I ∩R) in R.

Example (from [70, Page 216]): find the solution of the system of equations in
R2.

{
y2 − x3 + x = 0,
y3 − x2 = 0

(C.3.1)

By using Buchberger’s algorithm we can find that the reduced Gröbner basis is
(y3 − y4 − 2y6 + y9, x + y2 + y4 − y7). Then solve the system of equations C.3.1 is
equivalent to find the solution of:{

y3 − y4 − 2y6 + y9 = 0,
x+ y2 + y4 − y7 = 0

(C.3.2)

i.e., to solve {
y3(1− y − 2y3 + y6) = 0,

x = −y2 − y4 + y7.
(C.3.3)



Appendix D

Experimental results for the
distinguisher

We gathered samples of results we obtained through intensive computations with
the Magma system [23] in order to confirm the formulas. We randomly generated
alternant and Goppa codes over the field Fq with q ∈ {2, 4, 8, 16, 32} for values of r in
the range {3, . . . , 50} and several m. The Goppa codes are generated by means of an
irreducible g(z) of degree r and hence g(z) has no multiple roots. In particular, we
can apply Theorem 2.7 in the binary case. We compare the dimensions of the solution
space against the dimension Drandom of the system derived from a random linear
code. Tables D.1-D.3 give figures for the binary case with m = 14. We define Talternant
and TGoppa respectively as the expected normalized dimensions for an alternant and a
Goppa code deduced from the formulas (6.1.3) and (6.1.4). We can check that Drandom

is equal to 0 for r ∈ {3, . . . , 12} and Drandom = N − k as expected. We remark that
Dalternant is different from Drandom whenever r ≤ 15, and DGoppa is different from
Drandom as long as r ≤ 25. Finally we observe that our formulas for Talternant fit as
long as k ≥ N − mTalternant which correspond to r ≤ 15. This is also the case for
binary Goppa codes since we have mTGoppa = DGoppa as long as k ≥ N −mTGoppa i.e.,
r ≤ 25. We also give in Tables D.12-D.14 the examples we obtained for q = 4 and
m = 6 to check that the arguments also apply. We also compare binary Goppa codes
and random linear codes for m = 15 in Tables D.4-D.7 and m = 16 in Tables D.8-D.11.
We see that Drandom and DGoppa are different for r ≤ 33 when m = 15 and for m = 16
they are different even beyond our range of experiment r ≤ 50.

Table D.1: q = 2 and m = 14

r 3 4 5 6 7 8 9 10 11 12

N 861 1540 2415 3486 4753 6216 7875 9730 11781 14028
k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216

Drandom 0 0 0 0 0 0 0 0 0 0
Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158
mTalternant 42 126 308 560 882 1274 1848 2520 3290 4158
DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316
mTGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316
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Table D.2: q = 2 and m = 14

r 13 14 15 16 17 18 19 20 21

N 16471 19110 21945 24976 28203 31626 35245 39060 43071

k 16202 16188 16174 16160 16146 16132 16118 16104 16090

Drandom 269 2922 5771 8816 12057 15494 19127 22956 26981

Dalternant 5124 6188 7350 8816 12057 15494 19127 22956 26981

mTalternant 5124 6188 7350 8610 10192 11900 13734 15694 17780

DGoppa 10010 11858 13860 16016 18564 21294 24206 27300 30576

mTGoppa 10010 11858 13860 16016 18564 21294 24206 27300 30576

Table D.3: q = 2 and m = 14

r 22 23 24 25 26 27 28 29 30

N 47278 51681 56280 61075 66066 71253 76636 82215 87990
k 16076 16062 16048 16034 16020 16006 15992 15978 15964

Drandom 31202 35619 40232 45041 50046 55247 60644 66237 72026
Dalternant 31202 35619 40232 45041 50046 55247 60644 66237 72026
mTalternant 19992 22330 24794 27384 30100 32942 35910 39004 42224
DGoppa 34034 37674 41496 45500 50046 55247 60644 66237 72026
mTGoppa 34034 37674 41496 45500 49686 54054 58604 63336 68250

Table D.4: q = 2 and m = 15

r 3 4 5 6 7 8 9 10 11 12 13

N 990 1770 2775 4005 5460 7140 9045 11175 13530 16110 18915
k 32723 32708 32693 32678 32663 32648 32633 32618 32603 32588 32573

Drandom 0 0 0 0 0 0 0 0 0 0 0
DGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725
mTGoppa 270 570 1050 1665 2415 3300 4455 5775 7260 8910 10725

Table D.5: q = 2 and m = 15

r 14 15 16 17 18 19 20 21 22 23 24

N 21945 25200 28680 32385 36315 40470 44850 49455 54285 59340 64620
k 32558 32543 32528 32513 32498 32483 32468 32453 32438 32423 32408

Drandom 0 0 0 0 3817 7987 12382 17002 21847 26917 32212
DGoppa 12705 14850 17160 19890 22815 25935 29250 32760 36465 40365 44460
mTGoppa 12705 14850 17160 19890 22815 25935 29250 32760 36465 40365 44460
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Table D.6: q = 2 and m = 15

r 25 26 27 28 29 30 31 32 33 34

N 70125 75855 81810 87990 94395 101025 107880 114960 122265 129795
k 32393 32378 32363 32348 32333 32318 32303 32288 32273 32258

Drandom 37732 43477 49447 55642 62062 68707 75577 82672 89992 97537
DGoppa 48750 53235 57915 62790 67860 73125 78585 84240 90585 97537
mTGoppa 48750 53235 57915 62790 67860 73125 78585 84240 90585 97155

Table D.7: q = 2 and m = 15

r 35 36 37 38 39 40 41 42 43 44

N 137550 145530 153735 162165 170820 179700 188805 198135 207690 217470
k 32243 32228 32213 32198 32183 32168 32153 32138 32123 32108

Drandom 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362
DGoppa 105307 113302 121522 129967 138637 147532 156652 165997 175567 185362
mTGoppa 103950 110970 118215 125685 133380 141300 149445 157815 166410 175230

Table D.8: q = 2 and m = 16

r 3 4 5 6 7 8 9 10 11 12 13

N 1128 2016 3160 4560 6216 8128 10296 12720 15400 18336 21528
k 65488 65472 65456 65440 65424 65408 65392 65376 65360 65344 65328

Drandom 0 0 0 0 0 0 0 0 0 0 0
DGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440
mTGoppa 288 608 1120 1776 2576 3520 4752 6160 7744 9504 11440

Table D.9: q = 2 and m = 16

r 14 15 16 17 18 19 20 21 22 23 24

N 24976 28680 32640 36856 41328 46056 51040 56280 61776 67528 73536
k 65312 65296 65280 65264 65248 65232 65216 65200 65184 65168 65152

Drandom 0 0 0 0 0 0 0 0 0 2360 8384
DGoppa 13552 15840 18304 21216 24336 27664 31200 34944 38896 43056 47424
mTGoppa 13552 15840 18304 21216 24336 27664 31200 34944 38896 43056 47424
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Table D.10: q = 2 and m = 16

r 25 26 27 28 29 30 31 32 33 34

N 79800 86320 93096 100128 107416 114960 122760 130816 139128 147696
k 65136 65120 65104 65088 65072 65056 65040 65024 65008 64992

Drandom 14664 21200 27992 35040 42344 49904 57720 65792 74120 82704
DGoppa 52000 56784 61776 66976 72384 78000 83824 89856 96624 103632
mTGoppa 52000 56784 61776 66976 72384 78000 83824 89856 96624 103632

Table D.11: q = 2 and m = 16

r 35 36 37 38 39 40 41 42 43

N 156520 165600 174936 184528 194376 204480 214840 225456 236328
k 64976 64960 64944 64928 64912 64896 64880 64864 64848

Drandom 91544 100640 109992 119600 129464 139584 149960 160592 171480
DGoppa 110880 118368 126096 134064 142272 150720 159408 168336 177504
mTGoppa 110880 118368 126096 134064 142272 150720 159408 168336 177504

Table D.12: q = 4 and m = 6

r 3 4 5 6 7 8 9 10 11 12

N 153 276 435 630 861 1128 1431 1770 2145 2556
k 4078 4072 4066 4060 4054 4048 4042 4036 4030 4024

Drandom 0 0 0 0 0 0 0 0 0 0
Dalternant 6 18 60 120 198 294 408 540 690 858
mTalternant 6 18 60 120 198 294 408 540 690 858
DGoppa 18 60 120 198 294 408 540 750 990 1260
mTGoppa 18 60 120 198 294 408 540 750 990 1260

Table D.13: q = 4 and m = 6

r 13 14 15 16 17 18 19 20 21

N 3003 3486 4005 4560 5151 5778 6441 7140 7875
k 4018 4012 4006 4000 3994 3988 3982 3976 3970

Drandom 0 0 0 560 1157 1790 2459 3164 3905
Dalternant 1044 1248 1470 1710 2064 2448 2862 3306 3905
mTalternant 1044 1248 1470 1710 2064 2448 2862 3306 3780
DGoppa 1560 1890 2250 2640 3060 3510 3990 4500 5040
mTGoppa 1560 1890 2250 2640 3060 3510 3990 4500 5040
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Table D.14: q = 4 and m = 6

r 22 23 24 25 26 27 28 29 30

N 8646 9453 10296 11175 12090 13041 14028 15051 16110
k 3964 3958 3952 3946 3940 3934 3928 3922 3916

Drandom 4682 5495 6344 7229 8150 9107 10100 11129 12194
Dalternant 4682 5495 6344 7229 8150 9107 10100 11129 12194
mTalternant 4284 4818 5382 5976 6600 7254 7938 8652 9396
DGoppa 5610 6210 6840 7500 8190 9107 10100 11129 12194
mTGoppa 5610 6210 6840 7500 8190 8910 9660 10440 11250


