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The core of traveling salesman games: computational

experiments

Stefan Ropke (sr@transport.dtu.dk)
Technical University of Denmark, Department of Transport

Let G = (V,E) be a complete, undirected graph with vertices V = {0, 1, . . . , n} and edges E.
A weight or cost ce is associated with each edge e ∈ E. The aim of the traveling salesman problem

(TSP) is to �nd a tour with minimum cost, visiting all vertices in V exactly once.
Now consider the traveling salesman game (TSG) from cooperative game theory, introduced in

Potters et al. [1992] and Tamir [1989]. In the version of the TSG considered in this talk, vertex 0 is
denoted the home vertex and Vu = {1, . . . , n} are user vertices. For any set S ⊆ Vu, let c(S) be the
cost of the minimum TSP tour on the vertices S∪{0}. In the TSG one wants to distribute the cost
of the TSP tour visiting all vertices in V among the user vertices. An application (from Potters
et al. [1992]) of the problem is the following: a researcher is giving talks at a number of universities
and wants to distribute his travel costs among the universities in a fair way. For the distribution to
be fair it makes sense to require that no subset S of Vu would be better o� by leaving the coalition
and arranging a separate trip for the researcher that only visits the universities in S. To formalize
the concepts, let xi be the cost charged to user i ∈ Vu. The vector x should satisfy

x(Vu) = c(Vu) (1)

x(S) ≤ c(S) ∀S ⊂ Vu (2)

x ∈ Rn (3)

where x(S) =
∑

i∈S xi. Here (1) ensures that all costs are distributed to the users and (2) ensures
that the distribution is fair in the sense described earlier. The constraints de�ne a polyhedron
in Rn and vectors belonging to this polyhedron are said to be in the core. For some cooperative
games it can happen that the core is empty. In other words, there is no way to fairly allocate the
cost of the large tour to the users: no matter how x is chosen some subset of users S ⊂ Vu would
be better o� by forming a sub-coalition compared to staying in the grand coalition. For the TSG
it is known that the core is non-empty for n ≤ 5 (Kuipers [1993]) and for n = 6 it is known that
even instances where the cost matrix c is Euclidean can have an empty core (Faigle et al. [1998]).

In this talk we explore how often it happens that the core of a TSG is empty. Does it happen
frequently �in practice� or only for speci�cally constructed instances? We do this through compu-
tational experiments on a large set of instances. We construct a computer program that given a
TSG instance returns a vector in the core if the core is non-empty or reports that the core is empty
otherwise. We test this on instances from the TSPLIB (Reinelt [1991]) as well on a large set of
randomly generated instances. Finding a vector in the core amounts to solving the linear program
(LP) de�ned by (1)�(3) with any objective function. The number of constraints in the LP grows
exponentially in n, but the LP can be solved in a cutting-planes fashion. The separation problem
for inequality (2) amounts to the following: given a vector x∗ one has to �nd a subset S ⊂ Vu such
that

∑
i∈S x

∗
i > c(S) or, in other words solve

min
S⊂Vu

{c(S)−
∑
i∈S

x∗i },

which is equivalent to the pro�table tour problem from Dell'Amico et al. [1995] and is closely related
to the orienteering problem and the prize collecting TSP (see e.g. Fischetti et al. [1998] and Balas
[1989], respectively). Let yi, i ∈ Vu be a binary variable that is one if and only if user i is included
in the set S and let ze, e ∈ E be a binary variable that takes value one if and only if edge e is used in
the cheapest tour visiting vertices in S ∪{0}, with S being de�ned by yi. De�ne z(E′) =

∑
e∈E′ ze
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for all E′ ⊆ E and δ(T ), T ⊂ V as the set of edges with exactly one endpoint in T. The separation
problem for inequality (2) can now be stated as an integer programming problem:

min
∑
e∈E

ceze −
∑
i∈Vu

x∗yi (4)

subject to

z(δ({0})) = 2 (5)

z(δ({i})) = 2yi ∀i ∈ Vu (6)

z(δ(T )) ≥ 2yi ∀T ⊂ V, 0 ∈ T, i ∈ V \ T (7)

ze ∈ {0, 1} ∀e ∈ E (8)

yi ∈ {0, 1} ∀i ∈ Vu (9)

where (5) ensures that the home vertex is visited by the tour, (6) establishes the connection between
y and z variables and (7) are generalized subtour elimination constraints (see e.g. Fischetti et al.
[1998]). We note that the tours found by (4)-(9) will contain at least two user vertices so we should
a priori generate all constraints (2) with |S| = 1.We solve (4)-(9) using a branch-and-cut algorithm
and we also propose an adaptive large neighborhood search heuristic (Ropke and Pisinger [2006])
for solving (4)�(9) in order to speed up the algorithm for solving (1)�(3).

The real life applications of the TSG may be limited, but the idea of allocating costs or pro�ts
among a number of participants in a fair way have many applications within transportation, e.g.
in truck based transportation (Frisk et al. [2010], Krajewska et al. [2008]) and in liner shipping
(Agarwal and Ergun [2010]) and we believe that it is a subject that enjoys a growing popularity.
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